WO2006095697A1 - Method of detecting microorganism and bacteriolytic reagent - Google Patents

Method of detecting microorganism and bacteriolytic reagent Download PDF

Info

Publication number
WO2006095697A1
WO2006095697A1 PCT/JP2006/304296 JP2006304296W WO2006095697A1 WO 2006095697 A1 WO2006095697 A1 WO 2006095697A1 JP 2006304296 W JP2006304296 W JP 2006304296W WO 2006095697 A1 WO2006095697 A1 WO 2006095697A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysis reagent
microorganism
lysis
enzyme
concentration
Prior art date
Application number
PCT/JP2006/304296
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Matsuno
Akio Kuroda
Original Assignee
Bussan Nanotech Research Institute, Inc.
National University Of Corporation Hiroshima University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute, Inc., National University Of Corporation Hiroshima University filed Critical Bussan Nanotech Research Institute, Inc.
Publication of WO2006095697A1 publication Critical patent/WO2006095697A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention relates to a microorganism detection method and a lysis reagent.
  • Methods for extracting ATP in cells include adding microorganisms to an aqueous solution of triclonal acetate (TCA method), extracting cells with an aqueous surfactant solution (surfactant method), and 90 ° C.
  • TCA method triclonal acetate
  • surfactant method aqueous surfactant solution
  • Known methods include adding cells to Tris buffer heated to a suitable temperature (Tris buffer method), methods using ethanol (ethanol method), methods using lytic enzymes such as lysozyme (enzyme method), etc.
  • Tris buffer method Tris buffer heated to a suitable temperature
  • ethanol method ethanol
  • lytic enzymes such as lysozyme (enzyme method)
  • the enzyme for biochemiluminescence may be inhibited by the surfactant or ethanol, and the sensitivity of biochemiluminescence tends to decrease.
  • the enzymatic method has a problem that it takes time to extract intracellular ATP.
  • any of the above ATP extraction methods has merits and demerits, and the present situation is that they are properly used according to circumstances.
  • a surfactant method using a cationic surfactant that can effectively extract ATP from microorganisms that may inhibit enzymes as a lysis reagent is often used.
  • Patent Document 1 in a method for measuring intracellular ATP of a sample containing cells by a biochemiluminescence method, the sample is referred to as a cationic field.
  • Patent Document 1 Japanese Patent No. 3175018
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a microorganism detection method and a lysis reagent that can sufficiently detect even a very small amount of microorganism.
  • the microorganism detection method of the present invention uses a lysis cell for microbial cells.
  • intracellular ATP is extracted when a microorganism cell is brought into contact with a lysis reagent.
  • the nonionic surfactant is used as the surfactant contained in the lysis reagent, it is sufficiently suppressed that the surfactant inhibits or denatures the lytic enzyme.
  • the said lysis reagent contains a chelating agent, lysis reaction is accelerated
  • the lysis reagent contains a lytic enzyme in addition to the nonionic surfactant and the chelating agent, the cells are sufficiently lysed and the intracellular ATP is sufficiently extracted. Since the extracted intracellular ATP is amplified, a sufficient amount of luminescence can be obtained in a short time by a luminescence reaction with luciferin and luciferase even if the amount of microorganisms is very small. Moreover, in the microorganism detection method of the present invention, as described above, inhibition and denaturation of the lytic enzyme are sufficiently suppressed in the lysis reaction.
  • nonionic surfactants are used as surfactants as described above, so that insoluble salts are sufficiently formed even in the presence of anionic compounds such as polyphosphoric acid used in amplification reagents. Is prevented. Accordingly, the temporal decrease in the amount of luminescence can be sufficiently suppressed, and the reproducibility of the detection result of the microorganism can be improved.
  • the chelating agent accelerates the process of extracting intracellular ATP from the cell surface. This is presumed to function as a so-called catalyst.
  • the lytic enzyme is preferably an enzyme that hydrolyzes a cell wall. In this case, in biochemiluminescence, the decrease in the amount of luminescence is more sufficiently suppressed.
  • the lysis reagent preferably further contains a saccharide.
  • the decrease in the activity of the lytic enzyme is more sufficiently suppressed, and the amount of luminescence is further increased.
  • the concentration of the nonionic surfactant is such that 0.1 mass% to 1.0 mass% with respect to the amount, and the concentration of the lytic enzyme is 1.
  • OX 10 5 units / mL to OX 10 6 units / mL with respect to the total amount of the lysis reagent The concentration of the chelating agent is preferably 5 mM to 10 mM with respect to the total amount of the lysis reagent.
  • lunit refers to the amount of enzyme that decreases the absorbance (640 nm) by 0.001 per minute when lysozyme is produced using a phosphate buffer suspension of dried micrococcus lysodeikticus as a substrate.
  • the concentration of the nonionic surfactant, lytic enzyme, and chelating agent contained in the lysis reagent is within the above range, the extraction of intracellular ATP is further promoted compared to the case where the concentration is outside the above range.
  • a sufficient amount of light emission can be obtained in a short time, and the temporal decrease in the amount of light emission can be more sufficiently suppressed.
  • the lysis reagent of the present invention is characterized by containing a lytic enzyme, a nonionic surfactant and a chelating agent.
  • a lytic enzyme a nonionic surfactant
  • a chelating agent a chelating agent that can be sufficiently extracted from the cells of the microorganism in a short time.
  • intracellular ATP can be sufficiently extracted from the cells of the microorganism in a short time.
  • the microorganisms to be lysed by the lysis reagent are not particularly limited.
  • microorganism detection method of the present invention even a very small amount of microorganism can be sufficiently detected in biochemiluminescence.
  • FIG. 1 is a graph showing a temporal change in light emission amount in Example 1.
  • the microorganism detection method of the present invention comprises an extraction step of extracting intracellular ATP of microorganisms using a lysis reagent containing a lytic enzyme, a nonionic surfactant and a chelating agent, and the extracted intracellular An amplification step for amplifying ATP; and a luminescence step for reacting the amplified intracellular ATP with luciferin and luciferase.
  • the extraction step is a step of extracting intracellular ATP from the cell force of the microorganism.
  • a lysis reagent containing a lytic enzyme, a nonionic surfactant and a chelating agent is used.
  • intracellular AT P can be sufficiently extracted in a short time.
  • the lytic enzyme is not particularly limited, and examples thereof include lysozyme, chitinase, chitosanase, achromopeptidase, ⁇ -1,3-glucanase, and hexosaminidase.
  • lytic enzymes such as lysozyme that hydrolyze cell walls are preferable. These lytic enzymes can hydrolyze the cell wall. In this case, the decrease in the amount of luminescence is more sufficiently suppressed in biochemiluminescence. Lysozyme is more useful because it is relatively inexpensive and easy to obtain.
  • the lysis reagent includes a nonionic surfactant.
  • a nonionic surfactant As the surfactant, it is suppressed that the surfactant inhibits the lytic enzyme contained in the lysis reagent. Further, as will be described later, when amplification of the extracted intracellular cells is performed, it is prevented that the surfactant and the amplification reagent form an insoluble salt.
  • the nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sorbitan ester, and sorbitan fatty acid ester.
  • the lysis reagent includes a chelating agent.
  • Chelating agents play a role in promoting the lysis reaction. Although it does not specifically limit as a chelating agent, For example, EDTA, EGTA, CyDTA, DTPA, NTA, TTHA, IDA, NTPO, BAPTA etc. are mentioned. Among these, EDTA, EGTA, CyDTA, 0? I prefer 8 or 1 ⁇ 3 ⁇ 48. If the chelating agent is EDTA, EGTA, CyDTA, DTP A or TTH A, the lysis reaction is further accelerated.
  • the lysis reagent preferably further contains a saccharide.
  • the lysis rate becomes faster and the decrease in the activity of the lytic enzyme is further suppressed. Accordingly, the temporal decrease in the amount of luminescence is sufficiently suppressed, and the reproducibility of the detection result of the microorganism is further increased.
  • the saccharide is not particularly limited, and examples thereof include sucrose, glucose, fructose, maltose, galactose, ratatose, trehalose, mannose and the like. Among these, sucrose or trehalose is preferable. If the saccharide is sucrose or trehalose, the decrease in enzyme activity is further suppressed.
  • the lysis reagent does not inhibit the activity of the lytic enzyme described above, It may further contain a reagent such as tylene glycol, glycerol, 2-mercaptoethanol, dithiothreitol and the like.
  • the microorganism to be lysed by the lysis reagent is not particularly limited.
  • the target microorganism is not particularly limited, and examples thereof include Escherichia coli, coliforms, Salmonella, Staphylococcus aureus and the like.
  • the concentration of the lytic enzyme is preferably from 1. OX 10 4 units / mL to OX 10 ? Units / mL with respect to the total amount of the lysis reagent. 1. 0 X 10 5 units / mL to l. OX 10 6 units / mL is more preferable. If the concentration of the lytic enzyme is less than 1. OX 10 5 unitsZmL, the lytic enzyme function is insufficient compared to the case where the concentration is in the above range, and it tends to take time to extract intracellular ATP. When the concentration of the lytic enzyme exceeds 1. OX 10 6 unitsZmL, there is no difference in the function of the lytic enzyme compared to the case where the concentration is in the above range, and the lytic enzyme tends to be used wastefully.
  • the concentration of the nonionic surfactant used in the present invention is important. That is, it is preferable that the concentration of the nonionic surfactant is 0.01% by mass to 5.0% by mass with respect to the total amount of the lysis reagent. 0.1% by mass to 1.0% by mass More preferably.
  • the concentration of the nonionic surfactant is less than 0.1% by mass, the lysis rate tends to be slower than when the concentration is within the above range, and the concentration of the nonionic surfactant is low. If it exceeds 1.0 mass%, the nonionic surfactant tends to inhibit the enzyme reaction of the enzyme (such as a lytic enzyme) as compared with the case where the concentration is in the above range.
  • the concentration of the chelating agent is preferably 5 mM to 10 mM, more preferably ImM or more with respect to the total amount of the lysis reagent.
  • concentration is less than 5 mM, the lysis reaction tends to be slower than when the concentration is in the above range, and when the chelating agent concentration exceeds 10 mM, the concentration is in the above range. Compared to enzyme reactions (especially luminescence) Reaction) tends to be inhibited.
  • the concentration of the saccharides is preferably 0.1% by mass or more based on the total amount of the lysis reagent. More preferably, it is ⁇ 10% by mass.
  • the saccharide concentration is less than 0.5% by mass, it is difficult to obtain an effect of increasing the rate of lysis compared to the case where the concentration is within the above range.
  • the saccharide concentration exceeds 10% by mass, Compared with the case where is in the above range, the degree of inhibition of the lytic enzyme activity tends to increase.
  • the concentration of the nonionic surfactant is 0.1% by mass to 1.0% by mass with respect to the total amount of the lysis reagent, and the concentration of the lysis enzyme is It is preferable that it is 1. OX 10 5 units / mL to OX 10 6 units / mL with respect to the total amount of the reagent, and the concentration of the chelating agent is 5 mM to 10 mM with respect to the total amount of the lysis reagent.
  • the concentration range of the nonionic surfactant, lytic enzyme, and chelating agent contained in the lysis reagent is also within the above range, compared to the case where either one is outside the above range, the intracellular ATP Extraction is further promoted, a sufficient amount of light emission can be obtained in a short time, and a temporal decrease in the amount of light emission can be sufficiently suppressed.
  • the amplification step is a step of amplifying the intracellular ATP extracted in the extraction step.
  • the amplification reagent includes an amplification substrate and an amplification enzyme.
  • amplification mechanism of ATP is as follows. It is. That is, AMP (adenosine monophosphate) is reacted with adenylate kinase in the presence of ATP to form two molecules of ADP (adenosine nitric acid), and in the presence of polyphosphate compound, ADP reacts with polyphosphate kinase to form two molecules of ATP and a polyphosphate compound.
  • AMP adenosine monophosphate
  • ADP adenosine nitric acid
  • An amplification reagent for amplifying ATP is composed of an amplification substrate and an amplification enzyme, and the amplification reagent is composed of polyphosphate as an amplification substrate, adenylate kinase and polyphosphate kinase as amplification enzymes. Consists of.
  • polyphosphate kinase instead of polyphosphate kinase, An acid kinase can also be used. Of these, those using polyphosphate as an amplification substrate and adenylate kinase and polyphosphate kinase as amplification enzymes are preferred. In this case, since polyphosphoric acid acts as a phosphate donating substrate, there is an advantage that reaction efficiency can be improved by using polyphosphoric acid having a long chain length.
  • the luminescence process is a process in which amplified ATP is brought into contact with luciferin and luciferase to generate biochemiluminescence. This luminescence step can be performed by mixing ATP with luciferin and luciferase.
  • microorganisms By detecting this luminescence with a light detection device or the like, microorganisms can be detected.
  • a photodetection device a known device can be used.
  • a CCD, a photodiode, or a photomultiplier tube can be used.
  • the microorganism detection method of the present invention may further include other steps as long as it includes an extraction step, an amplification step, and a luminescence step.
  • the other processes include a decomposition process for decomposing bacterial flocs before extracting intracellular ATP from microorganisms, a removal process for removing unnecessary ATP that does not depend on microorganisms using a removal liquid, and this removal liquid. At least one of the inactivation steps for inactivating the material is included.
  • Lysis reagent A was prepared by the following method.
  • Lysozyme (derived from chicken egg white) as a lytic enzyme, Triton X-100 (registered trademark) as a nonionic surfactant, sucrose as a saccharide, and ethylenediaminetetraacetic acid (as a chelating agent) EDTA) was used. Lysozyme, Triton X-100, sucrose, and EDTA are mixed in 10 mM Tris buffer (pH 8.0) to a concentration of 8 mgZmL, 0.1 mass%, 0.8 mass%, and 50 mM, respectively. Reagent A.
  • An amplification substrate solution and an amplified luminescent enzyme solution were prepared by the following method.
  • the AMP and polyphosphate so concentration of each 4 X 10 _5 M and ImM, mixed with 50 m M Tris buffer (pH 7. 4), was amplified substrate solution.
  • PPK-ADK amplification enzyme
  • Lucifer 250+ luminescence reagent, manufactured by Kikkoman Co., Ltd.
  • the amount of luminescence was measured according to Example 1 except that lysis reagent B was used instead of lysis reagent A.
  • FIG. 1 shows that, according to Example 1, the presence of a trace amount (several Z measurement) of microorganisms can be detected by combining ATP extraction using lysis reagent A and ATP amplified luminescence reaction. It was done.
  • microorganism detection method and lysis reagent of the present invention can be used for detection of microorganisms such as bacteria using ATP as an index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a method of detecting a microorganism which comprises the extraction step of contacting microbial cells with a bacteriolytic reagent and thus extracting intracellular ATP from the microbial cells, the amplification step of amplifying the intracellular ATP thus extracted, and the light emission step of contacting the intracellular ATP with luciferin and luciferase for light emission, wherein the bacteriolytic reagent contains a lytic enzyme, a nonionic surfactant and a chelating agent. Thus, a method of detecting a microorganism, whereby a microorganism even in an extremely small amount can be sufficiently detected, and a bacteriolytic reagent are provided.

Description

明 細 書  Specification
微生物検出方法及び溶菌試薬  Microbial detection method and lysis reagent
技術分野  Technical field
[0001] 本発明は、微生物検出方法及び溶菌試薬に関する。  The present invention relates to a microorganism detection method and a lysis reagent.
背景技術  Background art
[0002] 生肉や乳製品を取り扱う食品産業等においては、食中毒予防の観点力 迅速かつ 高感度で微生物を検出する方法が求められている。近年、微生物の検出方法として 、生物に存在する ATP (アデノシン三リン酸)を指標とし、 ATPと、ルシフェリン及び ルシフェラーゼとの反応で発生する生物化学発光を測定することによって微生物を 検出すると 、う方法が用いられて 、る。  [0002] In the food industry and the like that handle raw meat and dairy products, there is a demand for a method for detecting microorganisms quickly and with high sensitivity from the viewpoint of food poisoning prevention. In recent years, as a method for detecting microorganisms, a method for detecting microorganisms by measuring biochemiluminescence generated by the reaction of ATP with luciferin and luciferase using ATP (adenosine triphosphate) present in living organisms as an index. Is used.
[0003] この方法を用いて細胞内 ATPを測定するためには、細胞中に含まれる ATPを抽 出する必要がある。細胞中の ATPを抽出する方法としては、トリクロ口酢酸水溶液に 微生物を加えて抽出する方法 (TCA法)、界面活性剤水溶液に細胞を加えて抽出 する方法 (界面活性剤法)、 90°C位に熱したトリス緩衝液に細胞を加えて抽出する方 法(トリス緩衝液法)、エタノールを用いる方法 (エタノール法)、リゾチーム等の溶菌 酵素を用いる方法 (酵素法)等が知られている。し力しながら、上記 TCA法及びトリス 緩衝液法では、中和処理を行ったり、試料を高温にしたりする必要がある。すなわち 、 PHや温度を調製する必要があり、安定した量の ATPを迅速に抽出することが困難 である。一方、界面活性剤法及びエタノール法では、界面活性剤やエタノールによつ て、生物化学発光させるための酵素が阻害される場合があり、生物化学発光の感度 が低下する傾向にある。他方、酵素法は、細胞内 ATPの抽出に時間が力かるという 問題点を有している。 [0003] In order to measure intracellular ATP using this method, it is necessary to extract ATP contained in the cell. Methods for extracting ATP in cells include adding microorganisms to an aqueous solution of triclonal acetate (TCA method), extracting cells with an aqueous surfactant solution (surfactant method), and 90 ° C. Known methods include adding cells to Tris buffer heated to a suitable temperature (Tris buffer method), methods using ethanol (ethanol method), methods using lytic enzymes such as lysozyme (enzyme method), etc. . However, in the above TCA method and Tris buffer solution method, it is necessary to carry out a neutralization treatment or to increase the temperature of the sample. That is, it is necessary to prepare the P H and temperature, it is difficult to quickly extract the stable amount of ATP. On the other hand, in the surfactant method and the ethanol method, the enzyme for biochemiluminescence may be inhibited by the surfactant or ethanol, and the sensitivity of biochemiluminescence tends to decrease. On the other hand, the enzymatic method has a problem that it takes time to extract intracellular ATP.
[0004] このように、上記いずれの ATP抽出方法にも一長一短があり、場合に応じて使い分 けているのが現状である。これらのうち、酵素を阻害する場合がある力 微生物から 有効に ATPを抽出できる陽イオン性界面活性剤を溶菌試薬として用いる界面活性 剤法がよく用いられている。例えば、下記特許文献 1には、細胞を含む試料の細胞内 ATPを生物化学発光法によって測定する方法において、当該試料を、陽イオン性界 面活性剤を含む ATP抽出試薬と、陽イオン性界面活性剤による酵素反応阻害を抑 制するための蛋白質又は配糖体を含む酵素反応阻害抑制試薬と、に接触させる細 胞内 ATPの測定方法が開示されている。この方法によれば、陽イオン性界面活性剤 による発光阻害が抑制されるという効果が得られる。 [0004] As described above, any of the above ATP extraction methods has merits and demerits, and the present situation is that they are properly used according to circumstances. Of these, a surfactant method using a cationic surfactant that can effectively extract ATP from microorganisms that may inhibit enzymes as a lysis reagent is often used. For example, in Patent Document 1 below, in a method for measuring intracellular ATP of a sample containing cells by a biochemiluminescence method, the sample is referred to as a cationic field. A method for measuring intracellular ATP in contact with an ATP extraction reagent containing a surfactant and an enzyme reaction inhibition inhibitor containing a protein or glycoside to inhibit enzyme reaction inhibition by a cationic surfactant Is disclosed. According to this method, the effect that the light emission inhibition by the cationic surfactant is suppressed can be obtained.
特許文献 1 :特許第 3175018号公報  Patent Document 1: Japanese Patent No. 3175018
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、細胞内 ATPと、ルシフェリン及びルシフェラーゼとの反応で発生する生物 化学発光を測定し、微生物を検出する方法においては、微生物が極微量のとき、細 胞内 ATPを増幅させる方法が効果的であり、この増幅は、増幅試薬を用いて行われ 、増幅試薬としては、一般に増幅酵素及び増幅基質が用いられる。  [0005] By the way, in a method for detecting a microorganism by measuring biochemiluminescence generated by the reaction of intracellular ATP with luciferin and luciferase, there is a method of amplifying intracellular ATP when the microorganism is extremely small. Effectively, this amplification is performed using an amplification reagent, and an amplification enzyme and an amplification substrate are generally used as the amplification reagent.
[0006] し力しながら、前述した特許文献 1記載の検出方法は、例えばポリリン酸ィ匕合物等 の陰イオン性化合物で構成される増幅基質が存在すると、陽イオン性界面活性剤と 当該陰イオン性ィ匕合物とが不溶性の塩を形成してしまい、その結果、溶菌効果が著 しく低下する傾向にあり、微生物を十分に検出することができない。また、溶菌反応を 開始した後に、陰イオン性ィ匕合物及び細菌由来の ATPを基質として酵素反応を行う 場合においても、溶菌反応を維持することが困難となる傾向にある。この場合、発光 量が経時的に低下するため、測定する時刻によって発光量が大きく異なることがあり 、微生物を再現性よく検出することができない。  [0006] However, in the detection method described in Patent Document 1 described above, when an amplification substrate composed of an anionic compound such as a polyphosphate compound is present, a cationic surfactant and An anionic compound forms an insoluble salt, and as a result, the lysis effect tends to be remarkably reduced, and microorganisms cannot be sufficiently detected. In addition, even when an enzymatic reaction is performed using an anionic compound and bacterial ATP as a substrate after the start of the lysis reaction, it tends to be difficult to maintain the lysis reaction. In this case, since the amount of luminescence decreases with time, the amount of luminescence may vary greatly depending on the time of measurement, and microorganisms cannot be detected with good reproducibility.
[0007] なお、界面活性剤として、陽イオン性界面活性剤に代えて陰イオン性界面活性剤 を用いた場合は、酵素自体が変性される傾向にあり、溶菌反応自体が進まず、微生 物を殆ど検出することができない。一方、界面活性剤として、非イオン性界面活性剤 を用いた場合は、溶菌反応が遅ぐ発光量が微量の場合は検出できないという問題 がある。  [0007] When an anionic surfactant is used as a surfactant instead of a cationic surfactant, the enzyme itself tends to be denatured, the lysis reaction itself does not proceed, and microbiology occurs. Objects can hardly be detected. On the other hand, when a nonionic surfactant is used as a surfactant, there is a problem that it cannot be detected when the amount of luminescence with a slow lysis reaction is very small.
[0008] 本発明は、上記事情に鑑みてなされたものであり、極微量の微生物であっても十分 に検出できる微生物検出方法及び溶菌試薬を提供することを目的とする。  [0008] The present invention has been made in view of the above circumstances, and an object thereof is to provide a microorganism detection method and a lysis reagent that can sufficiently detect even a very small amount of microorganism.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、本発明の微生物検出方法は、微生物の細胞を溶菌試 薬と接触させて、微生物の細胞カゝら細胞内 ATPを抽出する抽出工程と、抽出した細 胞内 ATPを増幅させる増幅工程と、増幅させた細胞内 ATP、ルシフ リン及びルシ フェラーゼを接触させて発光させる発光工程と、を備え、溶菌試薬が溶菌酵素、非ィ オン性界面活性剤及びキレート剤を含むことを特徴とする。 [0009] In order to solve the above-described problems, the microorganism detection method of the present invention uses a lysis cell for microbial cells. An extraction step of extracting intracellular ATP from a microorganism cell, contacting with a drug, an amplification step of amplifying the extracted intracellular ATP, and contacting the amplified intracellular ATP, luciferin and luciferase And a luminescent reagent, wherein the lysis reagent contains a lytic enzyme, a nonionic surfactant and a chelating agent.
[0010] 本発明の微生物検出方法では、微生物の細胞を溶菌試薬と接触させると、細胞内 ATPが抽出される。このとき、溶菌試薬に含まれる界面活性剤として非イオン性界面 活性剤を用いるので、界面活性剤が溶菌酵素を阻害又は変性することが十分に抑 制される。また、上記溶菌試薬がキレート剤を含有するので、溶菌反応が促進される In the microorganism detection method of the present invention, intracellular ATP is extracted when a microorganism cell is brought into contact with a lysis reagent. At this time, since the nonionic surfactant is used as the surfactant contained in the lysis reagent, it is sufficiently suppressed that the surfactant inhibits or denatures the lytic enzyme. Moreover, since the said lysis reagent contains a chelating agent, lysis reaction is accelerated | stimulated.
[0011] 更に、上記溶菌試薬が、上記非イオン性界面活性剤及びキレート剤に加え、溶菌 酵素を含有するので、細胞が十分に溶菌され、細胞内 ATPが十分に抽出される。そ して、抽出された細胞内 ATPは増幅されるため、微生物が微量であっても、ルシフエ リン及びルシフ ラーゼとの発光反応により、十分な発光量を短時間で得ることがで きる。また、本発明の微生物検出方法では、上述したように、溶菌反応において溶菌 酵素の阻害及び変性が十分に抑制される。カロえて、上述したように界面活性剤として 非イオン性界面活性剤が用いられるので、増幅試薬に用いられるポリリン酸等の陰ィ オン性化合物が存在しても、不溶性の塩の形成が十分に防止される。従って、発光 量の時間的な低下が十分に抑えられ、微生物の検出結果の再現性を高めることがで きる。 [0011] Furthermore, since the lysis reagent contains a lytic enzyme in addition to the nonionic surfactant and the chelating agent, the cells are sufficiently lysed and the intracellular ATP is sufficiently extracted. Since the extracted intracellular ATP is amplified, a sufficient amount of luminescence can be obtained in a short time by a luminescence reaction with luciferin and luciferase even if the amount of microorganisms is very small. Moreover, in the microorganism detection method of the present invention, as described above, inhibition and denaturation of the lytic enzyme are sufficiently suppressed in the lysis reaction. As described above, nonionic surfactants are used as surfactants as described above, so that insoluble salts are sufficiently formed even in the presence of anionic compounds such as polyphosphoric acid used in amplification reagents. Is prevented. Accordingly, the temporal decrease in the amount of luminescence can be sufficiently suppressed, and the reproducibility of the detection result of the microorganism can be improved.
[0012] なお、キレート剤が溶菌反応を促進させることができる理由については、明らかとな つてはいないが、キレート剤は、界面活性剤が細胞カゝら細胞内 ATPを抽出する工程 を促進する、いわゆる触媒の働きをするためであると推測される。  [0012] Although the reason why the chelating agent can promote the lysis reaction has not been clarified, the chelating agent accelerates the process of extracting intracellular ATP from the cell surface. This is presumed to function as a so-called catalyst.
[0013] 上記微生物検出方法においては、上記溶菌酵素が細胞壁を加水分解する酵素で あることが好ましい。この場合、生物化学発光において、発光量の低下がより十分に 抑制される。  [0013] In the microorganism detection method, the lytic enzyme is preferably an enzyme that hydrolyzes a cell wall. In this case, in biochemiluminescence, the decrease in the amount of luminescence is more sufficiently suppressed.
[0014] 上記微生物検出方法においては、上記溶菌試薬が更に糖類を含むことが好ましい [0014] In the microorganism detection method, the lysis reagent preferably further contains a saccharide.
。この場合、溶菌酵素の活性低下がより十分に抑制され、発光量がより増加する。 . In this case, the decrease in the activity of the lytic enzyme is more sufficiently suppressed, and the amount of luminescence is further increased.
[0015] 上記微生物検出方法においては、非イオン性界面活性剤の濃度が、溶菌試薬全 量に対して 0. 1質量%〜1. 0質量%であり、溶菌酵素の濃度が、溶菌試薬全量に 対して 1. O X 105units/mL〜l. O X 106units/mLであり、キレート剤の濃度が、溶 菌試薬全量に対して 5mM〜10mMであることが好ましい。ここで、 lunitとは、 Micro coccus lysodeikticus乾燥菌体のリン酸バッファー懸濁液を基質としてリゾチームを作 用させたとき、吸光度(640nm)を 1分間当たり 0. 001減少させる酵素量をいう。 [0015] In the microorganism detection method, the concentration of the nonionic surfactant is such that 0.1 mass% to 1.0 mass% with respect to the amount, and the concentration of the lytic enzyme is 1. OX 10 5 units / mL to OX 10 6 units / mL with respect to the total amount of the lysis reagent, The concentration of the chelating agent is preferably 5 mM to 10 mM with respect to the total amount of the lysis reagent. Here, lunit refers to the amount of enzyme that decreases the absorbance (640 nm) by 0.001 per minute when lysozyme is produced using a phosphate buffer suspension of dried micrococcus lysodeikticus as a substrate.
[0016] 溶菌試薬に含まれる非イオン性界面活性剤、溶菌酵素及びキレート剤の濃度が上 記範囲であると、上記範囲外である場合に比べて、細胞内 ATPの抽出がより促進さ れ、より十分な発光量が短時間で得られ、発光量の時間的な低下がより十分に抑制 される。 [0016] When the concentration of the nonionic surfactant, lytic enzyme, and chelating agent contained in the lysis reagent is within the above range, the extraction of intracellular ATP is further promoted compared to the case where the concentration is outside the above range. Thus, a sufficient amount of light emission can be obtained in a short time, and the temporal decrease in the amount of light emission can be more sufficiently suppressed.
[0017] 本発明の溶菌試薬は、溶菌酵素、非イオン性界面活性剤及びキレート剤を含むこ とを特徴とする。この溶菌試薬は、微生物と接触させることにより、微生物の細胞から 細胞内 ATPを短時間で十分に抽出することができる。なお、上記溶菌試薬による溶 菌の対象となる微生物は、特に限定されない。  [0017] The lysis reagent of the present invention is characterized by containing a lytic enzyme, a nonionic surfactant and a chelating agent. When this lysis reagent is brought into contact with a microorganism, intracellular ATP can be sufficiently extracted from the cells of the microorganism in a short time. Note that the microorganisms to be lysed by the lysis reagent are not particularly limited.
発明の効果  The invention's effect
[0018] 本発明の微生物検出方法によれば、生物化学発光において、極微量の微生物で あっても十分に検出できる。  [0018] According to the microorganism detection method of the present invention, even a very small amount of microorganism can be sufficiently detected in biochemiluminescence.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]実施例 1における発光量の時間変化を示すグラフである。 FIG. 1 is a graph showing a temporal change in light emission amount in Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の好適な実施形態について更に詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in more detail.
[0021] 本発明の微生物検出方法は、溶菌酵素、非イオン性界面活性剤及びキレート剤を 含む溶菌試薬を用いて、微生物の細胞力 細胞内 ATPを抽出する抽出工程と、抽 出した細胞内 ATPを増幅させる増幅工程と、増幅させた細胞内 ATPと、ルシフェリン 及びルシフェラーゼとを反応させる発光工程と、を備える。 [0021] The microorganism detection method of the present invention comprises an extraction step of extracting intracellular ATP of microorganisms using a lysis reagent containing a lytic enzyme, a nonionic surfactant and a chelating agent, and the extracted intracellular An amplification step for amplifying ATP; and a luminescence step for reacting the amplified intracellular ATP with luciferin and luciferase.
[0022] [抽出工程] [0022] [Extraction process]
抽出工程は、微生物の細胞力も細胞内 ATPを抽出する工程である。  The extraction step is a step of extracting intracellular ATP from the cell force of the microorganism.
[0023] 抽出工程では、溶菌酵素、非イオン性界面活性剤及びキレート剤を含む溶菌試薬 が用いられる。このような溶菌試薬を用いることにより、微生物の細胞から細胞内 AT Pを短時間で十分に抽出することができる。 [0023] In the extraction step, a lysis reagent containing a lytic enzyme, a nonionic surfactant and a chelating agent is used. By using such a lysis reagent, intracellular AT P can be sufficiently extracted in a short time.
[0024] 上記溶菌酵素としては、特に限定されないが、例えば、リゾチーム、キチナーゼ、キ トサナーゼ、ァクロモぺプチダーゼ、 β - 1, 3—グルカナーゼ、へキソサミニダーゼ 等が挙げられる。これらの中でも、リゾチーム等の、細胞壁を加水分解する溶菌酵素 が好ましい。これらの溶菌酵素は細胞壁を加水分解することができる。この場合、生 物化学発光において、発光量の低下がより十分に抑制される。なお、リゾチームは、 比較的安価で、入手が容易であるため、より有用である。  [0024] The lytic enzyme is not particularly limited, and examples thereof include lysozyme, chitinase, chitosanase, achromopeptidase, β-1,3-glucanase, and hexosaminidase. Among these, lytic enzymes such as lysozyme that hydrolyze cell walls are preferable. These lytic enzymes can hydrolyze the cell wall. In this case, the decrease in the amount of luminescence is more sufficiently suppressed in biochemiluminescence. Lysozyme is more useful because it is relatively inexpensive and easy to obtain.
[0025] 上記溶菌試薬には、非イオン性界面活性剤が含まれる。界面活性剤として非ィォ ン性界面活性剤を用いることにより、界面活性剤が溶菌試薬中に含まれる溶菌酵素 を阻害することが抑制される。更に、後述するように、抽出した細胞内 ΑΤΡの増幅が 行われる場合は、界面活性剤と増幅試薬とが不溶性の塩を形成することが防止され る。非イオン性界面活性剤としては、特に限定されないが、例えば、ポリオキシェチレ ンアルキルエーテル、ポリオキシエチレンアルキルフエニルエーテル、ポリオキシェチ レンソルビタンエステル、ソルビタン脂肪酸エステル等が挙げられる。  [0025] The lysis reagent includes a nonionic surfactant. By using a nonionic surfactant as the surfactant, it is suppressed that the surfactant inhibits the lytic enzyme contained in the lysis reagent. Further, as will be described later, when amplification of the extracted intracellular cells is performed, it is prevented that the surfactant and the amplification reagent form an insoluble salt. The nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sorbitan ester, and sorbitan fatty acid ester.
[0026] 上記溶菌試薬には、キレート剤が含まれる。キレート剤は溶菌反応を促進させる役 割を果たす。キレート剤としては、特に限定されないが、例えば、 EDTA、 EGTA、 C yDTA、 DTPA、 NTA、 TTHA、 IDA, NTPO、 BAPTA等が挙げられる。これらの 中でも、 EDTA、 EGTA、 CyDTA、 0丁?八又は1^¾八が好ましぃ。キレート剤が E DTA、 EGTA、 CyDTA、 DTP A又は TTH Aであれば、溶菌反応がより促進される  [0026] The lysis reagent includes a chelating agent. Chelating agents play a role in promoting the lysis reaction. Although it does not specifically limit as a chelating agent, For example, EDTA, EGTA, CyDTA, DTPA, NTA, TTHA, IDA, NTPO, BAPTA etc. are mentioned. Among these, EDTA, EGTA, CyDTA, 0? I prefer 8 or 1 ^ ¾8. If the chelating agent is EDTA, EGTA, CyDTA, DTP A or TTH A, the lysis reaction is further accelerated.
[0027] 上記溶菌試薬は、更に糖類を含むことが好ましい。この場合、溶菌速度がより速く なり、溶菌酵素の活性低下がより抑制される。従って、発光量の経時的低下がより十 分に抑制され、微生物の検出結果の再現性がより高くなる。糖類としては、特に限定 されないが、例えば、スクロース、グルコース、フルクトース、マルトース、ガラクトース、 ラタトース、トレハロース、マンノース等が挙げられる。これらの中でも、スクロース又は トレハロースが好ましい。糖類がスクロース又はトレハロースであれば、酵素活性の低 下がより抑制される。 [0027] The lysis reagent preferably further contains a saccharide. In this case, the lysis rate becomes faster and the decrease in the activity of the lytic enzyme is further suppressed. Accordingly, the temporal decrease in the amount of luminescence is sufficiently suppressed, and the reproducibility of the detection result of the microorganism is further increased. The saccharide is not particularly limited, and examples thereof include sucrose, glucose, fructose, maltose, galactose, ratatose, trehalose, mannose and the like. Among these, sucrose or trehalose is preferable. If the saccharide is sucrose or trehalose, the decrease in enzyme activity is further suppressed.
[0028] なお、上記溶菌試薬は、上述した溶菌酵素の活性を阻害するものでなければ、ェ チレングリコール、グリセロール、 2—メルカプトエタノール、ジチオトレイトール等の試 薬を更に含んで 、てもよ 、。 [0028] It should be noted that if the lysis reagent does not inhibit the activity of the lytic enzyme described above, It may further contain a reagent such as tylene glycol, glycerol, 2-mercaptoethanol, dithiothreitol and the like.
[0029] 上記溶菌試薬による溶菌の対象となる微生物は、特に限定されない。本発明の微 生物検出方法において、対象となる微生物としては、特に限定されないが、例えば、 大腸菌、大腸菌群、サルモネラ、黄色ブドウ球菌等が挙げられる。  [0029] The microorganism to be lysed by the lysis reagent is not particularly limited. In the microorganism detection method of the present invention, the target microorganism is not particularly limited, and examples thereof include Escherichia coli, coliforms, Salmonella, Staphylococcus aureus and the like.
[0030] 次に、上述した溶菌試薬に含まれる溶菌酵素、非イオン性界面活性剤及びキレー ト剤の好適な濃度範囲について説明する。  [0030] Next, a preferred concentration range of the lytic enzyme, nonionic surfactant and chelating agent contained in the lysis reagent described above will be described.
[0031] 溶菌酵素の濃度は、溶菌試薬全量に対して 1. O X 104units/mL〜l. O X 10?uni ts/mLであることが好ましぐ 1. 0 X 105units/mL〜l. O X 106units/mLであるこ とが更に好ましい。溶菌酵素の濃度が 1. O X 105unitsZmL未満であると、濃度が上 記範囲にある場合と比べて、溶菌酵素の働きが不十分となり、細胞内 ATPの抽出に 時間がかかる傾向にあり、溶菌酵素の濃度が 1. O X 106unitsZmLを超えると、濃度 が上記範囲にある場合と比べて、溶菌酵素の働きに差が生じず、無駄に溶菌酵素が 使用される傾向にある。 [0031] The concentration of the lytic enzyme is preferably from 1. OX 10 4 units / mL to OX 10 ? Units / mL with respect to the total amount of the lysis reagent. 1. 0 X 10 5 units / mL to l. OX 10 6 units / mL is more preferable. If the concentration of the lytic enzyme is less than 1. OX 10 5 unitsZmL, the lytic enzyme function is insufficient compared to the case where the concentration is in the above range, and it tends to take time to extract intracellular ATP. When the concentration of the lytic enzyme exceeds 1. OX 10 6 unitsZmL, there is no difference in the function of the lytic enzyme compared to the case where the concentration is in the above range, and the lytic enzyme tends to be used wastefully.
[0032] 界面活性剤は、一般に酵素を阻害する傾向にあるが、その阻害度合は界面活性 剤濃度が高いほど大きくなる。また、抽出能力は界面活性剤濃度が高いほど大きくな り、濃度が低いと、阻害が小さくなる代わりに、抽出能力が不十分になる。従って、本 発明において用いる非イオン性界面活性剤の濃度は重要である。すなわち、非ィォ ン性界面活性剤の濃度は、溶菌試薬全量に対して 0. 01質量%〜5. 0質量%であ ることが好ましぐ 0. 1質量%〜1. 0質量%であることが更に好ましい。非イオン性界 面活性剤の濃度が 0. 1質量%未満であると、濃度が上記範囲にある場合と比べて、 溶菌の速度が遅くなる傾向にあり、非イオン性界面活性剤の濃度が 1. 0質量%を超 えると、濃度が上記範囲にある場合と比べて、非イオン性界面活性剤が酵素 (溶菌酵 素等)の酵素反応を阻害する傾向にある。  [0032] Surfactants generally tend to inhibit enzymes, but the degree of inhibition increases as the surfactant concentration increases. In addition, the extraction ability increases as the surfactant concentration increases, and the lower the concentration, the lower the inhibition, but the extraction ability becomes insufficient. Therefore, the concentration of the nonionic surfactant used in the present invention is important. That is, it is preferable that the concentration of the nonionic surfactant is 0.01% by mass to 5.0% by mass with respect to the total amount of the lysis reagent. 0.1% by mass to 1.0% by mass More preferably. When the concentration of the nonionic surfactant is less than 0.1% by mass, the lysis rate tends to be slower than when the concentration is within the above range, and the concentration of the nonionic surfactant is low. If it exceeds 1.0 mass%, the nonionic surfactant tends to inhibit the enzyme reaction of the enzyme (such as a lytic enzyme) as compared with the case where the concentration is in the above range.
[0033] キレート剤の濃度は、溶菌試薬全量に対して ImM以上であることが好ましぐ 5m M〜10mMであることが更に好ましい。キレート剤の濃度が 5mM未満であると、濃 度が上記範囲にある場合と比べて、溶菌反応が遅くなる傾向にあり、キレート剤の濃 度が 10mMを超えると、濃度が上記範囲にある場合と比べて、酵素反応 (特に発光 反応)が阻害される傾向にある。 [0033] The concentration of the chelating agent is preferably 5 mM to 10 mM, more preferably ImM or more with respect to the total amount of the lysis reagent. When the chelating agent concentration is less than 5 mM, the lysis reaction tends to be slower than when the concentration is in the above range, and when the chelating agent concentration exceeds 10 mM, the concentration is in the above range. Compared to enzyme reactions (especially luminescence) Reaction) tends to be inhibited.
[0034] また、上記溶菌試薬が糖類を含む場合にお!ヽて、当該糖類の濃度は、溶菌試薬全 量に対して 0. 1質量%以上であることが好ましぐ 0. 5質量%〜10質量%であること が更に好ましい。糖類の濃度が 0. 5質量%未満であると、濃度が上記範囲にある場 合と比べて、溶菌速度を早める効果が得られ難くなり、糖類の濃度が 10質量%を超 えると、濃度が上記範囲にある場合と比べて、溶菌酵素の活性を阻害する度合いが 大きくなる傾向にある。 [0034] Further, when the lysis reagent contains saccharides, the concentration of the saccharides is preferably 0.1% by mass or more based on the total amount of the lysis reagent. More preferably, it is ˜10% by mass. When the saccharide concentration is less than 0.5% by mass, it is difficult to obtain an effect of increasing the rate of lysis compared to the case where the concentration is within the above range. When the saccharide concentration exceeds 10% by mass, Compared with the case where is in the above range, the degree of inhibition of the lytic enzyme activity tends to increase.
[0035] 上記溶菌試薬にぉ ヽては、非イオン性界面活性剤の濃度が、溶菌試薬全量に対 して 0. 1質量%〜1. 0質量%であり、溶菌酵素の濃度が、溶菌試薬全量に対して 1 . O X 105units/mL〜l. O X 106units/mLであり、キレート剤の濃度が、溶菌試薬 全量に対して 5mM〜10mMであることが好ましい。 [0035] For the lysis reagent, the concentration of the nonionic surfactant is 0.1% by mass to 1.0% by mass with respect to the total amount of the lysis reagent, and the concentration of the lysis enzyme is It is preferable that it is 1. OX 10 5 units / mL to OX 10 6 units / mL with respect to the total amount of the reagent, and the concentration of the chelating agent is 5 mM to 10 mM with respect to the total amount of the lysis reagent.
[0036] 溶菌試薬に含まれる非イオン性界面活性剤、溶菌酵素及びキレート剤の濃度カ^ヽ ずれも上記範囲であると、いずれかが上記範囲外である場合に比べて、細胞内 ATP の抽出がより促進され、より十分な発光量を短時間で得ることができ、発光量の時間 的な低下をより十分に抑制できる。  [0036] When the concentration range of the nonionic surfactant, lytic enzyme, and chelating agent contained in the lysis reagent is also within the above range, compared to the case where either one is outside the above range, the intracellular ATP Extraction is further promoted, a sufficient amount of light emission can be obtained in a short time, and a temporal decrease in the amount of light emission can be sufficiently suppressed.
[0037] [増幅工程]  [0037] [Amplification process]
増幅工程は、抽出工程で抽出された細胞内 ATPを増幅させる工程である。  The amplification step is a step of amplifying the intracellular ATP extracted in the extraction step.
[0038] 増幅試薬には、増幅基質及び増幅酵素が含まれるが、増幅基質としてポリリン酸を 用い、増幅酵素としてアデ-レートキナーゼ及びポリリン酸キナーゼを用いた場合、 ATPの増幅メカニズムは次のとおりである。すなわち、 ATPの存在下で AMP (アデ ノシン一リン酸)をアデ-レートキナーゼと反応させて、 2分子の ADP (アデノシンニリ ン酸)とし、ポリリン酸ィ匕合物の存在下で当該 2分子の ADPをポリリン酸キナーゼと反 応させて、 2分子の ATPとポリリン酸化合物とする。こうして、 1分子の ATPを 2分子の ATPとすることができ、更にこの反応を繰り返すことにより、 ATPを増幅させることが できる。  [0038] The amplification reagent includes an amplification substrate and an amplification enzyme. When polyphosphate is used as the amplification substrate and adenylate kinase and polyphosphate kinase are used as the amplification enzymes, the amplification mechanism of ATP is as follows. It is. That is, AMP (adenosine monophosphate) is reacted with adenylate kinase in the presence of ATP to form two molecules of ADP (adenosine nitric acid), and in the presence of polyphosphate compound, ADP reacts with polyphosphate kinase to form two molecules of ATP and a polyphosphate compound. Thus, one molecule of ATP can be converted to two molecules of ATP, and ATP can be amplified by repeating this reaction.
[0039] ATPを増幅させるための増幅試薬は、増幅基質及び増幅酵素で構成されるが、増 幅試薬は、増幅基質としてのポリリン酸と、増幅酵素としてのアデ-レートキナーゼ及 びポリリン酸キナーゼで構成される。また、上記ポリリン酸キナーゼの代わりにピルビ ン酸キナーゼを用いることもできる。この中でも、増幅基質としてポリリン酸を、また、 増幅酵素としてアデ-レートキナーゼ及びポリリン酸キナーゼを用いるものが好まし い。この場合、ポリリン酸がリン酸供与基質として作用することとなるので、特に鎖長の 長いポリリン酸を用いることにより、反応効率を向上させることができるという利点があ る。 [0039] An amplification reagent for amplifying ATP is composed of an amplification substrate and an amplification enzyme, and the amplification reagent is composed of polyphosphate as an amplification substrate, adenylate kinase and polyphosphate kinase as amplification enzymes. Consists of. In addition, instead of polyphosphate kinase, An acid kinase can also be used. Of these, those using polyphosphate as an amplification substrate and adenylate kinase and polyphosphate kinase as amplification enzymes are preferred. In this case, since polyphosphoric acid acts as a phosphate donating substrate, there is an advantage that reaction efficiency can be improved by using polyphosphoric acid having a long chain length.
[0040] [発光工程]  [0040] [Light emission process]
発光工程は、増幅させた ATPと、ルシフェリン及びルシフェラーゼとを接触させて、 生物化学発光を生じさせる工程である。この発光工程は、 ATPと、ルシフェリン及び ルシフェラーゼとを混合させることにより行うことができる。  The luminescence process is a process in which amplified ATP is brought into contact with luciferin and luciferase to generate biochemiluminescence. This luminescence step can be performed by mixing ATP with luciferin and luciferase.
[0041] そして、この発光を光検出装置等で検出することにより、微生物を検出することが可 能となる。上記光検出装置としては、公知のものを用いることができ、例えば、 CCD, フォトダイオード又は光電子増倍管を用いることができる。  [0041] By detecting this luminescence with a light detection device or the like, microorganisms can be detected. As the photodetection device, a known device can be used. For example, a CCD, a photodiode, or a photomultiplier tube can be used.
[0042] なお、本発明の微生物検出方法は、抽出工程、増幅工程及び発光工程を備えて いれば、他の工程を更に含んでいてもよい。上記他の工程としては、微生物から細胞 内 ATPを抽出する前に、細菌のフロックを分解させる分解工程、微生物によらない不 要な ATPを、除去液を用いて除去する除去工程、この除去液を不活性化させる不活 性ィ匕工程等のうち少なくとも一つの工程が挙げられる。 実施例  [0042] The microorganism detection method of the present invention may further include other steps as long as it includes an extraction step, an amplification step, and a luminescence step. The other processes include a decomposition process for decomposing bacterial flocs before extracting intracellular ATP from microorganisms, a removal process for removing unnecessary ATP that does not depend on microorganisms using a removal liquid, and this removal liquid. At least one of the inactivation steps for inactivating the material is included. Example
[0043] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。  [0043] Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
[0044] (溶菌試薬 Aの調製) [0044] (Preparation of lysis reagent A)
以下の方法により、溶菌試薬 Aを調製した。  Lysis reagent A was prepared by the following method.
溶菌酵素としてリゾチーム (Lysozyme) (鶏卵白由来)を、非イオン性界面活性剤と して Triton X-100 (登録商標)を、糖類としてスクロースを、また、キレート剤としてェチ レンジアミン四酢酸(EDTA)を用いた。リゾチーム、 Triton X-100、スクロース及び E DTAを、濃度がそれぞれ 8mgZmL、 0. 1質量%、 0. 8質量%及び 50mMとなるよ うに、 10mMトリス緩衝液 (pH8. 0)に混合し、溶菌試薬 Aとした。  Lysozyme (derived from chicken egg white) as a lytic enzyme, Triton X-100 (registered trademark) as a nonionic surfactant, sucrose as a saccharide, and ethylenediaminetetraacetic acid (as a chelating agent) EDTA) was used. Lysozyme, Triton X-100, sucrose, and EDTA are mixed in 10 mM Tris buffer (pH 8.0) to a concentration of 8 mgZmL, 0.1 mass%, 0.8 mass%, and 50 mM, respectively. Reagent A.
[0045] (溶菌試薬 Bの調製) 市販の ATP抽出試薬 (ルシフェール 250 +、キッコ一マン (株)社製)を溶菌試薬 B とした。 [0045] (Preparation of lysis reagent B) A commercially available ATP extraction reagent (Lucifer 250+, manufactured by Kikkoman Co., Ltd.) was used as lysis reagent B.
[0046] (増幅基質溶液及び増幅発光酵素溶液の調製)  [0046] (Preparation of amplified substrate solution and amplified luminescent enzyme solution)
以下の方法により、増幅基質溶液及び増幅発光酵素溶液を調製した。  An amplification substrate solution and an amplified luminescent enzyme solution were prepared by the following method.
AMP及びポリリン酸を、濃度がそれぞれ 4 X 10_5M及び ImMとなるように、 50m Mトリス緩衝液 (pH7. 4)に混合し、増幅基質溶液とした。また、 PPK— ADK (増幅 酵素)を、濃度が 40 gZmLとなるようにルシフェール 250+ (発光試薬、キッコ一マ ン社製)に混合し、増幅発光酵素溶液とした。 The AMP and polyphosphate, so concentration of each 4 X 10 _5 M and ImM, mixed with 50 m M Tris buffer (pH 7. 4), was amplified substrate solution. In addition, PPK-ADK (amplification enzyme) was mixed with Lucifer 250+ (luminescence reagent, manufactured by Kikkoman Co., Ltd.) so as to have a concentration of 40 gZmL to obtain an amplification luminescence enzyme solution.
[0047] [実施例 1] [0047] [Example 1]
約 lOOcellsZmLの大腸菌(E.coli JM109)を含む PBS溶液 25 μ Lに対し、溶菌試 薬 Αを 25 μ Lカ卩えた後、増幅基質溶液を 50 μ L、増幅発光酵素溶液を 100 μ Lカロえ 、得られる発光量の経時変化を、 Perkin- Elmer社製 Wallac 1420 ARVO マルチラ  About 25 μL of PBS solution containing approximately lOOcellsZmL of E.coli JM109 is added to 25 μL of lysis reagent 試, 50 μL of amplification substrate solution, and 100 μL of amplified luminescent enzyme solution. The change in the amount of luminescence obtained over time was measured using the Perkin-Elmer Wallac 1420 ARVO
MX  MX
ベルマイクロプレートカウンターを用いて測定した。得られた結果を図 1に示す。  Measurement was performed using a bell microplate counter. Figure 1 shows the results obtained.
[0048] [比較例 1] [0048] [Comparative Example 1]
溶菌試薬 Aの代わりに溶菌試薬 Bを用いたこと以外は、実施例 1に準じて発光量を 測定した。  The amount of luminescence was measured according to Example 1 except that lysis reagent B was used instead of lysis reagent A.
[0049] 溶菌試薬 Bを用いた場合、増幅基質溶液と混和すると直ちに反応溶液が白濁し、 増幅発光酵素溶液を用いても、増幅発光を行うことが不可能であった。すなわち、溶 菌試薬 Bは増幅発光反応に適用することができないことが分力つた。また、図 1より、 実施例 1によれば、溶菌試薬 Aを用いる ATPの抽出、及び ATPの増幅発光反応を 組み合わせることによって、極微量 (数個 Z測定)の微生物の存在を検出できること が示された。  [0049] When the lysis reagent B was used, the reaction solution immediately became cloudy when mixed with the amplification substrate solution, and it was impossible to perform amplified luminescence even using the amplified luminescent enzyme solution. That is, it was found that the lysis reagent B cannot be applied to the amplified luminescence reaction. In addition, FIG. 1 shows that, according to Example 1, the presence of a trace amount (several Z measurement) of microorganisms can be detected by combining ATP extraction using lysis reagent A and ATP amplified luminescence reaction. It was done.
[0050] 以上より、本発明によれば、極微量の微生物であっても十分に検出できる微生物検 出方法及び溶菌試薬を提供できることが確認された。  [0050] From the above, according to the present invention, it was confirmed that a microorganism detection method and a lysis reagent capable of sufficiently detecting even a very small amount of microorganisms can be provided.
産業上の利用可能性  Industrial applicability
[0051] 本発明の微生物検出方法及び溶菌試薬は、 ATPを指標とした細菌等の微生物の 検出に利用することができる。 [0051] The microorganism detection method and lysis reagent of the present invention can be used for detection of microorganisms such as bacteria using ATP as an index.

Claims

請求の範囲 The scope of the claims
[1] 微生物の細胞を溶菌試薬と接触させて、前記微生物の細胞カゝら細胞内 ATPを抽 出する抽出工程と、  [1] An extraction step of contacting a microorganism cell with a lysis reagent to extract intracellular ATP from the microorganism cell;
抽出した前記細胞内 ATPを増幅させる増幅工程と、  An amplification step for amplifying the extracted intracellular ATP;
増幅させた前記細胞内 ATP、ルシフェリン及びルシフェラーゼを接触させて発光さ せる発光工程と、を備え、  A light emitting step of contacting the amplified intracellular ATP, luciferin and luciferase to emit light, and
前記溶菌試薬が溶菌酵素、非イオン性界面活性剤及びキレート剤を含むことを特 徴とする微生物検出方法。  A microorganism detection method, wherein the lysis reagent contains a lysis enzyme, a nonionic surfactant and a chelating agent.
[2] 前記溶菌酵素が、細胞壁を加水分解する酵素である、請求項 1に記載の微生物検 出方法。 [2] The method for detecting a microorganism according to claim 1, wherein the lytic enzyme is an enzyme that hydrolyzes a cell wall.
[3] 前記溶菌試薬が更に糖類を含む、請求項 1又は 2に記載の微生物検出方法。  [3] The microorganism detection method according to claim 1 or 2, wherein the lysis reagent further contains a saccharide.
[4] 前記非イオン性界面活性剤の濃度が、前記溶菌試薬の全量に対して 0. 1質量% 〜1. 0質量%であり、前記溶菌酵素の濃度が、前記溶菌試薬の全量に対して 1. 0 X 105units/mL〜l . O X 106units/mLであり、前記キレート剤の濃度が、前記溶 菌試薬の全量に対して 5mM〜10mMである、請求項 1〜3のいずれか一項に記載 の微生物検出方法。 [4] The concentration of the nonionic surfactant is 0.1% by mass to 1.0% by mass with respect to the total amount of the lysis reagent, and the concentration of the lytic enzyme is with respect to the total amount of the lysis reagent. 1.0 X 10 5 units / mL to OX 10 6 units / mL, and the concentration of the chelating agent is 5 mM to 10 mM with respect to the total amount of the lysis reagent. The microorganism detection method according to any one of the above.
[5] 溶菌酵素、非イオン性界面活性剤及びキレート剤を含むことを特徴とする溶菌試薬  [5] a lysis reagent comprising a lysis enzyme, a nonionic surfactant and a chelating agent
PCT/JP2006/304296 2005-03-10 2006-03-06 Method of detecting microorganism and bacteriolytic reagent WO2006095697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005067998A JP2006246792A (en) 2005-03-10 2005-03-10 Method for detecting microorganism and bacteriolytic reagent
JP2005-067998 2005-03-10

Publications (1)

Publication Number Publication Date
WO2006095697A1 true WO2006095697A1 (en) 2006-09-14

Family

ID=36953291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304296 WO2006095697A1 (en) 2005-03-10 2006-03-06 Method of detecting microorganism and bacteriolytic reagent

Country Status (2)

Country Link
JP (1) JP2006246792A (en)
WO (1) WO2006095697A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152888A1 (en) * 2007-06-11 2008-12-18 Asahi Breweries, Ltd. Method of purifying microorganisms and method of detecting microorganisms
JP2014167439A (en) * 2013-02-28 2014-09-11 Asahi Kasei Corp Method of detecting mycoplasma pneumonia

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960421B2 (en) 2011-12-05 2016-08-02 株式会社日立ハイテクノロジーズ Cell measuring method and cell measuring reagent
WO2013147043A1 (en) * 2012-03-29 2013-10-03 株式会社シノテスト Method for detecting or assaying nucleic acid and reagent kit for detecting or assaying nucleic acid
NZ721267A (en) 2013-12-18 2017-04-28 Asahi Chemical Ind Method for detecting staphylococcus contained in milk
EP3620527A4 (en) * 2017-05-01 2020-05-20 Kaneka Corporation Production method for substance using atp

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203995A (en) * 1994-01-26 1995-08-08 Toa Denpa Kogyo Kk Determination of intracellular atp
JPH09107994A (en) * 1995-10-13 1997-04-28 Toa Denpa Kogyo Kk Assay of intracellular atp
JPH1028599A (en) * 1996-04-26 1998-02-03 Toyo Ink Mfg Co Ltd Detection and/or measurement of atp derived from microbial cell existing in sample and its reagent kit
JP2001211900A (en) * 2000-02-07 2001-08-07 Satake Corp Method of detecting adenine nucleotide by bioluminescence
JP2001269200A (en) * 2000-01-17 2001-10-02 Satake Corp Method for assaying adenine nucleotide by bioluminescence
JP2001299390A (en) * 2000-04-20 2001-10-30 Satake Corp Method for amplifying atp in chainlike manner and method for testing trace atp using the amplification method
JP2001525535A (en) * 1997-09-04 2001-12-11 ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Assays for detecting modulators of cytoskeletal function
JP2002520071A (en) * 1998-07-15 2002-07-09 マキシジェン, インコーポレイテッド Evolution of whole cells and organisms by repeated sequence recombination
JP2003535566A (en) * 1999-02-18 2003-12-02 プロメガ・コーポレーション Cell detection by luciferase / luciferin reaction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203995A (en) * 1994-01-26 1995-08-08 Toa Denpa Kogyo Kk Determination of intracellular atp
JPH09107994A (en) * 1995-10-13 1997-04-28 Toa Denpa Kogyo Kk Assay of intracellular atp
JPH1028599A (en) * 1996-04-26 1998-02-03 Toyo Ink Mfg Co Ltd Detection and/or measurement of atp derived from microbial cell existing in sample and its reagent kit
JP2001525535A (en) * 1997-09-04 2001-12-11 ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Assays for detecting modulators of cytoskeletal function
JP2002520071A (en) * 1998-07-15 2002-07-09 マキシジェン, インコーポレイテッド Evolution of whole cells and organisms by repeated sequence recombination
JP2003535566A (en) * 1999-02-18 2003-12-02 プロメガ・コーポレーション Cell detection by luciferase / luciferin reaction
JP2001269200A (en) * 2000-01-17 2001-10-02 Satake Corp Method for assaying adenine nucleotide by bioluminescence
JP2001211900A (en) * 2000-02-07 2001-08-07 Satake Corp Method of detecting adenine nucleotide by bioluminescence
JP2001299390A (en) * 2000-04-20 2001-10-30 Satake Corp Method for amplifying atp in chainlike manner and method for testing trace atp using the amplification method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BROGDEN K.A. ET AL.: "Lysates of turkey-grown Pasteurella Multocida: examination of vaccine preparations by electron microscopy", AM. J. VET. RES., vol. 43, no. 2, February 1982 (1982-02-01), pages 304 - 309, XP001005625 *
LEE C.T. ET AL.: "Combined In-Fermenter Extraction and Cross-FLow Microfiltration for Improved Inclusion Body Processing", BIOTECHNOL. BIOENG., vol. 85, no. 1, 5 January 2005 (2005-01-05), pages 103 - 113, XP003000033 *
MANIATIS T. ET AL.: "Molecular Cloning (A Laboratory Manual)", 1982, COLD SPRING HARBOR LABORATORY, pages: 89 - 90, XP003000032 *
SATOH T. ET AL.: "ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 68, no. 6, June 2004 (2004-06-01), pages 1216 - 1220, XP003000031 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152888A1 (en) * 2007-06-11 2008-12-18 Asahi Breweries, Ltd. Method of purifying microorganisms and method of detecting microorganisms
JP2014167439A (en) * 2013-02-28 2014-09-11 Asahi Kasei Corp Method of detecting mycoplasma pneumonia

Also Published As

Publication number Publication date
JP2006246792A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
EP1763584B1 (en) Compositions and processes for the extraction and detection of microbial atp
WO2006095697A1 (en) Method of detecting microorganism and bacteriolytic reagent
ES2915669T3 (en) Amplification and nucleic acid tests
EP0238352B1 (en) Method for the selective detection of microbial nucleotides
JPH06504200A (en) Extraction method of intracellular components
Huang et al. New continuous fluorometric assay for bacterial transglycosylase using Forster resonance energy transfer
CN101198705A (en) Distinguishing cells in a sample by inactivating extracellular enzyme before releasing intracellular enzyme
CA2161111A1 (en) Detection of biological material
WO2003054209A3 (en) A method of reducing non-specific amplification in pcr
JP5091856B2 (en) Improved detection method for viability related molecules
US20160047826A1 (en) Compositions and methods for detection of a target in a molecular assay using ph changes
CN101849019A (en) Detection of micro-organisms based on their NAD-dependent DNA ligase activity
EP1153138A1 (en) Detection of cells using the luciferase/luciferin reaction
EP2331702A2 (en) Culture medium enabling the differentiation of staphylococcus aureus from coagulase-negative staphylococci
EP1048739B1 (en) Method for analyzing intracellular components
GB2357336A (en) Assay of micro-organisms in cell cultures
US20170321196A1 (en) Analytical and diagnostic methods utilizing shigella flexneri apyrase
JP4431334B2 (en) Improved ATP amplification method and use thereof
Chen et al. Use of Tris-NH4Cl in modified G4/hemin DNAzyme assay with duplexed probes extends life of colorized radical product
CN107109464B (en) Kit comprising ATP-diphosphohydrolase for detecting bacterial ATP in a sample
US20120052497A1 (en) Method of simultaneously amplifying target sequences from salmonella spp. and e. coli o157:h7 and kit therefor
WO2024019166A1 (en) Method and kit for detecting microorganism, cell, microorganism-related substance or cell-related substance in solution
DE60208299D1 (en) Detection of Amplified Gene Products for Gene Detection and Reagent Kit
Coco et al. An activity-based probe for antimicrobial target DXP synthase, a thiamin diphosphate-dependent enzyme
AU3599700A (en) Detection of cells using the luciferase/luciferin reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715316

Country of ref document: EP

Kind code of ref document: A1