WO2006095856A1 - Remote sensing system and sensor unit - Google Patents

Remote sensing system and sensor unit Download PDF

Info

Publication number
WO2006095856A1
WO2006095856A1 PCT/JP2006/304752 JP2006304752W WO2006095856A1 WO 2006095856 A1 WO2006095856 A1 WO 2006095856A1 JP 2006304752 W JP2006304752 W JP 2006304752W WO 2006095856 A1 WO2006095856 A1 WO 2006095856A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
signal
unit
sensing
drive control
Prior art date
Application number
PCT/JP2006/304752
Other languages
French (fr)
Japanese (ja)
Inventor
Noritada Katayama
Hiroshi Ishibashi
Original Assignee
Medical Electronic Science Institute Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005067630A external-priority patent/JP2006252171A/en
Priority claimed from JP2005067631A external-priority patent/JP2006247121A/en
Priority claimed from JP2005117496A external-priority patent/JP2006255374A/en
Application filed by Medical Electronic Science Institute Co., Ltd. filed Critical Medical Electronic Science Institute Co., Ltd.
Publication of WO2006095856A1 publication Critical patent/WO2006095856A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to a remote sensing system and a sensor unit for remotely monitoring or controlling a sensing object via a communication line.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-155749 (hereinafter referred to as Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-93398 (hereinafter referred to as Patent Document 2) show an example of such a sensing system.
  • a small life sensor modularized in the human body is attached to measure the human pulse, movement, sound, body temperature, etc. in real time.
  • the monitoring information is reported to the monitoring center via the communication line based on the measurement information.
  • the monitoring center has a function of calling back the subject of the sender using a communication line when receiving the above notification.
  • the monitoring center has a function to determine the condition of the subject based on the measurement information when receiving the above notification, and to make a necessary notification when it is determined to be abnormal.
  • the sensor unit used in such a sensing system is equipped with a data transmission / reception unit for exchanging data with the monitoring center in addition to the sensor body, despite being ultra-small. ing. Furthermore, it is driven by the built-in battery.
  • the sensor unit is not only a sensor body, but also a storage unit that temporarily stores detection data from the sensor body and data for exchanging data with the monitoring center. Some have a built-in transceiver.
  • the sensor unit is always operated, and the health condition of the subject is measured in real time. Therefore, power consumption on the sensor unit side that transmits the detection data of the sensor unit is large, and it is necessary to frequently replace the battery in the sensor unit. Also, if you forget to replace the battery in the sensor unit, measurement and monitoring operations will not be performed accurately. Furthermore, the amount of detection data from the sensor body is extremely A lot. For this reason, the amount of detected data exceeds the storage capacity of the storage unit, and subsequent data cannot be stored, and the necessary data cannot be acquired.
  • the sensor unit in order to accurately grasp the health condition of the subject using such a sensing system, the sensor unit is located anywhere according to the predicted symptoms such as the arm, chest, back, and thigh. It is necessary to be able to wear it even if it is attached to the subject, and the force does not cause a sense of incongruity due to being worn by the subject.
  • the sensor unit used in the above sensing system is a wrist watch type and the place where the sensor unit is attached is limited to a place that can be fixed with a band such as a wrist or ankle.
  • the sensor unit is like a watch band and is attached to the wrist, ankle, etc., so that the subject feels quite uncomfortable. Disclosure of the invention
  • the present invention realizes power saving by efficiently transmitting the detection information in the sensor unit, thereby extending the battery life and / or selectively storing the detection data in the sensor. Can be acquired efficiently and / or can be worn anywhere according to the expected symptoms such as arms, chest, back, thigh, etc.
  • An object of the present invention is to provide a remote sensing system and a sensor unit having a form that does not give a sense of incongruity.
  • a sensor unit provided corresponding to a sensing object and a center device that transmits a signal to and from the sensor unit via a communication line.
  • the center device includes a sensor drive signal setting unit that sets a sensor drive signal of the sensor unit, a transmitter that transmits the sensor drive signal set by the sensor drive signal setting unit to the center unit, and the sensor A receiving unit that receives a sensing signal that is transmitted from the unit and that represents the state of the sensing object, and the sensor unit receives a sensor driving signal that is transmitted from the center device.
  • a sensor drive control that generates drive control signals having different generation timings according to the sensor drive signal received by the receiver and the sensor drive signal receiver.
  • a sensor main body that detects the state of the sensing object based on the drive control signal, a storage unit that stores detection information of the sensor main body, and detection information of the sensor main body that is stored in the storage unit at high speed.
  • a signal converter that converts the signal into a signal
  • a remote sensing system comprising: a sensing signal transmission unit configured to transmit a sensing signal representing the state of the sensed object to be transmitted to the center device.
  • a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to and from a center device via a communication line.
  • a sensor drive signal receiving unit that receives a sensor drive signal transmitted from a device, and a sensor drive control unit that generates drive control signals having different generation timings according to the sensor drive signal received by the sensor drive signal receiving unit;
  • a sensor body that detects the state of the sensing object according to the drive control signal;
  • a storage unit that stores detection information of the sensor body; and detection information of the sensor body that is stored in the storage unit at high speed.
  • a signal converting unit that converts the signal into a signal
  • a sensing unit that transmits a sensing signal representing the state of the sensing object converted into a high-speed signal by the signal converting unit to the center device.
  • Sensor unit characterized by comprising a signal transmitter is provided.
  • a third aspect of the present invention is a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to and from a center device via a communication line, and comprising a sensor drive signal.
  • a sensor drive control unit that generates a drive control signal in accordance with the sensor drive signal, a sensor body that detects a state of the sensing object based on the drive control signal, and a detection of the sensor body
  • a storage unit for storing information, a signal conversion unit for converting detection information of the sensor main body stored in the storage unit into a high-speed signal by another drive control signal different from the drive signal, and a high-speed signal by the signal conversion unit
  • a sensing signal transmission unit configured to transmit a sensing signal converted to a signal representing the state of the sensing object to the center device. It is.
  • a sensor unit provided corresponding to a sensing object and a center device that transmits a signal to and from the sensor unit via a communication line.
  • the center device includes a sensor drive signal setting unit that sets a sensor drive signal of the sensor unit, and a transmission unit that transmits the sensor drive signal set by the sensor drive signal setting unit to the center unit.
  • the sensor unit includes a sensor drive signal receiving unit that receives a sensor drive signal transmitted from the center device, and a sensor drive A sensor drive control unit that generates a drive control signal according to the sensor drive signal received by the signal receiving unit, and a sensor main body that outputs a sensing signal representing the state of the sensing object by the drive control signal A sensing signal judgment unit that judges a state change of a sensing signal output from the sensor body and outputs a sensing signal with a state change more than a predetermined value, and stores a sensing signal output from the sensing signal judgment unit.
  • a remote sensing system comprising a storage unit.
  • a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to and from a center apparatus via a communication line
  • a sensor drive signal receiving unit that receives a sensor drive signal transmitted from a device
  • a sensor drive control unit that generates a drive control signal according to the sensor drive signal received by the sensor drive signal receiving unit, and the drive control Based on the signal, the sensor body that outputs the sensing signal indicating the state of the sensing object and the state change of the sensing signal output from the sensor body are judged, and the sensing signal with the state change exceeding the predetermined value is output.
  • a sensor drive signal is stored, and a sensor drive control unit that generates a drive control signal according to the sensor drive signal, and the sensing target is generated by the drive control signal.
  • a sensor main body that outputs a sensing signal representing the state of an object; a sensing signal determination section that determines a state change of the sensing signal output from the sensor main body and outputs a sensing signal with a state change of a predetermined level or more; And a storage unit that stores the sensing signal output from the sensing signal determination unit.
  • a remote sensing system comprising a sensor unit provided corresponding to a sensing object and a center device that transmits signals to the sensor unit via a communication line
  • the sensor unit detects a state of the sensing object and outputs a sensing signal
  • a sensor drive control unit that controls the sensor unit
  • the sensing signal output from the sensor body A sensing signal transmitting unit for transmitting to the center device, the center device receiving the sensing signal transmitted from the sensor unit, and a sensing signal collecting process for processing the received sensing signal.
  • a remote sensing system characterized by comprising a unit is provided.
  • a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to a center device via a communication line, the state of the sensing object And a sensor drive control unit that controls the sensor body, and a sensing signal transmission unit that transmits the sensing signal output from the sensor body to the center device.
  • a sensor unit characterized by this is provided.
  • a sensor unit provided corresponding to a sensing object, wherein the sensor body detects a state of the sensing object and outputs a sensing signal, and the sensor body
  • a sensor unit comprising: a sensor drive control unit that controls the sensor signal; and a sensing signal storage unit that stores the sensing signal output from the sensor body force.
  • FIG. 1 is a schematic configuration diagram of a remote sensing system according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a sensor drive signal used in the first embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of a sensor unit used in the first embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of a sensor main body and a sensor drive control unit used in the sensor unit according to the first embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of a sensing signal transmitter and a sensor drive signal receiver used in the sensor unit of the first embodiment of the present invention.
  • FIG. 6 is a diagram showing generation timing of an enable signal of the sensor unit according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing an enable signal transmission destination of the sensor unit according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a sensing signal used in the first embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram of a remote sensing system according to a second embodiment of the present invention. 10] A diagram illustrating the transmission timing of the sensor drive signal according to the second embodiment of the present invention. 11] A schematic configuration diagram of a sensor unit according to a third embodiment of the present invention.
  • FIG. 12 A schematic configuration diagram of a remote sensing system to which a sensor unit according to a fourth embodiment of the present invention is applied.
  • FIG. 14 A schematic configuration diagram of a sensor unit according to a fourth embodiment of the present invention.
  • FIG. 16 A diagram showing a configuration of a sensing signal used in the fourth embodiment of the present invention.
  • FIG. 17 A schematic configuration diagram of a sensor drive signal receiver used in the sensor unit of the fourth embodiment of the present invention.
  • FIG. 18 A diagram showing the destination of the enable signal of the sensor unit of the fourth embodiment of the present invention.
  • FIG. 19 A diagram showing the timing of sending the enable signal of the sensor unit of the fourth embodiment of the present invention.
  • FIG. 22 A diagram illustrating the transmission timing of the sensor drive signal according to the fifth embodiment of the present invention.
  • FIG. 23 Schematic configuration diagram of a sensor unit that works according to the sixth embodiment of the present invention.
  • FIG. 25B A schematic diagram of a sensor unit according to a seventh embodiment of the present invention.
  • 26A A plan external view showing the sensor unit mounted state by opening the normally fitted upper lid of the sensor unit of the seventh embodiment of the present invention.
  • FIG. 27 is a functional diagram showing a configuration of a sensor unit according to a seventh embodiment of the present invention.
  • FIG. 28 is a functional diagram of a sensor drive control unit and sensor body of a sensor unit according to a seventh embodiment of the present invention.
  • FIG. 29 is a functional diagram of a sensing signal transmission unit of a sensor unit according to a seventh embodiment of the present invention.
  • FIG. 30 is a functional diagram of a sensor unit according to an eighth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a remote sensing system according to the first embodiment of the present invention.
  • the remote sensing system is applied to a device that monitors the health condition of a subject.
  • the remote sensing system includes a center device 1 installed in a medical facility or a nursing facility, and a sensor unit 2 connected to the center device 1 via a wireless network 3.
  • the sensor unit 2 is modularized and directly attached to the subject 4 to be monitored, for example, with an acrylic double-sided adhesive tape.
  • This acrylic double-sided adhesive tape is less prone to irritation such as rash on the skin of the subject 4, and when the sensor unit 2 is peeled off from the subject 4, there is an adhesive glue on the surface of the sensor unit 2 or the subject 4. It has advantages such as being difficult to adhere and a thin adhesive layer.
  • the wireless network 3 includes, for example, a short-range data communication system such as BT (Blue Tooth) (registered trademark), a wireless LAN (Local Area Network), a PHS (Personal Handyphon Systern) (registered trademark), and a mobile phone.
  • BT Bluetooth Tooth
  • WLAN Local Area Network
  • PHS Personal Handyphon Systern
  • the center device 1 and the sensor unit 2 may be connected via a wireless repeater that does not necessarily need to be directly connected.
  • a weak or low-power system such as BT or wireless LAN is adopted as a wireless communication system between the sensor unit 2 and the wireless repeater.
  • a wireless communication method for questioning between the wireless repeater and the center device a method capable of long-distance communication such as a mobile phone system is used.
  • the center device 1 includes a control unit 11, a receiving unit 12, a transmitting unit 13, and an antenna unit 14.
  • the receiving unit 12 is a wireless unit transmitted from the sensor unit 2 via the wireless network 3. After receiving the signal, it is demodulated, and the sensing signal obtained by this demodulation is output to the control unit 11.
  • the transmission unit 13 modulates the sensor drive signal output from the control unit 11 and converts it into a radio signal, and transmits this radio signal from the antenna unit 14 to the sensor unit 2.
  • the antenna unit 14 has a transmission antenna function for transmitting a control signal from the transmission unit 13 and a reception antenna function for receiving a sensing signal to the reception unit 12. The switching between the transmitting antenna function and the receiving antenna function is performed by a signal distributor such as a circulator included in the antenna unit 14.
  • the control unit 11 includes, for example, a CPU (Central Processing Unit) and a DSP (Digital Signal Processor).
  • the control unit 11 has a sensor drive signal setting function 11a constituting a sensor drive signal setting unit and a sensing data collection processing function l ib as control functions according to the present embodiment. Note that these functions are realized by causing the CPU or DSP to execute a program.
  • Sensing data collection processing function l ib when a sensing signal is received by the receiving unit 12, decodes the sensing signal and reproduces the sensing data, and stores the sensing data in a storage unit such as a hard disk (see FIG. (Not shown).
  • the sensor drive signal setting function 11a sets the sensor drive signal to a different content according to the judgment of the administrator or the change in the condition of the subject 4. For example, while setting a sensor drive signal with a certain content, change the setting to a sensor drive signal with another content, or vice versa, while setting a sensor drive signal with another content, The setting can be changed to the sensor drive signal of the content.
  • the sensor drive signal includes, for example, a header (2 bytes), a first enable signal which is a first drive control signal, a sensing cycle (2 to 22 bytes), a first Sensing start time of the enable signal (2 to 32 bytes), sensing end time of the first enable signal (2 to 32 bytes), transmission start time of the second enable signal as the second drive control signal (2 ⁇ 32 bytes) and footer (2 bytes).
  • the set sensor drive signal is output to the transmission unit 13 and transmitted from the transmission unit 13 toward the sensor unit 2.
  • the sensor unit 2 includes a sensor body 21 and a drive signal generator.
  • Sensor drive control unit 22 sensing signal storage unit 23 as a storage unit, sensing signal compression unit 24 as a signal conversion unit, sensing signal transmission unit 25 as a sensing signal transmission unit, and sensor drive signal reception
  • a sensor drive signal receiving unit 26, an antenna unit 27, and a battery 28 are provided.
  • the sensor main body 21 includes an acceleration sensor 211 and a temperature sensor 212 as shown in FIG.
  • the acceleration sensor 211 detects the pulse, blood pressure, human movement, etc. of the subject 4, and the temperature sensor 212 detects the body temperature.
  • the sensor body 21 is not limited to the acceleration sensor 211 and the temperature sensor 212, and can be constituted by other sensors.
  • the sensor drive control unit 22 includes a CPU 221, a storage unit 222, a clock signal generation unit 223, AD conversion units 224 and 225, and a Sarn 'programming' interface (SPI) 226. I have.
  • the clock signal generation unit 223 generates a clock signal having a predetermined period based on the clock control signal of the CPU 221.
  • the storage unit 222 stores setting data of generation timings of the first enable signal and the second enable signal as drive signals together with a program executed by the CPU 221.
  • the CPU 221 controls driving of the acceleration sensor 211 and the temperature sensor 212 of the sensor main body 21, the sensing signal storage unit 23, the sensing signal compression unit 24, the sensing signal transmission unit 25, and the sensor drive signal reception unit 26.
  • the sensing signal storage unit 23 determines whether the sensor drive signal is addressed to itself from the sensor unit identification number included in the header of the sensor drive signal sent from the center device 1 described above. If it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Then, from the clock signal generator 223 based on the sensing cycle of the first enable signal, the sensing start time, the sensing end time, and the transmission start time of the second enable signal included in the stored sensor drive signal. Generates the first enable signal A or the second enable signal B.
  • FIG. 6 is a diagram showing the generation timing of the first enable signal A and the second enable signal B.
  • FIG. 7 is a diagram showing destinations of the first enable signal A and the second enable signal B.
  • the first enable signal A is based on the sensing cycle for the first enable signal included in the sensor drive signal, the sensing start time I, and the sensing end time. Is output. In this case, for example, a predetermined time zone in the daytime is set as the sensing start time and sensing end time.
  • the second enable signal B is output based on the transmission start time of the second enable signal included in the sensor drive signal. In this case, for example, a predetermined time at night is set as the transmission start time.
  • the first enable signal A is supplied to the sensor body 21, sensor drive signal receiving unit 26, sensing signal storage unit 23, storage unit 222, AD converters 224 and 225, and the second enable signal B is a sensing signal.
  • the signal is supplied to the compression unit 24 and the sensing signal transmission unit 25.
  • the AD converters 224 and 225 convert detection data from the acceleration sensor 211 and the temperature sensor 212 driven by the first enable signal A from the CPU 221 into digital signals. Output as a sensing signal.
  • a standby signal is used as the first enable signal A supplied from the CPU 221 to the acceleration sensor 211 and the temperature sensor 212.
  • the acceleration sensor 211 and the temperature sensor 212 are in a sensing operation state when the standby signal becomes “H” level, and in a non-operation state when the standby signal becomes “L” level, that is, in a standby state with low power consumption.
  • the sensing signal storage unit 23 is a storage medium that temporarily stores a sensing signal that is driven by the first enable signal A and that is output from the sensor drive control unit 22.
  • the sensing signal storage unit 23 may be a storage medium that can be attached to and detached from the sensor unit 2, such as a smart media or a memory stake.
  • the sensing signal compressing unit 24 is driven by the second enable signal B, reads the sensing signal stored in the sensing signal accumulating unit 23, converts it to a high bit rate high-speed signal by compression processing, and outputs the sensing signal. Output to transmitter 25.
  • FIG. 8 shows an example of the sensing signal compressed by the sensing signal compression unit 24.
  • header (2 bytes), compressed X-axis acceleration data string (2-8 XN bytes), compressed Y-axis acceleration data string (2-8 XN bytes), compressed Z-axis acceleration data string (2 ⁇ 8 XN bytes), temperature data string (2 ⁇ 8 XN bytes), footer (2 bytes) force.
  • reading of the sensing signal from the sensing signal storage unit 23 is performed at the drive timing by the second enable signal B.
  • the sensing signal transmission unit 25 and the sensor drive signal reception unit 26 are configured as shown in FIG. It is. That is, the sensing signal transmission unit 25 includes an SPI 251, a digital signal control unit 252, a signal modulation unit 253, a mixing unit 254, a power amplification unit 255, and a transmission / reception signal distribution unit 256.
  • the sensor drive signal receiving unit 26 includes a crystal oscillator 261, a phase stabilization circuit 262, a voltage control type oscillator 263, a low noise amplification unit 264, a mixing unit 265, a signal demodulation unit 266, and a digital signal. It has a control unit 267 and SPI268.
  • the sensing signal transmission unit 25 captures the sensing signal converted into a high-speed signal by the sensing signal compression unit 24 into the digital signal control unit 252 via the SPI 251, and further performs digital modulation by the signal modulation unit 253, for example, QPSK (Quadrature (Phase Shift Keying) is modulated, and converted to a predetermined format via the mixing unit 254 to create sensing data.
  • QPSK Quadrature (Phase Shift Keying) is modulated, and converted to a predetermined format via the mixing unit 254 to create sensing data.
  • the generated sensing data is power amplified by the power amplification unit 255, and transmitted from the transmission / reception signal distribution unit 256 to the center device 1 via the antenna unit 27. Further, when the sensor drive signal receiving unit 26 receives the radio signal transmitted from the center device 1 by the antenna unit 27, the sensor drive signal receiving unit 26 takes the signal from the transmission / reception signal distribution unit 256 into the mixing unit 265 via the low noise amplification unit 264. The signal is demodulated by the signal demodulator 266 after being converted to a predetermined frequency mixed with the output of the voltage-controlled oscillator 263, and the control signal obtained by this digital demodulation is driven by the digital signal controller 267 via the SPI268. Supply to the control unit 22.
  • the battery 28 is composed of, for example, a button-type lithium battery, and a DC voltage generated from the battery 28 is converted into a sensor body 21, a sensor drive control unit 22, a sensing signal storage unit 23, a sensing signal compression unit 24, The sensing signal transmitting unit 25 and the sensor driving signal receiving unit 26 are supplied as driving power.
  • the generated sensor drive signal is transmitted to the sensor unit 2 by the transmission unit 13.
  • the sensor unit 2 determines whether or not the received sensor drive signal is addressed to itself. If it is addressed to itself, this sensor drive signal is stored in a memory (not shown).
  • the CPU 221 first detects the sensing cycle of the first enable signal A included in the stored sensor drive signal, the sensing start time 1 ”, Based on the clock end time, a clock control signal is generated and output to the clock signal generator 223, and a first enable signal A is generated and generated based on the clock signal generated by the clock signal generator 223.
  • the acceleration sensor 211 and the temperature sensor 212 of the sensor body 21 operate for a predetermined period at the sensing period of the enable signal from the sensing start time to the sensing end time of the first enable signal A. During this operation period, the subject 4 The body temperature is detected, starting with the pulse, blood pressure, and human movement, and the detection data (detection information) is output as a sensing signal.
  • This sensing signal is stored in the sensing signal storage unit 23 at the timing of the first enable signal A.
  • the sensing signal stored in the sensing signal storage unit 23 is stored as it is without being immediately read out by the sensing signal compression unit 24.
  • the CPU 221 generates and outputs the second enable signal B based on the clock signal of the clock signal generation unit 223.
  • the sensing signal compression unit 24 is driven by the second enable signal B, and the sensing signal stored in the sensing signal storage unit 23 is read. Then, the sensing signal is compressed to be converted into a high bit rate high-speed signal and output to the sensing signal transmission unit 25.
  • the sensing signal compressed by the sensing signal compression unit 24 is compressed, for example, as shown in FIG. 8, a header (2 bytes), a compressed X-axis acceleration data string (2 to 8 XN bytes). Y-axis acceleration data string (2 to 8 XN bytes), compressed Z-axis acceleration data string (2 to 8 XN bytes), temperature data string (2 to 8 XN bytes), footer (2 bytes) It is configured.
  • the sensing signal transmission unit 25 is driven by the second enable signal B, converts the sensing signal converted into a high bit rate high-speed signal by the sensing signal compression unit 24 into a high-frequency signal, and transmits the antenna signal. Transmitted from unit 27 to center device 1.
  • the center device 1 monitors reception of a sensing signal transmitted from the sensor unit 2 by the control unit 11.
  • the received sensing signal is decoded by the sensing data collection processing function l ib (including error correction decoding processing) to reproduce the sensing data, and the sensing data Is stored in the storage unit in the control unit [0045]
  • the sensor drive signal is reset to a different content by the sensor drive signal setting function 11a of the control unit 11 of the center apparatus 1, the reset new sensor drive signal is transmitted to the transmission unit. Sent from 13 to sensor unit 2.
  • the first enable signal is based on the sensing period of the first enable signal included in the new sensor drive signal, the sensing start time IJ, the sensing end time, and the transmission start time of the second enable signal. A and the second enable signal B are generated.
  • Sensor body 21, sensor drive signal receiver 26, sensing signal storage unit 23, storage unit 222, AD converters 224 and 225 are driven by the first enable signal A, and the sense signal is compressed by the second enable signal B.
  • the sensor 24 and the sensing signal transmitter 25 are driven, and in the same manner as described above, body temperature sensing such as pulse, blood pressure, and human movement of the subject 4 detected by the acceleration sensor 211 and the temperature sensor 212 of the sensor body 21 is performed.
  • the signal is temporarily stored in the sensing signal storage unit 23, and then converted into a high bit rate high-speed signal by the sensing signal compression unit 24 and transmitted to the center device 1 from the sensing signal transmission unit 25.
  • the sensing signal transmission unit 25 transmits the signal that has been compressed by the sensing signal compression unit 24 and converted into a high-bit-rate high-speed signal to the center device 1.
  • the transmission time of the sensing signal in the transmission unit 25 can be greatly shortened. For this reason, the life of the battery 28 is greatly extended, the replacement frequency of the battery 28 is reduced, and the burden on the subject can be reduced.
  • a plurality of sensor units described in FIG. 3 are prepared, and the plurality of sensor units are connected to the center apparatus via a wireless network.
  • FIG. 9 shows a schematic configuration of the second embodiment of the present invention.
  • the same parts as those in FIGS. 1 and 3 are denoted by the same reference numerals, and detailed description and explanation thereof will be omitted.
  • 2A to 2N are sensor units, and each of the sensor units 2A to 2N has the same configuration as described in FIG. These sensor units 2A to 2N are attached to different specimens 4A to 4N or a plurality of different parts of the same specimen, and are connected to the center apparatus 1 via the wireless network 3. .
  • the control unit 11 of the center apparatus 1 further has a transmission timing setting function 11c in addition to the sensor drive signal setting function 11a and the sensing data collection processing function l ib. These functions are realized by causing the CPU or DSP to execute the program.
  • the transmission timing setting function 11c is for sequentially transmitting sensor drive signals to the respective sensor units 2A to 2N at different times.
  • FIG. 10 shows an example of the transmission timing of the sensor drive signals CS1, CS2 to CSn. That is, the sensor drive signal CS1 is sent to the sensor unit 2A, the sensor drive signal CS2 is sent to the sensor unit 2B, and the sensor drive signal CSn is sent to the sensor unit 2N.
  • each sensor unit 2A to 2N receives the sensor drive signal by the sensor drive signal receiving unit 26, it determines whether the received sensor drive signal is addressed to itself. It is determined by the control unit 22. If it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Thereafter, the sensing cycle, sensing start time, sensing of the first enable signal included in the stored sensor driving signal are detected.
  • the first enable signal A is generated from the clock signal generator 223 based on the clock end time.
  • the sensor body 21 of each sensor unit 2A to 2N operates for a predetermined period of time with the instructed sensing cycle from the sensing start time to the sensing end time of the first enable signal A, and during this operation period, It detects body temperature such as pulse, blood pressure, and human movement of subject 4, and outputs the detection data (detection information) as a sensing signal.
  • sensing signal storage unit 23 of each sensor unit.
  • the sensing signal stored in the sensing signal storage unit 23 is stored as it is without being immediately read out to the sensing signal compression unit 24.
  • the sensor drive control unit 22 uses the second enable signal B based on the clock signal of the clock signal generation unit 223. Is generated and output. Then, the sensing signal stored in the sensing signal storage unit 23 is read out, converted into a high bit rate high-speed signal by the compression processing in the sensing signal compression unit 24, and output to the sensing signal transmission unit 25.
  • the sensing signal transmission unit 25 converts the detection data converted into a high bit rate high-speed signal by the sensing signal compression unit 24 into a high-frequency signal, and transmits the high-frequency signal from the antenna unit 27 to the center device 1. Also in this case, the sensing signals transmitted from the sensor units 2A to 2N to the center device 1 are shifted in time so that the transmission timings do not overlap.
  • the control unit 11 of the center device 1 monitors the arrival of sensing signals transmitted from the sensor units 2A to 2N.
  • the receiving unit 12 receives the sensing signals from the sensor units 2A to 2N so that the reception timings of the sensing signals do not overlap.
  • the received sensing signal is decoded by the sensing data collection processing function 1 lb (including error correction decoding processing, etc.) to reproduce the sensing data.
  • Data is stored in a storage unit (not shown) in the control unit in association with the identification numbers of the sensor units 2A to 2N.
  • each of the sensor units 2A to 2N has a sensing cycle, a sensing start time, and a sensing end time of the first enable signal included in the sensor driving signal each time the sensor driving signal is received.
  • the first enable signal A and the second enable signal B are generated based on the transmission start time of the second enable signal.
  • the sensor main body 21 is driven by the first enable signal A, and the body temperature including the pulse, blood pressure, and human movement of the subjects 4A to 4N is detected, and once stored in the sensing signal storage unit 23,
  • the sensing signal stored in the sensing signal accumulating unit 23 when the second enable signal B is generated is compressed by the sensing signal compressing unit 24 and converted into a high bit rate high-speed signal from the sensing signal transmitting unit 25 to the center device 1. I am trying to send it.
  • the sensing signal once stored is converted into a high-speed signal of the compression processing layer bit rate so that the sensing signal transmission unit 25 transmits the signal to the center device 1.
  • the sensing signal transmission time in the sensing signal transmission unit 25 can be greatly shortened, and the power consumption is greatly reduced.
  • the life of the battery 28 in each of the sensor units 2A to 2N is greatly extended, and the replacement frequency of the battery 28 is reduced, so that the burden on the subject can be reduced. It is possible to maintain the high reliability of monitoring work by reducing the occurrence of battery exhaustion due to forgetting to replace the battery.
  • the sensor unit 2 has a function of directly storing a sensor drive signal, and the stored sensor drive signal allows the sensor body to detect the pulse, blood pressure, and human movement of the subject 4. At first, data such as body temperature is detected.
  • FIG. 11 is a schematic configuration diagram of a sensor unit applied to the third embodiment of the present invention.
  • the sensor drive signal receiving unit 26 is deleted from the configuration shown in FIG.
  • the sensor drive signal setting function 11a and the transmission unit 13 of the control unit 11 of the center apparatus 1 are also deleted.
  • the sensor drive control unit 22 stores the sensor drive signal directly in another unit such as a personal computer in the storage unit 222 and reads out this from the CPU 221 to generate the first and second enable signals A and B. Like you do. In this way, when the CPU 221 of the sensor drive control unit 22 reads the sensor drive signal stored in the storage unit 222 in advance, the sensing cycle and the sensing start time of the first enable signal A included in the sensor drive signal The first enable signal A and the second enable signal B are set based on the sensing end time and the transmission start time of the second enable signal.
  • the sensor main body 21 is driven by the first enable signal A to detect the body temperature such as the pulse, blood pressure, and human movement of the subjects 4A to 4N, and is temporarily stored in the sensing signal storage unit 23, and then the first The sensing signal stored in the sensing signal accumulating unit 23 due to the generation of the enable signal B of 2 is compressed by the sensing signal compressing unit 24, converted into a high-speed signal of no or even rate, and transmitted from the sensing signal transmitting unit 25 to the center device 1. To do. These detailed operations are the same as those described in the first embodiment.
  • the sensor drive signal is stored in advance, and the acceleration sensor 211 and the temperature sensor of the sensor body 21 are generated by the first enable signal A generated based on the sensor drive signal.
  • the detection data is acquired from 212, and then the sensing signal acquired by the second enable signal B is compressed, converted into a high-speed signal with a high bit rate and transmitted to the center device 1. Therefore, power consumption is greatly reduced. For this reason, the life of the battery 28 of the sensor unit 2 is greatly extended, the replacement frequency of the battery 28 is reduced, and the burden on the subject can be reduced. In addition, it is possible to reduce the occurrence of battery exhaustion due to forgetting to replace the battery and maintain high reliability of monitoring work.
  • the configuration of sensor unit 2 can be simplified as compared with the case where sensor drive signals are received from outside and processed.
  • the types of sensing objects can be variously modified without departing from the gist of the present embodiment.
  • detection information in the sensor unit can be transmitted efficiently, realizing power saving and extending the life of the battery. It is possible to provide a remote sensing system and a sensor unit that reduce the burden of replacement work and prevent deterioration in reliability of monitoring work due to battery exhaustion. [0071] (Fourth embodiment)
  • FIG. 12 is a schematic configuration diagram of a remote sensing system according to the fourth embodiment of the present invention.
  • a remote sensing system is applied to a device that monitors the health status of a subject.
  • the remote sensing system includes a center apparatus 101 installed in a medical facility or a nursing facility, and a sensor unit 102 connected to the center apparatus 101 via a wireless network 103.
  • the sensor unit 102 is modularized, and is directly attached to the subject 104 to be monitored by, for example, an acrylic double-sided adhesive tape.
  • Acrylic double-sided adhesive tape is unlikely to cause irritation such as a rash on the skin of the subject 104, and when the sensor unit 102 is peeled off from the subject 104, an adhesive paste adheres to the surface of the sensor unit 102 or the subject 104. It has advantages such as being difficult and making the adhesive layer thinner.
  • the wireless network 103 for example, a short-range data communication system such as BT (Blue ToothX registered trademark), a wireless LAN (Local Area Network), a PHS (Personal Handyphon System) (registered trademark), a mobile phone system Etc. are used.
  • BT Bluetooth ToothX registered trademark
  • a wireless LAN Local Area Network
  • PHS Personal Handyphon System
  • Etc mobile phone system
  • the center device 101 and the sensor unit 102 may be connected via a wireless repeater, which is not necessarily directly connected.
  • the wireless communication method between the sensor unit 102 and the wireless repeater is a weak or low power type method such as BT or wireless LAN, while the wireless communication method between the wireless repeater and the center device 101 is As such, a method capable of long-distance communication such as a mobile phone system is used.
  • the center device 101 includes a control unit 111, a transmission unit 112, and an antenna unit 113.
  • the transmission unit 112 modulates the sensor drive signal output from the control unit 111, converts the signal into a radio signal, and transmits the radio signal from the antenna unit 113 to the sensor unit 102.
  • the control unit 111 includes, for example, a CPU (Central Processing Unit) and a DSP (Digital Signal Processor).
  • the sensor drive signal setting function 11 la constituting the control signal setting unit and sensing It has a data processing function of 11 lb.
  • the sensor drive signal setting function 11 la is in accordance with the judgment of the administrator or the change in the situation of the subject 104.
  • the sensor drive signal is set to have different contents. For example, in the middle of setting a sensor drive signal of a certain content, the setting is changed to a sensor drive signal of another content or vice versa.
  • the setting can be changed to the sensor drive signal with the contents of.
  • Sensing data processing function 1 l ib is for processing and analyzing sensing data obtained by the sensor unit 102. As shown in Fig.
  • the sensor drive signal includes, for example, a header (2 bytes), a sensing cycle of the enable signal that is the drive control signal (2 to 22 bytes), and a sensing start time of the enable signal (2 to 32 bytes) , Enable signal sensing end time (2 to 32 bytes) and footer (2 bytes). Then, the set sensor drive signal is output to the transmission unit 113 and transmitted from the transmission unit 113 to the sensor unit 102.
  • the sensor unit 102 includes a sensor body 121, a sensor drive control unit 122 as a sensor drive control unit, a sensing signal determination unit 123 as a sensing signal determination unit, A sensing signal storage unit 124 as a storage unit, a sensor drive signal reception unit 125 as a sensor drive signal reception unit, an antenna unit 126, and a battery 127 are provided.
  • the sensor main body 121 includes an acceleration sensor 1211 and a temperature sensor 1212.
  • the acceleration sensor 1211 detects the pulse, blood pressure, human movement, etc. of the subject 4 and detects the temperature sensor 1212. Is used to detect body temperature.
  • the sensor main body 121 is not limited to the acceleration sensor 1211 and the temperature sensor 1212, but may be constituted by other sensors.
  • the sensor drive control unit 122 includes a CPU 1221, a storage unit 1222, a clock signal generation unit 1223, AD conversion units 1224 and 1225, and a server 'programming' interface (SPI) 1226. And prepare.
  • the clock signal generator 1223 generates a clock signal with a predetermined period based on the clock control signal of the CPU 1221.
  • the storage unit 1222 stores programs executed by the CPU 1221 and setting data.
  • the CPU 1221 drives and controls the acceleration sensor 12 11 and the temperature sensor 1212 of the sensor main body 121.
  • the CPU 1221 detects the sensor unit based on the sensor unit identification number included in the header of the sensor drive signal sent from the center device 101 described above. It is determined whether the drive signal is addressed to itself, and if it is addressed to itself, the sensor drive signal is stored in a memory (not shown).
  • an enable signal is generated from the clock signal generator 1223 based on the sensing period, sensing start time, and sensing end time of the enable signal included in the stored sensor drive signal, and the sensor body 112, sensor The signal is supplied to the drive signal receiving unit 125, the sensing signal determining unit 123, and the sensing signal accumulating unit 124.
  • the AD converters 1224 and 1225 convert detection data from the acceleration sensor 1211 and the temperature sensor 1212 driven by the drive signal from the CPU1221 into a digital signal, which is output as a sensing signal from the CPU1221 via the SPI1226. .
  • a standby signal is used as an enable signal supplied from the CPU 1221 to the acceleration sensor 1211 and the temperature sensor 1212.
  • the acceleration sensor 121 1 and the temperature sensor 12 12 are in the sensing operation state when the standby signal becomes “H” level, and in the non-operation state when the “L” level is reached, that is, in the standby state with low power consumption. .
  • the sensing signal determination unit 123 determines a change in the state of the sensing signal output from the sensor main body 121, and a sensing signal with a state change more than a predetermined value is output as it is to the sensing signal storage unit 124.
  • the absolute value of the difference between the value of the sensing signal (detection data) input from the drive control unit 122 (sensor body 121) and the sensing signal input before this, for example, the value of the sensing signal input immediately before, is If this value is less than a certain value, this sensing signal is deleted, and conversely, if the absolute value of the difference between the sensing signal value and the previously input sensing signal is greater than a certain value, this sensing signal is output.
  • the sensing signal storage unit 124 is a storage medium that stores only the sensing signal output from the sensing signal determination unit 123.
  • the sensing signal storage unit 124 can use a storage medium that can be attached to and detached from the sensor unit 102, such as smart media or a memory stake.
  • FIG. 16 shows an example of the sensing signal stored in the sensing signal storage unit 124.
  • the header (2 bytes), the X-axis acceleration data string (2 to 8 XN bytes), the Y-axis acceleration data It consists of a string (2 to 8 XN bytes), a Z-axis acceleration data string (2 to 8 XN bytes), a temperature data string (2 to 8 XN bytes), and a footer (2 bytes).
  • the sensor drive signal receiving unit 125 includes a crystal oscillator 1251, a phase stabilization circuit 1252, a voltage controlled oscillator 1253, an antenna unit 1254, a low noise amplification unit 1255, and a mixing unit.
  • the sensor drive signal receiving unit 125 receives the sensor drive signal sent from the center device 101 by the antenna unit 1254, the sensor drive signal receiving unit 125 takes in the mixing unit 1256 via the low noise amplifying unit 1255, where the voltage controlled oscillator 1253 After conversion to a predetermined frequency mixed with the output, the signal demodulator 1257 demodulates the signal, and the signal obtained by this demodulation is supplied from the digital signal controller 1258 to the sensor drive controller 122 via the SPI 1259.
  • the battery 127 is made of, for example, a button-type lithium battery, and the DC voltage generated from the battery 127 is supplied to the sensor body 121, the sensor drive control unit 122, the sensing signal determination unit 123, the sensing signal storage unit 124, and the sensor drive.
  • the signal receiving unit 125 is supplied as drive power.
  • FIG. 18 is a diagram for explaining an enable signal generated based on the clock signal of the clock signal generation unit 1223 of the sensor drive control unit 122.
  • the CPU 1221 of the sensor drive control unit 122 receives the enable signal from the clock signal generation unit 1223 based on the sensing period, sensing start time, and sensing end time of the enable signal included in the sensor drive signal. appear. As shown in FIG. 19, this enable signal is sent at the time of sensor measurement, and includes sensor body 121, sensing signal determination unit 123, sensing signal storage unit 124, sensor drive signal reception unit 125, AD converter 1224. , 1225 [Let me be given]
  • the set sensor drive signal is sent from the transmission unit 112 to the antenna toward the sensor unit 102. Is transmitted via the unit 113.
  • sensor unit 102 when the sensor drive signal is received by sensor drive signal receiving unit 125 via antenna unit 126, whether the received sensor drive signal is addressed to itself. Determine if. If it is addressed to itself, this sensor drive signal is stored in a memory (not shown). Then included in this stored sensor drive signal The clock signal generator 1223 generates and generates an enable signal based on the sensing cycle of the enable signal, the sensing start time, and the sensing end time.
  • This enable signal is sent based on the sensing cycle, sensing start time, and sensing end time, as shown in FIG. 19, and includes sensor body 121, sensing signal determination unit 123, sensing signal storage unit 124, sensor drive.
  • the signal is supplied to the signal receiver 125 and AD converters 1224 and 1225.
  • the acceleration sensor 1211 and the temperature sensor 1212 of the sensor main body 121 operate at a predetermined sensing period from the sensing start time to the sensing end time according to the enable signal, and the pulse, blood pressure, human The body temperature is detected, starting with movements, and the detection data (detection information) is output as a sensing signal.
  • sensing signals are input from the sensor drive control unit 122 to the sensing signal determination unit 123.
  • FIG. 20 shows a flow of sensing signal determination processing by the sensing signal determination unit 123.
  • the sensing signal determination unit 123 first temporarily inputs the sensing signal at the start of measurement in Step 9a, and stores it as the 1-1st sensing signal in Step 9b.
  • the absolute value of the difference between the 1-1st and I-th sensing signals is compared in step 9d. If it is determined that the absolute value of the difference between the value of the Ith sensing signal and the value of the I1st sensing signal is less than a certain value, the process proceeds to step 9e, where the Ith sensor Delete the sing signal.
  • step 9f the I-th sensing signal is replaced with the first to first sensing signals, and in step 9b, the first to first sensing signals are stored.
  • step 9d if it is determined in step 9d that the absolute value of the difference between the value of the I-th sensing signal and the value of the 1st-1st sensing signal is greater than a certain value, the process proceeds to step 9g and the I-th sensing signal is Send to sensing signal storage unit 124.
  • the sensing signal determination unit 123 performs similar sensing signal determination processing on the sensing signal output from the sensor drive control unit 22.
  • the sensing signal output from the sensing signal determination unit 123 is stored in the sensing signal storage unit 124.
  • the sensing signal stored in the sensing signal storage unit 124 includes, for example, a header (2 bytes), an X-axis acceleration data string (2 to 8 XN bytes), and a Y-axis acceleration data string. (2 to 8 XN bytes), Z-axis acceleration data string (2 to 8 XN bytes), temperature data string (2 to 8 XN bytes), and footer (2 bytes).
  • the sensing signal that is output has only a large amount of change compared to the previous data, and data with a small amount of change is deleted. Therefore, more sensing is performed by the sensing signal storage unit 124. It becomes possible to accumulate signals.
  • the sensing signal stored in the sensing signal storage unit 124 is separately read and processed as necessary by the sensing data processing function 11 lb of the center device 101.
  • the sensing signal storage unit 124 for example, when a storage medium that can be attached to and detached from the sensor unit 102 such as a smart media or a memory stake is used as the sensing signal storage unit 124, the storage medium is removed from the sensor unit 102 and is not illustrated.
  • the sensing signal is read out by another computer.
  • the newly reset sensor drive signal is reset.
  • a signal is transmitted from the transmission unit 113 to the sensor unit 102.
  • an enable signal is generated based on the sensing period of the enable signal included in the new sensor drive signal, the sensing start time of the enable signal, and the sensing end time of the enable signal.
  • Sensor body 121, sensing signal determination unit 1 23, sensing signal storage unit 124, sensor drive signal reception unit 125, AD converters 1224, 1 225 are driven, and in the same manner as described above, acceleration sensor 121 1 of sensor body 121 Sensing signals of body temperature including the pulse, blood pressure, and human movement of the subject 104 detected by the temperature sensor 1212 are stored in the sensing signal storage unit 124 through the sensing signal determination unit 123. Therefore, in this way, when a sensor drive signal is sent from the center apparatus 101 to the sensor unit 102, the pulse of the subject 4 is detected from the acceleration sensor 12 11 and the temperature sensor 1212 of the sensor unit 102 by this sensor drive signal. Data such as blood pressure, human movement and body temperature are detected.
  • sensing signal determination unit 123 determines whether the sensing signal is a sensing signal. If the absolute value of the difference between the value of the sensing signal output from the sensor drive control unit 122 and the value of the sensing signal input before this is less than a certain value, the sensing signal determination unit 123 If the absolute value of the difference between the sensing signal value and the sensing signal input before this is greater than a certain value, this sensing signal is output and the sensing signal storage unit 124 To memorize. Thereby, the sensing signal memorize
  • the storage area of the sensing signal storage unit 124 can be used effectively, and effective for a limited storage area.
  • the sensing signal storage unit 124 When a storage medium that can be attached to and detached from the sensor unit 102, such as a smart media or a memory stake, is used as the sensing signal storage unit 124, the storage medium is removed from the sensor unit 102, and another personal computer. Thus, the data can be easily collected, and appropriate correspondence to the subject 104 can be performed quickly.
  • a storage medium that can be attached to and detached from the sensor unit 102 such as a smart media or a memory stake
  • a plurality of sensor units described in Fig. 14 are prepared, and the plurality of sensor units are connected to the center apparatus via a wireless network.
  • FIG. 21 shows a schematic configuration of the fifth embodiment of the present invention.
  • the same parts as those in FIGS. 12 and 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • 102A to 102N are sensor units, and these sensor units 102A to 102N Each of the 02Ns has the same structure as described in Fig. 14. These sensor units 102A to 102N are attached to different subjects 104A to 104N or a plurality of different parts of the same subject, and are connected to the center apparatus 101 via the wireless network 103.
  • the control unit 111 of the center apparatus 101 has a sensor drive signal setting function 11 la, a sensing data processing function 11 lb, and a transmission timing setting function 11 lc. These functions are realized by causing the CPU or DSP to execute a program.
  • the transmission timing setting function 111c is for sequentially transmitting sensor drive signals to the sensor units 102A to 102N at different times.
  • Sensing data processing function 11 lb is for processing and analyzing sensing data obtained by the sensor unit 102.
  • the sensor drive signal is set by the center device 101 using the sensor drive signal setting function 11 lb of the control unit 111, the sensor drive signal is shifted in time by the transmission timing setting function 11 and each time. It is sent to the sensor units 102A to 102N.
  • FIG. 22 shows an example of the transmission timing of the sensor drive signals CS1, CS2 to CSn. That is, the sensor drive signal CS1 is sent to the sensor unit 102A, the sensor drive signal CS2 is sent to the sensor unit 102B, and the sensor drive signal CSn is sent to the sensor unit 102N.
  • each sensor unit 102A to 102N receives the sensor drive signal by the sensor drive signal receiving unit 126, the sensor drive determines whether the received sensor drive signal is addressed to itself. The determination is made by the control unit 122. If it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Thereafter, an enable signal is generated from the clock signal generator 1223 based on the sensing period of the enable signal included in the stored sensor driving signal, the sensing start time I, and the sensing end time.
  • the sensor units 102A to 102N are supplied to the sensor body 112, the sensor drive signal receiving unit 125, the sensing signal determining unit 123, and the sensing signal accumulating unit 124.
  • the acceleration sensor 1211 and the temperature sensor 1212 of the sensor main body 121 have the enable signal set. It operates at a predetermined sensing cycle from the sensing start time to the sensing end time.During this operation period, it detects the body temperature including the pulse, blood pressure, and human movement of the subject 104, and the detection data (detection information) Output as sensing signal.
  • sensing signals are input from the respective sensor drive control units 122 to the sensing signal determination unit 123. If the absolute value of the difference between the value of the sensing signal output from the sensor drive control unit 122 and the value of the previous sensing signal is less than or equal to a certain value, the sensing signal determination unit 123 deletes the sensing signal at this time, Conversely, if the absolute value of the difference between the sensing signal value and the previous sensing signal is greater than a certain value, this sensing signal is output.
  • sensing signal output from sensing signal determination unit 123 is stored in sensing signal storage unit 124. In this way, only the sensing signal output from the sensing signal determination unit 123 is stored in the sensing signal storage unit 124.
  • the center device 101 sends a sensor drive signal whose time is shifted by the transmission timing setting function 111c to each of the sensor units 102A to 102N.
  • each of the sensor units 102A to 102N generates an enable signal based on the sensing period, sensing start time, and sensing end time of the enable signal included in the sensor drive signal each time the sensor drive signal is received.
  • the sensor main body 121 is driven to detect the body temperature, starting the pulse, blood pressure, and human movement of the subjects 104A to 104N, and the sensing signal is input to the sensing signal determination unit 123.
  • the sensing signal determination unit 123 when the absolute value of the difference between the value of the sensing signal output by the sensor drive control unit 122 and the value of the sensing signal input before this is less than a certain value, If the absolute value of the difference between the sensing signal value and the sensing signal input before this is greater than a certain value, this sensing signal is output and the sensing signal is deleted. It will be stored in the storage unit 124.
  • the sensing signals stored in the sensor units 102A to 102N can efficiently acquire only the sensing signals having a characteristic that is more than a predetermined change with respect to the previous sensing signals. .
  • sensing signals with such characteristics Since only the signal is selected and stored in the sensing signal storage unit 1 2 4, the storage area of the sensing signal storage unit 124 can be used effectively, and the effective sensing signal for the limited storage area ( A large amount of detection data) can be stored.
  • the sensor unit 102 has a function of directly storing a sensor drive signal.
  • the sensor drive signal stores the pulse, blood pressure, and human movement of the subject 104 using the sensor body.
  • data such as body temperature is detected.
  • FIG. 23 shows a schematic configuration of the sensor unit according to the sixth embodiment of the present invention.
  • the sensor drive signal receiving unit 125 and the antenna unit 126 are deleted from the configuration shown in FIG. Further, the antenna unit 113, the transmission unit 112, and the control unit 111 of the center apparatus 101 are also deleted.
  • the sensor drive control unit 122 stores the sensor drive signal directly in another unit such as a personal computer in the storage unit 1222, and reads out this from the CPU 1221, thereby generating an enable signal.
  • the CPU 1221 of the sensor drive control unit 122 reads the sensor drive signal stored in the storage unit 1222 in advance, the sensing period of the enable signal included in the sensor drive signal, the sensing start time ij, the sensing Generate an enable signal based on the end time.
  • the acceleration sensor 1211 and the temperature sensor 1212 of the sensor body 121 operate at a predetermined sensing period from the sensing start time of the enable signal to the sensing end time, and detect the pulse, blood pressure, and human movement of the subject 104. First, the body temperature is detected, and the detection data (detection information) is output as a sensing signal.
  • the sensor drive signal is stored in advance, and from the acceleration sensor 1211 and the temperature sensor 1212 of the sensor body 121 based on the enable signal generated based on the sensor drive signal. Since the detection data can be acquired, the configuration of the sensor unit 102 is simplified compared to the case where the sensor drive signal is received from outside and processed. [0121] Also in this case, when the detection data such as the pulse, blood pressure, and body temperature of the subject 104 is output from the calo speed sensor 1211 and the temperature sensor 1212, the sensor unit 102 also uses these detection data as sensing signals. , And input to the sensing signal determination unit 123.
  • the sensing signal determination unit 123 the value of the sensing signal input from the sensor drive control unit 122 and the sensing signal input before this, for example, the sensing signal input immediately before this sensing signal If the absolute value of the difference from the current value is less than a certain value, the sensing signal at this time is deleted, and conversely, the absolute value of the difference between the sensing signal value and the last input sensing signal is greater than a certain value In this case, this sensing signal is output and stored in the sensing signal storage unit 124. As a result, it is possible to efficiently acquire only a sensing signal having a characteristic that has changed more than a predetermined value with respect to the immediately preceding sensing signal.
  • sensing signal storage unit 124 since only the sensing signal having such a characteristic is selected and stored in the sensing signal storage unit 124, it is possible to effectively use the storage area of the sensing signal storage unit 124. A large amount of effective sensing signals (detection data) can be stored in a limited storage area.
  • the sensing signal determination unit 123 used in the fourth to sixth embodiments described above is a value having an absolute value of the difference between the value of the sensing signal output from the sensor body 121 and the value of the immediately preceding sensing signal.
  • the sensing signal at this time is deleted, and conversely, if the absolute value of the difference between the sensing signal value and the immediately preceding sensing signal exceeds a certain value, this sensing signal is output.
  • a predetermined absolute value of the sensing signal is set, and when the value of the sensing signal from the sensor body 21 exceeds the predetermined absolute value, this sensing signal is output to the sensing signal storage unit as it is. It may be anything.
  • the force for storing the sensing signal output from the sensing signal determination unit 123 in the sensing signal storage unit 124 is stored in the sensing signal storage unit 124.
  • a sensing signal may be transmitted to the center apparatus 101.
  • a sensing signal transmission unit is provided in the sensor unit 102, and the sensing signal read from the sensing signal storage unit 124 is transmitted as a sensing signal.
  • the transmission unit may convert the data into a predetermined format and generate transmission data, and the generated transmission data may be transmitted from the antenna unit 127 to the center apparatus 101.
  • the force acceleration sensor 1211 described taking the case of detecting the pulse, blood pressure, human movement, body temperature, etc. of the subject 104 as an example detects the direction and magnitude of the movement of the subject 104. You may make it do.
  • the configuration of the center device 101 and the sensor unit 102 can be variously modified and implemented without departing from the gist of the present invention.
  • a remote sensing system and a sensor unit that can selectively store data detected by a sensor and can efficiently acquire necessary data are provided. it can.
  • FIG. 24 is a diagram showing a schematic configuration of a remote sensing system according to the seventh embodiment of the present invention. Here, an example is shown in which a remote sensing system is applied to monitor the health status of a subject.
  • the remote sensing system includes a center device 301 installed in a medical chief facility or a nursing facility, and a sensor unit 302 connected to the center device 301 via a wireless network 304.
  • the sensor unit 302 is a small and lightweight unit having a modular button-like substantially circular flat shape, and is directly attached to the subject 305 to be monitored by a double-sided adhesive tape 331 or the like. Double-sided adhesive tape 331
  • Acrylic double-sided adhesive tape is unlikely to cause irritation such as rash on the skin of subject 305, and when adhesive force is peeled off from sensor unit 302, it is difficult for adhesive glue to adhere to the surface of sensor unit 302 or subject 305
  • the wireless network 304 for example, a short-range data communication system such as BlueTooth (registered trademark), a wireless LAN (Local Area Network), a PHS (Personal Handyphon System).
  • BlueTooth registered trademark
  • a wireless LAN Local Area Network
  • PHS Personal Handyphon System
  • the center device 301 and the sensor unit 302 need not be directly connected, and may be connected via a wireless repeater.
  • This cap, with sensor unit 302 A weak or low power system such as BlueTooth or wireless LAN is adopted as the wireless communication system with the wireless repeater.
  • a wireless communication method between the wireless repeater and the center device 301 a method capable of long-distance communication such as a mobile phone system is used.
  • the center apparatus 301 includes a sensing signal collection processing unit 311 as a sensoring signal collection processing unit, a reception unit 312 as a reception unit, and an antenna unit 313.
  • the receiving unit 312 receives the radio signal transmitted from the sensor unit 302 via the wireless network 304 via the antenna unit 313, demodulates the signal, and obtains the sensing signal obtained by the so-called recovery to the sensing signal collection processing unit 311.
  • the antenna unit 313 has a receiving antenna function for receiving a sensing signal to the receiving unit 312.
  • the sensing signal collection processing unit 311 is, for example, a CPU (Central Processing Unit) or DSP
  • the sensing signal when a sensing signal is received by the receiving unit 312, the sensing signal is decoded and the sensing data is reproduced, and the sensing data is stored in a storage unit such as a hard disk ( (Not shown).
  • FIGS. 25A and 25B are schematic views of the sensor unit 302.
  • FIG. 25A is a plan external view
  • FIG. 25B is a side view.
  • the outer shape of the sensor unit 302 has a button-like substantially circular flat shape as shown in FIG.
  • the sensor drive control unit, the sensing signal transmission unit, the antenna unit, the board fixing unit, the mounting board, and the battery of the sensor unit 302 are converged in this.
  • the abbreviated circular flat body is made of ABS (abbreviation of acrylic 'butadiene' styrene) resin, and maintains environmental resistance and strength. Further, as shown in FIG.
  • this button-like substantially circular flat body is composed of an upper lid 326 and a base 327, and the upper lid 326 and the base 327 are fitted together and curled.
  • the sensor unit 302 is affixed to the surface of the skin of the subject 305, for example, the torso and the thigh with a double-sided adhesive tape 331.
  • FIGs. 26A and 26B are plan views showing the mounting state of the sensor unit when the upper lid 326 that is normally fitted to the sensor unit 302 is opened, and Fig. 26A is a plan view of the front side, and Fig. 26B.
  • FIG. 3 is a plan layout view of the back side.
  • a board fixing unit 330, a mounting board 328, a sensor main body 321, a sensor drive control unit 322, a sensing signal transmission unit 325, and an antenna unit 324 are mounted on the front side. That is, the mounting board 329 is attached to the board fixing part 330.
  • a sensor body 321, a sensor drive control unit 322, a sensing signal transmission unit 325, and an antenna unit 324 are mounted on the mounting substrate 328.
  • another mounting board 329 is attached to the board fixing portion 330, and a battery 323 is attached to the mounting board 329.
  • the sensor unit 302 can be made smaller and lighter.
  • FIG. 27 is a functional diagram showing the configuration of the sensor unit 302.
  • the sensor unit 302 includes a sensor body 321, a sensor drive control unit 322 as a sensor drive control unit, a sensing signal transmission unit 325 as a sensing signal transmission unit, an antenna unit 324, and a battery 323.
  • FIG. 28 shows a comb function diagram of the sensor drive control unit 322 and the sensor main body 321.
  • the sensor body 321 includes an acceleration sensor 3211 and a temperature sensor 3212.
  • the acceleration sensor 3211 detects the pulse, blood pressure, human movement, etc. of the subject 305
  • the temperature sensor 3212 detects the body temperature of the subject 5.
  • the sensor main body 321 is not limited to the acceleration sensor 3211 and the temperature sensor 3212, and may be constituted by other sensors.
  • the sensor drive control unit 322 includes a central control unit (CPU) 3221, a storage unit 3222, AD conversion units 3224 and 3225, and a Sarnoku 'programming' interface (SPI) 3226.
  • CPU central control unit
  • storage unit 3222 storage unit 3222
  • AD conversion units 3224 and 3225 AD conversion units
  • SPI Sarnoku 'programming' interface
  • the central control unit 3221 controls the entire sensor unit, and controls the driving of the acceleration sensor 3211, the temperature sensor 3212, and the sensing signal transmission unit 325 of the sensor body 321. That is, based on the information stored in the storage unit 3222, commands for sensing timing of the acceleration sensor 3211 and the temperature sensor 3212, conversion of the sensing signal into digital signals by the AD conversion units 3224 and 3225, and transmission to the sensing signal transmission unit 2 Control and so on.
  • a standby signal is used as a sensing timing command supplied from the central control unit 3221 to the acceleration sensor 3211 and the temperature sensor 3212.
  • the accelerometer 3211 and the temperature sensor 3212 are in the sensing operation state when the standby signal force H '' level is reached, and in the non-operation state, that is, when the power consumption is low, the standby state Become.
  • FIG. 29 shows a functional diagram of the sensing signal transmission unit.
  • Sensing signal transmission unit 325 includes SP13251, digital signal control unit 3252, signal modulation unit 3253, mixing unit 3254, power amplification unit 3255, crystal oscillator 3261, phase stabilization circuit 3262, voltage control type generator I have a choreograph 3263.
  • the sensing signal transmission unit 325 captures the sensing signal transmitted from the sensor drive control unit 322 into the digital signal control unit 3252 via the SPI 3251, and further performs digital nodal modulation such as QPSK (Quadrarure Phase Shift) in the signal modulation unit 3253. Keying), and converts the data into a predetermined format via the mixing unit 3254 to create sensing data.
  • the generated sensing data is mixed with the output of the voltage controlled oscillator 3263 and converted to a predetermined frequency, and then the power is amplified by the power amplifier 3255 and transmitted to the center device 301 via the antenna unit 327.
  • the battery 323 is made of, for example, a button-type lithium battery, and the DC voltage generated from the battery 323 is supplied to the sensor main body 321, the sensor drive control unit 322, and the sensing signal transmission unit 325 as drive power. It has become.
  • the acceleration sensor 3211 and the temperature sensor 3212 of the sensor body 321 operate with a predetermined sensing cycle in response to a command from the sensor drive control unit 322. During this operation period, the pulse, blood pressure, movement, and body temperature of the subject 305 are operated. And the detection data (detection information) is output as a sensing signal.
  • the sensing signal transmission unit 25 converts the sensing signal into a high-frequency signal and transmits the high-frequency signal from the antenna unit 324 to the center device 301.
  • the center device 301 receives the sensing signal transmitted from the sensor unit 302 by the receiving unit 312 and decodes the received sensing signal by the sensing data collection processing unit 311 (including error correction decoding processing) for sensing. The data is replayed and this sensing data is stored in 100 million copies (not shown).
  • the sensing signal collection processing unit 311 analyzes the sensing signal, and the subject's health obtained from the acceleration sensor 3211 is obtained from the acceleration sensor 3211.
  • the pulse, blood pressure, and movement of the subject 305 obtained from the temperature sensor 3212 are obtained. Judgment based on body temperature of 305 It becomes possible.
  • the small and lightweight sensor unit 302 can be worn anywhere according to the expected symptoms such as the subject's 305's arm, chest, back, and thighs, and the subject feels uncomfortable. Detection in the state of not giving is possible.
  • a sensing signal storage unit 333 as a sensing signal storage unit is provided in the sensor unit 302, and this stored sensing signal is carried offline to the center device 301, and a signal is collected by the sensing signal collection processing unit 311. Analyze and judge.
  • FIG. 30 is a functional diagram of a sensor unit applied to the eighth embodiment of the present invention.
  • the sensing signal transmission unit 325 and the antenna unit 324 are deleted from the configuration shown in FIG. Further, the antenna unit 313 and the receiving unit 312 of the center device 301 are also deleted. These detailed operations are the same as those described in the seventh embodiment.
  • the sensing signal collection processing unit 311 analyzes the sensing signal offline, and the subject's health obtained from the acceleration sensor 3211 is obtained from the acceleration sensor 3211.
  • the pulse, blood pressure, movement, etc. of the subject 305 are obtained from the temperature sensor 3212. Judgment can be made based on 305 body temperature.
  • the small and lightweight sensor unit 302 can be worn anywhere according to the predicted symptoms such as the subject's 5 arm, chest, back, thigh, etc., and the subject feels uncomfortable. Detection without feeling is possible.
  • the acceleration sensor is a uniaxial acceleration sensor.
  • the acceleration sensor includes a biaxial or triaxial acceleration sensor. .
  • the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and described in the column of the effect of the invention. Et In the case where the above-mentioned effects can be obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.

Abstract

In a remote sensing system, a sensor unit provided in correspondence to a sensing object can communicate with a center device via a communication line. The sensor unit includes a sensor drive signal reception unit for receiving a sensor drive signal sent from the center device, a sensor drive control unit for generating a drive control signal at a different generation timing according to the sensor drive signal, a sensor body for detecting the state of the sensing object according to the drive control signal, a storage unit for storing the detection information on the sensor body, a signal conversion unit for converting the detection information on the sensor body into a high-speed signal, and a sensing signal transmission unit for transmitting the sensing signal indicating the state of the sensing object to the center device.

Description

明 細 書 技術分野  Technical field
[0001] 本発明は、センシング対象物を通信回線を介して遠隔的に監視あるいは制御する 遠隔センシングシステム及びセンサユニットに関する。  [0001] The present invention relates to a remote sensing system and a sensor unit for remotely monitoring or controlling a sensing object via a communication line.
背景技術  Background art
[0002] 最近、センシングシステムとして、例えば人体の健康状態を通信回線を利用して遠 隔的に監視するシステム等が種々提案されている。  Recently, as a sensing system, for example, various systems for remotely monitoring the health condition of the human body using a communication line have been proposed.
[0003] 特開平 10-155749号公報(以下、特許文献 1という)、及び特開 2000-93398号 公報(以下、特許文献 2という)は、このようなセンシングシステムの一例を示している 。このセンサシステムでは、人体にモジュール化された小型のライフセンサを取着し て人の脈拍、動き、音、体温等をリアルタイムに測定する。そして、その測定情報をも とに通信回線を介して監視センタへ通報する。監視センタは、上記通報を受けると送 信元の被検者を通信回線を用いて呼び返すような機能を有している。さらには、監視 センタは、上記通報を受けると測定情報に基づき被検者の状態を判定し、異常と判 定された場合には必要な通報がされるような機能を有している。  [0003] Japanese Patent Application Laid-Open No. 10-155749 (hereinafter referred to as Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-93398 (hereinafter referred to as Patent Document 2) show an example of such a sensing system. In this sensor system, a small life sensor modularized in the human body is attached to measure the human pulse, movement, sound, body temperature, etc. in real time. Then, the monitoring information is reported to the monitoring center via the communication line based on the measurement information. The monitoring center has a function of calling back the subject of the sender using a communication line when receiving the above notification. Furthermore, the monitoring center has a function to determine the condition of the subject based on the measurement information when receiving the above notification, and to make a necessary notification when it is determined to be abnormal.
[0004] ところで、このようなセンシングシステムに用いられるセンサユニットは、超小形であ るにもかかわらず、センサ本体の他に、監視センタとのデータのやり取りを行なうため のデータ送受信部などを備えている。更に、内蔵バッテリを電源にして駆動されるよう になっている。また、当該センサユニットは、超小形であるにも関わらず、センサ本体 の他に、センサ本体からの検出データを一時記憶する記憶部や、監視センタとのデ ータのやり取りを行なうためのデータ送受信部などを内蔵したものもある。  [0004] By the way, the sensor unit used in such a sensing system is equipped with a data transmission / reception unit for exchanging data with the monitoring center in addition to the sensor body, despite being ultra-small. ing. Furthermore, it is driven by the built-in battery. In addition to the sensor body, the sensor unit is not only a sensor body, but also a storage unit that temporarily stores detection data from the sensor body and data for exchanging data with the monitoring center. Some have a built-in transceiver.
[0005] ところ力 上記センシングシステムでは、センサユニットを常時動作状態にして、被 検者の健康状態をリアルタイムで測定する。ゆえに、センサユニットの検出データを 送信するセンサユニット側での消費電力が大きぐ頻繁にセンサユニット内のバッテリ 交換を行う必要がある。また、センサユニットでのバッテリ交換を忘れると測定及び監 視動作が正確に行われなくなる。更に、センサ本体からの検出データの量は極めて 多レ、。この為、検出データの量が記憶部の記憶容量を超えて、これ以降のデータの 記憶ができなくなることがあり、必要とする肝心のデータを取得できない。 [0005] However, in the above sensing system, the sensor unit is always operated, and the health condition of the subject is measured in real time. Therefore, power consumption on the sensor unit side that transmits the detection data of the sensor unit is large, and it is necessary to frequently replace the battery in the sensor unit. Also, if you forget to replace the battery in the sensor unit, measurement and monitoring operations will not be performed accurately. Furthermore, the amount of detection data from the sensor body is extremely A lot. For this reason, the amount of detected data exceeds the storage capacity of the storage unit, and subsequent data cannot be stored, and the necessary data cannot be acquired.
[0006] 更に、このようなセンシングシステムに用いて被験者の健康状態を正確に把握する ためには、センサユニットを腕、胸、背中、大腿部などその予測される症状に合わせ てどこの個所にでも装着でき、し力も被験者に装着したことによる違和感を生じさせな レ、ことが必要である。し力し、上記センシングシステムで用いられるセンサユニットは、 腕時計形であり装着される個所は手首、足首などバンドで固定できる個所に限定さ れるとの問題がある。また、センサユニットは時計のバンドのようなもので手首、足首な どに縛り付けて装着されるため、被験者にはかなりの違和感を覚える形態である。 発明の開示  [0006] Further, in order to accurately grasp the health condition of the subject using such a sensing system, the sensor unit is located anywhere according to the predicted symptoms such as the arm, chest, back, and thigh. It is necessary to be able to wear it even if it is attached to the subject, and the force does not cause a sense of incongruity due to being worn by the subject. However, there is a problem that the sensor unit used in the above sensing system is a wrist watch type and the place where the sensor unit is attached is limited to a place that can be fixed with a band such as a wrist or ankle. In addition, the sensor unit is like a watch band and is attached to the wrist, ankle, etc., so that the subject feels quite uncomfortable. Disclosure of the invention
[0007] 本発明は、センサユニットでの検出情報を効率よく送信することで省電力化を実現 してバッテリの長寿命化を可能にし、及び/又はセンサでの検出データを選択的に 記憶可能として必要とするデータを効率よく取得することができ、及び/又は腕、胸、 背中、大腿部などその予測される症状に合わせてどこの個所にでも装着でき、しかも 被験者に装着したことによる違和感を与えない形態を有する遠隔センシングシステム 及びセンサユニットを提供することを目的とする。  [0007] The present invention realizes power saving by efficiently transmitting the detection information in the sensor unit, thereby extending the battery life and / or selectively storing the detection data in the sensor. Can be acquired efficiently and / or can be worn anywhere according to the expected symptoms such as arms, chest, back, thigh, etc. An object of the present invention is to provide a remote sensing system and a sensor unit having a form that does not give a sense of incongruity.
[0008] 本発明の第 1の観点からは、センシング対象物に対応して設けられるセンサュニッ トと、このセンサユニットとの間で通信回線を介して信号の伝送を行うセンタ装置とを 具傭し、 前記センタ装置は、前記センサユニットのセンサ駆動信号を設定するセン サ駆動信号設定部と、前記センサ駆動信号設定部で設定されたセンサ駆動信号を 前記センタユニットへ送信する送信部と、前記センサユニットから送信される、前記セ ンシング対象物の状態を表すセンシング信号を受信する受信部とを具備し、前記セ ンサユニットは、前記センタ装置から送信されるセンサ駆動信号を受信するセンサ駆 動信号受信部と、センサ駆動信号受信部で受信された前記センサ駆動信号に応じ て発生タイミングの異なる駆動制御信号を発生するセンサ駆動制御部と、前記駆動 制御信号により、前記センシング対象物の状態を検出するセンサ本体と、前記センサ 本体の検出情報を記憶する記憶部と、前記記憶部に記憶された前記センサ本体の 検出情報を高速信号に変換する信号変換部と、前記信号変換部で高速信号に変換 された前記センシング対象物の状態を表すセンシング信号を前記センタ装置へ送信 するセンシング信号送信部と、を具備することを特徴とする遠隔センシングシステムが 提供される。 [0008] According to a first aspect of the present invention, there is provided a sensor unit provided corresponding to a sensing object and a center device that transmits a signal to and from the sensor unit via a communication line. The center device includes a sensor drive signal setting unit that sets a sensor drive signal of the sensor unit, a transmitter that transmits the sensor drive signal set by the sensor drive signal setting unit to the center unit, and the sensor A receiving unit that receives a sensing signal that is transmitted from the unit and that represents the state of the sensing object, and the sensor unit receives a sensor driving signal that is transmitted from the center device. A sensor drive control that generates drive control signals having different generation timings according to the sensor drive signal received by the receiver and the sensor drive signal receiver. A sensor main body that detects the state of the sensing object based on the drive control signal, a storage unit that stores detection information of the sensor main body, and detection information of the sensor main body that is stored in the storage unit at high speed. A signal converter that converts the signal into a signal There is provided a remote sensing system comprising: a sensing signal transmission unit configured to transmit a sensing signal representing the state of the sensed object to be transmitted to the center device.
[0009] 本発明の第 2の観点からは、センシング対象物に対応して設けられ、通信回線を介 してセンタ装置との間で信号の伝送が可能なセンサユニットであって、前記センタ装 置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部と、前記センサ 駆動信号受信部で受信された前記センサ駆動信号に応じて発生タイミングの異なる 駆動制御信号を発生するセンサ駆動制御部と、前記駆動制御信号により前記センシ ング対象物の状態を検出するセンサ本体と、前記前記センサ本体の検出情報を記 憶する記憶部と、前記記憶部に記憶された前記センサ本体の検出情報を高速信号 に変換する信号変換部と、前記信号変換部で高速信号に変換された前記センシン グ対象物の状態を表すセンシング信号を前記センタ装置へ送信するセンシング信号 送信部とを具備することを特徴とするセンサユニットが提供される。  [0009] From a second aspect of the present invention, there is provided a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to and from a center device via a communication line. A sensor drive signal receiving unit that receives a sensor drive signal transmitted from a device, and a sensor drive control unit that generates drive control signals having different generation timings according to the sensor drive signal received by the sensor drive signal receiving unit; A sensor body that detects the state of the sensing object according to the drive control signal; a storage unit that stores detection information of the sensor body; and detection information of the sensor body that is stored in the storage unit at high speed. A signal converting unit that converts the signal into a signal, and a sensing unit that transmits a sensing signal representing the state of the sensing object converted into a high-speed signal by the signal converting unit to the center device. Sensor unit, characterized by comprising a signal transmitter is provided.
[0010] 本発明の第 3の観点からは、センシング対象物に対応して設けられ、通信回線を介 してセンタ装置との間で信号の伝送が可能なセンサユニットであって、センサ駆動信 号を記憶するとともに、該センサ駆動信号に応じて駆動制御信号を発生するセンサ 駆動制御部と、前記駆動制御信号により前記センシング対象物の状態を検出するセ ンサ本体と、前記前記センサ本体の検出情報を記憶する記憶部と、前記駆動信号と 異なる他の駆動制御信号により前記記憶部に記憶された前記センサ本体の検出情 報を高速信号に変換する信号変換部と、前記信号変換部で高速信号に変換された 前記センシング対象物の状態を表すセンシング信号を前記センタ装置へ送信するセ ンシング信号送信部とを具備することを特徴とするセンサユニットが提供される。  [0010] A third aspect of the present invention is a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to and from a center device via a communication line, and comprising a sensor drive signal. A sensor drive control unit that generates a drive control signal in accordance with the sensor drive signal, a sensor body that detects a state of the sensing object based on the drive control signal, and a detection of the sensor body A storage unit for storing information, a signal conversion unit for converting detection information of the sensor main body stored in the storage unit into a high-speed signal by another drive control signal different from the drive signal, and a high-speed signal by the signal conversion unit Provided with a sensor unit, comprising: a sensing signal transmission unit configured to transmit a sensing signal converted to a signal representing the state of the sensing object to the center device. It is.
[0011] 本発明の第 4の観点からは、センシング対象物に対応して設けられるセンサュニッ トと、このセンサユニットとの間で通信回線を介して信号の伝送を行うセンタ装置とを 具傭し、前記センタ装置は、前記センサユニットのセンサ駆動信号を設定するセンサ 駆動信号設定部と、前記センサ駆動信号設定部で設定されたセンサ駆動信号を前 記センタユニットへ送信する送信部とを具備し、前記センサユニットは、前記センタ装 置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部と、センサ駆動 信号受信部で受信された前記センサ駆動信号に応じた駆動制御信号を発生するセ ンサ駆動制御部と、前記駆動制御信号により、前記センシング対象物の状態を表わ すセンシング信号を出力するセンサ本体と、前記センサ本体より出力されるセンシン グ信号の状態変化を判断し、所定以上の状態変化をともなうセンシング信号を出力 するセンシング信号判断部と、前記センシング信号判断部より出力されるセンシング 信号を記憶する記憶部とを具備することを特徴とする遠隔センシングシステムが提供 される。 [0011] According to a fourth aspect of the present invention, there is provided a sensor unit provided corresponding to a sensing object and a center device that transmits a signal to and from the sensor unit via a communication line. The center device includes a sensor drive signal setting unit that sets a sensor drive signal of the sensor unit, and a transmission unit that transmits the sensor drive signal set by the sensor drive signal setting unit to the center unit. The sensor unit includes a sensor drive signal receiving unit that receives a sensor drive signal transmitted from the center device, and a sensor drive A sensor drive control unit that generates a drive control signal according to the sensor drive signal received by the signal receiving unit, and a sensor main body that outputs a sensing signal representing the state of the sensing object by the drive control signal A sensing signal judgment unit that judges a state change of a sensing signal output from the sensor body and outputs a sensing signal with a state change more than a predetermined value, and stores a sensing signal output from the sensing signal judgment unit. There is provided a remote sensing system comprising a storage unit.
[0012] 本発明の第 5の観点からは、センシング対象物に対応して設けられ、通信回線を介 してセンタ装置との間で信号の伝送が可能なセンサユニットであって、前記センタ装 置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部と、前記センサ 駆動信号受信部で受信されたセンサ駆動信号に応じた駆動制御信号を発生するセ ンサ駆動制御部と、前記駆動制御信号により、前記センシング対象物の状態を表わ すセンシング信号を出力するセンサ本体と、前記センサ本体より出力されるセンシン グ信号の状態変化を判断し、所定以上の状態変化をともなうセンシング信号を出力 するセンシング信号判断部と、前記センシング信号判断部より出力されるセンシング 信号を記憶する記憶部とを具備することを特徴とするセンサユニットが提供される。  [0012] From a fifth aspect of the present invention, there is provided a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to and from a center apparatus via a communication line, A sensor drive signal receiving unit that receives a sensor drive signal transmitted from a device, a sensor drive control unit that generates a drive control signal according to the sensor drive signal received by the sensor drive signal receiving unit, and the drive control Based on the signal, the sensor body that outputs the sensing signal indicating the state of the sensing object and the state change of the sensing signal output from the sensor body are judged, and the sensing signal with the state change exceeding the predetermined value is output. A sensor unit, and a storage unit for storing the sensing signal output from the sensing signal determination unit. There is provided.
[0013] 本発明の第 6の観点からは、センサ駆動信号を記憶するとともに、該センサ駆動信 号に応じた駆動制御信号を発生するセンサ駆動制御部と、前記駆動制御信号により 、前記センシング対象物の状態を表わすセンシング信号を出力するセンサ本体と、 前記センサ本体より出力されるセンシング信号の状態変化を判断し、所定以上の状 態変化をともなうセンシング信号をそのまま出力するセンシング信号判断部と、前記 センシング信号判断部より出力されるセンシング信号を記憶する記憶部とを具備する ことを特徴とするセンサユニットが提供される。  [0013] From a sixth aspect of the present invention, a sensor drive signal is stored, and a sensor drive control unit that generates a drive control signal according to the sensor drive signal, and the sensing target is generated by the drive control signal. A sensor main body that outputs a sensing signal representing the state of an object; a sensing signal determination section that determines a state change of the sensing signal output from the sensor main body and outputs a sensing signal with a state change of a predetermined level or more; And a storage unit that stores the sensing signal output from the sensing signal determination unit.
[0014] 本発明の第 7の観点からは、センシング対象物に対応して設けられるセンサュニッ トと、前記センサユニットと通信回線を介して信号の伝送を行うセンタ装置とからなる 遠隔センシングシステムにおいて、前記センサユニットは、前記センシング対象物の 状態を検出し、センシング信号として出力するセンサ本体と、前記センサユニットを制 御するセンサ駆動制御部と、前記センサ本体から出力される前記センシング信号を 前記センタ装置へ送信するセンシング信号送信部とを備え、前記センタ装置は、前 記センサユニットから送信される前記センシング信号を受信する受信部と、受信した 前記センシング信号を信号処理するセンシング信号収集処理部を備えることを特徴 とする遠隔センシングシステムが提供される。 [0014] According to a seventh aspect of the present invention, in a remote sensing system comprising a sensor unit provided corresponding to a sensing object and a center device that transmits signals to the sensor unit via a communication line, The sensor unit detects a state of the sensing object and outputs a sensing signal, a sensor drive control unit that controls the sensor unit, and the sensing signal output from the sensor body. A sensing signal transmitting unit for transmitting to the center device, the center device receiving the sensing signal transmitted from the sensor unit, and a sensing signal collecting process for processing the received sensing signal. A remote sensing system characterized by comprising a unit is provided.
[0015] 本発明の第 8の観点からは、センシング対象物に対応して設けられ、通信回線を介 してセンタ装置と信号の伝送が可能なセンサユニットであって、前記センシング対象 物の状態を検出し、センシング信号として出力するセンサ本体と、前記センサ本体を 制御するセンサ駆動制御部と、前記センサ本体から出力される前記センシング信号 を前記センタ装置へ送信するセンシング信号送信部とを具備することを特徴とするセ ンサユニットが提供される。  [0015] According to an eighth aspect of the present invention, there is provided a sensor unit provided corresponding to a sensing object and capable of transmitting a signal to a center device via a communication line, the state of the sensing object And a sensor drive control unit that controls the sensor body, and a sensing signal transmission unit that transmits the sensing signal output from the sensor body to the center device. A sensor unit characterized by this is provided.
[0016] 本発明の第 9の観点からは、センシング対象物に対応して設けられるセンサュニッ トであって、前記センシング対象物の状態を検出し、センシング信号として出力する センサ本体と、前記センサ本体を制御するセンサ駆動制御部と、前記前記センサ本 体力 出力される前記センシング信号を蓄積するセンシング信号蓄積部と具備する ことを特徴とするセンサユニットが提供される。  [0016] According to a ninth aspect of the present invention, there is provided a sensor unit provided corresponding to a sensing object, wherein the sensor body detects a state of the sensing object and outputs a sensing signal, and the sensor body There is provided a sensor unit comprising: a sensor drive control unit that controls the sensor signal; and a sensing signal storage unit that stores the sensing signal output from the sensor body force.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の第 1実施形態に係る遠隔センシングシステムの概略構成図。  FIG. 1 is a schematic configuration diagram of a remote sensing system according to a first embodiment of the present invention.
[図 2]本発明の第 1実施形態で用いられるセンサ駆動信号の構成図。  FIG. 2 is a configuration diagram of a sensor drive signal used in the first embodiment of the present invention.
[図 3]本発明の第 1実施形態に用レ、られるセンサユニットの概略構成図。  FIG. 3 is a schematic configuration diagram of a sensor unit used in the first embodiment of the present invention.
[図 4]本発明の第 1実施形態のセンサユニットに用いられるセンサ本体とセンサ駆動 制御部の概略構成図。  FIG. 4 is a schematic configuration diagram of a sensor main body and a sensor drive control unit used in the sensor unit according to the first embodiment of the present invention.
[図 5]本発明の第 1実施形態のセンサユニットに用いられるセンシング信号送信部と センサ駆動信号受信部の概略構成図。  FIG. 5 is a schematic configuration diagram of a sensing signal transmitter and a sensor drive signal receiver used in the sensor unit of the first embodiment of the present invention.
[図 6]本発明の第 1実施形態のセンサユニットのィネーブル信号の発生タイミングを示 す図。  FIG. 6 is a diagram showing generation timing of an enable signal of the sensor unit according to the first embodiment of the present invention.
[図 7]本発明の第 1実施形態のセンサユニットのィネーブル信号の送出先を示す図。  FIG. 7 is a diagram showing an enable signal transmission destination of the sensor unit according to the first embodiment of the present invention.
[図 8]本発明の第 1実施形態で用いられるセンシング信号の構成を示す図。  FIG. 8 is a diagram showing a configuration of a sensing signal used in the first embodiment of the present invention.
[図 9]本発明の第 2実施形態に係る遠隔センシングシステムの概略構成図。 園 10]本発明の第 2実施形態のセンサ駆動信号の送信タイミングを説明する図。 園 11]本発明の第 3実施形態に係るセンサユニットの概略構成図。 FIG. 9 is a schematic configuration diagram of a remote sensing system according to a second embodiment of the present invention. 10] A diagram illustrating the transmission timing of the sensor drive signal according to the second embodiment of the present invention. 11] A schematic configuration diagram of a sensor unit according to a third embodiment of the present invention.
園 12]本発明の第 4実施形態に係るセンサユニットが適用される遠隔センシングシス テムの概略構成図。 12] A schematic configuration diagram of a remote sensing system to which a sensor unit according to a fourth embodiment of the present invention is applied.
園 13]本発明の第 4実施形態で用いられるセンサ駆動信号の構成図。 13] A configuration diagram of sensor drive signals used in the fourth embodiment of the present invention.
園 14]本発明の第 4実施形態のセンサユニットの概略構成図。 14] A schematic configuration diagram of a sensor unit according to a fourth embodiment of the present invention.
園 15]本発明の第 4実施形態のセンサユニットに用いられるセンサ本体とセンサ駆動 制御部の概略構成図。 15] A schematic configuration diagram of a sensor main body and a sensor drive controller used in the sensor unit of the fourth embodiment of the present invention.
園 16]本発明の第 4実施形態で用いられるセンシング信号の構成を示す図。 16] A diagram showing a configuration of a sensing signal used in the fourth embodiment of the present invention.
園 17]本発明の第 4実施形態のセンサユニットに用レ、られるセンサ駆動信号受信部 の概略構成図。 17] A schematic configuration diagram of a sensor drive signal receiver used in the sensor unit of the fourth embodiment of the present invention.
園 18]本発明の第 4実施形態のセンサユニットのィネーブル信号の送出先を示す図 園 19]本発明の第 4実施形態のセンサユニットのィネーブル信号の送出タイミングを 示す図。 FIG. 18] A diagram showing the destination of the enable signal of the sensor unit of the fourth embodiment of the present invention. FIG. 19] A diagram showing the timing of sending the enable signal of the sensor unit of the fourth embodiment of the present invention.
園 20]本発明の第 4実施形態に用レ、られるセンシング信号判断部の動作を示すフロ 一チャート。 20] A flowchart showing the operation of the sensing signal determination unit used in the fourth embodiment of the present invention.
園 21]本発明の第 5実施形態に力かるセンサユニットが適用される遠隔センシングシ ステムの概略構成図。 Sono 21] Schematic configuration diagram of a remote sensing system to which a sensor unit empowering the fifth embodiment of the present invention is applied.
園 22]本発明の第 5実施形態のセンサ駆動信号の送信タイミングを説明する図。 園 23]本発明の第 6実施形態に力かるセンサユニットの概略構成図。 22] A diagram illustrating the transmission timing of the sensor drive signal according to the fifth embodiment of the present invention. FIG. 23] Schematic configuration diagram of a sensor unit that works according to the sixth embodiment of the present invention.
園 24]本発明の第 7実施形態の遠隔センシングシステムの概略構成図。 Sono 24] Schematic configuration diagram of a remote sensing system of a seventh embodiment of the present invention.
園 25A]本発明の第 7実施形態のセンサユニットの概略図。 25A] A schematic diagram of the sensor unit of the seventh embodiment of the present invention.
園 25B]本発明の第 7実施形態のセンサユニットの概略図。 25B] A schematic diagram of a sensor unit according to a seventh embodiment of the present invention.
園 26A]本発明の第 7実施形態のセンサユニットの通常嵌め合されている上蓋を開い て、センサユニットの実装状態を示す平面外観図。 26A] A plan external view showing the sensor unit mounted state by opening the normally fitted upper lid of the sensor unit of the seventh embodiment of the present invention.
園 26B]本発明の第 7実施形態のセンサユニットの通常嵌め合されている上蓋を開い て、センサユニットの実装状態を示す平面外観図。 [図 27]本発明の第 7実施形態のセンサユニットの構成を示す機能図。 26B] A plan external view showing the sensor unit mounted state by opening the normally fitted upper lid of the sensor unit of the seventh embodiment of the present invention. FIG. 27 is a functional diagram showing a configuration of a sensor unit according to a seventh embodiment of the present invention.
[図 28]本発明の第 7実施形態のセンサユニットのセンサ駆動制御部と、センサ本体の 機能図。  FIG. 28 is a functional diagram of a sensor drive control unit and sensor body of a sensor unit according to a seventh embodiment of the present invention.
[図 29]本発明の第 7実施形態のセンサユニットのセンシング信号送信部の機能図。  FIG. 29 is a functional diagram of a sensing signal transmission unit of a sensor unit according to a seventh embodiment of the present invention.
[図 30]本発明の第 8実施形態のセンサユニットの機能図。  FIG. 30 is a functional diagram of a sensor unit according to an eighth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019] (第 1実施形態) [0019] (First embodiment)
図 1は、本発明の第 1実施形態に係る遠隔センシングシステムの概略構成図である  FIG. 1 is a schematic configuration diagram of a remote sensing system according to the first embodiment of the present invention.
[0020] ここでは、遠隔センシングシステムを、被検体の健康状態などを監視するものに適 用した例を示している。遠隔センシングシステムは、医療施設や介護施設などに設置 されるセンタ装置 1と、このセンタ装置 1に対し無線ネットワーク 3を介して接続される センサユニット 2とで構成される。センサユニット 2はモジュール化されたもので、監視 対象の被検体 4に対し、例えばアクリル系両面接着テープにより直接貼付される。 [0020] Here, an example is shown in which the remote sensing system is applied to a device that monitors the health condition of a subject. The remote sensing system includes a center device 1 installed in a medical facility or a nursing facility, and a sensor unit 2 connected to the center device 1 via a wireless network 3. The sensor unit 2 is modularized and directly attached to the subject 4 to be monitored, for example, with an acrylic double-sided adhesive tape.
[0021] このアクリル系両面接着テープは、被検体 4の皮膚にかぶれ等の炎症が起きにくい 、センサユニット 2を被検体 4からはがした時にセンサユニット 2や被検体 4の表面に 接着のりが付着しにくい、接着層を薄くできるなどの利点を有する。  [0021] This acrylic double-sided adhesive tape is less prone to irritation such as rash on the skin of the subject 4, and when the sensor unit 2 is peeled off from the subject 4, there is an adhesive glue on the surface of the sensor unit 2 or the subject 4. It has advantages such as being difficult to adhere and a thin adhesive layer.
[0022] 無線ネットワーク 3としては、例えば BT (Blue Tooth) (登録商標)等の近距離データ 通信システムや、無線 LAN (Local Area Network)、 PHS (Personal Handyphon Sys tern) (登録商標)、携帯電話システム等が使用される。  [0022] The wireless network 3 includes, for example, a short-range data communication system such as BT (Blue Tooth) (registered trademark), a wireless LAN (Local Area Network), a PHS (Personal Handyphon Systern) (registered trademark), and a mobile phone. A system or the like is used.
[0023] なお、センタ装置 1とセンサユニット 2との間は必ずしも直接接続する必要はなぐ無 線中継器を介して接続するようにしてもよい。この場合、センサユニット 2と無線中継 器との問の無線通信方式としては、 BTや無線 LAN等の微弱又は小電力型の方式 が採用される。一方、無線中継器とセンタ装置 1との問の無線通信方式としては、携 帯電話システム等の長距離通信が可能な方式がそれぞれ使用される。  [0023] Note that the center device 1 and the sensor unit 2 may be connected via a wireless repeater that does not necessarily need to be directly connected. In this case, a weak or low-power system such as BT or wireless LAN is adopted as a wireless communication system between the sensor unit 2 and the wireless repeater. On the other hand, as a wireless communication method for questioning between the wireless repeater and the center device 1, a method capable of long-distance communication such as a mobile phone system is used.
[0024] センタ装置 1は、制御部 11と、受信部 12と、送信部 13と、アンテナ部 14とを備えて いる。受信部 12は、センサユニット 2から無線ネットワーク 3を介して伝送された無線 信号を受信したのち復調し、この復調により得られるセンシング信号を制御部 11へ 出力するものである。送信部 13は、制御部 11から出力されたセンサ駆動信号を変調 したのち無線信号に変換し、この無線信号をアンテナ部 14からセンサユニット 2に向 け送信するものである。アンテナ部 14は、送信部 13からの制御信号を送信する送信 アンテナ機能と、受信部 12へのセンシング信号を受信する受信アンテナ機能とを有 する。この送信アンテナ機能及び受信アンテナ機能の切替えは、アンテナ部 14に含 まれるサーキユレータなどの信号分配器により実施される。 The center device 1 includes a control unit 11, a receiving unit 12, a transmitting unit 13, and an antenna unit 14. The receiving unit 12 is a wireless unit transmitted from the sensor unit 2 via the wireless network 3. After receiving the signal, it is demodulated, and the sensing signal obtained by this demodulation is output to the control unit 11. The transmission unit 13 modulates the sensor drive signal output from the control unit 11 and converts it into a radio signal, and transmits this radio signal from the antenna unit 14 to the sensor unit 2. The antenna unit 14 has a transmission antenna function for transmitting a control signal from the transmission unit 13 and a reception antenna function for receiving a sensing signal to the reception unit 12. The switching between the transmitting antenna function and the receiving antenna function is performed by a signal distributor such as a circulator included in the antenna unit 14.
[0025] 制御部 11は、例えば CPU(Central Processing Unit)や DSP(Digital Signal Proces sor)を備えたものである。この制御部 11は、本実施形態に係わる制御機能としてセン サ駆動信号設定部を構成するセンサ駆動信号設定機能 11aとセンシングデータ収 集処理機能 l ibとを有している。尚、これらの機能は、上記 CPU又は DSPにプログ ラムを実行させることにより実現される。  [0025] The control unit 11 includes, for example, a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). The control unit 11 has a sensor drive signal setting function 11a constituting a sensor drive signal setting unit and a sensing data collection processing function l ib as control functions according to the present embodiment. Note that these functions are realized by causing the CPU or DSP to execute a program.
[0026] センシングデータ収集処理機能 l ibは、受信部 12によりセンシング信号が受信さ れた場合に、このセンシング信号を復号してセンシングデータを再生し、このセンシン グデータをハードディスク等の記憶部 (図示せず)に蓄積する。センサ駆動信号設定 機能 11aは、管理者の判断や被検体 4の状況変化に応じてセンサ駆動信号を異なる 内容のものに設定する。例えば、ある内容のセンサ駆動信号を設定している途中で、 他の内容のセンサ駆動信号に設定を変更し、或いはこの逆に他の内容のセンサ駆 動信号を設定している途中で最初の内容のセンサ駆動信号に設定を変更可能にし ている。  [0026] Sensing data collection processing function l ib, when a sensing signal is received by the receiving unit 12, decodes the sensing signal and reproduces the sensing data, and stores the sensing data in a storage unit such as a hard disk (see FIG. (Not shown). The sensor drive signal setting function 11a sets the sensor drive signal to a different content according to the judgment of the administrator or the change in the condition of the subject 4. For example, while setting a sensor drive signal with a certain content, change the setting to a sensor drive signal with another content, or vice versa, while setting a sensor drive signal with another content, The setting can be changed to the sensor drive signal of the content.
[0027] この場合、センサ駆動信号は、図 2に示すように、例えばヘッダー(2バイト)、第 1の 駆動制御信号である第 1のィネーブル信号のセンシング周期(2〜22バイト)、第 1の ィネーブル信号のセンシング開始時刻(2〜32バイト)、第 1のィネーブル信号のセン シング終了時刻(2〜32バイト)、第 2の駆動制御信号である第 2のィネーブル信号の 送信開始時刻(2〜32バイト)、フッタ(2バイト)から構成されている。  In this case, as shown in FIG. 2, the sensor drive signal includes, for example, a header (2 bytes), a first enable signal which is a first drive control signal, a sensing cycle (2 to 22 bytes), a first Sensing start time of the enable signal (2 to 32 bytes), sensing end time of the first enable signal (2 to 32 bytes), transmission start time of the second enable signal as the second drive control signal (2 ~ 32 bytes) and footer (2 bytes).
[0028] そして、設定されたセンサ駆動信号を送信部 13へ出力し、この送信部 13からセン サユニット 2に向けて送信させる。  Then, the set sensor drive signal is output to the transmission unit 13 and transmitted from the transmission unit 13 toward the sensor unit 2.
[0029] 一方、センサユニット 2は、図 3に示すように、センサ本体 21と、駆動信号発生部とし てのセンサ駆動制御部 22と、記憶部としてのセンシング信号蓄積部 23と、信号変換 部としてのセンシング信号圧縮部 24と、センシング信号送信部としてのセンシング信 号送信部 25と、センサ駆動信号受信部としてのセンサ駆動信号受信部 26、アンテ ナ部 27と、バッテリ 28とを備えている。 On the other hand, as shown in FIG. 3, the sensor unit 2 includes a sensor body 21 and a drive signal generator. Sensor drive control unit 22, sensing signal storage unit 23 as a storage unit, sensing signal compression unit 24 as a signal conversion unit, sensing signal transmission unit 25 as a sensing signal transmission unit, and sensor drive signal reception A sensor drive signal receiving unit 26, an antenna unit 27, and a battery 28 are provided.
[0030] センサ本体 21は、図 4に示すように加速度センサ 211と温度センサ 212を備えたも のである。センサ本体 21は、加速度センサ 211により被検体 4の脈拍、血圧、人の動 きなどを検出し、温度センサ 212により体温などを検出するようにしている。センサ本 体 21は、これら加速度センサ 211と温度センサ 212に限らず、他のセンサにより構成 することもできる。センサ駆動制御部 22は、図 4に示すように CPU221と、記憶部 22 2と、クロック信号発生部 223と、 AD変換部 224, 225と、サーノ 'プログラミング 'イン ターフェース(SPI) 226とを備えている。  The sensor main body 21 includes an acceleration sensor 211 and a temperature sensor 212 as shown in FIG. In the sensor main body 21, the acceleration sensor 211 detects the pulse, blood pressure, human movement, etc. of the subject 4, and the temperature sensor 212 detects the body temperature. The sensor body 21 is not limited to the acceleration sensor 211 and the temperature sensor 212, and can be constituted by other sensors. As shown in FIG. 4, the sensor drive control unit 22 includes a CPU 221, a storage unit 222, a clock signal generation unit 223, AD conversion units 224 and 225, and a Sarn 'programming' interface (SPI) 226. I have.
[0031] クロック信号発生部 223は、 CPU221のクロック制御信号に基づいて所定周期のク ロック信号を発生する。記憶部 222は、 CPU221により実行されるプログラムとともに 、駆動信号としての第 1のィネーブル信号と第 2のィネーブル信号の発生タイミングの 設定データを記憶している。 CPU221は、センサ本体 21の加速度センサ 211と温度 センサ 212を始めとして、センシング信号蓄積部 23、センシング信号圧縮部 24、セン シング信号送信部 25、センサ駆動信号受信部 26を駆動制御する。  The clock signal generation unit 223 generates a clock signal having a predetermined period based on the clock control signal of the CPU 221. The storage unit 222 stores setting data of generation timings of the first enable signal and the second enable signal as drive signals together with a program executed by the CPU 221. The CPU 221 controls driving of the acceleration sensor 211 and the temperature sensor 212 of the sensor main body 21, the sensing signal storage unit 23, the sensing signal compression unit 24, the sensing signal transmission unit 25, and the sensor drive signal reception unit 26.
[0032] センシング信号蓄積部 23は、上述したセンタ装置 1から送られてくるセンサ駆動信 号のヘッダーに含まれるセンサユニットの識別番号から当該センサ駆動信号が自己 宛のものかどうかを判定し、 自己宛のものであれば当該センサ駆動信号をメモリ (図示 せず)に保存する。そして、以後この保存されたセンサ駆動信号に含まれる第 1のイネ 一ブル信号のセンシング周期、センシング開始時刻、センシング終了時刻および第 2 のィネーブル信号の送信開始時刻に基づいてクロック信号発生部 223から第 1イネ 一ブル信号 A又は第 2のィネーブル信号 Bを発生する。  [0032] The sensing signal storage unit 23 determines whether the sensor drive signal is addressed to itself from the sensor unit identification number included in the header of the sensor drive signal sent from the center device 1 described above. If it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Then, from the clock signal generator 223 based on the sensing cycle of the first enable signal, the sensing start time, the sensing end time, and the transmission start time of the second enable signal included in the stored sensor drive signal. Generates the first enable signal A or the second enable signal B.
[0033] 図 6は、第 1のィネーブル信号 Aと第 2のィネーブル信号 Bの発生タイミングを示す 図である。図 7は、第 1のィネーブル信号 Aと第 2のィネーブル信号 Bの送出先を示す 図である。第 1のィネーブル信号 Aは、センサ駆動信号に含まれる第 1のィネーブル 信号に対するセンシング周期、センシング開始時亥 I」、センシング終了時刻に基づき 出力される。この場合、センシング開始時刻とセンシング終了時刻は、例えば、昼間 の所定の時間帯が設定される。また、第 2のィネーブル信号 Bは、センサ駆動信号に 含まれる第 2のィネーブル信号の送信開始時刻に基づいて出力される。この場合、 送信開始時刻は、例えば、夜間の所定の時刻が設定される。第 1のィネーブル信号 Aは、センサ本体 21、センサ駆動信号受信部 26、センシング信号蓄積部 23、記憶 部 222、 AD変換器 224, 225に与えられ、第 2のィネーブル信号 Bは、センシング信 号圧縮部 24、センシング信号送信部 25に与えられる。 AD変換部 224、 225は、 CP U221からの第 1のィネーブル信号 Aにより駆動される加速度センサ 21 1と温度セン サ 212からの検出データをデジタル信号に変換するものであり、 CPU221より SPI22 6を介してセンシング信号として出力する。 FIG. 6 is a diagram showing the generation timing of the first enable signal A and the second enable signal B. FIG. 7 is a diagram showing destinations of the first enable signal A and the second enable signal B. The first enable signal A is based on the sensing cycle for the first enable signal included in the sensor drive signal, the sensing start time I, and the sensing end time. Is output. In this case, for example, a predetermined time zone in the daytime is set as the sensing start time and sensing end time. The second enable signal B is output based on the transmission start time of the second enable signal included in the sensor drive signal. In this case, for example, a predetermined time at night is set as the transmission start time. The first enable signal A is supplied to the sensor body 21, sensor drive signal receiving unit 26, sensing signal storage unit 23, storage unit 222, AD converters 224 and 225, and the second enable signal B is a sensing signal. The signal is supplied to the compression unit 24 and the sensing signal transmission unit 25. The AD converters 224 and 225 convert detection data from the acceleration sensor 211 and the temperature sensor 212 driven by the first enable signal A from the CPU 221 into digital signals. Output as a sensing signal.
[0034] 尚、 CPU221から加速度センサ 21 1と温度センサ 212に供給する第 1のイネーブ ル信号 Aとしてはスタンバイ信号が用いられる。加速度センサ 21 1と温度センサ 212 は、スタンバイ信号が" H"レベルになるとセンシングを行う動作状態、 "L"レベルにな ると非動作状態、つまり電力消費量の少ないスタンバイ状態となる。  Note that a standby signal is used as the first enable signal A supplied from the CPU 221 to the acceleration sensor 211 and the temperature sensor 212. The acceleration sensor 211 and the temperature sensor 212 are in a sensing operation state when the standby signal becomes “H” level, and in a non-operation state when the standby signal becomes “L” level, that is, in a standby state with low power consumption.
[0035] 図 3の説明に戻る。センシング信号蓄積部 23は、第 1のィネーブル信号 Aにより駆 動され、センサ駆動制御部 22から出力されるセンシング信号を一時記憶する記憶媒 体である。この場合、センシング信号蓄積部 23は、例えば、スマートメディアやメモリ ステイクなど、センサユニット 2に対し着脱可能な記憶媒体が用いることもできる。セン シング信号圧縮部 24は、第 2のィネーブル信号 Bにより駆動され、センシング信号蓄 積部 23に記憶されたセンシング信号を読み出し、圧縮処理することによりハイビットレ ートの高速信号に変換し、センシング信号送信部 25に出力する。  [0035] Returning to the description of FIG. The sensing signal storage unit 23 is a storage medium that temporarily stores a sensing signal that is driven by the first enable signal A and that is output from the sensor drive control unit 22. In this case, the sensing signal storage unit 23 may be a storage medium that can be attached to and detached from the sensor unit 2, such as a smart media or a memory stake. The sensing signal compressing unit 24 is driven by the second enable signal B, reads the sensing signal stored in the sensing signal accumulating unit 23, converts it to a high bit rate high-speed signal by compression processing, and outputs the sensing signal. Output to transmitter 25.
[0036] 図 8は、センシング信号圧縮部 24で圧縮処理されたセンシング信号の一例を示す ものである。例えば、ヘッダー(2バイト)、圧縮された X軸加速度データ列(2〜8 X N バイト)、圧縮された Y軸加速度データ列(2〜8 X Nバイト)、圧縮された Z軸加速度 データ列 ( 2〜8 X Nバイト)、温度データ列(2〜8 X Nバイト)、フッタ(2バイト)力、ら構 成されている。この場合、センシング信号蓄積部 23からのセンシング信号の読み出し は、第 2のィネーブル信号 Bによる駆動タイミングで行われる。  FIG. 8 shows an example of the sensing signal compressed by the sensing signal compression unit 24. For example, header (2 bytes), compressed X-axis acceleration data string (2-8 XN bytes), compressed Y-axis acceleration data string (2-8 XN bytes), compressed Z-axis acceleration data string (2 ~ 8 XN bytes), temperature data string (2 ~ 8 XN bytes), footer (2 bytes) force. In this case, reading of the sensing signal from the sensing signal storage unit 23 is performed at the drive timing by the second enable signal B.
[0037] センシング信号送信部 25とセンサ駆動信号受信部 26は、図 5に示すように構成さ れている。即ち、センシング信号送信部 25は、 SPI251と、デジタル信号制御部 252 と、信号変調部 253と、混合部 254と、電力増幅部 255と、送受信信号分配部 256と を備えている。また、センサ駆動信号受信部 26は、水晶発振器 261と、位相安定化 回路 262と、電圧制御形発振器 263と、低雑音増幅部 264と、混合部 265と、信号復 調部 266と、デジタル信号制御部 267と、 SPI268とを備えてレ、る。 [0037] The sensing signal transmission unit 25 and the sensor drive signal reception unit 26 are configured as shown in FIG. It is. That is, the sensing signal transmission unit 25 includes an SPI 251, a digital signal control unit 252, a signal modulation unit 253, a mixing unit 254, a power amplification unit 255, and a transmission / reception signal distribution unit 256. The sensor drive signal receiving unit 26 includes a crystal oscillator 261, a phase stabilization circuit 262, a voltage control type oscillator 263, a low noise amplification unit 264, a mixing unit 265, a signal demodulation unit 266, and a digital signal. It has a control unit 267 and SPI268.
[0038] センシング信号送信部 25は、センシング信号圧縮部 24で高速信号に変換された センシング信号を SPI251を介してデジタル信号制御部 252に取り込み、更に信号 変調部 253でデジタル変調、例えば QPSK (Quadrature Phase Shift Keying)変調し 、混合部 254を介して所定のフォーマットに変換してセンシングデータを作成する。  [0038] The sensing signal transmission unit 25 captures the sensing signal converted into a high-speed signal by the sensing signal compression unit 24 into the digital signal control unit 252 via the SPI 251, and further performs digital modulation by the signal modulation unit 253, for example, QPSK (Quadrature (Phase Shift Keying) is modulated, and converted to a predetermined format via the mixing unit 254 to create sensing data.
[0039] この作成されたセンシングデータを電力増幅部 255で電力増幅し、送受信信号分 配部 256よりアンテナ部 27を介して、センタ装置 1に向け送信させる。また、センサ駆 動信号受信部 26は、センタ装置 1から送られた無線信号をアンテナ部 27で受信する と、送受信信号分配部 256より低雑音増幅部 264を介して混合部 265に取り込み、こ こで電圧制御形発振器 263の出力と混合した所定周波数に変換した後、信号復調 部 266でデジタル復調し、このデジタル復調により得られた制御信号をデジタル信号 制御部 267より SPI268を介してセンサ駆動制御部 22に供給する。  [0039] The generated sensing data is power amplified by the power amplification unit 255, and transmitted from the transmission / reception signal distribution unit 256 to the center device 1 via the antenna unit 27. Further, when the sensor drive signal receiving unit 26 receives the radio signal transmitted from the center device 1 by the antenna unit 27, the sensor drive signal receiving unit 26 takes the signal from the transmission / reception signal distribution unit 256 into the mixing unit 265 via the low noise amplification unit 264. The signal is demodulated by the signal demodulator 266 after being converted to a predetermined frequency mixed with the output of the voltage-controlled oscillator 263, and the control signal obtained by this digital demodulation is driven by the digital signal controller 267 via the SPI268. Supply to the control unit 22.
[0040] バッテリ 28は、例えばボタン型リチウム電池からなるもので、このバッテリ 28から発 生する DC電圧を、センサ本体 21、センサ駆動制御部 22、センシング信号蓄積部 23 、センシング信号圧縮部 24、センシング信号送信部 25およびセンサ駆動信号受信 部 26に駆動電源として供給するようになっている。  [0040] The battery 28 is composed of, for example, a button-type lithium battery, and a DC voltage generated from the battery 28 is converted into a sensor body 21, a sensor drive control unit 22, a sensing signal storage unit 23, a sensing signal compression unit 24, The sensing signal transmitting unit 25 and the sensor driving signal receiving unit 26 are supplied as driving power.
[0041] 次に、以上のように構成されたシステムの動作を説明する。  Next, the operation of the system configured as described above will be described.
[0042] いま,センタ装置 1の制御部 11のセンサ駆動信号設定機能 11aにおいてセンサ駆 動信号が生成されると、この生成されたセンサ駆動信号は、センサユニット 2に向け 送信部 13により送信させる。これに対しセンサユニット 2は、センサ駆動信号受信部 2 6によりセンサ駆動信号が受信されると、この受信されたセンサ駆動信号が自己宛の ものかどうかを判定する。そして、 自己宛のものであれば、このセンサ駆動信号を不 図示のメモリに保存する。その後、まず、 CPU221は、保存されたセンサ駆動信号に 含まれる第 1のィネーブル信号 Aのセンシング周期、センシング開始時亥 1」、センシン グ終了時刻に基づいて、クロック制御信号を生成してクロック信号発生部 223に出力 し、クロック信号発生部 223より発生されるクロック信号に基づいて第 1のィネーブル 信号 Aを生成し発生する。センサ本体 21の加速度センサ 211と温度センサ 212は、 第 1のィネーブル信号 Aのセンシング開始時刻からセンシング終了時刻までの間、ィ ネーブル信号のセンシング周期で所定期間動作し、この動作期間に被検体 4の脈拍 、血圧、人の動きを始め体温を検出し、その検出データ(検出情報)をセンシング信 号として出力する。 [0042] Now, when a sensor drive signal is generated in the sensor drive signal setting function 11a of the control unit 11 of the center apparatus 1, the generated sensor drive signal is transmitted to the sensor unit 2 by the transmission unit 13. . On the other hand, when the sensor drive signal is received by the sensor drive signal receiving unit 26, the sensor unit 2 determines whether or not the received sensor drive signal is addressed to itself. If it is addressed to itself, this sensor drive signal is stored in a memory (not shown). After that, the CPU 221 first detects the sensing cycle of the first enable signal A included in the stored sensor drive signal, the sensing start time 1 ”, Based on the clock end time, a clock control signal is generated and output to the clock signal generator 223, and a first enable signal A is generated and generated based on the clock signal generated by the clock signal generator 223. The acceleration sensor 211 and the temperature sensor 212 of the sensor body 21 operate for a predetermined period at the sensing period of the enable signal from the sensing start time to the sensing end time of the first enable signal A. During this operation period, the subject 4 The body temperature is detected, starting with the pulse, blood pressure, and human movement, and the detection data (detection information) is output as a sensing signal.
[0043] このセンシング信号は、第 1のィネーブル信号 Aのタイミングでセンシング信号蓄積 部 23に記憶される。この場合、センシング信号蓄積部 23に蓄えられたセンシング信 号は、直ちにセンシング信号圧縮部 24に読み出されることなぐそのまま記憶される 。その後、センサ駆動信号に含まれる第 2のィネーブル信号 Bの送信開始時刻にな ると、 CPU221は、クロック信号発生部 223のクロック信号に基づいて第 2のイネーブ ル信号 Bを生成して出力する。この第 2のィネーブル信号 Bによりセンシング信号圧 縮部 24が駆動され、センシング信号蓄積部 23に記憶されたセンシング信号を読み 出す。そして、このセンシング信号を圧縮処理することによりハイビットレートの高速信 号に変換し、センシング信号送信部 25に出力する。この場合、センシング信号圧縮 部 24で圧縮処理されたセンシング信号は、図 8に示すように、例えばヘッダー(2バイ ト)、圧縮された X軸加速度データ列(2〜8 X Nバイト)、圧縮された Y軸加速度デー タ列(2〜8 X Nバイト)、圧縮された Z軸加速度データ列(2〜8 X Nバイト)、温度デ ータ列(2〜8 X Nバイト)、フッタ(2バイト)から構成されている。  This sensing signal is stored in the sensing signal storage unit 23 at the timing of the first enable signal A. In this case, the sensing signal stored in the sensing signal storage unit 23 is stored as it is without being immediately read out by the sensing signal compression unit 24. Thereafter, when the transmission start time of the second enable signal B included in the sensor drive signal is reached, the CPU 221 generates and outputs the second enable signal B based on the clock signal of the clock signal generation unit 223. . The sensing signal compression unit 24 is driven by the second enable signal B, and the sensing signal stored in the sensing signal storage unit 23 is read. Then, the sensing signal is compressed to be converted into a high bit rate high-speed signal and output to the sensing signal transmission unit 25. In this case, the sensing signal compressed by the sensing signal compression unit 24 is compressed, for example, as shown in FIG. 8, a header (2 bytes), a compressed X-axis acceleration data string (2 to 8 XN bytes). Y-axis acceleration data string (2 to 8 XN bytes), compressed Z-axis acceleration data string (2 to 8 XN bytes), temperature data string (2 to 8 XN bytes), footer (2 bytes) It is configured.
[0044] センシング信号送信部 25は、第 2のィネーブル信号 Bにより駆動されており、センシ ング信号圧縮部 24でハイビットレートの高速信号に変換されたセンシング信号を高 周波の信号に変換し、アンテナ部 27からセンタ装置 1に向け送信する。センタ装置 1 は、制御部 11によりセンサユニット 2から送信されるセンシング信号の受信を監視す る。そして、受信部 12によりセンシング信号が受信されると、上記受信されたセンシン グ信号をセンシングデータ収集処理機能 l ibにより復号 (誤り訂正復号処理も含む)し てセンシングデータを再生し、このセンシングデータを制御部内の記憶部に蓄積する [0045] 一方、センタ装置 1の制御部 11のセンサ駆動信号設定機能 11aによりセンサ駆動 信号が異なる内容のものに再設定されると、この再設定された新たなセンサ駆動信 号は、送信部 13からセンサユニット 2に向け送信される。これ以後は、この新たなセン サ駆動信号に含まれる第 1のィネーブル信号のセンシング周期、センシング開始時 亥 IJ、センシング終了時刻および第 2のィネーブル信号の送信開始時刻に基づいて第 1のィネーブル信号 A及び第 2のィネーブル信号 Bが生成される。第 1のィネーブル 信号 Aによりセンサ本体 21、センサ駆動信号受信部 26、センシング信号蓄積部 23、 記憶部 222、 AD変換器 224, 225が駆動され、第 2のィネーブル信号 Bにより、セン シング信号圧縮部 24、センシング信号送信部 25が駆動され、上述したと同様にして 、センサ本体 21の加速度センサ 211と温度センサ 212により検出された被検体 4の 脈拍、血圧、人の動きを始め体温のセンシング信号がセンシング信号蓄積部 23に一 旦記憶され、その後、センシング信号圧縮部 24でハイビットレートの高速信号に変換 されてセンシング信号送信部 25よりセンタ装置 1に送信される。 [0044] The sensing signal transmission unit 25 is driven by the second enable signal B, converts the sensing signal converted into a high bit rate high-speed signal by the sensing signal compression unit 24 into a high-frequency signal, and transmits the antenna signal. Transmitted from unit 27 to center device 1. The center device 1 monitors reception of a sensing signal transmitted from the sensor unit 2 by the control unit 11. When the sensing signal is received by the receiving unit 12, the received sensing signal is decoded by the sensing data collection processing function l ib (including error correction decoding processing) to reproduce the sensing data, and the sensing data Is stored in the storage unit in the control unit [0045] On the other hand, when the sensor drive signal is reset to a different content by the sensor drive signal setting function 11a of the control unit 11 of the center apparatus 1, the reset new sensor drive signal is transmitted to the transmission unit. Sent from 13 to sensor unit 2. Thereafter, the first enable signal is based on the sensing period of the first enable signal included in the new sensor drive signal, the sensing start time IJ, the sensing end time, and the transmission start time of the second enable signal. A and the second enable signal B are generated. Sensor body 21, sensor drive signal receiver 26, sensing signal storage unit 23, storage unit 222, AD converters 224 and 225 are driven by the first enable signal A, and the sense signal is compressed by the second enable signal B. The sensor 24 and the sensing signal transmitter 25 are driven, and in the same manner as described above, body temperature sensing such as pulse, blood pressure, and human movement of the subject 4 detected by the acceleration sensor 211 and the temperature sensor 212 of the sensor body 21 is performed. The signal is temporarily stored in the sensing signal storage unit 23, and then converted into a high bit rate high-speed signal by the sensing signal compression unit 24 and transmitted to the center device 1 from the sensing signal transmission unit 25.
[0046] このようにすれば、センシング信号送信部 25は、センシング信号圧縮部 24で圧縮 処理され、ハイビットレートの高速信号に変換したものをセンタ装置 1に送信してレ、る ので、センシング信号送信部 25でのセンシング信号の送信時間を大幅に短縮するこ とができる。このためバッテリ 28の寿命は大幅に延命化され、バッテリ 28の交換頻度 が減少して被検者の負担を軽減することができる。  In this way, the sensing signal transmission unit 25 transmits the signal that has been compressed by the sensing signal compression unit 24 and converted into a high-bit-rate high-speed signal to the center device 1. The transmission time of the sensing signal in the transmission unit 25 can be greatly shortened. For this reason, the life of the battery 28 is greatly extended, the replacement frequency of the battery 28 is reduced, and the burden on the subject can be reduced.
[0047] また、バッテリ 28から出力される動作電流の最大値を低い値に抑制することもでき るので、バッテリ切れ寸前の状態でも、センサユニット 2が即時動作不能に陥るような ことなぐ測定動作及び送信動作を継続することが可能となる。  [0047] In addition, since the maximum value of the operating current output from the battery 28 can be suppressed to a low value, the measurement operation that does not cause the sensor unit 2 to be immediately disabled even in the state immediately before the battery runs out. And the transmission operation can be continued.
[0048] また、第 1のィネーブル信号 Aの発生タイミングで駆動される加速度センサ 211、温 度センサ 212およびセンシング信号蓄積部 23と、第 2のィネーブル信号 Bの発生タイ ミングで駆動されるセンシング信号圧縮部 24とセンシング信号送信部 25は、動作タ イミングが重なることがないので、センサユニット 2での消費電力を大幅に低減するこ とが可能となる。センシング信号蓄積部 23として、センサユニット 2に対して着脱可能 な記憶媒体を用いれば、センタ装置 1に送信する前のセンシングデータを途中で取 出し、他に利用することもできる。 [0049] (第 2実施形態) [0048] Further, the acceleration sensor 211, the temperature sensor 212, and the sensing signal storage unit 23 that are driven at the generation timing of the first enable signal A, and the sensing signal that is driven at the generation timing of the second enable signal B Since the compression unit 24 and the sensing signal transmission unit 25 do not overlap in operation timing, the power consumption in the sensor unit 2 can be greatly reduced. If a storage medium that can be attached to and detached from the sensor unit 2 is used as the sensing signal storage unit 23, the sensing data before being transmitted to the center device 1 can be taken out and used elsewhere. [0049] (Second Embodiment)
次に、本発明の第 2実施形態を説明する。  Next, a second embodiment of the present invention will be described.
[0050] この第 2実施形態では、図 3で述べたセンサユニットを複数個用意し、これら複数の センサユニットを無線ネットワークを介してセンタ装置に接続するようにしたものである In the second embodiment, a plurality of sensor units described in FIG. 3 are prepared, and the plurality of sensor units are connected to the center apparatus via a wireless network.
[0051] 図 9は、本発明の第 2実施形態の概略構成を示すもので、図 1および図 3と同一部 分には同一符号を付して詳しレ、説明は省略する。 FIG. 9 shows a schematic configuration of the second embodiment of the present invention. The same parts as those in FIGS. 1 and 3 are denoted by the same reference numerals, and detailed description and explanation thereof will be omitted.
[0052] 図 9において、 2A〜2Nはセンサユニットであり、これらセンサユニット 2A〜2Nは、 それぞれ図 3で述べたと同様な構成のものからなっている。そして、これらセンサュニ ット 2A〜2Nは、それぞれ別の被検体 4A〜4N又は同一の被検体の異なる複数の 部位に取着されており、無線ネットワーク 3を介してセンタ装置 1に接続されている。  In FIG. 9, 2A to 2N are sensor units, and each of the sensor units 2A to 2N has the same configuration as described in FIG. These sensor units 2A to 2N are attached to different specimens 4A to 4N or a plurality of different parts of the same specimen, and are connected to the center apparatus 1 via the wireless network 3. .
[0053] センタ装置 1の制御部 11は、センサ駆動信号設定機能 11aとセンシングデータ収 集処理機能 l ibの他に、さらに送信タイミング設定機能 11cを有している。尚、これら の機能は CPU又は DSPにプログラムを実行させることにより実現される。  The control unit 11 of the center apparatus 1 further has a transmission timing setting function 11c in addition to the sensor drive signal setting function 11a and the sensing data collection processing function l ib. These functions are realized by causing the CPU or DSP to execute the program.
[0054] 送信タイミング設定機能 11cは、各センサユニット 2A〜2Nに対しそれぞれ時間を ずらして順次センサ駆動信号を送信するためのものである。  [0054] The transmission timing setting function 11c is for sequentially transmitting sensor drive signals to the respective sensor units 2A to 2N at different times.
[0055] 次に、以上のように構成されたシステムの動作を説明する。  Next, the operation of the system configured as described above will be described.
[0056] センタ装置 1において制御部 11のセンサ駆動信号設定機能 11aよりセンサ駆動信 号が生成されると、このセンサ駆動信号は,送信タイミング設定機能 11cにより時間を ずらされ各センサユニット 2A〜2Nに送られる。図 10にセンサ駆動信号 CS1、 CS2 〜CSnの送信タイミングの一例を示す。すなわち、センサ駆動信号 CS1は、センサュ ニット 2Aに向け、センサ駆動信号 CS2は、センサユニット 2Bに向け、センサ駆動信 号 CSnは、センサユニット 2Nに向け送られる。  [0056] When a sensor drive signal is generated from the sensor drive signal setting function 11a of the control unit 11 in the center device 1, the sensor drive signal is shifted in time by the transmission timing setting function 11c, and each sensor unit 2A to 2N Sent to. FIG. 10 shows an example of the transmission timing of the sensor drive signals CS1, CS2 to CSn. That is, the sensor drive signal CS1 is sent to the sensor unit 2A, the sensor drive signal CS2 is sent to the sensor unit 2B, and the sensor drive signal CSn is sent to the sensor unit 2N.
[0057] これに対して、各センサユニット 2A〜2Nは、センサ駆動信号受信部 26によりセン サ駆動信号が受信されると、この受信されたセンサ駆動信号が自己宛のものかどうか をセンサ駆動制御部 22により判定する。そして、 自己宛のものであれば、当該センサ 駆動信号をメモリ (図示せず)に保存する。そして、以後この保存されたセンサ駆動信 号に含まれる第 1のィネーブル信号のセンシング周期、センシング開始時刻、センシ ング終了時刻に基づいてクロック信号発生部 223から第 1のィネーブル信号 Aが発 生する。 [0057] On the other hand, when each sensor unit 2A to 2N receives the sensor drive signal by the sensor drive signal receiving unit 26, it determines whether the received sensor drive signal is addressed to itself. It is determined by the control unit 22. If it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Thereafter, the sensing cycle, sensing start time, sensing of the first enable signal included in the stored sensor driving signal are detected. The first enable signal A is generated from the clock signal generator 223 based on the clock end time.
[0058] 従って、各センサユニット 2A〜2Nのセンサ本体 21は、第 1のィネーブル信号 Aの センシング開始時刻からセンシング終了時刻までの間、指示されたセンシング周期 で所定時間動作し、この動作期間に被検体 4の脈拍、血圧、人の動きを始め体温を 検出し、その検出データ (検出情報)をセンシング信号として出力する。  [0058] Therefore, the sensor body 21 of each sensor unit 2A to 2N operates for a predetermined period of time with the instructed sensing cycle from the sensing start time to the sensing end time of the first enable signal A, and during this operation period, It detects body temperature such as pulse, blood pressure, and human movement of subject 4, and outputs the detection data (detection information) as a sensing signal.
[0059] これらの検出データは、ー且それぞれのセンサユニットのセンシング信号蓄積部 23 に記憶される。この場合、センシング信号蓄積部 23に蓄えられたセンシング信号は、 直ちにセンシング信号圧縮部 24に読み出されることなぐそのまま記憶される。  [0059] These detection data are stored in the sensing signal storage unit 23 of each sensor unit. In this case, the sensing signal stored in the sensing signal storage unit 23 is stored as it is without being immediately read out to the sensing signal compression unit 24.
[0060] その後、センサ駆動信号に含まれる第 2のィネーブル信号 Bの送信開始時刻にな ると、センサ駆動制御部 22は、クロック信号発生部 223のクロック信号に基づいて第 2のィネーブル信号 Bを生成して出力する。すると、センシング信号蓄積部 23に記憶 されたセンシング信号が読み出され、このセンシング信号圧縮部 24での圧縮処理に よりハイビットレートの高速信号に変換されてセンシング信号送信部 25に出力される 。センシング信号送信部 25は、センシング信号圧縮部 24でハイビットレートの高速信 号に変換された検出データを高周波信号に変換し、アンテナ部 27からセンタ装置 1 に向け送信する。この場合も、各センサユニット 2A〜2Nからセンタ装置 1に向け送 信されるセンシング信号は、それぞれ時間をずらして送信タイミングが重ならないよう にしている。  [0060] After that, when the transmission start time of the second enable signal B included in the sensor drive signal comes, the sensor drive control unit 22 uses the second enable signal B based on the clock signal of the clock signal generation unit 223. Is generated and output. Then, the sensing signal stored in the sensing signal storage unit 23 is read out, converted into a high bit rate high-speed signal by the compression processing in the sensing signal compression unit 24, and output to the sensing signal transmission unit 25. The sensing signal transmission unit 25 converts the detection data converted into a high bit rate high-speed signal by the sensing signal compression unit 24 into a high-frequency signal, and transmits the high-frequency signal from the antenna unit 27 to the center device 1. Also in this case, the sensing signals transmitted from the sensor units 2A to 2N to the center device 1 are shifted in time so that the transmission timings do not overlap.
[0061] 一方、センタ装置 1の制御部 11は、各センサユニット 2A〜2Nから送信されるセン シング信号の到来を監視する。センシング信号の到来を確認すると、各センサュニッ ト 2A〜2Nからのセンシング信号の、それぞれの受信タイミングが重ならないようにし て受信部 12で受信する。そして、受信部 12によりセンシング信号が受信されるごとに 、この受信されたセンシング信号をセンシングデータ収集処理機能 1 lbにより復号( 誤り訂正復号処理等も含む)してセンシングデータを再生し、このセンシングデータを 制御部内の図示しない記憶部にセンサユニット 2A〜2Nの識別番号に対応付けて それぞれ蓄積する。したがって、このようにすれば、各センサユニット 2A〜2Nに対し て送信タイミング設定機能 11cにより時間をずらされたセンサ駆動信号が送られる。 [0062] これに対して、各センサユニット 2A〜2Nは、それぞれ、センサ駆動信号が受信さ れるごとにセンサ駆動信号に含まれる第 1のィネーブル信号のセンシング周期、セン シング開始時刻、センシング終了時刻および第 2のィネーブル信号の送信開始時刻 に基づいて第 1のィネーブル信号 Aと第 2のィネーブル信号 Bを生成する。そして、 第 1のィネーブル信号 Aによりセンサ本体 21を駆動し、被検体 4A〜4Nの脈拍、血 圧、人の動きを始め体温を検出し、一旦センシング信号蓄積部 23に記憶させ、その 後、第 2のィネーブル信号 Bの発生によりセンシング信号蓄積部 23に記憶したセンシ ング信号をセンシング信号圧縮部 24で圧縮処理し、ハイビットレートの高速信号に変 換しセンシング信号送信部 25よりセンタ装置 1へ送信するようにしている。 On the other hand, the control unit 11 of the center device 1 monitors the arrival of sensing signals transmitted from the sensor units 2A to 2N. When the arrival of the sensing signal is confirmed, the receiving unit 12 receives the sensing signals from the sensor units 2A to 2N so that the reception timings of the sensing signals do not overlap. Each time a sensing signal is received by the receiving unit 12, the received sensing signal is decoded by the sensing data collection processing function 1 lb (including error correction decoding processing, etc.) to reproduce the sensing data. Data is stored in a storage unit (not shown) in the control unit in association with the identification numbers of the sensor units 2A to 2N. Therefore, if this is done, a sensor drive signal whose time is shifted by the transmission timing setting function 11c is sent to each of the sensor units 2A to 2N. [0062] On the other hand, each of the sensor units 2A to 2N has a sensing cycle, a sensing start time, and a sensing end time of the first enable signal included in the sensor driving signal each time the sensor driving signal is received. The first enable signal A and the second enable signal B are generated based on the transmission start time of the second enable signal. Then, the sensor main body 21 is driven by the first enable signal A, and the body temperature including the pulse, blood pressure, and human movement of the subjects 4A to 4N is detected, and once stored in the sensing signal storage unit 23, The sensing signal stored in the sensing signal accumulating unit 23 when the second enable signal B is generated is compressed by the sensing signal compressing unit 24 and converted into a high bit rate high-speed signal from the sensing signal transmitting unit 25 to the center device 1. I am trying to send it.
[0063] この場合も、各センサユニット 2A〜2Nでは、一旦記憶したセンシング信号を圧縮 処理レヽィビットレートの高速信号に変換したものをセンシング信号送信部 25よりセ ンタ装置 1に送信するようになり、センシング信号送信部 25でのセンシング信号の送 信時間を大幅に短縮することができ、消費電力は大幅に低減される。このため各セン サユニット 2A〜2Nでのバッテリ 28の寿命は大幅に延命化され、バッテリ 28の交換 頻度が減少して被検者の負担を軽減することができる。バッテリ交換忘れ等によるバ ッテリ切れの発生を低減して監視業務の信頼性を高く維持することが可能となる。  [0063] Also in this case, in each of the sensor units 2A to 2N, the sensing signal once stored is converted into a high-speed signal of the compression processing layer bit rate so that the sensing signal transmission unit 25 transmits the signal to the center device 1. Thus, the sensing signal transmission time in the sensing signal transmission unit 25 can be greatly shortened, and the power consumption is greatly reduced. For this reason, the life of the battery 28 in each of the sensor units 2A to 2N is greatly extended, and the replacement frequency of the battery 28 is reduced, so that the burden on the subject can be reduced. It is possible to maintain the high reliability of monitoring work by reducing the occurrence of battery exhaustion due to forgetting to replace the battery.
[0064] (第 3実施形態)  [0064] (Third embodiment)
次に、本発明の第 3実施形態を説明する。  Next, a third embodiment of the present invention will be described.
[0065] この第 3実施形態では、センサユニット 2内部に直接センサ駆動信号を記憶する機 能を備え、この記憶されたセンサ駆動信号によりセンサ本体により被検体 4の脈拍、 血圧、人の動きを始め体温などのデータを検出するようにしたものである。  [0065] In the third embodiment, the sensor unit 2 has a function of directly storing a sensor drive signal, and the stored sensor drive signal allows the sensor body to detect the pulse, blood pressure, and human movement of the subject 4. At first, data such as body temperature is detected.
[0066] 図 11は、本発明の第 3実施形態に適用されるセンサユニットの概略構成図である。  FIG. 11 is a schematic configuration diagram of a sensor unit applied to the third embodiment of the present invention.
図 3と同一部分には同一符号を付して詳しい説明は省略する。  The same parts as those in FIG.
[0067] センサユニット 2は、図 3に示す構成からセンサ駆動信号受信部 26が削除される。  In the sensor unit 2, the sensor drive signal receiving unit 26 is deleted from the configuration shown in FIG.
さらにセンタ装置 1の制御部 11のセンサ駆動信号設定機能 11aおよび送信部 13も 削除される。また、センサ駆動制御部 22は、記憶部 222にパソコンなどの別の部によ り直接センサ駆動信号を記憶させ、これを CPU221より読み出すことにより第 1及び 第 2のィネーブル信号 A、 Bを生成するようにしてレ、る。 [0068] このようにすると、センサ駆動制御部 22の CPU221が予め記憶部 222に記憶され たセンサ駆動信号を読み出すと、センサ駆動信号に含まれる第 1のィネーブル信号 Aのセンシング周期、センシング開始時刻、センシング終了時刻および第 2のイネ一 ブル信号の送信開始時刻に基づいて第 1のィネーブル信号 Aと第 2のィネーブル信 号 Bが設定される。そして、第 1のィネーブル信号 Aでセンサ本体 21を駆動し、被検 体 4A〜4Nの脈拍、血圧、人の動きを始め体温を検出し、一旦センシング信号蓄積 部 23に記憶させ、その後、第 2のィネーブル信号 Bの発生によりセンシング信号蓄積 部 23に記憶したセンシング信号をセンシング信号圧縮部 24で圧縮処理し、ノ、イビッ トレートの高速信号に変換しセンシング信号送信部 25よりセンタ装置 1に送信する。 これらの詳細な動作は、第 1の実施の形態で述べたのと同様である。 Further, the sensor drive signal setting function 11a and the transmission unit 13 of the control unit 11 of the center apparatus 1 are also deleted. In addition, the sensor drive control unit 22 stores the sensor drive signal directly in another unit such as a personal computer in the storage unit 222 and reads out this from the CPU 221 to generate the first and second enable signals A and B. Like you do. In this way, when the CPU 221 of the sensor drive control unit 22 reads the sensor drive signal stored in the storage unit 222 in advance, the sensing cycle and the sensing start time of the first enable signal A included in the sensor drive signal The first enable signal A and the second enable signal B are set based on the sensing end time and the transmission start time of the second enable signal. Then, the sensor main body 21 is driven by the first enable signal A to detect the body temperature such as the pulse, blood pressure, and human movement of the subjects 4A to 4N, and is temporarily stored in the sensing signal storage unit 23, and then the first The sensing signal stored in the sensing signal accumulating unit 23 due to the generation of the enable signal B of 2 is compressed by the sensing signal compressing unit 24, converted into a high-speed signal of no or even rate, and transmitted from the sensing signal transmitting unit 25 to the center device 1. To do. These detailed operations are the same as those described in the first embodiment.
[0069] このようにすれば、センサユニット 2では、事前にセンサ駆動信号が記憶され、この センサ駆動信号に基づいて生成された第 1のィネーブル信号 Aによりセンサ本体 21 の加速度センサ 211と温度センサ 212より検出データを取得し、その後、第 2のイネ 一ブル信号 Bにより取得したセンシング信号を圧縮処理し、ノ、ィビットレートの高速信 号に変換してセンタ装置 1に送信するようにしているので、消費電力は大幅に低減さ れる。このためセンサユニット 2のバッテリ 28の寿命は大幅に延命化され、バッテリ 28 の交換頻度が減少して被検者の負担を軽減することができる。また、バッテリ交換忘 れ等によるバッテリ切れの発生を低減して監視業務の信頼性を高く維持することが可 能となる。また、センサ駆動信号を外部から受信して処理するものと比べ、センサュニ ット 2の構成を簡素化できる。尚、センタ装置 1及びセンサユニット 2の構成、センサ駆 動信号に含まれる第 1のィネーブル信号のセンシング周期、センシング開始時刻、セ ンシング終了時刻および第 2のィネーブル信号の送信開始時刻等の設定値、センシ ング対象物の種類等についても本実施の形態の要旨を逸脱しない範囲で種々変形 して実施できる。  In this way, in the sensor unit 2, the sensor drive signal is stored in advance, and the acceleration sensor 211 and the temperature sensor of the sensor body 21 are generated by the first enable signal A generated based on the sensor drive signal. The detection data is acquired from 212, and then the sensing signal acquired by the second enable signal B is compressed, converted into a high-speed signal with a high bit rate and transmitted to the center device 1. Therefore, power consumption is greatly reduced. For this reason, the life of the battery 28 of the sensor unit 2 is greatly extended, the replacement frequency of the battery 28 is reduced, and the burden on the subject can be reduced. In addition, it is possible to reduce the occurrence of battery exhaustion due to forgetting to replace the battery and maintain high reliability of monitoring work. In addition, the configuration of sensor unit 2 can be simplified as compared with the case where sensor drive signals are received from outside and processed. The configuration values of the center device 1 and sensor unit 2, the sensing period of the first enable signal included in the sensor drive signal, the sensing start time, the sensing end time, and the transmission start time of the second enable signal, etc. The types of sensing objects can be variously modified without departing from the gist of the present embodiment.
[0070] 本発明の上記第 1乃至第 3実施形態によれば、センサユニットでの検出情報を効率 よく送信でき、省電力化を実現してバッテリの長寿命化を可能にし、これによりバッテ リ交換作業の負担を軽減するとともに、バッテリ切れによる監視業務の信頼性低下を 防止するようにした遠隔センシングシステム及びセンサユニットを提供できる。 [0071] (第 4の実施の形態) [0070] According to the first to third embodiments of the present invention, detection information in the sensor unit can be transmitted efficiently, realizing power saving and extending the life of the battery. It is possible to provide a remote sensing system and a sensor unit that reduce the burden of replacement work and prevent deterioration in reliability of monitoring work due to battery exhaustion. [0071] (Fourth embodiment)
図 12は、本発明の第 4実施形態に力かる遠隔センシングシステムの概略構成図で ある。ここでは、遠隔センシングシステムを被検体の健康状態などを監視するものに 適用した例を示している。遠隔センシングシステムは、医療施設や介護施設などに設 置されるセンタ装置 101と、このセンタ装置 101に対し無線ネットワーク 103を介して 接続されるセンサユニット 102とで構成される。センサユニット 102はモジュール化さ れたもので、監視対象の被検体 104に対し、例えばアクリル系両面接着テープにより 直接貼付される。アクリル系両面接着テープは、被検体 104の皮膚にかぶれ等の炎 症が起きにくい、センサユニット 102を被検体 104からはがした時にセンサユニット 10 2や被検体 104の表面に接着のりが付着しにくい、接着層を薄くできる等の利点を有 する。  FIG. 12 is a schematic configuration diagram of a remote sensing system according to the fourth embodiment of the present invention. Here, an example is shown in which a remote sensing system is applied to a device that monitors the health status of a subject. The remote sensing system includes a center apparatus 101 installed in a medical facility or a nursing facility, and a sensor unit 102 connected to the center apparatus 101 via a wireless network 103. The sensor unit 102 is modularized, and is directly attached to the subject 104 to be monitored by, for example, an acrylic double-sided adhesive tape. Acrylic double-sided adhesive tape is unlikely to cause irritation such as a rash on the skin of the subject 104, and when the sensor unit 102 is peeled off from the subject 104, an adhesive paste adheres to the surface of the sensor unit 102 or the subject 104. It has advantages such as being difficult and making the adhesive layer thinner.
[0072] 無線ネットワーク 103としては、例えば BT(Blue ToothX登録商標)等の近距離デー タ通信システムや、無線 LAN(Local Area Network), PHS(Personal Handyphon Sys tem)(登録商標)、携帯電話システム等が使用される。  [0072] As the wireless network 103, for example, a short-range data communication system such as BT (Blue ToothX registered trademark), a wireless LAN (Local Area Network), a PHS (Personal Handyphon System) (registered trademark), a mobile phone system Etc. are used.
[0073] なお、センタ装置 101とセンサユニット 102との間は必ずしも直接接続する必要は なぐ無線中継器を介して接続するようにしてもよい。この場合、センサユニット 102と 無線中継器との問の無線通信方式としては BTや無線 LAN等の微弱又は小電力型 の方式が、一方、無線中継器とセンタ装置 101との問の無線通信方式として携帯電 話システム等の長距離通信が可能な方式がそれぞれ使用される。  It should be noted that the center device 101 and the sensor unit 102 may be connected via a wireless repeater, which is not necessarily directly connected. In this case, the wireless communication method between the sensor unit 102 and the wireless repeater is a weak or low power type method such as BT or wireless LAN, while the wireless communication method between the wireless repeater and the center device 101 is As such, a method capable of long-distance communication such as a mobile phone system is used.
[0074] センタ装置 101は、制御部 111と、送信部 112と、アンテナ部 113とを備えている。  The center device 101 includes a control unit 111, a transmission unit 112, and an antenna unit 113.
送信部 112は、制御部 111から出力されたセンサ駆動信号を変調したのち無線信号 に変換し、この無線信号をアンテナ部 113からセンサユニット 102に向け送信するも のである。制御部 111は、例えば CPU(Central Processing Unit)や DSP(Digital Sign al Processor)を備えたもので、この発明に係わる制御機能として、制御信号設定部を 構成するセンサ駆動信号設定機能 11 laとセンシングデータ処理機能 11 lbとを有し ている。なお、これらの機能は上記 CPU又は DSPにプログラムを実行させることによ り実現される。  The transmission unit 112 modulates the sensor drive signal output from the control unit 111, converts the signal into a radio signal, and transmits the radio signal from the antenna unit 113 to the sensor unit 102. The control unit 111 includes, for example, a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). As a control function according to the present invention, the sensor drive signal setting function 11 la constituting the control signal setting unit and sensing It has a data processing function of 11 lb. These functions are realized by causing the CPU or DSP to execute a program.
[0075] センサ駆動信号設定機能 11 laは、管理者の判断や被検体 104の状況変化に応じ てセンサ駆動信号を異なる内容のものに設定するためのものである。例えば、ある内 容のセンサ駆動信号を設定している途中で、他の内容のセンサ駆動信号に設定を 変更し、或いはこの逆に他の内容のセンサ駆動信号を設定している途中で、最初の 内容のセンサ駆動信号に設定を変更可能にしている。センシングデータ処理機能 1 l ibは、センサユニット 102で得られたセンシングデータを処理し解析するためのも のである。センサ駆動信号は、図 13に示すように、例えばヘッダー(2バイト)、駆動 制御信号であるイネ一ブル信号のセンシング周期(2〜22バイト)、ィネーブル信号 のセンシング開始時刻(2〜32バイト)、ィネーブル信号のセンシング終了時刻(2〜 32バイト)、フッタ(2バイト)から構成されている。そして、設定されたセンサ駆動信号 を送信部 113へ出力し、この送信部 113からセンサユニット 102に向け送信させる。 [0075] The sensor drive signal setting function 11 la is in accordance with the judgment of the administrator or the change in the situation of the subject 104. Thus, the sensor drive signal is set to have different contents. For example, in the middle of setting a sensor drive signal of a certain content, the setting is changed to a sensor drive signal of another content or vice versa. The setting can be changed to the sensor drive signal with the contents of. Sensing data processing function 1 l ib is for processing and analyzing sensing data obtained by the sensor unit 102. As shown in Fig. 13, the sensor drive signal includes, for example, a header (2 bytes), a sensing cycle of the enable signal that is the drive control signal (2 to 22 bytes), and a sensing start time of the enable signal (2 to 32 bytes) , Enable signal sensing end time (2 to 32 bytes) and footer (2 bytes). Then, the set sensor drive signal is output to the transmission unit 113 and transmitted from the transmission unit 113 to the sensor unit 102.
[0076] 一方、センサユニット 102は、図 14に示すように、センサ本体 121と、センサ駆動制 御部としてのセンサ駆動制御部 122と、センシング信号判断部としてのセンシング信 号判断部 123と、記憶部としてのセンシング信号蓄積部 124と、センサ駆動信号受 信部としてのセンサ駆動信号受信部 125と、アンテナ部 126と、バッテリ 127とを備え ている。 On the other hand, as shown in FIG. 14, the sensor unit 102 includes a sensor body 121, a sensor drive control unit 122 as a sensor drive control unit, a sensing signal determination unit 123 as a sensing signal determination unit, A sensing signal storage unit 124 as a storage unit, a sensor drive signal reception unit 125 as a sensor drive signal reception unit, an antenna unit 126, and a battery 127 are provided.
[0077] センサ本体 121は、図 15に示すように加速度センサ 1211と温度センサ 1212を備 えたもので、加速度センサ 1211により被検体 4の脈拍、血圧、人の動きなどを検出し 、温度センサ 1212により体温などを検出するようにしている。勿論、センサ本体 121 は、これら加速度センサ 1211と温度センサ 1212に限らず、他のセンサにより構成す ることちでさる。  As shown in FIG. 15, the sensor main body 121 includes an acceleration sensor 1211 and a temperature sensor 1212. The acceleration sensor 1211 detects the pulse, blood pressure, human movement, etc. of the subject 4 and detects the temperature sensor 1212. Is used to detect body temperature. Of course, the sensor main body 121 is not limited to the acceleration sensor 1211 and the temperature sensor 1212, but may be constituted by other sensors.
[0078] センサ駆動制御部 122は、図 15に示すように CPU1221と、記憶部 1222と、クロッ ク信号発生部 1223と、 AD変換部 1224, 1225と、サーバ'プログラミング 'インター フェース(SPI) 1226とを備えてレヽる。  As shown in FIG. 15, the sensor drive control unit 122 includes a CPU 1221, a storage unit 1222, a clock signal generation unit 1223, AD conversion units 1224 and 1225, and a server 'programming' interface (SPI) 1226. And prepare.
[0079] クロック信号発生部 1223は、 CPU1221のクロック制御信号に基づいて所定周期 のクロック信号を発生する。記憶部 1222は、 CPU1221により実行されるプログラム や、設定データを記憶している。 CPU1221は、センサ本体 121の加速度センサ 12 11と温度センサ 1212を駆動制御するもので、上述したセンタ装置 101から送られて くるセンサ駆動信号のヘッダーに含まれるセンサユニットの識別番号から当該センサ 駆動信号が自己宛のものかどうかを判定し、 自己宛のものであれば当該センサ駆動 信号をメモリ (図示せず)に保存する。そして、以後この保存されたセンサ駆動信号に 含まれるィネーブル信号のセンシング周期、センシング開始時刻、センシング終了時 刻に基づいてクロック信号発生部 1223からイネ一ブル信号が発生され、センサ本体 1 12、センサ駆動信号受信部 125、センシング信号判断部 123、センシング信号蓄 積部 124に供給される。 AD変換部 1224、 1225は、 CPU1221からの駆動信号に より駆動される加速度センサ 121 1と温度センサ 1212からの検出データをデジタノレ 信号に変換するもので、 CPU1221より SPI1226を介してセンシング信号として出力 する。尚、 CPU1221から加速度センサ 121 1と温度センサ 1212に供給するイネ一 ブル信号としてはスタンバイ信号が用いられる。加速度センサ 121 1と温度センサ 12 12は、スタンバイ信号が" H"レベルになるとセンシングを行う動作状態となり、 "L"レ ベルになると非動作状態、つまり電力消費量の少なレ、スタンバイ状態となる。 The clock signal generator 1223 generates a clock signal with a predetermined period based on the clock control signal of the CPU 1221. The storage unit 1222 stores programs executed by the CPU 1221 and setting data. The CPU 1221 drives and controls the acceleration sensor 12 11 and the temperature sensor 1212 of the sensor main body 121. The CPU 1221 detects the sensor unit based on the sensor unit identification number included in the header of the sensor drive signal sent from the center device 101 described above. It is determined whether the drive signal is addressed to itself, and if it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Thereafter, an enable signal is generated from the clock signal generator 1223 based on the sensing period, sensing start time, and sensing end time of the enable signal included in the stored sensor drive signal, and the sensor body 112, sensor The signal is supplied to the drive signal receiving unit 125, the sensing signal determining unit 123, and the sensing signal accumulating unit 124. The AD converters 1224 and 1225 convert detection data from the acceleration sensor 1211 and the temperature sensor 1212 driven by the drive signal from the CPU1221 into a digital signal, which is output as a sensing signal from the CPU1221 via the SPI1226. . Note that a standby signal is used as an enable signal supplied from the CPU 1221 to the acceleration sensor 1211 and the temperature sensor 1212. The acceleration sensor 121 1 and the temperature sensor 12 12 are in the sensing operation state when the standby signal becomes “H” level, and in the non-operation state when the “L” level is reached, that is, in the standby state with low power consumption. .
[0080] 図 14の説明に戻る。センシング信号判断部 123は、センサ本体 121より出力される センシング信号の状態変化を判断し、所定以上の状態変化をともなうセンシング信号 についてはそのままセンシング信号蓄積部 124へ出力されるので、ここでは、センサ 駆動制御部 122 (センサ本体 121 )から入力されるセンシング信号 (検出データ)の値 と、これより前に入力されたセンシング信号、例えば直前に入力されたセンシング信 号の値の差の絶対値がある値以下の場合、このセンシング信号を削除し、逆に、セン シング信号の値と直前に入力されたセンシング信号との差の絶対値がある値以上の 場合、このセンシング信号を出力するようになっている。センシング信号蓄積部 124 は、センシング信号判断部 123から出力されるセンシング信号のみを記憶する記憶 媒体である。この場合には、センシング信号蓄積部 124は、例えば、スマートメディア やメモリステイク等、センサユニット 102に対し着脱可能な記憶媒体が用いることがで きる。 [0080] Returning to the description of FIG. The sensing signal determination unit 123 determines a change in the state of the sensing signal output from the sensor main body 121, and a sensing signal with a state change more than a predetermined value is output as it is to the sensing signal storage unit 124. The absolute value of the difference between the value of the sensing signal (detection data) input from the drive control unit 122 (sensor body 121) and the sensing signal input before this, for example, the value of the sensing signal input immediately before, is If this value is less than a certain value, this sensing signal is deleted, and conversely, if the absolute value of the difference between the sensing signal value and the previously input sensing signal is greater than a certain value, this sensing signal is output. It has become. The sensing signal storage unit 124 is a storage medium that stores only the sensing signal output from the sensing signal determination unit 123. In this case, the sensing signal storage unit 124 can use a storage medium that can be attached to and detached from the sensor unit 102, such as smart media or a memory stake.
[0081] 図 16は、センシング信号蓄積部 124に記憶されるセンシング信号の一例を示すも ので、例えばヘッダー(2バイト)、 X軸加速度データ列(2〜8 X Nバイト)、 Y軸加速 度データ列 ( 2〜8 X Nバイト)、 Z軸加速度データ列(2〜8 X Nバイト)、温度データ 列(2〜8 X Nバイト)、フッタ(2バイト)から構成されてレ、る。 [0082] センサ駆動信号受信部 125は、図 17に示すように水晶発振器 1251と、位相安定 化回路 1252と、電圧制御形発振器 1253と、アンテナ部 1254と、低雑音増幅部 12 55と、混合部 1256と、信号復調部 1257と、デジタル信号制御部 1258と、 SPI125 9とを備えている。センサ駆動信号受信部 125は、センタ装置 101から送られたセン サ駆動信号をアンテナ部 1254で受信すると、低雑音増幅部 1255を介して混合部 1 256に取り込み、ここで電圧制御形発振器 1253の出力と混合した所定周波数に変 換した後、信号復調部 1257で復調し、この復調により得られた信号をデジタル信号 制御部 1258より SPI1259を介してセンサ駆動制御部 122に供給する。バッテリ 127 は、例えばボタン型リチウム電池からなるもので、このバッテリ 127から発生する DC電 圧を、センサ本体 121、センサ駆動制御部 122、センシング信号判断部 123、センシ ング信号蓄積部 124およびセンサ駆動信号受信部 125に駆動電源として供給するよ うになつている。 FIG. 16 shows an example of the sensing signal stored in the sensing signal storage unit 124. For example, the header (2 bytes), the X-axis acceleration data string (2 to 8 XN bytes), the Y-axis acceleration data It consists of a string (2 to 8 XN bytes), a Z-axis acceleration data string (2 to 8 XN bytes), a temperature data string (2 to 8 XN bytes), and a footer (2 bytes). As shown in FIG. 17, the sensor drive signal receiving unit 125 includes a crystal oscillator 1251, a phase stabilization circuit 1252, a voltage controlled oscillator 1253, an antenna unit 1254, a low noise amplification unit 1255, and a mixing unit. Unit 1256, signal demodulator 1257, digital signal controller 1258, and SPI 1259. When the sensor drive signal receiving unit 125 receives the sensor drive signal sent from the center device 101 by the antenna unit 1254, the sensor drive signal receiving unit 125 takes in the mixing unit 1256 via the low noise amplifying unit 1255, where the voltage controlled oscillator 1253 After conversion to a predetermined frequency mixed with the output, the signal demodulator 1257 demodulates the signal, and the signal obtained by this demodulation is supplied from the digital signal controller 1258 to the sensor drive controller 122 via the SPI 1259. The battery 127 is made of, for example, a button-type lithium battery, and the DC voltage generated from the battery 127 is supplied to the sensor body 121, the sensor drive control unit 122, the sensing signal determination unit 123, the sensing signal storage unit 124, and the sensor drive. The signal receiving unit 125 is supplied as drive power.
[0083] 図 18は、センサ駆動制御部 122のクロック信号発生部 1223のクロック信号に基づ いて生成されるィネーブル信号を説明するためのものである。  FIG. 18 is a diagram for explaining an enable signal generated based on the clock signal of the clock signal generation unit 1223 of the sensor drive control unit 122.
[0084] この場合、センサ駆動制御部 122の CPU1221は、センサ駆動信号に含まれるィ ネーブル信号のセンシング周期、センシング開始時刻、センシング終了時刻に基づ いてクロック信号発生部 1223からイネ一ブル信号を発生する。このイネ一ブル信号 は、図 19に示すようにセンサ計測時のタイミングで送出され、センサ本体 121、セン シング信号判断部 123、センシング信号蓄積部 124、センサ駆動信号受信部 125、 AD変換器 1224, 1225【こ与えられるよう【こなってレヽる。  [0084] In this case, the CPU 1221 of the sensor drive control unit 122 receives the enable signal from the clock signal generation unit 1223 based on the sensing period, sensing start time, and sensing end time of the enable signal included in the sensor drive signal. appear. As shown in FIG. 19, this enable signal is sent at the time of sensor measurement, and includes sensor body 121, sensing signal determination unit 123, sensing signal storage unit 124, sensor drive signal reception unit 125, AD converter 1224. , 1225 [Let me be given]
[0085] 次に、以上のように構成されたシステムの動作を説明する。  Next, the operation of the system configured as described above will be described.
[0086] いま,センタ装置 101の制御部 111のセンサ駆動信号設定機能 111aにおいてセ ンサ駆動信号が設定されると、この設定されたセンサ駆動信号は、センサユニット 10 2に向け送信部 112よりアンテナ部 113を介して送信される。  [0086] Now, when a sensor drive signal is set in the sensor drive signal setting function 111a of the control unit 111 of the center apparatus 101, the set sensor drive signal is sent from the transmission unit 112 to the antenna toward the sensor unit 102. Is transmitted via the unit 113.
[0087] これに対して、センサユニット 102では、アンテナ部 126を介してセンサ駆動信号受 信部 125によりセンサ駆動信号が受信されると、この受信されたセンサ駆動信号が自 己宛のものかどうかを判定する。そして、 自己宛のものであれば、このセンサ駆動信 号を不図示のメモリに保存する。その後、この保存されたセンサ駆動信号に含まれる ィネーブル信号のセンシング周期、センシング開始時刻、センシング終了時刻に基 づいてクロック信号発生部 1223は、ィネーブル信号を生成し発生する。 [0087] On the other hand, in sensor unit 102, when the sensor drive signal is received by sensor drive signal receiving unit 125 via antenna unit 126, whether the received sensor drive signal is addressed to itself. Determine if. If it is addressed to itself, this sensor drive signal is stored in a memory (not shown). Then included in this stored sensor drive signal The clock signal generator 1223 generates and generates an enable signal based on the sensing cycle of the enable signal, the sensing start time, and the sensing end time.
[0088] このイネ一ブル信号は、図 19に示すようにセンシング周期、センシング開始時刻、 センシング終了時刻に基づいて送出され、センサ本体 121、センシング信号判断部 123、センシング信号蓄積部 124、センサ駆動信号受信部 125、 AD変換器 1224, 1225に与えられる。 This enable signal is sent based on the sensing cycle, sensing start time, and sensing end time, as shown in FIG. 19, and includes sensor body 121, sensing signal determination unit 123, sensing signal storage unit 124, sensor drive. The signal is supplied to the signal receiver 125 and AD converters 1224 and 1225.
[0089] センサ本体 121の加速度センサ 1211と温度センサ 1212は、ィネーブル信号によ りセンシング開始時刻からセンシング終了時刻までの間、所定のセンシング周期で動 作し、被検体 104の脈拍、血圧、人の動きを始め体温を検出し、その検出データ(検 出情報)をセンシング信号として出力する。  [0089] The acceleration sensor 1211 and the temperature sensor 1212 of the sensor main body 121 operate at a predetermined sensing period from the sensing start time to the sensing end time according to the enable signal, and the pulse, blood pressure, human The body temperature is detected, starting with movements, and the detection data (detection information) is output as a sensing signal.
[0090] これらのセンシング信号は、センサ駆動制御部 122よりセンシング信号判断部 123 に入力される。  These sensing signals are input from the sensor drive control unit 122 to the sensing signal determination unit 123.
[0091] 図 20は、センシング信号判断部 123によるセンシング信号判断処理のフローを示 している。この場合、センシング信号判断部 123は、最初、ステップ 9aで、計測開始 時のセンシング信号を仮入力し、これをステップ 9bで、 1—1番目のセンシング信号と して記憶する。この状態で、ステップ 9cで、 I番目のセンシング信号が入力すると、ス テツプ 9dにおいて、 1—1番目と I番目のセンシング信号の差の絶対値を比較する。こ こで、 I番目のセンシング信号の値と I 1番目のセンシング信号の値の差の絶対値が ある値以下より小さい場合と判断されると、ステップ 9eに進み、このときの I番目のセン シング信号を削除する。同時に、ステップ 9fで、この I番目のセンシング信号を 1—1番 目のセンシング信号に置き換え、ステップ 9bにおいて、この 1—1番目のセンシング信 号を記憶する。一方、ステップ 9dにおいて、 I番目のセンシング信号の値と 1_ 1番目 のセンシング信号の値の差の絶対値がある値以上で大きいと判断されると、ステップ 9gに進み、 I番目のセンシング信号をセンシング信号蓄積部 124に送出する。  FIG. 20 shows a flow of sensing signal determination processing by the sensing signal determination unit 123. In this case, the sensing signal determination unit 123 first temporarily inputs the sensing signal at the start of measurement in Step 9a, and stores it as the 1-1st sensing signal in Step 9b. In this state, when the I-th sensing signal is input in step 9c, the absolute value of the difference between the 1-1st and I-th sensing signals is compared in step 9d. If it is determined that the absolute value of the difference between the value of the Ith sensing signal and the value of the I1st sensing signal is less than a certain value, the process proceeds to step 9e, where the Ith sensor Delete the sing signal. At the same time, in step 9f, the I-th sensing signal is replaced with the first to first sensing signals, and in step 9b, the first to first sensing signals are stored. On the other hand, if it is determined in step 9d that the absolute value of the difference between the value of the I-th sensing signal and the value of the 1st-1st sensing signal is greater than a certain value, the process proceeds to step 9g and the I-th sensing signal is Send to sensing signal storage unit 124.
[0092] これと同時に、ステップ 9fで、この I番目のセンシング信号を I_ 1番目のセンシング 信号に置き換え、ステップ 9bにおいて、この 1—1番目のセンシング信号を記憶する。 以下、センサ駆動制御部 22より出力されるセンシング信号に対し、センシング信号判 断部 123により同様なセンシング信号判断処理が行われる。 [0093] センシング信号判断部 123より出力されたセンシング信号は、センシング信号蓄積 部 124に記憶される。この場合、センシング信号蓄積部 124に記憶されるセンシング 信号は、例えば、図 16に記すように、例えばヘッダー(2バイト)、 X軸加速度データ 列 ( 2〜8 X Nバイト)、 Y軸加速度データ列 ( 2〜8 X Nバイト)、 Z軸加速度データ列( 2〜8 X Nバイト)、温度データ列(2〜8 X Nバイト)、フッタ(2バイト)から構成されて いる。 At the same time, in step 9f, the I-th sensing signal is replaced with the I_1-th sensing signal, and in step 9b, the 1-1st sensing signal is stored. Thereafter, the sensing signal determination unit 123 performs similar sensing signal determination processing on the sensing signal output from the sensor drive control unit 22. The sensing signal output from the sensing signal determination unit 123 is stored in the sensing signal storage unit 124. In this case, for example, as shown in FIG. 16, the sensing signal stored in the sensing signal storage unit 124 includes, for example, a header (2 bytes), an X-axis acceleration data string (2 to 8 XN bytes), and a Y-axis acceleration data string. (2 to 8 XN bytes), Z-axis acceleration data string (2 to 8 XN bytes), temperature data string (2 to 8 XN bytes), and footer (2 bytes).
[0094] このようにして、センシング信号蓄積部 124には、センシング信号判断部 123より出 力されるセンシング信号のみが記憶されていく。これにより,出力されたセンシング信 号は、これより前のデータに比べその変化量の大きなデータのみが選択され、変化 量の小さなデータは削除されるため、センシング信号蓄積部 124により多くのセンシ ング信号を蓄積することが可能になる。  In this way, only the sensing signal output from the sensing signal determination unit 123 is stored in the sensing signal storage unit 124. As a result, the sensing signal that is output has only a large amount of change compared to the previous data, and data with a small amount of change is deleted. Therefore, more sensing is performed by the sensing signal storage unit 124. It becomes possible to accumulate signals.
[0095] その後、センシング信号蓄積部 124に記憶されたセンシング信号は、別途センタ装 置 101のセンシングデータ処理機能 1 1 lbで必要に応じて読み出され処理される。こ の場合、センシング信号蓄積部 124として、例えば、スマートメディアやメモリステイク などセンサユニット 102に対し着脱可能な記憶媒体が用いられる場合は、これらの記 憶媒体をセンサユニット 102から取外し、不図示の他のパソコンなどによりセンシング 信号の読み出しが行われる。  [0095] Thereafter, the sensing signal stored in the sensing signal storage unit 124 is separately read and processed as necessary by the sensing data processing function 11 lb of the center device 101. In this case, for example, when a storage medium that can be attached to and detached from the sensor unit 102 such as a smart media or a memory stake is used as the sensing signal storage unit 124, the storage medium is removed from the sensor unit 102 and is not illustrated. The sensing signal is read out by another computer.
[0096] 一方、センタ装置 101の制御部 1 1 1のセンサ駆動信号設定機能 1 1 1 aによりセンサ 駆動信号が異なる内容のものに再設定されると、この再設定された新たなセンサ駆 動信号が送信部 1 13からセンサユニット 102に向け送信される。これ以後は、新たな センサ駆動信号に含まれるィネーブル信号のセンシング周期、イネ一ブル信号のセ ンシング開始時刻、ィネーブル信号のセンシング終了時刻に基づいたィネーブル信 号が生成され、このイネ一ブル信号によりセンサ本体 121、センシング信号判断部 1 23、センシング信号蓄積部 124、センサ駆動信号受信部 125、 AD変換器 1224, 1 225が駆動され、上述したと同様にして、センサ本体 121の加速度センサ 121 1と温 度センサ 1212により検出された被検体 104の脈拍、血圧、人の動きを始め体温のセ ンシング信号がセンシング信号判断部 123を通してセンシング信号蓄積部 124に記 憶される。 [0097] したがって、このようにすれば、センタ装置 101からセンサ駆動信号がセンサュニッ ト 102に送られると、このセンサ駆動信号によりセンサユニット 102の加速度センサ 12 11と温度センサ 1212より被検体 4の脈拍、血圧、人の動き及び体温などのデータが 検出される。これらの検出データは、センシング信号として、センシング信号判断部 1 23に入力される。そして、センシング信号判断部 123において、センサ駆動制御部 1 22から出力されるセンシング信号の値とこれより前に入力されたセンシング信号の値 との差の絶対値がある値以下の場合、このときのセンシング信号を削除し、逆に、セ ンシング信号の値とこれより前に入力されたセンシング信号との差の絶対値がある値 以上の場合、このセンシング信号を出力し、センシング信号蓄積部 124に記憶させる ようになる。これにより、記憶されるセンシング信号は、これより前のセンシング信号に 対して所定以上の変化があったセンシング信号のみを効率よく取得することができる 。また、このようなセンシング信号のみを選択してセンシング信号蓄積部 124に記憶 するようになるので、センシング信号蓄積部 124の記憶領域を有効に利用することが でき、限られた記憶領域に対し有効なセンシング信号 (検出データ)のみを大量に記 '隐すること力 Sできる。 On the other hand, when the sensor drive signal is reset to a different content by the sensor drive signal setting function 1 1 1 a of the control unit 1 1 1 of the center apparatus 101, the newly reset sensor drive signal is reset. A signal is transmitted from the transmission unit 113 to the sensor unit 102. Thereafter, an enable signal is generated based on the sensing period of the enable signal included in the new sensor drive signal, the sensing start time of the enable signal, and the sensing end time of the enable signal. Sensor body 121, sensing signal determination unit 1 23, sensing signal storage unit 124, sensor drive signal reception unit 125, AD converters 1224, 1 225 are driven, and in the same manner as described above, acceleration sensor 121 1 of sensor body 121 Sensing signals of body temperature including the pulse, blood pressure, and human movement of the subject 104 detected by the temperature sensor 1212 are stored in the sensing signal storage unit 124 through the sensing signal determination unit 123. Therefore, in this way, when a sensor drive signal is sent from the center apparatus 101 to the sensor unit 102, the pulse of the subject 4 is detected from the acceleration sensor 12 11 and the temperature sensor 1212 of the sensor unit 102 by this sensor drive signal. Data such as blood pressure, human movement and body temperature are detected. These detection data are input to the sensing signal determination unit 123 as a sensing signal. If the absolute value of the difference between the value of the sensing signal output from the sensor drive control unit 122 and the value of the sensing signal input before this is less than a certain value, the sensing signal determination unit 123 If the absolute value of the difference between the sensing signal value and the sensing signal input before this is greater than a certain value, this sensing signal is output and the sensing signal storage unit 124 To memorize. Thereby, the sensing signal memorize | stored can acquire efficiently only the sensing signal with which the predetermined or more change with respect to the sensing signal before this is carried out. In addition, since only such a sensing signal is selected and stored in the sensing signal storage unit 124, the storage area of the sensing signal storage unit 124 can be used effectively, and effective for a limited storage area. The ability to record a large amount of only sensing signals (detection data).
[0098] また、センシング信号蓄積部 124として、例えば、スマートメディアやメモリステイクな ど、センサユニット 102に対し着脱可能な記憶媒体が用いられると、これら記憶媒体 をセンサユニット 102から取外し、他のパソコンなどにより簡単に読み出すことができ るので、データの収集が簡単にできるとともに、被検体 104に対する適切な対応を速 やかに行なうこともできる。  [0098] When a storage medium that can be attached to and detached from the sensor unit 102, such as a smart media or a memory stake, is used as the sensing signal storage unit 124, the storage medium is removed from the sensor unit 102, and another personal computer. Thus, the data can be easily collected, and appropriate correspondence to the subject 104 can be performed quickly.
[0099] (第 5実施形態)  [0099] (Fifth embodiment)
次に、本発明の第 5実施形態を説明する。  Next, a fifth embodiment of the present invention will be described.
[0100] この第 5実施形態は、図 14で述べたセンサユニットを複数個用意し、これら複数の センサユニットを無線ネットワークを介してセンタ装置に接続するようにしたものである  [0100] In the fifth embodiment, a plurality of sensor units described in Fig. 14 are prepared, and the plurality of sensor units are connected to the center apparatus via a wireless network.
[0101] 図 21は、本発明の第 5実施形態の概略構成を示すものである。図 12および図 14と 同一部分には同一符号を付して詳しい説明は省略する。 FIG. 21 shows a schematic configuration of the fifth embodiment of the present invention. The same parts as those in FIGS. 12 and 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0102] 図 21において、 102A〜102Nはセンサユニットで、これらセンサユニット 102A〜1 02Nは、それぞれ図 14で述べたと同様な構成のもの力 なっている。そして、これら センサユニット 102A〜102Nは、それぞれ別の被検体 104A〜104N又は同一の 被検体の異なる複数の部位に取着されており、無線ネットワーク 103を介してセンタ 装置 101に接続されている。 In FIG. 21, 102A to 102N are sensor units, and these sensor units 102A to 102N Each of the 02Ns has the same structure as described in Fig. 14. These sensor units 102A to 102N are attached to different subjects 104A to 104N or a plurality of different parts of the same subject, and are connected to the center apparatus 101 via the wireless network 103.
[0103] センタ装置 101の制御部 111は、センサ駆動信号設定機能 11 laとセンシングデー タ処理機能 11 lbと送信タイミング設定機能 11 lcを有してレ、る。これらの機能は CPU 又は DSPにプログラムを実行させることにより実現される。  The control unit 111 of the center apparatus 101 has a sensor drive signal setting function 11 la, a sensing data processing function 11 lb, and a transmission timing setting function 11 lc. These functions are realized by causing the CPU or DSP to execute a program.
[0104] 送信タイミング設定機能 111cは、各センサユニット 102A〜102Nに対しそれぞれ 時間をずらして順次センサ駆動信号を送信するためのものである。センシングデータ 処理機能 11 lbは、センサユニット 102で得られたセンシングデータを処理し解析す るためのものである。  [0104] The transmission timing setting function 111c is for sequentially transmitting sensor drive signals to the sensor units 102A to 102N at different times. Sensing data processing function 11 lb is for processing and analyzing sensing data obtained by the sensor unit 102.
[0105] 次に、以上のように構成されたシステムの動作を説明する。  [0105] Next, the operation of the system configured as described above will be described.
[0106] センタ装置 101におレ、て制御部 111のセンサ駆動信号設定機能 11 lbよりセンサ 駆動信号が設定されると、このセンサ駆動信号は、送信タイミング設定機能 11 に より時間をずらされ各センサユニット 102A〜102Nに送られる。  [0106] When the sensor drive signal is set by the center device 101 using the sensor drive signal setting function 11 lb of the control unit 111, the sensor drive signal is shifted in time by the transmission timing setting function 11 and each time. It is sent to the sensor units 102A to 102N.
[0107] 図 22にセンサ駆動信号 CS1、 CS2〜CSnの送信タイミングの一例を示す。すなわ ち、センサ駆動信号 CS1は、センサユニット 102Aに向け、センサ駆動信号 CS2は、 センサユニット 102Bに向け、センサ駆動信号 CSnは、センサユニット 102Nに向け送 られる。  FIG. 22 shows an example of the transmission timing of the sensor drive signals CS1, CS2 to CSn. That is, the sensor drive signal CS1 is sent to the sensor unit 102A, the sensor drive signal CS2 is sent to the sensor unit 102B, and the sensor drive signal CSn is sent to the sensor unit 102N.
[0108] これに対し各センサユニット 102A〜102Nは、センサ駆動信号受信部 126によりセ ンサ駆動信号が受信されると、この受信されたセンサ駆動信号が自己宛のものかどう 力、をセンサ駆動制御部 122により判定する。そして、 自己宛のものであれば、当該セ ンサ駆動信号をメモリ (図示せず)に保存する。そして、以後この保存されたセンサ駆 動信号に含まれるィネーブル信号のセンシング周期、センシング開始時亥 I」、センシン グ終了時刻に基づいてクロック信号発生部 1223からイネ一ブル信号が発生され、そ れぞれのセンサユニット 102A〜102Nのセンサ本体 112、センサ駆動信号受信部 1 25、センシング信号判断部 123、センシング信号蓄積部 124に供給される。  [0108] On the other hand, when each sensor unit 102A to 102N receives the sensor drive signal by the sensor drive signal receiving unit 126, the sensor drive determines whether the received sensor drive signal is addressed to itself. The determination is made by the control unit 122. If it is addressed to itself, the sensor drive signal is stored in a memory (not shown). Thereafter, an enable signal is generated from the clock signal generator 1223 based on the sensing period of the enable signal included in the stored sensor driving signal, the sensing start time I, and the sensing end time. The sensor units 102A to 102N are supplied to the sensor body 112, the sensor drive signal receiving unit 125, the sensing signal determining unit 123, and the sensing signal accumulating unit 124.
[0109] センサ本体 121の加速度センサ 1211と温度センサ 1212は、ィネーブル信号のセ ンシング開始時刻からセンシング終了時刻までの間、所定のセンシング周期で動作 し、この動作期間に被検体 104の脈拍、血圧、人の動きを始め体温を検出し、その検 出データ (検出情報)をセンシング信号として出力する。 [0109] The acceleration sensor 1211 and the temperature sensor 1212 of the sensor main body 121 have the enable signal set. It operates at a predetermined sensing cycle from the sensing start time to the sensing end time.During this operation period, it detects the body temperature including the pulse, blood pressure, and human movement of the subject 104, and the detection data (detection information) Output as sensing signal.
[0110] これらのセンシング信号は、それぞれのセンサ駆動制御部 122よりセンシング信号 判断部 123に入力される。センシング信号判断部 123は、センサ駆動制御部 122か ら出力されるセンシング信号の値と直前のセンシング信号の値との差の絶対値がある 値以下の場合、このときのセンシング信号を削除し、逆に、センシング信号の値と直 前のセンシング信号との差の絶対値がある値以上の場合、このセンシング信号を出 力する。 [0110] These sensing signals are input from the respective sensor drive control units 122 to the sensing signal determination unit 123. If the absolute value of the difference between the value of the sensing signal output from the sensor drive control unit 122 and the value of the previous sensing signal is less than or equal to a certain value, the sensing signal determination unit 123 deletes the sensing signal at this time, Conversely, if the absolute value of the difference between the sensing signal value and the previous sensing signal is greater than a certain value, this sensing signal is output.
[0111] センシング信号判断部 123より出力されたセンシング信号は、センシング信号蓄積 部 124に記憶される。このようにして、センシング信号蓄積部 124には、センシング信 号判断部 123より出力されるセンシング信号のみが記憶されていく。  The sensing signal output from sensing signal determination unit 123 is stored in sensing signal storage unit 124. In this way, only the sensing signal output from the sensing signal determination unit 123 is stored in the sensing signal storage unit 124.
[0112] したがって、このようにすれば、センタ装置 101より、各センサユニット 102A〜102 Nに対して送信タイミング設定機能 111cにより時間をずらされたセンサ駆動信号が 送られる。これに対し各センサユニット 102A〜102Nは、それぞれ、センサ駆動信号 が受信されるごとにセンサ駆動信号に含まれるィネーブル信号のセンシング周期、セ ンシング開始時刻、センシング終了時刻に基づいてィネーブル信号を生成してセン サ本体 121を駆動し、これにより被検体 104A〜104Nの脈拍、血圧、人の動きを始 め体温を検出し、そのセンシング信号をセンシング信号判断部 123へ入力するように している。この場合も、センシング信号判断部 123において、センサ駆動制御部 122 力 出力されるセンシング信号の値と、これより前に入力されたセンシング信号の値と の差の絶対値がある値以下の場合、このときのセンシング信号を削除し、逆に、セン シング信号の値と、これより前に入力されたセンシング信号との差の絶対値がある値 以上の場合、このセンシング信号を出力し、センシング信号蓄積部 124に記憶するよ うになる。  Accordingly, if this is done, the center device 101 sends a sensor drive signal whose time is shifted by the transmission timing setting function 111c to each of the sensor units 102A to 102N. In contrast, each of the sensor units 102A to 102N generates an enable signal based on the sensing period, sensing start time, and sensing end time of the enable signal included in the sensor drive signal each time the sensor drive signal is received. Thus, the sensor main body 121 is driven to detect the body temperature, starting the pulse, blood pressure, and human movement of the subjects 104A to 104N, and the sensing signal is input to the sensing signal determination unit 123. Also in this case, in the sensing signal determination unit 123, when the absolute value of the difference between the value of the sensing signal output by the sensor drive control unit 122 and the value of the sensing signal input before this is less than a certain value, If the absolute value of the difference between the sensing signal value and the sensing signal input before this is greater than a certain value, this sensing signal is output and the sensing signal is deleted. It will be stored in the storage unit 124.
[0113] これにより、センサユニット 102A〜102Nにおいて記憶されるセンシング信号は、こ れより前のセンシング信号に対して所定以上の変化があった特徴のあるセンシング 信号のみを効率よく取得することができる。また、このような特徴のあるセンシング信 号のみを選択してセンシング信号蓄積部 1 24に記憶するようになるので、センシング 信号蓄積部 124の記憶領域を有効に利用することができ、限られた記憶領域に対し 有効なセンシング信号 (検出データ)を大量に記憶することができる。 [0113] As a result, the sensing signals stored in the sensor units 102A to 102N can efficiently acquire only the sensing signals having a characteristic that is more than a predetermined change with respect to the previous sensing signals. . In addition, sensing signals with such characteristics Since only the signal is selected and stored in the sensing signal storage unit 1 2 4, the storage area of the sensing signal storage unit 124 can be used effectively, and the effective sensing signal for the limited storage area ( A large amount of detection data) can be stored.
[0114] (第 6実施形態)  [0114] (Sixth embodiment)
次に、本発明の第 6実施形態を説明する。  Next, a sixth embodiment of the present invention will be described.
[0115] この第 6実施形態では、センサユニット 102内部に直接センサ駆動信号を記憶する 機能を備え、この記憶されたセンサ駆動信号によりセンサ本体により被検体 104の脈 拍、血圧、人の動きを始め体温などのデータを検出するようにしたものである。  [0115] In the sixth embodiment, the sensor unit 102 has a function of directly storing a sensor drive signal. The sensor drive signal stores the pulse, blood pressure, and human movement of the subject 104 using the sensor body. At first, data such as body temperature is detected.
[0116] 図 23は、本発明の第 6実施形態に係るセンサユニットの概略構成を示ものである。  FIG. 23 shows a schematic configuration of the sensor unit according to the sixth embodiment of the present invention.
図 14と同一部分には同一符号を付して詳しい説明は省略する。  The same parts as those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0117] この場合、センサユニット 102は、図 14に示す構成からセンサ駆動信号受信部 125 、アンテナ部 126が削除されている。さらに、センタ装置 101のアンテナ部 113、送信 部 112、制御部 111も削除される。また、センサ駆動制御部 122は、記憶部 1222に パソコンなどの別の部により直接センサ駆動信号を記憶させ、これを CPU1221より 読み出すことによりィネーブル信号を生成するようにしている。  [0117] In this case, the sensor drive signal receiving unit 125 and the antenna unit 126 are deleted from the configuration shown in FIG. Further, the antenna unit 113, the transmission unit 112, and the control unit 111 of the center apparatus 101 are also deleted. In addition, the sensor drive control unit 122 stores the sensor drive signal directly in another unit such as a personal computer in the storage unit 1222, and reads out this from the CPU 1221, thereby generating an enable signal.
[0118] このようにすると、センサ駆動制御部 122の CPU1221が予め記憶部 1222に記憶 されたセンサ駆動信号を読み出すと、センサ駆動信号に含まれるィネーブル信号の センシング周期、センシング開始時亥 ij、センシング終了時刻に基づいてィネーブル 信号を発生する。センサ本体 121の加速度センサ 1211と温度センサ 1212は、イネ 一ブル信号のセンシング開始時刻からセンシング終了時刻までの間、所定のセンシ ング周期で動作し、被検体 104の脈拍、血圧、人の動きを始め体温を検出し、その 検出データ (検出情報)をセンシング信号として出力する。 In this way, when the CPU 1221 of the sensor drive control unit 122 reads the sensor drive signal stored in the storage unit 1222 in advance, the sensing period of the enable signal included in the sensor drive signal, the sensing start time ij, the sensing Generate an enable signal based on the end time. The acceleration sensor 1211 and the temperature sensor 1212 of the sensor body 121 operate at a predetermined sensing period from the sensing start time of the enable signal to the sensing end time, and detect the pulse, blood pressure, and human movement of the subject 104. First, the body temperature is detected, and the detection data (detection information) is output as a sensing signal.
[0119] その後の動作は、第 4実施形態で述べたのと同様である。 [0119] The subsequent operation is the same as described in the fourth embodiment.
[0120] このようにすれば、センサユニット 102では、事前にセンサ駆動信号が記憶され、こ のセンサ駆動信号に基づいて生成されたィネーブル信号によりセンサ本体 121の加 速度センサ 1211と温度センサ 1212より検出データを取得できるので、センサ駆動 信号を外部から受信して処理するものと比べ、センサユニット 102の構成が簡素化さ れる。 [0121] また、この場合もセンサユニット 102は、カロ速度センサ 1211と温度センサ 1212より 被検体 104の脈拍、血圧、及び体温などの検出データが出力されると、これらの検出 データをセンシング信号として、センシング信号判断部 123に入力する。 In this way, in the sensor unit 102, the sensor drive signal is stored in advance, and from the acceleration sensor 1211 and the temperature sensor 1212 of the sensor body 121 based on the enable signal generated based on the sensor drive signal. Since the detection data can be acquired, the configuration of the sensor unit 102 is simplified compared to the case where the sensor drive signal is received from outside and processed. [0121] Also in this case, when the detection data such as the pulse, blood pressure, and body temperature of the subject 104 is output from the calo speed sensor 1211 and the temperature sensor 1212, the sensor unit 102 also uses these detection data as sensing signals. , And input to the sensing signal determination unit 123.
[0122] そして、センシング信号判断部 123において、センサ駆動制御部 122から入力され るセンシング信号の値と、これより前に入力されたセンシング信号、例えばこのセンシ ング信号の直前に入力されたセンシング信号の値との差の絶対値がある値以下の場 合、このときのセンシング信号を削除し、逆に、センシング信号の値と直前に入力され たセンシング信号との差の絶対値がある値以上の場合、このセンシング信号を出力し 、センシング信号蓄積部 124に記憶するようになる。これにより、直前のセンシング信 号に対して所定以上の変化があった特徴のあるセンシング信号のみを効率よく取得 すること力 Sできる。  [0122] Then, in the sensing signal determination unit 123, the value of the sensing signal input from the sensor drive control unit 122 and the sensing signal input before this, for example, the sensing signal input immediately before this sensing signal If the absolute value of the difference from the current value is less than a certain value, the sensing signal at this time is deleted, and conversely, the absolute value of the difference between the sensing signal value and the last input sensing signal is greater than a certain value In this case, this sensing signal is output and stored in the sensing signal storage unit 124. As a result, it is possible to efficiently acquire only a sensing signal having a characteristic that has changed more than a predetermined value with respect to the immediately preceding sensing signal.
[0123] また、このような特徴のあるセンシング信号のみを選択してセンシング信号蓄積部 1 24に記憶するようになるので、センシング信号蓄積部 124の記憶領域を有効に利用 すること力 Sでき、限られた記憶領域に対し有効なセンシング信号 (検出データ)を大量 に記憶することができる。  [0123] In addition, since only the sensing signal having such a characteristic is selected and stored in the sensing signal storage unit 124, it is possible to effectively use the storage area of the sensing signal storage unit 124. A large amount of effective sensing signals (detection data) can be stored in a limited storage area.
[0124] なお、上述した第 4乃至第 6実施形態に用いられるセンシング信号判断部 123は、 センサ本体 121から出力されるセンシング信号の値と直前のセンシング信号の値の 差の絶対値がある値以下の場合、このときのセンシング信号を削除し、逆に、センシ ング信号の値と直前のセンシング信号との差の絶対値がある値以上の場合、このセ ンシング信号を出力するようにしている力 例えば、センシング信号の所定の絶対値 を設定しておき、センサ本体 21からのセンシング信号の値力 所定の絶対値を超え た時、このセンシング信号をそのままセンシング信号蓄積部へ出力するようにしたも のでもよい。  [0124] The sensing signal determination unit 123 used in the fourth to sixth embodiments described above is a value having an absolute value of the difference between the value of the sensing signal output from the sensor body 121 and the value of the immediately preceding sensing signal. In the following cases, the sensing signal at this time is deleted, and conversely, if the absolute value of the difference between the sensing signal value and the immediately preceding sensing signal exceeds a certain value, this sensing signal is output. Force For example, a predetermined absolute value of the sensing signal is set, and when the value of the sensing signal from the sensor body 21 exceeds the predetermined absolute value, this sensing signal is output to the sensing signal storage unit as it is. It may be anything.
[0125] また、上述した第 4及び第 5実施形態では、センシング信号判断部 123から出力さ れるセンシング信号をセンシング信号蓄積部 124に記憶するようにしている力 この センシング信号蓄積部 124に記憶したセンシング信号をセンタ装置 101に送信する ようなこともできる。この場合は、センサユニット 102内にセンシング信号送信部を設 け、センシング信号蓄積部 124から読み出したセンシング信号をセンシング信号送 信部により所定のフォーマットに変換して送信データを作成し、この作成された送信 データをアンテナ部 127からセンタ装置 101に向け送信するようにすればよい。 In the fourth and fifth embodiments described above, the force for storing the sensing signal output from the sensing signal determination unit 123 in the sensing signal storage unit 124 is stored in the sensing signal storage unit 124. A sensing signal may be transmitted to the center apparatus 101. In this case, a sensing signal transmission unit is provided in the sensor unit 102, and the sensing signal read from the sensing signal storage unit 124 is transmitted as a sensing signal. The transmission unit may convert the data into a predetermined format and generate transmission data, and the generated transmission data may be transmitted from the antenna unit 127 to the center apparatus 101.
[0126] また、上述では、被検体 104の脈拍、血圧、人の動き、体温などを検出する場合を 例にとって説明した力 加速度センサ 1211は、被検体 104の動きの方向やその大き さを検出するようにしてもよい。 [0126] In the above description, the force acceleration sensor 1211 described taking the case of detecting the pulse, blood pressure, human movement, body temperature, etc. of the subject 104 as an example detects the direction and magnitude of the movement of the subject 104. You may make it do.
[0127] その他、センタ装置 101及びセンサユニット 102の構成等についても、この発明の 要旨を逸脱しない範囲で種々変形して実施できる。 In addition, the configuration of the center device 101 and the sensor unit 102 can be variously modified and implemented without departing from the gist of the present invention.
[0128] 本発明の第 4乃至第 6実施形態によれば、センサでの検出データを選択的に記憶 可能とし、必要とするデータを効率よく取得することができる遠隔センシングシステム 及びセンサユニットを提供できる。 [0128] According to the fourth to sixth embodiments of the present invention, a remote sensing system and a sensor unit that can selectively store data detected by a sensor and can efficiently acquire necessary data are provided. it can.
[0129] (第 7実施形態) [Seventh Embodiment]
図 24は、本発明の第 7実施形態に係る遠隔センシングシステムの概略構成を示す 図である。ここでは、遠隔センシングシステムを被検体の健康状態などを監視するも のに適用した例を示している.  FIG. 24 is a diagram showing a schematic configuration of a remote sensing system according to the seventh embodiment of the present invention. Here, an example is shown in which a remote sensing system is applied to monitor the health status of a subject.
この場合、遠隔センシングシステムは、医長施設や介護施設などに設置されるセン タ装置 301と、このセンタ装置 301に対し無線ネットワーク 304を介して接続されるセ ンサユニット 302と力ら構成される。センサユニット 302はモジュール化されたボタン 状の略円形扁平体の形態を有する小形'軽量のもので、監視対象の被検体 305に 対し、両面接着テープ 331などにより直接貼付される。両面接着テープ 331としては In this case, the remote sensing system includes a center device 301 installed in a medical chief facility or a nursing facility, and a sensor unit 302 connected to the center device 301 via a wireless network 304. The sensor unit 302 is a small and lightweight unit having a modular button-like substantially circular flat shape, and is directly attached to the subject 305 to be monitored by a double-sided adhesive tape 331 or the like. Double-sided adhesive tape 331
、例えばアクリル系両面接着テープが使用される。アクリル系両面接着テープは、被 検体 305の皮膚にかぶれ等の炎症が起きにくい、センサユニット 302を被検体 305 力 はがした時にセンサユニット 302や被検体 305の表面に接着のりが付着しにくいFor example, an acrylic double-sided adhesive tape is used. Acrylic double-sided adhesive tape is unlikely to cause irritation such as rash on the skin of subject 305, and when adhesive force is peeled off from sensor unit 302, it is difficult for adhesive glue to adhere to the surface of sensor unit 302 or subject 305
、接着層を薄くできるなどの利点を有する。 , It has the advantage that the adhesive layer can be made thin.
[0130] 無線ネットワーク 304としては、例えば BlueTooth (登録商標)等の近距離データ通 信システムや、無線 LAN (Local Area Network)、 PHS (Personal Handyphon System[0130] As the wireless network 304, for example, a short-range data communication system such as BlueTooth (registered trademark), a wireless LAN (Local Area Network), a PHS (Personal Handyphon System).
) (登緑商標)、携帯電話システム等が使用される。 ) (Greening trademark), mobile phone system, etc. are used.
[0131] なお、センタ装置 301とセンサユニット 302との間は必ずしも直接接続する必要は なぐ無線中継器を介して接続するようにしてもよい。この帽合、センサユニット 302と 無線中継器との間の無線通信方式としては BlueToothや無線 LAN等の微弱又は小 電力型の方式が採用される。一方、無線中継器とセンタ装置 301との間の無線通信 方式として携帯竃話システム等の長距離通信が可能な方式がそれぞれ使用される。 [0131] Note that the center device 301 and the sensor unit 302 need not be directly connected, and may be connected via a wireless repeater. This cap, with sensor unit 302 A weak or low power system such as BlueTooth or wireless LAN is adopted as the wireless communication system with the wireless repeater. On the other hand, as a wireless communication method between the wireless repeater and the center device 301, a method capable of long-distance communication such as a mobile phone system is used.
[0132] センタ装置 301は、センサシング信号収集処理部としてのセンシング信号収集処理 部 311と、受信部としての受信部 312と、アンテナ部 313とを備えている。受信部 312 は、センサユニット 302から無線ネットワーク 304を介して伝送された無線信号をアン テナ部 313を介して受信したのち復調し、この復謂により得られるセンシング信号を センシング信号収集処理部 311へ出力するものである.アンテナ部 313は受信部 31 2へのセンシング信号を受信する受信アンテナ機能を有する。  The center apparatus 301 includes a sensing signal collection processing unit 311 as a sensoring signal collection processing unit, a reception unit 312 as a reception unit, and an antenna unit 313. The receiving unit 312 receives the radio signal transmitted from the sensor unit 302 via the wireless network 304 via the antenna unit 313, demodulates the signal, and obtains the sensing signal obtained by the so-called recovery to the sensing signal collection processing unit 311. The antenna unit 313 has a receiving antenna function for receiving a sensing signal to the receiving unit 312.
[0133] センシング信号収集処理部 311は、例えば CPU (Central Processing Unit)や DSP  [0133] The sensing signal collection processing unit 311 is, for example, a CPU (Central Processing Unit) or DSP
(Digital Signal Processor)を備えたものであり、受信部 312によりセンシング信号が受 信された場合に、このセンシング信号を復号してセンシングデータを再生し、このセン シングデータをハードディスク等の記憶部(図示せず)に蓄積するものである。  (Digital Signal Processor), when a sensing signal is received by the receiving unit 312, the sensing signal is decoded and the sensing data is reproduced, and the sensing data is stored in a storage unit such as a hard disk ( (Not shown).
[0134] 図 25A, 25Bはセンサユニット 302の概略図である。図 25Aは平面外観図、図 25B は側面図である.センサユニット 302の外形は、図 25Aに示すようなボタン状の略円 形扁平体の形態を有しており、中は中空になっており、この中にセンサユニット 302 の図示しないセンサ駆動制御部と、センシング信号送信部と、アンテナ部と、基板固 定部と、実装基板と、ノくッテリが収柚されている.また、ボタン状の略円形扁平体には ABS (アクリル 'ブタジエン 'スチロールの略)樹脂が使用されており、耐環境性、強度 が保持されている。更に図 25Bに示すようにこのボタン状の略円形扁平体は上蓋 32 6と、ベース 327と力ら構成され、上蓋 326とベース 327は嵌め合わされてレヽる。この ような状態で、センサユニット 302は被検体 305の皮膚の表面、例えば胴部、大腿部 に両面接着テープ 331により貼付される。  FIGS. 25A and 25B are schematic views of the sensor unit 302. FIG. 25A is a plan external view, and FIG. 25B is a side view.The outer shape of the sensor unit 302 has a button-like substantially circular flat shape as shown in FIG. The sensor drive control unit, the sensing signal transmission unit, the antenna unit, the board fixing unit, the mounting board, and the battery of the sensor unit 302 are converged in this. The abbreviated circular flat body is made of ABS (abbreviation of acrylic 'butadiene' styrene) resin, and maintains environmental resistance and strength. Further, as shown in FIG. 25B, this button-like substantially circular flat body is composed of an upper lid 326 and a base 327, and the upper lid 326 and the base 327 are fitted together and curled. In such a state, the sensor unit 302 is affixed to the surface of the skin of the subject 305, for example, the torso and the thigh with a double-sided adhesive tape 331.
[0135] 図 26A, 26Bは、センサユニット 302の通常嵌め合されている上蓋 326を開いて、 センサユニットの実装状攄を示す平面配置図で、図 26Aは表側の平面配置図、図 2 6Bは裏側の平面配置図である。表側は、基板固定部 330と、実装基板 328と、セン サ本体 321と、センサ駆動制御部 322と、センシング信号送信部 325と、アンテナ部 324とが実装されている。すなわち、基板固定部 330に実装基板 329が取り付けられ 、さらにこの実装基板 328にセンサ本体 321とセンサ駆動制御部 322とセンシング信 号送信部 325とアンテナ部 324とが装着されている。裏面は、基板固定部 330に別 の実装基板 329が取り付けられており、この実装基板 329にバッテリ 323装着されて いる。これによりセンサユニット 302は小形 ·軽量ィ匕が可能となった。 [0135] Figs. 26A and 26B are plan views showing the mounting state of the sensor unit when the upper lid 326 that is normally fitted to the sensor unit 302 is opened, and Fig. 26A is a plan view of the front side, and Fig. 26B. FIG. 3 is a plan layout view of the back side. On the front side, a board fixing unit 330, a mounting board 328, a sensor main body 321, a sensor drive control unit 322, a sensing signal transmission unit 325, and an antenna unit 324 are mounted. That is, the mounting board 329 is attached to the board fixing part 330. Further, a sensor body 321, a sensor drive control unit 322, a sensing signal transmission unit 325, and an antenna unit 324 are mounted on the mounting substrate 328. On the back surface, another mounting board 329 is attached to the board fixing portion 330, and a battery 323 is attached to the mounting board 329. As a result, the sensor unit 302 can be made smaller and lighter.
[0136] また、そのために、被験者 305の腕胸、背中、大腿部などその予測される症状に合 わせてどこの個所にでも装着でき、し力、も小形 ·軽量のため被験者に装着したことに よる違和感を生じさせないセンサユニットとすることを可能とした。  [0136] For that purpose, it can be worn anywhere according to the expected symptoms such as subject's 305's arm chest, back, thigh, etc. This makes it possible to provide a sensor unit that does not cause a sense of incongruity.
[0137] 図 27は、センサユニット 302の構成を示す機能図である。センサユニット 302は、セ ンサ本体 321と、センサ駆動制御部としてのセンサ駆動制御部 322と、センシング信 号送信部としてのセンシング信号送信部 325と、アンテナ部 324と、バッテリ 323を備 えている。  FIG. 27 is a functional diagram showing the configuration of the sensor unit 302. As shown in FIG. The sensor unit 302 includes a sensor body 321, a sensor drive control unit 322 as a sensor drive control unit, a sensing signal transmission unit 325 as a sensing signal transmission unit, an antenna unit 324, and a battery 323.
[0138] 図 28は、センサ駆動制御部 322と、センサ本体 321の櫛能図を示す。センサ本体 3 21は、加速度センサ 3211と温度センサ 3212を備えたもので、加速度センサ 3211 により被検体 305の脈拍、血圧、人の動きなどを検出し、温度センサ 3212により被験 者 5の体温などを検出する。勿論、センサ本体 321は、これら加速度センサ 3211と 温度センサ 3212に限らず、他のセンサにより構成することもできる。  FIG. 28 shows a comb function diagram of the sensor drive control unit 322 and the sensor main body 321. The sensor body 321 includes an acceleration sensor 3211 and a temperature sensor 3212. The acceleration sensor 3211 detects the pulse, blood pressure, human movement, etc. of the subject 305, and the temperature sensor 3212 detects the body temperature of the subject 5. To detect. Of course, the sensor main body 321 is not limited to the acceleration sensor 3211 and the temperature sensor 3212, and may be constituted by other sensors.
[0139] センサ駆動制御部 322は、中央制御部(CPU) 3221と、記憶部 3222と、 AD変換 部 3224、 3225と、サーノく'プログラミング 'インターフェース(SPI) 3226とを備えて いる。  The sensor drive control unit 322 includes a central control unit (CPU) 3221, a storage unit 3222, AD conversion units 3224 and 3225, and a Sarnoku 'programming' interface (SPI) 3226.
[0140] 中央制御部 3221はセンサユニット全体を制御するものであり、センサ本体 321の 加速度センサ 3211と温度センサ 3212と、センシング信号送信部 325の駆動を制御 する。すなわち、記億部 3222に記憶される情報に基づき、加速度センサ 3211及び 温度センサ 3212のセンシングタイミングの指令、 AD変換部 3224、 3225によるセン シング信号のデジタル信号化、センシング信号送信部 2への送出制御などを行なう。 なお、中央制御部 3221から加速度センサ 3211と温度センサ 3212に供給するセン シングタイミングの指令としてはスタンバイ信号が用いられる。加速度センサ 3211と 温度センサ 3212は、スタンバイ信号力 H' 'レベルになるとセンシングを行う動作状態 となり、 "L"レベルになると非動作状態、つまり電力消費量の少なレ、スタンバイ状態と なる。 The central control unit 3221 controls the entire sensor unit, and controls the driving of the acceleration sensor 3211, the temperature sensor 3212, and the sensing signal transmission unit 325 of the sensor body 321. That is, based on the information stored in the storage unit 3222, commands for sensing timing of the acceleration sensor 3211 and the temperature sensor 3212, conversion of the sensing signal into digital signals by the AD conversion units 3224 and 3225, and transmission to the sensing signal transmission unit 2 Control and so on. Note that a standby signal is used as a sensing timing command supplied from the central control unit 3221 to the acceleration sensor 3211 and the temperature sensor 3212. The accelerometer 3211 and the temperature sensor 3212 are in the sensing operation state when the standby signal force H '' level is reached, and in the non-operation state, that is, when the power consumption is low, the standby state Become.
[0141] 図 29は、センシング信号送信部の機能図を示す。センシング信号送信部 325は、 SP13251と、デジタル信号制御部 3252と、信号変調部 3253と、混合部 3254と、 電力増幅部 3255と、水晶発振器 3261と、位相安定化回路 3262と、電圧制御形発 振器 3263とを傭えている。  FIG. 29 shows a functional diagram of the sensing signal transmission unit. Sensing signal transmission unit 325 includes SP13251, digital signal control unit 3252, signal modulation unit 3253, mixing unit 3254, power amplification unit 3255, crystal oscillator 3261, phase stabilization circuit 3262, voltage control type generator I have a choreograph 3263.
[0142] センシング信号送信部 325は、センサ駆動制御部 322から送出されたセンシング 信号を SPI3251を介してデジタル信号制御部 3252に取り込み、更に信号変調部 3 253でデジタノレ変調、例えば QPSK (Quadrarure Phase Shift Keying)変調し、混合 部 3254を介して所定のフォーマットに変換してセンシングデータを作成する。この作 成されたセンシングデータを電圧制御形発振器 3263の出力と混合し所定の周波数 に変換した後、電力増幅部 3255で電力増幅しアンテナ部 327を介して、センタ装置 301に向け送信させる。  [0142] The sensing signal transmission unit 325 captures the sensing signal transmitted from the sensor drive control unit 322 into the digital signal control unit 3252 via the SPI 3251, and further performs digital nodal modulation such as QPSK (Quadrarure Phase Shift) in the signal modulation unit 3253. Keying), and converts the data into a predetermined format via the mixing unit 3254 to create sensing data. The generated sensing data is mixed with the output of the voltage controlled oscillator 3263 and converted to a predetermined frequency, and then the power is amplified by the power amplifier 3255 and transmitted to the center device 301 via the antenna unit 327.
[0143] バッテリ 323は、例えばボタン型リチウム電池からなるもので、このバッテリ 323から 発生する DC電圧を、センサ本体 321、センサ駆動制御部 322、センシング信号送信 部 325に駆動電源として供給するようになっている。  [0143] The battery 323 is made of, for example, a button-type lithium battery, and the DC voltage generated from the battery 323 is supplied to the sensor main body 321, the sensor drive control unit 322, and the sensing signal transmission unit 325 as drive power. It has become.
[0144] 次に、以上のように構成されたシステムの動作を説明する。  Next, the operation of the system configured as described above will be described.
[0145] センサ本体 321の加速度センサ 3211と温度センサ 3212ほ、センサ駆動制御部 3 22からの指令で所定のセンシング周期で動作し、この動作期間に被検体 305の脈 拍、血圧、動き及び体温を検出し、その検出データ (検出情報)をセンシング信号とし て出力する。センシング信号送信部 25は、センシング信号を高周波信号に変換し、 アンテナ部 324からセンタ装置 301に向け送信する。センタ装置 301は、センサュニ ット 302から送信されるセンシング信号を受信部 312で受信し、上記受信されたセン シング信号をセンシングデータ収集処理部 311により復号 (誤り訂正復号処理も含む )してセンシングデータを再生し、このセンシングデータを図示しない記億部に蓄積 する。  [0145] The acceleration sensor 3211 and the temperature sensor 3212 of the sensor body 321 operate with a predetermined sensing cycle in response to a command from the sensor drive control unit 322. During this operation period, the pulse, blood pressure, movement, and body temperature of the subject 305 are operated. And the detection data (detection information) is output as a sensing signal. The sensing signal transmission unit 25 converts the sensing signal into a high-frequency signal and transmits the high-frequency signal from the antenna unit 324 to the center device 301. The center device 301 receives the sensing signal transmitted from the sensor unit 302 by the receiving unit 312 and decodes the received sensing signal by the sensing data collection processing unit 311 (including error correction decoding processing) for sensing. The data is replayed and this sensing data is stored in 100 million copies (not shown).
[0146] さらに、センシング信号収集処理部 311において、センシング信号の解析を行い、 被験者の健康状態を加速度センサ 3211から得られる被検体 305の脈拍、血圧.動 きなどを温度センサ 3212から得られる被験者 305の体温などを基に判断することが 可能となる。さらに、小形 ·軽量のセンサユニット 302を、被験者 305の腕、胸、背中、 大腿部などその予測される症状に合わせてどこの個所にでも装着でき、しかも被験 者に装着したことによる違和感を与えない状態での検出が可能となった。 [0146] Further, the sensing signal collection processing unit 311 analyzes the sensing signal, and the subject's health obtained from the acceleration sensor 3211 is obtained from the acceleration sensor 3211. The pulse, blood pressure, and movement of the subject 305 obtained from the temperature sensor 3212 are obtained. Judgment based on body temperature of 305 It becomes possible. Furthermore, the small and lightweight sensor unit 302 can be worn anywhere according to the expected symptoms such as the subject's 305's arm, chest, back, and thighs, and the subject feels uncomfortable. Detection in the state of not giving is possible.
[0147] (第 8実施形態) [Eighth embodiment]
次に、本発明の第 8実施形態を説明する.  Next, an eighth embodiment of the present invention will be described.
この第 8実施形態では、センサユニット 302内部にセンシング信号蓄積部としての センシング信号蓄積部 333を備え、この蓄積されたセンシング信号をオフラインでセ ンタ装置 301に運び、センシング信号収集処理部 311で信号の解析、判断を行う。  In the eighth embodiment, a sensing signal storage unit 333 as a sensing signal storage unit is provided in the sensor unit 302, and this stored sensing signal is carried offline to the center device 301, and a signal is collected by the sensing signal collection processing unit 311. Analyze and judge.
[0148] 図 30は、本発明の第 8実施形態に適用されるセンサユニットの機能図である。図 2 7と同一部分には同符号を付して詳しい説明は省略する。この場合、センサユニット 3 02は、図 27に示す構成からセンシング信号送信部 325とアンテナ部 324が削除され る。さらにセンタ装置 301のアンテナ部 313と受信部 312も削除される。これらの詳細 な動作は、第 7実施形態で述べたのと同様である。  FIG. 30 is a functional diagram of a sensor unit applied to the eighth embodiment of the present invention. The same parts as those in FIG. In this case, in the sensor unit 302, the sensing signal transmission unit 325 and the antenna unit 324 are deleted from the configuration shown in FIG. Further, the antenna unit 313 and the receiving unit 312 of the center device 301 are also deleted. These detailed operations are the same as those described in the seventh embodiment.
[0149] オフラインによりセンシング信号収集処理部 311でセンシング信号の解析を行い、 被験者の健康状態を加速度センサ 3211から得られる被検体 305の脈拍、血圧、動 きなどを、温度センサ 3212から得られる被験者 305の体温などを基に判断すること が可能となる。さらに、小形 ·軽量のセンサユニット 302を、被験者 5の腕、胸、背中、 大腿部などその予測される症状に合わせてどこの個所にでも装着でき、しかも被験 者に装着したことによる違和感を感じさせない状態での検出が可能となった。  [0149] The sensing signal collection processing unit 311 analyzes the sensing signal offline, and the subject's health obtained from the acceleration sensor 3211 is obtained from the acceleration sensor 3211. The pulse, blood pressure, movement, etc. of the subject 305 are obtained from the temperature sensor 3212. Judgment can be made based on 305 body temperature. Furthermore, the small and lightweight sensor unit 302 can be worn anywhere according to the predicted symptoms such as the subject's 5 arm, chest, back, thigh, etc., and the subject feels uncomfortable. Detection without feeling is possible.
[0150] なお、上記第 7及び第 8実施の形態では、加速度センサは 1軸の加速度センサを対 象にしたが、 2軸、 3軸の加速度センサの場合も含まれることはいうまでもない。  [0150] In the seventh and eighth embodiments, the acceleration sensor is a uniaxial acceleration sensor. However, it goes without saying that the acceleration sensor includes a biaxial or triaxial acceleration sensor. .
産業上の利用可能性  Industrial applicability
[0151] 本発明は、上記各実施形態そのままに限定されるものではなぐ実施段階ではその 要旨を逸脱しない範囲で構成要素を変形して具体化できる。  The present invention is not limited to the above embodiments as they are, but can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage.
[0152] さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている 複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば 、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発 明が解決しょうとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べら れている効果が得られる場合には、この構成要件が削除された構成が発明として抽 出できる。 [0152] Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and described in the column of the effect of the invention. Et In the case where the above-mentioned effects can be obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.

Claims

請求の範囲 The scope of the claims
[1] センシング対象物に対応して設けられるセンサユニットと、このセンサユニットとの間 で通信回線を介して信号の伝送を行うセンタ装置とを具傭し、  [1] A sensor unit provided corresponding to a sensing object and a center device that transmits signals to and from the sensor unit via a communication line are provided.
前記センタ装置は、  The center device is
前記センサユニットのセンサ駆動信号を設定するセンサ駆動信号設定部と、 前記センサ駆動信号設定部で設定されたセンサ駆動信号を前記センタユニットへ 送信する送信部と、  A sensor drive signal setting unit for setting a sensor drive signal of the sensor unit; a transmitter for transmitting the sensor drive signal set by the sensor drive signal setting unit to the center unit;
前記センサユニットから送信される、前記センシング対象物の状態を表すセンシン グ信号を受信する受信部とを具備し、  A receiving unit that receives a sensing signal transmitted from the sensor unit and representing a state of the sensing object;
前記センサユニットは、  The sensor unit is
前記センタ装置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部 と、  A sensor drive signal receiver for receiving a sensor drive signal transmitted from the center device; and
センサ駆動信号受信部で受信された前記センサ駆動信号に応じて発生タイミング の異なる駆動制御信号を発生するセンサ駆動制御部と、  A sensor drive control unit that generates drive control signals having different generation timings according to the sensor drive signal received by the sensor drive signal receiving unit;
前記駆動制御信号により、  By the drive control signal,
前記センシング対象物の状態を検出するセンサ本体と、  A sensor body for detecting the state of the sensing object;
前記センサ本体の検出情報を記憶する記憶部と、  A storage unit for storing detection information of the sensor body;
前記記憶部に記憶された前記センサ本体の検出情報を高速信号に変換する信号 変換部と、  A signal conversion unit that converts detection information of the sensor body stored in the storage unit into a high-speed signal;
前記信号変換部で高速信号に変換された前記センシング対象物の状態を表すセ ンシング信号を前記センタ装置へ送信するセンシング信号送信部と  A sensing signal transmitting unit for transmitting to the center device a sensing signal representing a state of the sensing object converted into a high-speed signal by the signal converting unit;
を具備することを特徴とする遠隔センシングシステム。  A remote sensing system comprising:
[2] 前記駆動制御信号は、発生タイミングの異なる第 1および第 2の駆動制御信号から なり、前記センサ本体は、前記第 1の駆動制御信号により駆動され、前記センシング 対象物の状態を検出し、前記記憶部は、前記第 1の駆動制御信号により駆動され、 前記センサ本体の検出情報を記憶し、前記信号変換部は、前記第 2の駆動制御信 号により駆動され、前記記憶部に記憶された前記センサ本体の検出情報を高速信号 に変換し、前記センシング信号送信部は、前記第 2の駆動制御信号により駆動され、 前記信号変換部で高速信号に変換された前記センシング対象物の状態を表すセン シング信号を前記センタ装置へ送信することを特徴とする請求項 1記載の遠隔センシ ングシステム。 [2] The drive control signal includes first and second drive control signals having different generation timings, and the sensor body is driven by the first drive control signal to detect the state of the sensing object. The storage unit is driven by the first drive control signal and stores detection information of the sensor body, and the signal conversion unit is driven by the second drive control signal and stored in the storage unit. The detected detection information of the sensor body is converted into a high-speed signal, and the sensing signal transmission unit is driven by the second drive control signal, 2. The remote sensing system according to claim 1, wherein a sensing signal representing a state of the sensing object converted into a high-speed signal by the signal conversion unit is transmitted to the center device.
[3] 前記センサ駆動制御部は、前記センサ駆動信号に応じて第 1及び第 2の駆動制御 信号の発生タイミングを任意に設定可能とすることを特徴とする請求項 1記載の遠隔 センシングシステム。  3. The remote sensing system according to claim 1, wherein the sensor drive control unit can arbitrarily set the generation timing of the first and second drive control signals according to the sensor drive signal.
[4] 前記センサ駆動制御部は、前記センサ駆動信号に応じて前記第 1及び第 2の駆動 制御信号の発生タイミングを任意に設定可能とすることを特徴とする請求項 2記載の 遠隔センシングシステム。  4. The remote sensing system according to claim 2, wherein the sensor drive control unit can arbitrarily set the generation timing of the first and second drive control signals according to the sensor drive signal. .
[5] 前記信号変換部は、前記センサ本体の検出情報を圧縮処理してハイビットレートの 高速信号に変換することを特徴とする請求項 1記載の遠隔センシングシステム。 5. The remote sensing system according to claim 1, wherein the signal conversion unit compresses the detection information of the sensor body and converts it into a high bit rate high-speed signal.
[6] 前記信号変換部は、前記センサ本体の検出情報を圧縮処理してハイビットレートの 高速信号に変換することを特徴とする請求項 2記載の遠隔センシングシステム。 6. The remote sensing system according to claim 2, wherein the signal conversion unit compresses the detection information of the sensor body and converts it into a high bit rate high-speed signal.
[7] 前記記憶部は、前記センサユニットに対し着脱可能な記憶媒体からなることを特徴 とする請求項 1記載の遠隔センシングシステム。 7. The remote sensing system according to claim 1, wherein the storage unit includes a storage medium that can be attached to and detached from the sensor unit.
[8] 前記記憶部は、前記センサユニットに対し着脱可能な記憶媒体からなることを特徴 とする請求項 2記載の遠隔センシングシステム。 8. The remote sensing system according to claim 2, wherein the storage unit includes a storage medium that can be attached to and detached from the sensor unit.
[9] センシング対象物に対応して設けられ、通信回線を介してセンタ装置との間で信号 の伝送が可能なセンサユニットであって、 [9] A sensor unit provided corresponding to the sensing object and capable of transmitting signals to and from the center device via a communication line,
前記センタ装置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部 と、  A sensor drive signal receiver for receiving a sensor drive signal transmitted from the center device; and
前記センサ駆動信号受信部で受信された前記センサ駆動信号に応じて発生タイミ ングの異なる駆動制御信号を発生するセンサ駆動制御部と、  A sensor drive control unit that generates drive control signals having different generation timings according to the sensor drive signal received by the sensor drive signal receiving unit;
前記駆動制御信号により、  By the drive control signal,
前記センシング対象物の状態を検出するセンサ本体と、  A sensor body for detecting the state of the sensing object;
前記前記センサ本体の検出情報を記憶する記憶部と、  A storage unit for storing detection information of the sensor body;
前記記憶部に記憶された前記センサ本体の検出情報を高速信号に変換する信号 変換部と、 前記信号変換部で高速信号に変換された前記センシング対象物の状態を表すセ ンシング信号を前記センタ装置へ送信するセンシング信号送信部とを具備することを 特徴とするセンサユニット。 A signal conversion unit that converts detection information of the sensor body stored in the storage unit into a high-speed signal; A sensor unit comprising: a sensing signal transmitting unit configured to transmit a sensing signal representing a state of the sensing object converted into a high-speed signal by the signal converting unit to the center device.
[10] 前記駆動制御信号は、発生タイミングの異なる第 1および第 2の駆動制御信号から なり、前記センサ本体は、前記第 1の駆動制御信号により駆動され、前記センシング 対象物の状態を検出し、前記記憶部は、前記第 1の駆動制御信号により駆動され、 前記センサ本体の検出情報を記憶し、前記信号変換部は、前記第 2の駆動制御信 号により駆動され、前記記憶部に記憶された前記センサ本体の検出情報を高速信号 に変換し、前記センシング信号送信部は、前記第 2の駆動制御信号により前記信号 変換部で高速信号に変換された前記センシング対象物の状態を表すセンシング信 号を前記センタ装置へ送信することを特徴とする請求項 9記載のセンサユニット。 [10] The drive control signal includes first and second drive control signals having different generation timings, and the sensor body is driven by the first drive control signal to detect the state of the sensing object. The storage unit is driven by the first drive control signal and stores detection information of the sensor body, and the signal conversion unit is driven by the second drive control signal and stored in the storage unit. The detected detection information of the sensor body is converted into a high-speed signal, and the sensing signal transmission unit is a sensing that represents the state of the sensing object converted into a high-speed signal by the signal conversion unit by the second drive control signal 10. The sensor unit according to claim 9, wherein a signal is transmitted to the center device.
[11] センシング対象物に対応して設けられ、通信回線を介してセンタ装置との間で信号 の伝送が可能なセンサユニットであって、 [11] A sensor unit provided corresponding to a sensing object and capable of transmitting signals to and from a center device via a communication line,
センサ駆動信号を記憶するとともに、該センサ駆動信号に応じて駆動制御信号を 発生するセンサ駆動制御部と、  A sensor drive controller that stores the sensor drive signal and generates a drive control signal in response to the sensor drive signal;
前記駆動制御信号により、  By the drive control signal,
前記センシング対象物の状態を検出するセンサ本体と、  A sensor body for detecting the state of the sensing object;
前記前記センサ本体の検出情報を記憶する記憶部と、  A storage unit for storing detection information of the sensor body;
前記駆動信号と異なる他の駆動制御信号により前記記憶部に記憶された前記セン サ本体の検出情報を高速信号に変換する信号変換部と、  A signal converter that converts detection information of the sensor body stored in the storage unit into a high-speed signal by another drive control signal different from the drive signal;
前記信号変換部で高速信号に変換された前記センシング対象物の状態を表すセ ンシング信号を前記センタ装置へ送信するセンシング信号送信部とを具備することを 特徴とするセンサユニット。  A sensor unit comprising: a sensing signal transmitting unit configured to transmit a sensing signal representing a state of the sensing object converted into a high-speed signal by the signal converting unit to the center device.
[12] 前記駆動制御信号は、発生タイミングの異なる第 1および第 2の駆動制御信号から なり、前記センサ本体は、前記第 1の駆動制御信号により駆動され、前記センシング 対象物の状態を検出し、前記記憶部は、前記第 1の駆動制御信号により駆動され、 前記センサ本体の検出情報を記憶し、前記信号変換部は、前記第 2の駆動制御信 号により駆動され、前記記憶部に記憶された前記センサ本体の検出情報を高速信号 に変換し、前記センシング信号送信部は、第 2の駆動制御信号により駆動され、前記 信号変換部で高速信号に変換された前記センシング対象物の状態を表すセンシン グ信号を前記センタ装置へ送信することを特徴とする請求項 11記載のセンサュニッ 卜。 [12] The drive control signal includes first and second drive control signals having different generation timings, and the sensor body is driven by the first drive control signal to detect the state of the sensing object. The storage unit is driven by the first drive control signal and stores detection information of the sensor body, and the signal conversion unit is driven by the second drive control signal and stored in the storage unit. The detected information of the sensor body is a high-speed signal The sensing signal transmission unit is driven by a second drive control signal, and transmits a sensing signal representing the state of the sensing object converted into a high-speed signal by the signal conversion unit to the center device. 12. The sensor unit according to claim 11, wherein:
[13] 前記センサ駆動制御部は、前記センサ駆動信号に基づいて第 1及び第 2の駆動制 御信号の発生タイミングを任意に設定可能とすることを特徴とする請求項 9記載のセ ンサユニット。  13. The sensor unit according to claim 9, wherein the sensor drive control unit can arbitrarily set the generation timing of the first and second drive control signals based on the sensor drive signal. .
[14] 前記センサ駆動制御部は、前記センサ駆動信号に基づいて前記第 1及び第 2の駆 動制御信号の発生タイミングを任意に設定可能とすることを特徴とする請求項 10記 載のセンサユニット。  14. The sensor according to claim 10, wherein the sensor drive control unit can arbitrarily set the generation timing of the first and second drive control signals based on the sensor drive signal. unit.
[15] 前記センサ駆動制御部は、前記センサ駆動信号に基づいて前記第 1及び第 2の駆 動制御信号の発生タイミングを任意に設定可能とすることを特徴とする請求項 11記 載のセンサユニット。  15. The sensor according to claim 11, wherein the sensor drive control unit can arbitrarily set the generation timing of the first and second drive control signals based on the sensor drive signal. unit.
[16] 前記センサ駆動制御部は、前記センサ駆動信号に基づいて前記第 1及び第 2の駆 動制御信号の発生タイミングを任意に設定可能とすることを特徴とする請求項 12記 載のセンサユニット。  16. The sensor according to claim 12, wherein the sensor drive control unit can arbitrarily set the generation timing of the first and second drive control signals based on the sensor drive signal. unit.
[17] 前記信号変換部は、前記センサ本体の検出情報を圧縮処理してハイビットレートの 高速信号に変換することを特徴とする請求項 9記載のセンサユニット。  17. The sensor unit according to claim 9, wherein the signal conversion unit compresses the detection information of the sensor main body to convert it into a high bit rate high-speed signal.
[18] 前記信号変換部は、前記センサ本体の検出情報を圧縮処理してハイビットレートの 高速信号に変換することを特徴とする請求項 10記載のセンサユニット。 18. The sensor unit according to claim 10, wherein the signal converter converts the detection information of the sensor body into a high bit rate high-speed signal by compressing the detected information.
[19] 前記信号変換部は、前記センサ本体の検出情報を圧縮処理してハイビットレートの 高速信号に変換することを特徴とする請求項 11記載のセンサユニット。 19. The sensor unit according to claim 11, wherein the signal conversion unit compresses detection information of the sensor main body and converts the detection information into a high bit rate high-speed signal.
[20] 前記信号変換部は、前記センサ本体の検出情報を圧縮処理してハイビットレートの 高速信号に変換することを特徴とする請求項 12記載のセンサユニット。 20. The sensor unit according to claim 12, wherein the signal conversion unit compresses detection information of the sensor main body and converts the detection information into a high bit rate high-speed signal.
[21] 前記記憶部は、前記センサユニットに対し着脱可能な記憶媒体力 なることを特徴 とする請求項 9記載のセンサユニット。 21. The sensor unit according to claim 9, wherein the storage unit has a storage medium force that can be attached to and detached from the sensor unit.
[22] 前記記憶部は、前記センサユニットに対し着脱可能な記憶媒体からなることを特徴 とする請求項 10記載のセンサユニット。 22. The sensor unit according to claim 10, wherein the storage unit includes a storage medium that can be attached to and detached from the sensor unit.
[23] 前記記憶部は、前記センサユニットに対し着脱可能な記憶媒体からなることを特徴 とする請求項 11記載のセンサユニット。 23. The sensor unit according to claim 11, wherein the storage unit includes a storage medium that is detachable from the sensor unit.
[24] 前記記憶部は、前記センサユニットに対し着脱可能な記憶媒体からなることを特徴 とする請求項 12記載のセンサユニット。 24. The sensor unit according to claim 12, wherein the storage unit includes a storage medium that is detachable from the sensor unit.
[25] センシング対象物に対応して設けられるセンサユニットと、このセンサユニットとの間 で通信回線を介して信号の伝送を行うセンタ装置とを具傭し、 [25] A sensor unit provided corresponding to the sensing object and a center device that transmits signals to and from the sensor unit via a communication line are provided.
前記センタ装置は、  The center device is
前記センサユニットのセンサ駆動信号を設定するセンサ駆動信号設定部と、 前記センサ駆動信号設定部で設定されたセンサ駆動信号を前記センタユニットへ 送信する送信部とを具備し、  A sensor drive signal setting unit that sets a sensor drive signal of the sensor unit; and a transmission unit that transmits the sensor drive signal set by the sensor drive signal setting unit to the center unit;
前記センサユニットは、  The sensor unit is
前記センタ装置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部 と、  A sensor drive signal receiver for receiving a sensor drive signal transmitted from the center device; and
センサ駆動信号受信部で受信された前記センサ駆動信号に応じた駆動制御信号 を発生するセンサ駆動制御部と、  A sensor drive control unit for generating a drive control signal according to the sensor drive signal received by the sensor drive signal receiving unit;
前記駆動制御信号により、  By the drive control signal,
前記センシング対象物の状態を表わすセンシング信号を出力するセンサ本体と、 前記センサ本体より出力されるセンシング信号の状態変化を判断し、所定以上の 状態変化をともなうセンシング信号を出力するセンシング信号判断部と、  A sensor body that outputs a sensing signal representing a state of the sensing object; a sensing signal determination unit that determines a state change of the sensing signal output from the sensor body and outputs a sensing signal with a state change of a predetermined level or more; ,
前記センシング信号判断部より出力されるセンシング信号を記憶する記憶部と を具備することを特徴とする遠隔センシングシステム。  A remote sensing system comprising: a storage unit that stores a sensing signal output from the sensing signal determination unit.
[26] センシング信号判断部は、前記センサ本体より入力されるセンシング信号の値に対 し、これより前に入力されたセンシング信号の値との差の絶対値がある値以下の場合 、このときのセンシング信号を削除し、前記センサ本体より出力されるセンシング信号 の値に対し、これより前に入力されたセンシング信号との差の絶対値がある値以上の 場合、このセンシング信号を前記記憶部へ出力することを特徴とする請求項 25記載 の遠隔センシングシステム。  [26] When the absolute value of the difference between the sensing signal value input from the sensor body and the sensing signal value input before this is less than a certain value, the sensing signal determination unit If the absolute value of the difference between the sensing signal output from the sensor body and the sensing signal input before this is greater than a certain value, the sensing signal is stored in the storage unit. 26. The remote sensing system according to claim 25, wherein the remote sensing system outputs to the remote control system.
[27] 前記記憶部は、着脱可能な記憶媒体力 なることを特徴とする請求項 25記載の遠 隔センシングシステム。 27. The remote control according to claim 25, wherein the storage unit has a removable storage medium force. Remote sensing system.
[28] 前記記憶部は、着脱可能な記憶媒体からなることを特徴とする請求項 26記載の遠 隔センシングシステム。  28. The remote sensing system according to claim 26, wherein the storage unit includes a removable storage medium.
[29] センシング対象物に対応して設けられ、通信回線を介してセンタ装置との間で信号 の伝送が可能なセンサユニットであって、  [29] A sensor unit provided corresponding to the sensing object and capable of transmitting signals to and from the center device via a communication line,
前記センタ装置から送信されるセンサ駆動信号を受信するセンサ駆動信号受信部 と、  A sensor drive signal receiver for receiving a sensor drive signal transmitted from the center device; and
前記センサ駆動信号受信部で受信されたセンサ駆動信号に応じた駆動制御信号 を発生するセンサ駆動制御部と、  A sensor drive control unit for generating a drive control signal according to the sensor drive signal received by the sensor drive signal receiving unit;
前記駆動制御信号により、  By the drive control signal,
前記センシング対象物の状態を表わすセンシング信号を出力するセンサ本体と、 前記センサ本体より出力されるセンシング信号の状態変化を判断し、所定以上の 状態変化をともなうセンシング信号を出力するセンシング信号判断部と、  A sensor body that outputs a sensing signal representing a state of the sensing object; a sensing signal determination unit that determines a state change of the sensing signal output from the sensor body and outputs a sensing signal with a state change of a predetermined level or more; ,
前記センシング信号判断部より出力されるセンシング信号を記憶する記憶部と、 を具備することを特徴とするセンサユニット。  A storage unit that stores a sensing signal output from the sensing signal determination unit.
[30] センサ駆動信号を記憶するとともに、該センサ駆動信号に応じた駆動制御信号を 発生するセンサ駆動制御部と、  [30] A sensor drive control unit that stores the sensor drive signal and generates a drive control signal according to the sensor drive signal;
前記駆動制御信号により、  By the drive control signal,
前記センシング対象物の状態を表わすセンシング信号を出力するセンサ本体と、 前記センサ本体より出力されるセンシング信号の状態変化を判断し、所定以上の 状態変化をともなうセンシング信号をそのまま出力するセンシング信号判断部と、 前記センシング信号判断部より出力されるセンシング信号を記憶する記憶部と、 を具備することを特徴とするセンサユニット。  A sensor body that outputs a sensing signal representing the state of the sensing object, and a sensing signal determination unit that determines a state change of the sensing signal output from the sensor body and outputs a sensing signal with a state change of a predetermined level or more as it is And a storage unit for storing the sensing signal output from the sensing signal determination unit.
[31] センシング信号判断部は、前記センサ本体より入力されるセンシング信号の値に対 し、これより前に入力されたセンシング信号の値との差の絶対値がある値以下の場合 、このときのセンシング信号を削除し、前記センサ本体より出力されるセンシング信号 の値に対し、これより前に入力されたセンシング信号との差の絶対値がある値以上の 場合、このセンシング信号を前記記憶部へ出力することを特徴とする請求項 29記載 のセンサユニット。 [31] The sensing signal determination unit, when the absolute value of the difference between the sensing signal value input from the sensor body and the sensing signal value input before this is less than a certain value, If the absolute value of the difference between the sensing signal output from the sensor body and the sensing signal input before this is greater than a certain value, the sensing signal is stored in the storage unit. 30. The output from claim 29, wherein Sensor unit.
[32] センシング信号判断部は、前記センサ本体より入力されるセンシング信号の値に対 し、これより前に入力されたセンシング信号の値との差の絶対値がある値以下の場合 、このときのセンシング信号を削除し、前記センサ本体より出力されるセンシング信号 の値に対し、これより前に入力されたセンシング信号との差の絶対値がある値以上の 場合、このセンシング信号を前記記憶部へ出力することを特徴とする請求項 30記載 のセンサユニット。  [32] The sensing signal determination unit, when the absolute value of the difference between the sensing signal value input from the sensor body and the sensing signal value input before this is less than a certain value, If the absolute value of the difference between the sensing signal output from the sensor body and the sensing signal input before this is greater than a certain value, the sensing signal is stored in the storage unit. 31. The sensor unit according to claim 30, wherein the sensor unit is output to the sensor unit.
[33] 前記記憶部は、着脱可能な記憶媒体力 なることを特徴とする請求項 29記載のセ ンサユニット。  33. The sensor unit according to claim 29, wherein the storage unit has a removable storage medium force.
[34] 前記記憶部は、着脱可能な記憶媒体力 なることを特徴とする請求項 30記載のセ ンサユニット。  34. The sensor unit according to claim 30, wherein the storage unit has a removable storage medium force.
[35] 前記記憶部は、着脱可能な記憶媒体力 なることを特徴とする請求項 31記載のセ ンサユニット。  35. The sensor unit according to claim 31, wherein the storage unit has a removable storage medium force.
[36] センシング対象物に対応して設けられるセンサユニットと、前記センサユニットと通 信回線を介して信号の伝送を行うセンタ装置とからなる遠隔センシングシステムにお いて、  [36] In a remote sensing system comprising a sensor unit provided corresponding to a sensing object and a center device that transmits signals to the sensor unit via a communication line.
前記センサユニットは、前記センシング対象物の状態を検出し、センシング信号とし て出力するセンサ本体と、前記センサユニットを制御するセンサ駆動制御部と、前記 センサ本体から出力される前記センシング信号を前記センタ装置へ送信するセンシ ング信号送信部とを備え、  The sensor unit detects a state of the sensing object and outputs it as a sensing signal, a sensor drive control unit for controlling the sensor unit, and the sensing signal output from the sensor body as the center. And a sensing signal transmitter for transmitting to the device,
前記センタ装置は、前記センサユニットから送信される前記センシング信号を受信 する受信部と、受信した前記センシング信号を信号処理するセンシング信号収集処 理部を備えることを特徴とする遠隔センシングシステム。  The center device includes a receiving unit that receives the sensing signal transmitted from the sensor unit, and a sensing signal collection processing unit that processes the received sensing signal.
[37] 前記センサユニットは、ボタン状の略円形扁平体と、被験者に前記略円形扁平体を 固着させる接着部とからなることを特徴とする請求項 36記載の遠隔センシングシステ ム。 37. The remote sensing system according to claim 36, wherein the sensor unit includes a button-like substantially circular flat body and an adhesive portion that fixes the substantially circular flat body to a subject.
[38] 前記接着部は、アクリル系の両面接着テープによることを特徴とする請求項 37に記 載の遠隔センシングシステム。 38. The remote sensing system according to claim 37, wherein the adhesive portion is an acrylic double-sided adhesive tape.
[39] センシング対象物に対応して設けられ、通信回線を介してセンタ装置と信号の伝送 が可能なセンサユニットであって、 [39] A sensor unit provided corresponding to the sensing object and capable of transmitting signals to and from the center device via a communication line,
前記センシング対象物の状態を検出し、センシング信号として出力するセンサ本体 と、前記センサ本体を制御するセンサ駆動制御部と、前記センサ本体から出力される 前記センシング信号を前記センタ装置へ送信するセンシング信号送信部とを具備す ることを特徴とするセンサユニット。  A sensor body that detects the state of the sensing object and outputs it as a sensing signal, a sensor drive control unit that controls the sensor body, and a sensing signal that transmits the sensing signal output from the sensor body to the center device A sensor unit comprising a transmitter.
[40] センシング対象物に対応して設けられるセンサユニットであって、 [40] A sensor unit provided corresponding to a sensing object,
前記センシング対象物の状態を検出し、センシング信号として出力するセンサ本体 と、前記センサ本体を制御するセンサ駆動制御部と、前記前記センサ本体から出力 される前記センシング信号を蓄積するセンシング信号蓄積部と具備することを特徴と するセンサユニット。  A sensor body that detects the state of the sensing object and outputs it as a sensing signal; a sensor drive control unit that controls the sensor body; and a sensing signal storage unit that stores the sensing signal output from the sensor body. A sensor unit characterized by comprising.
[41] 前記センサユニットは、ボタン状の略円形扁平体と、被験者に前記略円形扁平体を 固着させる接着部とからなることを特徴とする請求項 39記載のセンサユニット。  41. The sensor unit according to claim 39, wherein the sensor unit comprises a button-like substantially circular flat body and an adhesive portion that causes the subject to fix the substantially circular flat body.
[42] 前記センサユニットは、ボタン状の略円形扁平体と、被験者に前記略円形扁平体を 固着させる接着部とからなることを特徴とする請求項 40記載のセンサユニット。  42. The sensor unit according to claim 40, wherein the sensor unit includes a button-like substantially circular flat body and an adhesive portion that fixes the substantially circular flat body to a subject.
[43] 前記接着部は、アクリル系の両面接着テープによることを特徴とする請求項 41に記 載のセンサユニット。  [43] The sensor unit according to claim 41, wherein the adhesive portion is made of an acrylic double-sided adhesive tape.
[44] 前記接着部は、アクリル系の両面接着テープによることを特徴とする請求項 42に記 載のセンサユニット。  44. The sensor unit according to claim 42, wherein the adhesive portion is made of an acrylic double-sided adhesive tape.
PCT/JP2006/304752 2005-03-10 2006-03-10 Remote sensing system and sensor unit WO2006095856A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-067631 2005-03-10
JP2005067630A JP2006252171A (en) 2005-03-10 2005-03-10 Remote sensing system and sensor unit
JP2005-067630 2005-03-10
JP2005067631A JP2006247121A (en) 2005-03-10 2005-03-10 Remote sensing system and sensor unit
JP2005-117496 2005-03-17
JP2005117496A JP2006255374A (en) 2005-03-17 2005-03-17 Remote sensing system, and sensor unit

Publications (1)

Publication Number Publication Date
WO2006095856A1 true WO2006095856A1 (en) 2006-09-14

Family

ID=36953445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304752 WO2006095856A1 (en) 2005-03-10 2006-03-10 Remote sensing system and sensor unit

Country Status (1)

Country Link
WO (1) WO2006095856A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197892A (en) * 1992-01-22 1993-08-06 Fujitsu Ltd Method for transferring remote measured data
JPH06189009A (en) * 1992-12-18 1994-07-08 Sharp Corp Environmental data collection system
JP2001307268A (en) * 2000-04-18 2001-11-02 Yokohama Rubber Co Ltd:The System for measuring physical quantities in surrounding atmosphere
JP2003115093A (en) * 2001-10-04 2003-04-18 Omron Corp Sensor managing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197892A (en) * 1992-01-22 1993-08-06 Fujitsu Ltd Method for transferring remote measured data
JPH06189009A (en) * 1992-12-18 1994-07-08 Sharp Corp Environmental data collection system
JP2001307268A (en) * 2000-04-18 2001-11-02 Yokohama Rubber Co Ltd:The System for measuring physical quantities in surrounding atmosphere
JP2003115093A (en) * 2001-10-04 2003-04-18 Omron Corp Sensor managing device

Similar Documents

Publication Publication Date Title
US7016812B2 (en) Apparatus and control method for intelligent sensor device
US9436270B2 (en) Wireless low-energy secure data transfer
US6450953B1 (en) Portable signal transfer unit
JP2007167448A (en) Bioinformation sensor unit and bioinformation monitor system
US8330596B2 (en) Sensor node and sensor network system
TW201004435A (en) Power management using at least one of a special purpose processor and motion sensing
EP2716113B1 (en) Standalone radio frequency wireless device having data acquisition capabilities
JP6241613B2 (en) Electronic device system, terminal device, electronic device system control method, and control program
JP5670747B2 (en) Wireless sensor node architecture with autonomous streaming
US20150009043A1 (en) Intermediate audio link and apparatus for device-to-device communications
CN111082824A (en) Vehicle-mounted unit
JP2006252171A (en) Remote sensing system and sensor unit
WO2006095856A1 (en) Remote sensing system and sensor unit
JP2007117481A (en) Biological information monitor system
US20240032875A1 (en) Composite Phonocardiogram Visualization on an Electronic Stethoscope Display
US10119846B2 (en) Method, sensor module, and system for transferring data
JP2006230790A (en) Sleep condition detecting system and sleep condition detector
CN210609141U (en) Vehicle-mounted unit
JP2006255374A (en) Remote sensing system, and sensor unit
JP2006247121A (en) Remote sensing system and sensor unit
CN208806796U (en) A kind of wireless voice call device system based on frequency range 433MHz
WO2006090876A1 (en) Sleeping state detecting system and sleeping state detecting device
JP2007097821A (en) Behavior monitoring system
CN216411331U (en) Cloth accuse ball based on vibration acceleration sensor
CN104103150A (en) Tumble alarm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715522

Country of ref document: EP

Kind code of ref document: A1