WO2006095567A1 - Method of recovering encapsulated substance and novel microsphere obtainable by the method - Google Patents

Method of recovering encapsulated substance and novel microsphere obtainable by the method Download PDF

Info

Publication number
WO2006095567A1
WO2006095567A1 PCT/JP2006/303106 JP2006303106W WO2006095567A1 WO 2006095567 A1 WO2006095567 A1 WO 2006095567A1 JP 2006303106 W JP2006303106 W JP 2006303106W WO 2006095567 A1 WO2006095567 A1 WO 2006095567A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
recovering
monomer
substance
inclusion
Prior art date
Application number
PCT/JP2006/303106
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Masuda
Takashi Fujie
Katsushi Miki
Takayuki Aoki
Original Assignee
Matsumoto Yushi-Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi-Seiyaku Co., Ltd. filed Critical Matsumoto Yushi-Seiyaku Co., Ltd.
Priority to JP2007507032A priority Critical patent/JP4970245B2/en
Publication of WO2006095567A1 publication Critical patent/WO2006095567A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials

Definitions

  • the present invention relates to a method for recovering an inclusion substance from microspheres composed of an outer shell made of a thermoplastic resin and an inclusion substance contained therein, and novel microspheres obtainable by carrying out the method.
  • chlorofluorocarbons chlorofluorocarbons
  • chlorofluorocarbons are the causative agents of ozone depletion and global warming, and when released into the atmosphere and reach the stratosphere, they are ⁇ by strong ultraviolet light from the sun, and chlorine generated thereby Radicals break the ozone layer in the stratosphere, create ozone holes, etc., and restore the environmental status of the stratosphere.
  • fluorocarbons remaining in the troposphere of the earth are stable compounds that are extremely difficult to be absorbed, they are not decomposed and cause a greenhouse effect like carbon dioxide, thereby promoting global warming and living organisms. Reminiscent of a suitable global environment. Therefore, releasing fluorocarbons to the atmosphere has a tremendous impact on the life on earth and humanity.
  • a fractured material containing a mixture of a thermosetting urethane foam resin containing fluorocarbon gas and fragments of a thermoplastic resin is supplied to a vented extruder, and the broken material is finely crushed or broken in the parelle.
  • the fluorocarbon gas which has been melted and separated from the waste material is recovered in the vent section, the fractured material from which the fluorocarbon gas has been removed is pushed out from the nozzle connected to the barrel, and the separated fluorocarbon gas is separated in communication with the vent section.
  • Patent Document 2 the outer plate or the inner plate of a heat insulating box filled with a foamed heat insulating material is peeled, and the foamed heat insulating material is peeled from the outer plate or the inner plate while framed by a peeling device. Separate the exfoliated body and the exfoliated foamed heat insulating material from each other by separation, pulverize the separated foamed insulating material with a crusher, and release the foam encapsulated in the internal bubbles, There is disclosed a method of recovering the fluorocarbon gas in the foamed heat insulating material by liquefying and recovering the released fluorocarbon with a fluorocarbon recovery device.
  • a thermally expandable microcapsule is known as a kind of resin material containing the above-mentioned foaming agent, and has a structure in which a thermoplastic resin is used as an outer shell and an inclusion substance as the foaming agent is enclosed therein. ing.
  • a thermally expandable microcapsule is heated, a part or all of the inner packaging material is vaporized and the volume of the whole inclusion material is expanded, and further, an outer shell softened by heating is generated by the volume expansion of the inclusion material. By the pressure, it is pushed outward and a lightweight hollow particle is obtained.
  • Patent Document 3 discloses a novel thermal expansion! "A micro micro capsule which solves the defect of fumigant gas. This thermally expandable microcapsule has a smaller load on the environment instead of fluorocarbon gas. It is characterized in that it contains a fluorine-containing ether compound as a blowing agent.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 20002-1942
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 00 0 1 0 2 9 2 3
  • Patent Document 3 International Publication No. 2 0 0 4/0 7 4 3 9 6 Panfleet
  • An object of the present invention is to provide a simple and efficient method for efficiently recovering an entrapped substance from microspheres composed of an outer shell made of a thermoplastic resin and an encapsulated substance contained therein. Also, another object of the present invention is to provide novel microspheres which can be obtained after recovering the inclusion substance.
  • Patent Documents 1 and 2 When the methods disclosed in Patent Documents 1 and 2 are applied to microspheres, the device is large and difficult to operate, high recovery rate of the contained substance can not be expected, and a large amount of energy such as powder melting is consumed. Problems such as the necessity of physical means are expected. As a result of various investigations in consideration of these problems, the inventors of the present invention have made it clear that (1) the microspheres are already fine and fine and have a large surface area, so that the microspheres and the solvent are contacted. By using this method, it is possible to efficiently transfer the encapsulated substance inside the shell to the solvent outside the shell and recover it using a concentration gradient without damaging the shell, and (2) the microspheres obtained after recovery Found that they are novel microspheres etc., and reached the present invention.
  • the method for recovering the inclusion substance according to the present invention comprises: an outer shell made of a thermoplastic resin; and microspheres composed of an inclusion substance which is contained therein and has a boiling point lower than the soft point of the thermoplastic resin.
  • a method comprising the step of contacting with a solvent.
  • the method for recovering the inclusion substance of the present invention is preferably a method further comprising a separation step of recovering the inclusion substance from the mixture obtained in the contacting step, and it is more preferable to carry out the separation step together with the contacting step. .
  • novel microspheres according to the present invention can be obtained after the above-mentioned transversal step in the above-mentioned method for recovering an inclusion substance, and the thermoplastic resin is used as an outer shell.
  • microsphere containing an inclusion substance used in the present invention will be described.
  • microspheres used in the present invention are microspheres composed of an outer shell made of a thermoplastic resin and an inclusion substance contained therein and having a boiling point lower than the soft softening point of the thermoplastic resin. Ru.
  • the inclusion rate of the inclusion substance contained in the microspheres is not particularly limited, but it is preferably 5% or more, more preferably 15% or more, from the viewpoint of enhancing the working efficiency when recovering the inclusion substance. , Particularly preferably 30% or more.
  • the inclusion rate of the inclusion substance (hereinafter also referred to as the inclusion rate of the foaming agent) is a value representing the percentage of the weight of the inclusion substance contained in the microspheres to the weight of the microspheres.
  • microspheres used in the present invention are roughly classified into thermally expandable microspheres and thermally expanded microspheres (obtained by thermally expanding the thermally expandable microspheres). These are described in detail below. a. Thermally expandable microspheres
  • the thermally expandable microspheres are composed of an outer shell made of a thermoplastic resin and an inclusion substance which is contained therein and has a boiling point lower than the softening point of the thermoplastic resin, and the inclusion substance acts as a foaming agent.
  • the thermally expandable microspheres are thermally expandable as a whole.
  • the blowing agent is not particularly limited as long as it is a substance having a boiling point equal to or lower than the softening point of the thermoplastic resin, and, for example, hydrocarbons having 1 to 12 carbons and their halides; fluorine-containing compounds; And compounds which generate a gas by thermal decomposition by heating such as azodicarbonamide. These foaming agents may be used alone or in combination of two or more.
  • Examples of the hydrocarbon of 1 to 12 include pronone, cyclopropane, propylene, butane, normal butane, isobutane, cyclobutane, normolepentene, cyclopentane, isopentane, pentane, nonolemanolehexane, isohexane, and the like.
  • Examples thereof include hydrocarbons such as sun, cyclohexane, heptane, cycloheptane, octane, isooctane, cyclooctane, 2-methylpentane, 2,2-dimethylbutane, and petroleum ether. These hydrocarbons may be linear, branched or alicyclic and are preferably aliphatic.
  • halide of hydrocarbon having 1 to 12 carbon atoms examples include methyl chloride, methylene chloride, chloroform, carbon tetrachloride and the like. These halides are the above-mentioned charcoal It is preferable that it is a halide of fluoride (fluoride, chloride, bromide, fluoride, etc.).
  • the fluorine-containing compound is not particularly limited.
  • a compound having an ether structure, containing no chlorine atom and bromine atom, and having 2 to 2 carbon atoms: L 0 is preferred.
  • the foaming agent may be composed, for example, of a fluorine-containing compound in total, but together with the fluorine-containing compound, a substance other than a fluorine-containing compound having a boiling point lower than the softening point of thermoplasticity is used in combination. It is also good.
  • a substance other than a fluorine-containing compound having a boiling point lower than the softening point of thermoplasticity is used in combination. It is also good.
  • Such substances are not particularly limited, and can be selected from those exemplified as the above-mentioned blowing agents, for example.
  • Substances other than fluorine-containing compounds can be selected as appropriate depending on the thermal expansion region of the thermal expansion I “raw microspheres”.
  • the proportion of the fluorine-containing compound in the blowing agent is preferably more than 50% by weight of the entire blowing agent, 80% by weight. It is more preferable that the ratio is more than 0 , particularly preferably more than 95% by weight. As the weight proportion of the fluorine-containing compound in the foaming agent is higher, the physical properties of the fluorine-containing compound are reflected on the thermally expandable microspheres, and the physical properties such as flame retardancy and non-combustibility are imparted to the thermally expandable microspheres. it can.
  • the thermally expandable microspheres are made of, for example, a thermoplastic resin obtained by polymerizing a monomer mixture containing a radical polymerizable monomer, and by appropriately blending a polymerization initiator with the monomer mixture, The outer shell of thermally expanded green microspheres can be formed.
  • radically polymerizable monomers include, but are not particularly limited to, ditrinotrile monomers such as atalilonitrile, methatalilonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile etc.
  • Carboxyl group-containing monomers such as atalic acid, metatthallic acid, itaconic acid, maleic acid, fumaric acid and citraconic acid; Vinylidene chloride; Bielyl acetate; Methyl (meth) acrylate, ethyl (meth) aq relay N-Butyl (meth) acrylate, isobutyl (meth) acrylate, t-butynore (meth) acrylate, isobornyl (meth) atalylate, vicinal hexyl (meth) atalylate, benzyl (meth) acrylate, 3 -(Meth) atalinoleate based monomers such as carboxy ethyl acrylate; styrene based monomers such as styrene, ⁇ -methylstyrene, crorostyrene and the like; acrylamides, substituted acrylamides, methacrylates
  • the monomer mixture is a 2-tolyl monomer, a (meth) atalinoleic acid ester monomer, a carboxyl group-containing monomer, a styrenic monomer, acetate, and vinyl chloride and vinyl chloride.
  • a monomer mixture containing at least one radically polymerizable monomer selected from diidene is preferred.
  • heat resistance can be imparted when the monomer mixture is a monomer mixture containing a tolyl monomer as an essential component, and thus preferred.
  • the weight ratio of the nitrile monomer is preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 9% by weight or more, in consideration of the heat resistance with respect to the monomer mixture. It is 5% by weight or more.
  • the thermally expandable microspheres can be expanded.
  • the thermally expanded microspheres obtained by the present invention can be produced so as to have a residual power capable of re-expansion, and 90.degree. C. or higher (preferably 100.degree. C. or higher, more preferably 1). It is further preferable because re-expansion can be set to start at a temperature of 20 ° C. or higher).
  • the weight ratio of the tolyl monomer is to adjust the retention and foamability of the encapsulated foaming agent, and to adjust the re-expansion start temperature of the thermally expanded microspheres, and to evaluate the internal pressure high-speed running performance etc.
  • the monomer mixture preferably 2 0-9 5 weight 0/0, more preferably from 2 0 to 8 0 wt 0/0, more preferably 2 0-6 0 weight 0 / 0 , particularly preferably 20 to 50 double %, Most preferably from 20 to 40% by weight.
  • the weight ratio of the carboxyl group-containing monomer can be adjusted by adjusting the re-expansion start temperature of the thermally expanded microspheres, normal internal pressure high-speed running performance evaluation, and the inclusion retention rate of the incorporated foaming agent and TO foam In view of the properties and the like, it is preferably 5 to 80% by weight, more preferably 20 to 80% by weight, based on the monomer mixture. / 0 , more preferably 40 to 80 weight. / 0, a 5 0-8 0 weight 0/0 properly favored particularly, most preferably 6 0-8 0 weight 0/0.
  • the monomer mixture contains a carboxyl group-containing monomer as an essential component, it reacts with the carboxyl group of the carboxyl group-containing monomer as a monomer other than the carboxyl group-containing monomer contained in the monomer component.
  • Containing monomers to be Examples of the monomer that reacts with the carboxyl group-containing monomer include: N-methylol nore (meth) acrylic amide, N, N-dimethyoleaminoethynole (meth) acrylic acid, N, N -Dimethylaminopropyl (meth) acrylate, magnesium mono (meth) atalylate, zinc mono (meth) atarylate, bulidyl glycidyl ether, propanyl dalysicinole ether, glycidyl (meth) atalylate, 2-hydroxyethyryl (Meth) atalylate, 2-hydroxypropyl (meth) atarylate, 2-hydroxyl-peptil (meth
  • the weight ratio of the monomer reactive to the carboxyl group of the carboxyl group-containing monomer, the monomer mixture is preferably from 0.1 to 1 0 weight 0/0, more preferably 1-8 weight 0/0, most preferably 3-5 wt 0/0.
  • the monomer mixture may contain, in addition to the above-mentioned radically polymerizable monomer, a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds.
  • a polymerizable monomer crosslinking agent
  • crosslinking agent By polymerization using a crosslinking agent, the content of the microspheres contained in the thermally expanded microspheres obtained by the present production method is reduced, and the retention of the encapsulated foam after thermal expansion (including The decrease in retention rate is suppressed, and thermal expansion can be performed effectively.
  • the retention ratio (%) of the foaming agent after thermal expansion is the thermal expansion obtained by thermal expansion, with the inclusion rate of the foaming agent encapsulated in the thermally expandable microspheres before expansion. were the encapsulation efficiency of the microspheres contained a blowing agent When G 2, defined by G s / G ⁇ 1 0 0 .
  • the crosslinking agent is not particularly limited, but, for example, aromatic diaryl compounds such as dibutylbenzene and divinylnaphthalene; metatalinoaryl acid, triarylthiomalonole, triarylisocyanate, ethylene glycol di (meth) arylates Diethylene diglycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1, 4-butanediol di (meth) atalylate, 1, 9 nonandiol di (meth) atalylate, 1, 10- Decanediol di (meth) atalylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl glycol di (meth) acrylate 1, 4-butanedioresi methacrylate, 1, 6, 1-hexanedio reg ) Athalylate, 1,9 Nonanedi
  • the weight ratio of the crosslinking agent is not particularly limited, but in view of the degree of crosslinking, the retention rate of the blowing agent contained in the outer shell, the heat resistance! Preferably, it is 0.01 to 5% by weight, and more preferably 0.5 to 3% by weight.
  • polymerization initiator there is no particular limitation on the polymerization initiator, and known polymerization initiators can be used.
  • polymerization initiators for example, t-butylperoxyisobutyrate, t-butylperoxydi-2-ethylenediethyl, t-hydroxynoroxy-2-ethyl-nophenol, 2,5-dimethinole-2,5-bis (2-Ethyl hexano reperoxy) Hexane, 1,1,3,3-Tetramethylbutyl propoxy 2-diethyle-hexanoate, t-Putyl peroxide pivalate, t-Hexyl peroxy Oxy bivalate, t-butyl Peroxyneodecanoate, t-hydroxyle peroxyneodecanoate, 1-hydroxyl-hydroxylone 1-methylethylperoxyneo-decanoate, 1,1,3,3-tetra Methinolole peroxyneode
  • the thermally expandable microspheres can be produced using various techniques used in the conventionally known method of producing thermally expandable microcapsules.
  • a monomer mixture essentially containing a radically polymerizable monomer, optionally containing a crosslinking agent, a polymerization initiator, and a foaming agent, and the resulting mixture being a water-based compound containing an appropriate dispersion stabilizer etc.
  • Dispersion stabilizers in aqueous systems include colloidal silica, colloidal carbonate, magnesium hydroxide, calcium phosphate, aluminum hydroxide, ferric hydroxide, calcium sulfate, sodium sulfate, calcium borate, calcium carbonate, Examples include barium carbonate, magnesium carbonate, and alumina sol.
  • Dispersion stabilizers are preferably used in a proportion of 0.1 to 20% by weight, based on the monomer mixture.
  • dispersion stabilization aid for dispersion type polymers such as condensation products of diethanolamine and aliphatic dicarboxylic acid, gelatin, polyvinylinolepyrollidone, methyl cellulose, polyethylene oxide, polyvinyl alcohol etc.
  • Kanolekiltrimethylan chloride Cationic surfactants such as monium and sodium dialkyldimethyl ammonium, anionic surfactants such as alkyl sulfate sodium and the like, alkyl dimethyl amino acetate betaine, alkyl dihydroxy amino acetate betaine and the like
  • anionic surfactants such as alkyl sulfate sodium and the like
  • alkyl dimethyl amino acetate betaine alkyl dihydroxy amino acetate betaine and the like
  • emulsifying agents such as organic surfactants.
  • Dispersion stabilizers are preferably used in a proportion of 0.5 to 5% by weight, based on the monomer mixture.
  • the aqueous suspension containing the dispersion stabilizer is prepared by blending the dispersion stabilizer, the dispersion stabilizer adjuvant and the like in water (for example, ion exchanged water).
  • the pH of the aqueous suspension at the time of polymerization is appropriately determined depending on the type of dispersion stabilizer and dispersion stabilizer adjuvant used.
  • a water-soluble reducing agent may be added to the aqueous suspension to suppress the formation of aggregated microspheres during polymerization.
  • the zk-soluble reducing agent include sodium nitrite, lithium nitrite and other metal salts such as lithium nitrite, stannous chloride, stannous chloride, ferrous chloride, ferric chloride, and sulfuric acid.
  • the addition amount thereof is preferably from 0. 0 0 0 !! to 1% by weight, more preferably from 0. 0 0 0 3 to 0. 1% by weight with respect to the monomer mixture.
  • the polymerization temperature may be set freely according to the type of polymerization initiator, preferably in the range of 40 to 100 ° C., more preferably 4 to 90 ° C., particularly preferably 50 to 85 ° C. Controlled by The initial pressure of polymerization is in the range of 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.O MPa in gauge pressure.
  • the obtained thermally expandable microspheres have good foaming performance, can be filled into an assembly of a tire and a rim, and can exhibit sufficient performance of ⁇ used as a tire internal pressure imparting material.
  • the foaming agent is 2 to 8 of the whole of the thermally expandable microspheres. % By weight, preferably 5 to 60% by weight. It is adjusted to be / 0 , more preferably 7 to 50% by weight.
  • ⁇ foaming agent comprises fluorine-containing compound, preferably 1 0-6 0% by weight, more preferably 1 5-5 0 weight 0/0.
  • the average particle size of the thermally expandable microspheres is not particularly limited because it can be freely designed according to the application, and is preferably 1 to 100 ⁇ , more preferably 2 to 8 It is ⁇ ⁇ ⁇ , particularly preferably 5 to 60 ⁇ .
  • the coefficient of variation cv of the thermal expansion! ⁇ raw microspheres particle size distribution is not particularly limited, but is preferably Or 30% or less, more preferably 27% or less, and particularly preferably 25% or less.
  • the coefficient of variation CV is calculated by the following formulas (1) and (2).
  • the thermally expandable microspheres may be added or modified with components other than the shell and the inclusion substance.
  • a fine particle filler attached to the outer surface of the outer shell of the thermally expandable microspheres from the viewpoint of improving the dispersibility and the flowability at the time of use.
  • the fine particle filler may be either an organic or inorganic filler, and the type and amount thereof are appropriately selected according to the purpose of use.
  • organic fillers examples include: metal stearates such as magnesium stearate, stearic acid strength / resium, stearic acid narrow mouth, barium stearate, lithium stearate and the like; polyethylene wax, lauric acid amide, myristic acid amide, normitin And synthetic powders such as acid amide, stearic acid amide and hydrogenated castor oil; resin powder such as polyacrylamide, polyimide, nylon, polymethyl methacrylate, polyethylene, polytetrafluoroethylene and the like.
  • metal stearates such as magnesium stearate, stearic acid strength / resium, stearic acid narrow mouth, barium stearate, lithium stearate and the like
  • polyethylene wax lauric acid amide, myristic acid amide, normitin And synthetic powders such as acid amide, stearic acid amide and hydrogenated castor oil
  • resin powder such as polyacrylamide, polyimide, nylon, polymethyl me
  • the inorganic filler those having a layered structure, for example, talc, myon, bentonite, sericite, carbon black, molybdenum disulfide, tungsten disulfide, graphite fluoride, calcium fluoride, boron nitride, Etc .; Other, Silica, Anolemina, Cloud Mother, Carbonate Licum, Hydroxide Hydroxide, Calcium Phosphate, Magnesium Hydroxide, Magnesium Phosphate, Magnesium Sulfate, Parium Sulfate, Titanium Dioxide, Zinc Oxide, Ceramic Beads, Glass Beads, Crystal Beads Can be mentioned.
  • particulate fillers may be used alone or in combination of two or more.
  • the particulate filler attached to the outer surface of the outer shell has a melting point of 90 ° C. or higher (preferably 100 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 12 ° C.). With a melting point of at least 0 ° C., particularly preferably at least 150 ° C., most preferably at least 200 ° C.
  • Organic compounds or inorganic compounds having a layered structure preferably at least one selected from carbon black, molybdenum disulfide, tungsten disulfide, fluorinated graphite and boron nitride), that is, It is preferable that it is a thermal adhesion inhibitor.
  • the thermal fusion preventing agent prevents thermal fusion of the shell resin of the thermally expandable microspheres and Z or the thermally expanded microspheres, and further, the thermal expansion adjacent to the thermally expanded [] green microspheres And prevent thermal fusion with Z or thermally expanded microspheres, thereby reducing foaming performance, thereby serving to expand the thermally expandable microspheres, for example.
  • a thermally expanded microsphere having a re-expanding capacity is filled inside the assembly of a tire and a rim, even if the tire is injured and the tire internal pressure is reduced, the tire injured portion is rapidly sealed.
  • the tire can exert a high internal tire pressure application function, and as a result, it is possible to travel the necessary distance even in a damaged tire. This effect is particularly remarkable when the foaming agent contains a fluorine-containing compound: ⁇ is there.
  • thermoplastic resin obtained by polymerizing a monomer mixture containing, as essential components, a tolyl monomer and a force propoxy group-containing monomer as the outer shell
  • a thermoplastic resin obtained by polymerizing a monomer mixture containing, as essential components, a tolyl monomer and a force propoxy group-containing monomer as the outer shell
  • it is obtained by expanding the raw microspheres, and it is obtained by expanding the raw microspheres, and it has thermal expansion that has the ability to re-expand.
  • the microspheres can be re-expanded at a temperature of 90 ° C. or more (preferably 100 ° C. or more, more preferably 120 ° C. or more), and the above-mentioned effect becomes remarkable.
  • the average particle size of the particulate filler is preferably not more than 1/10 of the thermal expansion before adhesion [ ⁇ and the average particle size of the raw microspheres.
  • the average particle size means the average particle size of one flame particle.
  • the amount of adhesion of the particulate filler to the thermally expandable microspheres is not particularly limited, but the function of the particulate filler can be sufficiently exerted, and in consideration of the size of the true specific gravity of the thermally expandable microspheres, etc.
  • Thermal expansion 1 The adhesion of the particulate filler to the outer surface of the green microspheres can be carried out by mixing the green microspheres and the particle filler. Thermal mixing is not particularly limited. Can be carried out using an apparatus with a very simple mechanism such as a container and a stirring panel. Can. Moreover, you may use the powder mixer which can perform general rocking
  • the thermally expandable microspheres are, for example, filled in the inside of an assembly of a tire and a rim as it is, and are expanded by heating at a temperature higher than the expansion start temperature of the thermally expandable microspheres, and used as a volume retaining material. be able to. In addition, it may be used as a filler for reducing the weight of paints in automobiles, etc., foam particles for foam ink for wallpaper and clothes decoration, or foam material for resin compositions for light weight.
  • Thermally expanded microspheres are obtained by thermally expanding the thermally expandable microspheres described above.
  • the method of producing the thermally expanded microspheres! / As long as it is a manufacturing method including the step of heating and thermally expanding I "raw microspheres, there is no particular limitation, and conventionally known methods may be used.
  • the methods S that can be applied in particular, the following two methods can be mentioned as preferred methods.
  • a gaseous fluid containing the heat-expanded microspheres (raw material) described above is allowed to flow through a gas introduction pipe provided with a dispersion nozzle at the outlet and installed inside a hot air flow, and jetted from the dispersion nozzle.
  • dispenser step of causing the gas fluid to collide with the collision plate installed at the downstream portion of the dispersion nozzle to disperse the heat expansion microspheres in the hot air flow of ttrts (dispersion step);
  • a gaseous fluid containing the thermally expandable microspheres (raw material) described above is allowed to flow through at least one gas introduction pipe provided with a dispersion nozzle at the outlet and installed outside the hot air flow, from the tfits dispersion nozzle
  • a manufacturing method comprising the steps of In the above manufacturing method, energy efficiency is high, temperature control is easy, and almost the same thermal history can be continuously given to any of the thermal expansion microspheres serving as the raw material, and dispersion in the air flow is possible.
  • Sex is high.
  • the variation of the coefficient of variation of the particle size distribution before and after S stretching is small, and the uniformity of the quality of the obtained thermally expanded microspheres (particularly, the particle size distribution and the distribution of true specific gravity) is high. That is, the formation of aggregated microspheres contained in the obtained thermally expanded microspheres can be suppressed as much as possible, and furthermore, the content of the raw material and the microspheres expanded by the force can be extremely reduced.
  • the obtained thermally expanded microspheres can be made to have or not have the re-expansion start temperature.
  • the fact that the microspheres have a re-expansion start temperature means that the once-expanded thermally expanded microspheres have the property of still expanding thermally, and when the thermally expanded microspheres are heated, they are again thermally expanded. Means to be seen. And the temperature which starts the heat expansion is called re-expansion start temperature.
  • the fact that the thermally expanded microspheres have a re-expansion start is synonymous with the fact that the expansion rate at the maximum (re) expansion temperature is more than 100%.
  • the microspheres do not have a re-expansion start temperature, which means that the microspheres are almost completely thermally expanded.
  • expansion conditions There is no particular limitation on the control of expansion conditions. For example, first, parameters such as the raw material supply rate, the hot air flow rate, and the raw material dispersion gas amount are fixed, and the hot air flow temperature (hereinafter sometimes referred to as "hot air temperature") is changed. Next, the hot air flow is changed stepwise, and while the other parameters are fixed, the raw material microspheres are expanded at each temperature, and the true specific gravity of the obtained microspheres is measured, and the hot air temperature is measured. Create a graph that plots the relationship between (X axis) and true specific gravity (y axis). In this graph, by setting a temperature range corresponding to the lowest true specific gravity (minimum value in the graph) to hot air, it is possible to manufacture the obtained thermally expanded microspheres so as not to have a re-expansion start temperature. .
  • hot air temperature the hot air flow temperature
  • the temperature is set to the hot air temperature corresponding to the desired true specific gravity in the graph.
  • control of the S tension conditions is performed, and it is possible to produce thermally expanded microspheres having a residual power capable of re-expansion as desired.
  • the hot air flow is controlled by changing the temperature of the hot air or the like in consideration of the amount of heat supplied by the heat source and the total heat capacity of the thermal expansion microspheres as the raw material. For example, increase the amount of raw material dispensation and the amount of raw material dispersed air: ⁇ raises the hot air temperature. If you want to reduce the amount of raw material supply and the amount of dispersed gas, lower the temperature of the hot air.
  • the above manufacturing method energy efficiency is high, temperature control is easy, and substantially the same heat history can be continuously given to any thermally expandable microspheres as a raw material. Dispersion in the Therefore, the variation of the coefficient of variation of the particle size distribution before and after expansion is small, and the uniformity of the quality of the obtained thermally expanded microspheres (particularly, the particle size distribution and the distribution of true specific gravity) is high. That is, the formation of the aggregated microspheres contained in the obtained thermally expanded microspheres can be suppressed as much as possible, and the content of the raw material and the slightly expanded microspheres can be extremely reduced.
  • the thermally expanded microspheres thus obtained can be used, for example, as a main member of a run flat tire. That is, by filling the thermally expanded microspheres inside the assembly of the tire and the rim, when the tire is damaged and the tire internal pressure decreases, the tire scratch seal and the Z or tire internal pressure application are applied. It can be used as a material.
  • the average particle size of the thermally expanded microspheres is not particularly limited, and can be freely designed according to the application. For example, in consideration of the retention of the foaming agent by the outer shell, the durability of the thermally expanded microspheres, etc., preferably:! It is preferably from 10 to 100 ⁇ m, more preferably from 5 to 800 ⁇ , particularly preferably from 10 to 500 ⁇ .
  • the content (25 ° C) of microspheres with a true specific gravity of 0.79 gZ cc or more contained in the thermally expanded microspheres can be used to recover the encapsulated substance with high efficiency, considering the uniformity of the true specific gravity, In order to obtain novel microspheres having a good shape, the content is preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 2% by weight or less, particularly preferably 1% by weight or less.
  • the content of microspheres of 0.79 g / cc or more is determined by quantifying the sedimented component after differential gravity separation using isopropinole alcohol (specific gravity at 25 ° C .: 0.79).
  • the true specific gravity is measured, for example, by using a liquid replacement method (Archimedes method) using isopropyl alcohol at a temperature of 25 ° C. for samples 0.5 to 2.O g.
  • the true specific gravity is not a value obtained by measuring the true specific gravity of one of the thermally expanded microspheres, but the true specific gravity is measured on an assembly of the thermally expanded microspheres. Mean specific gravity.
  • the thickness of the shell of the thermally expanded microspheres is not particularly limited, but in order to recover the encapsulated material with high efficiency and obtain novel microspheres with a good shape, it is preferable to use 0.1 to 2 0 0 preferably. More preferably 0.2 to 10 ⁇ , even more preferably 0.2 to 5 ⁇ , and particularly preferably 0.2 to 1 ⁇ m.
  • the thickness of the outer shell is calculated from the average particle diameter of the thermally expanded microspheres, the inclusion rate of the foaming agent, and the true specific gravity measured by the liquid replacement method (Archimedes method). The calculation method is as follows.
  • the difference between the total weight and the blowing agent gas weight is used as the weight of the outer shell, and the volume of the outer shell is calculated from the weight of the outer shell and the specific gravity of the outer shell.
  • the average particle size is divided by 2 to calculate an average particle size, and the difference between the average particle size and the size of the outer shell is calculated to calculate the thickness of the outer shell.
  • the thermally expanded microspheres may or may not have a re-expansion start temperature.
  • the re-expansion magnification of the thermally expanded microspheres is in the range of 100 to 500%.
  • the thickness of the thermoplastic resin constituting the outer shell is small, and the inclusion substance can easily permeate the outer shell, and the inclusion substance can be recovered with high efficiency.
  • the thermal expansion [the raw microspheres and the thermally expanded microspheres may be used as they are, but from the viewpoint of recovery and reuse of resources, thermal expansion Preferred are used microspheres in which the raw microspheres or the thermally expanded microspheres are used for an application.
  • the application is not particularly limited as long as it is an application utilizing various properties possessed by thermally expandable microspheres or thermally expanded microspheres.
  • the above properties include, for example, design, porosity, bulkiness, anti-slipping ability, anti-shrinkage (dimensional stability), weight reduction (cost reduction), heat insulation (heat retention, cold storage), shock absorption ( Resilient resilience), soundproofness, vibration control, okada, surface modification (dampening, soft feeling added), concealability, easy peelability, etc. Can.
  • the method for recovery of the inclusion substance of the present invention is a method including a contacting step of bringing the microspheres and the solvent described above into contact with each other.
  • the solvent used in this contact step is not particularly limited as long as it is a liquid, but generally, the degree of polarity of the solvent, the type of thermoplastic resin constituting the outer shell of the microspheres, and the operability in the separation step described later It is selected in consideration of etc.
  • the solvent examples include: water; alcohols such as methanol, ethanol, propanol, ethylene glycol and glycerol; ethers such as propyl ether, butyl ether, pentyl ether and hexenoare tenoleate; methyl formate, ethyl formate and propyl formate And esterones such as butyl formate, methyl acetate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate; acetone, methyl ethyl ketone, sic anhydride, pinacolin And ketones such as mesithioxide; hexane, heptane, octan, nonane, decane, undecane, dodecane, dodecane, cyclohexane, and ali
  • polar solvents include 7 alcohols, ethers, esters, ketones, ditolyls, amides, sulfoxides and the like. Of these polar solvents, water and alcohols are preferred, and Water is even more preferred in light of the fact that the novel microspheres obtained by the bright recovery method retain a good shape and the isolation of inclusions is easy!
  • the polar solvent may be a solvent that exhibits acidity or alkalinity, but the thermoplastic resin constituting the shell of the microsphere is a monomer mixture containing an acidic monomer such as a carboxyl group-containing monomer.
  • Tj ⁇ is preferably obtained when the polar solvent exhibits alkalinity, and it is further preferred that the polar solvent is water and / or alcohols (especially ethanol etc.) exhibiting alkalinity, and the recovery method of the present invention is preferred. From the viewpoint that the resulting novel microspheres retain a good shape and the isolation of the inclusion substance is easy, water showing al- toricity is particularly preferred.
  • the polar solvent exhibits alkalinity: ⁇ , and the pH of the polar solvent is particularly preferably 9 to 14 and more preferably 11 to 13 with respect to pH 7 of the polar solvent.
  • the microspheres and the solvent are mixed to cause an insect.
  • the mixing ratio of the microspheres and the solvent is not particularly limited, but in consideration of the improvement of recovery efficiency, economy and the like, the number of microspheres per liter of solvent is 0.1 to 300 g. And more preferably 10 to 200 g, and particularly preferably 10 to 100 g.
  • the contact time between the microspheres and the solvent in the contact step is appropriately set in consideration of the solvent, the inclusion substance, the thermoplastic resin that constitutes the outer shell of the microspheres, the workability, etc. 1 to 1000 hours.
  • the contact time between the microspheres and the solvent in the contacting step is appropriately set similarly to the contacting time, and is not particularly limited.
  • the contact temperature is For example, ⁇ 50 to: 100 ° C.
  • the contact temperature is preferably equal to or lower than the boiling point of the contained substance.
  • the infestation time and contact temperature in the contacting step may be appropriately set in consideration of the thickness of the outer shell of the microspheres.
  • the contact time in the contacting step is:! The time is preferably 100 hours, more preferably 10 to 100 hours, and particularly preferably 10 to 100 hours. It is preferable that the temperature of the insects in the kneading step is 30 to 100 ° C., more preferably 50 to 100 ° C., 70 to 1 It is particularly preferable that the temperature is o o ° c.
  • the solvent used in this case is preferably one having a boiling point equal to or higher than the contact temperature of the microspheres and the solvent, and among the solvents exemplified above, a solvent having a boiling point of 50 ° C. or more can be mentioned.
  • the contact time in the contacting step is The time is preferably 0.1 to 500 hours, and more preferably 0.1 to 100 hours.
  • the contact temperature in the contact step is preferably 0 to 80 ° C.
  • the solvent to be used one having a boiling point higher than the contact temperature between the microspheres and the solvent is desirable.
  • a solvent having a boiling point of 20 ° C. or higher may be mentioned. it can.
  • the encapsulated substance encapsulated in the microspheres can be recovered by bringing the microspheres into contact with the solvent.
  • the action is not confirmed, it is presumed that the thermoplastic resin constituting the outer shell swells or is degraded by the solvent, and the encapsulated substance in the inner shell permeates and diffuses in the solvent according to the concentration gradient.
  • the recovery method of the inclusion substance of the present invention further includes a separation step.
  • the separation step is a step of recovering the inclusion substance from the mixture containing the microspheres and the solvent obtained in the contact step.
  • the separation step may be performed together with the insecticidal step or may be performed after the contact step, but by carrying out the separation step together with the contact step, the inclusion substance can be separated and recovered in a short time.
  • the specific means for carrying out the separation step is not particularly limited, and examples thereof include distillation separation, extraction separation, centrifugation, adsorption separation and the like of the inclusion substance.
  • Distillation is a method of separating and recovering an encapsulated substance using the difference in boiling point between the encapsulated substance and a solvent.
  • the difference in boiling point is preferably larger in order to increase the working efficiency.
  • the boiling point difference is, for example, preferably 5 ° C. or more, more preferably 10 ° C. or more, and particularly preferably 20 ° C. or more.
  • the inclusion substance is once steamed and liquefied and separated by a cooling device, but in consideration of the fact that the boiling point of the inclusion substance is usually at room temperature or slightly higher, the cooling device It is preferable to control the temperature of the refrigerant used for the shellfish ⁇ of the inclusion substance contained in the solution low.
  • the degree difference is, for example, preferably 30 ° C. or more, more preferably 50 ° C. or more, and particularly preferably 100 ° C. or more.
  • Extraction separation and centrifugation are methods of separation and recovery using the property that phase difference between the inclusion substance and the solvent occurs.
  • the solvent one having a property of phase separation when mixed with the inner packing material is preferable.
  • the solvent include water; alcohols such as methanol and ethanol, and the like.
  • the phase is not easily separated by extraction and separation, and centrifugation may be performed to separate the inclusion substance and the solvent from each other.
  • the inclusion substances separated in phase by extraction separation and centrifugation are separated and recovered through a separation operation such as decantation.
  • P and separation is a method of capturing and recovering airborne substances by adsorption duet using an adsorbent such as activated carbon.
  • the substance trapped in the adsorption unit is desorbed by steam and regenerated, and it is recovered by freezing and cooling.
  • the mixture containing the microspheres and the solvent may or may not be stirred, but when stirred, the contact efficiency of the microspheres and the solvent increases. it is conceivable that.
  • the stirrer used for the stirring is not particularly limited, and examples thereof include common stirrers such as homomixers and line mixers. There is also no particular limitation on the stirring speed.
  • reaction may be carried out under reduced pressure, normal pressure, or calo pressure.
  • microspheres a are microspheres which can be obtained after the insecticidal step in the above-mentioned recovery method, and have a thermoplastic resin as an outer shell.
  • Microsphere a is a novel microsphere in which a solvent is included in its outer shell instead of the inclusion substance. At least a solvent is contained in the microsphere a. The encapsulated substance remaining without being recovered may be contained together with the solvent.
  • the solvent may be removed from the mixture after the insecticidal step to dry the microspheres a
  • the microspheres may be handled in a liquid-wet state, considering that aggregation and fusion do not occur. Is preferred.
  • the solvent described in the above-mentioned recovery method can be used as it is, but depending on the use of the microsphere a, dibutyl phthalate, di-hydroxy phthalate, di-octyl azide, tricycle / le-phosphate, tri-ethyl citrate Plasticizers such as asetil ripyl citrate, octyl alcohol (when used for plastics, elastomers, sealants, paints, etc.) Monomers such as dicyclopentadiene (light-weight foams and adhesives When used for the purpose); Non-ionic surfactant, alkylene glycol alcohol, polyalkylene glycol, glycerin, silicone oil, liquid paraffin, fats and oils, etc. may be used as a liquid. By replacing the solvent in the mixture after the contacting step with a liquid, it is possible to make the microspheres a in a liquid-wetted state.
  • the average particle size of the microspheres a is -1000 m, more preferably 5 to 800 ⁇ m, particularly preferably 10 to 500 ⁇ , and most preferably 1 to 150 ⁇ .
  • the true specific gravity of the microsphere a There is no particular limitation, but when the microspheres a are in a dried state, they are preferably in the range of 0.51 to 1.5 g Zcc, more preferably in the range of 0.10 to 1. O g / cc, particularly preferably 0. It is 0.001 to 0.8 g / cc.
  • microsphere a For the application of the microsphere a, the application utilizing the various properties possessed by the above-mentioned thermally expandable microspheres and the thermally expanded microspheres, and the application utilizing the fact that the microspheres a are in the form of minute particles There is no particular limitation as long as The microsphere a may be used as a filler for resin and other materials, for example, for fillers such as extruded cement-molded articles, sealants, resin clay fillers, and ceramic siding.
  • a laser diffraction ⁇ degree distribution measuring apparatus (SYMPATEC 3 ⁇ 4 MH EROS & RODOS) was used as a measuring apparatus.
  • the dispersion pressure of the dry dispersion unit was 5. O bar, the degree of vacuum was measured by the dry measurement method at 5.0 mbar, and the D50 value was defined as the average particle size. [Measurement of true specific gravity]
  • the true specific gravity was measured by a liquid replacement method (Archimedes method) using isopropinole alcohol at a temperature of 25 ° C.
  • thermally expandable microspheres were placed in a stainless steel evaporation dish with a diameter of 80 mm and a depth of 15 mm, and their weight D was measured. After 30 ml of acetonitrile, the mixture was dispersed uniformly and allowed to stand at room temperature for 30 minutes, and then heated at 120 ° C. for 2 hours to measure the weight after drying (W 2 ).
  • the inclusion rate of the blowing agent is calculated by the following equation.
  • the encapsulation retention rate of the foaming agent is a ratio of the encapsulation rate of the foaming agent before expansion (GJ to the encapsulation rate (G 2 ) of the foaming agent after expansion, and is calculated by the following equation.
  • Inclusion retention rate (%) Q 2 / G X 1 00
  • DMA DMA Q 800, manufactured by TA instr ume nts
  • Thermal expansion I “raw microspheres are thermally expanded microspheres) 0.5 mg in an aluminum cup with a diameter of 6. O mm, depth of 4. 8 mm, and a diameter of 5.6 mm, a thickness of 0.1 mm on it.
  • the sample lid was placed with an aluminum lid, and the sample height was measured while applying a force of 0.10 N from the top of the sample by a calo indenter.
  • the sample was heated from 20 to 300 ° C. at a heating rate of 10 ° C./min, and the amount of displacement of the calo indenter in the vertical direction was measured.
  • the displacement start temperature in the positive direction was taken as the (re) expansion start temperature, and the temperature at which the maximum displacement (H 2 ) was shown was taken as the maximum (re) expansion temperature.
  • the (re) expansion coefficient (E) at the maximum (re) expansion temperature is calculated by the following formula.
  • the aqueous phase and the oil phase were mixed, premixed at 3,000 rpm for 2 minutes with a homomixer, and stirred at 10,000 rpm for 2 minutes to obtain a suspension. It was transferred to a reactor, purged with nitrogen and then polymerized at 61 ° C. for 20 hours while stirring. After polymerization, the polymerization product was filtered and dried to obtain the obtained thermal expansion [Mixed microspheres as microspheres 1. The ignition source was brought close to the thermally expandable microspheres but it did not burn.
  • microspheres 1 obtained in Production Example 1 were thermally expanded by the method for producing the thermally expanded microspheres described above (production method (A) to produce the thermally expanded microspheres.
  • the small spheres were filled in the hollow portion of the assembly of the tire and the rim, and used as a member of a run flat tire The running test of the run flat tire was carried out, and the thermally expanded microspheres after the test (thermal expansion after running test)
  • the obtained microspheres are hereinafter referred to simply as “microspheres 2” and their physical properties are measured.
  • the average particle diameter is 90 ⁇ m, true specific gravity 0.228 g Zcc, inclusion rate 32%, inclusion retention rate 98%, re-expansion start 132 ° C, maximum re-expansion temperature 202 ° C, re-expansion ratio 211%, true specific gravity 0.79 g / cc or more of content of microspheres (25 ° C) is 0.8 weight ./.Met. Production Example 3
  • microspheres 3 obtained in Production Example 3 were thermally expanded in the same manner as in Production Example 2 to produce thermally expanded microspheres (microspheres 4).
  • Production Example 1 A super mixer (micro mixer 1) was prepared with Microsphere 1 and carbon black (Lion stock company ring, product name: Ketjen black ECP 600 JD, average particle size: 34 nm) in a weight ratio of 9: 1. The mixture was uniformly mixed using Kaita Co., Ltd. to obtain thermally expanded microspheres in which carbon black adhered to the outer surface. The obtained thermally expandable microspheres were thermally expanded in the same manner as in Production Example 2 to produce thermally expanded microspheres (microspheres 5). [Example 1]
  • the microsphere 2 obtained in Production Example 2 was weighed out at 0.05 g, mixed and dispersed in 20 mL of ethanol. The resulting mixture was left overnight in a refrigerator and then extracted with hexane. The obtained hexane phase was analyzed by gas chromatography (GC 17 A, manufactured by Shimadzu Corporation), and C 3 F 7 OCH 3 was detected.
  • GC 17 A gas chromatography
  • Example 3 A C 3 F 7 OCH 3 was recovered in the same manner as in Example 2 except that strong alkaline water (p H 12) was used instead of ethanol in Example 2 above. The recovery rate was 90%. In addition, the new microspheres obtained after recovery retained spherical shape, and strongly alkaline water was contained in the outer shell.
  • Example 4 The same procedure as in Example 4 was repeated except that strong alkaline water (p H 12) was used instead of ethanol in Example 4 above to recover isopentane. The recovery rate was 91%. In addition, the new microspheres obtained after recovery retained spherical shape, and strong Alkaline water was contained in the outer shell.
  • strong alkaline water p H 12
  • the inclusion substance can be recovered simply and efficiently from the microspheres constituted of the outer shell made of a thermoplastic resin and the inclusion substance entrapped therein.
  • novel microspheres of the present invention are novel microspheres which can be obtained after recovering the inclusion substance in the above-mentioned recovery method, and which have not been known so far.

Abstract

A method of recovering an encapsulated substance which includes a contact step in which a microsphere constituted of a shell comprising a thermoplastic resin and an encapsulated substance enclosed in the shell and having a boiling point not higher than the softening point of the thermoplastic resin is brought into contact with a solvent. Also provided is a novel microsphere which can be obtained through the contact step in the method of encapsulated-substance recovery. This microsphere comprises the thermoplastic resin as a shell.

Description

内包物質の回収方法とその方法で得られうる新規な微小球 技術分野  Method for recovery of inclusion substance and novel microspheres obtainable by the method
本発明は、熱可塑性樹脂からなる外殻とそれに内包される内包物質とから構成さ れる微小球から内包物質を回収する方法と、その方法を実施して得られうる新規な 微小球とに関する。  The present invention relates to a method for recovering an inclusion substance from microspheres composed of an outer shell made of a thermoplastic resin and an inclusion substance contained therein, and novel microspheres obtainable by carrying out the method.
明 背景技術  Background art
 book
近年、化学物質の規制強化、使用済み電化製品や自動車等からの資源リサイクル の促進とともに、自然環境に影響を及ぼす物質や有用物等の回収が要求されている。 特に、 フロンガス (クロ口フルォロカーボン) は、オゾン層の破壌や地球温暖ィ匕 の原因物質であり、大気中に放出され成層圏に達すると、太陽からの強い紫外線で ^^され、その際生じる塩素ラジカルが成層圏のオゾン層を破壌し、オゾンホール 等を生じさせ、成層圏の環境状態を 匕させる。 また、地球の対流圏に留まったフ ロンガスは、非常に^^し難い安定な化合物であるため分解されず、二酸化炭素と 同様に温室効果を起こし、地球の温暖ィ匕を促進させ、生物の生存に適した地球環境 を 匕させる。 したがって、 フロンガスを大気中に放出することは、地球上の生物 全体、 人類に与える悪影響は計り知れないほど大きい。  In recent years, along with the strengthening of regulations on chemical substances and the promotion of resource recycling from used electric appliances and automobiles, it has been required to recover substances and useful substances that affect the natural environment. In particular, chlorofluorocarbons (chlorofluorocarbons) are the causative agents of ozone depletion and global warming, and when released into the atmosphere and reach the stratosphere, they are ^^ by strong ultraviolet light from the sun, and chlorine generated thereby Radicals break the ozone layer in the stratosphere, create ozone holes, etc., and restore the environmental status of the stratosphere. In addition, since fluorocarbons remaining in the troposphere of the earth are stable compounds that are extremely difficult to be absorbed, they are not decomposed and cause a greenhouse effect like carbon dioxide, thereby promoting global warming and living organisms. Reminiscent of a suitable global environment. Therefore, releasing fluorocarbons to the atmosphere has a tremendous impact on the life on earth and humanity.
現在、フ口ンガスの回収は人類が取り組むべき地球規模の課題となっており、発 泡剤としてフロンガスを含む樹脂材料等からフロンガスを回収する技術が注目さ れている。  At present, recovery of fumigant gas is a global issue that human beings should work on, and technology for recovering fluorocarbon gas from resin materials containing fluorocarbon gas as a foaming agent is attracting attention.
たとえば、特許文献 1には、フロンガスを含んだ熱硬化性発泡ウレタン樹脂と熱 可塑性樹脂の破片が混在した破石科才料をベント式押出機に供給し、パレル内で破碎 材料を細かく破砕又は溶融し、破石钟才料から分離されたフロンガスをベント部で回 収した後、フロンガスが除去された破碎材料はバレルに接続したノズルから押し出 し、分離されたフロンガスはベント部に連通した分離機でフ口ンガスを分離させた 後フロンガスを回収する方法が開示されている。 また、特許文献 2には、発泡断熱材 充填した冷蔵庫など断熱箱体の外板または 内板を剥離し、発泡断熱材を剥離装置により破枠しながら外板または内板から剥離 し、剥離装置で使用された剥離体と剥離された発泡断熱材とを分离1¾置により分離 し、分離された発泡断熱材を粉砕装置により粉碎して内部の気泡中に封入されたフ 口ンを放出し、放出されたフロンをフロン回収装置により液化回収して、発泡断熱 材中のフロンガスを回収する方法が開示されている。 For example, according to Patent Document 1, a fractured material containing a mixture of a thermosetting urethane foam resin containing fluorocarbon gas and fragments of a thermoplastic resin is supplied to a vented extruder, and the broken material is finely crushed or broken in the parelle. After the fluorocarbon gas which has been melted and separated from the waste material is recovered in the vent section, the fractured material from which the fluorocarbon gas has been removed is pushed out from the nozzle connected to the barrel, and the separated fluorocarbon gas is separated in communication with the vent section. Discloses a method of recovering fluorocarbon after separating futon gas. In Patent Document 2, the outer plate or the inner plate of a heat insulating box filled with a foamed heat insulating material is peeled, and the foamed heat insulating material is peeled from the outer plate or the inner plate while framed by a peeling device. Separate the exfoliated body and the exfoliated foamed heat insulating material from each other by separation, pulverize the separated foamed insulating material with a crusher, and release the foam encapsulated in the internal bubbles, There is disclosed a method of recovering the fluorocarbon gas in the foamed heat insulating material by liquefying and recovering the released fluorocarbon with a fluorocarbon recovery device.
これらの方法は、いずれも粉碎ゃ溶融等の物理的手段を用いてフ口ンを回収して いるために、大規模な装置が必要である。 し力も、その装置の性格上、気密性保持 が困難であるので、 高回収率を期待できないという問題点がある。  All of these methods require large-scale equipment because they recover the waste using physical means such as powder and melting. Also, due to the nature of the equipment, it is difficult to maintain airtightness, so there is a problem that high recovery rates can not be expected.
上記で挙げた発泡剤を含む樹脂材料の一種として、熱膨張性マイクロカプセルが 知られており、熱可塑性樹脂を外殻とし、その中に発泡剤としての内包物質が封入 された構造を有している。このような熱膨張性マイクロカプセルを加熱すると、内 包物質の一部または全部が気化するとともに内包物質全体の体積が膨張し、さらに、 加熱により軟化した外殻が、内包物質の体積膨張によって生じた圧力によって、外 側に押し広げられ、 軽量な中空粒子が得られる。  A thermally expandable microcapsule is known as a kind of resin material containing the above-mentioned foaming agent, and has a structure in which a thermoplastic resin is used as an outer shell and an inclusion substance as the foaming agent is enclosed therein. ing. When such a thermally expandable microcapsule is heated, a part or all of the inner packaging material is vaporized and the volume of the whole inclusion material is expanded, and further, an outer shell softened by heating is generated by the volume expansion of the inclusion material. By the pressure, it is pushed outward and a lightweight hollow particle is obtained.
特許文献 3には、フ口ンガスの欠点を解消した新規な熱膨張!"生マイクロ力プセル が開示されている。 この熱膨張性マイクロカプセルは、 フロンガスの代わりに、環 境への負荷が小さい含フッ素エーテルィ匕合物を発泡剤として含むことを特徴とし ている。  Patent Document 3 discloses a novel thermal expansion! "A micro micro capsule which solves the defect of fumigant gas. This thermally expandable microcapsule has a smaller load on the environment instead of fluorocarbon gas. It is characterized in that it contains a fluorine-containing ether compound as a blowing agent.
特許文献 1 :特開 2 0 0 2— 1 9 2 5 2 4号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 20002-1942
特許文献 2 :特開 2 0 0 0— 1 0 2 9 2 3号公報 Patent Document 2: Japanese Patent Application Laid-Open No. 2 00 0 1 0 2 9 2 3
特許文献 3 :国際公開第 2 0 0 4 / 0 7 4 3 9 6号パンフレツト Patent Document 3: International Publication No. 2 0 0 4/0 7 4 3 9 6 Panfleet
含フッ素エーテル化合物はフロンガスよりも高価であるため、資源リサイクルの 観点から、 回収、再利用が望まれている。 また、従来、熱膨張 I"生マイクロカプセル や中空粒子に内包された内包物質は、自然環境に大きな影響を及ぼすとは考えられ ていなかった。 し力しながら、揮発性有機化合物 (VO C) が都市大気汚染の原因 物質として挙げられている現在、地球環境に対する悪影響がわずカゝであっても疑わ れる物質については、回収、再利用の規制が制定される可能性を否定できない。 こ のような理由から、内包物質がどのような種類の物質であっても、その回収方法を 確立することが急務になっている 発明の開示 As fluorine-containing ether compounds are more expensive than chlorofluorocarbons, recovery and reuse are desired from the viewpoint of resource recycling. Also, it has not been thought conventionally that the encapsulated substances contained in the thermal expansion I “raw microcapsules or hollow particles had a significant effect on the natural environment. Now that the cause of urban air pollution is listed as a cause of the urban air pollution, we can not deny the possibility of enforcing restrictions on the recovery and reuse of substances that are suspected even if there are only a few negative effects on the global environment. For any reason like this, no matter what kind of substance the contained substance is, how to recover it Disclosure of inventions that are urgently needed to be established
本発明の目的は、熱可塑性樹脂からなる外殻とそれに内包される内包物質とから 構成される微小球から、內包物質を簡便で効率よく回収する方法を«することで ある。 また、本発明の別の目的は、 内包物質を回収した後に得られうる新規な微小 球を提供することである。  An object of the present invention is to provide a simple and efficient method for efficiently recovering an entrapped substance from microspheres composed of an outer shell made of a thermoplastic resin and an encapsulated substance contained therein. Also, another object of the present invention is to provide novel microspheres which can be obtained after recovering the inclusion substance.
特許文献 1および 2で開示される方法を微小球に適用した場合、装置が大きくて 操作しにくいこと、内包物質の高回収率を期待できないこと、粉 ^溶融等のエネ ルギーを多量に消費する物理的手段が必須であること等の問題点が予想される。 本発明者らはこれらの問題点を念頭に入れて種々検討した結果、 ( 1 ) 微小球で は既に細力 、粒子状となっており、その表面積が広いので、微小球と溶媒とを接触 させることによって、外殻を破損させることなく濃度勾配を利用して、外殻内部の 内包物質を外殻外の溶媒に効率よく移動させ、 回収できること、 (2 ) 回収後に得 られぅる微小球は新規な微小球であること等を見出し、 本発明に到達した。  When the methods disclosed in Patent Documents 1 and 2 are applied to microspheres, the device is large and difficult to operate, high recovery rate of the contained substance can not be expected, and a large amount of energy such as powder melting is consumed. Problems such as the necessity of physical means are expected. As a result of various investigations in consideration of these problems, the inventors of the present invention have made it clear that (1) the microspheres are already fine and fine and have a large surface area, so that the microspheres and the solvent are contacted. By using this method, it is possible to efficiently transfer the encapsulated substance inside the shell to the solvent outside the shell and recover it using a concentration gradient without damaging the shell, and (2) the microspheres obtained after recovery Found that they are novel microspheres etc., and reached the present invention.
すなわち、本発明にかかる内包物質の回収方法は、熱可塑性樹脂からなる外殻と それに内包され且つ前記熱可塑性樹脂の軟ィヒ点以下の沸点を有する内包物質とか ら構成される微小球と、溶媒とを接触させる接触工程を含む方法である。本発明の 内包物質の回収方法は、前記接触工程で得られた混合物から前記内包物質を回収す る分離工程をさらに含む方法であると好まし 前記接触工程とともに前記分離ェ 程を行うとさらに好ましい。  That is, the method for recovering the inclusion substance according to the present invention comprises: an outer shell made of a thermoplastic resin; and microspheres composed of an inclusion substance which is contained therein and has a boiling point lower than the soft point of the thermoplastic resin. A method comprising the step of contacting with a solvent. The method for recovering the inclusion substance of the present invention is preferably a method further comprising a separation step of recovering the inclusion substance from the mixture obtained in the contacting step, and it is more preferable to carry out the separation step together with the contacting step. .
本発明にかかる新規な微小球は、上記内包物質の回収方法において、前記翻虫ェ 程後に得ることができ、 前記熱可塑性樹脂を外殻とする。 発明を実施するための最良の形態  The novel microspheres according to the present invention can be obtained after the above-mentioned transversal step in the above-mentioned method for recovering an inclusion substance, and the thermoplastic resin is used as an outer shell. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明で用いる内包物質を内包した微小球を説明する。  First, a microsphere containing an inclusion substance used in the present invention will be described.
[微小球]  [Microsphere]
本発明で用いる微小球は、熱可塑性樹脂からなる外殻とそれに内包され且つ前記 熱可塑性樹脂の軟ィ匕点以下の沸点を有する内包物質とから構成される微小球であ る。 The microspheres used in the present invention are microspheres composed of an outer shell made of a thermoplastic resin and an inclusion substance contained therein and having a boiling point lower than the soft softening point of the thermoplastic resin. Ru.
微小球に含まれる内包物質の内包率については、特に限定はないが、内包物質を 回収する際の作業効率を高めるという観点からは、好ましくは 5 %以上、さらに好 ましくは 1 5 %以上、 特に好ましくは 3 0 %以上である。  The inclusion rate of the inclusion substance contained in the microspheres is not particularly limited, but it is preferably 5% or more, more preferably 15% or more, from the viewpoint of enhancing the working efficiency when recovering the inclusion substance. , Particularly preferably 30% or more.
なお、 内包物質の内包率 (以下では、 発泡剤の内包率ということもある。) は、 微小球の重量に対する微小球に内包された内包物質の重量の割合を百分率で表し た値である。  The inclusion rate of the inclusion substance (hereinafter also referred to as the inclusion rate of the foaming agent) is a value representing the percentage of the weight of the inclusion substance contained in the microspheres to the weight of the microspheres.
本発明で用いる微小球は、 熱膨張性微小球と、 (この熱膨張性微小球を熱膨張さ せて得られる)熱膨張した微小球とに大別される。これらを以下に詳しく説明する。 a . 熱膨張性微小球  The microspheres used in the present invention are roughly classified into thermally expandable microspheres and thermally expanded microspheres (obtained by thermally expanding the thermally expandable microspheres). These are described in detail below. a. Thermally expandable microspheres
熱膨張性微小球は、熱可塑性樹脂からなる外殻とそれに内包され且つ前記熱可塑 性樹脂の軟化点以下の沸点を有する内包物質とから構成されており、内包物質が発 泡剤として作用することによって、 熱膨張性微小球は微小球全体として熱膨張性 The thermally expandable microspheres are composed of an outer shell made of a thermoplastic resin and an inclusion substance which is contained therein and has a boiling point lower than the softening point of the thermoplastic resin, and the inclusion substance acts as a foaming agent. The thermally expandable microspheres are thermally expandable as a whole.
(微小球全体がカロ熱により膨らむ性質) を示す。以下の説明において、 内包物質と 発泡剤とを同義に用いる。 (The property in which the whole microsphere swells due to the heat of calorific) is shown. In the following description, the inclusion substance and the foaming agent are used synonymously.
発泡剤は、熱可塑性樹脂の軟化点以下の沸点を有する物質であれば特に限定はな く、たとえば、炭素数 1〜1 2の炭化水素及びそれらのハロゲン化物;含弗素化合 物;テトラアルキルシラン;ァゾジカルボンァミド等の加熱により熱分解してガス を生成する化合物等を挙げることができる。 これらの発泡剤は、 1種または 2種以 上を併用してもよい。  The blowing agent is not particularly limited as long as it is a substance having a boiling point equal to or lower than the softening point of the thermoplastic resin, and, for example, hydrocarbons having 1 to 12 carbons and their halides; fluorine-containing compounds; And compounds which generate a gas by thermal decomposition by heating such as azodicarbonamide. These foaming agents may be used alone or in combination of two or more.
炭素数:!〜 1 2の炭化水素としては、 たとえば、 プロノ ン、 シクロプロパン、 プ ロピレン、 ブタン、 ノルマルブタン、 イソブタン、 シクロブタン、 ノルマノレペンタ ン、 シクロペンタン、 ィソペンタン、 ネ才ペンタン、 ノノレマノレへキサン、 イソへキ サン、 シクロへキサン、 ヘプタン、 シクロヘプタン、 オクタン、 イソオクタン、 シ クロオクタン、 2—メチルペンタン、 2, 2—ジメチルブタン、石油エーテル等の 炭化水素が挙げられる。 これらの炭化水素は、直鎖状、分岐状、脂環状のいずれで もよく、 脂肪族であるものが好ましい。  Carbon number :! Examples of the hydrocarbon of 1 to 12 include pronone, cyclopropane, propylene, butane, normal butane, isobutane, cyclobutane, normolepentene, cyclopentane, isopentane, pentane, nonolemanolehexane, isohexane, and the like. Examples thereof include hydrocarbons such as sun, cyclohexane, heptane, cycloheptane, octane, isooctane, cyclooctane, 2-methylpentane, 2,2-dimethylbutane, and petroleum ether. These hydrocarbons may be linear, branched or alicyclic and are preferably aliphatic.
炭素数 1〜1 2の炭化水素のハロゲン化物としては、塩化メチル、塩化メチレン、 クロ口ホルム、四塩化炭素等が挙げられる。 これらのハロゲン化物は、上述した炭 化水素のハロゲン化物 (フッ化物、 塩化物、 臭化物、 ョゥ化物等) であることが好 ましい。 Examples of the halide of hydrocarbon having 1 to 12 carbon atoms include methyl chloride, methylene chloride, chloroform, carbon tetrachloride and the like. These halides are the above-mentioned charcoal It is preferable that it is a halide of fluoride (fluoride, chloride, bromide, fluoride, etc.).
含弗素化合物としては、 特に限定されず、 たとえば、 エーテル構造を有し、塩素 原子および臭素原子を含まず、 炭素数 2〜: L 0の化合物が好ましレヽ。 具体的には、 C3H2F7OCF2H、 C3HF6OCH3、 C2HF4OC2H2F3、 C2H2F3〇C 2H2JT 3
Figure imgf000006_0001
C3H2F 5Oし 2H3 JT 2、 し 3HF6〇し 2H2r 3、 C 3H3F4OCHF2、 C3HF6〇C3H2F5、 C4H3F6〇CHF2、 C3H3F4〇 C2HF4、 C3HF6OC3H3F4、 C3F7OCH3、 C4F9OCH3、 C4F9OC 2H5、 C7F15OC2H5等のハイド口フルォロエーテルが挙げられる。 ハイドロフ ルォロエーテルの (フルォロ) アルキル基は直鎖状でも分岐状でもよい。
The fluorine-containing compound is not particularly limited. For example, a compound having an ether structure, containing no chlorine atom and bromine atom, and having 2 to 2 carbon atoms: L 0 is preferred. Specifically, C 3 H 2 F 7 OCF 2 H, C 3 HF 6 OCH 3 , C 2 HF 4 OC 2 H 2 F 3 , C 2 H 2 F 3 CC 2 H 2 JT 3 ,
Figure imgf000006_0001
C 3 H 2 F 5 O 2 H 3 JT 2 , 3 HF 6 O 2 H 2 r 3 , C 3 H 3 F 4 OCHF 2 , C 3 HF 6 O C 3 H 2 F 5 , C 4 H 3 F 6 o CHF 2 , C 3 H 3 F 4 o C 2 HF 4 , C 3 HF 6 OC 3 H 3 F 4 , C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 and Hyde-mouth fluoroethers such as C 7 F 15 OC 2 H 5 and the like. The (fluoro) alkyl group of the hydrofluoroether may be linear or branched.
発泡剤は、 たとえば、 その全量が含弗素化合物で構成されていてもよいが、含弗 素化合物とともに、熱可塑性測旨の軟化点以下の沸点を有する、含弗素化合物以外 の物質を併用してもよい。 このような物質については、特に限定されるものではな く、たとえば、上述した発泡剤として例示したものの中から選択して用いることが できる。含弗素化合物以外の物質は、熱膨張 I"生微小球の熱膨張 域に応じて、適 宜選択することができる。  The foaming agent may be composed, for example, of a fluorine-containing compound in total, but together with the fluorine-containing compound, a substance other than a fluorine-containing compound having a boiling point lower than the softening point of thermoplasticity is used in combination. It is also good. Such substances are not particularly limited, and can be selected from those exemplified as the above-mentioned blowing agents, for example. Substances other than fluorine-containing compounds can be selected as appropriate depending on the thermal expansion region of the thermal expansion I “raw microspheres”.
発泡剤は、含弗素化合物の重量割合が、発泡剤全体の 50重量%超であることが 好ましく、 80重量。 /0超であることがさらに好ましく、 95重量%超であることが 特に好ましい。発泡剤における含弗素化合物の重量割合が高いほど、含弗素化合物 の物性が熱膨張性微小球に反映され、熱膨張性微小球に対して難燃性や不燃性等の 物性を付与することができる。 The proportion of the fluorine-containing compound in the blowing agent is preferably more than 50% by weight of the entire blowing agent, 80% by weight. It is more preferable that the ratio is more than 0 , particularly preferably more than 95% by weight. As the weight proportion of the fluorine-containing compound in the foaming agent is higher, the physical properties of the fluorine-containing compound are reflected on the thermally expandable microspheres, and the physical properties such as flame retardancy and non-combustibility are imparted to the thermally expandable microspheres. it can.
熱膨張性微小球は、たとえば、ラジカル重合性単量体を含む単量体混合物を重合 して得られる熱可塑性樹脂から構成され、単量体混合物に重合開始剤を適宜配合す ることにより、 熱膨張生微小球の外殻を形成することができる。  The thermally expandable microspheres are made of, for example, a thermoplastic resin obtained by polymerizing a monomer mixture containing a radical polymerizable monomer, and by appropriately blending a polymerization initiator with the monomer mixture, The outer shell of thermally expanded green microspheres can be formed.
ラジカル重合性単量体としては、特に限定はなレ、が、たとえば、 アタリロニトリ ル、 メタタリロニトリル、 α—クロルァクリロニトリル、 α—ェトキシァクリロニ トリノレ、 フマロニトリル等の二トリノレ系単量体;アタリル酸、 メタタリル酸、ィタ コン酸、マレイン酸、 フマル酸、 シトラコン酸等のカルボキシル基含有単量体;塩 化ビニリデン;酢酸ビエル;メチル (メタ)ァクリレート、ェチル (メタ)ァクリレー ト、 n -ブチル(メタ)ァクリレート、 イソブチル(メタ)ァクリレート、 t -ブチノレ (メタ)ァクリ レート、 イソボルニル(メタ)アタリレート、 シク口へキシル(メタ) アタリレート、ベンジル(メタ)ァクリレート、 ]3—カルボキシェチルァクリレート 等の(メタ)アタリノレ酸エステル系単量体;スチレン、 α-メチルスチレン、 クロ口 スチレン等のスチレン系単量体;アクリルアミド、置換ァクリルアミド、 メタタリ ルァミド、置換メタクリルアミ ド等のァクリルアミド系単量体; Ν—フエ -ルマレ ィミ ド、 Ν—(2 _クロ口フエ二ノレ)マレイミ ド、 Ν—シクロへキシルマレイミ ド、 Ν—ラウリルマレイミド等のマレイミド系単量体等を挙げることができる。カルボ キシル基含有単量体にっレヽては、一部または全部のカルボキシル基が重合時に中和 されていてもよい。 Examples of radically polymerizable monomers include, but are not particularly limited to, ditrinotrile monomers such as atalilonitrile, methatalilonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile etc. Body: Carboxyl group-containing monomers such as atalic acid, metatthallic acid, itaconic acid, maleic acid, fumaric acid and citraconic acid; Vinylidene chloride; Bielyl acetate; Methyl (meth) acrylate, ethyl (meth) aq relay N-Butyl (meth) acrylate, isobutyl (meth) acrylate, t-butynore (meth) acrylate, isobornyl (meth) atalylate, vicinal hexyl (meth) atalylate, benzyl (meth) acrylate, 3 -(Meth) atalinoleate based monomers such as carboxy ethyl acrylate; styrene based monomers such as styrene, α-methylstyrene, crorostyrene and the like; acrylamides, substituted acrylamides, methacrylates, substituted methacrylamides Acrylamide-based monomers such as, for example, maleimide-based monomers such as フ -phenyl- maleimide, Ν- (2 _ 口 口 -bi-no-le) maleimide, Ν-cyclohexyl maleimide, Ν- lauryl maleimide and the like Can be mentioned. With respect to the carboxyl group-containing monomer, part or all of the carboxyl groups may be neutralized during polymerization.
これらのラジカル重合性単量体は、 1種または 2種以上を併用してもよレ、。 これ らの内でも、 単量体混合物が、 二トリル系単量体、 (メタ) アタリノレ酸エステル系 単量体、 カルボキシル基含有単量体、 スチレン系単量体、酢酸ビュルおよび塩ィ匕ビ 二リデンから選ばれた少なくとも 1種のラジカル重合性単量体を含む単量体混合 物であると好ましレヽ。特に、単量体混合物が、 二トリル系単量体を必須成分として 含む単量体混合物であると、耐熱 [·生を付与できるため、好ましレ、。 ニトリル系単量 体の重量割合は、単量体混合物に対して、耐熱性を考慮すると、好ましくは 8 0重 量%以上であり、 さらに好ましくは 9 0重量%以上であり、特に好ましくは 9 5重 量%以上である。  These radically polymerizable monomers may be used alone or in combination of two or more. Among these, the monomer mixture is a 2-tolyl monomer, a (meth) atalinoleic acid ester monomer, a carboxyl group-containing monomer, a styrenic monomer, acetate, and vinyl chloride and vinyl chloride. A monomer mixture containing at least one radically polymerizable monomer selected from diidene is preferred. In particular, heat resistance can be imparted when the monomer mixture is a monomer mixture containing a tolyl monomer as an essential component, and thus preferred. The weight ratio of the nitrile monomer is preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 9% by weight or more, in consideration of the heat resistance with respect to the monomer mixture. It is 5% by weight or more.
また、単量体混合物が、二トリル系単量体とともにカルボキシル基含有単量体を 必須成分として含む単量体混合物であると、耐熱性を付与できるとともに、熱膨張 性微小球を膨張させることによつて得られる熱膨張した微小球にっレヽて、再膨張で きる余力を有するように製造することができ、 かつ 9 0 °C以上 (好ましくは 1 0 0 °C以上、 さらに好ましくは 1 2 0 °C以上) の温度で、再膨張を開始させるように 設定することができるため、 さらに好ましい。 二トリル系単量体の重量割合は、 内 包された発泡剤の内包保持率及 泡性、さらには熱膨張した微小球の再膨張開始 温度を調節すること、通常内圧高速走行性能評価等を考慮すると、単量体混合物に 対して、好ましくは 2 0〜9 5重量0 /0であり、 より好ましくは 2 0〜8 0重量0 /0で あり、 さらに好ましくは 2 0〜6 0重量0 /0であり、 特に好ましくは 2 0〜5 0重 量%であり、最も好ましくは 2 0〜4 0重量%である。 また、カルボキシル基含有 単量体の重量割合は、熱膨張した微小球の再膨張開始温度を調節すること、通常内 圧高速走行性能評価、さらには内包された発泡剤の内包保持率及 TO泡性等を考慮 すると、単量体混合物に対して、好ましくは 5〜 8 0重量%であり、 より好ましく は 2 0〜 8 0重量。 /0であり、 さらに好ましくは 4 0〜 8 0重量。 /0であり、特に好ま しくは 5 0〜 8 0重量0 /0であり、 最も好ましくは 6 0〜 8 0重量0 /0である。 In addition, when the monomer mixture is a monomer mixture containing a carboxyl group-containing monomer as an essential component together with the tolyl monomer, heat resistance can be imparted and the thermally expandable microspheres can be expanded. The thermally expanded microspheres obtained by the present invention can be produced so as to have a residual power capable of re-expansion, and 90.degree. C. or higher (preferably 100.degree. C. or higher, more preferably 1). It is further preferable because re-expansion can be set to start at a temperature of 20 ° C. or higher). The weight ratio of the tolyl monomer is to adjust the retention and foamability of the encapsulated foaming agent, and to adjust the re-expansion start temperature of the thermally expanded microspheres, and to evaluate the internal pressure high-speed running performance etc. considering, for the monomer mixture, preferably 2 0-9 5 weight 0/0, more preferably from 2 0 to 8 0 wt 0/0, more preferably 2 0-6 0 weight 0 / 0 , particularly preferably 20 to 50 double %, Most preferably from 20 to 40% by weight. In addition, the weight ratio of the carboxyl group-containing monomer can be adjusted by adjusting the re-expansion start temperature of the thermally expanded microspheres, normal internal pressure high-speed running performance evaluation, and the inclusion retention rate of the incorporated foaming agent and TO foam In view of the properties and the like, it is preferably 5 to 80% by weight, more preferably 20 to 80% by weight, based on the monomer mixture. / 0 , more preferably 40 to 80 weight. / 0, a 5 0-8 0 weight 0/0 properly favored particularly, most preferably 6 0-8 0 weight 0/0.
単量体混合物がカルボキシル基含有単量体を必須成分として含む場合、単量体成 分に含まれるカルボキシル基含有単量体以外の単量体として、カルボキシル基含有 単量体のカルボキシル基と反応する単量体を含有していてもよレヽ。カルボキシル基 含有単量体の力ルポキシル基と反応する単量体としては、たとえば、 N—メチロー ノレ(メタ) ァクリルアミ ド、 N, N—ジメチノレアミノェチノレ (メタ) ァクリ レート、 N, N—ジメチルァミノプロピル (メタ) ァクリレート、マグネシウムモノ (メタ) アタリレート、 ジンクモノ (メタ) アタリレート、 ビュルグリシジルエーテル、 プ ロぺニルダリシジノレエーテル、 グリシジル (メタ) アタリレート、 2—ヒ ドロキシ ェチル (メタ) アタリレート、 2—ヒ ドロキシプロピル (メタ) アタリレート、 2 ーヒ ドロキシプチル (メタ) アタリレート、 2—ヒ ドロキシ一 3—フエノキシプロ ピル(メタ) ァクリレート等を挙げることができる。カルボキシル基含有単量体の カルボキシル基と反応する単量体の重量割合は、単量体混合物に対して、好ましく は 0 . 1〜1 0重量0 /0であり、 より好ましくは 1〜8重量0 /0であり、最も好ましく は 3〜5重量0 /0である。 When the monomer mixture contains a carboxyl group-containing monomer as an essential component, it reacts with the carboxyl group of the carboxyl group-containing monomer as a monomer other than the carboxyl group-containing monomer contained in the monomer component. Containing monomers to be Examples of the monomer that reacts with the carboxyl group-containing monomer include: N-methylol nore (meth) acrylic amide, N, N-dimethyoleaminoethynole (meth) acrylic acid, N, N -Dimethylaminopropyl (meth) acrylate, magnesium mono (meth) atalylate, zinc mono (meth) atarylate, bulidyl glycidyl ether, propanyl dalysicinole ether, glycidyl (meth) atalylate, 2-hydroxyethyryl (Meth) atalylate, 2-hydroxypropyl (meth) atarylate, 2-hydroxyl-peptil (meth) atalylate, 2-hydroxy-1-phenoxypropyl (meth) acrylate and the like. The weight ratio of the monomer reactive to the carboxyl group of the carboxyl group-containing monomer, the monomer mixture is preferably from 0.1 to 1 0 weight 0/0, more preferably 1-8 weight 0/0, most preferably 3-5 wt 0/0.
単量体混合物は、上記ラジカル重合性単量体以外に、重合性二重結合を 2個以上 有する重合性単量体(架橋剤) を含んでいてもよレ、。架橋剤を用いて重合させるこ とにより、本製造方法で得られた熱膨張した微小球に含まれる 微小球の含有率 が小さくなり、熱膨張後の內包された発泡剤の保持率(内包保持率) の低下が抑制 され、 効果的に熱膨張させることができる。  The monomer mixture may contain, in addition to the above-mentioned radically polymerizable monomer, a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds. By polymerization using a crosslinking agent, the content of the microspheres contained in the thermally expanded microspheres obtained by the present production method is reduced, and the retention of the encapsulated foam after thermal expansion (including The decrease in retention rate is suppressed, and thermal expansion can be performed effectively.
なお、本発明において、熱膨張後の発泡剤の内包保持率 (%) は、膨張する前の 熱膨張性微小球に内包された発泡剤の内包率を とし、 熱膨張させて得られる熱 膨張した微小球に内包された発泡剤の内包率を G 2とすると、 G s/G ^ 1 0 0で 定義される。 架橋剤としては、 特に限定はないが、 たとえば、 ジビュルベンゼン、 ジビニルナ フタレン等の芳香族ジビュル化合物;メタタリノレ酸ァリル、 トリアタリルホルマー ノレ、 トリアリルイソシァネート、エチレングリコールジ(メタ)アタリレート、 ジェ チレンダリコールジ(メタ)ァクリレート、トリエチレングリコールジ(メタ)ァクリ レート、 1 , 4—ブタンジオールジ(メタ)アタリレート、 1 , 9ーノナンジォール ジ(メタ)アタリレート、 1 , 1 0—デカンジオールジ(メタ)アタリレート、 P E G # 2 0 0ジ(メタ)ァクリレート、 P E G # 4 0 0ジ(メタ)ァクリレート、 P E G # 6 0 0ジ(メタ)ァクリレート、ネオペンチルグリコールジ(メタ)ァクリレート、 1, 4ーブタンジォーノレジメタクリレート、 1 , 6一へキサンジォーノレジ(メタ)アタリ レート、 1 , 9ーノナンジオールジ(メタ)アタリレート、 トリメチロールプロパン トリメタクリレート、 グリセリンジメタタリレート、ジメチローノレ一トリシクロデ カンジァクリ レート、ペンタエリスルトーノレトリ(メタ)ァクリ レート、ペンタエリ スリ トールテトラァクリ レート、ジペンタエリスルトールへキサァクリレート、ネ ォペンチルグリコールアクリル酸安息香酸エステル、トリメチロールプロパンァク リノレ酸安息香酸エステル、 2—ヒドロキシ一 3—ァクリロイ口キシプロピルメタク リレート、 ヒドロキシピパリン酸ネオペンチルグリコールジァクリレート、ジトリ メチロールプロパンテトラアタリレート、 2—ブチノレー 2—ェチノレー 1, 3—プロ パンジオールジアタリレート等のジ(メタ)アタリレート化合物を挙げることがで きる。 これらの架橋剤は、 1種または 2種以上を併用してもよレ、。 In the present invention, the retention ratio (%) of the foaming agent after thermal expansion is the thermal expansion obtained by thermal expansion, with the inclusion rate of the foaming agent encapsulated in the thermally expandable microspheres before expansion. were the encapsulation efficiency of the microspheres contained a blowing agent When G 2, defined by G s / G ^ 1 0 0 . The crosslinking agent is not particularly limited, but, for example, aromatic diaryl compounds such as dibutylbenzene and divinylnaphthalene; metatalinoaryl acid, triarylthiomalonole, triarylisocyanate, ethylene glycol di (meth) arylates Diethylene diglycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1, 4-butanediol di (meth) atalylate, 1, 9 nonandiol di (meth) atalylate, 1, 10- Decanediol di (meth) atalylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl glycol di (meth) acrylate 1, 4-butanedioresi methacrylate, 1, 6, 1-hexanedio reg ) Athalylate, 1,9 Nonanediol Di (meth) atalylate, Trimethylolpropane Trimethacrylate, Glycerin Dimetatalylate, Dimethylolone Noltricyclodecandylate Acrylate, Pentaerythritol Tonoretotri (Meth) Acrylate, Pentaerythritol Tritetramer Clearate, Dipentaerythritol Hexaacrylate, Neopentyl Glycol Benzoate, Trimethylol Propane Linoleate Benzoate, 2-Hydroxy- 1-Acryloyl xylpropyl methacrylate, Hydroxypipalic Acid Di (Meth) atari such as neopentyl glycol diacrylate, ditrimethylolpropane tetraatarylate, 2-butynore 2-ethynore 1, 3-propanediol diatalylate, etc. As possible de be given over door compound. These crosslinking agents may be used alone or in combination of two or more.
架橋剤の重量割合については、特に限定はないが、架橋の程度、外殻に内包され た発泡剤の内包保持率、耐熱 !■生及び熱膨張性を考慮すると、単量体混合物に対して、 好ましくは 0 . 0 1〜5重量%であり、 さらに好ましくは 0 . 0 5〜3重量%でぁ る。  The weight ratio of the crosslinking agent is not particularly limited, but in view of the degree of crosslinking, the retention rate of the blowing agent contained in the outer shell, the heat resistance! Preferably, it is 0.01 to 5% by weight, and more preferably 0.5 to 3% by weight.
重合開始剤については、特に限定はなく、公知の重合開始剤を用いることができ る。 たとえば、 t—ブチルパーォキシイソブチレート、 t—ブチルパーォキシ一2 一ェチルへキサノエ一ト、 t—へキシノレパーォキシ一 2—ェチノレへキサノエ一ト、 2, 5—ジメチノレー 2 , 5—ビス(2—ェチルへキサノィノレパーォキシ)へキサン、 1 , 1, 3 , 3—テトラメチルブチルパーォキシ一2—ェチノレへキサノエート、 t —プチルパーォキシピバレート、 t—へキシルパーォキシビバレート、 t一ブチル パーォキシネオデカノエート、 t一へキシノレパーォキシネオデカノエート、 1ーシ ク口へキシノレ一 1一メチルェチルパーォキシネオデカノエート、 1, 1, 3 , 3 - テトラメチノレブチルパーォキシネオデカノエート、クミノレパーォキシネオデカノェ ート、ジー n—プロピルパーォキシジカーボネート、ジィソプロピノレパーォキシジ カーボネート、ビス( 4 _ t一ブチノレシク口へキシノレ)パーォキシジカーボネート、 ジー s e cーブチノレノ、 °ーォキシジカーボネート、ジ— 2ーェトキシェチノレパーォキ シジカーボネート、ジー 2—ェチノレへキシノレノ、。ーォキシジカーボネート、ジ— 3 _ メトキシブチルパーォキシジカーボネート 3 , 5 , 5— トリメチルへキサノィルパ ーォキサイド、 ォクタノィルパーォキサイド、 ラウロイノレパーォキサイド、 ステア リルパーォキサイド、サクシエックァシッドパーォキサイド、ベンゾィルパ一ォキ サイド等の過酸ィ匕物; 2 , 2 ' —ァゾビス (4—メトキシ一 2 , 4—ジメチルバレ ロニトリル)、 2 , 2 ' —ァゾビスイソブチロニトリル、 2 , 2 ' ーァゾビス (2, 4—ジメチルバレロニトリノレ)、 2, 2 ' 一ァゾビス( 2—メチノレプロピオネート)、 2 , 2 ' ーァゾビス ( 2—メチルブチロニトリノレ)等のァゾ化合物等を挙げること ができる。重合開始剤は、ラジカル重合性単量体に対して可溶な油溶性の重合開始 剤が好ましい。 There is no particular limitation on the polymerization initiator, and known polymerization initiators can be used. For example, t-butylperoxyisobutyrate, t-butylperoxydi-2-ethylenediethyl, t-hydroxynoroxy-2-ethyl-nophenol, 2,5-dimethinole-2,5-bis (2-Ethyl hexano reperoxy) Hexane, 1,1,3,3-Tetramethylbutyl propoxy 2-diethyle-hexanoate, t-Putyl peroxide pivalate, t-Hexyl peroxy Oxy bivalate, t-butyl Peroxyneodecanoate, t-hydroxyle peroxyneodecanoate, 1-hydroxyl-hydroxylone 1-methylethylperoxyneo-decanoate, 1,1,3,3-tetra Methinolole peroxyneodecanoate, Cuminole peroxyneodecanoate, di-n-propylperoxydicarbonate, di-sopropio-lepoxydicarbonate, bis (4 _ 1-butynorexic port Hexylene) peroxydicarbonate, di-sec-butynoleno, o-oxydicarbonate, di-2-ketoxeno-le-poxy dicarbonate, di 2-echinole hexoleno, Oxy dicarbonate, di-3_ methoxybutylperoxydicarbonate 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl oleooxide, stearyl paxide, Peroxyacids such as succinic acid peroxide, benzoyl peroxide and the like; 2, 2'-azobis (4-methoxy-l, 4-dimethylvaleronitrile), 2, 2'-azobisiso Butyronitrile, 2,2'-azobis (2, 4-dimethyl valeronitrinole), 2,2 'monoazobis (2-methinolepropionate), 2,2'-azobis (2-methylbutyronitrile) Aso compounds and the like can be mentioned. The polymerization initiator is preferably an oil-soluble polymerization initiator that is soluble in the radically polymerizable monomer.
熱膨張性微小球は、従来公知の熱膨張性マイクロ力プセルの製造方法で使用され る種々の手法を用いて製造することができる。  The thermally expandable microspheres can be produced using various techniques used in the conventionally known method of producing thermally expandable microcapsules.
すなわち、ラジカル重合性単量体を必須とし任意に架橋剤を含む単量体混合物と、 重合開始剤と、発泡剤とを混合し、得られた混合物を適当な分散安定剤等を含む水 系懸濁液中で懸濁重合させる方法等である。 ' · 水系における分散安定剤としては、コロイダルシリカ、コロイダル炭酸力ルシゥ ム、水酸化マグネシウム、リン酸カルシウム、水酸ィ匕アルミニウム、水酸化第二鉄、 硫酸カルシウム、硫酸ナトリゥム、摻酸カルシウム、炭酸カルシウム、炭酸バリゥ ム、炭酸マグネシウム、 アルミナゾル等が挙げられる。分散安定剤は、単量体混合 物に対して 0 . 1〜 2 0重量%の割合で使用されるのが好ましレ、。その他に、分散 安定補助斉 1Jとしてジエタノールァミンと脂肪族ジカルボン酸の縮合生成物、ゼラチ ン、 ポリビニノレピロリ ドン、 メチルセルロース、 ポリエチレンォキサイド、 ポリビ ニルアルコール等の高分子タイプの分散安定補助剤、塩化ァノレキルトリメチルァン モニゥム、塩ィ匕ジアルキルジメチルアンモニゥム等の陽イオン界面活性剤、アルキ ル硫酸ナトリゥム等の陰イオン界面活性剤、アルキルジメチルァミノ酢酸べタイン、 アルキルジヒドロキシェチルァミノ酢酸ベタィン等の両ィオン性界面活性剤等の 各種乳化剤を用いてもよい。分散安定補助剤は、単量体混合物に対して 0. 0 5〜 2重量%の割合で使用されるのが好ましレ、。 That is, a monomer mixture essentially containing a radically polymerizable monomer, optionally containing a crosslinking agent, a polymerization initiator, and a foaming agent, and the resulting mixture being a water-based compound containing an appropriate dispersion stabilizer etc. For example, a method of suspension polymerization in a suspension. · · Dispersion stabilizers in aqueous systems include colloidal silica, colloidal carbonate, magnesium hydroxide, calcium phosphate, aluminum hydroxide, ferric hydroxide, calcium sulfate, sodium sulfate, calcium borate, calcium carbonate, Examples include barium carbonate, magnesium carbonate, and alumina sol. Dispersion stabilizers are preferably used in a proportion of 0.1 to 20% by weight, based on the monomer mixture. In addition, dispersion stabilization aid for dispersion type polymers such as condensation products of diethanolamine and aliphatic dicarboxylic acid, gelatin, polyvinylinolepyrollidone, methyl cellulose, polyethylene oxide, polyvinyl alcohol etc. Agent, Kanolekiltrimethylan chloride Cationic surfactants such as monium and sodium dialkyldimethyl ammonium, anionic surfactants such as alkyl sulfate sodium and the like, alkyl dimethyl amino acetate betaine, alkyl dihydroxy amino acetate betaine and the like It is also possible to use various emulsifying agents such as organic surfactants. Dispersion stabilizers are preferably used in a proportion of 0.5 to 5% by weight, based on the monomer mixture.
分散安定剤を含有する水系懸濁液は、分散安定剤及び分散安定補助剤等を水(た とえば、イオン交換水) に配合して調製する。重合時の水系懸濁液の p Hは、使用 する分散安定剤、分散安定補助剤の種類によって適宜決められる。また、水系懸濁 液中に水溶性還元剤を添加してもよく、 重合中の凝集微小球の生成が抑制される。 zk溶性還元剤としては、亜硝酸ナトリウム、亜硝酸力リゥム等の亜硝酸アル力リ金 属塩や、塩化第一スズ、塩化第二スズ、 塩化第一鉄、 塩化第二鉄、硫酸第一鉄、水 溶性ァスコルビン酸類等が挙げられる。これらの中でも、水中での安定性の面から 亜硝酸アルカリ金属塩が好ましい。その添加量は、単量体混合物に対して好ましく は 0. 0 0 0:!〜 1重量%、さらに好ましくは 0. 0 0 0 3〜0. 1重量%である。 重合温度は、重合開始剤の種類によって自由に設定される力 好ましくは 4 0〜 1 0 0 °C、 さらに好ましくは 4 5〜9 0 °C、特に好ましくは 5 0〜8 5 °Cの範囲で 制御される。重合初期圧力についてはゲージ圧で 0〜 5 . 0MP a、 さらに好まし くは 0. 1〜3 . 0MP a、 特に好ましくは 0. 2〜2. O MP aの範囲である。 得られた熱膨張性微小球において、発泡性能が良好で、タイヤとリムとの組立体 に充填し、タイヤ内圧付与材として用いる^の十分な性能を発揮させることがで きると'ともに、熱膨張 ι·生微小球の外殻である熱可塑性樹脂の厚みが、内包された発 泡剤の内包保持率を確保することができる観点から、発泡剤は熱膨張性微小球全体 の 2〜8 5重量%、好ましくは 5〜6 0重量。 /0、さらに好ましくは 7〜5 0重量% となるように調整される。特に、発泡剤が含弗素化合物を含む^^、好ましくは 1 0〜 6 0重量%であり、 さらに好ましくは 1 5〜 5 0重量0 /0である。 The aqueous suspension containing the dispersion stabilizer is prepared by blending the dispersion stabilizer, the dispersion stabilizer adjuvant and the like in water (for example, ion exchanged water). The pH of the aqueous suspension at the time of polymerization is appropriately determined depending on the type of dispersion stabilizer and dispersion stabilizer adjuvant used. In addition, a water-soluble reducing agent may be added to the aqueous suspension to suppress the formation of aggregated microspheres during polymerization. Examples of the zk-soluble reducing agent include sodium nitrite, lithium nitrite and other metal salts such as lithium nitrite, stannous chloride, stannous chloride, ferrous chloride, ferric chloride, and sulfuric acid. Iron, water-soluble ascorbic acid and the like can be mentioned. Among these, alkali metal nitrites are preferable in terms of stability in water. The addition amount thereof is preferably from 0. 0 0 0 !! to 1% by weight, more preferably from 0. 0 0 0 3 to 0. 1% by weight with respect to the monomer mixture. The polymerization temperature may be set freely according to the type of polymerization initiator, preferably in the range of 40 to 100 ° C., more preferably 4 to 90 ° C., particularly preferably 50 to 85 ° C. Controlled by The initial pressure of polymerization is in the range of 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.O MPa in gauge pressure. The obtained thermally expandable microspheres have good foaming performance, can be filled into an assembly of a tire and a rim, and can exhibit sufficient performance of ^ used as a tire internal pressure imparting material. From the viewpoint that the thickness of the thermoplastic resin which is the shell of the green and green microspheres can secure the inclusion retention rate of the incorporated foaming agent, the foaming agent is 2 to 8 of the whole of the thermally expandable microspheres. % By weight, preferably 5 to 60% by weight. It is adjusted to be / 0 , more preferably 7 to 50% by weight. In particular, ^^ foaming agent comprises fluorine-containing compound, preferably 1 0-6 0% by weight, more preferably 1 5-5 0 weight 0/0.
熱膨張性微小球の平均粒子径につレヽては、用途に応じて自由に設計することがで きるために特に限定されず、好ましくは 1〜1 0 0 μ πι、 さらに好ましくは 2〜 8 Ο μ πι、 特に好ましくは 5〜6 0 μ πιである。  The average particle size of the thermally expandable microspheres is not particularly limited because it can be freely designed according to the application, and is preferably 1 to 100 μπμ, more preferably 2 to 8 It is μμπ 特 に, particularly preferably 5 to 60μπι.
また、熱膨張 !■生微小球の粒度分布の変動係数 cvは、特に限定されないが、好ま しくは 3 0 %以下、さらに好ましくは 2 7 %以下、特に好ましくは 2 5 %以下であ る。 変動係数 C Vは、 以下に示す計算式 (1 ) および (2 ) で算出される。 In addition, the coefficient of variation cv of the thermal expansion! ■ raw microspheres particle size distribution is not particularly limited, but is preferably Or 30% or less, more preferably 27% or less, and particularly preferably 25% or less. The coefficient of variation CV is calculated by the following formulas (1) and (2).
C V = ( s /< X » X 1 0 0 (%) · · · ( 1 ) s = {∑ ( x - < x » V (n - 1 ) } 1/2 · , · ( 2 ) (式中、 sは粒子径の標準偏差、 く x >は平均粒子径、 x i番目の粒子径、 n は粒子の数である。) CV = (s / <X »X 1 0 0 (%) · · · (1) s = {∑ (x-<x» V (n-1)) 1/2 ·, · (2) (wherein formula , S is the standard deviation of particle size, x> is the average particle size, xi-th particle size, n is the number of particles.)
熱膨張性微小球は、外殻および内包物質以外の成分によつて付加や修飾等された ものであってもよい。たとえば、熱膨張性微小球においてその外殻の外表面に微粒 子充填剤を付着させて用いることが、使用時における分散性の向上及び流動性改善 の観点から、 好ましい。  The thermally expandable microspheres may be added or modified with components other than the shell and the inclusion substance. For example, it is preferable to use a fine particle filler attached to the outer surface of the outer shell of the thermally expandable microspheres from the viewpoint of improving the dispersibility and the flowability at the time of use.
微粒子充填剤は、有機系及び無機系充填剤のいずれでもよく、その種類及び量は、 使用目的に応じて適宜選定される。  The fine particle filler may be either an organic or inorganic filler, and the type and amount thereof are appropriately selected according to the purpose of use.
有機系充填剤としては、たとえば、ステアリン酸マグネシウム、ステアリン酸力 /レシゥム、ステアリン酸亜口、、ステアリン酸バリウム、ステアリン酸リチウム等の 金属セッケン類;ポリエチレンワックス、ラウリン酸アミド、ミリスチン酸アミド、 ノルミチン酸ァミド、ステアリン酸ァミド、硬化ひまし油等の合成ヮックス類;ポ リアクリルアミド、ポリイミド、 ナイロン、 ポリメタクリル酸メチル、 ポリエチレ ン、 ポリテトラフルォロエチレン等の樹脂粉体等が挙げられる。  Examples of organic fillers include: metal stearates such as magnesium stearate, stearic acid strength / resium, stearic acid narrow mouth, barium stearate, lithium stearate and the like; polyethylene wax, lauric acid amide, myristic acid amide, normitin And synthetic powders such as acid amide, stearic acid amide and hydrogenated castor oil; resin powder such as polyacrylamide, polyimide, nylon, polymethyl methacrylate, polyethylene, polytetrafluoroethylene and the like.
無機系充填剤としては、層状構造を有するもの、 たとえば、 タルク、 マイ力、ベ ントナイト、セリサイト、 カーボンブラック、 二硫化モリブデン、二硫化タングス テン、 弗化黒鉛、 弗化カルシウム、 窒ィ匕ホウ素等;その他、 シリカ、 ァノレミナ、 雲 母、炭酸力ルシゥム、水酸化力ルシゥム、リン酸カルシゥム、水酸化マグネシゥム、 リン酸マグネシゥム、硫酸パリゥム、二酸化チタン、酸化亜鉛、セラミックビーズ、 ガラスビーズ、 水晶ビーズ等が挙げられる。  As the inorganic filler, those having a layered structure, for example, talc, myon, bentonite, sericite, carbon black, molybdenum disulfide, tungsten disulfide, graphite fluoride, calcium fluoride, boron nitride, Etc .; Other, Silica, Anolemina, Cloud Mother, Carbonate Licum, Hydroxide Hydroxide, Calcium Phosphate, Magnesium Hydroxide, Magnesium Phosphate, Magnesium Sulfate, Parium Sulfate, Titanium Dioxide, Zinc Oxide, Ceramic Beads, Glass Beads, Crystal Beads Can be mentioned.
これらの微粒子充填剤は、 1種または 2種以上を併用してもよい。  These particulate fillers may be used alone or in combination of two or more.
外殻の外表面に付着する微粒子充填剤は、上記のうち、融点 9 0°C以上(好まし くは 1 0 0°C以上、より好ましくは 1 1 0°C以上、さらに好ましくは 1 2 0°C以上、 特に好ましくは 1 5 0°C以上、最も好ましくは 2 0 0°C以上の融点を有する)の有 機化合物又は層状構造を有する無機ィ匕合物(好ましくはカーボンブラック、二硫ィ匕 モリブデン、二硫化タングステン、弗ィ匕黒鉛およぴ窒ィ匕ホウ素から選ばれた少なく とも 1種)、 つまり、 熱融着防止剤であることが好ましい。 ここで、 熱融着防止剤 は、熱膨張性微小球および Zまたは熱膨張した微小球の外殻樹脂の熱融着を防止し、 さらに、加熱膨張時にも隣接する熱膨張 ["生微小球およぴ Zまたは熱膨張した微小球 との熱融着を防止し、 発泡性能を損なわなレ、働きをするものとする。 これにより、 例えば、熱膨張性微小球を膨張させて得られ、再膨張できる余力を有する熱膨張し た微小球を、タイヤとリムとの組立体内部に充填した場合、タィャが受傷してタイ ャ内圧が低下したとしても、速やかにタイヤ受傷部を封止し、高いタイヤ内圧付与 機能を発揮させることができ、その結果、受傷したタイヤでも、必要な距離を走行 させることができる。 この効果は、特に、発泡剤が含弗素化合物を含む:^に顕著 である。 Among the above, the particulate filler attached to the outer surface of the outer shell has a melting point of 90 ° C. or higher (preferably 100 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 12 ° C.). With a melting point of at least 0 ° C., particularly preferably at least 150 ° C., most preferably at least 200 ° C. Organic compounds or inorganic compounds having a layered structure (preferably at least one selected from carbon black, molybdenum disulfide, tungsten disulfide, fluorinated graphite and boron nitride), that is, It is preferable that it is a thermal adhesion inhibitor. Here, the thermal fusion preventing agent prevents thermal fusion of the shell resin of the thermally expandable microspheres and Z or the thermally expanded microspheres, and further, the thermal expansion adjacent to the thermally expanded [] green microspheres And prevent thermal fusion with Z or thermally expanded microspheres, thereby reducing foaming performance, thereby serving to expand the thermally expandable microspheres, for example. When a thermally expanded microsphere having a re-expanding capacity is filled inside the assembly of a tire and a rim, even if the tire is injured and the tire internal pressure is reduced, the tire injured portion is rapidly sealed. The tire can exert a high internal tire pressure application function, and as a result, it is possible to travel the necessary distance even in a damaged tire.This effect is particularly remarkable when the foaming agent contains a fluorine-containing compound: ^ is there.
また、二トリル系単量体と力ルポキシル基含有単量体とを必須成分として含む単 量体混合物を重合して得られる熱可塑性樹脂を外殻に用いた熱膨張性微小球の場 合には、耐熱性、難燃 (不燃)性にぉレヽて良好な性能を発揮させることができると ともに、熱膨張!"生微小球を膨張させて得られ、再膨張できる余力を有する熱膨張し た微小球に対して、 9 0 °C以上(好ましくは 1 0 0 °C以上、 さらに好ましくは 1 2 0 °C以上) の温度で再膨張開始させることができ、 上記効果が顕著となる。  Also, in the case of thermally expandable microspheres using a thermoplastic resin obtained by polymerizing a monomer mixture containing, as essential components, a tolyl monomer and a force propoxy group-containing monomer as the outer shell, In addition to being able to exhibit good performance in heat resistance and flame retardancy (incombustibility), it is obtained by expanding the raw microspheres, and it is obtained by expanding the raw microspheres, and it has thermal expansion that has the ability to re-expand. The microspheres can be re-expanded at a temperature of 90 ° C. or more (preferably 100 ° C. or more, more preferably 120 ° C. or more), and the above-mentioned effect becomes remarkable.
微粒子充填剤の平均粒子径は、付着前の熱膨張 [·生微小球の平均粒子径の 1 / 1 0 以下であることが好ましい。 ここで、平均粒子径とは、一火粒子における平均粒子 径を意味する。  The average particle size of the particulate filler is preferably not more than 1/10 of the thermal expansion before adhesion [· and the average particle size of the raw microspheres. Here, the average particle size means the average particle size of one flame particle.
熱膨張性微小球への微粒子充填剤の付着量は、特に限定はないが、微粒子充填剤 による機能を十分に発揮でき、 熱膨張性微小球の真比重の大きさ等を考慮すると、 付着前の熱膨張性微小球に対して好ましくは 0 . 1〜9 5重量%、さらに好ましく は 0 . 5〜6 0重量。 /0、特に好ましくは 5〜5 0重量%、最も好ましくは 8〜3 0 重量%である。 The amount of adhesion of the particulate filler to the thermally expandable microspheres is not particularly limited, but the function of the particulate filler can be sufficiently exerted, and in consideration of the size of the true specific gravity of the thermally expandable microspheres, etc. Preferably 0.1 to 95% by weight, more preferably 0.5 to 60% by weight, based on the weight of the heat-expandable microspheres. / 0, and particularly preferably 5 to 5 0 wt%, and most preferably 8-3 0% by weight.
熱膨張 1·生微小球の外表面への微粒子充填剤の付着は、熱膨張!"生微小球と微粒子充 填剤とを混合することによって行うことができる。混合については、特に限定はな く、容器と攪拌パネといった極めて簡単な機構を備えた装置を用いて行うことがで きる。また、一般的な揺動または攪拌を行える粉体混合機を用いてもよい。粉体混 合機としては、たとえば、 リボン型混合機、垂直スクリュー型混合機等の揺動攪拌 または攪拌を行える粉体混合機を挙げることができる。 また、近年、攪拌装置を組 み合わせたことにより効率のよレ、多機能な粉体混合機であるス一パーミキサー (株 式会社カヮタ製) 及ぴハイスピードミキサー (株式会社深江製)、 ニューグラムマ シン (株式会社セイシン企業製) 等を用いてもよい。 Thermal expansion 1. The adhesion of the particulate filler to the outer surface of the green microspheres can be carried out by mixing the green microspheres and the particle filler. Thermal mixing is not particularly limited. Can be carried out using an apparatus with a very simple mechanism such as a container and a stirring panel. Can. Moreover, you may use the powder mixer which can perform general rocking | fluctuation or stirring. As a powder mixer, for example, a powder mixer capable of rocking stirring or stirring such as a ribbon mixer, a vertical screw mixer and the like can be mentioned. Also, in recent years, a combination of stirring devices has made it possible to use a highly efficient powder mixer, such as Spir permixer (Kata Co., Ltd.) and Hi-Speed Mixer (Fukae Co., Ltd.). Neugram Machine (manufactured by Seishin Enterprise Co., Ltd.) may be used.
なお、熱膨張性微小球は、例えば、そのままタイヤとリムとの組立体内部に充填 し、 熱膨張性微小球の膨張開始温度以上の で加熱することにより膨張させて、 体積保持材として使用することができる。 また、そのまま、 自動車等の塗料の軽量 化充填剤、壁紙や衣服装飾用の発泡ィンク用発泡粒子、樹脂組成物軽量ィ匕のための 発泡材等の用途に使用してもよレ、。  The thermally expandable microspheres are, for example, filled in the inside of an assembly of a tire and a rim as it is, and are expanded by heating at a temperature higher than the expansion start temperature of the thermally expandable microspheres, and used as a volume retaining material. be able to. In addition, it may be used as a filler for reducing the weight of paints in automobiles, etc., foam particles for foam ink for wallpaper and clothes decoration, or foam material for resin compositions for light weight.
次に、 熱膨張した微小球について説明する。  Next, thermally expanded microspheres will be described.
b . 熱膨張した微小球  b. Thermally expanded microspheres
熱膨張した微小球は、 上記で説明した熱膨張性微小球を熱膨張させて得られる。 熱膨張した微小球を製造する方法につ!/ヽては、熱膨張 I"生微小球を加熱して熱膨張さ せる工程を含む製造方法であれば特に限定はなく、従来公知の方法を適用すること ができる力 S、なかでも、以下に示す 2つの方法を好ましい方法として挙げることが できる。  Thermally expanded microspheres are obtained by thermally expanding the thermally expandable microspheres described above. There is no particular limitation on the method of producing the thermally expanded microspheres! / As long as it is a manufacturing method including the step of heating and thermally expanding I "raw microspheres, there is no particular limitation, and conventionally known methods may be used. Among the methods S that can be applied, in particular, the following two methods can be mentioned as preferred methods.
(A)上記で説明した熱膨對生微小球(原料) を含む気体流体を、 出口に分散ノズ ルを備え且つ熱風流の内側に設置された気体導入管に流し、前記分散ノズルから噴 射させる工程(噴射工程) と、前記気体流体を前記分散ノズルの下流部に設置され た衝突板に衝突させ、熱膨張 微小球を ttrts熱風気流中に分散させる工程(分散ェ 程) と、分散した熱膨張性微小球を前記熱風気流中で膨張開始温度以上に加熱して 膨張させる工程 (膨張工程) とを含む製造方法。  (A) A gaseous fluid containing the heat-expanded microspheres (raw material) described above is allowed to flow through a gas introduction pipe provided with a dispersion nozzle at the outlet and installed inside a hot air flow, and jetted from the dispersion nozzle. And (dispersion step) of causing the gas fluid to collide with the collision plate installed at the downstream portion of the dispersion nozzle to disperse the heat expansion microspheres in the hot air flow of ttrts (dispersion step); A step of heating and expanding thermally expandable microspheres in the hot air stream at a temperature higher than the expansion start temperature (expansion step).
(B )上記で説明した熱膨張性微小球(原料) を含む気体流体を、 出口に分散ノズ ルを備え且つ熱風流の外部に設置された少なくとも 1つの気体導入管に流し、 tfits 分散ノズルから噴射させ、熱膨張性微小球を前記熱風流中に分散させる工程(分散 工程) と、分散した熱膨張性微小球を前記熱風流中で膨張開始温度以上にカ卩熱して 膨張させる工程 (膨張工程) とを含む製造方法。 上記製造方法においては、エネルギー効率が高く、温度制御が容易で、原料であ るどの熱膨張 ¾微小球に対してもほぼ同一の熱履歴を連続的に与えることができ、 気流中での分散性が高い。 このため、 S彭張前後における粒度分布の変動係数の変ィ匕 が小さく、得られた熱膨張した微小球の品質(特に、粒子径分布および真比重の分 布) の均一性が高い。すなわち、得られた熱膨張した微小球に含まれる凝集微小球 の生成をできるだけ抑制することができ、 しかも、原料やわず力に膨張した微小球 の含有率を極めて小さくすることができる。 (B) A gaseous fluid containing the thermally expandable microspheres (raw material) described above is allowed to flow through at least one gas introduction pipe provided with a dispersion nozzle at the outlet and installed outside the hot air flow, from the tfits dispersion nozzle A step of dispersing the thermally expandable microspheres into the hot air flow by spraying (dispersion step), and a step of causing the dispersed thermally expandable microspheres to heat and expand in the hot air flow above the expansion start temperature (expansion (expansion) A manufacturing method comprising the steps of In the above manufacturing method, energy efficiency is high, temperature control is easy, and almost the same thermal history can be continuously given to any of the thermal expansion microspheres serving as the raw material, and dispersion in the air flow is possible. Sex is high. For this reason, the variation of the coefficient of variation of the particle size distribution before and after S stretching is small, and the uniformity of the quality of the obtained thermally expanded microspheres (particularly, the particle size distribution and the distribution of true specific gravity) is high. That is, the formation of aggregated microspheres contained in the obtained thermally expanded microspheres can be suppressed as much as possible, and furthermore, the content of the raw material and the microspheres expanded by the force can be extremely reduced.
また、上記の製造方法において、膨張条件を制御することによって、得られる熱 膨張した微小球が再膨張開始温度を有するようにも、有しないようにもすることが できる。 なお、微小球が再膨張開始温度を有するとは、一旦製造された熱膨張した 微小球がなお熱膨張する性質を有しており、熱膨張した微小球を加熱すると、再び カロ熱膨張する現象が見られることを意味する。そして、その加熱膨張し始める温度 を再膨張開始温度と称する。また、熱膨張した微小球が再膨張開始 を有するこ とは、最大 (再)膨張温度における膨赚率が 1 0 0 %超であることと同義である。 一方、微小球が再膨張開始温度を有しなレ、とは、微小球がほぼ完全に熱膨張したこ とを意味する。  Further, in the above manufacturing method, by controlling the expansion condition, the obtained thermally expanded microspheres can be made to have or not have the re-expansion start temperature. It should be noted that the fact that the microspheres have a re-expansion start temperature means that the once-expanded thermally expanded microspheres have the property of still expanding thermally, and when the thermally expanded microspheres are heated, they are again thermally expanded. Means to be seen. And the temperature which starts the heat expansion is called re-expansion start temperature. Also, the fact that the thermally expanded microspheres have a re-expansion start is synonymous with the fact that the expansion rate at the maximum (re) expansion temperature is more than 100%. On the other hand, the microspheres do not have a re-expansion start temperature, which means that the microspheres are almost completely thermally expanded.
膨張条件の制御については、 特に限定はない。 たとえば、 まず、原料供給量、熱 風流量や原料分散気体量等のパラメーターを一定に固定し、 熱風流の温度 (以下、 「熱風温度」 ということがある。) を変ィ匕させる。 次に、 熱風 ί¾¾を段階的に変ィ匕 させ、 つ、他のパラメーターを一定に固定しながら各温度で原料微小球を膨張さ せ、得られた微小球の真比重を測定し、熱風温度 (X軸) と真比重(y軸) の関係 をプロットしたグラフを作成する。 このグラフにおいて、最低真比重(グラフにお ける極小値)に対応する温度領域を熱風 に設定することによって、得られる熱 膨張した微小球が再膨張開始温度を有しないように製造することができる。  There is no particular limitation on the control of expansion conditions. For example, first, parameters such as the raw material supply rate, the hot air flow rate, and the raw material dispersion gas amount are fixed, and the hot air flow temperature (hereinafter sometimes referred to as "hot air temperature") is changed. Next, the hot air flow is changed stepwise, and while the other parameters are fixed, the raw material microspheres are expanded at each temperature, and the true specific gravity of the obtained microspheres is measured, and the hot air temperature is measured. Create a graph that plots the relationship between (X axis) and true specific gravity (y axis). In this graph, by setting a temperature range corresponding to the lowest true specific gravity (minimum value in the graph) to hot air, it is possible to manufacture the obtained thermally expanded microspheres so as not to have a re-expansion start temperature. .
また、所望の真比重を有する膨張した微小球を製造する場合は、そのグラフにお いて所望の真比重に対応する熱風温度に設定する。これにより、 S彭張条件の制御が 行われ、所望の再膨張できる余力を有する熱膨張した微小球を製造することができ る。  Further, when producing expanded microspheres having a desired true specific gravity, the temperature is set to the hot air temperature corresponding to the desired true specific gravity in the graph. As a result, control of the S tension conditions is performed, and it is possible to produce thermally expanded microspheres having a residual power capable of re-expansion as desired.
さらに、原料供給量および zまたは原粉散気体量を変化させる場合、熱風気流 により供給される熱量や原料である熱膨張 微小球の全熱容量等を考慮して、熱風 ¾ 等を変化させて、膨張条件を制御する。例えば、原難給量および原料分散気 体量を増加させる:^は、熱風温度を上げる。原離給量および原料分散気体量を 減少させる場合は、 熱風温度を低くする。 Furthermore, when changing the raw material supply amount and z or the amount of powdery powder, the hot air flow The expansion condition is controlled by changing the temperature of the hot air or the like in consideration of the amount of heat supplied by the heat source and the total heat capacity of the thermal expansion microspheres as the raw material. For example, increase the amount of raw material dispensation and the amount of raw material dispersed air: ^ raises the hot air temperature. If you want to reduce the amount of raw material supply and the amount of dispersed gas, lower the temperature of the hot air.
上記製造方法にぉ ヽては、エネルギー効率が高く、温度制御が容易で、原料であ るどの熱膨張性微小球に対してもほぼ同一の熱履歴を連続的に与えることができ、 気流中での分散性が高い。 このため、膨張前後における粒度分布の変動係数の変ィ匕 が小さく、得られた熱膨張した微小球の品質(特に、粒子径分布および真比重の分 布) の均一性が高い。すなわち、得られた熱膨張した微小球に含まれる凝集微小球 の生成をできるだけ抑制することができ、 し力も、原料やわずかに膨張した微小球 の含有率を極めて小さくすることができる。  According to the above manufacturing method, energy efficiency is high, temperature control is easy, and substantially the same heat history can be continuously given to any thermally expandable microspheres as a raw material. Dispersion in the Therefore, the variation of the coefficient of variation of the particle size distribution before and after expansion is small, and the uniformity of the quality of the obtained thermally expanded microspheres (particularly, the particle size distribution and the distribution of true specific gravity) is high. That is, the formation of the aggregated microspheres contained in the obtained thermally expanded microspheres can be suppressed as much as possible, and the content of the raw material and the slightly expanded microspheres can be extremely reduced.
このようにして得られた熱膨張した微小球は、たとえば、ランフラットタイヤの 主要部材として利用できる。すなわち、タイヤとリムとの組立体内部に熱膨張した 微小球を充填することにより、 タイヤが受傷して、 タイヤ内圧が低下した際に、 タ ィャ受傷部封止材および Zまたはタイヤ内圧付与材として使用することができる。 熱膨張した微小球の平均粒子径は、特に限定はされず、用途に応じて自由に設計 することができる。例えば、外殻による発泡剤の内包保持率、熱膨張した微小球の 耐久性等を考慮すると、好ましくは:!〜 1 0 0 0 μ m、 さらに好ましくは 5〜 8 0 0 μ πι、 特に好ましくは 1 0〜5 0 0 μ ηιである。  The thermally expanded microspheres thus obtained can be used, for example, as a main member of a run flat tire. That is, by filling the thermally expanded microspheres inside the assembly of the tire and the rim, when the tire is damaged and the tire internal pressure decreases, the tire scratch seal and the Z or tire internal pressure application are applied. It can be used as a material. The average particle size of the thermally expanded microspheres is not particularly limited, and can be freely designed according to the application. For example, in consideration of the retention of the foaming agent by the outer shell, the durability of the thermally expanded microspheres, etc., preferably:! It is preferably from 10 to 100 μm, more preferably from 5 to 800 μπι, particularly preferably from 10 to 500 μι.
熱膨張した微小球中に含まれる真比重 0 . 7 9 gZ c c以上の微小球の含有率 ( 2 5 °C) は、真比重の均一性を考慮し、 内包物質を高い効率で回収し、形状の良好な 新規な微小球を得るためには、 5重量%以下であることが好ましく、より好ましく は 3重量%以下、さらに好ましくは 2重量%以下、特に好ましくは 1重量%以下で ある。 0 . 7 9 g/ c c以上の微小球の含有率は、イソプロピノレアルコール(2 5 °C における比重: 0 . 7 9 ) を用いた比重差分離後の沈降成分の定量により測定され る。 また、 本発明において真比重の測定は、 たとえば、試料 0 . 5〜2 . O gにつ いて、温度 2 5 °Cにおいてイソプロピルアルコールを用いた液置換法(アルキメデ ス法) により行う。 なお、 ここでいう真比重は、熱膨張した微小球の 1個について 真比重を測定した値ではなく、熱膨張した微小球の集合体にっレヽて真比重を測定し た値であり、 平均真比重を意味する。 The content (25 ° C) of microspheres with a true specific gravity of 0.79 gZ cc or more contained in the thermally expanded microspheres can be used to recover the encapsulated substance with high efficiency, considering the uniformity of the true specific gravity, In order to obtain novel microspheres having a good shape, the content is preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 2% by weight or less, particularly preferably 1% by weight or less. The content of microspheres of 0.79 g / cc or more is determined by quantifying the sedimented component after differential gravity separation using isopropinole alcohol (specific gravity at 25 ° C .: 0.79). In the present invention, the true specific gravity is measured, for example, by using a liquid replacement method (Archimedes method) using isopropyl alcohol at a temperature of 25 ° C. for samples 0.5 to 2.O g. Here, the true specific gravity is not a value obtained by measuring the true specific gravity of one of the thermally expanded microspheres, but the true specific gravity is measured on an assembly of the thermally expanded microspheres. Mean specific gravity.
熱膨張した微小球の外殻の厚みについても、特に限定はないが、内包物質を高い 効率で回収し、 形状の良好な新規な微小球を得るためには、 好ましくは 0 . 1〜2 0 μ πι、 より好ましくは 0 . 2〜: 1 0 μ πι、 さらに好ましくは 0 . 2〜5 μ πι、特 に好ましくは 0 . 2〜 1 μ mである。外殻の厚みは、熱膨張した微小球の平均粒子 径、発泡剤の内包率、前記液置換法 (アルキメデス法)によって測定された真比重か ら算出される。 その算出方法は、 以下に示すとおりである。  The thickness of the shell of the thermally expanded microspheres is not particularly limited, but in order to recover the encapsulated material with high efficiency and obtain novel microspheres with a good shape, it is preferable to use 0.1 to 2 0 0 preferably. More preferably 0.2 to 10 μπ, even more preferably 0.2 to 5 μπ, and particularly preferably 0.2 to 1 μm. The thickness of the outer shell is calculated from the average particle diameter of the thermally expanded microspheres, the inclusion rate of the foaming agent, and the true specific gravity measured by the liquid replacement method (Archimedes method). The calculation method is as follows.
( 1 ) まず、平均粒子径を有する熱膨張した微小球 1粒について考え、その総体積 を平均粒子径から算出し、その総重量を真比重から算出し、得られた総重量と発泡 剤の内包率から発泡剤ガス重量を算出する。  (1) First, consider one thermally expanded microsphere having an average particle size, calculate the total volume from the average particle size, calculate the total weight from the true specific gravity, and obtain the total weight obtained and the foaming agent. The blowing agent gas weight is calculated from the inclusion rate.
( 2 )次いで、総重量と発泡剤ガス重量との差を外殻の重量とし、 この外殻の重量 と外殻の比重から外殻の体積を算出する。  (2) Then, the difference between the total weight and the blowing agent gas weight is used as the weight of the outer shell, and the volume of the outer shell is calculated from the weight of the outer shell and the specific gravity of the outer shell.
( 3 ) さらに、総体積と外殻の体積との差を外殻内部の体積とし、 この外殻内部の 体積から外殻内部の を算出する。  (3) Furthermore, the difference between the total volume and the volume of the shell is taken as the volume inside the shell, and the volume inside the shell is calculated from the volume inside the shell.
( 4 )最後に、平均粒子径を 2で割って平均粒子雑を算出し、 この平均粒子雜 と外殻内部の判圣との差を算出し、 外殻の厚みが計算される。  (4) Finally, the average particle size is divided by 2 to calculate an average particle size, and the difference between the average particle size and the size of the outer shell is calculated to calculate the thickness of the outer shell.
熱膨張した微小球は、再膨張開始温度を有していなくてもよいし、有していても よい。特に、熱膨張した微小球が再膨張開始 ¾J を有しない場合や、再膨張開始温 度を有していても、熱膨張した微小球の再膨張倍率が 1 0 0〜5 0 0 %の範囲にあ る場合は、外殻を構成する熱可塑性樹脂の厚みが薄くて、内包物質が外殻を透過し やすくなり、 内包物質を高効率で回収できる。  The thermally expanded microspheres may or may not have a re-expansion start temperature. In particular, when the thermally expanded microspheres do not have the re-expansion start 3⁄J, or even when they have the re-expansion start temperature, the re-expansion magnification of the thermally expanded microspheres is in the range of 100 to 500%. In this case, the thickness of the thermoplastic resin constituting the outer shell is small, and the inclusion substance can easily permeate the outer shell, and the inclusion substance can be recovered with high efficiency.
本発明で用いる微小球は、以上説明した熱膨張 [·生微小球や熱膨張した微小球をそ. のまま使用しても良いが、資源の回収、再利用の観点からは、熱膨^†生微小球や熱 膨張した微小球をある用途に使用した使用済の微小球が好ましい。  As the microspheres used in the present invention, the thermal expansion [the raw microspheres and the thermally expanded microspheres may be used as they are, but from the viewpoint of recovery and reuse of resources, thermal expansion Preferred are used microspheres in which the raw microspheres or the thermally expanded microspheres are used for an application.
上記用途としては、熱膨張性微小球や熱膨張した微小球が有する種々の特性を利 用した用途であれば特に限定はない。上記特性としては、たとえば、意匠性、多孔 性、 嵩高性、 スリッツプ防止性、 収縮防止性 (寸法安定性)、 軽量化 (コストダウ ン)、 断熱性(保温性、保冷性)、衝撃吸収性(反発弾性)、防音性、制振性、岡胜、 表面改質性 (艷消し、 ソフト感付与)、 隠蔽性、 易剥離性、 目止性等を挙げること ができる。 具体的な用途としては、 ランブラットタイヤの主要部材(タイヤとリム との組立体内部に熱膨張した微小球を充填することにより、タイヤが受傷して、タ ィャ内圧が低下した際に、タィャ受傷部封止材ぉよび/またはタイャ内圧付与材と して使用)、 ゴムや樹脂の内部添加剤 (ゴムや樹脂に添加し、 たとえば、 加熱成形 時に発泡させ、 得られる部材の軽量化剤として使用) 等を挙げることができる。 次に、 以上で説明した微小球中の内包物質を回収する方法を詳しく説明する。 The application is not particularly limited as long as it is an application utilizing various properties possessed by thermally expandable microspheres or thermally expanded microspheres. The above properties include, for example, design, porosity, bulkiness, anti-slipping ability, anti-shrinkage (dimensional stability), weight reduction (cost reduction), heat insulation (heat retention, cold storage), shock absorption ( Resilient resilience), soundproofness, vibration control, okada, surface modification (dampening, soft feeling added), concealability, easy peelability, etc. Can. As a specific application, when the tire is injured and the tire internal pressure is lowered by filling the thermally expanded microspheres inside the main components of the lamb rat tire (the tire-rim assembly), Additives for rubber and resin internals (add to rubber and resin, for example, foams during heat molding, etc.) Can be mentioned. Next, the method of recovering the inclusion substance in the microspheres described above will be described in detail.
[内包物質の回収方法]  [Method for recovering contained substances]
本発明の内包物質の回収方法は、上記で説明した微小球と溶媒とを接触させる接 触工程を含む方法である。  The method for recovery of the inclusion substance of the present invention is a method including a contacting step of bringing the microspheres and the solvent described above into contact with each other.
この接触工程で使用する溶媒としては、 液体であれば特に限定はないが、 通常、 溶媒の極性の程度、微小球の外殻を構成する熱可塑性樹脂の種類、後述する分離ェ 程における操作性等を考慮して選定される。  The solvent used in this contact step is not particularly limited as long as it is a liquid, but generally, the degree of polarity of the solvent, the type of thermoplastic resin constituting the outer shell of the microspheres, and the operability in the separation step described later It is selected in consideration of etc.
溶媒としては、 たとえば、 水;メタノール、 エタノール、 プロパノール、 ェチレ ングリコール、グリセリン等のアルコール類;プロピルエーテル、ブチルエーテル、 ペンチルエーテル、 へキシノレエーテノレ等のエーテル類;ギ酸メチル、 ギ酸ェチル、 ギ酸プロピル、ギ酸プチル、酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸ブチル、 プロピオン酸メチル、プロピオン酸ェチル、 プロピオン酸プロピル、 プロピオン酸 ブチル等のエステノレ類;アセトン、 メチルェチルケトン、 シク口へキサノン、 ピナ コリン、メシチ ォキシド等のケトン類;へキサン、ヘプタン、ォクタン、ノナン、 デカン、 ゥンデカン、 ドデカン、 シクロへキサン、 メチルシクロへキサン等の脂肪 族炭化水素;ベンゼン、 トノレェン、 キシレン、 ェチノレベンゼン、 フエニノレアセチレ ン等の芳香族炭化水素;ァセトニトリル、 プロピオ二トリル等の二トリル類;ジメ チルホルムアミド (DMF) 等のアミド類;ジメチルスルホキサイド (DMS O) 等のスルホキサイド類等を挙げることができる。これらの溶媒は、 1種または 2種 以上を併用してもよい。  Examples of the solvent include: water; alcohols such as methanol, ethanol, propanol, ethylene glycol and glycerol; ethers such as propyl ether, butyl ether, pentyl ether and hexenoare tenoleate; methyl formate, ethyl formate and propyl formate And esterones such as butyl formate, methyl acetate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate; acetone, methyl ethyl ketone, sic anhydride, pinacolin And ketones such as mesithioxide; hexane, heptane, octan, nonane, decane, undecane, dodecane, dodecane, cyclohexane, and aliphatic hydrocarbons such as methylcyclohexane; benzene, tonoleene, xylene, Aromatic hydrocarbons such as norebenzene and pheninole acetylene; nitriles such as acetonitrile and propiodiitol; amides such as dimethylformamide (DMF); sulfoxides such as dimethyl sulfoxide (DMSO) It can be mentioned. These solvents may be used alone or in combination of two or more.
本発明の回収方法においては、極性溶媒を用いると、内包物質を髙効率で回収で きるため好ましい。極性溶媒としては、たとえば、 7 アルコール類、エーテル類、 エステノレ類、 ケトン類、 二トリル類、 アミ ド類、 スルホキサイド類等を挙げること ができる。 これらの極性溶媒の内でも、 水、 アルコール類が好ましく、 また、 本発 明の回収方法で得られる新規な微小球が良好な形状を保持し、内包物質の単離が容 易であるという観点からは、 水がさらに好まし!/、。 In the recovery method of the present invention, it is preferable to use a polar solvent because the contained substance can be recovered with high efficiency. Examples of polar solvents include 7 alcohols, ethers, esters, ketones, ditolyls, amides, sulfoxides and the like. Of these polar solvents, water and alcohols are preferred, and Water is even more preferred in light of the fact that the novel microspheres obtained by the bright recovery method retain a good shape and the isolation of inclusions is easy!
極性溶媒はさらに酸性やアルカリ性を示 1容媒であってもよいが、微小球の外殻 を構成する熱可塑性樹脂が、カルボキシル基含有単量体等の酸性単量体を含む単量 体混合物を重合して得られる: tj^は、極性溶媒がアルカリ性を示すと好ましく、極 性溶媒がアルカリ性を示す水および/またはアルコール類(特にエタノール等)で あるとさらに好まし 本発明の回収方法で得られる新規な微小球が良好な形状を 保持し、内包物質の単離が容易であるという観点からは、アル力リ性を示す水が特 に好ましレヽ。極性溶媒がアルカリ性を示す:^、極性溶媒の p Hについては、特に 限定はなレ、が、 9〜 1 4が好ましく、 1 1〜 1 3がさらに好ましい。  The polar solvent may be a solvent that exhibits acidity or alkalinity, but the thermoplastic resin constituting the shell of the microsphere is a monomer mixture containing an acidic monomer such as a carboxyl group-containing monomer. Tj ^ is preferably obtained when the polar solvent exhibits alkalinity, and it is further preferred that the polar solvent is water and / or alcohols (especially ethanol etc.) exhibiting alkalinity, and the recovery method of the present invention is preferred. From the viewpoint that the resulting novel microspheres retain a good shape and the isolation of the inclusion substance is easy, water showing al- toricity is particularly preferred. The polar solvent exhibits alkalinity: ^, and the pH of the polar solvent is particularly preferably 9 to 14 and more preferably 11 to 13 with respect to pH 7 of the polar solvent.
接触工程においては、微小球と溶媒とを混合して翻虫させる。微小球と溶媒との 混合比率については、特に限定はないが、回収効率の向上や、経済性等を考慮する と、溶媒 1 L当たりの微小球が 0. 1〜3 0 0 0 gであると好ましく、 1 0〜2 0 0 0 gであるとさらに好ましく、 1 0 0〜1 0 0 0 gであると特に好ましい。  In the contacting step, the microspheres and the solvent are mixed to cause an insect. The mixing ratio of the microspheres and the solvent is not particularly limited, but in consideration of the improvement of recovery efficiency, economy and the like, the number of microspheres per liter of solvent is 0.1 to 300 g. And more preferably 10 to 200 g, and particularly preferably 10 to 100 g.
接触工程における微小球と溶媒との接触時間は、溶媒、 内包物質、微小球の外殻 を構成する熱可塑性樹脂や、作業性等を考慮して適宜設定され、特に限定はないが、 たとえば 0. 1〜 1 0 0 0時間である。  The contact time between the microspheres and the solvent in the contact step is appropriately set in consideration of the solvent, the inclusion substance, the thermoplastic resin that constitutes the outer shell of the microspheres, the workability, etc. 1 to 1000 hours.
接触工程における微小球と溶媒との接触 ¾itは、接触時間と同様に適宜設定され、 特に限定はない。 しかし、余りにも低い温度で両者を接触させることは操作上有利 ではないことや、内包物質の沸点が通常室温あるいはそれよりもやや高い温度であ る場合が多いことを考慮すると、 接触温度は、 たとえばー5 0〜: 1 0 0 °Cである。 また、 接触温度は内包物質の沸点以下が好ましい。  The contact time between the microspheres and the solvent in the contacting step is appropriately set similarly to the contacting time, and is not particularly limited. However, in view of the fact that contacting the two at too low temperature is not advantageous in operation and that the boiling point of the inclusion substance is usually room temperature or slightly higher in many cases, the contact temperature is For example, −50 to: 100 ° C. The contact temperature is preferably equal to or lower than the boiling point of the contained substance.
接触工程における翻虫時間およぴ接触温度は、微小球の外殻の厚みを考慮して適 宜設定してもよい。  The infestation time and contact temperature in the contacting step may be appropriately set in consideration of the thickness of the outer shell of the microspheres.
微小球の外殻の厚みが 2 μ m以上の場合(たとえば、微小球が熱膨張性微小球の 場合)、 内包物質の回収効率の向上を考慮すると、 接触工程における接触時間は、 :!〜 1 0 0 0時間であると好ましく、 1 0〜1 0 0 0時間であるとさらに好ましく、 1 0 0〜1 0 0 0時間であると特に好ましい。翻 ί工程における撤虫温度は、 3 0 〜1 0 0 °Cであると好ましく、 5 0〜1 0 0 °Cであるとさらに好ましく、 7 0〜1 〇 o °cであると特に好ましい。 この場合に使用する溶媒としては、微小球と溶媒と の接触温度以上の沸点を持つものが望ましく、上記で例示した溶媒のうちでも、沸 点 5 0 °C以上の溶媒を挙げることができる。 In the case where the thickness of the outer shell of the microspheres is 2 μm or more (for example, when the microspheres are heat-expandable microspheres), the contact time in the contacting step is:! The time is preferably 100 hours, more preferably 10 to 100 hours, and particularly preferably 10 to 100 hours. It is preferable that the temperature of the insects in the kneading step is 30 to 100 ° C., more preferably 50 to 100 ° C., 70 to 1 It is particularly preferable that the temperature is o o ° c. The solvent used in this case is preferably one having a boiling point equal to or higher than the contact temperature of the microspheres and the solvent, and among the solvents exemplified above, a solvent having a boiling point of 50 ° C. or more can be mentioned.
次に、微小球の外殻の厚みが 2 μ m未満の場合(たとえば、微小球が熱膨張した 微小球の場合)、 内包物質の回収効率の向上を考慮すると、 接触工程における接触 時間は、 0. 1〜5 0 0時間であると好ましく、 0. 1〜1 0 0時間であるとさら に好ましい。接触工程における接触温度は、 0〜8 0 °Cであると好ましい。 この場 合に使用する溶媒としては、微小球と溶媒との接触温度以上の沸点を持つものが望 ましく、上記で例示した溶媒のうちでも、沸点 2 0 °C以上の溶媒を挙げることがで きる。  Next, in the case where the thickness of the outer shell of the microspheres is less than 2 μm (for example, in the case of the microspheres being thermally expanded microspheres), the contact time in the contacting step is The time is preferably 0.1 to 500 hours, and more preferably 0.1 to 100 hours. The contact temperature in the contact step is preferably 0 to 80 ° C. In this case, as the solvent to be used, one having a boiling point higher than the contact temperature between the microspheres and the solvent is desirable. Among the solvents exemplified above, a solvent having a boiling point of 20 ° C. or higher may be mentioned. it can.
本発明の内包物質の回収方法においては、微小球と溶媒とを接触させることによ つて、微小球に内包された内包物質を回収することができる。その作用については、 確証はないが、外殻を構成する熱可塑性樹脂が溶媒によって膨潤ゃ変質し、内包さ れた内包物質が濃度勾配にしたがって溶媒中に透過、 拡散するものと推測される。 本発明の内包物質の回収方法は、分離工程をさらに含むと好ましい。分離工程は、 前記接触工程で得られた微小球および溶媒を含む混合物から前記内包物質を回収 する工程である。  In the method of the present invention for recovering an encapsulated substance, the encapsulated substance encapsulated in the microspheres can be recovered by bringing the microspheres into contact with the solvent. Although the action is not confirmed, it is presumed that the thermoplastic resin constituting the outer shell swells or is degraded by the solvent, and the encapsulated substance in the inner shell permeates and diffuses in the solvent according to the concentration gradient. It is preferable that the recovery method of the inclusion substance of the present invention further includes a separation step. The separation step is a step of recovering the inclusion substance from the mixture containing the microspheres and the solvent obtained in the contact step.
分離工程は、翻虫工程とともに行ってもよく、接触工程後に行ってもよいが、分 離工程を接触工程とともに行うことによって、内包物質を短時間で分離回収するこ とができる。  The separation step may be performed together with the insecticidal step or may be performed after the contact step, but by carrying out the separation step together with the contact step, the inclusion substance can be separated and recovered in a short time.
分離工程を行う具体的な手段については、特に限定はなく、たとえば、内包物質 の蒸留分離、 抽出分離、 遠心分離、 吸着分離等を挙げることができる。  The specific means for carrying out the separation step is not particularly limited, and examples thereof include distillation separation, extraction separation, centrifugation, adsorption separation and the like of the inclusion substance.
蒸留分離は、内包物質と溶媒との沸点差を利用して内包物質を分離回収する方法 である。沸点差は、作業効率を上げるために沸点差を大きくする方が好ましい。沸 点差は、 たとえば、 5 °C以上が好ましく、 1 0 °C以上がさらに好ましく、 2 0 °C以 上が特に好ましい。蒸留分離においては、内包物質を一旦蒸気ィ匕させ冷却装置で液 化して分離するが、内包物質の沸点が通常室温あるいはそれよりもやや高い温度で ある場合が多いことを考慮して、冷却装置ゃ液ィ匕した内包物質の貝宁 β等に用いる 冷媒の温度を低めに制御することが好ましレヽ。冷媒の温度と内包物質の沸点との温 度差は、たとえば、 3 0 °C以上が好ましく、 5 0 °C以上がさらに好ましく、 1 0 0 °C 以上が特に好ましい。 Distillation is a method of separating and recovering an encapsulated substance using the difference in boiling point between the encapsulated substance and a solvent. The difference in boiling point is preferably larger in order to increase the working efficiency. The boiling point difference is, for example, preferably 5 ° C. or more, more preferably 10 ° C. or more, and particularly preferably 20 ° C. or more. In distillative separation, the inclusion substance is once steamed and liquefied and separated by a cooling device, but in consideration of the fact that the boiling point of the inclusion substance is usually at room temperature or slightly higher, the cooling device It is preferable to control the temperature of the refrigerant used for the shellfish β of the inclusion substance contained in the solution low. The temperature of the refrigerant and the boiling point of the substance contained The degree difference is, for example, preferably 30 ° C. or more, more preferably 50 ° C. or more, and particularly preferably 100 ° C. or more.
抽出分離および遠心分離は、 Vヽずれも内包物質と溶媒とが相分離する性質を利用 して分離回収する方法である。抽出分離や遠心分離を行う場合、溶媒としては、 内 包物質と混合した場合に相分離する性質を有するものが好ましい。 溶媒としては、 たとえば、水;メタノール、ェタノール等のアルコ一ル類等を挙げることができる。 抽出分離で容易に相分離しなレヽ 、遠心分離を行って内包物質と溶媒とを相分離 させてもよレヽ。抽出分離や遠心分離によって相分離させた内包物質は、デカンテ一 シヨン等の分液操作を経て、 分離回収される。  Extraction separation and centrifugation are methods of separation and recovery using the property that phase difference between the inclusion substance and the solvent occurs. In the case of extraction separation or centrifugation, as the solvent, one having a property of phase separation when mixed with the inner packing material is preferable. Examples of the solvent include water; alcohols such as methanol and ethanol, and the like. The phase is not easily separated by extraction and separation, and centrifugation may be performed to separate the inclusion substance and the solvent from each other. The inclusion substances separated in phase by extraction separation and centrifugation are separated and recovered through a separation operation such as decantation.
P及着分離は、気ィヒした物質を活性炭などの吸着剤を用いた吸着ユエットにより捕 捉して回収する方法である。吸着ュニットに捕捉された物質は蒸気により脱着され て再生され、 深冷 によって液ィ匕回収される。  P and separation is a method of capturing and recovering airborne substances by adsorption duet using an adsorbent such as activated carbon. The substance trapped in the adsorption unit is desorbed by steam and regenerated, and it is recovered by freezing and cooling.
上記接触工程および分離工程にぉレ、て、微小球および溶媒を含む混合物を攪拌し てもよいし、攪拌しなくてもよいが、攪拌した場合は、微小球および溶媒の接触効 率が高まると考えられる。 前記攪拌に用いる攪拌機については、 特に限定はなく、 たとえば、ホモミキサーやラインミキサー等の一般的な攪拌機を挙げることができ る。 攪拌速度についても特に限定はなレ、。  In the contacting step and the separating step, the mixture containing the microspheres and the solvent may or may not be stirred, but when stirred, the contact efficiency of the microspheres and the solvent increases. it is conceivable that. The stirrer used for the stirring is not particularly limited, and examples thereof include common stirrers such as homomixers and line mixers. There is also no particular limitation on the stirring speed.
上記接触工程および分離工程を行うにあたり、その圧力雰囲気にっレヽても特に限 定はなく、 減圧下、 常圧下、 カロ圧下のいずれの圧力下で行ってもよい。  There are no particular limitations on the pressure atmosphere in carrying out the contact step and the separation step, and the reaction may be carried out under reduced pressure, normal pressure, or calo pressure.
次に、 接触工程後に得ることができる新規な微小球について説明する。  Next, novel microspheres that can be obtained after the contacting step are described.
瞧な微小球]  Invisible Microspheres]
本発明の新規な微小球 (以下、 微小球 aということがある。) は、 上記回収方法 における翻虫工程後に得ることができ、熱可塑性樹脂を外殻としている微小球であ る。  The novel microspheres (hereinafter also referred to as microspheres a) of the present invention are microspheres which can be obtained after the insecticidal step in the above-mentioned recovery method, and have a thermoplastic resin as an outer shell.
微小球 aは、その外殻に内包物質に代わって溶媒が内包されており、新規な微小 球である。微小球 aでは少なくとも溶媒が内包されている力 回収されずに残った 内包物質が溶媒とともに内包されていてもよい。  Microsphere a is a novel microsphere in which a solvent is included in its outer shell instead of the inclusion substance. At least a solvent is contained in the microsphere a. The encapsulated substance remaining without being recovered may be contained together with the solvent.
翻虫工程後の混合物から溶媒を除去して乾燥した微小球 aを単離してもよいが、 凝集ゃ融着が生じない点を考慮すると、微小球 aを液体で湿潤された状態で取扱う 方が好ましい。 Although the solvent may be removed from the mixture after the insecticidal step to dry the microspheres a, the microspheres may be handled in a liquid-wet state, considering that aggregation and fusion do not occur. Is preferred.
上記液体としては、上記回収方法で説明した溶媒をそのまま用いることができる が、 微小球 aの用途に応じて、 ジブチルフタレート、 ジィソォクチルフタレート、 ジォクチルアジべート、 トリクレジ/レホスフエート、 トリェチルシトレート、 ァセ チルトリプチルシトレート、ォクチルアルコール等の可塑剤(プラスチック、 エラ ストマー、 シーラント、 塗料等に用いる場合);ジシクロペンタジェンゃスチレン 等の単量体 (軽量発泡成形体や接着剤用に用いる場合) ;非イオン界面活性剤、 ァ ルキレングリコーノレ、ポリアルキレングリコール、グリセリン、シリコーンオイル、 流動パラフィン、油脂類等を、液体として用いてもよい。接触工程後の混合物中の 溶媒を、液体に置換することによつて微小球 aを液体で湿潤された状態にすること ができる。  As the above-mentioned liquid, the solvent described in the above-mentioned recovery method can be used as it is, but depending on the use of the microsphere a, dibutyl phthalate, di-hydroxy phthalate, di-octyl azide, tricycle / le-phosphate, tri-ethyl citrate Plasticizers such as asetil ripyl citrate, octyl alcohol (when used for plastics, elastomers, sealants, paints, etc.) Monomers such as dicyclopentadiene (light-weight foams and adhesives When used for the purpose); Non-ionic surfactant, alkylene glycol alcohol, polyalkylene glycol, glycerin, silicone oil, liquid paraffin, fats and oils, etc. may be used as a liquid. By replacing the solvent in the mixture after the contacting step with a liquid, it is possible to make the microspheres a in a liquid-wetted state.
微小球 aの平均粒子径については、特に限定はないが、微小球 aが湿潤された状 態の場合、好ましくは:!〜 1000 m、 さらに好ましくは 5〜 800 μ m、特に 好ましくは 10〜500 πι、 最も好ましくは 1〜150 μπιである。  There is no particular limitation on the average particle size of the microspheres a, but when the microspheres a are in a wet state, preferably:! It is -1000 m, more preferably 5 to 800 μm, particularly preferably 10 to 500 πι, and most preferably 1 to 150 μπι.
微小球 aの真比重につ!/、ては、特に限定はないが、微小球 aが乾燥された状態の 場合、好ましくは 0. 001〜1. 5gZc c、 さらに好ましくは 0. 001〜1. Og/c c、 特に好ましくは 0. 001〜0. 8g/c cである。  The true specific gravity of the microsphere a! There is no particular limitation, but when the microspheres a are in a dried state, they are preferably in the range of 0.51 to 1.5 g Zcc, more preferably in the range of 0.10 to 1. O g / cc, particularly preferably 0. It is 0.001 to 0.8 g / cc.
微小球 aの用途にっレヽては、前述の熱膨張性微小球や熱膨張した微小球が有する 種々の特性を利用した用途や、微小球 aが微小な粒子状であることを利用した用途 であれば特に限定はない。微小球 aを、樹脂等の有餅才料、無猶才料等の充填材と して利用してもよく、 例えば、 押出しセメント成形品ゃシーリング剤のフィラー、 樹脂粘土のフィラー、窯業サイディングの補強フィラー、木質 «隹板の補強フイラ 一、手洗い石験や業務用洗剤の研磨剤、 ブロッキング防止剤、平滑性付与剤、軽量 骨材の代替物、 多孔化付与剤、流動化剤、粉塵防止剤、緑化促進剤、法面侵食防止 剤等が挙げられる。 実施例  For the application of the microsphere a, the application utilizing the various properties possessed by the above-mentioned thermally expandable microspheres and the thermally expanded microspheres, and the application utilizing the fact that the microspheres a are in the form of minute particles There is no particular limitation as long as The microsphere a may be used as a filler for resin and other materials, for example, for fillers such as extruded cement-molded articles, sealants, resin clay fillers, and ceramic siding. Reinforcing Filler, Reinforcing Filler of Wood Plate 研磨, Abrasive for hand-washing stone and detergent for business use, Anti-blocking agent, Smoothing agent, Lightweight aggregate substitute, Pore-forming agent, Fluidizer, Dust prevention Agents, greening accelerators, and anti-forensic agents. Example
以下の実施例および比較例で本発明を詳細に説明するが、本発明はこれらの実施 例に限定されるものではない。 (測定方法および定義) The present invention will be described in detail by the following examples and comparative examples, but the present invention is not limited to these examples. (Measurement method and definition)
〔平均粒子径と粒度分布の測定〕  [Measurement of average particle size and particle size distribution]
測定装置として、 レーザー回折^度分布測定装置 (SYMPATEC¾M H EROS&RODOS) を使用した。 乾式分散ユニットの分散圧は 5. O b a r、 真空度は 5. 0 m b a rで乾式測定法により測定し、 D 5 0値を平均粒子径とした。 〔真比重の測定〕  A laser diffraction ^ degree distribution measuring apparatus (SYMPATEC 3⁄4 MH EROS & RODOS) was used as a measuring apparatus. The dispersion pressure of the dry dispersion unit was 5. O bar, the degree of vacuum was measured by the dry measurement method at 5.0 mbar, and the D50 value was defined as the average particle size. [Measurement of true specific gravity]
真比重は温度 25 °Cにおいてィソプロピノレアルコールを用いた液置換法(アルキ メデス法) により測定した。  The true specific gravity was measured by a liquid replacement method (Archimedes method) using isopropinole alcohol at a temperature of 25 ° C.
〔熱膨張性微小球の含水率の測定〕  [Measurement of moisture content of thermally expandable microspheres]
測定装置として、 カールフィッシヤー水分計 (MKA- 5 10 N型、京都電子ェ 業株式会ネ ±¾) を用いて測定した。  As a measurement device, measurement was performed using a Karl Fischer moisture meter (MKA-5 10 N, Kyoto Electronics Co., Ltd. ± 3⁄4).
〔熱膨張性微小球に封入された発泡剤の内包率の測定〕  [Measurement of inclusion rate of foaming agent enclosed in thermally expandable microspheres]
熱膨張性微小球 1. 0 gを直径 80mm、深さ 1 5 mmのステンレス製蒸発皿に 入れ、その重量 Dを測定した。ァセトニトリル 3 0m 1加え均一に分散させ、 30分間室温で放置した後に、 1 20°Cで 2時間加熱し乾燥後の重量 (W2) を測 定した。 発泡剤の内包率は、 下記の式により計算される。 1. 0 g of thermally expandable microspheres were placed in a stainless steel evaporation dish with a diameter of 80 mm and a depth of 15 mm, and their weight D was measured. After 30 ml of acetonitrile, the mixture was dispersed uniformly and allowed to stand at room temperature for 30 minutes, and then heated at 120 ° C. for 2 hours to measure the weight after drying (W 2 ). The inclusion rate of the blowing agent is calculated by the following equation.
内包率 (重量%) = (Wx-W2) (g) /1. 0 (g) X 1 00- (含水率) (重 量0 /0) Encapsulation efficiency (wt%) = (W x -W 2 ) (g) / 1. 0 (g) X 1 00- ( water content) (Weight 0/0)
(式中、 含水率は、 上記方法で測定される。)  (In the formula, the moisture content is measured by the above method.)
〔内包保持率〕  [Inclusion retention rate]
発泡剤の内包保持率は、 膨張前の発泡剤の内包率 (GJ に対する膨張後の発泡 剤の内包率 (G2) の割合であり、 下記の式により計算される。 The encapsulation retention rate of the foaming agent is a ratio of the encapsulation rate of the foaming agent before expansion (GJ to the encapsulation rate (G 2 ) of the foaming agent after expansion, and is calculated by the following equation.
内包保持率 (%) =Q2/GX 1 00 Inclusion retention rate (%) = Q 2 / G X 1 00
〔(再) 膨張開始 及び最大 (再) 膨張 の測定〕  [Measurement of (re) expansion start and maximum (re) expansion]
測定装置として、 DMA (DMA Q 800型、 TA i n s t r ume n t s社 製)を使用した。熱膨張 I"生微小球ほたは熱膨張した微小球) 0. 5mgを直径 6. Omm、深さ 4. 8 mmのアルミカップに入れ、その上に直径 5. 6 mm、厚み 0. lmmのアルミ蓋をのせ試料を ¾iした。その試料に上からカロ圧子により 0. 0 1 Nの力を加えた状態でサンプル高さ (Η を測定した。 カロ圧子により 0. 0 1 N の力を加えた状態で、 20から 300 °Cまで 10 °C/m i nの昇温速度で加熱し、 カロ圧子の垂直方向における変位量を測定した。正方向への変位開始温度を (再)膨 張開始温度とし、 最大変位量 (H2) を示したときの温度を最大 (再) 膨張温度と した。 なお、 最大 (再) 膨張温度における (再) 膨衝咅率 (E) は以下に示す計算 式により算出される。 As a measuring device, DMA (DMA Q 800, manufactured by TA instr ume nts) was used. Thermal expansion I “raw microspheres are thermally expanded microspheres) 0.5 mg in an aluminum cup with a diameter of 6. O mm, depth of 4. 8 mm, and a diameter of 5.6 mm, a thickness of 0.1 mm on it. The sample lid was placed with an aluminum lid, and the sample height was measured while applying a force of 0.10 N from the top of the sample by a calo indenter. The sample was heated from 20 to 300 ° C. at a heating rate of 10 ° C./min, and the amount of displacement of the calo indenter in the vertical direction was measured. The displacement start temperature in the positive direction was taken as the (re) expansion start temperature, and the temperature at which the maximum displacement (H 2 ) was shown was taken as the maximum (re) expansion temperature. The (re) expansion coefficient (E) at the maximum (re) expansion temperature is calculated by the following formula.
E (%) =H2/H1X 100 E (%) = H 2 / H 1 x 100
〔製造例 1〕  Production Example 1
ィオン交換水 500 gに、塩化ナトリウム 150 g、アジピン酸ージエタノール ァミン縮合物 3. ◦ g、 コロイダルシリカ 20 g (有効成分量: 20 %)およぴ亜硝 酸ナトリウム 0. 15 gを加えた後、 均一に混合してこれを水相とした。  After adding 150 g of sodium chloride, 3. 3 g of adipic acid-diethanol amine condensate, 20 g of colloidal silica (active ingredient: 20%) and 0.15 g of sodium nitrite to 500 g of ion-exchanged water It was mixed uniformly to make it the water phase.
アタリロニトリノレ 200 g、 メタクリロニトリノレ 45 g、 メタクリノレ酸 75 g、 トリメチロールプロパントリメタクリレート 1. 2 g、ァゾビスイソブチロニトリ ル 2. 0 gおよび C3F7OCH3 (内包物質、 発泡剤) 150 gを混合、 撹拌、 溶 解し、 これを油相とした。 200 g of Atarilonitrinole, 45 g of Methacrylonitrile, 75 g of Methacrylic Acid, 1.2 g of Trimethylolpropane trimethacrylate, 2.0 g of Azabisisobutyronitril and C 3 F 7 OCH 3 The substance and the foaming agent (150 g) were mixed, stirred and dissolved to obtain an oil phase.
水相と油相を混合し、 ホモミキサ一で 3, 000 r p mにて 2分間予備混合し、 10, 000 r pmにて 2分間撹拌して縣濁液とした。これを反応器に移して窒素 置換をしてから撹拌しつつ 61°Cで 20時間重合した。重合後、重合生成物を濾過、 乾燥して、得られた熱膨張 [·生微小球を微小球 1とした。熱膨張性微小球に着火源を 近づけたが燃焼することはなかった。  The aqueous phase and the oil phase were mixed, premixed at 3,000 rpm for 2 minutes with a homomixer, and stirred at 10,000 rpm for 2 minutes to obtain a suspension. It was transferred to a reactor, purged with nitrogen and then polymerized at 61 ° C. for 20 hours while stirring. After polymerization, the polymerization product was filtered and dried to obtain the obtained thermal expansion [Mixed microspheres as microspheres 1. The ignition source was brought close to the thermally expandable microspheres but it did not burn.
〔製造例 2〕  Production Example 2
製造例 1で得られた微小球 1を上記で説明した熱膨張した微小球の製造方法 (製 造方法(A) で加熱膨張させて、熱膨張した微小球を製造した。 この熱膨張した微 小球をタイヤとリムの組み立て体の空洞部分に充填して、ランフラットタイヤの部 材として用いた。 ランフラットタイヤの走行試験を行い、試験後に熱膨張した微小 球 (走行試験後の熱膨張した微小球を、以下、単に微小球 2ということがある) を 取り出し、その物性を測定したところ、平均粒子径 90 μ m、真比重 0. 028 g Zc c、内包率 32%、 内包保持率 98 %、再膨張開始 132°C、最大再膨張 温度 202 °C、 再膨張倍率 211%、 真比重 0. 79 g/ c c以上の微小球の含有 率 (25°C) は、 0. 8重量。/。であった。 〔製造例 3〕 The microspheres 1 obtained in Production Example 1 were thermally expanded by the method for producing the thermally expanded microspheres described above (production method (A) to produce the thermally expanded microspheres. The small spheres were filled in the hollow portion of the assembly of the tire and the rim, and used as a member of a run flat tire The running test of the run flat tire was carried out, and the thermally expanded microspheres after the test (thermal expansion after running test) The obtained microspheres are hereinafter referred to simply as “microspheres 2” and their physical properties are measured. The average particle diameter is 90 μm, true specific gravity 0.228 g Zcc, inclusion rate 32%, inclusion retention rate 98%, re-expansion start 132 ° C, maximum re-expansion temperature 202 ° C, re-expansion ratio 211%, true specific gravity 0.79 g / cc or more of content of microspheres (25 ° C) is 0.8 weight ./.Met. Production Example 3
製造例 1において C3F7OCH315 Ogの代わりにイソペンタン 64gを内包 物質として使用する以外は、製造例 1と同様に重合させて得られた熱膨衝生微小球 を微小球 3とした。 The heat-expanded microspheres obtained by polymerizing in the same manner as in Preparation Example 1 were changed to microspheres 3 except that 64 g of isopentane was used as the inclusion substance in place of C 3 F 7 OCH 3 15 Og in Preparation Example 1. .
〔製造例 4〕  Production Example 4
製造例 3で得られた微小球 3を製造例 2と同様に加熱膨張させて、熱膨張した微 小球 (微小球 4) を製造した。  The microspheres 3 obtained in Production Example 3 were thermally expanded in the same manner as in Production Example 2 to produce thermally expanded microspheres (microspheres 4).
〔製造例 5〕  Production Example 5
製造例 1で得られた微小球 1とカーボンブラック (ライオン株式会ネ環、品名: ケッチェンブラック ECP 600 J D、平均粒子径: 34 nm) とを重量比 9 : 1 の割合で、 スーパーミキサー(株式会社カヮタ製) を用いて均一に混合し、カーボ ンブラックが外表面に付着した熱膨張微小球を得た。得られた熱膨張性微小球を製 造例 2と同様に加熱膨張させて、 熱膨張した微小球 (微小球 5) を製造した。 〔実施例 1〕  Production Example 1 A super mixer (micro mixer 1) was prepared with Microsphere 1 and carbon black (Lion stock company ring, product name: Ketjen black ECP 600 JD, average particle size: 34 nm) in a weight ratio of 9: 1. The mixture was uniformly mixed using Kaita Co., Ltd. to obtain thermally expanded microspheres in which carbon black adhered to the outer surface. The obtained thermally expandable microspheres were thermally expanded in the same manner as in Production Example 2 to produce thermally expanded microspheres (microspheres 5). [Example 1]
製造例 2で得られた微小球 2を 0. 05 g秤取し、エタノール 20mLに混合分 散させた。得られた混合物を冷蔵庫中で一晩放置した後、へキサンで抽出した。得 られたへキサン相をガスクロマトグラフィー (島津製作所製 G C 17 A)で分析し たところ、 C3F7OCH3が検出された。 The microsphere 2 obtained in Production Example 2 was weighed out at 0.05 g, mixed and dispersed in 20 mL of ethanol. The resulting mixture was left overnight in a refrigerator and then extracted with hexane. The obtained hexane phase was analyzed by gas chromatography (GC 17 A, manufactured by Shimadzu Corporation), and C 3 F 7 OCH 3 was detected.
上記で使用したエタノールを、 それぞれ、 ァセトニトリル、 トルエン、 ジメチル ホルムアミド、 弱アルカリ水 (pH9)、 強アルカリ水 (pH12) に代えて、 上 記と同様の操作を行った。 それぞれにおいて、 C3F7OCH3が検出された。 The same operation as described above was performed by replacing the ethanol used above with acetonitrile, toluene, dimethylformamide, weakly alkaline water (pH 9) and strongly alkaline water (pH 12), respectively. In each, C 3 F 7 OCH 3 was detected.
〔実施例 2〕  [Example 2]
製造例 2で得られた微小球 2を 40 g秤取し、ホモミキサーを用いてェタノール 1 Lを 10分間、混合分散させた。得られた混合物を容量 2 Lのナスフラスコに供 給し、フラスコを加熱する熱源を 40°Cに設定して常圧蒸留した。この蒸留操作を 30分間行い、液体窒素で冷却された冷却管に溜まった留出液(7. 7mL) をガ スクロマトグラフィーで分析し、 C3F7OCH3であることを確認し、 回収率は 9 0%であった。 なお、 回収後に新規な微小球は得られた。 40 g of the microspheres 2 obtained in Production Example 2 were weighed, and 1 L of ethanol was mixed and dispersed for 10 minutes using a homomixer. The resulting mixture was supplied to a 2 L eggplant-shaped flask and distilled under atmospheric pressure with the heat source for heating the flask set to 40 ° C. This distillation operation is carried out for 30 minutes, and the distillate (7.7 mL) collected in a condenser cooled with liquid nitrogen is analyzed by gas chromatography to confirm that it is C 3 F 7 OCH 3 and recovered. The rate was 90%. In addition, new microspheres were obtained after recovery.
〔実施例 3〕 上記実施例 2で、ェタノールの代わりに強アル力リ水( p H 12 )を使用する以 外は、 実施例 2と同様に操作して C3F7OCH3を回収した。 その回収率は 90% であった。 なお、回収後に得られた新規な微小球は球状を保持し、強アルカリ水が 外殻に内包されていた。 [Example 3] A C 3 F 7 OCH 3 was recovered in the same manner as in Example 2 except that strong alkaline water (p H 12) was used instead of ethanol in Example 2 above. The recovery rate was 90%. In addition, the new microspheres obtained after recovery retained spherical shape, and strongly alkaline water was contained in the outer shell.
〔実施例 4〕  [Example 4]
製造例 3で得られた微小球 3を 40 g秤取し、ホモミキサーを用いてエタノール 1 Lを 10分間、混合分散させた。得られた混合物を容量 2 Lのナスフラスコに供 給し、フラスコを加熱する熱源を 30°Cに設定して常圧蒸留した。この蒸留操作を 30分間行い、液体窒素で冷却された冷却管に溜まった留出液(22mL) をガス クロマトグラフィーで分析し、イソペンタンであることを確認し、回収率は 91% であった。 なお、 回収後に新規な微小球は得られた。  40 g of the microspheres 3 obtained in Production Example 3 were weighed, and 1 L of ethanol was mixed and dispersed for 10 minutes using a homomixer. The resulting mixture was supplied to a 2 L eggplant-shaped flask and distilled under atmospheric pressure with the heat source for heating the flask set to 30 ° C. This distillation operation was carried out for 30 minutes, and the distillate (22 mL) collected in a condenser cooled with liquid nitrogen was analyzed by gas chromatography to confirm that it was isopentane, and the recovery rate was 91%. In addition, new microspheres were obtained after recovery.
〔実施例 5〕  [Example 5]
上記実施例 4で、エタノールの代わりに強アル力リ水( p H 12 )を使用する以 外は、実施例 4と同様に操作してイソペンタンを回収した。その回収率は 91%で あつた。 なお、回収後に得られた新規な微小球は球状を保持し、強アル力リ水が外 殻に内包されていた。  The same procedure as in Example 4 was repeated except that strong alkaline water (p H 12) was used instead of ethanol in Example 4 above to recover isopentane. The recovery rate was 91%. In addition, the new microspheres obtained after recovery retained spherical shape, and strong Alkaline water was contained in the outer shell.
〔実施例 6〕  [Example 6]
製造例 1で得られた微小球 1を 200 g秤取し、ホモミキサーを用いて強アル力 リ水 (pHl 2) を 10分間、混合分散させた。 得られた混合物を容量 2 Lのナス フラスコに供給し、フラスコを力 P熱する謝原を 80°Cに設定して常圧蒸留した。 こ の蒸留操作を 120分間行い、液体窒素で冷却された冷却管に溜まった留出液(3 7mL)をガスクロマトグラフィ一で分析し、 C3F7〇CH3であることを確認し、 回収率は 88%であった。 なお、 回収後に得られた新規な微小球は球状を保持し、 強アルカリ水が外殻に内包されていた。 200 g of the microspheres 1 obtained in Production Example 1 were weighed, and mixed with a homomixer and mixed and dispersed for 10 minutes with strong water (pH12). The resulting mixture was fed to a 2 L eggplant flask, and the flask was subjected to pressure distillation while setting the temperature to 80 ° C. This distillation operation is carried out for 120 minutes, and the distillate (37 mL) accumulated in the cooling tube cooled with liquid nitrogen is analyzed by gas chromatography to confirm that it is C 3 F 7 CHCH 3 and recovered. The rate was 88%. In addition, the new microspheres obtained after recovery retained spherical shape, and strongly alkaline water was contained in the outer shell.
〔実施例 7〕  [Example 7]
製造例 3で得られた微小球 3を 200 g秤取し、ホモミキサーを用レ、て強アル力 リ水 (pHl 2) を 10分間、混合分散させた。得られた混合物を容量 2 Lのナス フラスコに供給し、フラスコを力 D熱する謝原を 80°Cに設定して常圧蒸留した。こ の蒸留操作を 120分間行レヽ、液体窒素で冷却された冷却管に溜まった留出液(9 OmL)をガスクロマトグラフィーで分析し、 C3F7OCH3であることを ¾ し、 回収率は 90%であった。 なお、 回収後に得られた新規な微小球は球状を保持し、 強アルカリ水が外殻に内包されていた。この新規な微小球を 40°Cで 20時間乾燥 し、 解枠されたフレークの真比重を測定したところ、 0. 97 g/c cであった。 〔実施例 8〕 200 g of the microspheres 3 obtained in Production Example 3 were weighed, mixed with a homomixer, and mixed and dispersed for 10 minutes with strong water (pHl 2). The resulting mixture was fed to a 2 L eggplant flask, and the flask was heated at a temperature of 80 ° C. and heated under atmospheric pressure. This distillation operation is carried out for 120 minutes, and the distillate collected in the cooling pipe cooled with liquid nitrogen (9 OmL) was analyzed by gas chromatography to find that it was C 3 F 7 OCH 3 , and the recovery rate was 90%. In addition, the new microspheres obtained after recovery retained spherical shape, and strongly alkaline water was contained in the outer shell. The novel microspheres were dried at 40 ° C. for 20 hours, and the true specific gravity of the unframed flakes was measured and found to be 0.97 g / cc. [Example 8]
製造例 5で得られた微小球 5を 40 g秤取し、ホモミキサーを用いてエタノール 1 Lを 10分間、混合分散させた。得られた混合物を容量 2 Lのナスフラスコに供 給し、フラスコを加熱する熱源を 40°Cに設定して常圧蒸留した。 この蒸留操作を 30分間行い、液体窒素で冷却された冷却管に溜まった留出液(7. 7mL) をガ スクロマトグラフィーで分析し、 C3F7〇CH3であることを確認し、 回収率は 9 0%であった。 なお、 回収後に新規な微小球は得られた。 40 g of the microspheres 5 obtained in Production Example 5 were weighed, and 1 L of ethanol was mixed and dispersed for 10 minutes using a homomixer. The resulting mixture was supplied to a 2 L eggplant-shaped flask and distilled under atmospheric pressure with the heat source for heating the flask set to 40 ° C. This distillation operation is carried out for 30 minutes, and the distillate (7.7 mL) collected in a condenser cooled with liquid nitrogen is analyzed by gas chromatography to confirm that it is C 3 F 7 CHCH 3 , The recovery rate was 90%. In addition, new microspheres were obtained after recovery.
〔実施例 9〕  [Example 9]
上記実施例 8で、エタノールの代わりに強アルカリ水(pHl 2) を使用する以 外は、 実施例 2と同様に操作して C 3 F 7 O C H 3を回収した。 その回収率は 91 % であった。 なお、回収後に得られた新規な微小球は球状を保持し、強アルカリ水が 外殻に内包されていた。 産業上の利用可能性 C 3 F 7 OCH 3 was recovered in the same manner as in Example 2 except that strong alkaline water (pH 12) was used instead of ethanol in Example 8 above. The recovery rate was 91%. In addition, the new microspheres obtained after recovery retained spherical shape, and strongly alkaline water was contained in the outer shell. Industrial applicability
本発明の内包物質の回収方法は、熱可塑性樹脂からなる外殻とそれに內包される 内包物質とから構成される微小球から、内包物質を簡便で効率よく回収することが できる。  According to the method of the present invention for recovering the inclusion substance of the present invention, the inclusion substance can be recovered simply and efficiently from the microspheres constituted of the outer shell made of a thermoplastic resin and the inclusion substance entrapped therein.
本発明の新規な微小球は、上記回収方法において内包物質を回収した後に得るこ とができ、 これまでに知られていない新しい微小球である。  The novel microspheres of the present invention are novel microspheres which can be obtained after recovering the inclusion substance in the above-mentioned recovery method, and which have not been known so far.

Claims

請求の範囲 The scope of the claims
1 .熱可塑性樹脂からなる外殻とそれに内包され且つ前記熱可塑性樹脂の軟ィ匕点以 下の沸点を有する内包物質とから構成される微小球と、溶媒とを接触させる接触ェ 程を含む、 内包物質の回収方法。 1 includes a contact step in which a solvent is brought into contact with microspheres constituted of an outer shell made of a thermoplastic resin and an inclusion substance contained therein and having a boiling point lower than the soft softening point of the thermoplastic resin. , How to recover contained substances.
2.前記劍虫工程で得られた微小球および溶媒を含む混合物から Ιίίϊ己内包物質を回 収する分離工程をさらに含む、 請求項 1に記載の内包物質の回収方法。  2. The method for recovering the inclusion substance according to claim 1, further comprising a separation step of recovering the self-contained substance from the mixture containing the microspheres and the solvent obtained in the step of helminth.
3 .前記翻虫工程とともに前記分離工程を行う、請求項 2に記載の内包物質の回収 方法。  3. The method for recovering contained substances according to claim 2, wherein the separation step is performed together with the insecticidal step.
4 .前記分離工程は前記内包物質を蒸留によって分離させる工程である、請求項 2 または 3に記載の内包物質の回収方法。 4. The method for recovering contained substances according to claim 2 or 3, wherein the separation step is a step for separating the contained substances by distillation.
5 .前記分離工程は前記混合物から前記内包物質を抽出分離させる工程である、請 求項 2または 3に記載の内包物質の回収方法。  5. The method for recovering contained substances according to claim 2 or 3, wherein the separation step is a step for extracting and separating the contained substances from the mixture.
6 .前記微小球が前記外殻の外表面に付着した微粒子充填剤からさらに構成されて いる、 請求項:!〜 5のいずれかに記載の内包物質の回収方法。  6. The method for recovering contained substances according to any of claims 5 to 6, wherein the microspheres further comprise a particulate filler attached to the outer surface of the outer shell.
7.前記内包物質の内包率が 5 %以上である、請求項:!〜 6のいずれかに記載の内 包物質の回収方法。  7. Claim: The inclusion rate of the inclusion substance is 5% or more. A method of recovering an internal packaging material according to any one of to 6.
8 . 前記微小球中に含まれる、 2 5 °Cにおける真比重が 0 . 7 9 §ノ< <以上でぁ る微小球の含有率が 5重量%以下である、請求項:!〜 7のレ、ずれかに記載の内包物 質の回収方法。 .. 8 the contained in microspheres, a true specific gravity of 2 5 ° C is 0 7 9 § Bruno <<least in § Ru microspheres content is 5 wt% or less, according to claim! A method of recovering the inclusion according to any one of 7 to 7 above.
9 . 前記熱可塑性樹脂が、 二トリル系単量体、 (メタ) アクリル酸エステル系単量 体、カルボキシル基含有単量体、スチレン系単量体、酢酸ビュルおよび塩化ビニリ デンから選ばれた少なくとも 1種のラジカル重合性単量体を含む単量体混合物を 重合して得られる樹脂である、請求項 1〜 8のいずれかに記載の内包物質の回収方 法。  9. The thermoplastic resin is at least one selected from a tolyl monomer, a (meth) acrylic acid ester monomer, a carboxyl group-containing monomer, a styrenic monomer, butyl acetate and vinylidene chloride. The method for recovering an encapsulated substance according to any one of claims 1 to 8, which is a resin obtained by polymerizing a monomer mixture containing one kind of radical polymerizable monomer.
1 0 .前記熱可塑性樹脂が二トリル系単量体とカルボキシル基含有単量体とを必須 成分として含む単量体混合物を重合して得られる樹脂である、請求項 9に記載の内 包物質の回収方法。  10. The inner packing material according to claim 9, wherein the thermoplastic resin is a resin obtained by polymerizing a monomer mixture containing a tolyl monomer and a carboxyl group-containing monomer as essential components. Recovery method.
1 1 ·前記内包物質が、エーテル構造を有し、塩素原子および臭素原子を含まなレ、、 炭素数 2〜 1 0の含弗素化合物を少なくとも含む、請求項 1〜 1 0のレ、ずれかに記 载の内包物質の回収方法。 1 1 · The inclusion substance has an ether structure and contains chlorine and bromine atoms, The method for recovering contained substances according to any one of claims 1 to 10, wherein the method comprises at least a fluorine-containing compound having 2 to 10 carbon atoms.
1 2 .前記溶媒が極性溶媒である、請求項:!〜 1 1のいずれかに記載の内包物質の 回収方法。  1 2. Claim: The solvent is a polar solvent! A method of recovering an encapsulated substance according to any one of 1 to 11.
1 3 .前記極性溶媒がエタノールおよび/または水である、請求項 1 2に記載の内 包物質の回収方法。 13. The method for recovering an inner packing material according to claim 12, wherein said polar solvent is ethanol and / or water.
1 4 .前記極性溶媒がアルカリ性を示す溶媒である、請求項 1 2または 1 3に記载 の内包物質の回収方法。  14. The method for recovering an encapsulated substance according to claim 12, wherein the polar solvent is a solvent exhibiting alkalinity.
1 5 .前記微小球がタイヤとリムの組み立て体の空洞部分に充填されていた微小球 である、 請求項 1〜 1 4のレ、ずれかに記載の内包物質の回収方法。  The method for recovering the inclusion material according to any one of claims 1 to 14, wherein the microspheres are microspheres filled in the hollow portion of an assembly of a tire and a rim.
1 6 .請求項:!〜 1 5のいずれかに記載の内包物質の回収方法において、前記接触 工程後に得ることができ、 前記熱可塑性樹脂を外殻とする、 新規な微小球。  1 6 Claim:! 15. The method for recovering an encapsulated substance according to any one of 15 to 15, which can be obtained after the contacting step, and the thermoplastic resin is an outer shell, novel microspheres.
1 7 . 前記溶媒が前記外殻に内包されている、 請求項 1 6に記載の新規な微小球。 17. The novel microspheres of claim 16, wherein the solvent is contained within the shell.
1 8 .液体で湿潤された状態にある、請求項 1 6または 1 7に記載の新規な微小球。 18. The novel microspheres according to claim 16 or 17 which are in a liquid-wetted state.
PCT/JP2006/303106 2005-03-08 2006-02-15 Method of recovering encapsulated substance and novel microsphere obtainable by the method WO2006095567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507032A JP4970245B2 (en) 2005-03-08 2006-02-15 Method for recovering encapsulated substances and novel microspheres obtainable by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-110312 2005-03-08
JP2005110312 2005-03-08

Publications (1)

Publication Number Publication Date
WO2006095567A1 true WO2006095567A1 (en) 2006-09-14

Family

ID=36953168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303106 WO2006095567A1 (en) 2005-03-08 2006-02-15 Method of recovering encapsulated substance and novel microsphere obtainable by the method

Country Status (2)

Country Link
JP (1) JP4970245B2 (en)
WO (1) WO2006095567A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012693A (en) * 2000-04-28 2002-01-15 Kureha Chem Ind Co Ltd Thermally foaming micro-sphere and method for producing the same
JP2004001627A (en) * 2002-05-31 2004-01-08 Bridgestone Corp Pneumatic run-flat tire
JP2004082101A (en) * 2002-06-27 2004-03-18 Tokyo Electric Power Co Inc:The Method of treating impregnated member containing halogenated aromatic compound
WO2004074396A1 (en) * 2003-02-24 2004-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpansible microsphere, process for producing the same and method of use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012693A (en) * 2000-04-28 2002-01-15 Kureha Chem Ind Co Ltd Thermally foaming micro-sphere and method for producing the same
JP2004001627A (en) * 2002-05-31 2004-01-08 Bridgestone Corp Pneumatic run-flat tire
JP2004082101A (en) * 2002-06-27 2004-03-18 Tokyo Electric Power Co Inc:The Method of treating impregnated member containing halogenated aromatic compound
WO2004074396A1 (en) * 2003-02-24 2004-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpansible microsphere, process for producing the same and method of use thereof

Also Published As

Publication number Publication date
JP4970245B2 (en) 2012-07-04
JPWO2006095567A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
KR101406022B1 (en) Process for production of thermally expandable beads and application thereof
JP5134960B2 (en) Thermally expanded microsphere and method for producing the same
JP5107718B2 (en) Thermally expandable microsphere and method for producing the same
JP4320356B2 (en) Thermally expansible microspheres, production method and use thereof
JP4362474B2 (en) Thermally expandable microspheres, method for producing the same and method for using the same
JP5759194B2 (en) Thermally expandable microspheres, hollow microparticles, production method and use thereof
WO2014036681A1 (en) Heat-expandable microspheres, preparation method and use thereof
WO2005049698A1 (en) Thermally expanded microsphere, process for producing the same, thermally expandable microsphere and use thereof
JP6587782B1 (en) Thermally expandable microspheres and their applications
JP2013173945A (en) Heat-expandable microspheres, and use
JPWO2004058910A1 (en) Thermally expandable microcapsule, method for producing foamed molded product, and foamed molded product
WO2007049616A1 (en) Thermal expansion microspheres and hollow fine particles, process for producing them, and assembly of tire and rim
JP2006213930A (en) Process for producing thermally expandable microsphere
US20050131089A1 (en) Hydrocarbon copolymer or polymer based aerogel and method for the preparation thereof
WO2006083041A1 (en) Thermally foamable microsphere, process for producing the same, and composition
JP6151983B2 (en) Thermally expansible microspheres, production method and use thereof
JP6118002B2 (en) GAS GENERATOR AND METHOD FOR PRODUCING FOAM USING THE SAME
JP2016172820A (en) Production method of expandable microsphere, and expandable microsphere
WO2006095567A1 (en) Method of recovering encapsulated substance and novel microsphere obtainable by the method
JP6668067B2 (en) Microsphere, thermofoamable resin composition containing the same, structural member, and molded article
JP2005232343A (en) Heat-expandable microcapsule
JP2006035092A (en) Method for producing mixture of hollow resin particle and inorganic fine particle
US20180258248A1 (en) Large-diameter heat-expanding microspheres and method for producing same
JP7128372B1 (en) THERMALLY EXPANDABLE MICROCAPSULE, FOAM RESIN COMPOSITION AND FOAM
JP7412653B2 (en) Thermally expandable microspheres, hollow particles and their uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507032

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714246

Country of ref document: EP

Kind code of ref document: A1