WO2006098040A1 - Method for production of recombinant dna molecule - Google Patents

Method for production of recombinant dna molecule Download PDF

Info

Publication number
WO2006098040A1
WO2006098040A1 PCT/JP2005/005455 JP2005005455W WO2006098040A1 WO 2006098040 A1 WO2006098040 A1 WO 2006098040A1 JP 2005005455 W JP2005005455 W JP 2005005455W WO 2006098040 A1 WO2006098040 A1 WO 2006098040A1
Authority
WO
WIPO (PCT)
Prior art keywords
origin
dna
plasmid
vector
yeast
Prior art date
Application number
PCT/JP2005/005455
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Nagano
Eiichi Iisasa
Original Assignee
Saga University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University filed Critical Saga University
Priority to PCT/JP2005/005455 priority Critical patent/WO2006098040A1/en
Priority to JP2007508010A priority patent/JP4961563B2/en
Publication of WO2006098040A1 publication Critical patent/WO2006098040A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Definitions

  • the present invention relates to a method for producing a recombinant DNA molecule, and more particularly, to a method for simultaneously performing DNA fragment cloning and yeast shuttle vector construction.
  • the traditional heterologous DNA cloning method using Escherichia coli the so-called Cohen-Boyer method (Reference 1), cleaves DNA fragments to be cloned with cloning vectors with restriction enzymes, and ligates them with DNA ligation enzymes.
  • This is a method of transforming to, and amplifying in E. coli, and is the basis of molecular biology research.
  • the importance of research methods for cloning desired DNA fragments into cloning vectors is increasing.
  • traditional DNA cloning methods require a lot of skill because they involve many ⁇ '0 operations.
  • the J ⁇ ' ⁇ / ⁇ homologous recombination method 1) is a method that uses a DNA sequence-specific recombination enzyme when cloning a DNA fragment into a cloning vector.
  • the ⁇ w'o homologous recombination method using E. coli (References 2 and 3) is a method that utilizes the high homologous recombination ability of E. coli strains that express multiple proteins derived from phages. is there. This method is very similar to the baker's yeast homologous recombination method of FIG. First, PCR is performed with primers having a sequence homologous to the cloning vector, so that a sequence homologous to the cloning vector is added to both ends of the DNA fragment to be cloned.
  • the cloning vector is cleaved with a restriction enzyme or the like at any site located in the middle of the portion where homologous recombination occurs.
  • a restriction enzyme or the like at any site located in the middle of the portion where homologous recombination occurs.
  • the traditional DNA cloning method reduces the efficiency of cloning as the size of the DNA fragment desired to be cloned increases, whereas this method reduces the size of the DNA fragment desired to be cloned. It is also a feature that does not depend too much.
  • the homologous recombination method using baker's yeast utilizes the fact that baker's yeast has an extremely high homologous recombination ability (Fig. 1).
  • this method first, PCR is performed with primers having a sequence homologous to the cloning vector, so that both ends of the DNA fragment to be cloned are homologous to the cloning vector. Appends an array.
  • the cloning vector is cleaved with a restriction enzyme at any site located in the middle of the portion where homologous recombination occurs.
  • the target DNA fragment having a sequence homologous to the cloning vector at both ends and the cleaved cloning vector are transformed into baker's yeast.
  • homologous recombination occurs in w'ra, and the desired DNA fragment can be cloned into a cloning vector.
  • This reaction occurs independently of the restriction enzyme site in the same way as the homologous recombination method using E. coli in 2), so DNA fragments can be inserted at various positions in the vector sequence. It is.
  • the cloning efficiency of the traditional DNA cloning method decreases as the size of the DNA fragment to be cloned increases.
  • This method is also characterized in that it does not depend much on the size of the DNA fragment to be cloned.
  • baker's yeast has an extremely high homologous recombination ability, so that a sufficient number of traits can be obtained even if transformation is performed by chemical transformation method (lithium acetate method) without relying on electroporation. A converter is obtained.
  • the most important feature of clawing using ⁇ 'O homologous recombination method using baker's yeast is that multi-fragment ligation in Fig. 2 is easy (Reference 4).
  • a plurality of DNA fragments can be ligated and cloned into a cloning vector. It is useful for functional analysis of genes and proteins because fusion proteins can be easily created by linking multiple fragments. For example, it can be used to fuse the gene under study with the GFP gene, or to replace a protein domain. This method can also be applied to site-directed mutagenesis into proteins. That is, by mutating the primer corresponding to the red-red part in the center of Fig. 2, amplifying a DNA fragment by PCR, and ligating multiple fragments by ino homologous recombination method using baker's yeast It becomes possible.
  • the ⁇ 'ra homologous recombination method using baker's yeast requires baker's yeast-E. Coli shuttle vector because it needs to be transferred to Escherichia coli when an operation for preparing a large amount of DNA is performed.
  • the vectors used by researchers are often Since it is not the baker's yeast-E. Coli shuttle vector, it can often replicate in baker's yeast even though it can replicate in E. coli. Therefore, to perform baker's yeast homologous recombination with the target vector, first convert the vector to be used into baker's yeast-E. Coli shuttle vector, Must be placed in a cloning vector. Such an operation is time consuming and cumbersome. Disclosure of the invention
  • an object of the present invention is to provide a method for cloning a DNA fragment by a homologous recombination method using baker's yeast into a general vector that is not a yeast shuttle vector.
  • the present invention is a method for simultaneously performing cloning and construction of a yeast shuttle vector. This method can be applied to many commercially available vectors or to many vectors originally developed by each researcher.
  • the present invention is as follows.
  • one microorganism is Escherichia coli.
  • replication origins that function in E. coli include PUC origin, ColEl origin, pBR322 origin, pACYC origin, pSClOl origin, fl origin, M13 origin, BAC vector origin, PAC vector origin, and cosmid vector
  • Ampr, Tef, Cm r , Km r , Spc> ⁇ can be selected as the selected marker.
  • Hyg r, Gm r, Rif r , Zeocin r and include the one selected from the group consisting of Blasticidin r.
  • yeasts such as Saccharomyces cerevisiae.
  • replication origins that function in yeast include 2 ⁇ origins and any one selected from the group consisting of ARS.Selectable markers include, for example, URA3, TRP1, SUP4, ADE2, HIS3, LEU2, Any one selected from the group consisting of LYS2, KANMX, AURI C, CYH2, CAN1, PDR4, and hphMX can be mentioned.
  • the plasmid preferably contains, for example, the following DNA (a) or (b):
  • the target DNA fragment is not limited to one type, and two or more types may be included.
  • the two or more types of target DNA fragments contain sequences having homologous junctions so that they are linked in series to a cloning vector.
  • Saccharomyces Examples include yeasts such as Levisiae.
  • a transformant comprising the recombinant DNA described in (3) above.
  • the method of the present invention is extremely useful in that it can be applied to many commercially available vectors or vectors originally developed for the simultaneous construction of target DNA cloning and shuttle vectors. Brief Description of Drawings
  • FIG. 1 is a diagram showing a homologous recombination method in yeast.
  • FIG. 2 is a diagram showing an outline of multi-fragment linking.
  • Figure 3 shows the common structure of many vectors.
  • FIG. 4 is a diagram showing the matchmaker plasmid pSUO of the present invention.
  • FIG. 5 is a schematic diagram showing an outline of the method of the present invention.
  • FIG. 6 shows the DNA sequence (SEQ ID NO: 1) of the matchmaker plasmid pSUO of the present invention and its annotation.
  • the present invention relates to a method for simultaneously performing DNA fragment cloning and yeast shuttle vector construction.
  • the present inventor has developed a DNA fragment by a homologous recombination method using Saccharomyces cerevisiae (also referred to as baker's yeast, brewer's yeast or rice yeast) as a general vector that is not a yeast shuttle vector.
  • Saccharomyces cerevisiae also referred to as baker's yeast, brewer's yeast or rice yeast
  • the present inventor thought that cloning and yeast shuttle vector construction could be performed at the same time, and constructed an optimal matchmaker plasmid for this purpose.
  • matchmaker plasmid the binding of a £ black one Jung vector and the DNA fragment of interest in the sense that plasmid to mediate the binding of the target DNA fragment of the cloning vector and cloned likened to a "marriage", "matchmaker plus It is named “mid”.
  • the present inventor pays attention to the structure common to many of these vectors, and using a matchmaker plasmid as shown in FIG. 4, a commercially available cloning vector or a cloning vector developed independently by each researcher. We thought that most of this could be easily converted into baker's yeast-E. Coli shuttle vector.
  • the matchmaker plasmid of the present invention contains two sets of selection markers and replication origins used as shuttle vectors so that they can function as shuttle vectors.
  • One is a selection marker having a replication function and an origin of replication in a first host (eg, E. coli, etc.).
  • the other is a selection marker and an origin of replication having a replication function in a second host (for example, yeast) different from the first host.
  • “selectable marker” means DNA used to select recombinants from non-recombinants in experiments such as transduction and transformation. Things are included.
  • “Replication origin” refers to a replication control factor present on a chromosome or plasmid, and refers to a DNA region in which a DNA replication initiation reaction occurs.
  • “Shuttle vector” means a vector that can grow independently in either cell of two species with different gene replication and expression mechanisms.
  • the E. coli-yeast shuttle vector is a DNA for yeast.
  • a yeast plasmid DNA or yeast chromosome replication unit (ARS) is inserted into an E. coli plasmid vector.
  • the matchmaker plasmid of the present invention a selection marker that functions in a second host and a replication origin are linked between a selection marker that functions in the first host and the replication origin. It has a structure (Fig. 4). Therefore, the matchmaker plasmid of the present invention basically has a selection marker that functions in the first host, an origin of replication that functions in the second host, a selection marker that functions in the second host, and a function in the first host. It has a structure that includes the replication origins in this order. However, the order is not limited to this, and the structure may be such that the selection marker that functions in the first host and the replication origin are rearranged, and the selection marker that functions in the second host and the replication. Even the structure where the starting point is rearranged.
  • Figure 4 shows Ampr and PUC origin (origin) as selectable markers and replication origins that function in E. coli, respectively, and URA3 and 2 ⁇ origin (origin) as selectable markers and origins of replication that function in yeast, respectively.
  • yeast can be used as the second host.
  • yeast include Saccharomyces cerevisiae, Schizosaccaromyces pombe, and the like.
  • yeast is used as the first host, Escherichia coli, mammalian cells, etc. can be used as the second host.
  • selection markers and origins of replication that function in these hosts include the following.
  • Replication origin that functions in E. coli: PUC origin, ColEl origin, pBR322 origin, pACYC origin, pSClOl origin, fl origin, M13 origin, BAC vector origin, PAC vector origin, cosmid vector origin
  • Replication origin functioning in Saccharomyces cerevisiae: 2 ⁇ origin, ARS Saccharomyces' selection markers functioning in cerevisiae: URA3, TRP1, SUP4, ADE2, HIS3, LEU2, LYS2, KANMX, AUR1'C, CYH2, CAN1, PDR4 and hphMX
  • Replication origin that functions in Schizosaccharomyces bombs: ARS, 2 ⁇ origin Selection marker that functions in Schizosaccharomyces bombs: LEU1, URA4, ADE6, HIS2, KA ⁇ X, AURl r
  • Replication origin that functions in mammalian cells SV40 origin
  • Selectable markers that function in mammalian cells Zeoci, Blasticidi, Hyg Neomvcin r Nakajin plasmid, which is introduced into DNA into the host to cause homologous recombination, as described later, makes it a linear DNA fragment.
  • the matchmaker plasmid has a restriction enzyme cleavage site.
  • the restriction enzyme sites are preferably present in regions other than the two replication origins and the selection marker. Examples of cleavage restriction enzymes include Eco RI, BamHl, Pst1, Hind III, Cla I, Kpn I, and Xho I, but are not limited thereto.
  • Figure 4 shows EcoRI and BamHI cut sites.
  • the pSUO matcher brass (pSUO plasmid) shown in FIG. 4 is preferable because it is overwhelmingly versatile.
  • Figure 6 shows the DNA sequence of pSUO plasmid (SEQ ID NO: 1) and its annotation.
  • the pSUO plasmid is composed of 2 ⁇ origin, the yeast origin of replication, and Amp, which is a common selection marker for commercially available vectors, and PUC origin, which is a common replication origin for commercially available vectors. It contains URA3, which is a selection marker, and has a restriction enzyme site that is cleaved by restriction enzymes EcoRI and BamHI. This pSUO plasmid is also effective when performing yeast shuttle vector production alone.
  • the pSUO plasmid of the present invention hybridizes under stringent conditions with a base sequence complementary to the base sequence shown in SEQ ID NO: 1 as well as the base sequence shown in SEQ ID NO: 1, and Contains DNA that can function as a vector.
  • stringent conditions include 1 X SSC to 2 X SSC, 0.1% to 0.5% SDS, and 42 ° C to 68 ° C, and more specifically, 60 to 68 ° C. Examples include conditions in which 5 to 15 minutes of washing is performed 4 to 6 times in 2 X SSC and 0.1% SDS at room temperature after prehybridization for 30 minutes or more.
  • matchmaker plasmid of the present invention is not limited to the above pSUO.
  • a matchmaker plasmid can be designed corresponding to a cloning vector having the replication origin f 1 origin and the selection marker 1 Amp 1 ”.
  • the force of the matchmaker plasmid illustrated in Fig. 4, fl origin, yeast-derived replication control factor 2 origin, yeast-derived selection marker URA3 and A plasmid containing Amp r in this order is also included in the present invention.
  • This plasmid shows a cloning efficiency similar to pSUO.
  • the matchmaker plasmid can be obtained using a conventional homologous recombination method. That is, pSUO plasmid can be constructed by the following method. Amplify DNA fragment containing Ampr, DNA fragment containing URA3 and 2 ⁇ origin (origin), and DNA fragment containing PUC origin (origin) by PCR. At this time, the 3 ′ DNA sequence of the DNA fragment containing Ampr and the 5 ′ DNA sequence of the DNA fragment containing URA3 and 2 ⁇ origin (origin) should be homologous over 40 bp.
  • DNA fragment 3'-side DNA sequence containing URA3 and 2 ⁇ origin (origin) should be homologous with the DNA fragment containing PUC origin (origin) 5'-side for 40 bp.
  • the 3 ′ DNA sequence of the DNA fragment containing PUC origin and the 5 ′ DNA sequence of the DNA fragment containing Amp r should be homologous over 60 bp.
  • the EcoRI and BamHI cleavage sites should be included in this 60 bp sequence.
  • PSUO can be constructed by transforming these three DNA fragments into yeast.
  • a vector for cloning a desired DNA fragment of interest may be a commercially available vector or a vector originally developed by a researcher. These vectors are often derived from pBR322 (Reference 7) as described above, in which case the selection marker — Ampicillin resistance gene (Ampr, which encodes lactamase) 3 ′ side,
  • Vectors of pBR strains include E. coli plasmid vectors such as pET strains, pUC strains, and Bluescript strains.
  • E. coli plasmid vectors such as pET strains, pUC strains, and Bluescript strains.
  • the present invention is not limited to pBR vectors such as the above-mentioned pBR322, but pACYC vectors, pSClOl vectors, fl or M13 vectors, BAC vectors, PAC vectors, cosmid vectors.
  • An Escherichia coli plasmid vector or the like can be used.
  • Vector-derived selection markers for cloning the desired DNA fragment include Amp r , Tet r , C Km r , Spc r , Hyg r , Gm r , Rif as described in the matchmaker plasmid above. Zeoci, including but not limited to Blasticidinr Rather, it can be selected as appropriate.
  • Cloning purpose DNA is an arbitrary gene and is not particularly limited.
  • a gene encoding a protein a gene encoding an enzyme, a gene encoding a functional RNA, and the like can be mentioned.
  • Examples of the gene encoding the protein include green fluorescent protein and red fluorescent protein.
  • Examples of the gene encoding the enzyme include amylase and cellulase.
  • genes encoding functional RNA include double-stranded RNA.
  • genes can be obtained by any method based on information such as GenBank accession numbers (for example, Molecular cloning 2nd ed., Sambrook, J., et al., Cold Spring Harbor Laboratory Press USA, (See 1989).
  • FIG. 5 is a schematic diagram for carrying out the “simultaneous execution method of clawing and yeast shuttle vector construction” using the matchmaker plasmid of the present invention.
  • the target DNA fragment can be prepared by the method described in 3 above.
  • a plurality of types of target DNA can be cloned. In the present invention, this is called “multi-fragment ligation”. For example, when two types of target DNA fragments are linked and cloned, homologous recombination occurs between the target DNA fragments, and a homologous sequence is added to one end of the target DNA fragment. Add a sequence homologous to the cloning vector sequence (cloning vector cleavage site sequence).
  • the cloning vector is cleaved at two locations with a restriction enzyme.
  • the first point is an arbitrary position located in the middle of the portion where homologous recombination with the DNA fragment to be cloned occurs (referred to as cleavage site 1).
  • the cleavage site is preferably one of the multiple cloning sites. Further, in order to further increase the cloning efficiency, it is preferable to cleave at another multi-cylinder site.
  • the cleavage site at the second force point is an arbitrary place on the sequence of the selection marker or the replication origin (referred to as cleavage site 2).
  • the selection marker or the origin of replication is cleaved at an inner position at least 20 bp from the end of the marker or origin of replication, preferably 30-40 bp in length. That is, when the cloning vector is cleaved, the marker or the origin of replication sequence should remain at least 20 bp, preferably 30 bp to 40.
  • the target DNA fragment for cloning is inserted into the cleavage site 1 of the cloning vector.
  • PCR is performed with a primer having a sequence homologous to the cloning vector, and a sequence homologous to the cloning vector is added to both ends of the DNA fragment to be cloned.
  • the length of the base sequence to be added is such that at least 20 bp, preferably 30 to 40 bp remain.
  • Nakajin plasmid is cleaved with one or two restriction enzymes, and the cleaved fragments are recovered and purified by agarose gel electrophoresis.
  • Each of the above DNA fragments (1) to (3) (a total of 4 DNA fragments) is introduced into the host for transformation.
  • chemical transformation methods such as lithium acetate method and protoplast method can be employed.
  • An electrical transformation method can also be employed.
  • the lithium acetate method is preferred because of its simplicity.
  • the cloning vector binds to the target DNA at the above-mentioned cleavage site 1 and the cleavage site 2
  • the cloning vector replaces the yeast shuttle vector by binding the matchmaker plasmid to this region. This means that cloning of the target DNA fragment and yeast shuttle vector construction are performed simultaneously.
  • “Simultaneously” means that (a) integration of the target DNA fragment into the cloning vector and (b) integration of the cloning vector into the matchmaker plasmid are carried out in one process. It does not mean that the contents of (a) and (b) above are performed at the same time.
  • pET32a (+) is a vector commonly used in various research fields to express various proteins in the form of a thioredoxin fusion protein.
  • the DNA fragment of the GFP gene was amplified by PCR in such a way that it had a sequence homologous to the 40 bp cloning vector at both ends and matched the reading frame with thioredoxin.
  • pET32a (+)-cut, pSUO-cut, and GFP gene DNA fragments were mixed at a molar ratio of 1: 1: 6 and transformed into baker's yeast.
  • the experimental example is described in detail below.
  • pSUO Nakajin plasmid was constructed using baker's yeast homologous recombination. Specifically, first, pYES2 (Invitrogen) is used as a DNA fragment containing the Amp r gene, the backbone of pSUO, the DNA fragment containing PUC origin, and the DNA fragment containing 2 ⁇ origin and URA3 gene. Amplified by PCR. The DNA fragment containing Ampr gene was amplified by primers pSUO-1 and pSUO-4, and the DNA fragment containing PUC orgin was amplified by primers pSUO-3 and pSUO-6, respectively.
  • pYES2 Invitrogen
  • This PCR reaction was performed at 95 ° C for 1 minute using Pfu DNA polymerase according to the manufacturer's instructions, followed by 15 cycles of 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute. For 5 minutes at 72 ° C. Subsequently, in order to add a homologous sequence containing ⁇ THHI and £ toRI sites to the DNA fragment containing the Ampr gene and the DNA fragment containing PUC origin, the above PCR product was used as a saddle and the primers pSUO-4 And pSUO-7 (complementary strand of pSUO'6), and pSUO-3 and pSU-8 (complementary strand of pSUl), respectively, were amplified by PCR.
  • This PCR reaction uses Pfu DNA polymerase according to the manufacturer's instructions. Then, after reacting at 95 ° C for 1 minute, the reaction was performed at 95 ° C for 30 seconds, 55 ° C for 30 seconds and 72 ° C for 1 minute for 35 sites, and finally at 72 ° C for 5 minutes.
  • pYES2 / CT as a saddle and a DNA fragment containing 2 ⁇ origin and URA3 gene using primers pSU0-2 (complementary strand of pSU0-4) and pSU0-5 (complementary strand of pSU0-3) Amplified by PCR reaction.
  • This reaction was performed using Pfu DNA polymerase according to the manufacturer's instructions for 1 minute at 95 ° C, followed by 35 cycles of reactions at 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute. Finally, the reaction was performed at 72 ° C for 5 minutes.
  • the three amplified PCR fragments were purified using Sephaglas BandPrep Kit (Amersham Pharmacia) according to the manufacturer's instructions.
  • PCR fragments were mixed, transformed into yeast according to the TRAFO protocol (Reference 6), and plated on a plate containing no URA. From the colonies thus obtained, plasmids were extracted and purified using QIAprep Miniprep (QIAGEN) according to the manufacturer's instructions. This plasmid was transformed into a DH5a competent cell, and the plasmid was grown. Finally, one colony was selected, cultured in 1 ⁇ liquid culture, extracted with QIAprep Miniprep (QIAGEN), and cut with Nd and EcdRl to confirm that the pSUO matchmaker plasmid was produced. .
  • QIAprep Miniprep QIAGEN
  • Figure 1 shows the DNA sequence of pSUO matchmaker plasmid and its annotation.
  • PCR was performed using PyroBest DNA polymerase (TAKARA) according to the manufacturer's instructions.
  • TAKARA PyroBest DNA polymerase
  • composition of the PCR solution and the cycle conditions are shown below.
  • composition lO x Pyrobest Knuffer II 5 ⁇ 1, 2.5mM each dNTP mix 4 ⁇ 1, primer 4 ⁇ 1, water 31 ⁇ 1, template DNA 2 l, Pyrobest DNA polymerase 0.25 ⁇ 1 Cycle conditions: (98 ° C for 10 seconds, 55 ° C for 30 seconds, 72. C for 1 minute) X 35 cycles
  • PCR amplified fragment and pSUO Nakajin plasmid cleaved with the restriction enzyme were subjected to 1% agarose gel electrophoresis, and the target band was recovered and purified using Sephaglas BandPrep Kit (Amersham Pharmacia).
  • pET32a (+) was cleaved only with restriction enzymes M and Not ⁇ and was not further purified.
  • Transformation of baker's yeast was performed with the TRAFO protocol (Reference 6).
  • E. coli transformable E. coli DH5ot (TOYOBO) and BL21Star (DE3) (Invitrogen) were purchased and transformed according to the manufacturer's instructions.
  • yeast transformants were collected from the plate, and without passing through liquid culture, brass DNA was directly extracted and transformed into DH50C, and the plasmid was extracted as in the case of yeast.
  • the specific extraction method is as follows.
  • pSUO H "Kuta-: GFP: RFP Yeast transformant Number of thio fusion protein expressing Percentage of E. coli colonies
  • Example 2 Multi-fragment ligation
  • the advantage of cloning using ⁇ o homologous recombination method using baker's yeast is that multi-fragment ligation in Fig. 2 is easy. Therefore, in this example, a multi-fragment ligation was performed by the same experimental system as in Example 1, and a thioredoxin-GFP-RFP fusion gene was constructed. The 5 ′ side of the DNA fragment of the GFP gene and the 3 ′ side of the DNA fragment of the RFP gene have a sequence homologous to the 40 bp cloning vector.
  • the 3 'side of the DNA fragment of the GFP gene and the 5' side of the DNA fragment of the RFP gene have 40 bp sequences that are homologous to each other.
  • pET32a (+) was cut, pSUO was cut, GFP gene DNA fragment, and RFP gene DNA fragment were mixed at a molar ratio of 1: 1: 6: 6 and transformed into baker's yeast 323 colonies were obtained.
  • Plasmid DNA recovered from baker's yeast was transformed into E. coli DH5a, and plasmid DNA was recovered from the resulting colonies and transformed into E. coli BL21Star (DE3). 37% of the resulting colonies Had GFP and RFP activity (Table 1).
  • Example 3 Simultaneous execution of cloning of target DNA and construction of yeast shuttle vector (when pSU0 and pET32a (+) are cleaved with two kinds of restriction enzymes)
  • pSUO is a restriction enzyme £; C0 R1, It was cleaved with both BamRl, and the multi-cloning site of pET32a (+) was cleaved with two kinds of restriction enzymes n ⁇ Xhol, and further cleaved with an ampr gene contained in pET32a (+).
  • the target DNA was cloned by the same experimental system as in Example 1.
  • Example 4 Multi-fragment ligation (when pSU0 and pET32a (+) are cleaved with two kinds of restriction enzymes)
  • cloning of the target DNA was carried out using the same experimental system as in Example 3. Plasmid DNA recovered from baker's yeast by mixing pET32a (+), pSUO, GFP DNA fragment, and RFP DNA fragment in a 1: 1: 1: 1 molar ratio. Was transformed into E. coli DH5a. The plasmid DNA recovered from the obtained colonies was further transformed into E. coli BL2lStar (DE3). As a result, 70% of the obtained colonies had GFP and RFP activities (Table 2).
  • In vitro homologous recombination methods such as Gateway have the disadvantage that the cloning vector that you want to use for research needs to have a specific DNA sequence. Therefore, it was necessary to add a specific sequence to the vector using traditional cloning methods.
  • the conventional power The yeast homologous recombination method had the same drawbacks. In other words, after converting the vector to be used for research into a baker's yeast-E. Coli shuttle vector, it was necessary to put the desired DNA fragment into the cloning vector by the baker's yeast homologous recombination method.
  • the method of the present invention utilizes a common structure for many cloning vectors, it is not affected by the above disadvantages.
  • the method of the present invention does not use an expensive enzyme, it is less expensive than a homologous recombination method such as Gateway.
  • a homologous recombination method such as Gateway.
  • it is superior to the in 'iro homologous recombination method in that the operation in in w'iro is relatively few and simple.
  • the method of the present invention is superior to the in ro homologous recombination method in which multi-fragment ligation is impossible in that multi-fragment ligation is possible.
  • a fusion protein can be easily created by ligating multiple fragments, so it can be applied to the fusion of the gene under study with the GFP gene, or the replacement of a protein domain.
  • site-directed mutagenesis can be easily performed on proteins by ligating multiple fragments.
  • the method of the present invention may have a relatively short sequence homologous to the cloning vector compared to the ⁇ W'KO homologous recombination method using E. coli, and the electroporation apparatus. It is excellent in that it does not require special equipment. Industrial applicability
  • the method of the present invention is useful in that the cloning of the target DNA fragment and the construction of the shuttle vector can be performed simultaneously.
  • a target gene can be inserted into a desired vector, and a fusion protein can be created or a site-specific mutation can be introduced. It is. Sequence listing free text
  • Sequence number 5 Synthetic DNA Sequence number 6: Synthetic DNA
  • SEQ ID NO: 9 Synthetic DNA The following documents are incorporated herein by reference in their entirety.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A plasmid carrying two sets of replication origins and selective markers for a shuttle vector therein, in which, between a first replication origin and a first selective marker which function in a single microorganism, a second replication origin and a second selective marker which function in another microorganism are integrated.

Description

組換え DNA分子作製法 技術分野  Recombinant DNA molecule production technology
本発明は、 組換え DNA分子作製法に関し、 詳しくは DNA断片のクローニング 及び酵母シャ トルベクター構築を同時実行する方法に関する。 背景技術 明  The present invention relates to a method for producing a recombinant DNA molecule, and more particularly, to a method for simultaneously performing DNA fragment cloning and yeast shuttle vector construction. Background art
伝統的な大腸菌を用いた異種 DNA の田クローニング法、 いわゆる Cohen-Boyer 法 (文献 1 ) は、 クローニングベクターとクローン化する DNA断片を制限酵素で 切断し、 それらを DNA連結酵素で連結させ、 大腸菌に形質転換し、 大腸菌で増幅 させる方法であり、 分子生物学研究の基盤となっている。 また、 現在、 様々な生物 のゲノム配列が決まつたことによって、所望の DNA断片をクロ一ニングベクタ一 にクローン化する研究手法の重要性力 より高まっている。 しかし、伝統的な DNA のクローニング法は、 多くの ώ ' 0操作を含むため、 熟練を要する。 また、 所望 の DNA断片をクローニングすることができたとしても、多数の大腸菌コロニーの 中から選抜する操作に時間を要するため、 クローン化の効率が悪い。 従って、 伝統 的な DNAのクローニング法は、 分子生物学研究の障害となり、 ポストゲノム解析 で必要とされるハイ ·スループッ 卜な網羅的遺伝子解析には、 不適当である。 このようなこと力 ら、 伝統的な DNAのクローニング法に代わる、 よりクローン 化の効率が高い新たな DNA のクローニング法がいくつか開発された。 1 ) Invitrogen社の Gateway法、あるいは、 Clontech社の Cre'loxP法による in vitro 相同組換え法、 2 ) 大腸菌を用いた in w'w相同組換え法 (文献 2および 3 )、 およ び、 3 ) パン酵母を用いた ώ 'ra相同組換え法 (文献 4および 5 ) などである。  The traditional heterologous DNA cloning method using Escherichia coli, the so-called Cohen-Boyer method (Reference 1), cleaves DNA fragments to be cloned with cloning vectors with restriction enzymes, and ligates them with DNA ligation enzymes. This is a method of transforming to, and amplifying in E. coli, and is the basis of molecular biology research. In addition, due to the fact that the genome sequences of various organisms have been determined, the importance of research methods for cloning desired DNA fragments into cloning vectors is increasing. However, traditional DNA cloning methods require a lot of skill because they involve many ώ '0 operations. Even if the desired DNA fragment can be cloned, it takes time to select from a large number of E. coli colonies, so that the cloning efficiency is poor. Therefore, traditional DNA cloning methods hinder molecular biology research and are inappropriate for high-throughput comprehensive gene analysis required for post-genome analysis. This has led to the development of several new DNA cloning methods with higher cloning efficiency that can replace traditional DNA cloning methods. 1) Invitrogen Gateway method or Clontech Cre'loxP method in vitro homologous recombination method, 2) Inw'w homologous recombination method using E. coli (References 2 and 3), and 3) ώ 'ra homologous recombination method using baker's yeast (References 4 and 5).
1 ) の J ζ'ί/Ό相同組換え法は、 DNA断片をクローニングベクターにクローン 化する際に、 DNA配列特異的組換え酵素を用いる方法である。  The J ζ'ί / Ό homologous recombination method 1) is a method that uses a DNA sequence-specific recombination enzyme when cloning a DNA fragment into a cloning vector.
しかし、 クローニングベクター側、 および、 クローン化する DNA断片側に、 特 定の DNA配列が必要である。 クローン化したい DNA 断片の両端にこの特定の DNA配列を PCR等により付加することは可能であるが、 クロ一ニングベクター がこの特定の DNA配列をもっていない場合は、 クローニングベクターにこの配列 を付加することは、伝統的な DNAのクローニング法によって行う必要があるため 必ずしも容易ではない。 また、 DNA配列特異的組換え酵素は、 高価である。 However, specific DNA sequences are required on the cloning vector side and the DNA fragment side to be cloned. This particular end of the DNA fragment you want to clone Although it is possible to add DNA sequences by PCR, etc., if the cloning vector does not have this specific DNA sequence, this sequence can be added to the cloning vector by traditional DNA cloning methods. Because it is necessary, it is not always easy. In addition, DNA sequence-specific recombinase is expensive.
2 ) の大腸菌を用いた ώ w' o相同組換え法 (文献 2および 3 ) は、 ファージに 由来する複数のタンパク質を発現させた大腸菌株力 高い相同組換え能をもつこと を利用する方法である。この方法は、図 1のパン酵母相同組換え法とよく似ている。 まず、 クロ一ニングベクターと相同な配列をもったプライマーで PCRを行うこと により、 クローン化したい DNA断片の両端にクローニングベクターと相同な配列 を付加する。 また、 相同組換えがおこる部分の中間に位置する任意の部位で、 クロ 一二ングベクターを制限酵素などで切断しておく。 つぎに、 両端にクロ一ニングべ クタ一と相同な配列をもつクローン化の目的 DNA断片、 および、 切断したクロー ニングベクターを、 相同組換え能が高い大腸菌株に形質転換すると、 細胞内 (すな わち in vivo) で相同組換えが起こり、 所望の DNA断片をクローニングベクター にクローン化できる。 この反応は、 制限酵素部位とは無関係に起こるため, ベクタ —配列中の様々な位置に、 DNA断片を挿入することが可能である。 また、 伝統的 な DNAのクローエング法では、 クローン化したい DNA断片の大きさが大きくな ればなるほど、 クローン化の効率が下がるのに対して、 この方法は、 クローン化し たい DNA断片の大きさにあまり依存しない点も特長である。  2) The ώ w'o homologous recombination method using E. coli (References 2 and 3) is a method that utilizes the high homologous recombination ability of E. coli strains that express multiple proteins derived from phages. is there. This method is very similar to the baker's yeast homologous recombination method of FIG. First, PCR is performed with primers having a sequence homologous to the cloning vector, so that a sequence homologous to the cloning vector is added to both ends of the DNA fragment to be cloned. In addition, the cloning vector is cleaved with a restriction enzyme or the like at any site located in the middle of the portion where homologous recombination occurs. Next, when the target DNA fragment having a sequence homologous to the cloning vector at both ends and the cloned cloning vector are transformed into an E. coli strain with high homologous recombination ability, In other words, homologous recombination occurs in vivo, and the desired DNA fragment can be cloned into a cloning vector. Since this reaction occurs independently of the restriction enzyme site, it is possible to insert DNA fragments at various positions in the vector—sequence. In addition, the traditional DNA cloning method reduces the efficiency of cloning as the size of the DNA fragment desired to be cloned increases, whereas this method reduces the size of the DNA fragment desired to be cloned. It is also a feature that does not depend too much.
しかしながら、 この方法は、 高い形質転換効率を得るために電気的形質転換 (ェ レク トロポーレーション) を行う必要がある。 エレク トロポーレーションの装置お よびエレク トロポーレーション用キュべットが高価である上に、エレク トロボーレ ーションの作業中に短絡がおこりアークが飛ぶ等の事故が生じやすい。このような 事故を防ぐために、 DNA溶液中から徹底的に塩を除く操作が必要であるが、 この 操作は煩雑である。  However, this method requires electrical transformation to obtain high transformation efficiency. Electroporation equipment and electroporation cuvettes are expensive, and accidents such as short-circuits and arcs are likely to occur during electroporation work. In order to prevent such an accident, it is necessary to thoroughly remove the salt from the DNA solution, but this operation is complicated.
3 ) のパン酵母を用いた ώ w o相同組換え法 (文献 4および 5 ) は、 パン酵母 が極めて高い相同組換え能をもつことを利用する方法である (図 1 )。 この方法で は、 まず、 クローユングベクターと相同な配列をもったプライマーで PCRを行う ことにより、 クローン化したい DNA断片の両端にクローニングベクターと相同な 配列を付加する。 また、 相同組換えがおこる部分の中間に位置する任意の部位で、 クローニングベクターを制限酵素などで切断しておく。 つぎに、 両端にクローニン グベクタ一と相同な配列をもつクローン化の目的 DNA断片、 および、 切断したク ローニングベクターを、 パン酵母に形質転換する。 その結果、 in w'raで相同組換 えがおこり、 望む DNA断片がクローユングベクターにクローン化できる。 この反 応は、 2 ) の大腸菌を用いた ώ o相同組換え法と同様に、 制限酵素部位とは無 関係に起こるため, ベクター配列中の様々な位置に、 DNA断片を挿入することが 可能である。 また、 大腸菌を用いた /n w o相同組換え法と同様に、伝統的な DNA のクローニング法では、 クローン化したい DNA断片の大きさが大きくなればなる ほど、クローン化の効率が下がるのに対して、この方法は、クローン化したい DNA 断片の大きさにあまり依存しない点も特長である。 この方法は、パン酵母が極めて 高い相同組換え能をもっため、エレク トロポーレーシヨンによらず、化学的形質転 換法 (酢酸リチウム法) によって、 形質転換を行っても、 十分な数の形質転換体が 得られる。 また、 パン酵母を用いた ώ ' O相同組換え法を用いたクローユングの 最も大きな特長として、図 2の多断片連結が容易であることがあげられる(文献 4 )。 すなわち、 30 bp程度の相同配列を持った DNA断片を複数組み合わせることによ つて、 複数の DNA断片を連結して、 クローニングベクターへクローン化できる。 多断片連結により融合タンパク質を容易に作成することができるので、遺伝子,タ ンパク質の機能解析にとって有用である。 例えば、 研究対象の遺伝子と GFP遺伝 子の融合、 タンパク質のドメインの置換などに活用できる。 また、 この方法は、 タ ンパク質への部位特異的突然変異導入にも適用できる。すなわち、 図 2の中央の朱 赤の部分に相当するプライマーに変異を入れておいて PCRで DNA断片を増幅し、 パン酵母を用いた in o相同組換え法で、 多断片連結を行うことにより可能にな る。 3) The homologous recombination method using baker's yeast (References 4 and 5) utilizes the fact that baker's yeast has an extremely high homologous recombination ability (Fig. 1). In this method, first, PCR is performed with primers having a sequence homologous to the cloning vector, so that both ends of the DNA fragment to be cloned are homologous to the cloning vector. Appends an array. In addition, the cloning vector is cleaved with a restriction enzyme at any site located in the middle of the portion where homologous recombination occurs. Next, the target DNA fragment having a sequence homologous to the cloning vector at both ends and the cleaved cloning vector are transformed into baker's yeast. As a result, homologous recombination occurs in w'ra, and the desired DNA fragment can be cloned into a cloning vector. This reaction occurs independently of the restriction enzyme site in the same way as the homologous recombination method using E. coli in 2), so DNA fragments can be inserted at various positions in the vector sequence. It is. In addition, as in the / nwo homologous recombination method using E. coli, the cloning efficiency of the traditional DNA cloning method decreases as the size of the DNA fragment to be cloned increases. This method is also characterized in that it does not depend much on the size of the DNA fragment to be cloned. In this method, baker's yeast has an extremely high homologous recombination ability, so that a sufficient number of traits can be obtained even if transformation is performed by chemical transformation method (lithium acetate method) without relying on electroporation. A converter is obtained. In addition, the most important feature of clawing using ώ 'O homologous recombination method using baker's yeast is that multi-fragment ligation in Fig. 2 is easy (Reference 4). That is, by combining a plurality of DNA fragments having a homologous sequence of about 30 bp, a plurality of DNA fragments can be ligated and cloned into a cloning vector. It is useful for functional analysis of genes and proteins because fusion proteins can be easily created by linking multiple fragments. For example, it can be used to fuse the gene under study with the GFP gene, or to replace a protein domain. This method can also be applied to site-directed mutagenesis into proteins. That is, by mutating the primer corresponding to the red-red part in the center of Fig. 2, amplifying a DNA fragment by PCR, and ligating multiple fragments by ino homologous recombination method using baker's yeast It becomes possible.
上記説明した通り、 パン酵母を用いた in Vo相同組換え法は多くの優れた効果 を有する。  As explained above, the in Vo homologous recombination method using baker's yeast has many excellent effects.
しかしながら、 パン酵母を用いた ώ 'ra相同組換え法は、 DNAを大量に調製 する操作を行う際に、 大腸菌に移し替える必要があるため、 パン酵母-大腸菌シャ トルベクターが必要とされる。研究者等に使用されているベクターは、多くの場合、 パン酵母-大腸菌シャ トルべクタ一ではないため、 大腸菌では複製可能であっても パン酵母では複製できないことが多い。従って、使用の目的となるベクターでパン 酵母相同組換え法を行うには、 まず、 使用したいベクターをパン酵母-大腸菌シャ トルベクターに変換した後に、パン酵母相同組換え法で所望の DNA断片をクロー ニングベクターに入れる必要がある。このような操作は時間がかかり、煩雑である。 発明の開示 However, the ώ 'ra homologous recombination method using baker's yeast requires baker's yeast-E. Coli shuttle vector because it needs to be transferred to Escherichia coli when an operation for preparing a large amount of DNA is performed. The vectors used by researchers are often Since it is not the baker's yeast-E. Coli shuttle vector, it can often replicate in baker's yeast even though it can replicate in E. coli. Therefore, to perform baker's yeast homologous recombination with the target vector, first convert the vector to be used into baker's yeast-E. Coli shuttle vector, Must be placed in a cloning vector. Such an operation is time consuming and cumbersome. Disclosure of the invention
そこで、 本発明は、 酵母シャトルベクターでない一般的なベクターに、 パン酵母 を用いた ώ o相同組換え法によって DNA断片のクローニングする方法を提供 することを目的とする。 本発明は、 クローニングおよび酵母シャ トルべクタ一構築 を同時に行う方法である。 この方法は、 市販されているベクタ一、 あるいは、 各研 究者が独自に開発したベクターの多くに適用可能である。  Therefore, an object of the present invention is to provide a method for cloning a DNA fragment by a homologous recombination method using baker's yeast into a general vector that is not a yeast shuttle vector. The present invention is a method for simultaneously performing cloning and construction of a yeast shuttle vector. This method can be applied to many commercially available vectors or to many vectors originally developed by each researcher.
これまで、一般的なクローユングベクターを用いて遺伝子をクロ一ニングすると ともに、異宿主間において増殖可能なベクターを簡便に作製する方法の開発が望ま れていた。 本発明者は、 上記課題を解決するため鋭意研究を行なった結果、 異宿主 間で増殖不可能である一般的なクローニングベクターを異宿主間で増殖すること を可能とするプラスミ ドを開発し、当該プラスミ ドを用いることにより遺伝子のク ローニング及びシャトルベクターの構築を同時に行うことができることを見出し、 本発明を完成するに至った。  Up to now, it has been desired to develop a method for easily producing a vector that can be propagated between different hosts while cloning a gene using a general cloning vector. As a result of diligent research to solve the above problems, the present inventor has developed a plasmid capable of propagating a general cloning vector that cannot be propagated between different hosts. It has been found that gene cloning and shuttle vector construction can be simultaneously performed by using the plasmid, and the present invention has been completed.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
( 1 )シャトルベクター用の 2組の複製起点及び選択マーカ一を含むプラスミ ドで あって、一の微生物において機能する第一の複製起点と選択マーカーとの間に、他 の微生物において機能する第二の複製起点及び選択マーカ一が組み込まれたブラ スミ ド。  (1) A plasmid containing two sets of replication origins for a shuttle vector and a selection marker, and a function that functions in another microorganism between the first replication origin that functions in one microorganism and the selection marker. A brass medium incorporating a second replication origin and a selection marker.
上記プラスミ ドにおいて、一の微生物としては大腸菌が挙げられる。 大腸菌にお いて機能する複製起点としては、 例えば PUC起点、 ColEl起点、 pBR322起点、 pACYC起点、 pSClOl起点、 fl起点、 M13起点、 BACベクタ一の起点、 PACベ クターの起点、及びコスミ ドべクタ一起点からなる群から選択されるレ、ずれかのも のが挙げられ、 選択マーカ一としては、 例えば Ampr、 Tef、 Cmr、 Kmr、 Spc>\ Hygr、 Gmr、 Rifr、 Zeocinr、 及び Blasticidinrからなる群から選択されるいずれか のものが挙げられる。 In the above plasmid, one microorganism is Escherichia coli. Examples of replication origins that function in E. coli include PUC origin, ColEl origin, pBR322 origin, pACYC origin, pSClOl origin, fl origin, M13 origin, BAC vector origin, PAC vector origin, and cosmid vector For example, Ampr, Tef, Cm r , Km r , Spc> \ can be selected as the selected marker. Hyg r, Gm r, Rif r , Zeocin r, and include the one selected from the group consisting of Blasticidin r.
また、 上記プラスミ ドにおいて、 他の微生物としてはサッカロマイセス ·セレビ シァェなどの酵母が挙げられる。酵母において機能する複製起点としては、例えば 2 μ起点、 及ぴ ARSからなる群から選択されるいずれかのものが挙げられ、 選択 マーカーとしては、例えば URA3、 TRP1、 SUP4、 ADE2、 HIS3、 LEU2、 LYS2、 KANMX、 AURI C, CYH2、 CAN1、 PDR4、 及び hphMXからなる群から選択 されるいずれかのものが挙げられる。  In the above plasmid, other microorganisms include yeasts such as Saccharomyces cerevisiae. Examples of replication origins that function in yeast include 2 μ origins and any one selected from the group consisting of ARS.Selectable markers include, for example, URA3, TRP1, SUP4, ADE2, HIS3, LEU2, Any one selected from the group consisting of LYS2, KANMX, AURI C, CYH2, CAN1, PDR4, and hphMX can be mentioned.
上記プラスミ ドは、 例えば以下の (a)又は (b)の DNAを含むものであることが好 ましい。  The plasmid preferably contains, for example, the following DNA (a) or (b):
(a) 配列番号 1で表される塩基配列からなる DNA  (a) DNA consisting of the base sequence represented by SEQ ID NO: 1
(b) 配列番号 1で表される塩基配列に対し相補的な塩基配列からなる DNAと ストリンジヱン卜な条件下でハイブリダィズし、 かつシャトルベクターとして 機能し得るプラスミ ド。  (b) A plasmid that can hybridize with DNA consisting of a base sequence complementary to the base sequence represented by SEQ ID NO: 1 under stringent conditions and function as a shuttle vector.
( 2 ) 組換え DNA分子の作製方法であって、 以下のステップ:  (2) A method for producing a recombinant DNA molecule comprising the following steps:
(a) 上記 (1)に記載のプラスミ ドを切断することにより調製された 2組の複製起 点及び選択マーカーを含有する DNA断片と、 クローユングの目的 DNA断片 と、 複製起点及び選択マーカーを含むクロ一ニングベクターのうち複製起点 又は選択マーカーの領域内の DNA配列、並びに当該複製起点及び選択マーカ 一以外の領域内の DNA配列をそれぞれ切断することにより得られた DNA断 片とを宿主に導入するステップ、 並びに  (a) a DNA fragment containing two sets of replication origins and selection markers prepared by cleaving the plasmid described in (1) above, a target DNA fragment for cloning, and a replication origin and selection marker The DNA sequence in the region of the origin of replication or selection marker of the cloning vector and the DNA fragment obtained by cleaving the DNA sequence in the region other than the origin of replication and selection marker are introduced into the host. Steps to perform, and
(b) 各 DNA断片の一部に相同組換えを起こさせて目的 DNA断片をクローニン グベクターにクロ一ニングするとともにシャ トルべクタ一を構築するステツ プ、  (b) A step of causing homologous recombination to a part of each DNA fragment to clone the target DNA fragment into a cloning vector and constructing a shuttle vector,
を含む前記方法。  Including said method.
本発明の方法においては、 目的 DNA断片は 1種類に限定されるものではなく、 2種類以上含まれてもよい。 この場合、 2種類以上の目的 DNA断片は、 クロ一二 ングベクターに直列に連結されるように連結部が互いに相同な配列を含むもので ある。 上記 DNA断片を組込むための宿主としては、 例えばサッカロマイセス ·セ レビシァェ等の酵母が挙げられる。 In the method of the present invention, the target DNA fragment is not limited to one type, and two or more types may be included. In this case, the two or more types of target DNA fragments contain sequences having homologous junctions so that they are linked in series to a cloning vector. As a host for integrating the above DNA fragment, for example, Saccharomyces Examples include yeasts such as Levisiae.
( 3 ) 上記 (2 ) に記載の方法により作製された組換え DNA。  (3) Recombinant DNA produced by the method described in (2) above.
( 4 ) 上記 (3 ) に記載の組換え DNAを含む形質転換体。 本発明の方法は、 目的 DNAのクローユング及びシャ トルベクター同時構築のた めに、市販のベクター又は独自に開発されたベクターの多くに適用できる点で極め て有用である。 図面の簡単な説明  (4) A transformant comprising the recombinant DNA described in (3) above. The method of the present invention is extremely useful in that it can be applied to many commercially available vectors or vectors originally developed for the simultaneous construction of target DNA cloning and shuttle vectors. Brief Description of Drawings
図 1は、 酵母における相同組換え法を示す図である。  FIG. 1 is a diagram showing a homologous recombination method in yeast.
図 2は、 多断片連結の概要を示す図である。  FIG. 2 is a diagram showing an outline of multi-fragment linking.
図 3は、 多くのベクターの共通構造を示す図である。  Figure 3 shows the common structure of many vectors.
図 4は、 本発明の仲人プラスミ ド pSUOを示す図である。  FIG. 4 is a diagram showing the matchmaker plasmid pSUO of the present invention.
図 5は、 本発明の方法の概要を示す模式図である。  FIG. 5 is a schematic diagram showing an outline of the method of the present invention.
図 6は、 本発明の仲人プラスミ ド pSUOの DNA配列 (配列番号 1) 及びその注 釈付けを示す図である。 発明を実施するための最良の形態  FIG. 6 shows the DNA sequence (SEQ ID NO: 1) of the matchmaker plasmid pSUO of the present invention and its annotation. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明は、 DNA断片のクロ一ニング及び酵母シャ トルベクタ一構築を同時実行 する方法に関する。  The present invention relates to a method for simultaneously performing DNA fragment cloning and yeast shuttle vector construction.
本発明者は、酵母シャトルベクターではない一般的なベクターに、 サッカロマイ セス 'セレビシァェ Saccharomyces cerevisia ) (パン酵母、 ビール酵母又はヮ イン酵母ともいう) を用いた ώ w o相同組換え法で DNA断片を高効率でクロー ン化できる方法を開発した。 まず、 本発明者は、 クローニングおよび酵母シャトル ベクター構築を同時に行うことができるのではないかと考え、この目的のために最 適な仲人プラスミ ドを構築した。 「仲人プラスミ ド」 とは、 クローニングベクター とクローニングの目的 DNA断片との結合を媒介するプラスミ ドという意味である £ クロ一ユングベクターと目的 DNA断片との結合を 「結婚」 に例えて 「仲人プラス ミ ド」 と命名したものである。 The present inventor has developed a DNA fragment by a homologous recombination method using Saccharomyces cerevisiae (also referred to as baker's yeast, brewer's yeast or rice yeast) as a general vector that is not a yeast shuttle vector. We have developed a method that can be cloned efficiently. First, the present inventor thought that cloning and yeast shuttle vector construction could be performed at the same time, and constructed an optimal matchmaker plasmid for this purpose. The "matchmaker plasmid", the binding of a £ black one Jung vector and the DNA fragment of interest in the sense that plasmid to mediate the binding of the target DNA fragment of the cloning vector and cloned likened to a "marriage", "matchmaker plus It is named “mid”.
クローニングベクターとして市販されているベクター、 あるいは、研究者が独自 に開発したクローニングベクターの大部分は、共通の構造としてアンピシリン耐性 遺伝子 (Ampr、 ]3ラクタマーゼをコード) の等の選択マーカ一の 3'側に複製に必 要な配列である PUC originまたは ColEl origin等をもっている (図 3 )。 この共 通の構造は、 多くのベクターの起源となるベクター pBR322 (文献 7 ) に由来する ものである。 なお、 PUC originは、 ColEl originに一塩基の置換がおこったもの であるため、 相同組換えという点では両者の間にほとんど違いはない。 Most of the commercially available cloning vectors or the cloning vectors originally developed by researchers have a common structure such as ampicillin resistance gene (Amp r , which encodes 3 lactamase). 'It has PUC origin or ColEl origin, etc., which is necessary for replication (Fig. 3). This common structure is derived from the vector pBR322 (Reference 7), the origin of many vectors. Since PUC origin is a substitution of one base in ColEl origin, there is almost no difference between the two in terms of homologous recombination.
本発明者は、 この多くのベクターに共通する構造に着目し、 図 4に示すような仲 人プラスミ ドを用いれば、 市販のクローニングベクター、 あるいは、 各研究者が独 自に開発したクローニングベクタ一の大部分を、 パン酵母-大腸菌シャ トルべクタ 一に容易に変換できると考えた。  The present inventor pays attention to the structure common to many of these vectors, and using a matchmaker plasmid as shown in FIG. 4, a commercially available cloning vector or a cloning vector developed independently by each researcher. We thought that most of this could be easily converted into baker's yeast-E. Coli shuttle vector.
1 . 仲人プラスミ ド 1. Matchmaker Plasmid
本発明の仲人プラスミ ドは、 シャトルベクターとして機能できるように、 シャ ト ルベクターとして利用される選択マーカー及び複製起点を 2組含有する。 1つは、 第一の宿主 (例えば大腸菌等) において複製機能を有する選択マーカー及び複製起 点である。 他の 1つは、 第一の宿主とは異なる第二の宿主 (例えば酵母等) におい て複製機能を有する選択マーカー及び複製起点である。  The matchmaker plasmid of the present invention contains two sets of selection markers and replication origins used as shuttle vectors so that they can function as shuttle vectors. One is a selection marker having a replication function and an origin of replication in a first host (eg, E. coli, etc.). The other is a selection marker and an origin of replication having a replication function in a second host (for example, yeast) different from the first host.
ここで、 「選択マーカー」 とは、 形質導入や形質転換などの実験において、 組換 え体を非組換え体から選別するのに用いられる DNAを意味し、薬剤耐性のものや 栄養要求性のものが含まれる。 「複製起点」 とは、 染色体やプラスミ ド上に存在す る複製制御因子を意味し、 DNAの複製開始反応が起こる DNA領域を意味する。 「シャ トルベクター」 とは、遺伝子の複製や発現の機構が異なる 2種の生物種のど ちらの細胞でも自立増殖できるベクターを意味し、 例えば、 大腸菌-酵母シャ トル ベクタ一は、 酵母用の DNA複製機構として酵母プラスミ ドである DNA又は酵母 染色体の複製単位 (ARS) を大腸菌プラスミ ドベクターに挿入したものである。 本発明の仲人プラスミ ドは、第一の宿主において機能する選択マーカーと複製起 点との間に、第二の宿主にぉレ、て機能する選択マーカー及び複製起点が連結された 構造をとっている (図 4 )。 従って、 本発明の仲人プラスミ ドは、 基本的には第一 の宿主において機能する選択マーカー、第二の宿主において機能する複製起点、第 二の宿主において機能する選択マーカー及び第一の宿主において機能する複製起 点を、 この順で含む構造を有する。 但し、 このような順序に限定されるものではな く、第一の宿主において機能する選択マーカーと複製起点とを並べ替えた構造であ つてもよく、第二の宿主において機能する選択マーカーと複製起点とを並べ替えた 構造でもよレ、。 Here, “selectable marker” means DNA used to select recombinants from non-recombinants in experiments such as transduction and transformation. Things are included. “Replication origin” refers to a replication control factor present on a chromosome or plasmid, and refers to a DNA region in which a DNA replication initiation reaction occurs. “Shuttle vector” means a vector that can grow independently in either cell of two species with different gene replication and expression mechanisms. For example, the E. coli-yeast shuttle vector is a DNA for yeast. As a replication mechanism, a yeast plasmid DNA or yeast chromosome replication unit (ARS) is inserted into an E. coli plasmid vector. In the matchmaker plasmid of the present invention, a selection marker that functions in a second host and a replication origin are linked between a selection marker that functions in the first host and the replication origin. It has a structure (Fig. 4). Therefore, the matchmaker plasmid of the present invention basically has a selection marker that functions in the first host, an origin of replication that functions in the second host, a selection marker that functions in the second host, and a function in the first host. It has a structure that includes the replication origins in this order. However, the order is not limited to this, and the structure may be such that the selection marker that functions in the first host and the replication origin are rearranged, and the selection marker that functions in the second host and the replication. Even the structure where the starting point is rearranged.
図 4は、 大腸菌において機能する選択マーカー及び複製起点として、 それぞれ Ampr、 PUC origin (起点) を示しており、 酵母において機能する選択マーカー及 び複製起点としてそれぞれ URA3、 2 μ origin (起点) を示しているが、 これらに 限定されるものではない。 従って、 第一の宿主として大腸菌を使用する場合は、 第 二の宿主として酵母を使用することができる。 酵母としては、 サッカロマイセス · セレビシァェのほ力 、シゾサッカロマイセス 'ボンべ( Schizosaccaromyces pombe) などが挙げられる。 また、第一の宿主として酵母を使用する場合は第二の宿主とし て大腸菌、 哺乳類細胞などを使用することができる。 従って、 これらの宿主におい て機能する選択マーカ一及び複製起点は、 例えば以下のものが挙げられる。  Figure 4 shows Ampr and PUC origin (origin) as selectable markers and replication origins that function in E. coli, respectively, and URA3 and 2 μorigin (origin) as selectable markers and origins of replication that function in yeast, respectively. However, it is not limited to these. Therefore, when E. coli is used as the first host, yeast can be used as the second host. Examples of yeast include Saccharomyces cerevisiae, Schizosaccaromyces pombe, and the like. When yeast is used as the first host, Escherichia coli, mammalian cells, etc. can be used as the second host. Accordingly, examples of selection markers and origins of replication that function in these hosts include the following.
大腸菌において機能する複製起点: PUC起点、 ColEl起点、 pBR322起点、 pACYC 起点、 pSClOl起点、 fl起点、 M13起点、 BACベクターの起点、 PACベクタ一の 起点、 コスミ ドベクター起点  Replication origin that functions in E. coli: PUC origin, ColEl origin, pBR322 origin, pACYC origin, pSClOl origin, fl origin, M13 origin, BAC vector origin, PAC vector origin, cosmid vector origin
大腸菌において機能する選択マーカー: Ampr、 Tetr、 Cmr、 Kmr、 Spcr、 Hygr、 Gmr、 Rifr、 Zeocinr、 Blasticidinr Selectable marker that functions in E. coli: Ampr, Tetr, Cm r, Kmr, Spc r, Hyg r, Gm r, Rif r, Zeocin r, Blasticidin r
サッカロマイセス ·セレビシァェにおいて機能する複製起点: 2 μ起点、 ARS サッカロマイセス 'セレビシァェにおいて機能する選択マーカ一: URA3、TRP1、 SUP4、 ADE2、 HIS3、 LEU2、 LYS2、 KANMX、 AUR1'C、 CYH2、 CAN1、 PDR4 及び hphMX  Replication origin functioning in Saccharomyces cerevisiae: 2 μ origin, ARS Saccharomyces' selection markers functioning in cerevisiae: URA3, TRP1, SUP4, ADE2, HIS3, LEU2, LYS2, KANMX, AUR1'C, CYH2, CAN1, PDR4 and hphMX
シゾサッカロマイセス ·ボンベにおいて機能する複製起点: ARS、 2 μ起点 シゾサッカロマイセス 'ボンベにおいて機能する選択マーカ一: LEU1、 URA4、 ADE6、 HIS2、 KA匪 X、 AURlr Replication origin that functions in Schizosaccharomyces bombs: ARS, 2 μ origin Selection marker that functions in Schizosaccharomyces bombs: LEU1, URA4, ADE6, HIS2, KA 匪 X, AURl r
哺乳類細胞において機能する複製起点: SV40起点 哺乳類細胞において機能する選択マーカー : Zeociが、 Blasticidiが、 Hyg Neomvcinr 仲人プラスミ ドは、後述するように DNAを宿主内に導入して相同組換えを起こ させるため、 直鎖状の DNA断片にする必要がある。 そこで、 仲人プラスミ ドには 制限酵素による切断部位を有していることが好ましレ、。制限酵素部位は、 2組の複 製起点及び選択マ一カー以外の領域に存在させることが好ましい。切断制限酵素と しては、 Eco RI、 BamHl、 Pst l、 Hind III、 Cla I、 Kpn I及び Xho Iなど用いら れるが、 これらに限定されるものではない。 図 4においては EcoRI と BamHI切 断部位を例示した。 Replication origin that functions in mammalian cells: SV40 origin Selectable markers that function in mammalian cells: Zeoci, Blasticidi, Hyg Neomvcin r Nakajin plasmid, which is introduced into DNA into the host to cause homologous recombination, as described later, makes it a linear DNA fragment. There is a need. Therefore, it is preferable that the matchmaker plasmid has a restriction enzyme cleavage site. The restriction enzyme sites are preferably present in regions other than the two replication origins and the selection marker. Examples of cleavage restriction enzymes include Eco RI, BamHl, Pst1, Hind III, Cla I, Kpn I, and Xho I, but are not limited thereto. Figure 4 shows EcoRI and BamHI cut sites.
本発明においては、汎用性に圧倒的に優れている点で図 4に示す pSUO仲人ブラ スミ ド (pSUOプラスミ ド) であることが好ましい。 pSUOプラスミ ドの DNA配 歹 (配列番号 1) 及びその注釈付けを図 6に示す。 pSUOプラスミ ドは、 市販のベ クタ一等に共通な選択マーカーである Amprと市販のベクター等に共通な複製起 点である PUC originとの間に、酵母の複製起点である 2 μ origin及び酵母の選択 マーカーである URA3を含んでおり、 さらに制限酵素 EcoRI及び BamHIで切断 される制限酵素部位を有する。 この pSUOプラスミ ドは、酵母シャトルべクタ一作 製を単独で行う際にも有効である。  In the present invention, the pSUO matcher brass (pSUO plasmid) shown in FIG. 4 is preferable because it is overwhelmingly versatile. Figure 6 shows the DNA sequence of pSUO plasmid (SEQ ID NO: 1) and its annotation. The pSUO plasmid is composed of 2 μ origin, the yeast origin of replication, and Amp, which is a common selection marker for commercially available vectors, and PUC origin, which is a common replication origin for commercially available vectors. It contains URA3, which is a selection marker, and has a restriction enzyme site that is cleaved by restriction enzymes EcoRI and BamHI. This pSUO plasmid is also effective when performing yeast shuttle vector production alone.
また、 本発明の pSUOプラスミ ドは、 配列番号 1に示される塩基配列のほか、 配列番号 1 に示される塩基配列に対し相補的な塩基配列とストリンジェントな条 件下でハイブリダィズし、 かつシャ トルベクターとしての機能することができる DNAを含む。 「ストリンジェントな条件」 としては、 例えば、 1 X SSC〜2 X SSC、 0.1%〜0.5%SDS及び 42°C〜68°Cの条件が挙げられ、 より詳細には、 60〜68°Cで 30分以上プレハイブリダィゼーシヨンを行った後、 2 X SSC、 0.1%SDS中、 室温 で 5〜: 15分の洗浄を 4〜6回行う条件が挙げられる。  Further, the pSUO plasmid of the present invention hybridizes under stringent conditions with a base sequence complementary to the base sequence shown in SEQ ID NO: 1 as well as the base sequence shown in SEQ ID NO: 1, and Contains DNA that can function as a vector. Examples of the “stringent conditions” include 1 X SSC to 2 X SSC, 0.1% to 0.5% SDS, and 42 ° C to 68 ° C, and more specifically, 60 to 68 ° C. Examples include conditions in which 5 to 15 minutes of washing is performed 4 to 6 times in 2 X SSC and 0.1% SDS at room temperature after prehybridization for 30 minutes or more.
また、 本発明の仲人プラスミ ドは、 上記 pSUO に限られず、 例えば、 複製起点 f 1 originと選択マーカ一 Amp1"を有するクローニングベクターに対応して仲人プラ スミ ドを設計することができる。 従って、 図 4に例示した仲人プラスミ ドのほ力、 fl origin,酵母由来の複製制御因子 2 origin,酵母由来選択マーカー URA3及び Amprをこの順序で含むプラスミ ドなども、 本発明に含まれる。 このプラスミ ドは pSUOと同様のクローン化効率を示す。 Further, the matchmaker plasmid of the present invention is not limited to the above pSUO. For example, a matchmaker plasmid can be designed corresponding to a cloning vector having the replication origin f 1 origin and the selection marker 1 Amp 1 ”. The force of the matchmaker plasmid illustrated in Fig. 4, fl origin, yeast-derived replication control factor 2 origin, yeast-derived selection marker URA3 and A plasmid containing Amp r in this order is also included in the present invention. This plasmid shows a cloning efficiency similar to pSUO.
仲人プラスミ ドは通常の相同組換え法を用いて得ることができる。 すなわち、 pSUOプラスミ ドは以下の方法で構築できる。 Amprを含む DNA断片、 URA3及 び 2 μ origin (起点) を含む DNA断片、 および PUC origin (起点) を含む DNA 断片を PCR法にて増幅する。 この際に、 Amprを含む DNA断片の 3'側 DNA配列 と URA3及び 2 μ origin (起点) を含む DNA断片の 5'側 DNA配列が 40bpにわ たって相同になるようしておく。また、 URA3及び 2 μ origin (起点) を含む DNA 断片 3'側 DNA配列と PUC origin (起点) を含む DNA断片の 5'側 DNA配列が 40bp にわたつて相同になるようしておく。 同様に、 PUC origin (起点) を含む DNA断片の 3'側 DNA配列と Amprを含む DNA断片の 5'側 DNA配列が 60bpに わたって相同になるようしておく。この 60bp配列中に EcoRIと BamHI切断部位 を含むようにする。 これら 3つの DNA断片を酵母に形質転換することで、 pSUO が構築できる。 The matchmaker plasmid can be obtained using a conventional homologous recombination method. That is, pSUO plasmid can be constructed by the following method. Amplify DNA fragment containing Ampr, DNA fragment containing URA3 and 2 μ origin (origin), and DNA fragment containing PUC origin (origin) by PCR. At this time, the 3 ′ DNA sequence of the DNA fragment containing Ampr and the 5 ′ DNA sequence of the DNA fragment containing URA3 and 2 μ origin (origin) should be homologous over 40 bp. In addition, the DNA fragment 3'-side DNA sequence containing URA3 and 2 μ origin (origin) should be homologous with the DNA fragment containing PUC origin (origin) 5'-side for 40 bp. Similarly, the 3 ′ DNA sequence of the DNA fragment containing PUC origin and the 5 ′ DNA sequence of the DNA fragment containing Amp r should be homologous over 60 bp. The EcoRI and BamHI cleavage sites should be included in this 60 bp sequence. PSUO can be constructed by transforming these three DNA fragments into yeast.
2 . クローニングベクター 2. Cloning vector
所望の目的 DNA断片をクローニングするためのベクターは、市販のベクターで もよく、 研究者により独自に開発されたベクターでもよい。 これらのベクターは、 前述の通り pBR322 (文献 7 ) を起源とする場合が多く、 その場合は、 選択マーカ —であるアンピシリン耐性遺伝子 (Ampr、 ^ラクタマーゼをコード) の 3'側に、A vector for cloning a desired DNA fragment of interest may be a commercially available vector or a vector originally developed by a researcher. These vectors are often derived from pBR322 (Reference 7) as described above, in which case the selection marker — Ampicillin resistance gene (Ampr, which encodes lactamase) 3 ′ side,
PUC origin又は ColEl originが位置する共通の構造を有する。 pBR系統のべクタ 一には、 pET系統、 pUC系統、 Bluescript系統等の大腸菌プラスミ ドベクター等 が含まれる。 但し、 本発明においては、 上記 pBR322などの pBR系統のベクター に限定されるものではなく、 pACYC系統のベクター、 pSClOl系統のベクター、 flあるいは M13系統のベクター、 BACベクター、 PACベクター、 コスミ ドべク ター等の大腸菌プラスミ ドベクター等を使用することができる。 It has a common structure where PUC origin or ColEl origin is located. Vectors of pBR strains include E. coli plasmid vectors such as pET strains, pUC strains, and Bluescript strains. However, the present invention is not limited to pBR vectors such as the above-mentioned pBR322, but pACYC vectors, pSClOl vectors, fl or M13 vectors, BAC vectors, PAC vectors, cosmid vectors. An Escherichia coli plasmid vector or the like can be used.
所望の DNA断片をクローニングするためのベクター由来の選択マ一カーには、 上記仲人プラスミ ドにおいて説明したものと同様に Ampr、 Tetr、 C Kmr、 Spcr、 Hygr、 Gmr、 Rif Zeociが、 Blasticidinr等が含まれるがこれらに限定されるもの ではなく、 適宜選択することができる。 Vector-derived selection markers for cloning the desired DNA fragment include Amp r , Tet r , C Km r , Spc r , Hyg r , Gm r , Rif as described in the matchmaker plasmid above. Zeoci, including but not limited to Blasticidinr Rather, it can be selected as appropriate.
3 . クローニングの目的 DNA 3. Cloning purpose DNA
クローユングの目的 DNAは任意の遺伝子であり、特に限定されるものではない。 例えば、 タンパク質をコードする遺伝子、 酵素をコードする遺伝子、 機能性 RNA をコードする遺伝子等が挙げられる。  Cloning purpose DNA is an arbitrary gene and is not particularly limited. For example, a gene encoding a protein, a gene encoding an enzyme, a gene encoding a functional RNA, and the like can be mentioned.
タンパク質をコードする遺伝子としては、例えば緑色蛍光タンパク質、赤色蛍光 タンパク質などが挙げられる。  Examples of the gene encoding the protein include green fluorescent protein and red fluorescent protein.
酵素をコードする遺伝子としては、例えばアミラーゼ、セルラーゼなどが挙げら れる。  Examples of the gene encoding the enzyme include amylase and cellulase.
機能性 RNAをコードする遺伝子としては、 例えば 2本鎖 RNAなどが挙げられ る。  Examples of genes encoding functional RNA include double-stranded RNA.
これらの遺伝子は、 GenBankのァクセッション番号などの情報を基にして任意 の手法により得ることができる(例えば Molecular cloning 2nd ed., Sambrook, J., et al., Cold Spring Harbor Laboratory Press U.S.A., 1989を参照)。  These genes can be obtained by any method based on information such as GenBank accession numbers (for example, Molecular cloning 2nd ed., Sambrook, J., et al., Cold Spring Harbor Laboratory Press USA, (See 1989).
4 . 目的 DNAのクローニング及びシャトルベクター構築の同時実行法 4. Simultaneous DNA cloning and shuttle vector construction
図 5は、 本発明の仲人プラスミ ドを用いて、 「クローユングおよび酵母シャトル ベクター構築の同時実行法」 を行うための模式図である。  FIG. 5 is a schematic diagram for carrying out the “simultaneous execution method of clawing and yeast shuttle vector construction” using the matchmaker plasmid of the present invention.
( 1 ) クローニングの目的 DNA断片の調製  (1) Purpose of cloning Preparation of DNA fragment
目的 DNA断片は、上記 3において記載した方法により調製することができる。 また、 本発明においては、 複数種類の目的 DNAをクローニングすることができ る。 これを本発明においては 「多断片連結」 という。 例えば 2種類の目的 DNA断 片を連結してクローニングする場合は、 目的 DNA断片同士が相同組換えを起こす ように、目的 DNA断片の一方の端に互いに相同な配列を付加させておくとともに、 他方の端にクローニングベクターの配列 (クローニングベクターの切断部位の配 列) と相同な配列を付加しておく。  The target DNA fragment can be prepared by the method described in 3 above. In the present invention, a plurality of types of target DNA can be cloned. In the present invention, this is called “multi-fragment ligation”. For example, when two types of target DNA fragments are linked and cloned, homologous recombination occurs between the target DNA fragments, and a homologous sequence is added to one end of the target DNA fragment. Add a sequence homologous to the cloning vector sequence (cloning vector cleavage site sequence).
3種類以上の目的 DNA断片をクローニングする場合は、 これらの DNA断片が タンデムに連結されるように、 目的 DNAのうちクローユングベクターと連結する ものについては、 その一端にクローニングベクターの配列と相同な配列を付加し、 目的 DNA同士が連結する部分については、 互いに相同な配列を付加しておく。 相同な配列を付加する方法は、 PCR法、 あるいは、 化学合成したヌクレオチド 配列をリガーゼ等で連結する方法などが採用される。 When cloning more than two types of target DNA fragments, connect them to the cloning vector of the target DNA so that these DNA fragments are linked in tandem. For the product, add a sequence homologous to the cloning vector sequence at one end, and add a sequence homologous to the target DNA. As a method of adding a homologous sequence, a PCR method or a method of ligating chemically synthesized nucleotide sequences with ligase or the like is employed.
( 2 ) クローニングベクターの処理  (2) Cloning vector processing
クローニングベクターは、 制限酵素などで、 二力所で切断する。 1力所目は、 ク ローン化したい DNA断片との相同組換えがおこる部分の中間に位置する任意の部 位である (切断部位 1とする)。 切断部位は、 マルチクローニングサイ トを含む場 合はその中の 1箇所であることが好ましい。 また、 よりクローン化効率を上げるに は、 さらにもう 1箇所のマルチクロ一ニンダサイ トで切断することが好ましい。  The cloning vector is cleaved at two locations with a restriction enzyme. The first point is an arbitrary position located in the middle of the portion where homologous recombination with the DNA fragment to be cloned occurs (referred to as cleavage site 1). The cleavage site is preferably one of the multiple cloning sites. Further, in order to further increase the cloning efficiency, it is preferable to cleave at another multi-cylinder site.
2力所目の切断部位は選択マーカー又は複製起点の配列上の任意の場所である (切断部位 2とする)。 ただし、 選択マーカー又は複製起点の切断は、 マーカー又 は複製起点の端から少なくとも 20bp、 好ましくは 30〜40bpの長さ分だけ、 内側 の位置で行うことが好ましレ、。 つまり、 クローニングベクターを切断したときの切 断部は、 マーカー又は複製起点の配列が少なくとも 20bp、 好ましくは 30bp〜40 が残るようにする。  The cleavage site at the second force point is an arbitrary place on the sequence of the selection marker or the replication origin (referred to as cleavage site 2). However, it is preferable that the selection marker or the origin of replication is cleaved at an inner position at least 20 bp from the end of the marker or origin of replication, preferably 30-40 bp in length. That is, when the cloning vector is cleaved, the marker or the origin of replication sequence should remain at least 20 bp, preferably 30 bp to 40.
ここで、 クローニングの目的 DNA断片は、 クロ一ニングベクターの上記切断部 位 1に挿入される。その際にクローニングベクターと相同な配列をもったプライマ 一で PCRを行い、 クローン化の目的 DNA断片の両端にクローニングベクターと 相同な配列を付加する。 付加する塩基配列の長さは、 少なくとも 20bp、 好ましく は 30〜40bpが残るようにする。  Here, the target DNA fragment for cloning is inserted into the cleavage site 1 of the cloning vector. At this time, PCR is performed with a primer having a sequence homologous to the cloning vector, and a sequence homologous to the cloning vector is added to both ends of the DNA fragment to be cloned. The length of the base sequence to be added is such that at least 20 bp, preferably 30 to 40 bp remain.
( 3 ) 仲人プラスミ ドの DNA断片の調製  (3) Preparation of DNA fragment of Nakajin plasmid
仲人プラスミ ドは、 1種類又は 2種類の制限酵素で切断し、 ァガロースゲル電気 泳動により、 切断断片を回収 ·精製する。  Nakajin plasmid is cleaved with one or two restriction enzymes, and the cleaved fragments are recovered and purified by agarose gel electrophoresis.
( 4 ) 宿主への導入  (4) Introduction into the host
上記 (1)〜(3)の各 DNA断片 (合計 4つの DNA断片) を、 宿主に導入して形質転 換を行う。 形質転換は、 例えば、 化学的形質転換法である酢酸リチウム法、 プロト プラスト法等を採用することができる。 また、電気的形質転換法を採用することも できる。 本発明においては、 簡便である点で酢酸リチウム法が好ましい。 形質転換すると、 酵母内で図 5の 「 X」 印で示した 4力所の位置で相同組換えが おこり、 クローニングべクタ一には上記切断部位 1において目的 DNAが結合する とともに、切断部位 2の領域に仲人プラスミ ドが結合することによりクローニング ベクターが酵母シャトルベクターにかわる。 これは、 目的 DNA断片のクローニン グおよび酵母シャ トルベクター構築が、 同時に実行されることを意味する。 「同時 に」 とは、 (a)クローニングベクターへの目的 DNA断片の組込みと、 (b)仲人プラ スミ ドへのクローニングベクターの組込みが、 1つの処理で行われることを意味し 必ずしも、 時間的に同時刻に上記 (a)及び (b)の内容が行われることのみを意味する ものではない。 実施例 Each of the above DNA fragments (1) to (3) (a total of 4 DNA fragments) is introduced into the host for transformation. For transformation, for example, chemical transformation methods such as lithium acetate method and protoplast method can be employed. An electrical transformation method can also be employed. In the present invention, the lithium acetate method is preferred because of its simplicity. When transformed, homologous recombination takes place in the yeast at the four positions indicated by the “X” in FIG. 5. The cloning vector binds to the target DNA at the above-mentioned cleavage site 1 and the cleavage site 2 The cloning vector replaces the yeast shuttle vector by binding the matchmaker plasmid to this region. This means that cloning of the target DNA fragment and yeast shuttle vector construction are performed simultaneously. “Simultaneously” means that (a) integration of the target DNA fragment into the cloning vector and (b) integration of the cloning vector into the matchmaker plasmid are carried out in one process. It does not mean that the contents of (a) and (b) above are performed at the same time. Example
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明はこれら実 施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
〔実施例 1〕 目的 DNAのクローニングおよび酵母シャトルベクター構築の同 時実行  [Example 1] Objective DNA cloning and yeast shuttle vector construction simultaneously
本実施例では、 pSUOプラスミ ド、及びクローン化の目的 DNA断片として GFP 遺伝子を用いて、クローニングおよび酵母シャ トルベクター構築を同時に実施した c この際、 クローニングベクターとして、 大腸菌でのタンパク質発現用ベクター pET32a(+) (Novagen社)を用いた。 pET32a(+)は、チォレドキシン融合タンパク質 の形で、様々なタンパク質を発現させるのに、様々な研究の場でよく用いられてい るベクターである。 GFP遺伝子の DNA断片は、 PCRにより、 40 bpのクロー二 ングベクターと相同な配列を両端にもち、且つ、チォレドキシンと読み枠が合うよ うな形で増幅した。 In this embodiment, PSUO plasmid, and using GFP gene as a target DNA fragment cloned, this time c embodying cloning and yeast shuttle vector construction at the same time, as a cloning vector, vectors for protein expression in E. coli pET32a (+) (Novagen) was used. pET32a (+) is a vector commonly used in various research fields to express various proteins in the form of a thioredoxin fusion protein. The DNA fragment of the GFP gene was amplified by PCR in such a way that it had a sequence homologous to the 40 bp cloning vector at both ends and matched the reading frame with thioredoxin.
次に、 pET32a(+)を切断したもの、 pSUOを切断したもの、 GFP遺伝子の DNA 断片を 1:1:6のモル比で混合し、 パン酵母に形質転換した。 以下、 実験例を詳細に 説明する。  Next, pET32a (+)-cut, pSUO-cut, and GFP gene DNA fragments were mixed at a molar ratio of 1: 1: 6 and transformed into baker's yeast. The experimental example is described in detail below.
(1) 材料と方法 (1) Materials and methods
(1-1) 用いた菌株 用いたパン酵母 YPH499 は 7k, ade2-10l, Jiis3-A200, Jeu2Al, lys2-801, trpl- 63, ura3'529、用いた大腸菌 DH5o (TOYOBO社)は F- ^80d ladL ΔΜ15 AOac(1-1) Strains used The baker's yeast YPH499 used was 7k, ade2-10l, Jiis3-A200, Jeu2Al, lys2-801, trpl-63, ura3'529, and the Escherichia coli DH5o (TOYOBO) used was F- ^ 80d ladL ΔΜ15 AOac
ZYA-argF) U 169 deoR recAl endAl Aso¾17(rK -, mK+) supE44 - thr l gyrAQG reJAlであり、 BL2lStar(DE3) (Invitrogen社)は F- o/7¾t7T hsdSB (i" m -B)gaJ dcm ^ (ΟΕ3)である。 ZYA-argF) U 169 deoR recAl endAl Aso¾17 (rK-, mK +) supE44-thr l gyrAQG reJAl, BL2lStar (DE3) (Invitrogen) is F-o / 7¾t7T hsdSB (i "m -B) gaJ dcm ^ (ΟΕ3).
(1-2) pSUO仲人プラスミ ドの構築 (1-2) Construction of pSUO matchmaker plasmid
pSUO仲人プラスミ ドの構築はパン酵母相同組換えを用いて行った。具体的には、 まず、 pSUOの背骨となる Ampr遺伝子を含む DNA断片、 PUC originを含む DNA 断片、及び、 2μ origin, URA3遺伝子の 2つを含む DNA断片を pYES2 (Invitrogen 社) を铸型にして PCR法により増幅させた。 Ampr遺伝子を含む DNA断片はブラ イマ一 pSUO- 1及び pSUO-4により、 PUC orginを含む DNA断片はプライマー pSUO-3及び pSUO-6によりそれぞれ増幅させた。 Construction of pSUO Nakajin plasmid was performed using baker's yeast homologous recombination. Specifically, first, pYES2 (Invitrogen) is used as a DNA fragment containing the Amp r gene, the backbone of pSUO, the DNA fragment containing PUC origin, and the DNA fragment containing 2 μ origin and URA3 gene. Amplified by PCR. The DNA fragment containing Ampr gene was amplified by primers pSUO-1 and pSUO-4, and the DNA fragment containing PUC orgin was amplified by primers pSUO-3 and pSUO-6, respectively.
これらのプライマーの塩基配列を以下に示す。  The base sequences of these primers are shown below.
pSU0- l(5 ' - CGGGATCCATCGGAATTCATAATTGAAAAAGGAAGAGTATG- 3 ' ) (配列番号 2 ) pSU0-l (5'-CGGGATCCATCGGAATTCATAATTGAAAAAGGAAGAGTATG-3 ') (SEQ ID NO: 2)
pSU0-4(5 ' GCCCCAAAAACAGGAAGATTATTATCAAAAAGGATCTTCT-3 ' )pSU0-4 (5 'GCCCCAAAAACAGGAAGATTATTATCAAAAAGGATCTTCT-3')
(配列番号 3 ) (SEQ ID NO: 3)
pSUO-3 ( AATTATATCAGTTATTACCCCTCATGACCAAAATCCCTTA-3 ' ) (配 列番号 4 ) pSUO-3 (AATTATATCAGTTATTACCCCTCATGACCAAAATCCCTTA-3 ') (sequence number 4)
pSU0-6(ATGAATTCCGATGGATCCCGGCGGTAATACGGTTATCCAC-5 ' ) (配 列番号 5 ) pSU0-6 (ATGAATTCCGATGGATCCCGGCGGTAATACGGTTATCCAC-5 ') (sequence number 5)
この PCR反応は製造者の指示に従い Pfu DNAポリメラーゼを用いて、 95°Cで 1分反応させた後、 95°C30秒、 55°C30秒、 72°C 1分の反応を 15サイクル行い、 最後に 72°Cで 5分反応させた。 続いて、 Ampr遺伝子を含む DNA断片及び、 PUC originを含む DNA断片に ^THHIと £toRIサイ トを含む相同配列を付加するため、 上の PCR産物を铸型として、それぞれ順に、プライマー pSUO-4と pSUO-7 (pSUO'6 の相補鎖)、 及び、 pSUO-3と pSU-8 (pSUlの相補鎖) を用いてそれぞれ PCR法 で増幅させた。 この PCR反応は製造者の指示に従い Pfu DNAポリメラーゼを用 いて、 95°Cで 1分反応させた後、 95°C30秒、 55°C30秒、 72°C1分の反応を 35サ イタル行い、 最後に 72°Cで 5分反応させた。 一方で、 pYES2/CTを铸型にして、 2μ originと URA3遺伝子を含む DNA断片をプライマ一 pSU0-2(pSU0-4の相補鎖) と pSU0-5(pSU0-3の相補鎖)を用いて PCR反応により増幅させた。 この反応は、 製造者の指示に従い Pfu DNAポリメラ一ゼを用いて、 95°Cで 1分反応させた後、 95°C30秒、 55°C30秒、 72°C1分の反応を 35サイクル行レ、、 最後に 72°Cで 5分反 応させることにより行った。 増幅された 3つの PCR断片を Sephaglas BandPrep Kit (Amersham Pharmacia社)を用いて製造者の指示に従い精製した。 This PCR reaction was performed at 95 ° C for 1 minute using Pfu DNA polymerase according to the manufacturer's instructions, followed by 15 cycles of 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute. For 5 minutes at 72 ° C. Subsequently, in order to add a homologous sequence containing ^ THHI and £ toRI sites to the DNA fragment containing the Ampr gene and the DNA fragment containing PUC origin, the above PCR product was used as a saddle and the primers pSUO-4 And pSUO-7 (complementary strand of pSUO'6), and pSUO-3 and pSU-8 (complementary strand of pSUl), respectively, were amplified by PCR. This PCR reaction uses Pfu DNA polymerase according to the manufacturer's instructions. Then, after reacting at 95 ° C for 1 minute, the reaction was performed at 95 ° C for 30 seconds, 55 ° C for 30 seconds and 72 ° C for 1 minute for 35 sites, and finally at 72 ° C for 5 minutes. On the other hand, using pYES2 / CT as a saddle and a DNA fragment containing 2μ origin and URA3 gene using primers pSU0-2 (complementary strand of pSU0-4) and pSU0-5 (complementary strand of pSU0-3) Amplified by PCR reaction. This reaction was performed using Pfu DNA polymerase according to the manufacturer's instructions for 1 minute at 95 ° C, followed by 35 cycles of reactions at 95 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute. Finally, the reaction was performed at 72 ° C for 5 minutes. The three amplified PCR fragments were purified using Sephaglas BandPrep Kit (Amersham Pharmacia) according to the manufacturer's instructions.
次にこれらの PCR断片を混合し、 TRAFOのプロトコール (文献 6) に従って 酵母に形質転換し、 URAを含有しないプレートに播いた。 これによつて得られた コロニーから QIAprep Miniprep (QIAGEN社)を用いて製造者の指示に従いプラ スミ ドを抽出、精製した。 このプラスミ ドを DH5aのコンビテントセルに形質転換 し、 プラスミ ドを増殖させた。 最後に、 コロニーを 1つ選んで 1晚液体培養し、 QIAprep Miniprep (QIAGEN社)を用いてプラスミ ドを抽出し、 Nd と EcdRlで 切断して、 pSUO仲人プラスミ ドが作製されたことを確認した。  Next, these PCR fragments were mixed, transformed into yeast according to the TRAFO protocol (Reference 6), and plated on a plate containing no URA. From the colonies thus obtained, plasmids were extracted and purified using QIAprep Miniprep (QIAGEN) according to the manufacturer's instructions. This plasmid was transformed into a DH5a competent cell, and the plasmid was grown. Finally, one colony was selected, cultured in 1 晚 liquid culture, extracted with QIAprep Miniprep (QIAGEN), and cut with Nd and EcdRl to confirm that the pSUO matchmaker plasmid was produced. .
pSUO仲人プラスミ ドの DNA配列およびその注釈付けを付図 1に示した。  Figure 1 shows the DNA sequence of pSUO matchmaker plasmid and its annotation.
(1-3) PCR (1-3) PCR
PCRは製造者の指示に従レ、 PyroBest DNA polymerase (TAKARA社)を用いて 行った。 GFP遺伝子を pET32a(+)にクロ一ニングする実験では、 GFP遺伝子の 5' 側及び 3 ' 側に以下の配列を付加した。  PCR was performed using PyroBest DNA polymerase (TAKARA) according to the manufacturer's instructions. In the experiment of cloning the GFP gene into pET32a (+), the following sequences were added to the 5 ′ side and 3 ′ side of the GFP gene.
5'側付加配列: GGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGA (酉己 列番号 6 )  Additional sequence on the 5 'side: GGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGA (Tatsumi column number 6)
3'側付加配列: ACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCA (酉己 列番号 7 )  3'-side additional sequence: ACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCA (Tatsumi column number 7)
pET32a(+)に GFP遺伝子および RFP遺伝子を多断片連結する実験では、各遺伝 子の 5'側及ぴ 3 ' 側に以下の配列を付加した。  In experiments in which multiple fragments of GFP and RFP genes were linked to pET32a (+), the following sequences were added to the 5 'and 3' sides of each gene.
GFP遺伝子 GFP gene
5,側付加配列: GGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGA (配 列番号 6 ) 5, side additional sequence: GGCCATGGCTGATATCGGATCCGAATTCGAGCTCCGTCGA (Column number 6)
3'側付加配列: ATGACGTTCTCGGAGGAGGC (配列番号 8 )  3 'additional sequence: ATGACGTTCTCGGAGGAGGC (SEQ ID NO: 8)
RP遺伝子 RP gene
5'側付加配列: GCATGGATGAGCTCTACAAA (配列番号 9 )  5 'additional sequence: GCATGGATGAGCTCTACAAA (SEQ ID NO: 9)
3'側付加配列: ACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCA (配 列番号 7 ) 3 'additional sequence: ACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCA (sequence number 7)
PCR溶液の組成とサイクル条件を以下に示す。  The composition of the PCR solution and the cycle conditions are shown below.
組成: lO x Pyrobest ノくッファー II 5μ1, 2.5mM 各 dNTP ミックス 4μ1, プライ マー各 4 μ1、水 31μ1、テンプレート DNA 2 l、Pyrobest DNAポリメラーゼ 0.25μ1 サイクル条件: (98°Cを 10秒、 55°Cを 30秒、 72。Cを 1分) X 35サイクル  Composition: lO x Pyrobest Knuffer II 5μ1, 2.5mM each dNTP mix 4μ1, primer 4μ1, water 31μ1, template DNA 2 l, Pyrobest DNA polymerase 0.25μ1 Cycle conditions: (98 ° C for 10 seconds, 55 ° C for 30 seconds, 72. C for 1 minute) X 35 cycles
(1-4) DNAの精製 (1-4) DNA purification
上記 PCR増幅断片および制限酵素 で切断した pSUO仲人プラスミ ドは、 1%ァガロースゲル電気泳動後、 目的のバンドを、 Sephaglas BandPrep Kit (Amersham Pharmacia社) を用いて回収 '精製した。 pET32a(+)については、 制限酵素 Mおよび Not\で切断したのみで、 更なる精製は行わなかった。  The PCR amplified fragment and pSUO Nakajin plasmid cleaved with the restriction enzyme were subjected to 1% agarose gel electrophoresis, and the target band was recovered and purified using Sephaglas BandPrep Kit (Amersham Pharmacia). pET32a (+) was cleaved only with restriction enzymes M and Not \ and was not further purified.
(1-5) 形質転換  (1-5) Transformation
パン酵母形質転換は、 TRAFOプロ トコ一ル (文献 6 ) によって行った。 大腸菌 については、 形質転換可能の状態の大腸菌 DH5ot (TOYOBO 社)及び、 BL21Star(DE3) (Invitrogen社)を購入し、 製造者の指示に従い形質転換を行つた。 チォレドキシン融合 GFPおよびチォレドキシン融合 GFP-RFPの発現の確認は、 視認で行った。  Transformation of baker's yeast was performed with the TRAFO protocol (Reference 6). For E. coli, transformable E. coli DH5ot (TOYOBO) and BL21Star (DE3) (Invitrogen) were purchased and transformed according to the manufacturer's instructions. The expression of thioredoxin fusion GFP and thioredoxin fusion GFP-RFP was confirmed visually.
(2) 結果 (2) Results
形質転換の結果、 401個のコロニーが得られた。  As a result of transformation, 401 colonies were obtained.
次に、 酵母形質転換体全てをプレートから回収し、 液体培養を経ず、 直接、 ブラ スミ ド DNAを抽出し DH50Cに形質転換して、酵母の場合と同様にプラスミ ドを抽 出した。 なお、 具体的な抽出法は以下の通りである。  Next, all yeast transformants were collected from the plate, and without passing through liquid culture, brass DNA was directly extracted and transformed into DH50C, and the plasmid was extracted as in the case of yeast. The specific extraction method is as follows.
酵母のプレートにガラスビーズ及び、 水を加えて、 コロニーを懸濁し、 それをチ ユーブに回収した。 続いて、 酵母を集菌して QIAprep' Miniprep (QIAGEN社)の バッファー P1 に懸濁し、 細胞破砕用のガラスビーズを加え、 強く攪拌し、 酵母の 細胞を破壊した。 それを遠心分離して上清を回収し、後は製造者の指示に従いブラ スミ ドの抽出を行った。 そのプラスミ ドを DH5Cに形質転換し、プラスミ ドを大量 に増幅させた後、 QIAprep Miniprep (QIAGEN社)で製造者の指示に従いプラスミ ドを抽出した。 Add glass beads and water to the yeast plate to suspend the colony and Collected in Yubu. Subsequently, the yeast was collected and suspended in buffer P1 of QIAprep 'Miniprep (QIAGEN), glass beads for cell disruption were added, and the mixture was vigorously stirred to destroy the yeast cells. The supernatant was collected by centrifuging it, and the plasmid was then extracted according to the manufacturer's instructions. The plasmid was transformed into DH5C, the plasmid was amplified in large quantities, and the plasmid was extracted with QIAprep Miniprep (QIAGEN) according to the manufacturer's instructions.
抽出したプラスミ ド DNAを大腸菌 BL2lStar (DE3)に形質転換したところ、 得 られたコロニーの 59%が GFPを発現していた (表 1 )。  When the extracted plasmid DNA was transformed into E. coli BL2lStar (DE3), 59% of the resulting colonies expressed GFP (Table 1).
従来の方法では、形質転換効率は、 10%以下である場合が度々あることから、 こ の結果は、比較的高い効率で DNA断片のクローニングが可能であることを示して いる。 表 1  In the conventional method, the transformation efficiency is often 10% or less, and this result shows that the DNA fragment can be cloned with relatively high efficiency. table 1
pSUO:へ"クタ-: GFP:RFP 酵母形質転換体 チォ融合タンパク質を発現する の数 大腸菌コロニーの百分率pSUO: H "Kuta-: GFP: RFP Yeast transformant Number of thio fusion protein expressing Percentage of E. coli colonies
0:1:0:0 50 0 0: 1: 0: 0 50 0
1:1:0:0 135 0 1: 1: 0: 0 135 0
1:1:6:0 401 59 1: 1: 6: 0 401 59
1:1:6:6 323 37 また、 コントロール実験として、 (i) pET32a(+)を切断したもののみを形質転換 する実験、 および、 (ii) クローン化の目的 DNA断片を加えずに形質転換する実験 を行った。 コントロール実験は、 pET32a(+)を切断したもの、 pSUOを切断したも ののモル比を 1:1 として行った。 その結果、 上記 (i)及び (ii)の実験により、 それぞ れ 50個および 135個のコロニーが得られた。 コロニーの数は、 GFP遺伝子をク ローニングする実験の 12%および 34%と比較的多かったが、 これらの実験では非 相同末端結合の効果が強く現れるためであると考えられる。 1: 1: 6: 6 323 37 As a control experiment, (i) an experiment in which only pET32a (+) was cleaved was transformed, and (ii) a transformation without adding the desired DNA fragment for cloning. An experiment was conducted. In the control experiment, pET32a (+) was cleaved and pSUO was cleaved at a molar ratio of 1: 1. As a result, 50 and 135 colonies were obtained by the experiments (i) and (ii), respectively. The number of colonies was relatively high at 12% and 34% of the experiments for cloning the GFP gene, but this is thought to be due to the strong effect of non-homologous end joining in these experiments.
〔実施例 2〕 多断片連結 パン酵母を用いた ώ o相同組換え法を用いたクローニングの特長として、 図 2の多断片連結が容易であることがあげられる。 そこで、 本実施例では、 実施例 1 と同様な実験系により多断片連結を行レ、、チォレドキシン- GFP-RFPの融合遺伝子 を構築した。 GFP遺伝子の DNA断片の 5'側および RFP遺伝子の DNA断片の 3' 側は、 40 bpのクローニングベクターと相同な配列をもつ。 GFP遺伝子の DNA断 片の 3'側および RFP遺伝子の DNA断片の 5'側は、 互いに相同な 40 bpの配列を もつ。 pET32a(+)を切断したもの、 pSUOを切断したもの、 GFP遺伝子の DNA断 片、 RFP遺伝子の DNA断片を 1:1:6:6のモル比で混ぜて、 パン酵母に形質転換し たところ、 323個のコロニーが得られた。 パン酵母から回収したプラスミ ド DNA を大腸菌 DH5aに形質転換し、そこで得られたコロニーからプラスミ ド DNAを回 収し、 さらに、 大腸菌 BL21Star (DE3)に形質転換したところ、 得られたコロニー の 37%が GFPおよび RFPの活性をもっていた (表 1 )。 この結果は、 本発明の方 法を用いて、 高い効率で多断片連結が可能であることを示している。 〔実施例 3〕 目的の DNAのクローニングおよび酵母シャトルベクター構築の同時 実行 (pSU0、 pET32a(+)を二種類の制限酵素で切断した場合) 本実施例では、 pSUO を制限酵素 £;C0R1、 BamRl の両方で切断し、 且つ、 pET32a(+)のマルチクローニングサイ トを二種類の制限酵素 n氣 Xhol で切 断し、 さらに pET32a(+)の Ampr遺伝子に含まれる で切断した。 実施例 1と 同様な実験系により目的の DNAのクロ一ニングを行った。 pET32a(+)を切断した もの、 pSUOを切断したもの、 GFP遺伝子の DNA断片を 1:1:1のモル比で混ぜて、 パン酵母に形質転換したところ、 3968個のコロニーが得られた。 パン酵母から回 収したプラスミ ド DNAを大腸菌 DH5aに形質転換し、そこで得られたコロニーか ら回収したプラスミ ド DNAをさらに、 大腸菌 BL2lStar (DE3)に形質転換したと ころ、得られたコロニーの 97%が GFPの活性を有していた (表 2)。 この結果は、 pSU0、 pET32a(+)を二種類の制限酵素で切断したほうが、 より高い効率で目的 DNAのクローニングが可能であることを示している (表 2)。 表 2 [Example 2] Multi-fragment ligation The advantage of cloning using 相同 o homologous recombination method using baker's yeast is that multi-fragment ligation in Fig. 2 is easy. Therefore, in this example, a multi-fragment ligation was performed by the same experimental system as in Example 1, and a thioredoxin-GFP-RFP fusion gene was constructed. The 5 ′ side of the DNA fragment of the GFP gene and the 3 ′ side of the DNA fragment of the RFP gene have a sequence homologous to the 40 bp cloning vector. The 3 'side of the DNA fragment of the GFP gene and the 5' side of the DNA fragment of the RFP gene have 40 bp sequences that are homologous to each other. When pET32a (+) was cut, pSUO was cut, GFP gene DNA fragment, and RFP gene DNA fragment were mixed at a molar ratio of 1: 1: 6: 6 and transformed into baker's yeast 323 colonies were obtained. Plasmid DNA recovered from baker's yeast was transformed into E. coli DH5a, and plasmid DNA was recovered from the resulting colonies and transformed into E. coli BL21Star (DE3). 37% of the resulting colonies Had GFP and RFP activity (Table 1). This result shows that multi-fragment ligation is possible with high efficiency using the method of the present invention. [Example 3] Simultaneous execution of cloning of target DNA and construction of yeast shuttle vector (when pSU0 and pET32a (+) are cleaved with two kinds of restriction enzymes) In this example, pSUO is a restriction enzyme £; C0 R1, It was cleaved with both BamRl, and the multi-cloning site of pET32a (+) was cleaved with two kinds of restriction enzymes n氣 Xhol, and further cleaved with an ampr gene contained in pET32a (+). The target DNA was cloned by the same experimental system as in Example 1. When pET32a (+) was cleaved, pSUO was cleaved, and the DNA fragment of the GFP gene was mixed at a molar ratio of 1: 1: 1 and transformed into baker's yeast, 3968 colonies were obtained. The plasmid DNA recovered from baker's yeast was transformed into E. coli DH5a, and the plasmid DNA recovered from the colonies obtained there was further transformed into E. coli BL2lStar (DE3). % Had GFP activity (Table 2). This result shows that the target DNA can be cloned with higher efficiency when pSU0 and pET32a (+) are cleaved with two types of restriction enzymes (Table 2). Table 2
pSUO:へ"クタ -: GFP:RFP 酵母形質転換体 チォ融合タンパク質を発現する の数 大腸菌コロニーの百分率 pSUO: He "Kuta-: GFP: RFP Yeast transformant Number of thio fusion protein expressing Percentage of E. coli colonies
0:1:0:0 55 0  0: 1: 0: 0 55 0
1:1:0:0 70 0 1: 1: 0: 0 70 0
1:1:1:0 3968 97  1: 1: 1: 0 3968 97
1:1:1:1 430 70  1: 1: 1: 1 430 70
〔実施例 4〕 多断片連結 (pSU0、 pET32a(+)を二種類の制限酵素で切断した場合) 本実施例では、実施例 3と同様な実験系により目的の DNAのクローニングを行 つた。 pET32a(+)を切断したもの、 pSUOを切断したもの、 GFP遺伝子の DNA断 片、 RFP遺伝子の DNA断片を 1:1:1:1のモル比で混ぜて、 パン酵母から回収した プラスミ ド DNAを大腸菌 DH5aに形質転換した。得られたコロニーから回収した プラスミ ド DNAをさらに、 大腸菌 BL2lStar (DE3)に形質転換した。 その結果、 得られたコロニーの 70%が GFPおよび RFPの活性を有していた (表 2)。 この結 果は、 pSU0、 pET32a(+)を二種類の制限酵素で切断したほうが、 より高い効率で 多断片連結が可能であることを示している (表 2)。 以上説明した通り、本発明者は、酵母シャトルベクターでない一般的なベクター に、 パン酵母を用いた ώ 'w相同組換え法で DNA断片をクロ一ユングする方法 を開発した。 また、 この方法を、 市販されているベクタ一、 あるいは、 各研究者が 独自に開発したベクターの多くに適用可能にするために、 pSUO仲人プラスミ ドを 開発した。 開発した方法を、 GFP 遺伝子をモデルとして試してみたところ、 高い 効率で DNA断片のクローニングが可能であることがわかった。 また、 多断片連結 が可能であるかどうかを GFPおよび RFPの融合タンパク質の構築をモデルとし て試みたところ、 これも、 比較的高い効率で実行可能であることがわかった。 [Example 4] Multi-fragment ligation (when pSU0 and pET32a (+) are cleaved with two kinds of restriction enzymes) In this example, cloning of the target DNA was carried out using the same experimental system as in Example 3. Plasmid DNA recovered from baker's yeast by mixing pET32a (+), pSUO, GFP DNA fragment, and RFP DNA fragment in a 1: 1: 1: 1 molar ratio. Was transformed into E. coli DH5a. The plasmid DNA recovered from the obtained colonies was further transformed into E. coli BL2lStar (DE3). As a result, 70% of the obtained colonies had GFP and RFP activities (Table 2). This result shows that multi-fragment ligation can be performed with higher efficiency when pSU0 and pET32a (+) are cleaved with two types of restriction enzymes (Table 2). As described above, the present inventor has developed a method for cloning a DNA fragment by a homologous recombination method using baker's yeast to a general vector that is not a yeast shuttle vector. We have also developed pSUO matchmaker plasmids to make this method applicable to many commercially available vectors or to many of the vectors that each researcher independently developed. When the developed method was tested using the GFP gene as a model, it was found that DNA fragments could be cloned with high efficiency. In addition, we attempted to construct a fusion protein of GFP and RFP as a model to determine whether multi-fragment ligation is possible, and found that this can also be performed with relatively high efficiency.
Gatewayなどの in vitro相同組換え法は、 研究に使いたいクロ一ニングベクタ 一が特定の DNA配列を持つ必要があるという欠点をもつ。 そのため、 ベクターに 特定の配列を伝統的クローニング法などで付加する必要があった。 また、従来のパ ン酵母相同組換え法でも、 同様の欠点があった。 すなわち、 研究に使いたいベクタ 一をパン酵母-大腸菌シャ トルベクターに変換した後に、 パン酵母相同組換え法で 望む DNA断片をクローニングベクターに入れる必要があった。 In vitro homologous recombination methods such as Gateway have the disadvantage that the cloning vector that you want to use for research needs to have a specific DNA sequence. Therefore, it was necessary to add a specific sequence to the vector using traditional cloning methods. In addition, the conventional power The yeast homologous recombination method had the same drawbacks. In other words, after converting the vector to be used for research into a baker's yeast-E. Coli shuttle vector, it was necessary to put the desired DNA fragment into the cloning vector by the baker's yeast homologous recombination method.
これに対し、本発明の方法は、多くのクローユングベクターに共通の構造を利用 しているので、 上記欠点の影響を受けない。 また、 本発明の方法は、 高価な酵素を 用いないため、 Gatewayなどの ώ 相同組換え法に比べて安価である。 しか も、 in w'iroでの操作が相対的に少なく簡便である点で、 in 'iro相同組換え法に 比べて優れている。  On the other hand, since the method of the present invention utilizes a common structure for many cloning vectors, it is not affected by the above disadvantages. In addition, since the method of the present invention does not use an expensive enzyme, it is less expensive than a homologous recombination method such as Gateway. However, it is superior to the in 'iro homologous recombination method in that the operation in in w'iro is relatively few and simple.
さらに、 本発明の方法は、 多断片連結が可能である点で、 多断片連結ができない in ro相同組換え法よりも優れている。 多断片連結により融合タンパク質を容易 に作成することができるので、 研究対象の遺伝子と GFP遺伝子の融合、 タンパク 質のドメインの置換などに適用することができる。 また、 多断片連結によって、 タ ンパク質への部位特異的突然変異導入も容易に行うことができる。  Furthermore, the method of the present invention is superior to the in ro homologous recombination method in which multi-fragment ligation is impossible in that multi-fragment ligation is possible. A fusion protein can be easily created by ligating multiple fragments, so it can be applied to the fusion of the gene under study with the GFP gene, or the replacement of a protein domain. In addition, site-directed mutagenesis can be easily performed on proteins by ligating multiple fragments.
さらに、 本発明の方法は、 大腸菌を用いた ώ W'KO相同組換え法と比べて、 クロ —ニングベクタ一と相同な配列の長さが相対的に短くて良く、 また、エレク トロポ 一レーシヨン装置などの特別な装置を必要としないなどの点で優れている。 産業上の利用可能性  In addition, the method of the present invention may have a relatively short sequence homologous to the cloning vector compared to the ώW'KO homologous recombination method using E. coli, and the electroporation apparatus. It is excellent in that it does not require special equipment. Industrial applicability
本発明の方法は、 目的 DNA断片のクローニングとシャトルベクター構築を同時 に実行することができる点で有用である。 また、 本発明のプラスミ ドを用いると、 所望のベクターに目的遺伝子を挿入することができ、 また、融合タンパク質作成や 部位特異的変異の導入などを行うことができるため、実用的にも極めて有用である。 配列表フリーテキス ト  The method of the present invention is useful in that the cloning of the target DNA fragment and the construction of the shuttle vector can be performed simultaneously. In addition, when the plasmid of the present invention is used, a target gene can be inserted into a desired vector, and a fusion protein can be created or a site-specific mutation can be introduced. It is. Sequence listing free text
配列番号 1 : pSUOプラスミ ド  Sequence number 1: pSUO plasmid
配列番号 2 :合成 DNA  Sequence number 2: Synthetic DNA
配列番号 3 :合成 DNA  Sequence number 3: Synthetic DNA
配列番号 4 :合成 DNA  Sequence number 4: Synthetic DNA
配列番号 5 :合成 DNA 配列番号 6 :合成 DNA Sequence number 5: Synthetic DNA Sequence number 6: Synthetic DNA
配列番号 7 :合成 DNA  Sequence number 7: Synthetic DNA
配列番号 8 :合成 DNA  Sequence number 8: Synthetic DNA
配列番号 9 :合成 DNA 以下の文献は、 参照として本明細書全体に組込まれるものとする。  SEQ ID NO: 9: Synthetic DNA The following documents are incorporated herein by reference in their entirety.
文献 Literature
1. Cohen SN, Chang AC, Boyer HW, and Helling RB. (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA. 70, 3240-3244.  1. Cohen SN, Chang AC, Boyer HW, and Helling RB. (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA. 70, 3240-3244.
2. Zhang Y, Buchholz F, Muyrers JP, and Stewart AF. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 20, 123-128.  2. Zhang Y, Buchholz F, Muyrers JP, and Stewart AF. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 20, 123-128.
3. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, and Court DL. (2000) An efficient recombination system for chromosome engineering in 3. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, and Court DL. (2000) An efficient recombination system for chromosome engineering in
Escherichia coli. Proc Natl Acad Sci USA. 97, 5978-5983. Escherichia coli. Proc Natl Acad Sci USA. 97, 5978-5983.
4. Marykwas DL, and Passmore SE. (1995) Mapping by multifragment cloning in vivo. Proc Natl Acad Sci USA. 92, 11701-11705.  4. Marykwas DL, and Passmore SE. (1995) Mapping by multifragment cloning in vivo. Proc Natl Acad Sci USA. 92, 11701-11705.
5. Oldenburg KR, Vo KT, Michaelis S, and Paddon C. (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451-452.  5. Oldenburg KR, Vo KT, Michaelis S, and Paddon C. (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451-452.
6. Gietz RD, and Woods RA (2002) Transformation of Yeast by the Lithium Acetate/Single - Stranded carrier DNA/Polyethylene Glycol method. Methods in Enzymology. 350, 87-96.  6. Gietz RD, and Woods RA (2002) Transformation of Yeast by the Lithium Acetate / Single-Stranded carrier DNA / Polyethylene Glycol method.Methods in Enzymology.350, 87-96.
7. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, and Boyer HW. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 2, 95-113. 7. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, and Boyer HW. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 2, 95-113.

Claims

請 求 の 範 囲 . シャトルべクタ一用の 2組の複製起点及び選択マーカーを含むプラスミ ドであ つて、 一の微生物において機能する第一の複製起点と選択マ一カーとの間に、 他の微生物において機能する第二の複製起点及び選択マーカーが組み込まれ たプラスミ ド。 The scope of the request. A plasmid containing two sets of replication origins and selection markers for the shuttle vector, between the first replication origin that functions in one microorganism and the selection marker. A plasmid that incorporates a second origin of replication and a selectable marker that function in other microorganisms.
. —の微生物が大腸菌である請求項 1記載のプラスミ ド。The plasmid according to claim 1, wherein the microorganism of — is Escherichia coli.
. 第一の複製起点が、 PUC起点、 ColEl起点、 pBR322起点、 pACYC起点、 pSClOl起点、 fl起点、 M13起点、 BACベクターの起点、 PACベクターの起 点、 及びコスミ ドベクター起点からなる群から選択されるいずれかのものであ る請求項 2記載のプラスミ ド。The first replication origin is selected from the group consisting of PUC origin, ColEl origin, pBR322 origin, pACYC origin, pSClOl origin, fl origin, M13 origin, BAC vector origin, PAC vector origin, and cosmid vector origin The plasmid according to claim 2, which is any one of the above.
. 第一の選択マーカーが、 Ampr、 Tetr、 Cm Kmr、 Spc Hygr、 Gmr、 Rifr、 Zeociが、 及び Blasticidi 力 らなる群から選択されるレ、ずれかのものである請 求項 2記載のプラスミ ド。 The primary selection marker is Amp r , Tet r , Cm Km r , Spc Hyg r , Gm r , Rif r , Zeoci, and Blasticidi force. The plasmid according to claim 2.
. 他の微生物が酵母である請求項 1記載のプラスミ ド。The plasmid according to claim 1, wherein the other microorganism is yeast.
. 酵母がサッカロマイセス 'セレビシァェである請求項 5記載のプラスミ ド。. 第二の複製起点が、 2 μ起点及び ARSからなる群から選択されるいずれかの ものである請求項 5又は 6記載のプラスミ ド。 6. The plasmid according to claim 5, wherein the yeast is Saccharomyces cerevisiae. The plasmid according to claim 5 or 6, wherein the second origin of replication is one selected from the group consisting of 2 µ origin and ARS.
· 第二の選択マーカーが、 URA3、 TRP1、 SUP4、 ADE2、 HIS3、 LEU2、 LYS2、· The second selection marker is URA3, TRP1, SUP4, ADE2, HIS3, LEU2, LYS2,
KANMX、 AURI C, CYH2、 CAN1、 PDR4、 及び hphMXからなる群から選 択されるいずれかのものである請求項 5又は 6記载のプラスミ ド。 The plasmid according to claim 5 or 6, wherein the plasmid is selected from the group consisting of KANMX, AURI C, CYH2, CAN1, PDR4, and hphMX.
. 以下の (a)又は (b)の DNAを含むプラスミ ド。 A plasmid containing the DNA of (a) or (b) below.
(a) 配列番号 1で表される塩基配列からなる DNA  (a) DNA consisting of the base sequence represented by SEQ ID NO: 1
(b) 配列番号 1で表される塩基配列に対し相補的な塩基配列からなる DNAと ストリンジヱントな条件下でハイプリダイズし、 かつシャトルベクターとして 機能することができるプラスミ ド。 (b) A plasmid that can be hybridized with DNA comprising a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 1 under stringent conditions and function as a shuttle vector.
0 . 組換え DNA分子の作製方法であって、 以下のステップ: 0. A method for producing a recombinant DNA molecule comprising the following steps:
(a) 請求項 1〜9のいずれか 1項に記載のプラスミ ドを切断することにより調 製された 2組の複製起点及び選択マ一カーを含有する DNA断片と、クロー二 ングの目的 DNA断片と、複製起点及び選択マーカーを含むクローニングべク ターのうち複製起点又は選択マーカーの領域内の DNA配列、並びに当該複製 起点及び選択マーカー以外の領域内の DNA配列をそれぞれ切断することに より得られた DNA断片とを宿主に導入するステップ、 並びに (a) a DNA fragment containing two sets of replication origins and a selection marker prepared by cleaving the plasmid according to any one of claims 1 to 9, and a clone; The cloning sequence that includes the DNA fragment and the replication origin and selection marker, cuts the DNA sequence in the replication origin or selection marker region, and the DNA sequence in the region other than the replication origin and selection marker. A step of introducing the obtained DNA fragment into a host, and
(b) 各 DNA断片の一部に相同組換えを起こさせて目的 DNA断片をクローニン グベクターにクローニングするとともにシャトルベクターを構築するステツ プ、  (b) A step in which homologous recombination is caused in a part of each DNA fragment to clone the target DNA fragment into a cloning vector and construct a shuttle vector,
を含む前記方法。  Including said method.
1 1 . 目的 DNA断片が 2種類以上含まれることを特徴とする請求項 1 0記載の方 法。  1 1. The method according to claim 10, wherein two or more kinds of target DNA fragments are contained.
1 2 . 2種類以上の目的 DNA断片は、 クローニングベクターに直列に連結される ように連結部が互いに相同な配列を含むものである、 請求項 1 1記載の方法。 1 2. The method according to claim 11, wherein the two or more kinds of target DNA fragments contain sequences having homologous linkages so that they are linked in series to a cloning vector.
1 3 . 宿主が酵母である請求項 1 0記載の方法。 13. The method according to claim 10, wherein the host is yeast.
1 4 . 酵母がサッカロマイセス ·セレビシァェである請求項 1 3記載の方法。 1 5 . 請求項 1 0〜1 4のいずれか 1項に記載の方法により作製された組換え  14. The method according to claim 13, wherein the yeast is Saccharomyces cerevisiae. 1 5. Recombinant produced by the method according to any one of claims 10 to 14
1 6 . 請求項 1 5記載の組換え DNAを含む形質転換体。 16. A transformant comprising the recombinant DNA according to claim 15.
PCT/JP2005/005455 2005-03-17 2005-03-17 Method for production of recombinant dna molecule WO2006098040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/005455 WO2006098040A1 (en) 2005-03-17 2005-03-17 Method for production of recombinant dna molecule
JP2007508010A JP4961563B2 (en) 2005-03-17 2005-03-17 Recombinant DNA molecule production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/005455 WO2006098040A1 (en) 2005-03-17 2005-03-17 Method for production of recombinant dna molecule

Publications (1)

Publication Number Publication Date
WO2006098040A1 true WO2006098040A1 (en) 2006-09-21

Family

ID=36991400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005455 WO2006098040A1 (en) 2005-03-17 2005-03-17 Method for production of recombinant dna molecule

Country Status (2)

Country Link
JP (1) JP4961563B2 (en)
WO (1) WO2006098040A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503122A (en) * 1993-02-26 1997-03-31 ザ・マイクロバイオロジカル・リサーチ・オーソリテイー Bifunctional expression system
JPH11500919A (en) * 1995-02-27 1999-01-26 イーライ・リリー・アンド・カンパニー Multidrug resistance gene of Aspergillus flavus
JP2001231567A (en) * 2000-02-18 2001-08-28 Inst Of Physical & Chemical Res Method for regulating telomere length

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503122A (en) * 1993-02-26 1997-03-31 ザ・マイクロバイオロジカル・リサーチ・オーソリテイー Bifunctional expression system
JPH11500919A (en) * 1995-02-27 1999-01-26 イーライ・リリー・アンド・カンパニー Multidrug resistance gene of Aspergillus flavus
JP2001231567A (en) * 2000-02-18 2001-08-28 Inst Of Physical & Chemical Res Method for regulating telomere length

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARYKWAS D.L. ET AL: "Mapping by multifragment cloning in vivo", PROC NATL ACAD SCI USA, vol. 92, no. 25, 12 May 1995 (1995-05-12), pages 11701 - 11705, XP002990101 *
OLDENBURG K.R. ET AL: "Recombination-mediated PCR-directed plasmid construction in vivo in yeast", NUCLEIC ACIDS RES., vol. 25, no. 2, 15 January 1997 (1997-01-15), pages 451 - 452, XP002990102 *
RAYMOND C.K. ET AL: "General method for plasmid construction using homologous recombination", BIOTECHNIQUES, vol. 26, no. 1, 1999, pages 134 - 141, XP002934406 *

Also Published As

Publication number Publication date
JP4961563B2 (en) 2012-06-27
JPWO2006098040A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
Rajkumar et al. Biological parts for Kluyveromyces marxianus synthetic biology
US5976846A (en) Method for multifragment in vivo cloning and mutation mapping
AU2002227882C9 (en) Concatemers of differentially expressed multiple genes
EP2862933B1 (en) Bidirectional promoter
US5989872A (en) Methods and compositions for transferring DNA sequence information among vectors
US10047366B2 (en) Telomerator-a tool for chromosome engineering
Watson et al. Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe
AU2002227882A1 (en) Concatemers of differentially expressed multiple genes
van Leeuwen et al. Rapid and efficient plasmid construction by homologous recombination in yeast
JP2003510019A (en) Method for producing expression vector using recombinase, and composition used for carrying out this method
WO2002059297A2 (en) A library of a collection of cells
Storici et al. A 2‐μm DNA‐based marker recycling system for multiple gene dispruption in the yeast Saccharomyces cerevisiae
Flagg et al. Integrating after CEN Excision (ICE) Plasmids: Combining the ease of yeast recombination cloning with the stability of genomic integration
AU4694399A (en) Vector construction by host cell-mediated recombination
CN107287226B (en) Cpf 1-based DNA construct and DNA in-vitro splicing method
WO2006098040A1 (en) Method for production of recombinant dna molecule
van Leeuwen et al. Construction of multifragment plasmids by homologous recombination in yeast
Kiriya et al. Module-based systematic construction of plasmids for episomal gene expression in fission yeast
Garriga-Canut et al. rec-Y3H screening allows the detection of simultaneous RNA-protein interface mutations
Xu et al. A CRISPR/Cas9 cleavage system for capturing fungal secondary metabolite gene clusters
Waghmare et al. Specific targeted integration of kanamycin resistance-associated nonselectable DNA in the genome of the yeast Saccharomyces cerevisiae
JP2014519840A (en) Cassettes and methods for transformation and selection of yeast transformants by homologous recombination
US11814644B2 (en) Extrachromosomal switching auxotrophies progressively by integration (eSwAP-In) for assembly of DNA sequences in yeast
Strother et al. Targeted Insertion of the mPing Transposable Element
Luhe et al. Engineering of small sized DNAs by error-prone multiply-primed rolling circle amplification for introduction of random point mutations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508010

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05721432

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5721432

Country of ref document: EP