WO2006095661A1 - Means for producing extremely fine filament of wholly aromatic polyester - Google Patents

Means for producing extremely fine filament of wholly aromatic polyester Download PDF

Info

Publication number
WO2006095661A1
WO2006095661A1 PCT/JP2006/304182 JP2006304182W WO2006095661A1 WO 2006095661 A1 WO2006095661 A1 WO 2006095661A1 JP 2006304182 W JP2006304182 W JP 2006304182W WO 2006095661 A1 WO2006095661 A1 WO 2006095661A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
aromatic polyester
wholly aromatic
stretched
polyester filament
Prior art date
Application number
PCT/JP2006/304182
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Suzuki
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Priority to JP2007507089A priority Critical patent/JP5082100B2/en
Publication of WO2006095661A1 publication Critical patent/WO2006095661A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass

Definitions

  • the present invention relates to a stretched wholly aromatic polyester filament, a method for producing the same, and a production apparatus therefor, in particular, it is stretched at a magnification of 7 times or more obtained by a simple stretching means, and further at a high magnification of 15 times or more.
  • the invention relates to the production of ultrafine wholly aromatic polyester flame candy having a capacity of 20 / im or less.
  • Fully aromatic polyester fibers are used in various fields as industrial materials due to their excellent properties such as high strength, high elastic modulus and high heat resistance. It has been difficult to reduce the fiber diameter because fully aromatic polyester fibers have poor spinnability and stretchability. Therefore, the conventional wholly aromatic polyester filaments have a large fiber diameter, so when used for industrial materials such as ropes, they lack flexibility and have problems in use characteristics. In the past, reducing the diameter of the wholly aromatic polyester fiber has been carried out by examining the spinning conditions of the wholly aromatic polyester fiber (for example, Japanese Patent Laid-Open No. Sho 62-1-7 7 2 1 1). JP-A-1-2 7 2 8 1 2).
  • the present invention relates to a technique for stretching filament flames by infrared heating
  • Various techniques have been conventionally used (for example, JP 2003-1661 "I 5 publication, International Publication No. 00-No. 73556 Pamphlet, Akiyasu Suzuki, and others 1 Journal of Applied Polymer Science, vol. 83, p. 1 7 1 1— 1 7 1 6, 2002, Akiyasu Suzuki, etc. 1 Proceedings of the Society of Polymer Science, Japan Society of Polymer Science, 2001 May 7 ', 50-4, p 787 , Akiyasu Suzuki, 1 other Journal of Applied Polymer Science, ol. 88, p. 3279-3283, 2003, Akiyasu Suzuki, 1 other Journal of
  • nonwoven fabrics made of wholly aromatic polyester fibers are made by cutting fully aromatic polyester fibers into several centimeters, laminating them into card webs, punching them for a couple of dollars, and making them into nonwoven fabrics. Needless to say, there are many processes such as needle punching, and it is cost-effective.Because it consists of short fibers, the strength of the nonwoven fabric depends on the entanglement of the fibers, and all aromatic polyester fibers originally have The high strength is not used effectively. Disclosure of the invention
  • the present invention is a further development of the above-described conventional technology.
  • the purpose of the present invention is to provide a wholly aromatic polymer that is easily stretched by a simple means without adopting a special spinning method. It is to be able to obtain a reester filament.
  • Another object is to make it possible to produce a wholly aromatic polyester filament with high quality, a small filament diameter, and stable production.
  • Yet another object is to make it possible to produce a long-fiber nonwoven fabric made of wholly aromatic polyester filaments.
  • the present invention relates to a stretched wholly aromatic polyester filament.
  • the fully aromatic polyester filament means a filament mainly composed of a fully aromatic polyester polymer. Filaments are fibers that have a substantially continuous length, and are distinguished from short fibers of short length (a few millimeters to a few centimeters).
  • the filament in the present invention includes a single filament composed of a single filament and a multifilament cage composed of a plurality of filament filaments. In the tension applied to a single filament, it is expressed as “per single yarn”, but in a single filament, it means “j per single filament, and in multifilament it constitutes“ individual ” "Per filament".
  • a typical example of polyester used as a fiber is polyethylene terephthalate, which is flexible because it has an ethylene group in the molecule.
  • the wholly aromatic polyester polymer in the present invention is a synthetic polymer in which all such methylene group and ethylene group are replaced with aromatic groups in the molecule, and is also called polyarylate. These wholly aromatic polyesters have a high melting point and a high elasticity and high elasticity by molecular orientation. It is characterized by becoming a mentament. Many wholly aromatic polyesters also form thermomorphic liquid crystals.
  • the wholly aromatic polyester polymer has a trade name Vectran synthesized by transesterification from P-hydroxybenzoic acid (HBA) and 6-hydroxy-12-naphthoic acid (HNA).
  • the wholly aromatic polyester filament in the present invention includes a case where the skeleton (core portion) of the filament is made of the wholly aromatic polyester polymer and the surface (sheath portion) is made of other polymer. With such a configuration, the spinnability of the wholly aromatic polyester can be improved.
  • Polyethylene-1,6-naphthalate (PEN) and poly-1,4-cyclohexanedimethylene terephthalate (PCT), which are heat-resistant polyesters, are particularly effective as the polymer for the sheath portion.
  • Polyethers such as polyphenylene ether and modified products thereof can also be used.
  • the present invention provides a means for drawing the original filament.
  • the original wholly aromatic polyester filament in the present invention may be one that has already been produced as a wholly aromatic polyester filament yarn and wound up on a bobbin or the like. It became a fully aromatic polyester filament by cooling and solidification.
  • the material may be used as a wholly aromatic polyester filament that is subsequently used in the spinning process and becomes a raw material for the stretching means of the present invention. Therefore, the case where the solvent is included in the spinning process is included, as in the case where some solvent in the spinning process is included.
  • the original wholly aromatic polyester filament in the present invention is used even if it has been molecularly oriented through a spinning process or a drawing process.
  • the fully aromatic polyester melt shows a thermopick liquid crystal, and is molecularly oriented only by spinning, and can be drawn at a higher magnification even from such highly oriented molecular filaments. is there.
  • the filament is preferably a filament whose molecular orientation is limited by devising spinning conditions in the spinning process.
  • the strength of the original filament is preferably an unstretched filament of 1 OGPa or less per single yarn, more preferably 5 GPa or less, and most preferably 1 GPa or less. I like it.
  • thermoplastic resin filaments such as Nai Nya Polyethylene terephthalate can be stretched at ultra-high magnification with infrared rays even with a highly molecular oriented original filament.
  • a molecularly oriented filament is obtained. It has been clarified that stretchability increases in fully aromatic polyester filaments due to the limited degree of molecular orientation.
  • the original wholly aromatic polyester filament of the present invention is heated to an appropriate stretching temperature by an infrared light beam irradiated by an infrared heating means (including a laser).
  • Infrared rays heat the original filament, but it is preferable that the range to be heated to a suitable temperature for drawing is within 4 mm (8 mm in length) in the axial direction of the filaments at the center of the filament. More preferably, heating is performed at 3 mm or less, most preferably 2 mm or less.
  • the present invention makes it possible to stretch with a high degree of molecular orientation by rapidly stretching in a narrow region, and even with high magnification stretching, it is possible to reduce stretching breakage.
  • the above “center of filament” means the center of the filament bundle of multifilament.
  • the infrared light beam is preferably irradiated from a plurality of locations.
  • heating from only one side of the filament cocoon has a high melting temperature and a short heating time.
  • Such irradiation from a plurality of places may be performed by a plurality of light sources of infrared light beams, but by reflecting a light beam from a single light source with a mirror, a plurality of times, It can also be achieved by irradiating along the passage.
  • Mirrors can be used not only for fixed types but also for rotating types such as polygon mirrors.
  • a high-power light source can be obtained by using a plurality of laser oscillation devices that are stable and inexpensive with a relatively small laser light source.
  • a method using a plurality of light sources is effective because it requires a high cocoon density.
  • Infrared light has a wavelength of 0.78 mm to 1 mm. It is centered on the absorption of 3.5 m of the C-C bond of the polymer compound, from 0.78 jt m to 2 O m. Degree The near infrared range is particularly preferred. These infrared rays are focused by a mirror or lens in a linear or dotted manner, and the heating area of the total aromatic polyester filament is reduced to within 4 mm in the vertical direction of the filament by heating called a spot heater or line heater. A heater can be used. In particular, the line heater is suitable for simultaneously heating a plurality of wholly aromatic polyester filaments.
  • heating by a laser is particularly preferable.
  • a carbon dioxide laser with a wavelength of 10.6 im and a Y AG (yttrium, aluminum, galnet) laser with a wavelength of 1.06 m are particularly preferable.
  • An argon laser can also be used. Lasers can reduce the radiation range to a small size and are concentrated on a specific wavelength, so there is little wasted energy.
  • the carbon dioxide laser of the present invention has a power density of 1 OWZcm 2 or more, preferably 1 OOWZcm 2 or more, and most preferably 150 WZcm 2 or more. This is because high-power stretching of the present invention can be achieved by concentrating energy of high power density in a narrow stretching region.
  • the laser density in the present invention is characterized in that it requires a watt density several steps higher than that of the conventional general-purpose fiber polymer shown in the inventor's prior invention.
  • the present invention is characterized in that the tension at which the wholly aromatic polyester filament is drawn is controlled to be very small.
  • the drawing tension in the present invention is preferably 30 MPa or less, more preferably 1 OMPa or less, most preferably per single yarn. Is stretched by making it 5 MPa or less. If it exceeds 30 MPa, it is easy for breakage to occur, and in order to stretch at a high magnification, it is desirable to be within such a tension range.
  • Stretching of a wholly aromatic polyester filament usually requires a stretching tension of several hundred MPa, but the present invention is characterized by a stretching tension that is 1 to 2 orders of magnitude smaller.
  • the draw ratio is 7 times or more, and depending on the conditions, 20 times or more, and even 30 times or more, an extremely large magnification can be realized.
  • the draw temperature is extremely high, around the melting point. Since it is a very narrow stretch region while maintaining the temperature, it seems that it can be deformed by avoiding the cutting of the wholly aromatic polyester filament.
  • the present invention is characterized by being stretched with a very small tension.
  • the stretching tension in the stretching of the present invention is characterized in that the stretching is also performed by a tension given by its own weight. This is in principle different from general stretching, in which stretching is performed by the tension given by the speed difference between the rollers or by the tension due to scraping.
  • the optimum tension can be selected by changing the free fall distance of the self-weight of the wholly aromatic polyester filament applied to the heating part (determined by the free-falling distance from the heating part). .
  • a force that makes it difficult to find an optimum tension with a small stretching tension is characterized in that the stretching tension can be easily controlled by a simple means of a falling distance by its own weight.
  • the drop distance and the laser power density are changed in various ways to find the optimum stretching tension, and from that state and the stretching ratio to the inter-roller stretching. It can be guided.
  • the stretched ratio of the obtained stretched wholly aromatic polyester filament is
  • the film is stretched at an ultrahigh magnification of 7 times or more, preferably 20 times or more, more preferably 30 times or more, and most preferably 50 times or more.
  • a fully aromatic polyester filament with originally poor stretchability can be realized at a high magnification of 30 times or more, and further 50 times or more with such a simple device, and the filament diameter is small due to the high magnification. Filament was obtained.
  • a relatively thick filament that is stable during the spinning process is obtained, and a fiber with a small filament diameter is obtained by stretching at a high magnification by the stretching of the present invention. Contributes to the stable production of the entire production system.
  • the present invention by enabling high-strength drawing in this way, it is possible to produce ultrafine wholly aromatic polyester filaments with a filament diameter of 20 im or less, 10 m or less, and 5 m or less under favorable conditions. There is a feature in doing. Even if all aromatic polyester fibers have high mechanical properties such as strength and elastic modulus, if the filament diameter is large, the ropes are not flexible enough, and the protective clothing is not comfortable to wear. In addition, even in non-woven fabrics such as filters, the small filament diameter improves various performances and increases the force baring power. Therefore, the quality of these products could be improved by reducing the filament diameter in the present invention.
  • the original all aromatic polyester filaments fed from the filament feeding means are stretched.
  • the delivery means is a fully aromatic polymer at a constant delivery speed by combining two-ply rollers and several stages of drive rollers. Various types can be used as long as they can deliver ester filaments.
  • the drawn filament is wound up as necessary, and the winding speed is a means for winding up the wholly aromatic polyester filament at a constant feeding speed such as a combination of a nip roller and several stages of driving rollers. Power used.
  • the apparatus for producing a wholly aromatic polyester filament cocoon of the present invention constituted by these delivery means or take-up means is capable of delivering filaments so as to obtain a predetermined draw ratio by measuring the diameter of the drawn filaments. It would be desirable to have control means configured to control the speed or the take-up speed, or both the take-up speed and the delivery speed of the filament.
  • heating of the original flame candy with infrared luminous flux is characterized by the fact that it is heated in a very narrow range, and it is necessary to regulate the position of the wholly aromatic polyester flame candy in order to enable heating in that narrow range.
  • the blow pipe is easy to vent the gas that sends the wholly aromatic polyester filament, and easy to pass the wholly aromatic polyester filament. It is preferred that the position of the wholly aromatic polyester filament raft is regulated by a simple guide after that.
  • the guide tool preferably has a position control mechanism configured so that the position of the filament can be finely adjusted by the guide tool. It is necessary to control the position of the guide tool in the X and Y directions in order to accurately fit the filament travel position in the narrow area of the laser beam.
  • the original wholly aromatic polyester filament sent out by the delivery means of the filament raft can be sent by the gas flowing in the running direction of the original wholly aromatic polyester filament through the air duct. desirable. This is because in the present invention, since the stretching tension is small, there is a case where the stretching tension cannot be kept constant due to the resistance of the guide filament while the original filament is running.
  • the gas flowing through the blower tube is usually room temperature gas, but heated air is used to preheat the original wholly aromatic polyester filament.
  • an inert gas such as nitrogen gas is used.
  • the air pipe does not necessarily have a cylindrical shape, and may have a groove shape. It is only necessary that the original wholly aromatic polyester filament flows along with the gas.
  • the cross section of the tube is preferably a circle, but may be rectangular or other shapes.
  • the gas flowing in the pipe may be supplied from one of the branched pipes, or may be supplied by a hole or the like from the outer pipe to the inner pipe in a double pipe.
  • the air entangled nozzle of filament raft used for interlace spinning of synthetic fibers is also used as the blower tube of the present invention.
  • free fall In the case of stretching by the above method, it is also possible to give a stretching tension to the filament by the momentum of the air by the blower tube of the present invention.
  • the stretching of the wholly aromatic polyester filament in the present invention is characterized in that a plurality of original wholly aromatic polyester filaments can be combined and stretched in the same infrared light flux. Normally, when a plurality of original filaments are stretched together in an infrared luminous flux, sticking occurs between the drawn filaments. In addition, due to such sticking, stretchability is often hindered, and high-strength stretching is often impossible.
  • the wholly aromatic polyester filament of the present invention since the heat resistance of the original filament is high and the heat resistance is further improved by drawing, a plurality of original filaments are drawn together. However, it was confirmed by a force experiment that the high-strength drawing can be performed stably without causing a sticking force. With multiple pieces, it was possible to stretch 2 or more, and in some cases, 5 or more. As a result, the efficiency of the infrared stretching method could be remarkably improved.
  • the stretched wholly aromatic polyester filament of the present invention is wound around a bobbin, cheese, or the like to obtain a product in the form of a bobbin or cheese roll.
  • it is desirable that the stretched wholly aromatic polyester filament is wound while being traversed. This is because a uniform winding form can be secured by traversing.
  • thread breakage and fluff generation force ⁇ most problematic force
  • the present invention is also characterized in that thread breakage and fluff can be reduced.
  • a heating device having a heating zone can be provided to heat-treat the stretched all aromatic polyester filament.
  • Heating can be performed by a method of passing through a heated gas, a radiant heating such as infrared heating, a method of passing through a heating roller, or a combination thereof.
  • the heat treatment brings various effects such as reducing the thermal shrinkage of the stretched wholly aromatic polyester filament, increasing the crystallinity, reducing the time-dependent change of the wholly aromatic polyester filament, and improving the Young's modulus.
  • the heat treatment may be performed on a conveyor.
  • the stretched wholly aromatic polyester filament of the present invention can be scraped off after further stretching.
  • the infrared stretching means performed in the previous stage can be used, but when the ultrafine fully aromatic polyester filament has already been obtained by sufficiently stretching at the previous stage.
  • stretching between rollers such as a normal godeck roller or pin stretching can be used.
  • the present invention is characterized in that stable stretching is controlled by controlling the watt density of the infrared light flux, such as a constant stretching tension and stretching ratio. Also, by measuring the stretched filament diameter and feeding it back, the winding speed or delivery speed, or both the take-up speed and delivery speed can be controlled so that a product with a constant filament diameter can be obtained. It is characterized by controlling. In the present invention, the draw ratio is large. Because, although the filament diameter is drawn is likely to change, by constantly controlling it, the stable production could fl 1 Ukoto.
  • a nonwoven fabric made of stretched wholly aromatic polyester filaments can be produced, and in particular, the strength and elastic modulus are large. It has the feature that fully aromatic polyester filaments can be made into non-woven fabrics without breaking them.
  • the orientation degree f of the filament in the present invention is represented by the following X-ray half width method.
  • H represents the half value of the intensity distribution along the Debye ring on the face having the main peak of the crystal of the wholly aromatic polyester fiber.
  • the draw ratio in the present invention is represented by the following formula from the diameter do of the original filament and the diameter d of the filament yarn after drawing.
  • the filament density is constant.
  • SEM scanning electron microscope
  • the method for measuring the tensile strength and elastic modulus of the filament is to determine the measured value per single yarn by J ⁇ S and 1 0 1 3.
  • the invention's effect is to determine the measured value per single yarn by J ⁇ S and 1 0 1 3.
  • the wholly aromatic polyester fiber non-woven fabric on the market consists of wholly aromatic polyester short fibers, and it is necessary to make the wholly aromatic polyester fibers difficult to cut into short fibers. The process was complicated. Moreover, the strength of the resulting nonwoven fabric depended on the strength of the entanglement of short fibers, and the high strength of wholly aromatic polyester fibers was not utilized.
  • the nonwoven fabric comprising the wholly aromatic polyester filament of the present invention is a long fiber, It can be produced directly into a non-woven fabric during the stretching process. As a result, non-woven fabric for filters is directly produced. Moreover, since it is a nonwoven fabric which consists only of long fibers, it also has the characteristic that it is a nonwoven fabric which does not have the fiber dough when cutting into short fibers.
  • FIG. 1 shows a process conceptual diagram of a continuous process for producing a stretched wholly aromatic polyester filament of the present invention.
  • FIG. 2 shows an example of the arrangement of mirrors for irradiating the original filament lamp of the present invention with infrared rays from a plurality of locations.
  • FIG. A is a plan view and FIG. B is a side view.
  • FIG. 3 is another example of irradiating the original filament of the present invention with an infrared light beam from a plurality of locations, and shows a plan view in the case of having a plurality of light sources.
  • FIG. 4 shows a conceptual diagram of the process when a plurality of fully aromatic polyester filaments of the present invention are redrawn.
  • FIG. 5 is a conceptual diagram of an air duct used in the present invention.
  • FIG. 6 shows a conceptual diagram of a process for producing a nonwoven fabric composed of stretched wholly aromatic polyester filaments of the present invention.
  • FIG. 7 is a chart showing changes in the filament diameter and physical properties of a wholly aromatic polyester filament frame stretched according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 shows an example of the continuous process of the present invention.
  • the original wholly aromatic polyester filament 1 is fed from the state of being repelled by the reel 11 and is fed from the feeding nip rollers 13a and 13b through the comb 12 at a constant speed.
  • the delivered original filament 1 is controlled in position by a guide 15 and lowered at a constant speed.
  • the guide tool 15 accurately determines the laser irradiation position and the travel position of the filament.
  • the laser beam 6 is irradiated on the heating filament M having a certain width from the laser oscillation device 5 to the traveling original filament 1 immediately below the guide 15.
  • the laser beam 6 is preferably irradiated from a plurality of locations shown in FIGS.
  • the original filament is drawn by the dead weight of the original filament and the drawn filament heated by the laser beam 6, or the drawing tension provided by the take-off nip roller 19, and the drawn all aromatic polyester filament 16 It is desirable to descend and pass through the heat treatment zone 17 provided for the descending process.
  • the stretched wholly aromatic polyester filament 16 passes through a pulley 18, passes through take-up nip rollers 19 a and 19 b, and is wound around a take-up reel 20.
  • the path of the fully aromatic polyester filament 16 stretched to the pulley 18 is extended as a free fall track p of the fully aromatic polyester filament, and the straight line to the pulley 18
  • the stretching tension is 3 0 It is desirable to be MP a or less.
  • the stretching tension can also be measured by providing a pulley 18 with a tension measuring mechanism. As another method, it can be estimated from the relationship between the same delivery speed, laser irradiation conditions, stretch ratio, etc. by batch method load cell measurement. Before winding with the take-up reel 2 0, between the heated draw rolls 2 1 a, 2 1 b and the draw rolls 2 2 a, 2 2 b, depending on the ratio of the speed of the draw rolls 2 1 and 2 2 Further, it can be stretched. In this case, the heat-treated zone 17 of the stretched wholly aromatic polyester filament can also be provided after the stretching roller 22. In addition, when multiple original filaments are stretched simultaneously, it is desirable to air entangle the filaments using the interlace method or the like immediately before the bow I reel.
  • a filament diameter measuring device is installed at a position just before entering the pulley 18 or the take-up roller 19 and the measured filament diameter is fed back to control the take-up speed or the delivery speed, so that it is always constant.
  • a product with a uniform filament diameter can be obtained at a draw ratio of.
  • FIG. 2 shows an example of means for irradiating the original filament from a plurality of locations with the infrared light beam employed in the present invention.
  • Figure A is a plan view and Figure B is a side view.
  • the infrared beam 3 1 a irradiated from the infrared irradiator passes through the area P (in the dotted line in the figure) through which the original filament 1 passes, reaches the mirror 3 2, and becomes the infrared beam 3 1 b reflected by the mirror 3 2. Reflected by the mirror 3 3 to become an infrared luminous flux 3 1 c.
  • the infrared luminous flux 3 1 c irradiates the original filament through the region P after 120 degrees from the irradiation position of the first original filament.
  • the infrared light beam 3 1 c that has passed through the region P is reflected by the mirror 3 4 to become the infrared light beam 3 I d, and reflected by the mirror 35 to become the infrared light beam 3 1 e.
  • Infrared luminous flux 3 1 e through region P Irradiate the original filament 1 after 120 degrees, which is the opposite of the infrared luminous flux 3 1 c just before the irradiation position of the first original filament.
  • the original filament 1 can uniformly heat the original filament 1 from a symmetrical position by 120 degrees by the three infrared light beams 3 1 a, 3 1 c, and 3 1 e.
  • FIG. 3 is a plan view showing an example of using a plurality of light sources as another example of means for irradiating the original filament from a plurality of locations with the infrared light beam employed in the present invention.
  • the infrared luminous flux 4 1 a radiated from the infrared radiation device is radiated to the original wholly aromatic polyester filament 1.
  • an infrared luminous flux 4 1 b radiated from another infrared radiation device is also radiated to the original wholly aromatic polyester filament 1.
  • an infrared luminous flux 41c emitted from another infrared radiation device is also emitted to the original wholly aromatic polyester filament 1.
  • FIG. 4 shows an example in which a plurality of wholly aromatic polyester filaments that have already been stretched according to the present invention are fed simultaneously and stretched simultaneously.
  • Pobin 5 1 a, 5 1 b, 5 1 c, 5 1 d, 5 1 e wound fully aromatic polyester filament 5 2 a, 5 2 b, 5 2 c, 5 2 d, 5 2 “e” is sent through the air pipe 5 3 and the pipe 5 4, collected in the air manifold 5 5, and becomes an aggregate of filaments 5 6.
  • the wholly aromatic polyester filament 5 2 in the blower pipe 5 3 and pipe 5 4 is complicated in the figure. Not shown.
  • the unstretched raw filament has low strength and Young's modulus, and the stretched filament 52 has a small fineness and cannot withstand the tension.
  • the sent filament aggregate 56 is adjusted by the pitch variable mechanism 57 so that the traveling position is the center of the laser beam 58.
  • the variable pitch mechanism 57 is provided with a guide 59, and the position of the filament is finely adjusted by the rack 60 and the gear 61.
  • a set of racks and gears can be provided in the perpendicular direction and adjusted in the XY axis direction.
  • the filament assembly 56 whose position is adjusted by the pitch variable mechanism 57 is heated and stretched by the laser beam 58, the take-up speed is adjusted to be constant by the take-off mechanism 62, and is driven by the motor M.
  • the take-up bobbin 6 is wound around 3.
  • the laser beam 58 is shown by a single line, but it is desirable that the laser beam is a plurality of light beams shown in FIGS.
  • the figure shows an example in which the bobbin 63 is wound directly. However, it is preferable that the bobbin 63 is wound by twisting or entangled between filaments by interlace or the like.
  • FIG. 4 shows an example of re-stretching by infrared rays.
  • re-stretching can be performed by other stretching means such as normal roller stretching and zone stretching.
  • the air introduced into the blower pipe 5 3 and the pipe 5 4 is guided to the passage of the original filament 1, the filament is sent by the flow of air, and the tension given by the wind speed of the air is as follows. Takes into account the stretching tension.
  • Fig. 4 was described as an example of redrawing of drawn filaments, the same mechanism was used as a means of drawing a plurality of unstretched original filaments. Can also be used.
  • FIG. 5 shows an example of an air duct used in the present invention.
  • Fig. A shows that the air introduced from the arrow a joins the main pipe 7 1 through the branch pipe 7 2 and the main pipe 71 passing through one force.
  • Figure B shows a double pipe 7 3 with a hollow inside, and the air introduced from the arrow b is led to the passage of the flame ⁇ through a number of holes 7 4 provided on the inner wall of the double pipe .
  • Figure C shows an example of a nozzle used as an air entanglement nozzle 7 5 used for interlace spinning. Air is blown from both sides c 1 and c 2.
  • the stretching tension is small, so that the traveling of the filament is hindered by the resistance of the guide tool or the like.
  • the stretching tension can be applied by the air force.
  • the nozzle shown in Fig. C can also be used for winding the interlace after stretching according to the present invention.
  • the blast pipe shown in Fig. 5 is a tube-shaped one with a part of the force released to form a groove.
  • FIG. 6 shows an example of the production of the nonwoven fabric of the present invention.
  • Many original fully aromatic polyester filaments 1 force Bobbins 8 1 are wound on the base 8 2 and attached to the base 8 2 (only 3 are shown in the figure to avoid complications).
  • These raw fully aromatic polyester filaments ⁇ 1 a, 1 b, 1 c are passed through the sniper wires 8 3 a, 8 3 b, 8 3 c, which are guide tools, and the delivery nip rolls 8 4 a, 8 4 b It is sent out by rotation.
  • the original wholly aromatic polyester filament 1 that has been sent out It is reheated by the line-shaped infrared light beam emitted from the external radiation device 85.
  • the range of the heated part N due to infrared rays in the running process of the original wholly aromatic polyester filament 1 is shown by diagonal lines.
  • the light flux that has passed through the original wholly aromatic polyester filament 1 without being absorbed is reflected by the concave mirror 86 shown by the dotted line and returned to the heating part N to be condensed.
  • a concave mirror is also provided on the infrared radiation device 65 side (however, a window is opened at the advancing portion of the light beam from the infrared radiation device), but this is omitted in the figure.
  • the original wholly aromatic polyester filament 1 is heated by the radiant heat of infrared rays in the heating section N, and is stretched by the weight of the wholly aromatic polyester filament itself below that part, and the fully aromatic polyester filament is stretched.
  • Filaments 8 7 a, 8 7 b and 8 7 c are collected on the moving conveyor 8 8 to form the web 8 9.
  • air is sucked in the direction of the arrow d by negative pressure suction, which contributes to the stability of the web 89.
  • the negative pressure d ' is pulled by the tension exerted on the stretched wholly aromatic polyester filament 87, contributing to thinning of the wholly aromatic polyester filament and an increase in the degree of orientation. Is considered part of the tension.
  • many pobbins 8 1 of the original fully aromatic polyester fabric 1 are installed in multiple stages in the direction of the conveyor 8 8, and the nip rollers 84 and infrared radiation devices 85 are multi-staged. It is designed to increase the productivity of Web 89.
  • the infrared radiation device 85 and the concave mirror 86 can also serve several stages.
  • a multi-filament (60 filaments) prepared by spinning a polymer synthesized by transesterification from p-hydroxybenzoic acid (HB A) and 6-hydroxy-12-naphthoic acid (HNA) as the original fully aromatic polyester filament. ) It was used. This filament was already molecularly oriented during the spinning process, and had a filament diameter of 25.0 ⁇ m, Young's modulus of 1 5. I GPa, and tensile strength of 1. 19 GP a. Using this original multifilament, the laser of 1W laser output of 1W was applied to the drawing device shown in Fig. 1 and drawn using a mirror shown in Fig. 2 with a beam diameter of 4 mm.
  • the infrared irradiation device was extended using the mirror shown in Fig. 2.
  • the original filament was sent at a feed rate of 0.5m Zmin, and the experiment was carried out by changing the winding speed with a tension of 30MPa or less while changing the laser power density in various ways.
  • drawing breaks frequently occurred and it was preferable to draw at 1 OM Pa or lower.
  • a filament having a fiber diameter of 4.6 ⁇ (drawing ratio: 29.5) was obtained at a winding speed of 9.42 mZ.
  • the stretched tensile strength was 1.88 GPa and the Young's modulus was 31.6 GPa.
  • a filament having a fiber diameter of 2.3 / im (drawing ratio: 11.8.4) was obtained at a take-up speed of 28.3 mZ.
  • the stretched tensile strength was 2.1 2 GPa and the Young's modulus was 39.2 GPa.
  • a filament having a fiber diameter of 2.4 mm (drawing ratio 10 08. 3) was obtained at a cutting speed of 37.7 minutes. This total The stretched tensile strength was 1.89 GPa and the Young's modulus was 36.9 GPa.
  • Example 2 Although it is a group of filaments that are already molecularly oriented, a draw ratio of several tens to 100 times or more can be obtained, and the conventional method can obtain a wholly aromatic polyester filament of 20 ⁇ m or less. However, in the present invention, an ultrafine filament of 5 mm or less could be easily obtained. In addition, the strength and elastic modulus of the filaments obtained thereby double.
  • Example 2
  • a filament made of wholly aromatic polyester synthesized from P-hydroxybenzoic acid (HBA) and 6, hydroxy-2-naphthoic acid (HNA) is used as the core, and a polymer consisting of polyethylene 1,6-naphthalate (P EN) is used.
  • the following stretching experiment was conducted using the core-sheath filament as the sheath as the original wholly aromatic polyester filament.
  • This filamentous filament had a filament diameter of 103.2 m, Young's modulus of 10 ⁇ 43 3, tensile strength of 0.72 GPa, and elongation of 12.8%.
  • 10.6 mm laser radiation with a laser output of 10 W was applied to the drawing device in Fig.
  • Example 2 drawn filaments (filament diameter 14.1 m) obtained at a delivery speed of 0 ⁇ 5 mZm in and a cutting speed of 18.8 m were used as raw materials at 200 ° C. 1.
  • Heat treatment with a load of 7 MPa (heat treatment 1), filament heat treatment 25.
  • Heat treatment with a load of 2MPa (heat treatment 2), flamen! 3 per 1 load of 5MPa
  • the effect of heat treatment was tested by applying heat treatment (heat treatment 3).
  • heat treatment 1 filament diameter 1 3.
  • I jUm breaking strength 2.81 GPa, Young's modulus 67. 2GPa
  • by heat treatment 2 ' Filament diameter 1 2.7 ⁇ m, breaking strength 3.
  • the stretched wholly aromatic ultrafine filament according to the present invention is used as an industrial material and has a thin fiber diameter. Therefore, when it is used in ropes and fabrics, it becomes a flexible and easy-to-use product.

Abstract

A means for producing an extremely fine filament of a wholly aromatic polyester and a non-woven fabric comprising the filament, characterized in that a tensile force of 30 MPa per single yarn is imparted to a wholly aromatic polyester filament and the filament is heated by a infrared ray flux, to thereby form an extremely fine filament which has been drawn at a draw ratio of seven or more, exhibits high molecular orientation and has a size of 20 μm or less, and in that a non-woven fabric comprising extremely fine filaments of a wholly aromatic polyester is produced through piling up the above drawn filaments on a conveyer. The above means allows the production of a drawn filament of a wholly aromatic polyester and a non-woven fabric comprising the filament without the need for an apparatus being special, highly precise or of high level, with the use of a simple and easy means.

Description

明 細 書 全芳香族ポリエステル極細フィラメン卜の製造手段 技術分野  MECHANISM MANUFACTURING METHOD FOR FULL AROMATIC POLYESTER extra fine filament raft
本発明は、 延伸された全芳香族ポリエステルフィラメントおよびその製造方法お よびその製造装置に関し、 特にそれらの簡便な延伸手段によって得られる 7倍以上で、 さらに 1 5倍以上の高倍率で延伸され、 2 0 /i m以下の極細全芳香族ポリエステルフ イラメン卜の製造に関する。 背景技術  The present invention relates to a stretched wholly aromatic polyester filament, a method for producing the same, and a production apparatus therefor, in particular, it is stretched at a magnification of 7 times or more obtained by a simple stretching means, and further at a high magnification of 15 times or more. The invention relates to the production of ultrafine wholly aromatic polyester flame candy having a capacity of 20 / im or less. Background art
全芳香族ポリエステル繊維は、 その高強度高弾性率、 高耐熱性等の優れた特性よ リ、 工業資材等として各方面で使用されている。 し力、し、 全芳香族ポリエステル繊維 は紡糸性や延伸性が悪いため、 繊維径を細くすることが困難であった。 したがって、 従来の全芳香族ポリエステルフィラメントは繊維径が大きいため、 ロープ等の工業用 資材に使用した場合に、 しなやかさに欠け、 使用特性において問題があった。 そして、 全芳香族ポリエステル繊維径を細くすることは、 従来は、 全芳香族ポリエステル繊維 の紡糸条件を検討することによって行われていた (例えば、 特開昭 6 2— 1 7 7 2 1 1号、 特開平 1—2 7 2 8 1 2号) 。  Fully aromatic polyester fibers are used in various fields as industrial materials due to their excellent properties such as high strength, high elastic modulus and high heat resistance. It has been difficult to reduce the fiber diameter because fully aromatic polyester fibers have poor spinnability and stretchability. Therefore, the conventional wholly aromatic polyester filaments have a large fiber diameter, so when used for industrial materials such as ropes, they lack flexibility and have problems in use characteristics. In the past, reducing the diameter of the wholly aromatic polyester fiber has been carried out by examining the spinning conditions of the wholly aromatic polyester fiber (for example, Japanese Patent Laid-Open No. Sho 62-1-7 7 2 1 1). JP-A-1-2 7 2 8 1 2).
—方、 本発明は赤外線加熱によるフィラメン卜の延伸技術に関するものであるが、 それらの技術は、 従来、 種々行われていた (例えば、 特開 2003— 1661 "I 5号 公報、 国際公開第 00ノ73556号パンフレツ卜、 鈴木章泰、 他 1名 Journal of Appl ied Polymer Science, v o l . 83、 p. 1 7 1 1— 1 7 1 6、 2002年、 鈴木章泰、 他 1名 高分子学会予稿集、 高分子学会 2001年 5月 7曰'、 50卷 4 号、 p 787、 鈴木章泰、 他 1名 Journal of Appl ied Polymer Science, o l . 88、 p. 3279— 3283、 2003年、 鈴木章泰、 他 1名 Journal of -On the other hand, the present invention relates to a technique for stretching filament flames by infrared heating, Various techniques have been conventionally used (for example, JP 2003-1661 "I 5 publication, International Publication No. 00-No. 73556 Pamphlet, Akiyasu Suzuki, and others 1 Journal of Applied Polymer Science, vol. 83, p. 1 7 1 1— 1 7 1 6, 2002, Akiyasu Suzuki, etc. 1 Proceedings of the Society of Polymer Science, Japan Society of Polymer Science, 2001 May 7 ', 50-4, p 787 , Akiyasu Suzuki, 1 other Journal of Applied Polymer Science, ol. 88, p. 3279-3283, 2003, Akiyasu Suzuki, 1 other Journal of
Appl ied Polymer Science, v o l . 90、 p. 1 955— 1 958、 2003年) 。 し力、し、 これらは全芳香族ポリエステルフィラメントを、 高倍率に、 しかも高度に分 子配向された形態で、 延伸されることを実現するには十分ではなかった。 Applied Polymer Science, v o l. 90, p. 1 955—1 958, 2003). However, these were not sufficient to realize that fully aromatic polyester filaments were stretched in a high magnification and highly molecularly oriented form.
また、 従来の全芳香族ポリエステル繊維からなる不織布は、 全芳香族ポリエステ ル繊維を数センチメータに切断し、 カードウェブにして積層し、 二一ドルパンチして 不織布としており、 切断、 力一ドウエブ化、 ニードルパンチなど、 工程が多く、 コス トアップになっているばかりでなく、 短繊維からなるため、 不織布の強度が繊維の絡 み合いに依存しておリ、 全芳香族ポリエステル繊維が本来有している高強度を有効に 利用していなかった。 発明の開示  In addition, conventional nonwoven fabrics made of wholly aromatic polyester fibers are made by cutting fully aromatic polyester fibers into several centimeters, laminating them into card webs, punching them for a couple of dollars, and making them into nonwoven fabrics. Needless to say, there are many processes such as needle punching, and it is cost-effective.Because it consists of short fibers, the strength of the nonwoven fabric depends on the entanglement of the fibers, and all aromatic polyester fibers originally have The high strength is not used effectively. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
本発明は、 上記従来技術をさらに発展させたものであって、 その目的とするとこ ろは、 特殊な紡糸法を採用することなく、 簡便な手段で容易に延伸された全芳香族ポ リエステルフィラメントを得ることができるようにすることにある。 また他の目的は、 全芳香族ポリエステルフィラメントを、 高品質でフィラメント径細く、 安定して製造 可能とすることにある。 さらに他の目的は、 全芳香族ポリエステルフィラメントから なる長繊維不織布を製造可能とすることにある。 課題を解決するための手段 The present invention is a further development of the above-described conventional technology. The purpose of the present invention is to provide a wholly aromatic polymer that is easily stretched by a simple means without adopting a special spinning method. It is to be able to obtain a reester filament. Another object is to make it possible to produce a wholly aromatic polyester filament with high quality, a small filament diameter, and stable production. Yet another object is to make it possible to produce a long-fiber nonwoven fabric made of wholly aromatic polyester filaments. Means for solving the problem
本発明は、 延伸された全芳香族ポリエステルフィラメントに関する。 全芳香族ポ リエステルフイラメントとは、 全芳香族ポリエステルポリマ一を主成分とするフィラ メントを意味する。 フィラメントは、 実質的に連続した長さを持つ繊維で、 長さの短 し、 (数ミリメータから数センチメータ) からなる短繊維とは区別される。 なお、 本発 明におけるフィラメントは、 一本のフィラメントからなるシングルフィラメントであ る場合と、 複数のフィラメン卜からなるマルチフィラメン卜である場合が含められる。 一本のフィラメントにかかる張力等では、 「単糸あたり」 と表現するが、 一本のフィ ラメントでは、 「その一本のフィラメントあたり j を意味し、 マルチフィラメントで は、 それを構成する 「個々のフィラメント一本あたり」 を意味する。  The present invention relates to a stretched wholly aromatic polyester filament. The fully aromatic polyester filament means a filament mainly composed of a fully aromatic polyester polymer. Filaments are fibers that have a substantially continuous length, and are distinguished from short fibers of short length (a few millimeters to a few centimeters). The filament in the present invention includes a single filament composed of a single filament and a multifilament cage composed of a plurality of filament filaments. In the tension applied to a single filament, it is expressed as “per single yarn”, but in a single filament, it means “j per single filament, and in multifilament it constitutes“ individual ” "Per filament".
繊維となるポリエステルの代表格はポリェチレンレフテレフタレートである力 分子中にエチレン基を有するため屈曲性がある。 本発明における全芳香族ポリエステ ルポリマーとは、 分子中にこのようなメチレン基ゃェチレン基を全て芳香族基に置き 換えた合成高分子で、 ポリアリレートとも呼ばれる。 これらの全芳香族ポリエステル は、 融点力《高く、 また分子配向させることにより、 高強度、 高弾性率を有するフイラ メントとなることに特徴がある。 また、 全芳香族ポリエステルの多くが、 サーモト口 ピック液晶を形成する。 全芳香族ポリエステルポリマーには、 P—ヒドロキシ安息香 酸 (H B A) と 6—ヒドロキシ一 2ナフ卜ェ酸 (H N A) からエステル交換反応で合 成された商品名べクトランがある。 また、 P—ヒドロキシ安息香酸 (H B A) とジァ セトキシビフエニール、 テレフタル酸、 イソフタル酸の共重合で合成された商品名工 コノールがある。 し力、し、 これらの例示にとどまらず、 上記定義に示した全芳香族ポ リエステルからなるフィラメン卜であれば、 本発明の全芳香族ポリエステルフィラメ ン卜に含まれる。 A typical example of polyester used as a fiber is polyethylene terephthalate, which is flexible because it has an ethylene group in the molecule. The wholly aromatic polyester polymer in the present invention is a synthetic polymer in which all such methylene group and ethylene group are replaced with aromatic groups in the molecule, and is also called polyarylate. These wholly aromatic polyesters have a high melting point and a high elasticity and high elasticity by molecular orientation. It is characterized by becoming a mentament. Many wholly aromatic polyesters also form thermomorphic liquid crystals. The wholly aromatic polyester polymer has a trade name Vectran synthesized by transesterification from P-hydroxybenzoic acid (HBA) and 6-hydroxy-12-naphthoic acid (HNA). There is also a trade name Conol synthesized by copolymerization of P-hydroxybenzoic acid (HBA) with diacetoxybiphenyl, terephthalic acid and isophthalic acid. In addition to these examples, filamentous flames composed of wholly aromatic polyesters shown in the above definition are included in the wholly aromatic polyester filaments of the present invention.
本発明における全芳香族ポリエステルフィラメントは、 フィラメントの骨格 (芯 の部分) を前記全芳香族ポリエステルポリマーからなり、 表面 (鞘の部分) カ《他のポ リマーから構成されている場合も含められる。 このような構成にすることにより、 全 芳香族ポリエステルの紡糸性を改善することができる。 この鞘部分のポリマーとして 耐熱性のあるポリエステルである、 ポリエチレン一 2、 6—ナフタレート (P E N ) 、 ポリ一 1、 4—シクロへキサンジメチレンテレフタレート (P C T ) などが特に有効 である。 また、 ポレフエ二レンエーテルやその変性体などのポリエーテルも使用する ことができる。  The wholly aromatic polyester filament in the present invention includes a case where the skeleton (core portion) of the filament is made of the wholly aromatic polyester polymer and the surface (sheath portion) is made of other polymer. With such a configuration, the spinnability of the wholly aromatic polyester can be improved. Polyethylene-1,6-naphthalate (PEN) and poly-1,4-cyclohexanedimethylene terephthalate (PCT), which are heat-resistant polyesters, are particularly effective as the polymer for the sheath portion. Polyethers such as polyphenylene ether and modified products thereof can also be used.
本発明は、 原フィラメントを延伸する手段を提供するものである。 本発明におけ る原全芳香族ポリエステルフィラメントとは、 既に全芳香族ポリエステルフイラメン 卜として製造されて、 ボビン等に巻き取られたものであってもよいし、 紡糸過程にお いて、 フィラメントが冷却や凝固により全芳香族ポリエステルフィラメントとなった ものを、 紡糸過程に引き続き使用され、 本発明の延伸手段の原料となる全芳香族ポリ エステルフィラメントとして使用してもよい。 したがって、 紡糸工程における溶剤が 若干含まれていている場合のように、 溶剤ゃ膨潤剤力《含まれる場合も含められる。 The present invention provides a means for drawing the original filament. The original wholly aromatic polyester filament in the present invention may be one that has already been produced as a wholly aromatic polyester filament yarn and wound up on a bobbin or the like. It became a fully aromatic polyester filament by cooling and solidification. The material may be used as a wholly aromatic polyester filament that is subsequently used in the spinning process and becomes a raw material for the stretching means of the present invention. Therefore, the case where the solvent is included in the spinning process is included, as in the case where some solvent in the spinning process is included.
本発明における原全芳香族ポリエステルフィラメントとは、 既に紡糸過程や延伸 工程を経て分子配向されたものであっても使用される。 全芳香族ポリエステル融液は サ一モト口ピック液晶を示し、 紡糸のみで分子配向され、 このように高度に分子配向 されている原フィラメントからでも、 さらに高倍率に延伸できることに本発明の特徴 力ある。 し力、し、 紡糸過程で紡糸条件を工夫することにより、 分子配向が制限されて いるフィラメントである好ましい。 本発明において、 原フィラメントの強度が、 単糸 あたり、 1 O G P a以下である未延伸フィラメントであることが好ましく、 さらに、 5 G P a以下であることが好ましく、 1 G P a以下であることが最も好ましし、。 本発 明人の先発明で明らかにしたように、 ナイ口ンゃポリエチレンテレフタレート等の汎 用熱可塑性樹脂フィラメントでは、 相当に分子配向した原フィラメントでも、 赤外線 光束で超高倍率に延伸出来、 高分子配向のフィラメントが得られる。 し力、し、 全芳香 族ポリエステルフィラメントでは、 分子配向度が制限されていることで、 延伸性が増 すことが明らかになった。  The original wholly aromatic polyester filament in the present invention is used even if it has been molecularly oriented through a spinning process or a drawing process. The fully aromatic polyester melt shows a thermopick liquid crystal, and is molecularly oriented only by spinning, and can be drawn at a higher magnification even from such highly oriented molecular filaments. is there. The filament is preferably a filament whose molecular orientation is limited by devising spinning conditions in the spinning process. In the present invention, the strength of the original filament is preferably an unstretched filament of 1 OGPa or less per single yarn, more preferably 5 GPa or less, and most preferably 1 GPa or less. I like it. As clarified in the present invention of the present inventor, general-purpose thermoplastic resin filaments such as Nai Nya Polyethylene terephthalate can be stretched at ultra-high magnification with infrared rays even with a highly molecular oriented original filament. A molecularly oriented filament is obtained. It has been clarified that stretchability increases in fully aromatic polyester filaments due to the limited degree of molecular orientation.
本発明の原全芳香族ポリエステルフィラメントは、 赤外線加熱手段 (レーザーを 含む) により照射される赤外線光束により延伸適温に加熱される。 赤外線は、 原フィ ラメントを加熱するが、 延伸適温に加熱される範囲が、 フィラメントの中心でフイラ メン卜の軸方向に、 上下 4 mm (長さとして 8 mm) 以内であることが好ましく、 さ らに好ましくは 3 mm以下、 最も好ましくは 2 mm以下で加熱される。 本発明は、 狭 い領域で急激に延伸することにより、 高度の分子配向を伴った延伸を可能にし、 しか も高倍率延伸であっても、 延伸切れを少なくすることができた。 なお、 この赤外線光 束が照射されるフィラメントが、 マルチフィラメントである場合は、 上記の 「フイラ メントの中心」 は、 マルチフィラメントのフィラメント束の中心を意味する。 The original wholly aromatic polyester filament of the present invention is heated to an appropriate stretching temperature by an infrared light beam irradiated by an infrared heating means (including a laser). Infrared rays heat the original filament, but it is preferable that the range to be heated to a suitable temperature for drawing is within 4 mm (8 mm in length) in the axial direction of the filaments at the center of the filament. More preferably, heating is performed at 3 mm or less, most preferably 2 mm or less. The present invention makes it possible to stretch with a high degree of molecular orientation by rapidly stretching in a narrow region, and even with high magnification stretching, it is possible to reduce stretching breakage. When the filament irradiated with this infrared light bundle is a multifilament, the above “center of filament” means the center of the filament bundle of multifilament.
なお、 この場合の赤外線光束の照射は、 複数箇所から照射されることが好ましい。 全芳香族ポリエステルフィラメン卜において、 フイラメン卜の片側のみからの加熱は、 その融解温度が高く、 加熱時間が短いので、 もともと延伸が困難なフィラメント力 非対称加熱により、 さらに困難になるからである。 このような複数箇所からの照射は、 複数個の赤外線光束の光源から照^ fしてもよいが、 一つの光源からの光束を鏡によつ て反射させることにより、 複数回、 原フィラメントの通路に沿って照射させることに よって達成することもできる。 鏡は、 固定型ばかりでなく、 ポリゴンミラーのように 回転するタイプも使用することができる。  In this case, the infrared light beam is preferably irradiated from a plurality of locations. This is because, in a wholly aromatic polyester filament cocoon, heating from only one side of the filament cocoon has a high melting temperature and a short heating time. Such irradiation from a plurality of places may be performed by a plurality of light sources of infrared light beams, but by reflecting a light beam from a single light source with a mirror, a plurality of times, It can also be achieved by irradiating along the passage. Mirrors can be used not only for fixed types but also for rotating types such as polygon mirrors.
また、 複数箇所からの照射の別な手段として、 複数光源からの光源を原フィラメ ン卜に複数箇所から照射する手段がある。 比較的小規模のレーザー光源で安定してコ ストの安いレーザー発振装置を複数用いて、 高パワーの光源とすることができる。 本 発明の全芳香族ポリエステルフイラメントは、 高ヮッ卜密度が必要であることよリ、 この複数光源を使用する方式は有効である。  As another means for irradiation from a plurality of locations, there is a means for irradiating a light source from a plurality of light sources to the original filament from a plurality of locations. A high-power light source can be obtained by using a plurality of laser oscillation devices that are stable and inexpensive with a relatively small laser light source. In the wholly aromatic polyester filament of the present invention, a method using a plurality of light sources is effective because it requires a high cocoon density.
赤外線は、 波長 0. 7 8〃 mから 1 mmまでとされている力 高分子化合物の C 一 Cボンドの 3. 5〃mの吸収を中心としており、 0. 7 8 jt mから 2 O m程度の 近赤外の範囲が特に好ましい。 これらの赤外線は、 鏡やレンズにより、 線状または点 状に焦点を絞り、 全芳香族ポリエステルフィラメントの加熱域を、 フィラメントの軸 方向に上下 4 mm以内に絞り込むスポッ卜ヒータやラインヒータと呼ばれる加熱ヒー タが使用できる。 特に、 ラインヒータは、 複数本の全芳香族ポリエステルフィラメン トを同時に加熱する場合に好適である。 Infrared light has a wavelength of 0.78 mm to 1 mm. It is centered on the absorption of 3.5 m of the C-C bond of the polymer compound, from 0.78 jt m to 2 O m. Degree The near infrared range is particularly preferred. These infrared rays are focused by a mirror or lens in a linear or dotted manner, and the heating area of the total aromatic polyester filament is reduced to within 4 mm in the vertical direction of the filament by heating called a spot heater or line heater. A heater can be used. In particular, the line heater is suitable for simultaneously heating a plurality of wholly aromatic polyester filaments.
本発明の赤外線加熱には、 レーザ一による加熱が特に好ましい。 中でも、 10. 6 imの波長の炭酸ガスレーザーと、 1. 06 mの波長の Y AG (イットリウム、 アルミニウム、 ガ一ネット系) レーザーが特に好ましい。 また、 アルゴンレーザーも 使用することができる。 レーザーは、 放射範囲を小さく絞り込むことが可能であり、 また、 特定の波長に集中しているので、 無駄なエネルギーも少ない。 本発明の炭酸ガ スレーザ—は、 パワー密度が 1 OWZcm2以上、 好ましくは 1 OOWZcm2以上、 最も好ましくは、 1 50WZcm2以上である。 狭い延伸領域に高パワー密度のエネ ルギーを集中することによって、 本発明の高倍率延伸が可能となるからである。 本発 明におけるレーザ一のヮッ卜密度は、 本発明人の先発明に示した従来の汎用繊維ポリ マーの場合より、 数段大きいワット密度を必要とすることに特徴がある。 なお、 本発 明では、 複数方向からの光束を使用することを特徴とする力《、 その場合のワット密度 は、 それぞれの照射方向からのヮット密度を合計して示す。 For the infrared heating of the present invention, heating by a laser is particularly preferable. Among these, a carbon dioxide laser with a wavelength of 10.6 im and a Y AG (yttrium, aluminum, galnet) laser with a wavelength of 1.06 m are particularly preferable. An argon laser can also be used. Lasers can reduce the radiation range to a small size and are concentrated on a specific wavelength, so there is little wasted energy. The carbon dioxide laser of the present invention has a power density of 1 OWZcm 2 or more, preferably 1 OOWZcm 2 or more, and most preferably 150 WZcm 2 or more. This is because high-power stretching of the present invention can be achieved by concentrating energy of high power density in a narrow stretching region. The laser density in the present invention is characterized in that it requires a watt density several steps higher than that of the conventional general-purpose fiber polymer shown in the inventor's prior invention. In the present invention, a force characterized by using light beams from a plurality of directions <<, and the watt density in that case is the sum of the watt densities from the respective irradiation directions.
本発明においては、 全芳香族ポリエステルフィラメントが延伸される張力を、 非 常に小さい状態に制御されることを特徴とする。 本発明における延伸張力は、 単糸あ たり、 好ましくは 30MPa以下、 さらに好ましくは 1 OMPa以下、 最も好ましく は 5 M P a以下にすることによって延伸される。 3 0 M P aを越えると、 延伸切れが 生じ易くなリ、 高倍率延伸するためには、 このような張力範囲にあること力《望ましい。 全芳香族ポリエステルフィラメントの延伸では、 通常、 数百 M P aの延伸張力を必要 とするが、 本発明では、 1桁から 2桁小さい延伸張力であることを特徴とする。 この ように小さい延伸張力で、 延伸倍率を 7倍以上、 条件によっては 2 0倍以上、 さらに は 3 0倍以上と極端に大きな倍率が実現できるのは、 延伸温度が融点前後と、 極端に 高い温度を維持しつつ、 非常に狭い延伸領域であるため、 全芳香族ポリエステルフィ ラメン卜の切断を免れて変形できるものと思われる。 The present invention is characterized in that the tension at which the wholly aromatic polyester filament is drawn is controlled to be very small. The drawing tension in the present invention is preferably 30 MPa or less, more preferably 1 OMPa or less, most preferably per single yarn. Is stretched by making it 5 MPa or less. If it exceeds 30 MPa, it is easy for breakage to occur, and in order to stretch at a high magnification, it is desirable to be within such a tension range. Stretching of a wholly aromatic polyester filament usually requires a stretching tension of several hundred MPa, but the present invention is characterized by a stretching tension that is 1 to 2 orders of magnitude smaller. With such a low stretching tension, the draw ratio is 7 times or more, and depending on the conditions, 20 times or more, and even 30 times or more, an extremely large magnification can be realized. The draw temperature is extremely high, around the melting point. Since it is a very narrow stretch region while maintaining the temperature, it seems that it can be deformed by avoiding the cutting of the wholly aromatic polyester filament.
このように、 本発明においては、 非常に小さな張力で延伸されることに特徴があ る。 本発明の延伸における延伸張力は、 自己の自重により与えられる張力によっても 延伸されることを特徴とする。 これは、 一般の延伸が、 ローラ間の速度差によって与 えられる張力や、 卷き取りによる張力によって延伸されることと原理的に異なる。 本 発明では、 加熱部に加わる全芳香族ポリエステルフィラメントの自重の大きさ (加熱 部から自由落下している距離によって定まる) を、 自由落下距離を変化させることで 最適の張力を選択することができる。 小さな延伸張力において、 最適張力を見いだす ことは困難である力 本発明では、 自己の自重により、 落下距離という簡便な手段で、 容易に延伸張力を制御できるようにしたことに特徴がある。 特に、 本発明の延伸のス タート時、 即ち、 延伸の立ち上げ時に、 落下距離とレーザーパワー密度を種々に変化 させて、 最適延伸張力を探して、 その状態と延伸倍率から、 ローラ間延伸へと導いて いくことができる。 本発明において、 得られた延伸全芳香族ポリエステルフイラメン卜の延伸倍率がAs described above, the present invention is characterized by being stretched with a very small tension. The stretching tension in the stretching of the present invention is characterized in that the stretching is also performed by a tension given by its own weight. This is in principle different from general stretching, in which stretching is performed by the tension given by the speed difference between the rollers or by the tension due to scraping. In the present invention, the optimum tension can be selected by changing the free fall distance of the self-weight of the wholly aromatic polyester filament applied to the heating part (determined by the free-falling distance from the heating part). . A force that makes it difficult to find an optimum tension with a small stretching tension. The present invention is characterized in that the stretching tension can be easily controlled by a simple means of a falling distance by its own weight. In particular, at the start of the stretching of the present invention, that is, at the start of stretching, the drop distance and the laser power density are changed in various ways to find the optimum stretching tension, and from that state and the stretching ratio to the inter-roller stretching. It can be guided. In the present invention, the stretched ratio of the obtained stretched wholly aromatic polyester filament is
7倍以上、 好ましくは 2 0倍以上、 さらに好ましくは 3 0倍以上、 最も好ましくは 5 0倍以上の超高倍率で延伸されることを特徴とする。 本発明では、 もともと延伸性が 悪い全芳香族ポリエステルフィラメントを、 このような簡便な装置で 3 0倍以上、 さ らには 5 0倍以上の高倍率を実現でき、 高倍率によってフィラメント径の小さいフィ ラメントが得られた。 また、 全芳香族ポリエステル繊維では一般に紡糸が困難である 力 紡糸過程で安定する比較的太いフィラメントを得ておき、 本発明の延伸で高倍率 に延伸することで、 フィラメント径の小さい繊維を得ることは、 生産系全体の安定生 産にも寄与する。 The film is stretched at an ultrahigh magnification of 7 times or more, preferably 20 times or more, more preferably 30 times or more, and most preferably 50 times or more. In the present invention, a fully aromatic polyester filament with originally poor stretchability can be realized at a high magnification of 30 times or more, and further 50 times or more with such a simple device, and the filament diameter is small due to the high magnification. Filament was obtained. In addition, it is generally difficult to spin with fully aromatic polyester fiber. A relatively thick filament that is stable during the spinning process is obtained, and a fiber with a small filament diameter is obtained by stretching at a high magnification by the stretching of the present invention. Contributes to the stable production of the entire production system.
本発明では、 このように高倍率延伸を可能にしたことにより、 フィラメント径が 2 0 i m以下、 さらに 1 0 m以下、 好条件では 5 m以下といった極細全芳香族ポ リエステルフィラメントの製造を可能にしたことに特徴がある。 全芳香族ポリエステ ル繊維も、 強度や弾性率などの力学的特性が高くても、 フィラメント径が大きいと、 ロープ等の柔軟性に欠け、 また防護服においては、 着心地が良くない。 また、 フィル ター等の不織布においても、 フィラメント径が小さいことは、 種々の性能を高め、 力 バリングパワーもアップする。 したがって、 本発明においてフィラメント径を小さく することで、 これらの製品の品質を向上させることもできた。  In the present invention, by enabling high-strength drawing in this way, it is possible to produce ultrafine wholly aromatic polyester filaments with a filament diameter of 20 im or less, 10 m or less, and 5 m or less under favorable conditions. There is a feature in doing. Even if all aromatic polyester fibers have high mechanical properties such as strength and elastic modulus, if the filament diameter is large, the ropes are not flexible enough, and the protective clothing is not comfortable to wear. In addition, even in non-woven fabrics such as filters, the small filament diameter improves various performances and increases the force baring power. Therefore, the quality of these products could be improved by reducing the filament diameter in the present invention.
本発明の連続法においは、 フィラメントを送り出す手段から送リ出された原全芳 香族ポリエステルフィラメントについて延伸が行われる。 送出手段は、 二ップローラ や数段の駆動ローラを組み合わせることなどにより一定の送出速度で、全芳香族ポリ エステルフイラメントを送り出すことが出来るものであれば種々のタイプのものが使 用できる。 また、 延伸されたフィラメントは、 必要に応じて卷き取られるが、 その卷 取速度は、 ニップローラや数段の駆動ローラを組み合わせるなどの一定の送出速度で、 全芳香族ポリエステルフィラメントを巻き取る手段力使用される。 これらの送出手段 または卷取手段によって構成される本発明の全芳香族ポリエステルフィラメン卜の製 造装置は、 延伸されたフィラメントの径を測定することで所定の延伸倍率になるよう に、 フィラメントの送出速度ゃ卷取速度、 またはフィラメントの卷取速度と送出速度 との両者をコントロールするように構成されている制御手段を有することが望ましし、。 In the continuous method of the present invention, the original all aromatic polyester filaments fed from the filament feeding means are stretched. The delivery means is a fully aromatic polymer at a constant delivery speed by combining two-ply rollers and several stages of drive rollers. Various types can be used as long as they can deliver ester filaments. In addition, the drawn filament is wound up as necessary, and the winding speed is a means for winding up the wholly aromatic polyester filament at a constant feeding speed such as a combination of a nip roller and several stages of driving rollers. Power used. The apparatus for producing a wholly aromatic polyester filament cocoon of the present invention constituted by these delivery means or take-up means is capable of delivering filaments so as to obtain a predetermined draw ratio by measuring the diameter of the drawn filaments. It would be desirable to have control means configured to control the speed or the take-up speed, or both the take-up speed and the delivery speed of the filament.
本発明において、 赤外線光束が原フィラメントに当たる直前で、 原フィラメント の位置を規制する案内具を設けることが好ましい。 原フイラメン卜の赤外線光束によ る加熱は、 非常に狭い範囲において加熱されること力特徴で、 その狭い範囲の加熱を 可能にするために、 全芳香族ポリエステルフイラメン卜の位置を規制する必要がある。 下記に述べる送風管の出口の形状によって、 そのような機能を持たすことも可能であ るが、 送風管は全芳香族ポリエステルフィラメントを送る気体の通気や、 全芳香族ポ リエステルフィラメントの通し易さに重点を置き、 その後に簡便な案内具によつて、 全芳香族ポリエステルフィラメン卜の位置が規制されることが好ましい。 従来の通常 の延伸では、 延伸張力が大きいので、 案内具は必要としない。 しかし本発明では、 延 伸張力が小さくて延伸倍率が大きく、 また加熱域が狭いので、 延伸点のほんの少しの ゆらぎや変動は、 延伸の安定性に大きく影響する。 したがって、 延伸点の直前に案内 具を設けることが、 延伸の安定性に大きく寄与する。 本発明における案内具は、 細い 管や溝、 コーム、 細いバーの組み合わせなどが使用できる。 In the present invention, it is preferable to provide a guide for regulating the position of the original filament immediately before the infrared light beam hits the original filament. Heating of the original flame candy with infrared luminous flux is characterized by the fact that it is heated in a very narrow range, and it is necessary to regulate the position of the wholly aromatic polyester flame candy in order to enable heating in that narrow range. There is. It is possible to have such a function depending on the shape of the outlet of the blow pipe described below, but the blow pipe is easy to vent the gas that sends the wholly aromatic polyester filament, and easy to pass the wholly aromatic polyester filament. It is preferred that the position of the wholly aromatic polyester filament raft is regulated by a simple guide after that. In the conventional normal stretching, since the stretching tension is large, no guide is required. However, in the present invention, since the elongation / stretching force is small, the stretching ratio is large, and the heating range is narrow, a slight fluctuation or fluctuation of the stretching point greatly affects the stability of stretching. Therefore, guide just before the drawing point Providing tools greatly contributes to the stability of stretching. As the guide in the present invention, a combination of a thin tube, a groove, a comb, a thin bar, or the like can be used.
上記案内具においては、 案内具によつてフィラメントの位置を微調整できるよう に構成されている位置制御機構を有すること力《望ましい。 レーザービームの狭い領域 に、 フィラメントの走行位置を正確にフィットさせるためには、 案内具を X Y方向に 位置制御する必要がある。  The guide tool preferably has a position control mechanism configured so that the position of the filament can be finely adjusted by the guide tool. It is necessary to control the position of the guide tool in the X and Y directions in order to accurately fit the filament travel position in the narrow area of the laser beam.
フィラメン卜の送出手段によリ送リ出された原全芳香族ポリエステルフイラメン トは、 さらに送風管を通して、 送風管中を原全芳香族ポリエステルフィラメントの走 行方向に流れる気体によって送られることが望ましい。 本発明では、 延伸張力が小さ いため、 原フィラメントが走行中に案内具等による抵抗で、 延伸張力が一定に保ち得 ない場合があるからである。 送風管を流れる気体は、 通常、 室温の気体が使用される が、 原全芳香族ポリエステルフィラメントを予熱したい場合は、 加熱エアーが使用さ れる。 また、 原全芳香族ポリエステルフィラメントが、 酸化されるのを防ぐ場合は、 窒素ガス等の不活性ガスが使用される。 なお、 送風管は、 必ずしも筒状である必要が なく、 溝状であってもよく、 それらの中を気体とともに原全芳香族ポリエステルフィ ラメントが流れればよい。 管の断面は、 円が好ましいが、 矩形でもその他の形状でも よい。 管を流れる気体は、 枝分かれした管の一方より供給してもよく、 管が 2重にな つておリ、 外側の管から内側の管へ、 孔などによって供給してもよい。 合成繊維のィ ンターレース紡糸ゃタスラン加工に使用されるフィラメン卜の空気交絡ノズルも本発 明の送風管として使用される。 また 本発明における不織布製造のように、 自由落下 により延伸する場合、 本発明の送風管によるエアーの勢いで、 フィラメントに延伸張 力を与えることもできる。 The original wholly aromatic polyester filament sent out by the delivery means of the filament raft can be sent by the gas flowing in the running direction of the original wholly aromatic polyester filament through the air duct. desirable. This is because in the present invention, since the stretching tension is small, there is a case where the stretching tension cannot be kept constant due to the resistance of the guide filament while the original filament is running. The gas flowing through the blower tube is usually room temperature gas, but heated air is used to preheat the original wholly aromatic polyester filament. In addition, in order to prevent the original wholly aromatic polyester filament from being oxidized, an inert gas such as nitrogen gas is used. Note that the air pipe does not necessarily have a cylindrical shape, and may have a groove shape. It is only necessary that the original wholly aromatic polyester filament flows along with the gas. The cross section of the tube is preferably a circle, but may be rectangular or other shapes. The gas flowing in the pipe may be supplied from one of the branched pipes, or may be supplied by a hole or the like from the outer pipe to the inner pipe in a double pipe. The air entangled nozzle of filament raft used for interlace spinning of synthetic fibers is also used as the blower tube of the present invention. Moreover, like the nonwoven fabric manufacture in the present invention, free fall In the case of stretching by the above method, it is also possible to give a stretching tension to the filament by the momentum of the air by the blower tube of the present invention.
本発明における全芳香族ポリエステルフィラメントの延伸においては、 複数本の 原全芳香族ポリエステルフィラメントをまとめて、 同一赤外線光束中で延伸できるこ とを特徴とする。 通常、 赤外線光束中で複数本の原フィラメントをまとめて延伸する と、 延伸フィラメント間で膠着が生じる。 また、 このような膠着が原因で延伸性が阻 害され、 高倍率の延伸ができない場合が多い。 し力、し、 本発明の全芳香族ポリエステ ルフィラメントでは、 原フィラメントの耐熱性が高く、 延伸されることにより、 さら に耐熱性が高くなることより、 複数本の原フィラメントをまとめて延伸しても、 膠着 力《起こることな 安定して高倍率延伸を行うことができること力 実験により確認 できた。 複数本とは、 2本以上、 場合によっては、 5本以上も延伸することができた。 このことにより、 赤外線延伸法の効率を、 著しく向上させることができた。  The stretching of the wholly aromatic polyester filament in the present invention is characterized in that a plurality of original wholly aromatic polyester filaments can be combined and stretched in the same infrared light flux. Normally, when a plurality of original filaments are stretched together in an infrared luminous flux, sticking occurs between the drawn filaments. In addition, due to such sticking, stretchability is often hindered, and high-strength stretching is often impossible. In the wholly aromatic polyester filament of the present invention, since the heat resistance of the original filament is high and the heat resistance is further improved by drawing, a plurality of original filaments are drawn together. However, it was confirmed by a force experiment that the high-strength drawing can be performed stably without causing a sticking force. With multiple pieces, it was possible to stretch 2 or more, and in some cases, 5 or more. As a result, the efficiency of the infrared stretching method could be remarkably improved.
本発明の延伸された全芳香族ポリエステルフィラメントは、 その後続工程で、 ボ ビンやチーズ等に巻き取られ、 ボビン卷ゃチーズ巻の形態の製品とされる。 これらの 巻き取りにおいては、 延伸された全芳香族ポリエステルフィラメントは、 トラバース されながら巻き取られることが望ましい。 トラバースされることにより、 均一な巻き 上げ形態を確保できるからである。 極細全芳香族ポリエステルフィラメントでは、 糸 切れや毛羽の発生力《最も問題となる力 本発明では、 高度に分子配向しているためと、 延伸張力が小さいため、 小さな巻き取り張力で巻き取ることが可能となる。 そのため、 本発明では、 糸切れや毛羽を少なくできることも特徴となる。 なお、 複数本の原フィ ラメントを同時に延伸して、 同時に巻き取る際には、 撚糸機で撚をかけながら巻いて 行くこともできるが、 本発明はフィラメントの走行速度が速いので、 インタ一レース 交絡法によリフイラメント間を交絡して巻き取ることが好ましい。 In the subsequent process, the stretched wholly aromatic polyester filament of the present invention is wound around a bobbin, cheese, or the like to obtain a product in the form of a bobbin or cheese roll. In these windings, it is desirable that the stretched wholly aromatic polyester filament is wound while being traversed. This is because a uniform winding form can be secured by traversing. With ultra-fine wholly aromatic polyester filaments, thread breakage and fluff generation force << most problematic force In the present invention, it is possible to wind with a small winding tension because of its high molecular orientation and low stretching tension. It becomes possible. Therefore, the present invention is also characterized in that thread breakage and fluff can be reduced. Note that multiple original When the lament is stretched at the same time and wound at the same time, it can be wound while being twisted by a twisting machine. However, since the filament traveling speed is fast in the present invention, the interlace entanglement method makes it It is preferable to entangle and wind.
本発明の延伸工程の後に、 加熱ゾーンを有する加熱装置を設け、 延伸された全芳 香族ポリエステルフィラメントを熱処理することもできる。 加熱は、 加熱気体中を通 過させる方式や、 赤外線加熱等の輻射加熱、 加熱ローラ上を通す方式、 またはそれら の併用などで行うことができる。 熱処理は、 延伸された全芳香族ポリエステルフイラ メントの熱収縮を小さくし、 結晶化度を上げ、 全芳香族ポリエステルフィラメントの 経時変化を小さくし、 ヤング率を向上させるなど、 種々の効果をもたらす。 なお、 本 発明の不織布の場合では、 熱処理は、: コンベア上で行ってもよい。  After the stretching process of the present invention, a heating device having a heating zone can be provided to heat-treat the stretched all aromatic polyester filament. Heating can be performed by a method of passing through a heated gas, a radiant heating such as infrared heating, a method of passing through a heating roller, or a combination thereof. The heat treatment brings various effects such as reducing the thermal shrinkage of the stretched wholly aromatic polyester filament, increasing the crystallinity, reducing the time-dependent change of the wholly aromatic polyester filament, and improving the Young's modulus. . In the case of the nonwoven fabric of the present invention, the heat treatment may be performed on a conveyor.
本発明の延伸された全芳香族ポリエステルフィラメントを、 さらに延伸した後に 卷き取ることもできる。 後段階の延伸の手段は、 前の段階で行った赤外線延伸手段を 用いることもできるが、 前の段階で充分に高倍率延伸されて、 既に極細全芳香族ポリ エステルフィラメントが得られている場合は、 通常のゴデッ卜ローラ等のローラ間延 伸や、 ピン延伸などを用いることもできる。  The stretched wholly aromatic polyester filament of the present invention can be scraped off after further stretching. As the means for stretching in the subsequent stage, the infrared stretching means performed in the previous stage can be used, but when the ultrafine fully aromatic polyester filament has already been obtained by sufficiently stretching at the previous stage. For example, stretching between rollers such as a normal godeck roller or pin stretching can be used.
本発明では、 一定の延伸張力、 延伸倍率等を赤外線光束のワット密度をコント口 ールすることで、 安定した延伸を制御することに特徴がある。 また、 延伸されたフィ ラメント径を測定して、 それをフィードバックすることで、 巻取速度または送出速度、 または卷取速度と送出速度の両方をコントロールし、 一定のフィラメント径の製品が 得られるように制御することに特徴がある。 本発明においては、 延伸倍率が大きいた め、 延伸されたフィラメント径が変動しやすいが、 それを常に制御することで、 安定 した生産を fl1うことができた。 The present invention is characterized in that stable stretching is controlled by controlling the watt density of the infrared light flux, such as a constant stretching tension and stretching ratio. Also, by measuring the stretched filament diameter and feeding it back, the winding speed or delivery speed, or both the take-up speed and delivery speed can be controlled so that a product with a constant filament diameter can be obtained. It is characterized by controlling. In the present invention, the draw ratio is large. Because, although the filament diameter is drawn is likely to change, by constantly controlling it, the stable production could fl 1 Ukoto.
本発明における延伸された全芳香族ポリエステルフィラメントを、 走行するコン ベア上に集積することによって、 延伸された全芳香族ポリエステルフィラメントから なる不織布を製造することができ、 特に、 強度や弾性率の大きな全芳香族ポリエステ ルフィラメントを、 切断することなく、 長繊維のまま不織布にできる特徴がある。 全 芳香族ポリエステルフィラメン卜からの不織布製造においては、 フイラメン卜が自重 で落下する張力に加えて、 送風管からのエアーの勢いで、 フィラメントの延伸張力を 増加させることが好ましい。 コンベア上に集積されたフィラメントは、 フィラメント 径が小さいため、 フィラメント相互の絡み合いにより、 単にプレス等でシート化され る。 また、 必要に応じて、 ニードルパンチやウォータジェット等の絡合手段や、 接着 剤や接着繊維による接合、 熱エンボス等による熱接合等により、 一体化を高めて使用 することができる。  By integrating the stretched wholly aromatic polyester filaments in the present invention on a traveling conveyor, a nonwoven fabric made of stretched wholly aromatic polyester filaments can be produced, and in particular, the strength and elastic modulus are large. It has the feature that fully aromatic polyester filaments can be made into non-woven fabrics without breaking them. In the production of non-woven fabrics from wholly aromatic polyester filaments, it is preferable to increase the stretching tension of the filaments with the force of the air from the blower pipe in addition to the tension at which the flamen is dropped by its own weight. Since the filaments accumulated on the conveyor have a small filament diameter, they are simply formed into a sheet by pressing or the like due to the entanglement of the filaments. If necessary, it can be used with increased integration by means of entanglement such as needle punch or water jet, bonding with an adhesive or an adhesive fiber, thermal bonding with hot embossing, or the like.
なお、 本発明におけるフィラメントの配向度 f は、 下式の X線半価幅法により示 される。  The orientation degree f of the filament in the present invention is represented by the following X-ray half width method.
f (%) = [ ( 9 O - H/ 2 ) Z 9 0 ] 1 0 0  f (%) = [(9 O-H / 2) Z 9 0] 1 0 0
ここで、 Hは、 全芳香族ポリエステル繊維の結晶の主ピークを有する面のデバィ環 に沿っての強度分布の半価を示す。  Here, H represents the half value of the intensity distribution along the Debye ring on the face having the main peak of the crystal of the wholly aromatic polyester fiber.
また、 本発明における延伸倍率; Iは、 原フィラメントの径 d oと延伸後のフイラ メン卜の径 dより、 下記の式で表される。 この場合、 フィラメントの密度は 定とし て計算する。 フィラメント径の測定は、 走査型電子顕微鏡 ( S EM) で、 3 5 0倍の 倍率、 または 1 0 0 0倍での撮影写真に基づき、 1 0点の平均値で行う。 Further, the draw ratio in the present invention; I is represented by the following formula from the diameter do of the original filament and the diameter d of the filament yarn after drawing. In this case, the filament density is constant. To calculate. The filament diameter is measured with a scanning electron microscope (SEM) at an average value of 10 points based on a photograph taken at a magnification of 3500 times or 100 times.
λ = ( d oZ d ) 2 λ = (d oZ d) 2
また、 本発明におけるフィラメントの強伸度や弾性率の測定法は、 J 〖 Sし 1 0 1 3によって、 単糸あたりの測定値を求める。 発明の効果  In the present invention, the method for measuring the tensile strength and elastic modulus of the filament is to determine the measured value per single yarn by J 〖S and 1 0 1 3. The invention's effect
本発明は、 全芳香族ポリエステルフィラメントについて、 特殊な紡糸手段を用い ることなく、 簡便な手段で容易に極細の延伸フィラメントを得ることができる。 これ らの延伸全芳香族ポリエステルフィラメントは、 生産面での安定や高品質化をもたら し、 製品面では、 ロープ等の工業製品の柔軟性を増し、 防護服等の衣類においては、 着心地を良くし、 また、 耐熱性フィルターにおいては、 フィラメント径を小さく出来 ることで、 フィルター性能を高めることができる。  According to the present invention, it is possible to easily obtain ultrafine drawn filaments by simple means without using special spinning means for fully aromatic polyester filaments. These stretched wholly aromatic polyester filaments provide stable production and high quality, increase the flexibility of industrial products such as ropes on the product side, and comfort in clothing such as protective clothing. In heat resistant filters, filter performance can be improved by reducing the filament diameter.
さらに、 本発明によリ極細全芳香族ポリエステルフイラメントからなる長繊維不 織布を、 簡便に製造することができる。 市場にある全芳香族ポリエステル繊維不織布 は、 全芳香族ポリエステル短繊維からなり、 切断が困難な全芳香族ポリエステル繊維 を、 短繊維にする必要があり、 その短繊維を、 カードによリウエブ状にする必要があ るなど、 工程が複雑であった。 また、 できた不織布の強度は、 短繊維の絡み合いの強 度に依存し、 全芳香族ポリエステル繊維の有する高強度が活かされていなかった。 本 発明の全芳香族ポリエステルフィラメントからなる不織布は、 長繊維であり、 フイラ メン卜の延伸過程で直接不織布に製造することができる。 した力つて、 防護服ゃフィ ルター用の不織布が直接製造される。 また、 長繊維のみからなる不織布であるため、 短繊維に切断する際の繊維のダス卜が存在しない不織布である特徴も有する。 図面の簡単な説明 Furthermore, according to the present invention, it is possible to easily produce a long-fiber nonwoven fabric made of a very fine wholly aromatic polyester filament. The wholly aromatic polyester fiber non-woven fabric on the market consists of wholly aromatic polyester short fibers, and it is necessary to make the wholly aromatic polyester fibers difficult to cut into short fibers. The process was complicated. Moreover, the strength of the resulting nonwoven fabric depended on the strength of the entanglement of short fibers, and the high strength of wholly aromatic polyester fibers was not utilized. The nonwoven fabric comprising the wholly aromatic polyester filament of the present invention is a long fiber, It can be produced directly into a non-woven fabric during the stretching process. As a result, non-woven fabric for filters is directly produced. Moreover, since it is a nonwoven fabric which consists only of long fibers, it also has the characteristic that it is a nonwoven fabric which does not have the fiber dough when cutting into short fibers. Brief Description of Drawings
第 1図は、 本発明の延伸された全芳香族ポリエステルフィラメントを製造するた めの連続法のプロセス概念図で示す。  FIG. 1 shows a process conceptual diagram of a continuous process for producing a stretched wholly aromatic polyester filament of the present invention.
第 2図は、 本発明の原フィラメン卜に赤外線光束を複数箇所から照射するための 鏡の配置の例を示し、 A図は平面図、 B図は側面図である。  FIG. 2 shows an example of the arrangement of mirrors for irradiating the original filament lamp of the present invention with infrared rays from a plurality of locations. FIG. A is a plan view and FIG. B is a side view.
第 3図は、 本発明の原フィラメントに赤外線光束を複数箇所から照射する他の例 で、複数の光源を有する場合を平面図で示す。  FIG. 3 is another example of irradiating the original filament of the present invention with an infrared light beam from a plurality of locations, and shows a plan view in the case of having a plurality of light sources.
第 4図は、 本発明の延伸された全芳香族ポリエステルフィラメントを、複数本再 延伸場合をプロセスの概念図で示す。  FIG. 4 shows a conceptual diagram of the process when a plurality of fully aromatic polyester filaments of the present invention are redrawn.
第 5図は、 本発明に使用される送風管の概念図である。  FIG. 5 is a conceptual diagram of an air duct used in the present invention.
第 6図は、 本発明の延伸された全芳香族ポリエステルフィラメントからなる不織 布を製造するためのプロセスを概念図で示す。  FIG. 6 shows a conceptual diagram of a process for producing a nonwoven fabric composed of stretched wholly aromatic polyester filaments of the present invention.
第 7図は、 本発明によつて延伸された全芳香族ポリエステル'フイラメン卜のフィ ラメント径と物性の変化を示す図表。 発明を実施するための最良の形態 以下、 本発明の実施の形態の例を、 図面に基づいて説明する。 第 1図は、 本発明 の連続法のプロセスの例を示した。 原全芳香族ポリエステルフィラメント 1は、 リー ル 1 1に卷力、れた状態から繰り出され、 コ一ム 1 2を経て、 繰出ニップローラ 1 3 a、 1 3 bより一定速度で送り出される。 送り出された原フィラメント 1は、 案内具 1 5 で位置を規制されて一定速度で下降する。 案内具 1 5は、 レーザーの照射位置とフィ ラメントの走行位置を正確に定めるもので、 図では、 内径が 0. 5 mmの注射針を使 用した。 その他、 細いパイプゃコ一ム、 また第 6図で示すスネイルワイヤなども使用 できる。 案内具 1 5の直下に、 走行する原フィラメント 1に対して、 レーザー発振装 置 5より一定幅の加熱域 Mにレーザー光 6が照射される。 このレーザー光 6は、 第 2 図、 第 3図に示す複数箇所からの照射が好ましい。 レーザー光 6により加熱され、 原 フィラメントおよび延伸されたフィラメントの自重、.または引取ニップローラ 1 9に よってもたらされる延伸張力により、 原フィラメントは延伸されて、 延伸された全芳 香族ポリエステルフィラメント 1 6となって下降し、 下降過程に備えられている熱処 理ゾーン 1 7を通過することが望ましい。 延伸された全芳香族ポリエステルフィラメ ント 1 6は、 滑車 1 8を通り、 引取ニップローラ 1 9 a、 1 9 bを経て、 卷取リール 2 0で巻き取られる。 この場合において、 滑車 1 8への延伸された全芳香族ポリエス テルフィラメント 1 6の通路は、 全芳香族ポリエステルフィラメントの自由落下の軌 跡 pとして延伸される場合と、 滑車 1 8への直線的な軌跡 qとして延伸される場合と、 それらの中間的な軌跡として延伸される場合がある。 軌跡 qおよび軌跡 Pと軌跡 qの 中間位置では、 弓 I取テンションが延伸の張力に及ぶ力 その場合は、 延伸張力が 3 0 M P a以下であることが望ましい。 延伸張力は、 滑車 1 8に張力測定機構を設けるこ とでも測定することができる。 他の方法として、 バッチ法のロードセル測定により、 同一送出速度やレーザー照射条件、 延伸倍率等の関係から推定することができる。 巻 取リール 2 0で巻き取る前に、 加熱されている延伸ロール 2 1 a、 2 1 bと延伸ロー ル 2 2 a、 2 2 b間で、 延伸ロール 2 1と 2 2の速度の比によって、 さらに延伸する こともできる。 この場合の延伸された全芳香族ポリエステルフィラメントの熱処理ゾ ーン 1 7は、 延伸ローラ 2 2の後に設けることもできる。 また、 複数の原フイラメン 卜が同時に延伸された場合は、 弓 I取リールの直前で、 インターレース法などでフイラ メント間を空気交絡しておくことが望ましい。 また、 滑車 1 8や引取ローラ 1 9に入 る直前などの位置に、 フィラメント径測定装置を設け、 測定されたフィラメント径を フィードバックすることにより、 引取速度または送出速度等を制御して、 常に一定の 延伸倍率でフィラメント径の揃つた製品を得ることができる。 FIG. 7 is a chart showing changes in the filament diameter and physical properties of a wholly aromatic polyester filament frame stretched according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of the continuous process of the present invention. The original wholly aromatic polyester filament 1 is fed from the state of being repelled by the reel 11 and is fed from the feeding nip rollers 13a and 13b through the comb 12 at a constant speed. The delivered original filament 1 is controlled in position by a guide 15 and lowered at a constant speed. The guide tool 15 accurately determines the laser irradiation position and the travel position of the filament. In the figure, an injection needle with an inner diameter of 0.5 mm was used. In addition, thin pipes can be used, and snail wires shown in Fig. 6 can also be used. The laser beam 6 is irradiated on the heating filament M having a certain width from the laser oscillation device 5 to the traveling original filament 1 immediately below the guide 15. The laser beam 6 is preferably irradiated from a plurality of locations shown in FIGS. The original filament is drawn by the dead weight of the original filament and the drawn filament heated by the laser beam 6, or the drawing tension provided by the take-off nip roller 19, and the drawn all aromatic polyester filament 16 It is desirable to descend and pass through the heat treatment zone 17 provided for the descending process. The stretched wholly aromatic polyester filament 16 passes through a pulley 18, passes through take-up nip rollers 19 a and 19 b, and is wound around a take-up reel 20. In this case, the path of the fully aromatic polyester filament 16 stretched to the pulley 18 is extended as a free fall track p of the fully aromatic polyester filament, and the straight line to the pulley 18 There is a case where it is stretched as a simple trajectory q and a case where it is stretched as an intermediate trajectory. At the intermediate position between trajectory q and trajectory P and trajectory q, the force at which the bow I tension is applied to the stretching tension In that case, the stretching tension is 3 0 It is desirable to be MP a or less. The stretching tension can also be measured by providing a pulley 18 with a tension measuring mechanism. As another method, it can be estimated from the relationship between the same delivery speed, laser irradiation conditions, stretch ratio, etc. by batch method load cell measurement. Before winding with the take-up reel 2 0, between the heated draw rolls 2 1 a, 2 1 b and the draw rolls 2 2 a, 2 2 b, depending on the ratio of the speed of the draw rolls 2 1 and 2 2 Further, it can be stretched. In this case, the heat-treated zone 17 of the stretched wholly aromatic polyester filament can also be provided after the stretching roller 22. In addition, when multiple original filaments are stretched simultaneously, it is desirable to air entangle the filaments using the interlace method or the like immediately before the bow I reel. In addition, a filament diameter measuring device is installed at a position just before entering the pulley 18 or the take-up roller 19 and the measured filament diameter is fed back to control the take-up speed or the delivery speed, so that it is always constant. A product with a uniform filament diameter can be obtained at a draw ratio of.
第 2図に、 本発明で採用されている赤外線光束を、 複数箇所から原フィラメント に照射する手段の例を示す。 図 Aは平面図であり、 図 Bは側面図である。 赤外線照射 器より照射された赤外線光束 3 1 aは、 原フィラメント 1の通る領域 P (図の点線 内) を通って、 鏡 3 2に達し、 鏡 3 2で反射された赤外線光束 3 1 bとなり、 鏡 3 3 で反射されて赤外線光束 3 1 cとなる。 赤外線光束 3 1 cは、 領域 Pを通って、 最初 の原フィラメントの照射位置から 1 2 0度後から、 原フィラメントを照射する。領域 Pを通過した赤外線光束 3 1 cは、 鏡 3 4で反射されて、 赤外線光束 3 I dとなり、 鏡 3 5で反射されて、 赤外線光束 3 1 eとなる。 赤外線光束 3 1 eば領域 Pを通って、 最初の原フイラメン卜の照射位置の先ほどの赤外線光束 3 1 cとは逆の 1 2 0度後か ら、 原フィラメント 1を照射する。 このように、 原フィラメント 1は、 3つの赤外線 光束 3 1 a、 3 1 c、 3 1 eにより、 1 2 0度ずつ対称の位置から均等に原フィラメ ント 1を加熱することができる。 FIG. 2 shows an example of means for irradiating the original filament from a plurality of locations with the infrared light beam employed in the present invention. Figure A is a plan view and Figure B is a side view. The infrared beam 3 1 a irradiated from the infrared irradiator passes through the area P (in the dotted line in the figure) through which the original filament 1 passes, reaches the mirror 3 2, and becomes the infrared beam 3 1 b reflected by the mirror 3 2. Reflected by the mirror 3 3 to become an infrared luminous flux 3 1 c. The infrared luminous flux 3 1 c irradiates the original filament through the region P after 120 degrees from the irradiation position of the first original filament. The infrared light beam 3 1 c that has passed through the region P is reflected by the mirror 3 4 to become the infrared light beam 3 I d, and reflected by the mirror 35 to become the infrared light beam 3 1 e. Infrared luminous flux 3 1 e through region P, Irradiate the original filament 1 after 120 degrees, which is the opposite of the infrared luminous flux 3 1 c just before the irradiation position of the first original filament. As described above, the original filament 1 can uniformly heat the original filament 1 from a symmetrical position by 120 degrees by the three infrared light beams 3 1 a, 3 1 c, and 3 1 e.
第 3図に、 本発明で採用されている赤外線光束を、 複数箇所から原フィラメント に照射する手段の他の例で、 複数の光源を使用する例を平面図で示す。 赤外線放射装 置から放射された赤外線光束 4 1 aは、 原全芳香族ポリエステルフィラメント 1へ放 射される。 また、 別の赤外線放射装置から放射された赤外線光束 4 1 bも、 原全芳香 族ポリエステルフィラメン卜 1へ放射される。 さらに別の赤外線放射装置から放射さ れた赤外線光束 4 1 cも、 原全芳香族ポリエステルフィラメント 1へ放射される。 こ のように、 複数の光源からの放射は、 比較的小規模の光源で安定したコストの安いレ 一ザ一発振装置を複数用いて、 高パワーの光源とすることができる。 なお、 図では光 源が 3個の場合を示したが、 2個でもよいし、 4個以上も使用できる。 特に原フイラ メン卜が複数本である場合は、 このような複数光源による延伸が特に有効である。  FIG. 3 is a plan view showing an example of using a plurality of light sources as another example of means for irradiating the original filament from a plurality of locations with the infrared light beam employed in the present invention. The infrared luminous flux 4 1 a radiated from the infrared radiation device is radiated to the original wholly aromatic polyester filament 1. In addition, an infrared luminous flux 4 1 b radiated from another infrared radiation device is also radiated to the original wholly aromatic polyester filament 1. Further, an infrared luminous flux 41c emitted from another infrared radiation device is also emitted to the original wholly aromatic polyester filament 1. In this way, radiation from a plurality of light sources can be made into a high-power light source by using a plurality of laser oscillators which are relatively small-scale light sources and which are stable and inexpensive. Although the figure shows a case where there are three light sources, two or more than four can be used. In particular, when there are a plurality of raw filaments, stretching with such a plurality of light sources is particularly effective.
第 4図は、 既に本発明によリ延伸された全芳香族ポリエステルフイラメントを、 複数本同時に繰り出し、 同時に延伸する例について示す。 ポビン 5 1 a、 5 1 b、 5 1 c、 5 1 d、 5 1 eに巻かれた延伸された全芳香族ポリエステルフィラメント 5 2 a、 5 2 b、 5 2 c、 5 2 d、 5 2 eは、 それぞれ送風管 5 3とパイプ 5 4で送られ、 エアーマ二ホールド 5 5に集められ、 フィラメントの集合体 5 6となる。 なお、 送風 管 5 3とパイプ 5 4中の全芳香族ポリエステルフィラメント 5 2は、 図では、 煩雑に なるので示していない。 未延伸原フィラメントは、 強度やヤング率が小さく、 延伸さ れたフィラメント 5 2は、 繊度が小さいため、 張力に耐えないので、 ボビン 5 1は、 一定速度で回転し、 送り出し張力を小さくされていること力好ましい。送り出された フィラメントの集合体 5 6は、 ピッチ可変機構 5 7で、 走行位置がレーザービーム 5 8の中心になるように調整される。 ピッチ可変機構 5 7には、 案内具 5 9が設けられ ており、 その位置を、 ラック 6 0とギア 6 1により、 フィラメントの走行位置が微調 整される。 ピッチ可変機構 5 7は、 図では一方向だけに調整される例を示したが、 直 角方向にラックとギアのセットを設けて、 X Y軸方向に調整させることができる。 ピ ツチ可変機構 5 7によって位置を調整されたフィラメント集合体 5 6は、 レーザービ ーム 5 8で加熱されて延伸され、 引取機構 6 2によって引取速度を一定に調整され、 モータ Mで駆動されている卷取ボビン 6 3.に巻き取られていく。 本図において、 レー ザ一ビーム 5 8は、 1本の線で示したが、 第 2図や第 3図の複数の光束であることが 望ましい。 また、 図では、 ボビン 6 3に直接巻かれている例を示したが、 加撚して卷 かれることや、 インターレース等によりフィラメント間を絡ませて巻かれることが好 ましい。 また、 第 4図では、 赤外線による再延伸の例を示したが、 再延伸は、 通常の ローラ延伸やゾーン延伸等の他の延伸手段を用いることもできる。 なお、 送風管 5 3 やパイプ 5 4へ導入された空気が、 原フィラメント 1の通路に導かれ、 フィラメント が空気の流れによって送られ、 エア一の送り出される風速により与えられる張力は、 本発明の延伸張力に加味される。 なお第 4図は、 延伸されたフィラメントの再延伸の 例として説明したが、 同様の機構で、.未延伸原フイラメン卜の複数本延伸の手段とし ても使用できる。 FIG. 4 shows an example in which a plurality of wholly aromatic polyester filaments that have already been stretched according to the present invention are fed simultaneously and stretched simultaneously. Pobin 5 1 a, 5 1 b, 5 1 c, 5 1 d, 5 1 e wound fully aromatic polyester filament 5 2 a, 5 2 b, 5 2 c, 5 2 d, 5 2 “e” is sent through the air pipe 5 3 and the pipe 5 4, collected in the air manifold 5 5, and becomes an aggregate of filaments 5 6. It should be noted that the wholly aromatic polyester filament 5 2 in the blower pipe 5 3 and pipe 5 4 is complicated in the figure. Not shown. The unstretched raw filament has low strength and Young's modulus, and the stretched filament 52 has a small fineness and cannot withstand the tension. Therefore, the bobbin 51 rotates at a constant speed and the delivery tension is reduced. It is preferable to have power. The sent filament aggregate 56 is adjusted by the pitch variable mechanism 57 so that the traveling position is the center of the laser beam 58. The variable pitch mechanism 57 is provided with a guide 59, and the position of the filament is finely adjusted by the rack 60 and the gear 61. Although the example in which the pitch variable mechanism 57 is adjusted in only one direction is shown in the figure, a set of racks and gears can be provided in the perpendicular direction and adjusted in the XY axis direction. The filament assembly 56 whose position is adjusted by the pitch variable mechanism 57 is heated and stretched by the laser beam 58, the take-up speed is adjusted to be constant by the take-off mechanism 62, and is driven by the motor M. The take-up bobbin 6 is wound around 3. In this figure, the laser beam 58 is shown by a single line, but it is desirable that the laser beam is a plurality of light beams shown in FIGS. In addition, the figure shows an example in which the bobbin 63 is wound directly. However, it is preferable that the bobbin 63 is wound by twisting or entangled between filaments by interlace or the like. In addition, FIG. 4 shows an example of re-stretching by infrared rays. However, re-stretching can be performed by other stretching means such as normal roller stretching and zone stretching. Note that the air introduced into the blower pipe 5 3 and the pipe 5 4 is guided to the passage of the original filament 1, the filament is sent by the flow of air, and the tension given by the wind speed of the air is as follows. Takes into account the stretching tension. Although Fig. 4 was described as an example of redrawing of drawn filaments, the same mechanism was used as a means of drawing a plurality of unstretched original filaments. Can also be used.
第 5図に、 本発明で使用される送風管の例を示す。 図 Aは、 原全芳香族ポリエス テルフイラメン卜 1力通過する主管 7 1に、 矢印 aより導入された空気が枝管 7 2を 通じて主管 7 1と合流する。 図 Bは、 二重管 7 3で、 内部が空洞になっており、 矢印 bより導入された空気は、 二重管内壁に設けられた多数の孔 7 4により、 フイラメン 卜の通路へ導かれる。 図 Cは、 インターレース紡糸に使用される空気交絡ノズル 7 5 として使用されているノズルの例で、 両サイド c 1、 c 2から空気力吹き込まれる。 このように、 フイラメン卜の走行方向に積極的に空気が送リ込まれるようにしている のは、 本発明では、 延伸張力が小さいため、 案内具等の抵抗によってフィラメントの 走行が阻害されることのないようにするためであり、 また、 不織布製造の場合のよう に、 巻取テンションで積極的に張力が付加できない場合などで、 空気の勢いで、 延伸 張力を付加することもできる。 また、 図 Cのノズルは、 本発明の延伸後のインターレ ース巻取に際しても使用できる。 なお、 第 5図の送風管は、 管状のものの例を示した 力 一部が解放されて、 溝状になっているものも使用される。  FIG. 5 shows an example of an air duct used in the present invention. Fig. A shows that the air introduced from the arrow a joins the main pipe 7 1 through the branch pipe 7 2 and the main pipe 71 passing through one force. Figure B shows a double pipe 7 3 with a hollow inside, and the air introduced from the arrow b is led to the passage of the flame 卜 through a number of holes 7 4 provided on the inner wall of the double pipe . Figure C shows an example of a nozzle used as an air entanglement nozzle 7 5 used for interlace spinning. Air is blown from both sides c 1 and c 2. In this way, the air is actively sent in the traveling direction of the flamen pass in the present invention, because in the present invention, the stretching tension is small, so that the traveling of the filament is hindered by the resistance of the guide tool or the like. In addition, when the tension cannot be positively applied by the winding tension as in the case of manufacturing a nonwoven fabric, the stretching tension can be applied by the air force. The nozzle shown in Fig. C can also be used for winding the interlace after stretching according to the present invention. In addition, the blast pipe shown in Fig. 5 is a tube-shaped one with a part of the force released to form a groove.
第 6図に、 本発明の不織布の製造の例を示す。 多数の原全芳香族ポリエステルフ イラメン卜 1力 ボビン 8 1に巻かれた状態で、 架台 8 2に取り付けられている (煩 雑さを避けるため 3本のみ図示する) 。 これらの原全芳香族ポリエステルフイラメン 卜 1 a、 1 b、 1 cは、 案内具であるスネイルワイヤ 8 3 a、 8 3 b、 8 3 cを通じ て、 送出ニップロール 8 4 a、 8 4 bの回転により送り出されるようになつている。 送り出された原全芳香族ポリエステルフィラメント 1は、 自重で下降する過程で、 赤 外線放射装置 8 5より放射されるライン状の赤外線光束によリ加熱される。 原全芳香 族ポリエステルフィラメン卜 1の走行過程における赤外線光束による加熱部 Nの範囲 を、 斜線で示す。 原全芳香族ポリエステルフィラメント 1に吸収されずに通過した光 束は、 点線で示した凹面鏡 8 6で反射して、 加熱部 Nに集光するように戻される。 赤 外線放射装置 6 5側にも、 凹面鏡を設ける (但し、 赤外線放射装置よりの光束の進行 部は窓が開いている) が、 図では省略してある。 原全芳香族ポリエステルフィラメン ト 1は、 加熱部 Nにおける赤外線の放射熱により加熱され、 その部分より下での全芳 香族ポリエステルフィラメント自身の自重によリ延伸されて、 延伸全芳香族ポリエス テルフィラメント 8 7 a、 8 7 b、 8 7 cとなり、 走行しているコンベア 8 8上に集 積し、 ウェブ 8 9を形成する。 コン ア 8 8の裏面からは、 負圧吸引により、 矢印 d の方向にエアーが吸引され、 ウェブ 8 9の走行の安定性に寄与する。 負圧 d'が延伸さ れた全芳香族ポリエステルフィラメント 8 7に及ぼす張力で牽引され、 全芳香族ポリ エステルフィラメントの細化や配向度のアップに寄与し、 これらの張力も、 本発明の 自重による張力の一部と見なされる。 図では省略してあるが、 コンベア 8 8の進行方 向に、 原全芳香族ポリエステルフィ メント 1の多数のポビン 8 1を多段に設置し、 ニップローラ 8 4や赤外線放射装置 8 5等を多段に設けて、 ウェブ 8 9の生産性をァ ップするようにされている。 なお、 このように進行方向に多段に送出ニップロール 8 4等を設ける場合、 赤外線放射装置 8 5や、 凹面鏡 8 6は、 数段分を兼ねることもで きる。 なお、 延伸張力が、 フィラメントの自重ゃコンベア下からの負圧では不十分で、 延伸や配向が小さい場合は、 原フィラメント 1力《赤外線光束部へ導かれる際に、 送風 管によって導びかれ、 送風管のエアーの送り出される風速により与えられる張力も加 味して使用される。 実施例 1 FIG. 6 shows an example of the production of the nonwoven fabric of the present invention. Many original fully aromatic polyester filaments 1 force Bobbins 8 1 are wound on the base 8 2 and attached to the base 8 2 (only 3 are shown in the figure to avoid complications). These raw fully aromatic polyester filaments 卜 1 a, 1 b, 1 c are passed through the sniper wires 8 3 a, 8 3 b, 8 3 c, which are guide tools, and the delivery nip rolls 8 4 a, 8 4 b It is sent out by rotation. The original wholly aromatic polyester filament 1 that has been sent out It is reheated by the line-shaped infrared light beam emitted from the external radiation device 85. The range of the heated part N due to infrared rays in the running process of the original wholly aromatic polyester filament 1 is shown by diagonal lines. The light flux that has passed through the original wholly aromatic polyester filament 1 without being absorbed is reflected by the concave mirror 86 shown by the dotted line and returned to the heating part N to be condensed. A concave mirror is also provided on the infrared radiation device 65 side (however, a window is opened at the advancing portion of the light beam from the infrared radiation device), but this is omitted in the figure. The original wholly aromatic polyester filament 1 is heated by the radiant heat of infrared rays in the heating section N, and is stretched by the weight of the wholly aromatic polyester filament itself below that part, and the fully aromatic polyester filament is stretched. Filaments 8 7 a, 8 7 b and 8 7 c are collected on the moving conveyor 8 8 to form the web 8 9. From the back of the core 88, air is sucked in the direction of the arrow d by negative pressure suction, which contributes to the stability of the web 89. The negative pressure d 'is pulled by the tension exerted on the stretched wholly aromatic polyester filament 87, contributing to thinning of the wholly aromatic polyester filament and an increase in the degree of orientation. Is considered part of the tension. Although omitted in the figure, many pobbins 8 1 of the original fully aromatic polyester fabric 1 are installed in multiple stages in the direction of the conveyor 8 8, and the nip rollers 84 and infrared radiation devices 85 are multi-staged. It is designed to increase the productivity of Web 89. In addition, when providing the delivery nip rolls 84 and the like in multiple stages in the traveling direction as described above, the infrared radiation device 85 and the concave mirror 86 can also serve several stages. Note that if the tension of the filament is not enough, the negative pressure from the bottom of the conveyor is insufficient, and if the stretching and orientation are small, the original filament 1 force << It is also used in consideration of the tension that is guided by the pipe and given by the wind speed at which the air from the blow pipe is sent out. Example 1
原全芳香族ポリエステルフィラメントとして、 p—ヒドロキシ安息香酸 (HB A) と 6—ヒドロキシ一 2ナフトェ酸 (HNA) からエステル交換反応で合成された ポリマーを通常の方式で紡糸したマルチフィラメント (フィラメント数 60) を使用 した。 このフィラメントは紡糸過程で既に分子配向しており、 フィラメント径 25. 0〃m、 ヤング率 1 5. I GPa、 引張強度 1. 1 9 G P aであった。 この原マルチ フィラメントを使用し、 第 1図の延伸装置に、 レーザー出力 1Wの 10. レー ザ一放射を行い、 第 2図の鏡を使用する方式で、 ビーム径 4 mmで延伸した。 赤外線 照射装置は第 2図の鏡を使用して延伸した。 この原フィラメントの送出速度 0. 5m Zm i nで送り出し、 レーザーパワー密度を種々変化させながら、 30MPa以下の 張力で、 巻取速度を変化させて実験した。 3 OM Pa以上では延伸切れが多発し、 1 OMp a以下で延伸することが好ましかつた。 巻取速度 9. 42 mZ分で繊維径 4. 6 βηΛ (延伸倍率 29. 5) のフィラメントを得た。 この延伸された引張強度は、 1. 88GPaで、 ヤング率は 31. 6 G P aであった。 また、 卷取速度 28. 3mZ分 で繊維径 2. 3/im (延伸倍率 1 18. 4) のフィラメントを得た。 この延伸された 引張強度は、 2. 1 2GP aで、 ヤング率は 39. 2 G P aであった。 卷取速度 37. 7 分で繊維径 2. 4〃m (延伸倍率 1 08. 3) のフィラメントを得た。 この延 伸された引張強度は、 1. 89 G P aで、 ヤング率は 36. 9 GP aであった。 この ように、 既に分子配向しているフィラメント群であるにもかかわらず、 数十倍から 1 00倍以上の延伸倍率が得られ、 従来法では 20 β m以下の全芳香族ポリエステルフ イラメントを得るのが困難であるが、 本発明では、 5〃以下の極細フィラメントも容 易にえることができた。 また、 それによつて得られたフィラメントの強度や弾性率も 倍増している。 実施例 2 A multi-filament (60 filaments) prepared by spinning a polymer synthesized by transesterification from p-hydroxybenzoic acid (HB A) and 6-hydroxy-12-naphthoic acid (HNA) as the original fully aromatic polyester filament. ) It was used. This filament was already molecularly oriented during the spinning process, and had a filament diameter of 25.0 μm, Young's modulus of 1 5. I GPa, and tensile strength of 1. 19 GP a. Using this original multifilament, the laser of 1W laser output of 1W was applied to the drawing device shown in Fig. 1 and drawn using a mirror shown in Fig. 2 with a beam diameter of 4 mm. The infrared irradiation device was extended using the mirror shown in Fig. 2. The original filament was sent at a feed rate of 0.5m Zmin, and the experiment was carried out by changing the winding speed with a tension of 30MPa or less while changing the laser power density in various ways. At 3 OM Pa or higher, drawing breaks frequently occurred, and it was preferable to draw at 1 OM Pa or lower. A filament having a fiber diameter of 4.6 βηΛ (drawing ratio: 29.5) was obtained at a winding speed of 9.42 mZ. The stretched tensile strength was 1.88 GPa and the Young's modulus was 31.6 GPa. A filament having a fiber diameter of 2.3 / im (drawing ratio: 11.8.4) was obtained at a take-up speed of 28.3 mZ. The stretched tensile strength was 2.1 2 GPa and the Young's modulus was 39.2 GPa. A filament having a fiber diameter of 2.4 mm (drawing ratio 10 08. 3) was obtained at a cutting speed of 37.7 minutes. This total The stretched tensile strength was 1.89 GPa and the Young's modulus was 36.9 GPa. In this way, although it is a group of filaments that are already molecularly oriented, a draw ratio of several tens to 100 times or more can be obtained, and the conventional method can obtain a wholly aromatic polyester filament of 20 β m or less. However, in the present invention, an ultrafine filament of 5 mm or less could be easily obtained. In addition, the strength and elastic modulus of the filaments obtained thereby double. Example 2
P—ヒドロキシ安息香酸 (HBA) と 6,ヒドロキシー 2ナフトェ酸 (HNA) から合成された全芳香族ポリエステルからなるフィラメントを芯とし、 ポリエチレン 一 2、 6—ナフタレート (P EN) 力、らなるポリマーを鞘とする芯鞘型フィラメント を原全芳香族ポリエステルフィラメントとして、 下記の延伸実験を行った。 この原フ イラメン卜のフィラメント径 1 03. 2 m、 ヤング率 1 0· 43 3、 引張強度0. 72 GP a、 伸度 1 2. 8%のフィラメントであった。 この原フィラメントを使用し、 第 1図の延伸装置に、 レーザー出力 1 0 Wの 1 0. 6〃 mレーザー放射を行い、 第 2 図の鏡を使用する方式で、 ビーム径 4 mmで延伸した。 実験結果を第 7図に示す。 延 伸倍率は、 7倍以上であって 20倍以上、 良い条件では 50倍以上に延伸されている。 また、 未延伸状態でも分子配向が進んでいる原フィラメントであるにもかかわらず、 延伸により強度、 弾性率ともに 2倍以上、 3倍から 4倍、 弾性率では 6倍も上昇して いる。 実施例 3 A filament made of wholly aromatic polyester synthesized from P-hydroxybenzoic acid (HBA) and 6, hydroxy-2-naphthoic acid (HNA) is used as the core, and a polymer consisting of polyethylene 1,6-naphthalate (P EN) is used. The following stretching experiment was conducted using the core-sheath filament as the sheath as the original wholly aromatic polyester filament. This filamentous filament had a filament diameter of 103.2 m, Young's modulus of 10 · 43 3, tensile strength of 0.72 GPa, and elongation of 12.8%. Using this original filament, 10.6 mm laser radiation with a laser output of 10 W was applied to the drawing device in Fig. 1 and drawn with a beam diameter of 4 mm using the mirror in Fig. 2. . Figure 7 shows the experimental results. The draw ratio is 7 times or more, 20 times or more, and 50 times or more under good conditions. In addition, even though it is an original filament whose molecular orientation is advanced even in an unstretched state, both strength and elastic modulus are increased by more than 2 times, 3 times to 4 times and 6 times in elastic modulus due to stretching. Example 3
実施例 2で、 送出速度 0 · 5 mZm i n、 卷取速度 1 8. 8 mで得られた延伸フ イラメント (フィラメント径 14. 1 m) を原料にし、 200°Cで、 フィラメント —本当たり 1 1. 7 MP aの荷重をかけて熱処理 (熱処理 1 ) 、 フィラメント一本当 たり 25. 2 MP aの荷重をかけて熱処理 (熱処理 2) 、 フイラメン! ^一本当たり 3 5. 1 MP aの荷重をかけて熱処理 (熱処理 3) することによって、 熱処理の効果を 実験した。 熱処理 1により、 フィラメント径 1 3. I jUm、 破断強度 2. 81 GPa、 ヤング率 67. 2GP a、 熱処理 2により'、:フィラメント径 1 2. 7〃m、 破断強度 3. OGPa、 ヤング率 70. 3 G P a、 熱処理 3により、 フィラメント径 12. 5 m、 破断強度 3. 12GPa、 ヤング率 75.. 4 G P aの熱処理フィラメントが得 られた。 また、 熱処理前のフィラメントの示差走査熱量 (DSC) 測定では、 融点 2 60. 2°Cであったのが、 熱処理 1、 2、 3を行うことにより、 263. 7°C、 26 3. 9°C、 264. 7°Cとなり、 融点も向上している。 産業上の利用可能性  In Example 2, drawn filaments (filament diameter 14.1 m) obtained at a delivery speed of 0 · 5 mZm in and a cutting speed of 18.8 m were used as raw materials at 200 ° C. 1. Heat treatment with a load of 7 MPa (heat treatment 1), filament heat treatment 25. Heat treatment with a load of 2MPa (heat treatment 2), flamen! 3 per 1 load of 5MPa The effect of heat treatment was tested by applying heat treatment (heat treatment 3). By heat treatment 1, filament diameter 1 3. I jUm, breaking strength 2.81 GPa, Young's modulus 67. 2GPa, by heat treatment 2 ': Filament diameter 1 2.7〃m, breaking strength 3. OGPa, Young's modulus 70 3 GPa, heat treatment 3 gave a filament diameter of 12.5 m, breaking strength 3. 12 GPa, Young's modulus 75 .. 4 GPa. In addition, the differential scanning calorimetry (DSC) measurement of the filament before heat treatment showed a melting point of 260.2 ° C. By performing heat treatments 1, 2, and 36.3, 263.7 ° C, 26 3.9 ° C, 264.7 ° C, and the melting point is also improved. Industrial applicability
本発明による延伸された全芳香族極細フィラメントは、 産業用資材として使用さ れ、 繊維径が細いので、 ロープや織物などに使用された場合、 柔軟で使いやすい製品 となる。  The stretched wholly aromatic ultrafine filament according to the present invention is used as an industrial material and has a thin fiber diameter. Therefore, when it is used in ropes and fabrics, it becomes a flexible and easy-to-use product.

Claims

1 . 全芳香族ポリエステルフイラメン卜からなる原フイラメン卜が赤外線光束で加 熱され、 加熱された該 l原a一n フィラメントに、 単糸あたり 3 O M P a以下の張力力《与 1. A raw filament made of wholly aromatic polyester filament is heated with an infrared light beam, and the heated original filament is fed with a tensile force of 3 O M Pa or less per yarn.
主 s えられることによって延伸される、 延伸された全芳香族ポリエステルフィラメン  Mainly s stretched by stretched wholly aromatic polyester filament
 of
卜の製造方法。  A method for producing firewood.
2. 請求の範囲 1における前記原フィラメ囲ントが、 複数本のフィラメントからなる、 延伸された全芳香族ポリエステルフィラメン卜の製造方法。 2. A method for producing a stretched wholly aromatic polyester filament cocoon, wherein the original filament enclosure in claim 1 comprises a plurality of filaments.
3. 請求の範囲 1における前記赤外線光束が、 前記原フィラメントの中心でフイラ メン卜の軸方向に上下 4 mm以内の範囲で、 少なくとも 2方向以上から加熱され る、 延伸された全芳香族ポリエステルフ ラメントの製造方法。 3. The stretched wholly aromatic polyester foam in which the infrared luminous flux in claim 1 is heated from at least two directions within a range of 4 mm vertically in the axial direction of the frame at the center of the original filament. Method for manufacturing lament.
4. 請求の範囲 1における前記全芳香族ポリエステルフィラメントの延伸倍率が、 7倍以上である、 延伸された全芳香族ポリエステルフィラメントの製造方法。 4. The method for producing a stretched wholly aromatic polyester filament, wherein the stretch ratio of the wholly aromatic polyester filament in claim 1 is 7 times or more.
5. 請求の範囲 1における前記延伸された全芳香族ポリエステルフィラメン卜が、 延伸後に設けられた加熱ゾーンにより熱処理される、 延伸された全芳香族ポリエ ステルフィラメントの製造方法。 5. The method for producing a stretched wholly aromatic polyester filament, wherein the stretched wholly aromatic polyester filament yarn in claim 1 is heat-treated by a heating zone provided after stretching.
6. 請求の範囲 1における前記延伸された全芳香族ポリエステルフィラメントが、 さらに延伸される、 延伸された全芳香族ポリエステルフイラメン卜の製造方法。 6. The method for producing a stretched wholly aromatic polyester filament yarn, wherein the stretched wholly aromatic polyester filament according to claim 1 is further stretched.
7 . 請求の範囲 1における前記延伸された全芳香族ポリエステルフィラメントが、 走行するコンベア上に集積される、 延伸された全芳香族ポリエステルフィラメ ントからなる不織布の製造方法。 7. A stretched wholly aromatic polyester filament, wherein the stretched wholly aromatic polyester filament according to claim 1 is accumulated on a traveling conveyor. A method for producing a nonwoven fabric comprising
8. 全芳香族ポリエステルフィラメントからなる原フイラメン卜の送出手段と、 送り出された該原フィラメントが、複数箇所から赤外線光束が照射されること によって加熱されるように構成されている赤外線光束放射装置と、  8. A means for sending out the original filament made of wholly aromatic polyester filament, and an infrared luminous flux emitting device configured to heat the delivered raw filament by being irradiated with infrared luminous flux from a plurality of locations; ,
加熱された該原フィラメントに、 単糸あたり 3 O M P a以下の張力を与える ことにより、 7倍以上に延伸されるように制御される手段と、  A means controlled to be stretched by 7 times or more by applying a tension of 3 OM Pa or less per single yarn to the heated original filament;
を含む、 延伸された全芳香族ポリエステルフイラメン卜の製造装置。  An apparatus for producing a stretched wholly aromatic polyester filament.
9. 請求の範囲 8における前記赤外線光束放射装置によリ放射される赤外線の光束 が、 前記原フィラメントの中心でフィラメントの軸方向に上下 4 mm以内の範囲 で加熱されるように構成されている、 延伸された全芳香族ポリエステルフィラメ ントの製造装置。  9. The infrared luminous flux radiated by the infrared luminous flux emitting device in claim 8 is configured to be heated within a range of 4 mm vertically in the axial direction of the filament at the center of the original filament. A device for producing stretched wholly aromatic polyester filaments.
1 0. 請求の範囲 8における前記外線光束放射装置が、 レーザー発振装置である、 延伸された全芳香族ポリエステルフイラメン卜の製造装置。  1 0. An apparatus for producing a stretched wholly aromatic polyester filament foam, wherein the external light beam radiation device according to claim 8 is a laser oscillation device.
1 1 . 請求の範囲 8における前記赤外線光束放射装置が、 同一光束を反射させて、 原フィラメントに複数の箇所から照射させるための鏡を有する、 延伸された全 芳香族ポリエステルフィラメントの製造装置。  1 1. The stretched wholly aromatic polyester filament manufacturing apparatus, wherein the infrared light beam emitting device according to claim 8 has a mirror for reflecting the same light beam and irradiating the original filament from a plurality of locations.
1 2. 請求の範囲 8における前記赤外線光束放射装置が、 複数の箇所から原フイラ メン卜に照射させる複数の光源を有する、 延伸された全芳香族ポリエステルフ イラメントの製造装置。  1 2. The stretched wholly aromatic polyester filament manufacturing apparatus, wherein the infrared light beam emitting apparatus according to claim 8 has a plurality of light sources that irradiate the original filament sheet from a plurality of locations.
1 3. 請求の範囲 8における前記延伸手段に、 さらに加熱.ゾーンを有する加熱装置 を設け、 前記延伸された全芳香族ポリエステルフィラメントが、 熱処理される ように構成されている、 延伸された全芳香族ポリエステルフィラメントの製造 装置。 1 3. The heating device further comprising a heating zone in the stretching means in claim 8. An apparatus for producing a stretched wholly aromatic polyester filament, wherein the stretched wholly aromatic polyester filament is configured to be heat-treated.
4. 請求の範囲 8における前記延伸された全芳香族ポリエステルフィラメント の製造装置に、 さらに延伸手段を有する、 延伸された全芳香族ポリエステル フィラメントの製造装置。 4. The stretched wholly aromatic polyester filament production apparatus according to claim 8, further comprising a stretching means in the stretched wholly aromatic polyester filament production apparatus.
5. 請求の範囲 8において、 前記原フィラメン卜が赤外線光束で加熱される前に、 該原フィラメン卜の位置を規制する案内具が設けられておリ、 5. In claim 8, a guide for regulating the position of the original filament jar is provided before the original filament jar is heated with an infrared light beam.
さらに該案内具の案内位置を微調整できる、'位置制御装置を有する、 延伸 された全芳香族ポリエステルフイラメン卜の製造装置。  Furthermore, the manufacturing apparatus of the stretched wholly aromatic polyester flame candy which has a position control apparatus which can finely adjust the guide position of this guide tool.
6. 請求の範囲 8における前記制御が、 延伸されたフィラメントの径を測定して、 送出速度をコントロールするように構成されている、 延伸された全芳香族ポ リエステルフィラメントの製造装置。 6. An apparatus for producing stretched wholly aromatic polyester filaments, wherein the control in claim 8 is configured to control the delivery speed by measuring the diameter of the stretched filament.
7 . 請求の範囲 8における前記延伸された全芳香族ポリエステルフィラメントの 製造装置が、 延伸されたフィラメントの卷取手段を有し、 かつ、 前記制御を、 延伸されたフィラメントの径を測定して、 フィラメン卜の巻取速度またはフ イラメントの卷取速度と送出速度との両者をコントロールするように構成さ れている、 延伸された全芳香族ポリエステルフィラメン卜の製造装置。 7. The apparatus for producing a drawn wholly aromatic polyester filament according to claim 8 has means for taking out the drawn filament, and the control measures the diameter of the drawn filament, An apparatus for producing stretched wholly aromatic polyester filament yarns that is configured to control both the winding speed of filament foam or both the winding speed and the delivery speed of the filament.
8. 請求の範囲 8の前記延伸された全芳香族ポリエステルフィラメン卜の製造装 置に走行するコンベアが設けられており、 該コンベア上に該延伸されたフィ ラメン卜が集積されるように構成されている、 延伸された全芳香族ポリエス テルフイラメントからなる不織布の製造装置。 8. A conveyor running in the apparatus for producing the stretched wholly aromatic polyester filament raft according to claim 8 is provided, and the stretched fiber is placed on the conveyor. A non-woven fabric manufacturing apparatus comprising stretched wholly aromatic polyester filaments, configured to accumulate ramen straw.
1 9. 請求の範囲 1の前記延伸された全芳香族ポリエステルフィラメントが、 P— ヒドロキシ安息香酸 (HBA) と 6—ヒドロキシー 2ナフトェ酸 (HNA) か らエステル交換反応で合成されたポリマーからなり、 30倍以上の延伸倍率を 有し、 X線配向度が 91 %以上であり、 フィラメント径が 1 O/im以下である、 延伸された全芳香族ポリエステルフィラメン卜。  1 9. The stretched wholly aromatic polyester filament of claim 1 comprises a polymer synthesized by transesterification from P-hydroxybenzoic acid (HBA) and 6-hydroxy-2-naphthoic acid (HNA), A stretched wholly aromatic polyester filament yarn having a draw ratio of 30 times or more, an X-ray orientation degree of 91% or more, and a filament diameter of 1 O / im or less.
20. I青求の範囲 1の前記延伸された全芳香族ポリエステルフィラメントが、 p— ヒドロキシ安息香酸 (HBA) と 6—ヒドロキシー 2ナフトェ酸 (HNA) 力、 ら合成された全芳香族ポリ: Πステルからなるフィラメントを芯とし、 ポリェチ レン一 2、 6—ナフタレート (PEN) からなるポリマーを鞘とする芯鞘型フ イラメントからなリ、 15倍以上に延伸倍率されており、 フィラメント径が 3 0 μ m以下であり、 破断強度が 2 G P a以上であリ、 ヤング率が 50 G P a以 上である、 延伸された全芳香族ポリエステルフィラメント。  20. The above-mentioned stretched wholly aromatic polyester filament in the range 1 of I bluish is a wholly aromatic poly synthesized from p-hydroxybenzoic acid (HBA) and 6-hydroxy-2-naphthoic acid (HNA): It is made of a core-sheathed filament with a filament made of steal as a core and a polymer made of polyethylene 1,6-naphthalate (PEN) as a sheath. The filament diameter is 30 times or more. A stretched wholly aromatic polyester filament having a μm or less, a breaking strength of 2 GPa or more, and a Young's modulus of 50 GPa or more.
PCT/JP2006/304182 2005-03-11 2006-02-27 Means for producing extremely fine filament of wholly aromatic polyester WO2006095661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507089A JP5082100B2 (en) 2005-03-11 2006-02-27 Means for producing fully aromatic polyester microfilaments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-069350 2005-03-11
JP2005069350 2005-03-11

Publications (1)

Publication Number Publication Date
WO2006095661A1 true WO2006095661A1 (en) 2006-09-14

Family

ID=36953260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304182 WO2006095661A1 (en) 2005-03-11 2006-02-27 Means for producing extremely fine filament of wholly aromatic polyester

Country Status (2)

Country Link
JP (1) JP5082100B2 (en)
WO (1) WO2006095661A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297641A (en) * 2007-05-29 2008-12-11 Asahi Kasei Fibers Corp Polyester fiber
WO2014129264A1 (en) * 2013-02-20 2014-08-28 国立大学法人山梨大学 Heat-resistant nanofilament web obtained by high-speed winding, and means for manufacturing same
WO2015146542A1 (en) * 2014-03-24 2015-10-01 国立大学法人山梨大学 Extra-fine multifilament yarn and manufacturing means therefor
JP2018040076A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament
JP2018040077A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament
WO2019225644A1 (en) * 2018-05-23 2019-11-28 株式会社クラレ Method for producing multifilament yarn comprising liquid-crystal polyester, and liquid-crystal-polyester multifilament yarn

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006765A1 (en) * 1993-09-03 1995-03-09 Polymer Processing Research Inst., Ltd. Method of manufacturing filament and filament assembly of thermotropic liquid crystal polymer
WO2000073556A1 (en) * 1999-05-31 2000-12-07 Ueda Textile Science Foundation High-strength synthetic fibers, processing method therefor, and processing device
JP2002161451A (en) * 2000-11-28 2002-06-04 Japan Science & Technology Corp High-strength and high-elongation synthetic fiber and method and apparatus for producing the same
JP2003166115A (en) * 2001-08-27 2003-06-13 Akiyasu Suzuki Extremely fine fiber, method for producing the same and device for the same
WO2004027133A1 (en) * 2002-09-17 2004-04-01 Yamanashi Tlo Co., Ltd Highly oriented super microfilaments
WO2004085723A1 (en) * 2003-03-07 2004-10-07 Yamanashi Tlo Co., Ltd. Oriented sheath core type filament

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395231A (en) * 1983-09-27 1991-04-19 Teijin Ltd Manufacture of wholly aromatic polyester molding
JPH01250410A (en) * 1987-12-08 1989-10-05 Kuraray Co Ltd Production of high-modulus fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006765A1 (en) * 1993-09-03 1995-03-09 Polymer Processing Research Inst., Ltd. Method of manufacturing filament and filament assembly of thermotropic liquid crystal polymer
WO2000073556A1 (en) * 1999-05-31 2000-12-07 Ueda Textile Science Foundation High-strength synthetic fibers, processing method therefor, and processing device
JP2002161451A (en) * 2000-11-28 2002-06-04 Japan Science & Technology Corp High-strength and high-elongation synthetic fiber and method and apparatus for producing the same
JP2003166115A (en) * 2001-08-27 2003-06-13 Akiyasu Suzuki Extremely fine fiber, method for producing the same and device for the same
WO2004027133A1 (en) * 2002-09-17 2004-04-01 Yamanashi Tlo Co., Ltd Highly oriented super microfilaments
WO2004085723A1 (en) * 2003-03-07 2004-10-07 Yamanashi Tlo Co., Ltd. Oriented sheath core type filament

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297641A (en) * 2007-05-29 2008-12-11 Asahi Kasei Fibers Corp Polyester fiber
WO2014129264A1 (en) * 2013-02-20 2014-08-28 国立大学法人山梨大学 Heat-resistant nanofilament web obtained by high-speed winding, and means for manufacturing same
JPWO2014129264A1 (en) * 2013-02-20 2017-02-02 国立大学法人山梨大学 Manufacturing method of heat-resistant nanofilament web yarn by high-speed winding
WO2015146542A1 (en) * 2014-03-24 2015-10-01 国立大学法人山梨大学 Extra-fine multifilament yarn and manufacturing means therefor
JPWO2015146542A1 (en) * 2014-03-24 2017-04-13 国立大学法人山梨大学 Ultrafine multifilament yarn and its manufacturing method
JP2018040076A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament
JP2018040077A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament
WO2019225644A1 (en) * 2018-05-23 2019-11-28 株式会社クラレ Method for producing multifilament yarn comprising liquid-crystal polyester, and liquid-crystal-polyester multifilament yarn

Also Published As

Publication number Publication date
JPWO2006095661A1 (en) 2008-08-14
JP5082100B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP4269329B2 (en) Stretched ultrafine biodegradable filament
JP3534108B2 (en) Method and apparatus for producing drawn filament and ultrafine filament with high molecular orientation
US8057730B2 (en) Microfilament manufacturing method and manufacturing apparatus therefor
JP4081554B2 (en) Stretched core-sheath filament
US20090124155A1 (en) Process for producing sheath-core staple fibers with a three-dimensional crimp and a corresponding sheath-core staple fiber
WO2006095661A1 (en) Means for producing extremely fine filament of wholly aromatic polyester
JP5842216B2 (en) Multi-filament drawing device for ultrafine filament
JP5938730B2 (en) Sheet made of different filaments and means for producing the same
JP6562313B2 (en) Ultrafine multifilament yarn and its manufacturing method
JP2005273126A (en) Drawn aramid filament, method for producing the same and apparatus for producing the same
JP2006225837A (en) Method for producing drawn filament having improved orientation degree
JP6277465B2 (en) Manufacturing method of heat-resistant nanofilament web yarn by high-speed winding
JP4887501B2 (en) Method for producing nonwoven fabric comprising ultrafine filaments
JP2006249617A (en) Method and apparatus for producing high-property filament at high draw ratio

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507089

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715241

Country of ref document: EP

Kind code of ref document: A1