WO2006095439A1 - Ultra-low temperature storage technique for cultured plant cells - Google Patents

Ultra-low temperature storage technique for cultured plant cells Download PDF

Info

Publication number
WO2006095439A1
WO2006095439A1 PCT/JP2005/004363 JP2005004363W WO2006095439A1 WO 2006095439 A1 WO2006095439 A1 WO 2006095439A1 JP 2005004363 W JP2005004363 W JP 2005004363W WO 2006095439 A1 WO2006095439 A1 WO 2006095439A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
freezing
frost damage
plant
ultra
Prior art date
Application number
PCT/JP2005/004363
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Shibata
Yoichi Ogawa
Hideyuki Suzuki
Nozomu Sakurai
Kumiko Mori
Original Assignee
Kazusa Dna Research Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazusa Dna Research Institute Foundation filed Critical Kazusa Dna Research Institute Foundation
Priority to PCT/JP2005/004363 priority Critical patent/WO2006095439A1/en
Publication of WO2006095439A1 publication Critical patent/WO2006095439A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/001Culture apparatus for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Definitions

  • the present invention relates to a technique for cryogenic storage of plant cultured cells.
  • Plant cultured cells are undifferentiated and uniform cell aggregates, and have been established from various plant species so far. Since these cultured cells are grown in a sterile medium in an artificial environment, it is easy to conduct experiments under various conditions, including cell cycle, nutrient transfer, defense reaction against pests, metabolites. It is widely used in various plant studies such as biosynthesis. Currently, the BY-2 strain of tobacco (Nagata, et al: Int Rev Cytol 132: 1-30, 1992) is the most widely used for such studies.
  • Cultured cells can be isolated from Arabidopsis thaliana, whose genome base sequence is completely deciphered in model plants in plant research, and are expected to be used as new standard culture cells in plant research.
  • the T87 strain (Axelos, et al: Plant Physiol Biochem 30: 123-128, 1992; Non-patent document 1) established from Arabidopsis thaliana seedlings is one example. Due to its superior features such as the ability to isolate and regenerate protoplasts, it has begun to be used for various plant studies. However, in order to maintain cultured cells, it is indispensable to continue transplantation to a fresh medium at regular intervals of several days to several weeks, that is, to perform passage. The labor, cost, and equipment required for this work are tremendous, and there is always a risk of loss of the cultured cell line due to contamination with bacteria and improper operation.
  • the pre-freezing method is a method in which a target plant tissue / cell is gently cooled at a constant speed, that is, pre-freezing, before storage at an ultra-low temperature. Pre-freezing induces freezing of water outside the cell (ice nucleation) and intracellular dehydration associated with its growth, avoiding physical and physiological damage to cells due to intracellular freezing, and storage at ultra-low temperatures. Is possible. However, pre-freezing must be performed while maintaining an essentially constant cooling rate, and the use of an expensive dedicated program freezer is essential to achieve this. Therefore, ultra-low temperature storage can only be performed at a limited research institution with a program freezer.
  • frost protection agents In addition, before and during pre-freezing, it is essential to treat the cells with agents collectively called frost protection agents.
  • Commonly used freeze protection agents are dimethyl sulfoxide (DMSO), ethylene glycol, propylene glycol, etc., but many of these freeze protection agents are extremely toxic to plant cells.
  • DMSO dimethyl sulfoxide
  • ethylene glycol ethylene glycol
  • propylene glycol etc.
  • these freeze protection agents are extremely toxic to plant cells.
  • processing under low temperature generally on ice
  • mild addition of chemicals, mixing, and strict processing time! / Can be forced to perform very complicated operations.
  • tissues and cells to be stored at ultra-low temperatures are pre-cultured in a medium supplemented with plant hormones or high-concentration sugars or under low temperature to obtain a physiological / physical state that can withstand frost damage protection and subsequent pre-freezing. It is necessary to keep.
  • Non-Patent Document 1 Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30: 123—128
  • Non-Special Terms 2 Plant regeneration from Arabidopsis thaliana protoplasts. Plant Cell Rep 8: 534—537
  • Non-Patent Document 3 Ribeiro RCS, Jekkel Z, Mulligan BJ, Cocking EC, Power JB, Davey MR, Lynch PT (1996) Regeneration of fertile plants from cryopreserved cell suspension of Araoidopsis thaliana (L.) Heynh. Plant Sci 115: 115 —121
  • Non-Special Reference 4 Menges M, Murray J AH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J 37: 635—644 Disclosure of the Invention
  • frost damage prevention solutions contain DMSO, ethylene glycol, or propylene glycol, but these frost damage protection agents are highly toxic to cells with high penetration into cells. (Fuller: Cryo-Lett 25: 375-388, 2004) o This is a low temperature treatment (generally on ice), a gentle addition of the drug, mixing, and a set processing time.
  • ultra-low temperature storage by the pre-freezing method requires the use of a program freezer, which is an expensive dedicated device, and this is the reason for most research institutions. This is the reason why the ultra-low temperature storage cannot be carried out.
  • the present inventors combined glycerin, sucrose, and proline, which are frost damage protective agents known to be usable at room temperature because of their low penetration into cells and low toxicity.
  • glycerin, sucrose, and proline which are frost damage protective agents known to be usable at room temperature because of their low penetration into cells and low toxicity.
  • the present inventors can perform a pre-freezing method without using a program freezer if a storage container such as an expanded polystyrene (EPS) tube rack is used, and achieve a high cell viability of 95%. I found out that I can do it. Therefore, the main feature of the present invention is that the pre-freezing method is performed without using the product freezer.
  • EPS expanded polystyrene
  • the present inventors have found that the pre-freezing method using the frost damage prevention solution of the present invention can be applied to various plant cultured cells. Therefore, the main feature of the present invention is that a pre-freezing method is performed on various plant species and cultured cell lines using a frost damage prevention solution appropriately mixed with glycerin, sucrose, and proline.
  • the present invention relates to the invention described in the following (1) to (16).
  • step (B) The step of putting the small container containing the suspension of step (A) into a storage container
  • step (C) the step of placing the storage container of step (B) into a freezer
  • step (9) The freezing method according to (7), wherein the storage container in step (B) is a simple cryopreservation container for animal cells.
  • step (10) The freezing method according to (7), wherein the storage container of step (B) is an expanded polystyrene tube rack.
  • step (D) The freezing method according to (7), wherein the predetermined time in step (D) is 4 to 10 hours.
  • the freezing method according to (7) comprising a step of shaking the suspension for 60 minutes after step (A), and further, a predetermined time in step (D) is 6 to 8 hours.
  • step (A) The freezing method according to (7), wherein the plant cell in step (A) is derived from any of Arabidopsis thaliana, carrot, Miyakodasa, tobacco, and rice.
  • step (A) The freezing method according to (7), wherein the plant cell in step (A) is derived from either Arabidopsis thaliana CoH) or tobacco BY-2.
  • Ultra low temperature storage by the pre-freezing method cools cells at a constant cooling rate (generally 1 ° C / min). This method induces extracellular freezing and intracellular freezing and dehydration associated with the growth of ice crystals, and avoids physical and physiological damage caused by intracellular freezing. is there.
  • the cells In order to effectively freeze and dehydrate the cells during pre-freezing and to withstand the low temperature exposure, the cells must be treated with a solution containing anti-frost protection agents. .
  • Commonly used frost damage protection solutions are extremely toxic to cells, such as DMSO, ethylene glycol, and propylene glycol, and contain frost damage protection agents, so strict treatment at low temperatures is required. So far, the ability to protect against frost damage with relatively low phytotoxicity has been reported. The scope of its application is limited to Citrus sinensis embryonic heart cells.
  • frost damage prevention solution appropriately formulated with glycerin, sucrose, and proline, and have demonstrated that a high survival rate can be achieved in many plant cultured cells. It was found that using the developed frost damage prevention solution, frost damage protection treatment can be performed at room temperature, and that the survival rate is not affected even if treatment is performed for 0 minutes to at least 120 minutes. These characteristics indicate that the frost damage prevention treatment using the solution of the present invention is very suitable for large-scale high-throughput storage of ultra-low temperature storage.
  • cryopreservation containers or EPS tube racks for pre-freezing eliminates the need for the introduction of very expensive, dedicated functions and ineffective prod- ule freezers.
  • This facility enables ultra-low temperature storage of cultured plant cells.
  • Alternative use of simple cryopreservation containers that are commercially available for animal cells has also been reported by Engelmann, et al. (Cryo-Lett 15: 53-58, 1994), but its scope of application is Citrus As shown here, the survival rate is clearly lower compared to the case of using EPS tube racks that are cheaper, easier to obtain, and capable of processing multiple specimens. Pre-freezing conditions are also limited.
  • the frost damage prevention solution of the present invention contains 1 to 3M glycerin.
  • the anti-frost protection solution of the present invention contains 1.5-2.5M glycerin. More preferably, the anti-frost damage solution of the present invention contains 2M glycerin.
  • the anti-frost damage solution of the present invention contains 0.2-0.8M sucrose.
  • the anti-frost protection solution of the present invention contains 0.3-0.6M sucrose.
  • the frost damage prevention solution of the present invention contains 0.4 M sucrose.
  • the anti-frost damage solution of the present invention contains 0.4-400 mM proline.
  • the anti-frost damage solution of the present invention contains 0.8-200 mM proline.
  • the frost protection solution of the present invention contains 8.7-86.9 mM proline.
  • the ultra-low temperature storage method is a method for storing genetic resources and the like under an ultra-low temperature.
  • the ultra-low temperature generally means about 25 ° C or less, preferably about 80 ° C or less.
  • the lower limit of the ultra-low temperature is not particularly limited, but is generally about 196 ° C.
  • the pre-freezing method is an ultra-low-temperature storage method in which pre-freezing is performed and then stored at an ultra-low temperature.
  • Pre-freezing is a method in which a target plant tissue 'cell is gently cooled and frozen before being stored at an ultra-low temperature. Say to do.
  • a freezing protection agent is a substance used to protect against the effects of freezing, and is added to the medium mainly to prevent the formation of large ice crystals in the cells.
  • DMSO, ethylene glycol, propylene glycol, etc. are known as commonly used frost protection agents.
  • a frost damage prevention solution is a medium with frost damage prevention agent added.
  • frost damage is reduced.
  • cell viability is generally used as an indicator. Cell viability can be measured by the Regrowth Test method of Ishikawa, et al. (Plant Sci 107: 83-93, 1995).
  • the program freezer refers to a freezer that can control the temperature decrease rate.
  • a small container containing a suspension of cultured cells or callus refers to a sealable container made of polypropylene or glass.
  • the capacity of the small container is not particularly limited.
  • the volume is about 0.1 to about 10 mL, more preferably about 1.0 to about 5.0 mL.
  • the suspension of cultured cells or callus may be prepared in a small container that need not be prepared prior to being placed in the small container.
  • the cultured cell or callus suspension is put in a small container in advance, and the cultured cell or callus solution to be suspended is placed in the small container in advance, and then the cultured cell or callus is suspended later. Callus may be added and suspended in a small container.
  • the storage container refers to a container that can store a plurality of small containers.
  • the number that can be stored is not particularly limited, but is preferably 16 or more, and more preferably 32 or more. Because the storage container needs to accurately and gently convey the temperature in the freezer to the small container, the storage container and the small container must be in contact.
  • the contact area between the storage container and the small container is preferably 50% or more of the surface area of the small container, and more preferably 75% or more of the surface area of the small container.
  • the whole or part of the storage container must be filled with a material with low thermal conductivity.
  • the part is preferably 50% or more of the volume of the preservation solution, more preferably 80% or more, and further preferably 90% or more.
  • Substances with low thermal conductivity are those with a thermal conductivity of 0.5 W / m / K or less, and include, for example, isopropyl alcohol and EPS.
  • the space inside the freezer and outside the storage container must not touch the small container. That is, when the temperature in the freezer is transferred to the small container, the whole or part of the storage container must be directly or indirectly mediated by a low thermal conductivity substance.
  • Mr. Frosty (Nalgene), a simple cryopreservation container for animal cells, can be used as a storage container, but the number of small containers that can be stored is limited.
  • EPS tube racks such as HS4283 (Heathrow Scientific) and SD-14 (Marem) can be used.
  • a suspension cultured cell strain T87 (Axelos, et al: Plant Physiol Biochem 30: 123-128, 1992) derived from Arabidopsis thaliana (L.) Heynh. Ecotype Columbia seedlings was used.
  • Suspension cultured cells were obtained from mJPL3 medium [stock A '(Axelos, et al.) Modified from JPL medium (Jouanneau and Pe'aud-Lenoe "' l: Physiol Plant 20: 834-850, 1967) used in the original report. al, 1992), lZ triple concentration MS inorganic salt (Murashige and Skoog: Physiol Plant 15: 473-497, 1962), MS vitamin, O. lg / L casein coconut hydrolyzate (casamino acid), 15 g / L sucrose , 1 ⁇ Naphthalene acetic acid (NAA), 2.5 mM
  • the suspension culture cell (Mathur, et al: Plant J 13: 707-716, 1998) derived from seedling roots of AraDidopsis thaliana (L.) Heynh j ecotype Columbia Concentration B5 vitamin (Gamborg, et al: Exp Cell Res 50: 151-158, 1968), lmg / L 2,4-dichlorophenoxyacetic acid (2,4-D), 30 g / L sucrose, 2.5 mM MES , PH 5.8], and rotating shaking culture at 120 ° C / min at 22 ° C in the dark. For subculture, every 7 days, 30 mL suspension culture cells were transferred to 70 mL maintenance medium in a 300 mL flask.
  • Tobacco (Nicotiana tabacum L. cv. Bright Yellow 2) suspension culture cell BY-2 (Nagata, et al: Int Rev Cytol 132: 1-30, 1992) is modified with modified LS medium (Nagata, et al. 1992). ) And swirling shaking culture at 130 ° C / min in the dark at 27 ° C. For subculture, 1.5 mL of suspension culture cells were transferred to lOOmL medium in a 300 mL flask every 7 days. 4. Rice suspension culture cells
  • Suspension cultured cells (Hayakawa, et al: Plant Cell Physiol 31: 1071-1077, 1990) derived from rice (Oryza sativa L. cv. Sasanishiki) embryos are R-2 medium containing lmg / L 2,4-D. (Ohira, et al: Plant Cell Physiol 14: 1113-1121, 1973) was subjected to swirl shaking culture at 25 ° C in the dark at 120 rpm.
  • Subculture is performed every 14 days after filtering through a stainless steel mesh with a pore size of 500 ⁇ m, collecting cells with a nylon mesh with a pore size of 50 m, and placing a 0.5 g (g WW) wet cell in a 300 mL flask. Transplanted to the medium.
  • Carrot (Daucus carota L.) suspension culture cells were swirled and shaken at 120 ° C / min in the dark at 25 ° C using R-2 medium containing lmg / L 2,4-D. . Subcultures were transferred every 7 days to 80 mL of medium containing 20 mL of suspension culture cells in a 300 mL flask.
  • Suspension culture cells of Jacobsa (Lotus japonicus (Regel) Larsen ecotype Gifu accession no.B- 129) are maintained medium (MS inorganic salt, B5 vitamin, lmg / L 2,4-D, 0. lmg / L kinetin). , 30g / L sucrose, 2.5mM MES, pH 5.8) was subjected to rotary shaking culture at 120 ° C / min in the dark at 25 ° C. In subculture, cells were collected with a nylon mesh with a pore size of 1000 m every 3 weeks and transplanted to a lOOmL medium containing wet lg (g W.W.) cells in a 300 mL flask.
  • the frost damage prevention solution was prepared by dissolving each component in distilled water or the maintenance medium of each cultured cell. Gently suspend the suspension at approximately 45 rpm Incubated for 0-120 minutes at room temperature with reciprocal shaking to prevent frost damage.
  • the cryopreservation-treated cell suspension was dispensed in 0.5 mL aliquots into ultra-low temperature storage vials (1.2 mL cryovials).
  • cryovial containing the cryopreserved cell suspension Immediately place the cryovial containing the cryopreserved cell suspension in the chamber of the program freezer, cool to 35 ° C at a cooling rate of 0.5 ° C / min, and then continue at 35 ° C. 0—pre-frozen by holding for 60 minutes.
  • the pre-frozen cells were immediately attached to an aluminum cane, immediately immersed in liquid nitrogen and rapidly cooled, and stored in liquid nitrogen or in a freezer at a very low temperature.
  • cryovials containing cryoprotective cell suspensions are immediately stored in a simple cryopreservation container (Cryo 1 ° C Freezing Container “Mr. Frosty”; Nalgene) or commercially available EPS Tu Black (HS4283; Heathrow Scientific or SD-14; Marem) was cooled in a freezer at -30 ° C or 80 ° C for 11-8 hours and pre-frozen.
  • the pre-frozen cells were immediately attached to an aluminum cane, immediately immersed in liquid nitrogen for quick cooling, and stored at low temperature in liquid nitrogen or freezer.
  • the cryopreserved cultured cells were immersed in a 35 ° C water bath together with the cryovial and rapidly warmed and thawed by incubating for 2 minutes while shaking at about 180 rpm.
  • the thawed cultured cells were collected in an undiluted 'unwashed suspension by aspiration with a micropipette and dropped directly onto the regrowth medium.
  • As the re-growth medium a medium used for subculture was solidified with 7 g / L agar and two filter papers were laid. The medium containing the collected cells was incubated in the same culture environment as the subculture.
  • the sample was transplanted to a medium with the same composition together with one sheet of filter paper, and statically cultured in the same culture environment as the cultured cells tested.
  • the survival rate was measured according to the Regrowth Test method of Ishikawa, et al. (Plant Sci 107: 83-93, 1995).
  • this frost damage protection solution can be used and treated at room temperature, that is, in a general laboratory environment, and the effect of the frost damage protection treatment method on the survival rate is clearly low.
  • Figure 2 When frost damage protection treatment is performed using a solution containing frost damage protection agents such as DMSO, ethylene glycol, propylene glycol, etc., it is possible to carry out the treatment for a specified period of time precisely while shaking the cell suspension. Indispensable, in the frost damage prevention treatment using the frost damage prevention solution of the present invention, the treatment while shaking and the treatment time contributed only to the improvement of the survival rate. On the other hand, in the frost damage protection treatment in a stationary state without shaking, even if treatment was performed from 0 minutes to at least 120 minutes, there was no clear change in survival rate (Fig. 2). ).
  • the plant culture cell line to be processed (recovery of cells by centrifugation, addition of anti-freezing protection solution 'dispensing into resuspension one cryovial) can be continuously operated at room temperature for at least 120 minutes. I mean.
  • This ultra-low temperature preservation method can be applied to cells cultured on a solidified medium, that is, callus and cultured cells into which a gene has been introduced.
  • frost damage of the present invention It was shown that frost damage protection treatment for the protection solution and the pre-freezing method using it is a technology that can greatly contribute to the large-scale 'high-throughput storage of plant cryogenic cells.
  • Example 3 the present inventors tried to develop a pre-freezing method using the cryoprotective solution of Example 3 without using a program freezer.
  • glycerin It was shown that commercially available simple cryopreservation containers for animal cells, such as Nalgene products, can be used for ultra-low temperature storage of plant culture cells by using a frost damage protection solution that also contains sugar, sucrose, and prolinker.
  • cryopreservation containers have a limited number of nozzles (often a dozen), and Nalgene products are used only 5 times, as well as the need for harmful isopropyl alcohol. Problems remain, such as the need to replace with a new one each time. Therefore, it is cheaper and easier to obtain expanded polystyrene (EPS), so-called expanded polystyrene.
  • EPS expanded polystyrene
  • Two commercially available products capable of accommodating 50 cryovials, HS4283 (Heathrow Scientific) and SD-14 (Marem) were provided as EPS tube racks.
  • Pre-freezing method without using program freezer to various cultured cell lines Applying simple cryogenic storage method without using program freezer as described above to ultra-cold storage of a wider range of plant species' cultured cell lines The scope of application of this method was investigated.
  • As cultured cells Arabidopsis thaliana CoH) strain, carrot, Miyakodasa, tobacco BY-2 strain and five different plant species of rice were used.
  • the frost damage protection solution was composed of 2M glycerin, 0.4M sucrose, and 0.87mM proline, and was not subjected to frost damage protection treatment (incubation) (0 minutes) or 60 minutes with shaking.
  • Pre-freezing was performed in a freezer at 30 ° C using a commercially available simple cryopreservation container (Nalgene) or EPS tube rack (Heathrow Scientific).
  • FIG. 1 is a graph showing the effect of proline addition to a frost damage prevention solution on the cryogenic storage of Arabidopsis cultured cell strain T87 (Example 3).
  • T87 cells were suspended in frost damage protection solution (2M glycerin, 0.4M sucrose, 0-86.9 mM proline), and then pre-frozen to 35 ° C using a program freezer at a cooling rate of 0.5 ° C / min.
  • FIG. 2 shows the effect of frost damage protection treatment time on the cryogenic storage of Arabidopsis cultured cell strain T87 (Example 3). Suspend T87 cells in anti-frost damage solution and leave or shake. Protected against frost damage for 0-120 minutes with shaking. After the frost damage prevention treatment, it was pre-frozen to 35 ° C at a cooling rate of 0.5 ° C / min using a program freezer.
  • FIG. 3 is a diagram showing ultra-low temperature preservation of Arabidopsis cultured cell strain T87 without using a program freezer (Example 4).
  • cryopreservation container ⁇ Mr. Frosty ”(Nalgene) was used and pre-frozen for 18 hours at 30 ° C or 80 ° C.
  • EPS expanded polystyrene
  • FIG. 4 is a diagram showing application of the cryogenic storage method without using a program freezer to various cultured cell lines (Example 5).
  • A Arabidopsis cultured cells Cd-0 strain, (c), (d) carrot cultured cells, (, (1) Miyagigusa Gifo cultured cells, (g), (h) tobacco cultured cells
  • Rice cultured cells were used for BY-2 strains, (i) and (j), and each cultured cell was suspended in frost damage protection solution and subjected to frost damage protection treatment for 0 minutes or 60 minutes with shaking.
  • (a), (c), (e), (g), (i) use a cryopreservation container "Mr. Frosty" (Nalgene), and (b), (d), (1), (H), (j) are pre-frozen for 2-6 hours at 30 ° C using EPS tube rack HS4283 (Marem).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Dentistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Ultra-low temperature storage is performed by employing pre-freezing technique using a cryoprotective solution comprising glycerin, sucrose and proline blended in a suitable manner. By using this method, procedures for the treatment of a cultured plant cell line (collection of cells by centrifugation/addition of a cryoprotective solution to the cells and resuspension of the cells in the solution/dispensation of the resuspended solution into Cryogenic vials) can be continued to operate at ordinary temperature for at least 120 minutes. Moreover, by using the cryoprotective solution in the cryoprotection treatment, ultra-low temperature storage of cultured plat cells can be achieved conveniently using an inexpensive, readily available cryogenic preservative container or EPS tube rack without using any expensive program freezer. The ultra-low temperature storage method using the cryoprotective solution is applicable to a wide range of plant species and a wide range of cultured cell lines.

Description

植物培養細胞の超低温保存技術  Ultra low temperature storage technology for plant cultured cells
技術分野  Technical field
[0001] 本発明は、植物培養細胞の超低温保存技術に関するものである。  [0001] The present invention relates to a technique for cryogenic storage of plant cultured cells.
背景技術  Background art
[0002] 植物培養細胞は未分化で均一な細胞の集合体であり、これまでに様々な植物種か ら榭立されている。この培養細胞は、人工環境下において無菌状態の培地中で生育 させることから、様々な条件下で実験を行うことが容易であり、細胞周期、栄養素'物 質移行、病害虫に対する防御反応、代謝産物の生合成などの様々な植物研究にお いて広く利用されている。現在、このような研究に最も広く使用されているのはタバコ の BY- 2株(Nagata, et al: Int Rev Cytol 132: 1-30, 1992)である。  [0002] Plant cultured cells are undifferentiated and uniform cell aggregates, and have been established from various plant species so far. Since these cultured cells are grown in a sterile medium in an artificial environment, it is easy to conduct experiments under various conditions, including cell cycle, nutrient transfer, defense reaction against pests, metabolites. It is widely used in various plant studies such as biosynthesis. Currently, the BY-2 strain of tobacco (Nagata, et al: Int Rev Cytol 132: 1-30, 1992) is the most widely used for such studies.
培養細胞は、植物研究におけるモデル植物でゲノム塩基配列が完全解読されて 、 るシロイヌナズナからも榭立が可能であり、植物研究における新たな標準培養細胞と しての利用が期待される。シロイヌナズナ Columbiaの実生より榭立された T87株( Axelos, et al: Plant Physiol Biochem 30: 123-128, 1992 ;非特許文献 1)はその一例 であり、その均一性、高い増殖能'光合成能、プロトプラストの単離と再分化が可能で あることなどの優位な特徴から、様々な植物研究への利用が行われ始めている。しか し一方で、培養細胞を維持するためには、数日間から数週間の一定間隔を置いて新 鮮な培地に移植し続けること、すなわち継代を行うことが不可欠である。この作業に 必要な労力、コスト、設備は多大であり、さらには雑菌汚染や不適切な操作による培 養細胞系統の損失の危険を常に抱えて 、る。  Cultured cells can be isolated from Arabidopsis thaliana, whose genome base sequence is completely deciphered in model plants in plant research, and are expected to be used as new standard culture cells in plant research. The T87 strain (Axelos, et al: Plant Physiol Biochem 30: 123-128, 1992; Non-patent document 1) established from Arabidopsis thaliana seedlings is one example. Due to its superior features such as the ability to isolate and regenerate protoplasts, it has begun to be used for various plant studies. However, in order to maintain cultured cells, it is indispensable to continue transplantation to a fresh medium at regular intervals of several days to several weeks, that is, to perform passage. The labor, cost, and equipment required for this work are tremendous, and there is always a risk of loss of the cultured cell line due to contamination with bacteria and improper operation.
[0003] 上記のような植物培養細胞の維持に伴う欠点を回避する 1つの手段が、液体窒素 などを用いて細胞を極低温下で保存する手法、いわゆる超低温保存法である。植物 の超低温保存に関する研究は 1960年代に開始され、現在までに様々な植物種 ·培 養細胞系統に対応した種々の手法が確立されている。これまでに確立されている手 法は予備凍結法 (Withers and King: Cryo-Lett 1: 213-220, 1980)およびガラス化法 (Uragami, et al: Plant Cell Rep 8: 418-421, 1989)に大別されるが、いずれも特殊機 器が必要であり、操作が煩雑で、適用可能な植物種 ·培養細胞系統が限定されるな どの欠点が存在する。 [0003] One means for avoiding the drawbacks associated with maintaining plant cultured cells as described above is a so-called ultra-low temperature storage method, in which cells are stored at extremely low temperatures using liquid nitrogen or the like. Research on ultra-low temperature storage of plants was started in the 1960s, and various methods corresponding to various plant species and cultured cell lines have been established to date. The established methods are the pre-freezing method (Withers and King: Cryo-Lett 1: 213-220, 1980) and the vitrification method (Uragami, et al: Plant Cell Rep 8: 418-421, 1989). There are two types of special machines. However, there are drawbacks such as the need for a vessel, complicated operation, and limitations on applicable plant species and cultured cell lines.
[0004] シロイヌナズナ培養細胞の超低温保存法は、 Ford (Plant Cell Rep 8: 534-537, [0004] Ultra low temperature preservation method of cultured Arabidopsis cell is described by Ford (Plant Cell Rep 8: 534-537,
1990 ;非特許文献 2)、 Ribeiro, et al. (Plant Sci 115: 115-121, 1996 ;非特許文献 3)、 Menges and Murray (Plant J 37: 635-644, 2004 ;非特許文献 4)などにより報告されて いるが、いずれも予備凍結法によるものである。予備凍結法とは、超低温下での保存 の前に対象となる植物組織 ·細胞を一定の速度で穏やかに冷却処理、すなわち予備 凍結を行う手法である。予備凍結により細胞外での水の凍結 (氷核形成)とその成長 に伴う細胞内の脱水が誘起され、細胞内凍結による細胞の物理的,生理的損傷が回 避でき、超低温下での保存が可能となる。しかしながら、予備凍結は本質的に一定の 冷却率を維持して行う必要があり、これを実現するには高価な専用機器であるプログ ラムフリーザーの使用が不可欠である。したがって、超低温保存はプログラムフリーザ 一を所有する限られた研究機関'施設でしか行うことができない。 1990; Non-patent document 2), Ribeiro, et al. (Plant Sci 115: 115-121, 1996; Non-patent document 3), Menges and Murray (Plant J 37: 635-644, 2004; Non-patent document 4) Are reported by the preliminary freezing method. The pre-freezing method is a method in which a target plant tissue / cell is gently cooled at a constant speed, that is, pre-freezing, before storage at an ultra-low temperature. Pre-freezing induces freezing of water outside the cell (ice nucleation) and intracellular dehydration associated with its growth, avoiding physical and physiological damage to cells due to intracellular freezing, and storage at ultra-low temperatures. Is possible. However, pre-freezing must be performed while maintaining an essentially constant cooling rate, and the use of an expensive dedicated program freezer is essential to achieve this. Therefore, ultra-low temperature storage can only be performed at a limited research institution with a program freezer.
また、予備凍結中および予備凍結前には凍害防御剤と総称される薬剤による細胞 の処理が不可欠である。ここで一般的に利用される凍害防御剤はジメチルスルフォキ シド(dimethyl sulfoxide ; DMSO)、エチレングリコール、プロピレングリコールなどであ るが、これらの凍害防御剤の多くは植物細胞に対する毒性が非常に強ぐ凍害防御 剤を使用する工程では、低温下 (一般的に氷上)での処理、薬剤の穏ゃ力な添加' 混合、厳密な処理時間と!/ヽつた非常に煩雑な操作を強 ヽられる。  In addition, before and during pre-freezing, it is essential to treat the cells with agents collectively called frost protection agents. Commonly used freeze protection agents are dimethyl sulfoxide (DMSO), ethylene glycol, propylene glycol, etc., but many of these freeze protection agents are extremely toxic to plant cells. In the process of using strong anti-frost protection agents, processing under low temperature (generally on ice), mild addition of chemicals, mixing, and strict processing time! / Can be forced to perform very complicated operations.
さらに、超低温保存に供する組織 ·細胞は、植物ホルモンや高濃度の糖を添加した 培地中あるいは低温下であらかじめ培養し、凍害防御処理とそれに続く予備凍結に 耐えうる生理的 ·物理的状態にしておく必要がある。これらの一連の欠点は、今後の 植物研究で必要とされる大規模化 ·ハイスループット化や、より広範な研究機関 '施 設における超低温保存を困難とする大きな障壁である。  In addition, tissues and cells to be stored at ultra-low temperatures are pre-cultured in a medium supplemented with plant hormones or high-concentration sugars or under low temperature to obtain a physiological / physical state that can withstand frost damage protection and subsequent pre-freezing. It is necessary to keep. These series of drawbacks are major barriers that make it difficult to achieve large-scale, high-throughput, and ultra-low temperature storage in a wider range of research institutes, which will be required in future plant research.
[0005] このような予備凍結法の欠点を補うため、植物毒性の比較的低い凍害防御剤の利 用や動物細胞用に市販されて!ヽる簡易凍結保存容器の代替利用も報告されて ヽる 力 これらの方法の適用範囲は、 Citrus属植物の限られた種に限定されている。 そこで本研究では、まずシロイヌナズナ培養細胞 T87株をモデル植物材料として供 し、簡便で大規模化 ·ハイスループット化への応用が可能な超低温保存法の確立を 試みた。さらに、確立された手法を様々な植物培養細胞系統に導入し、その広範な 適用性を確認した。 [0005] In order to compensate for the disadvantages of the pre-freezing method, it is commercially available for use with frost damage protective agents with relatively low phytotoxicity and for animal cells! Alternative use of simple cryopreservation containers has also been reported. The scope of application of these methods is limited to limited species of the genus Citrus. Therefore, in this study, we first used Arabidopsis cultured cell strain T87 as a model plant material. We attempted to establish an ultra-low-temperature storage method that can be applied to simple, large-scale and high-throughput applications. In addition, established methods were introduced into various plant cell lines and their broad applicability was confirmed.
非特許文献 1: Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30: 123—128 Non-Patent Document 1: Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30: 123—128
非特言午文献 2 : Ford KG (1990) Plant regeneration from Arabidopsis thaliana protoplasts. Plant Cell Rep 8: 534—537 Non-Special Terms 2: Ford KG (1990) Plant regeneration from Arabidopsis thaliana protoplasts. Plant Cell Rep 8: 534—537
非特許文献 3 : Ribeiro RCS, Jekkel Z, Mulligan BJ, Cocking EC, Power JB, Davey MR, Lynch PT (1996) Regeneration of fertile plants from cryopreserved cell suspension of Araoidopsis thaliana (L.) Heynh. Plant Sci 115: 115—121 Non-Patent Document 3: Ribeiro RCS, Jekkel Z, Mulligan BJ, Cocking EC, Power JB, Davey MR, Lynch PT (1996) Regeneration of fertile plants from cryopreserved cell suspension of Araoidopsis thaliana (L.) Heynh. Plant Sci 115: 115 —121
非特言午文献 4 : Menges M, Murray J AH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J 37: 635—644 発明の開示 Non-Special Reference 4: Menges M, Murray J AH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant J 37: 635—644 Disclosure of the Invention
発明が解決しょうとする課題 Problems to be solved by the invention
植物培養細胞の予備凍結法における超低温保存において、その大規模化'ハイス ループットィ匕を妨げている大きな欠点が、凍害防御処理の煩雑さ'厳密さである。一 般に広く利用されている凍害防御溶液は DMSO、エチレングリコール、もしくはプロピ レンダリコールなどを含有して 、るが、これらの凍害防御剤は細胞内への浸透性が高 ぐ細胞に対する毒性が非常に強いことが知られている(Fuller: Cryo-Lett 25: 375-388, 2004) oこれが、低温下(一般的に氷上)での処理、薬剤の穏やかな添加' 混合、設定した処理時間の厳守といった非常に煩雑な操作が必要となる要因である また、予備凍結法による超低温保存は、高価な専用機器であるプログラムフリーザ 一を使用する必要があり、このことが、ほとんどの研究機関において植物の超低温保 存を実施できな 、原因となって 、る。  In the cryopreservation of plant cell culture in the pre-freezing method, the major drawback that prevents the large-scale 'high-throughput' is the complexity of the frost damage protection process. Commonly used frost damage prevention solutions contain DMSO, ethylene glycol, or propylene glycol, but these frost damage protection agents are highly toxic to cells with high penetration into cells. (Fuller: Cryo-Lett 25: 375-388, 2004) o This is a low temperature treatment (generally on ice), a gentle addition of the drug, mixing, and a set processing time. It is a factor that requires extremely complicated operations such as strict adherence.In addition, ultra-low temperature storage by the pre-freezing method requires the use of a program freezer, which is an expensive dedicated device, and this is the reason for most research institutions. This is the reason why the ultra-low temperature storage cannot be carried out.
さらに、これまでに確立されている超低温保存法は、適用可能な植物種 ·培養細胞 系統が限定されるという問題点があった。 課題を解決するための手段 Furthermore, the ultra-low temperature preservation methods established so far have a problem that applicable plant species and cultured cell lines are limited. Means for solving the problem
[0007] まず本発明者らは、細胞内への浸透性が低ぐ毒性も低いことから、常温での使用 が可能であることが知られる凍害防御剤であるグリセリン、ショ糖、プロリンを組み合わ せた凍害防御溶液の開発とそれを利用した凍害防御処理方法の開発を試みた。し たがって、本発明はグリセリン、ショ糖、プロリンが適切に配合された凍害防御溶液を 用いて予備凍結法を行うことを最も主要な特徴とする。  [0007] First, the present inventors combined glycerin, sucrose, and proline, which are frost damage protective agents known to be usable at room temperature because of their low penetration into cells and low toxicity. We tried to develop a frozen frost damage prevention solution and a frost damage prevention treatment method using it. Therefore, the main feature of the present invention is that the pre-freezing method is performed using a frost damage prevention solution appropriately mixed with glycerin, sucrose, and proline.
また本発明者らは、発泡ポリスチレン (EPS)チューブラックなどの保存容器を用いれ ば、プログラムフリーザーを使用せずに予備凍結法を行うことができ、さらに 95%にも 達する高い細胞生存率を実現できることを見出した。したがって、本発明はプロダラ ムフリーザーを使用せずに予備凍結法を行うことを最も主要な特徴とする。  In addition, the present inventors can perform a pre-freezing method without using a program freezer if a storage container such as an expanded polystyrene (EPS) tube rack is used, and achieve a high cell viability of 95%. I found out that I can do it. Therefore, the main feature of the present invention is that the pre-freezing method is performed without using the product freezer.
さらに本発明者らは、本発明の凍害防御溶液を用いた予備凍結法が様々な植物 培養細胞に適用可能であることを見出した。したがって、本発明はグリセリン、ショ糖 、プロリンが適切に配合された凍害防御溶液を用いて、様々な植物種 ·培養細胞系 統について予備凍結法を行うことを最も主要な特徴とする。  Furthermore, the present inventors have found that the pre-freezing method using the frost damage prevention solution of the present invention can be applied to various plant cultured cells. Therefore, the main feature of the present invention is that a pre-freezing method is performed on various plant species and cultured cell lines using a frost damage prevention solution appropriately mixed with glycerin, sucrose, and proline.
[0008] 本発明は、より詳しくは、下記 (1)から (16)に記載された発明に関する。 [0008] More specifically, the present invention relates to the invention described in the following (1) to (16).
(1) 以下の (a)— (c)を含む、植物細胞の凍害防御溶液:  (1) A frost damage prevention solution for plant cells containing the following (a) — (c):
(a) 1一 3Mグリセリン、  (a) 1 3M glycerin,
(b) 0.2— 0.8Mショ糖、および  (b) 0.2-0.8M sucrose, and
(c) 0.4— 400mMプロリン。  (c) 0.4—400 mM proline.
(2) 以下の (a)— (c)を含む、(1)の凍害防御溶液。  (2) The frost damage prevention solution according to (1), comprising the following (a) — (c).
(a) 2Mグリセリン、  (a) 2M glycerin,
(b) 0.4Mショ糖、および  (b) 0.4M sucrose, and
(c) 8.7— 86.9mMプロリン。  (c) 8.7—86.9 mM proline.
(3) 植物細胞がシロイヌナズナ培養細胞である、(1)の凍害防御溶液。  (3) The frost damage prevention solution according to (1), wherein the plant cells are cultured Arabidopsis thaliana cells.
(4) シロイヌナズナ培養細胞が T87株である、(3)の凍害防御溶液。  (4) The frost damage prevention solution according to (3), wherein the Arabidopsis cultured cells are T87 strain.
(5) (1)の凍害防御溶液の超低温保存法における使用。  (5) Use of the frost damage prevention solution of (1) in a cryogenic storage method.
(6) 凍結防御溶液が以下の (a)— (c)を含む、(5)記載の使用。  (6) The use according to (5), wherein the cryoprotective solution contains the following (a) — (c).
(a) 2Mグリセリン、 (b) 0.4Mショ糖、および (a) 2M glycerin, (b) 0.4M sucrose, and
(c) 8.7— 86.9mMプロリン。  (c) 8.7—86.9 mM proline.
(7) 以下の工程 (A)— (D)による植物細胞の凍結方法:  (7) Plant cell freezing method by the following steps (A) — (D):
(A) 植物細胞を (1)の凍害防御溶液に懸濁する工程、  (A) a step of suspending plant cells in the anti-frost damage solution of (1),
(B) 工程 (A)の懸濁液が含まれる小容器を、保存容器に入れる工程、  (B) The step of putting the small container containing the suspension of step (A) into a storage container,
(C) 工程 (B)の保存容器をフリーザーに入れる工程、および  (C) the step of placing the storage container of step (B) into a freezer, and
(D) あらかじめ定められた時間の後に、保存容器をフリーザーから出す工程。 (D) The process of removing the storage container from the freezer after a predetermined time.
(8) 植物細胞がカルスである、(7)の凍結方法。 (8) The freezing method according to (7), wherein the plant cell is a callus.
(9) 工程 (B)の保存容器が動物細胞用簡易凍結保存容器である、(7)の凍結方法。 (9) The freezing method according to (7), wherein the storage container in step (B) is a simple cryopreservation container for animal cells.
(10) 工程 (B)の保存容器が発泡ポリスチレンチューブラックである、(7)の凍結方法。(10) The freezing method according to (7), wherein the storage container of step (B) is an expanded polystyrene tube rack.
(11) 工程 (C)のフリーザー内の温度が 20 40°Cである、(7)の凍結方法。 (11) The freezing method of (7), wherein the temperature in the freezer of step (C) is 20 40 ° C.
(12) 工程 (D)のあら力じめ定められた時間が 4一 10時間である、(7)の凍結方法。 (12) The freezing method according to (7), wherein the predetermined time in step (D) is 4 to 10 hours.
(13) 工程 (A)の後に懸濁液を 60分間振盪する工程を含み、さらに工程 (D)のあらかじ め定められた時間が 6— 8時間である、(7)の凍結方法。 (13) The freezing method according to (7), comprising a step of shaking the suspension for 60 minutes after step (A), and further, a predetermined time in step (D) is 6 to 8 hours.
(14) 工程 (A)の植物細胞が、シロイヌナズナ、ニンジン、ミヤコダサ、タバコ、イネのい ずれかに由来する、(7)の凍結方法。  (14) The freezing method according to (7), wherein the plant cell in step (A) is derived from any of Arabidopsis thaliana, carrot, Miyakodasa, tobacco, and rice.
(15) 工程 (A)の植物細胞が、シロイヌナズナ CoH)株もしくはタバコ BY-2株のいずれ かに由来する、(7)の凍結方法。  (15) The freezing method according to (7), wherein the plant cell in step (A) is derived from either Arabidopsis thaliana CoH) or tobacco BY-2.
(16) (7)の凍結方法で凍結された植物細胞の培養物。  (16) A plant cell culture frozen by the freezing method of (7).
[0009] 本発明の態様は、たとえば以下のとおりである。 [0009] Aspects of the present invention are as follows, for example.
2Mグリセリン、 0.4Mショ糖、 86.9mMプロリンを含有する維持培地に植物細胞を懸 濁し、ノ ィアルに分注する。細胞懸濁液が含まれたバイアルを発泡ポリスチレンチュ 一ブラックに収納し、ラックごと 30°Cのフリーザーに入れ、 6時間後にラックをフリー ザ一から取り出す。バイアルをラック力 取り出して速やかにアルミニウム製ケーンに 装着し、直ちに液体窒素に直接浸漬して急速冷却し、液体窒素あるいは 80°C以下 のフリーザー中に超低温保存する。 発明の効果  Suspend plant cells in a maintenance medium containing 2M glycerin, 0.4M sucrose, and 86.9mM proline, and dispense to the nozzle. Place the vial containing the cell suspension in a polystyrene foam black and place the entire rack in a freezer at 30 ° C. After 6 hours, remove the rack from the freezer. Remove the vial from the rack and immediately place it in an aluminum cane. Immediately immerse it directly in liquid nitrogen for rapid cooling and store it in liquid nitrogen or a freezer below 80 ° C. The invention's effect
[0010] 予備凍結法による超低温保存は、一定の冷却率 (一般的に 1°C/分)で細胞を冷 却することにより細胞外凍結と氷晶の成長に伴う細胞内凍結脱水を誘起し、細胞内 凍結による物理的 ·生理的傷害を回避することで超低温保存後の細胞の生存を可能 とする手法である。予備凍結の間に効果的に細胞内を凍結脱水し、またその低温暴 露に耐えうる状態にするためには、細胞はあら力じめ凍害防御剤を含む溶液中で処 理しなければならない。一般的に使用されている凍害防御溶液には、 DMSO、ェチレ ングリコール、プロピレングリコールなど細胞に対する毒性が非常に強 、凍害防御剤 が含まれるため、低温下での厳密な処理が必要である。これまでに植物毒性の比較 的低い凍害防御溶液も報告されている力 その適用範囲は Citrus sinensisの胚心細 胞に限られている。 [0010] Ultra low temperature storage by the pre-freezing method cools cells at a constant cooling rate (generally 1 ° C / min). This method induces extracellular freezing and intracellular freezing and dehydration associated with the growth of ice crystals, and avoids physical and physiological damage caused by intracellular freezing. is there. In order to effectively freeze and dehydrate the cells during pre-freezing and to withstand the low temperature exposure, the cells must be treated with a solution containing anti-frost protection agents. . Commonly used frost damage protection solutions are extremely toxic to cells, such as DMSO, ethylene glycol, and propylene glycol, and contain frost damage protection agents, so strict treatment at low temperatures is required. So far, the ability to protect against frost damage with relatively low phytotoxicity has been reported. The scope of its application is limited to Citrus sinensis embryonic heart cells.
本発明者らは、グリセリン、ショ糖、プロリンを適切に配合した凍害防御溶液を開発 し、多くの植物培養細胞において高い生存率を達成しうることを明らかにした。開発し た凍害防御溶液を用いれば常温で凍害防御処理を行うことができ、さらに 0分間から 少なくとも 120分間処理を行っても生存率には影響がないことを見出した。これらの特 徴は、本発明の溶液を用いた凍害防御処理が超低温保存の大規模化'ハイスルー プットィ匕に非常に適して 、ることを示して 、る。  The present inventors have developed a frost damage prevention solution appropriately formulated with glycerin, sucrose, and proline, and have demonstrated that a high survival rate can be achieved in many plant cultured cells. It was found that using the developed frost damage prevention solution, frost damage protection treatment can be performed at room temperature, and that the survival rate is not affected even if treatment is performed for 0 minutes to at least 120 minutes. These characteristics indicate that the frost damage prevention treatment using the solution of the present invention is very suitable for large-scale high-throughput storage of ultra-low temperature storage.
また、プログラムフリーザーの代替として市販の凍結保存容器あるいは EPSチューブ ラックを予備凍結に使用する手法は、非常に高価で専用機能し力持たないプロダラ ムフリーザーの導入を不要とし、より多くの研究機関 ·施設で植物培養細胞の超低温 保存を可能とするものである。動物細胞用に市販されて 、る簡易凍結保存容器の代 替利用は Engelmann, et al. (Cryo- Lett 15: 53-58, 1994)によっても報告されているも のの、その適用範囲は Citrus属植物に限られているだけでなぐ今回示されたように より安価かつ入手が容易で多検体を処理することが可能な EPSチューブラックを利用 した場合と比較して、明らかに生存率が低く予備凍結条件も限定されて 、る。  In addition, the use of commercially available cryopreservation containers or EPS tube racks for pre-freezing as an alternative to program freezers eliminates the need for the introduction of very expensive, dedicated functions and ineffective prod- ule freezers. This facility enables ultra-low temperature storage of cultured plant cells. Alternative use of simple cryopreservation containers that are commercially available for animal cells has also been reported by Engelmann, et al. (Cryo-Lett 15: 53-58, 1994), but its scope of application is Citrus As shown here, the survival rate is clearly lower compared to the case of using EPS tube racks that are cheaper, easier to obtain, and capable of processing multiple specimens. Pre-freezing conditions are also limited.
カロえて、既存の植物培養細胞の超低温保存法では、そのほとんどがあらかじめ低 温下あるいは糖や植物ホルモンを添加した培地中で前培養した細胞を使用する必 要があるが、本発明の手法を用いれば、今回供した培養細胞のすべてについて、前 培養を行わずに超低温保存することが可能であった。以上のように、今回開発した植 物培養細胞の超低温保存に関する一連の技術は新規性に富み、なおかつ既存の 技術と比較して様々な観点力も優れたものであると言える。 However, most of the existing cryopreservation methods for plant cultured cells require the use of cells that have been pre-cultured at low temperatures or in a medium supplemented with sugar or plant hormones. If used, all of the cultured cells provided this time could be stored at an ultra-low temperature without pre-culture. As described above, the series of technologies related to ultra-low temperature storage of plant culture cells developed this time is rich in novelty and yet It can be said that various viewpoints are also superior compared to technology.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の凍害防御溶液は 1一 3Mのグリセリンを含有する。好ましくは、本発明の凍 害防御溶液は 1.5— 2.5Mのグリセリンを含有する。より好ましくは、本発明の凍害防御 溶液は 2Mのグリセリンを含有する。  [0011] The frost damage prevention solution of the present invention contains 1 to 3M glycerin. Preferably, the anti-frost protection solution of the present invention contains 1.5-2.5M glycerin. More preferably, the anti-frost damage solution of the present invention contains 2M glycerin.
本発明の凍害防御溶液は 0.2— 0.8Mのショ糖を含有する。好ましくは、本発明の凍 害防御溶液は 0.3— 0.6Mのショ糖を含有する。より好ましくは、本発明の凍害防御溶 液は 0.4Mのショ糖を含有する。  The anti-frost damage solution of the present invention contains 0.2-0.8M sucrose. Preferably, the anti-frost protection solution of the present invention contains 0.3-0.6M sucrose. More preferably, the frost damage prevention solution of the present invention contains 0.4 M sucrose.
本発明の凍害防御溶液は 0.4— 400mMのプロリンを含有する。好ましくは、本発明 の凍害防御溶液は 0.8— 200mMのプロリンを含有する。より好ましくは、本発明の凍 害防御溶液は 8.7— 86.9mMのプロリンを含有する。  The anti-frost damage solution of the present invention contains 0.4-400 mM proline. Preferably, the anti-frost damage solution of the present invention contains 0.8-200 mM proline. More preferably, the frost protection solution of the present invention contains 8.7-86.9 mM proline.
[0012] 超低温保存法とは、遺伝資源などを超低温下で保存する方法である。超低温とは、 一般には約 25°C以下のことであり、好ましくは約 80°C以下である。超低温の下限 は特に限定されな 、が、一般には約 196°C程度である。 [0012] The ultra-low temperature storage method is a method for storing genetic resources and the like under an ultra-low temperature. The ultra-low temperature generally means about 25 ° C or less, preferably about 80 ° C or less. The lower limit of the ultra-low temperature is not particularly limited, but is generally about 196 ° C.
予備凍結法とは、予備凍結を行った後に超低温下で保存する超低温保存法である 予備凍結とは、超低温下での保存の前に対象となる植物組織'細胞を穏やかに冷 却し、凍結することを言う。  The pre-freezing method is an ultra-low-temperature storage method in which pre-freezing is performed and then stored at an ultra-low temperature. Pre-freezing is a method in which a target plant tissue 'cell is gently cooled and frozen before being stored at an ultra-low temperature. Say to do.
凍害防御剤とは、凍結の影響から防御するために使用する物質で、主に細胞内に 大きな氷の結晶を形成させな ヽように媒液中に添加される。一般的に利用される凍 害防御剤として、 DMSO、エチレングリコール、プロピレングリコールなどが知られてい る。  A freezing protection agent is a substance used to protect against the effects of freezing, and is added to the medium mainly to prevent the formation of large ice crystals in the cells. DMSO, ethylene glycol, propylene glycol, etc. are known as commonly used frost protection agents.
凍害防御溶液とは、凍害防御剤が添加された媒液であり、凍害防御溶液に培養細 胞ゃカルスを懸濁すると、凍害防御剤の添加されて ヽな ヽ媒液に懸濁した場合に比 ベて、凍害が軽減される。凍害の軽減率は様々な指標から測定可能であるが、細胞 生存率を指標とするのが一般的である。細胞生存率は、 Ishikawa, et al. (Plant Sci 107: 83-93, 1995)の Regrowth Test法などにより測定することができる。  A frost damage prevention solution is a medium with frost damage prevention agent added. When a cultured cell callus is suspended in the frost damage protection solution, it is added to the medium with a frost damage protection agent suspended. In comparison, frost damage is reduced. Although the reduction rate of frost damage can be measured from various indicators, cell viability is generally used as an indicator. Cell viability can be measured by the Regrowth Test method of Ishikawa, et al. (Plant Sci 107: 83-93, 1995).
プログラムフリーザーとは、温度低下率を制御できるフリーザーを指す。 本発明において培養細胞もしくはカルスの懸濁液が含まれる小容器とは、ポリプロ ピレンやガラスでできた密閉できる容器を指す。小容器の容量は特に限定されな ヽ 力 好ましくは約 0.1—約 lO.OmLであり、より好ましくは約 1.0—約 5.0mLである。 The program freezer refers to a freezer that can control the temperature decrease rate. In the present invention, a small container containing a suspension of cultured cells or callus refers to a sealable container made of polypropylene or glass. The capacity of the small container is not particularly limited. Preferably, the volume is about 0.1 to about 10 mL, more preferably about 1.0 to about 5.0 mL.
培養細胞もしくはカルスの懸濁液は、小容器に入れる前に調製されて ヽる必要は なぐ小容器中で調製してもよい。すなわち、あらかじめ培養細胞もしくはカルスが懸 濁された液を小容器に入れてもょ 、し、培養細胞もしくはカルスの懸濁されるべき溶 液を前もって小容器中に入れておき、後から培養細胞もしくはカルスを加えて、小容 器中で懸濁してもよい。  The suspension of cultured cells or callus may be prepared in a small container that need not be prepared prior to being placed in the small container. In other words, the cultured cell or callus suspension is put in a small container in advance, and the cultured cell or callus solution to be suspended is placed in the small container in advance, and then the cultured cell or callus is suspended later. Callus may be added and suspended in a small container.
本発明において保存容器とは、小容器が複数本収納できる容器を指す。収納でき る本数は特に限定されないが、好ましくは 16本以上であり、より好ましくは 32本以上で ある。保存容器は、フリーザー内の温度を小容器に正確かつ穏やかに伝える必要が あるため、保存容器と小容器は接触していなければならない。保存容器と小容器の 接触面積は、好ましくは小容器の表面積の 50%以上であり、より好ましくは小容器の 表面積の 75%以上である。また、保存容器の全体もしくは一部は熱伝導率の低い物 質で満たされていなければならない。一部とは、好ましくは保存溶液の体積の 50%以 上であり、より好ましくは 80%以上であり、さらに好ましくは 90%以上である。熱伝導率 の低い物質とは、熱伝導率が 0.5W/m/K以下の物質であり、例えばイソプロピルアル コールや EPSなどが含まれる。フリーザーの内部で、かつ保存容器の外部の空間は、 小容器と接していてはならない。すなわち、フリーザー内の温度が小容器に伝わる際 には、保存容器の全体もしくは一部に満たされた熱伝導率の低い物質が直接的もし くは間接的に媒介していなければならない。市販されている製品の中では、動物細 胞用簡易凍結保存容器である〃 Mr. Frosty" (Nalgene社)を保存容器として使用でき るが、収納できる小容器の本数が限られている。他に HS4283 (Heathrow Scientific社 )および SD-14 (マルェム)などの EPSチューブラックを使用できる。  In the present invention, the storage container refers to a container that can store a plurality of small containers. The number that can be stored is not particularly limited, but is preferably 16 or more, and more preferably 32 or more. Because the storage container needs to accurately and gently convey the temperature in the freezer to the small container, the storage container and the small container must be in contact. The contact area between the storage container and the small container is preferably 50% or more of the surface area of the small container, and more preferably 75% or more of the surface area of the small container. The whole or part of the storage container must be filled with a material with low thermal conductivity. The part is preferably 50% or more of the volume of the preservation solution, more preferably 80% or more, and further preferably 90% or more. Substances with low thermal conductivity are those with a thermal conductivity of 0.5 W / m / K or less, and include, for example, isopropyl alcohol and EPS. The space inside the freezer and outside the storage container must not touch the small container. That is, when the temperature in the freezer is transferred to the small container, the whole or part of the storage container must be directly or indirectly mediated by a low thermal conductivity substance. Among commercially available products, Mr. Frosty "(Nalgene), a simple cryopreservation container for animal cells, can be used as a storage container, but the number of small containers that can be stored is limited. EPS tube racks such as HS4283 (Heathrow Scientific) and SD-14 (Marem) can be used.
以下、本発明を実施例により、さらに詳細に説明するが、本発明は以下の実施例に 制限されるものではない。なお、本明細書において引用されたすベての先行技術文 献は、参照として本明細書に組み入れられる。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. It should be noted that all prior art documents cited in this specification are incorporated herein by reference.
実施例 1 植物材料の培着 Example 1 Plant material cultivation
1.シロイヌナズナ懸濁培養細胞 T87株  1. Arabidopsis suspension culture cell line T87
シロイヌナズナ(Arabidopsis thaliana (L.) Heynh. ecotype Columbia)実生由来の懸 濁培養細胞 T87株(Axelos, et al: Plant Physiol Biochem 30: 123-128, 1992)を供試 した。懸濁培養細胞は、原報で使用されている JPL培地 (Jouanneau and Pe' aud-Lenoe"'l: Physiol Plant 20: 834-850, 1967)を改変した mJPL3培地 [stock A' ( Axelos, et al, 1992)、 lZ3倍濃度 MS無機塩(Murashige and Skoog: Physiol Plant 15: 473-497, 1962)、 MSビタミン、 O. lg/Lカゼインカ卩水分解物(カザミノ酸)、 15g/L ショ糖、 1 μ Μナフタレン酢酸(naphthalene acetic acid ;NAA)、 2.5mM  A suspension cultured cell strain T87 (Axelos, et al: Plant Physiol Biochem 30: 123-128, 1992) derived from Arabidopsis thaliana (L.) Heynh. Ecotype Columbia seedlings was used. Suspension cultured cells were obtained from mJPL3 medium [stock A '(Axelos, et al.) Modified from JPL medium (Jouanneau and Pe'aud-Lenoe "' l: Physiol Plant 20: 834-850, 1967) used in the original report. al, 1992), lZ triple concentration MS inorganic salt (Murashige and Skoog: Physiol Plant 15: 473-497, 1962), MS vitamin, O. lg / L casein coconut hydrolyzate (casamino acid), 15 g / L sucrose , 1 μΜ Naphthalene acetic acid (NAA), 2.5 mM
2-(N-morpholino)ethanesulfonic acid (MES)、 pH 5.8]を用いて、 22°C、 24時間明期 下で 120回転/分の旋回震盪培養を行った。継代培養は 14日ごとに、懸濁培養細胞 を孔径 500 μ mのステンレスメッシュで濾過した後に孔径 50 μ mのナイロンメッシュで 細胞を回収し、湿重量 0.5g (g W.W.)の細胞を 300mL容フラスコに入れた lOOmLの培 地に移植した。また、ァグロバタテリゥム法により遺伝子導入を行い、 3g/Lゲランガム で固化した mJPL3培地で維持した形質転換 T87カルスも供試した。 Using 2- (N-morpholino) ethanesulfonic acid (MES), pH 5.8], swirling shaking culture at 120 rpm was performed at 22 ° C under a 24-hour light period. Subculture is performed every 14 days by filtering suspension culture cells through a stainless steel mesh with a pore size of 500 μm, collecting cells with a nylon mesh with a pore size of 50 μm, and 300 mL of cells with a wet weight of 0.5 g (g WW). Transplanted into lOOmL medium in a volumetric flask. In addition, transformed T87 callus, which was introduced in the mJPL3 medium solidified with 3g / L gellan gum, which had been transfected by the agrobatterium method, was also tested.
2.シロイヌナズナ懸濁培養細胞 Co卜 0株  2. Arabidopsis suspension culture cells Co 卜 0 strain
ンロイヌナスナ (AraDidopsis thaliana (L.) Heynh j ecotype Columbia実生根由来の 懸濁培養細胞 CoH)株(Mathur, et al: Plant J 13: 707-716, 1998)は、維持培地 [MS 無機塩、 4倍濃度 B5ビタミン (Gamborg, et al: Exp Cell Res 50: 151-158, 1968)、 lmg/L 2,4-ジクロロフエノキシ酢酸(2,4- D)、 30g/Lショ糖、 2.5mM MES、 pH 5.8]を 用いて、 22°C、暗黒下で 120回転/分の旋回震盪培養を行った。継代培養は 7日ごと に、 30mLの懸濁培養細胞を 300mL容フラスコに入れた 70mLの維持培地に移植した  The suspension culture cell (Mathur, et al: Plant J 13: 707-716, 1998) derived from seedling roots of AraDidopsis thaliana (L.) Heynh j ecotype Columbia Concentration B5 vitamin (Gamborg, et al: Exp Cell Res 50: 151-158, 1968), lmg / L 2,4-dichlorophenoxyacetic acid (2,4-D), 30 g / L sucrose, 2.5 mM MES , PH 5.8], and rotating shaking culture at 120 ° C / min at 22 ° C in the dark. For subculture, every 7 days, 30 mL suspension culture cells were transferred to 70 mL maintenance medium in a 300 mL flask.
3.タバコ懸濁培養細胞 BY-2株 3. Tobacco suspension culture cell BY-2
タバコ(Nicotiana tabacum L. cv. Bright Yellow 2)の懸濁培養細胞 BY- 2株 ( Nagata, et al: Int Rev Cytol 132: 1-30, 1992)は、改変 LS培地(Nagata, et al. 1992) を用いて、 27°C、暗黒下で 130回転/分の旋回震盪培養を行った。継代培養は 7日ご とに、 1.5mLの懸濁培養細胞を 300mL容フラスコに入れた lOOmLの培地に移植した。 4.イネ懸濁培養細胞 Tobacco (Nicotiana tabacum L. cv. Bright Yellow 2) suspension culture cell BY-2 (Nagata, et al: Int Rev Cytol 132: 1-30, 1992) is modified with modified LS medium (Nagata, et al. 1992). ) And swirling shaking culture at 130 ° C / min in the dark at 27 ° C. For subculture, 1.5 mL of suspension culture cells were transferred to lOOmL medium in a 300 mL flask every 7 days. 4. Rice suspension culture cells
イネ(Oryza sativa L. cv. Sasanishiki)胚由来の懸濁培養細胞(Hayakawa, et al: Plant Cell Physiol 31: 1071-1077, 1990)は、 lmg/L 2,4- Dを含む R- 2培地(Ohira, et al: Plant Cell Physiol 14: 1113-1121, 1973)を用いて、 25°C、暗黒下で 120回転/分 の旋回震盪培養を行った。継代培養は 14日ごとに、孔径 500 μ mのステンレスメッシュ で濾過した後に孔径 50 mのナイロンメッシュで細胞を回収し、湿重量 0.5g (g W.W.) の細胞を 300mL容フラスコに入れた lOOmLの培地に移植した。  Suspension cultured cells (Hayakawa, et al: Plant Cell Physiol 31: 1071-1077, 1990) derived from rice (Oryza sativa L. cv. Sasanishiki) embryos are R-2 medium containing lmg / L 2,4-D. (Ohira, et al: Plant Cell Physiol 14: 1113-1121, 1973) was subjected to swirl shaking culture at 25 ° C in the dark at 120 rpm. Subculture is performed every 14 days after filtering through a stainless steel mesh with a pore size of 500 μm, collecting cells with a nylon mesh with a pore size of 50 m, and placing a 0.5 g (g WW) wet cell in a 300 mL flask. Transplanted to the medium.
5.ニンジン懸濁培養細胞  5. Carrot suspension culture cells
ニンジン(Daucus carota L.)の懸濁培養細胞は、 lmg/L 2,4-Dを含む R-2培地を用 いて、 25°C、暗黒下で 120回転/分の旋回震盪培養を行った。継代培養は 7日ごとに 、 20mLの懸濁培養細胞を 300mL容フラスコに入れた 80mLの培地に移植した。  Carrot (Daucus carota L.) suspension culture cells were swirled and shaken at 120 ° C / min in the dark at 25 ° C using R-2 medium containing lmg / L 2,4-D. . Subcultures were transferred every 7 days to 80 mL of medium containing 20 mL of suspension culture cells in a 300 mL flask.
6.ミヤコグサ懸濁培養細胞  6. Miyakogusa suspension culture cells
ヤコクサ (Lotus japonicus (Regel) Larsen ecotype Gifu accession no. B- 129)の懸 濁培養細胞は、維持培地 (MS無機塩、 B5ビタミン、 lmg/L 2,4-D, 0. lmg/Lカイネチ ン、 30g/Lショ糖、 2.5mM MES、 pH 5.8)を用いて、 25°C、暗黒下で 120回転/分の旋 回振盪培養を行った。継代培養は 3週間ごとに、孔径 1000 mのナイロンメッシュで 細胞を回収し、湿重量 lg (g W.W.)の細胞を 300mL容フラスコに入れた lOOmLの培地 に移植した。  Suspension culture cells of Jacobsa (Lotus japonicus (Regel) Larsen ecotype Gifu accession no.B- 129) are maintained medium (MS inorganic salt, B5 vitamin, lmg / L 2,4-D, 0. lmg / L kinetin). , 30g / L sucrose, 2.5mM MES, pH 5.8) was subjected to rotary shaking culture at 120 ° C / min in the dark at 25 ° C. In subculture, cells were collected with a nylon mesh with a pore size of 1000 m every 3 weeks and transplanted to a lOOmL medium containing wet lg (g W.W.) cells in a 300 mL flask.
実施例 2 Example 2
超低温保存 Ultra low temperature storage
1.懸濁培養細胞の凍害防御処理  1. Freezing damage protection treatment of suspension culture cells
対数増殖期一定常期初期にある懸濁培養細胞 (シロイヌナズナ Cd-Ο ·タバコ BY-2 'ニンジンは継代 4日後、シロイヌナズナ Τ87 ·イネは継代 7日後、ミヤコグサは継代 12 日後)を 15mL遠沈管に分注し、 200 X g、室温で 1分間遠心分離した。上清をデカンテ ーシヨンあるいはァスピレーシヨンで除去した後、回収した培養細胞に凍害防御溶液 (2Mグリセリン、 0.4Mショ糖、 0— 86.9mMプロリン)を 9倍量カ卩えて再懸濁し、細胞密 度 10%の細胞懸濁液を調製した。凍害防御溶液は、蒸留水あるいは各培養細胞の 維持培地中に各成分を溶解することで調製した。約 45回転/分で懸濁液を穏やかに 往復振盪しながら室温で 0— 120分間インキュベートし、凍害防御処理とした。凍結防 御処理した細胞懸濁液は、超低温保存用バイアル(1.2mLクライオバイアル)に 0.5mL ずつ分注した。 15 mL of suspension culture cells in the early logarithmic growth phase and the stationary phase (Arabidopsis Cd-Ο · Tobacco BY-2 'Carrot 4 days after passage, Arabidopsis Τ87 · Rice 7 days after passage, Miyakogusa 12 days after passage) Dispense into centrifuge tubes and centrifuge at 200 xg for 1 minute at room temperature. After removing the supernatant with decantation or aspiration, the recovered cultured cells are resuspended with 9 times the amount of anti-frost damage solution (2M glycerin, 0.4M sucrose, 0-86.9mM proline), and the cell density is 10 % Cell suspension was prepared. The frost damage prevention solution was prepared by dissolving each component in distilled water or the maintenance medium of each cultured cell. Gently suspend the suspension at approximately 45 rpm Incubated for 0-120 minutes at room temperature with reciprocal shaking to prevent frost damage. The cryopreservation-treated cell suspension was dispensed in 0.5 mL aliquots into ultra-low temperature storage vials (1.2 mL cryovials).
2.カルスの凍害防御処理  2. Callus freeze protection
対数増殖期一定常期初期にあるカルスを、あらかじめ凍害防御溶液を分注したクラ ィォバイアルに細胞密度が約 10%となるように移植した。凍害防御溶液は懸濁培養 細胞の場合と同組成のものを用い、細胞の移植はマイクロスパチュラを用いて行った  Callus in the early logarithmic growth phase and stationary phase were transplanted into cryovials previously dispensed with a freezing protection solution so that the cell density was about 10%. The frost damage protection solution used was the same composition as that for suspension culture cells, and the cells were transplanted using a microspatula.
3.プログラムフリーザーを使用した予備凍結 3. Pre-freezing using program freezer
凍結防御処理した細胞懸濁液の入ったクライオバイアルを、直ちにプログラムフリ 一ザ一のチャンバ一内にセットし、冷却率 0.5°C/分で 35°Cまで冷却した後、さらに 35°Cで 0— 60分間保持して予備凍結した。予備凍結した細胞は、速やかにアルミ- ゥム製ケーンに装着し、直ちに液体窒素に直接浸漬して急速冷却し、液体窒素ある いはフリーザー中に超低温保存した。  Immediately place the cryovial containing the cryopreserved cell suspension in the chamber of the program freezer, cool to 35 ° C at a cooling rate of 0.5 ° C / min, and then continue at 35 ° C. 0—pre-frozen by holding for 60 minutes. The pre-frozen cells were immediately attached to an aluminum cane, immediately immersed in liquid nitrogen and rapidly cooled, and stored in liquid nitrogen or in a freezer at a very low temperature.
4.プログラムフリーザーを使用しない予備凍結  4. Pre-freezing without using program freezer
凍結防御処理した細胞懸濁液の入ったクライオバイアルを、直ちに簡易凍結保存 容器(Cryo 1°C Freezing Container "Mr. Frosty" ;Nalgene社)あるいは市販の EPSチ ユーブラック(HS4283 ; Heathrow Scientific社もしくは SD- 14;マルェム)にセットし、 - 30°Cもしくは 80°Cのフリーザー中で 1一 8時間冷却して、予備凍結とした。予備凍結 した細胞は、速やかにアルミニウム製ケーンに装着し、直ちに液体窒素に直接浸漬 して急速冷却し、液体窒素あるいはフリーザー中に超低温保存した。  Cryovials containing cryoprotective cell suspensions are immediately stored in a simple cryopreservation container (Cryo 1 ° C Freezing Container “Mr. Frosty”; Nalgene) or commercially available EPS Tu Black (HS4283; Heathrow Scientific or SD-14; Marem) was cooled in a freezer at -30 ° C or 80 ° C for 11-8 hours and pre-frozen. The pre-frozen cells were immediately attached to an aluminum cane, immediately immersed in liquid nitrogen for quick cooling, and stored at low temperature in liquid nitrogen or freezer.
5.超低温保存した細胞の再融解および再増殖  5. Re-thawing and re-growth of cryopreserved cells
超低温保存した培養細胞は、クライオバイアルごと 35°Cのウォーターバス中に浸漬 し、約 180回転/分で振盪しながら 2分間インキュベートすることで急速加温'融解した 。融解した培養細胞は、未希釈 '未洗浄の懸濁液のままマイクロピペットで吸引し、再 増殖培地に直接滴下して回収した。再増殖培地は、継代培養に用いる培地を 7g/L 寒天で固化し、濾紙を 2枚敷いたものを用いた。回収した細胞を含む培地は、継代培 養と同一の培養環境下でインキュベートした。 1日間のインキュベート後、培養細胞を 濾紙 1枚と共に同組成の培地に移植し、供試した培養細胞と同一の培養環境下で静 置培養した。生存率の測定は、 Ishikawa, et al. (Plant Sci 107: 83-93, 1995)の Regrowth Test法に従って行った。 The cryopreserved cultured cells were immersed in a 35 ° C water bath together with the cryovial and rapidly warmed and thawed by incubating for 2 minutes while shaking at about 180 rpm. The thawed cultured cells were collected in an undiluted 'unwashed suspension by aspiration with a micropipette and dropped directly onto the regrowth medium. As the re-growth medium, a medium used for subculture was solidified with 7 g / L agar and two filter papers were laid. The medium containing the collected cells was incubated in the same culture environment as the subculture. After 1 day of incubation, the cultured cells The sample was transplanted to a medium with the same composition together with one sheet of filter paper, and statically cultured in the same culture environment as the cultured cells tested. The survival rate was measured according to the Regrowth Test method of Ishikawa, et al. (Plant Sci 107: 83-93, 1995).
実施例 3 Example 3
凍 防御溶液の開 それ 禾 II用した 防御処¾ 法の開発 Development of protection treatment using freezing protection solution II
まず、 2Mグリセリン、 0.4Mショ糖の溶液に種々の濃度でプロリンを添加した凍害防 御溶液を用いて凍害防御処理を行ったシロイヌナズナ培養細胞 T87株の超低温保 存を行った。予備凍結にはプログラムフリーザーを使用し、冷却率 0.5°C/分で常温 (25°C)から- 35°Cまで冷却した。プロリンの添加は、わず力 ).87mMから生存率を向 上する効果が認められた(図 1)。 86.9mMのプロリンを添加した凍害防御溶液を使用 した場合には生存率が約 70%と高い値を示し、グリセリンとショ糖のみ力もなるプロリ ン無添加の溶液と比較して約 1.8倍と飛躍的に向上した。  First, ultra-low temperature preservation of Arabidopsis cultured cell strain T87, which was subjected to frost damage prevention treatment using a frost damage prevention solution prepared by adding proline at various concentrations to solutions of 2M glycerin and 0.4M sucrose, was performed. A program freezer was used for pre-freezing, and it was cooled from room temperature (25 ° C) to -35 ° C at a cooling rate of 0.5 ° C / min. The addition of proline was effective at increasing the survival rate from 87 mM (Fig. 1). When using a freezing protection solution supplemented with 86.9 mM proline, the survival rate is as high as about 70%, which is about 1.8 times that of the solution containing no proline, which only contains glycerin and sucrose. Improved.
さらに、この凍害防御溶液は常温、すなわち一般の実験室内環境での使用 ·処理 が可能であるだけでなぐ凍害防御処理の方法が生存率に与える影響が極めて低 、 ことが明ら力となった(図 2)。 DMSO、エチレングリコール、プロピレングリコールなどの 凍害防御剤を含む溶液を使用して凍害防御処理を行う場合は、細胞懸濁液を振盪 しながら厳密に所定時間の処理を行うことが超低温保存の成功に不可欠であるが、 本発明の凍害防御溶液を使用した凍害防御処理では、振盪しながらの処理とその 処理時間は生存率向上にはわず力しか寄与しな力つた。一方で、振盪を行わない静 置状態での凍害防御処理にお!、ては、 0分間より少なくとも 120分間まで処理を行つ ても生存率に明確な変化は認められな力つた(図 2)。  In addition, this frost damage protection solution can be used and treated at room temperature, that is, in a general laboratory environment, and the effect of the frost damage protection treatment method on the survival rate is clearly low. (Figure 2). When frost damage protection treatment is performed using a solution containing frost damage protection agents such as DMSO, ethylene glycol, propylene glycol, etc., it is possible to carry out the treatment for a specified period of time precisely while shaking the cell suspension. Indispensable, in the frost damage prevention treatment using the frost damage prevention solution of the present invention, the treatment while shaking and the treatment time contributed only to the improvement of the survival rate. On the other hand, in the frost damage protection treatment in a stationary state without shaking, even if treatment was performed from 0 minutes to at least 120 minutes, there was no clear change in survival rate (Fig. 2). ).
すなわちこれは、グリセリン、ショ糖、プロリンのみからなり、 DMSO、エチレングリコー ル、プロピレングリコールなどの毒性の高 、凍害防御剤を含まな!/、凍害防御溶液を 使用した予備凍結法による超低温保存では、供する植物培養細胞系統の処理 (遠 心分離による細胞の回収一凍害防御溶液の添加'再懸濁一クライオバイアルへの分 注)を常温で少なくとも 120分間にわたって連続的に操作し続けられることを意味して いる。この超低温保存法は、固化培地上で培養される細胞、すなわちカルスや、遺 伝子導入した培養細胞にも適用することが可能である。以上のように、本発明の凍害 防御溶液とそれを利用した予備凍結法のための凍害防御処理は、植物培養細胞の 超低温保存の大規模化'ハイスループット化に大きく貢献しうる技術であることが示さ れた。 In other words, it consists only of glycerin, sucrose, and proline, and is highly toxic and does not contain frost protection agents such as DMSO, ethylene glycol, and propylene glycol! The plant culture cell line to be processed (recovery of cells by centrifugation, addition of anti-freezing protection solution 'dispensing into resuspension one cryovial) can be continuously operated at room temperature for at least 120 minutes. I mean. This ultra-low temperature preservation method can be applied to cells cultured on a solidified medium, that is, callus and cultured cells into which a gene has been introduced. As described above, the frost damage of the present invention It was shown that frost damage protection treatment for the protection solution and the pre-freezing method using it is a technology that can greatly contribute to the large-scale 'high-throughput storage of plant cryogenic cells.
実施例 4 Example 4
プログラムフリーザー 使用しない予備凍結法の闢 Program freezer
次に本発明者らは、実施例 3の凍結防御溶液を利用し、プログラムフリーザーを使 用しな 、予備凍結法の開発を試みた。  Next, the present inventors tried to develop a pre-freezing method using the cryoprotective solution of Example 3 without using a program freezer.
まず、動物細胞の超低温保存用に市販されて!ヽる簡易凍結保存容器である" Mr. Frosty" (Nalgene社)のプログラムフリーザーの代用としての使用を試みた。供試材料 としてはシロイヌナズナ培養細胞 T87株を用い、前述の凍害防御処理を行った。すな わち遠心分離によって回収した培養細胞を 2Mグリセリン、 0.4Mショ糖、 0.87mMプロ リンカもなる凍害防御溶液に再懸濁し、細胞懸濁液を振盪'インキュベーションするこ となくクライオバイアルに分注した。細胞懸濁液を含むクライオバイアルを簡易凍結保 存容器にセットし、製造元により指定されている 80°Cのフリーザー中で予備凍結を 行ったところ、予備凍結 1一 8時間のすべてにおいて、凍結保存後の生存が認められ た(図 3 。 2時間の予備凍結が最大の生存率を示したが、約 30%とプログラムフリー ザ一に比較して低いものであった。予備凍結を 3時間以上行うと生存率が明確に低 下することから、植物細胞が 80°Cの過度の冷却に耐性を持たな 、ことが推測された 。このため、 -30°Cのフリーザー中での予備凍結を試みたところ、予備凍結 2時間まで はほとんど超低温保存後の生存が認められな力つたものの、予備凍結 3時間から明 確な生存が認められ、 6時間以上で約 60%の高 、生存率を得ることが可能であった。 以上のように、グリセリン、ショ糖、プロリンカもなる凍害防御溶液を用いることで Nalgene社製品を始めとした市販の動物細胞用簡易凍結保存容器が植物培養細胞 の超低温保存に利用可能であることが示された。  First, it is marketed for ultra-low temperature storage of animal cells! An attempt was made to use "Mr. Frosty" (Nalgene), a simple freezing storage container, as a substitute for the program freezer. As the test material, Arabidopsis thaliana cultured cell strain T87 was used, and the above-mentioned frost damage protection treatment was performed. In other words, the cultured cells collected by centrifugation are resuspended in a freezing protection solution containing 2 M glycerin, 0.4 M sucrose, and 0.87 mM prolinker, and the cell suspension is divided into cryovials without shaking. Noted. Place the cryovial containing the cell suspension in a simple freezing storage container and pre-freeze it in the freezer at 80 ° C specified by the manufacturer. (Figure 3. Pre-freezing for 2 hours showed the highest survival rate, but it was about 30%, which was lower than that of the program freezer. Pre-freezing for more than 3 hours) It was speculated that the plant cells were not resistant to excessive cooling at 80 ° C, as the viability was clearly reduced when this was done, so pre-freezing in a -30 ° C freezer Attempts were made to survive after ultra-low-temperature storage until 2 hours of pre-freezing, but clear survival was observed from 3 hours of pre-freezing, with a high survival rate of about 60% over 6 hours. As you can see, glycerin It was shown that commercially available simple cryopreservation containers for animal cells, such as Nalgene products, can be used for ultra-low temperature storage of plant culture cells by using a frost damage protection solution that also contains sugar, sucrose, and prolinker.
し力しながら、市販の凍結保存容器はノ ィアルの収容本数が限られており(多くが 10数本)、 Nalgene社製品の場合は有害なイソプロピルアルコールが必要なだけでな ぐ 5回使用するごとに新しいものと入れ替える必要があるなど、問題点も残されてい る。そこで、より安価で入手が容易な発泡ポリスチレン (EPS)、いわゆる発泡スチロー ルを素材としたチューブラックをプログラムフリーザーの代用として使用することを試 みた。 EPSチューブラックとして、クライオバイアルを 50本収容可能な市販の 2製品、 HS4283 (Heathrow Scientific社)および SD- 14 (マルェム)を供した。凍害防御処理は 市販の凍結保存容器と同様に行い、予備凍結は 30°Cのフリーザー中で行った。 EPSチューブラックを予備凍結に利用した場合は、 2製品ともに予備凍結 2時間から超 低温保存後の生存が認められ、 4時間以上で約 70%の高い生存率を示すことが明ら かとなつた (図 3b)。この生存率は、市販の簡易凍結保存容器を予備凍結に使用した 場合と比較して顕著に高いものであり、プログラムフリーザーを使用して至適条件下 で予備凍結を行った場合と同等であった。また、予備凍結時間を少なくとも 8時間ま で延長しても生存率の低下が認められず、一定時間以上の処理を行いさえすれば、 予備凍結時間を厳守する必要がないことも明らかとなった。以上のように、グリセリン、 ショ糖、プロリンからなる凍害防御溶液を凍害防御処理に使用することで、安価で入 手が容易な EPSチューブラックをプログラムフリーザーの代用として、すなわち高価な プログラムフリーザーを使用することなぐ簡便に植物培養細胞の超低温保存を行え ることが示された。 However, commercially available cryopreservation containers have a limited number of nozzles (often a dozen), and Nalgene products are used only 5 times, as well as the need for harmful isopropyl alcohol. Problems remain, such as the need to replace with a new one each time. Therefore, it is cheaper and easier to obtain expanded polystyrene (EPS), so-called expanded polystyrene. We tried to use a tube rack made of steel as a substitute for the program freezer. Two commercially available products capable of accommodating 50 cryovials, HS4283 (Heathrow Scientific) and SD-14 (Marem) were provided as EPS tube racks. Frost damage prevention treatment was performed in the same manner as a commercial cryopreservation container, and preliminary freezing was performed in a freezer at 30 ° C. When the EPS tube rack was used for pre-freezing, both products were found to survive after ultra-low temperature storage for 2 hours from pre-freezing, and it was clear that the survival rate was about 70% after 4 hours. (Figure 3b). This survival rate is remarkably higher than when a commercially available simple cryopreservation container is used for pre-freezing, and it is the same as when pre-freezing is performed under optimum conditions using a program freezer. It was. It was also found that even if the preliminary freezing time was extended to at least 8 hours, the survival rate was not decreased, and it was not necessary to strictly observe the preliminary freezing time as long as the treatment was performed for a certain time or longer. . As described above, by using a frost damage prevention solution consisting of glycerin, sucrose, and proline for frost damage prevention treatment, an inexpensive and easy-to-use EPS tube rack can be used instead of the program freezer, that is, an expensive program freezer is used. It has been shown that plant cultured cells can be stored at ultra-low temperatures without the need to do so.
実施例 5 Example 5
プログラムフリーザーを使用しない予備凍結法の様々な培着細胞系統への]^用 以上に述べたプログラムフリーザーを使用しない簡便な超低温保存法を、より広範 な植物種'培養細胞系統の超低温保存に適用し、この手法の応用範囲を調査した。 培養細胞として、シロイヌナズナ CoH)株、ニンジン、ミヤコダサ、タバコ BY-2株、イネ の異なる 5植物種'系統を供試した。凍害防御溶液には 2Mグリセリン、 0.4Mショ糖、 0.87mMプロリンからなるものを用い、凍害防御処理 (インキュベーション)は行わない か (0分間)、もしくは振盪しながら 60分間行った。予備凍結は 30°Cのフリーザー中 で、市販の簡易凍結保存容器 (Nalgene社)もしくは EPSチューブラック(Heathrow Scientific社)を用いて行った。 Pre-freezing method without using program freezer to various cultured cell lines] ^ Applying simple cryogenic storage method without using program freezer as described above to ultra-cold storage of a wider range of plant species' cultured cell lines The scope of application of this method was investigated. As cultured cells, Arabidopsis thaliana CoH) strain, carrot, Miyakodasa, tobacco BY-2 strain and five different plant species of rice were used. The frost damage protection solution was composed of 2M glycerin, 0.4M sucrose, and 0.87mM proline, and was not subjected to frost damage protection treatment (incubation) (0 minutes) or 60 minutes with shaking. Pre-freezing was performed in a freezer at 30 ° C using a commercially available simple cryopreservation container (Nalgene) or EPS tube rack (Heathrow Scientific).
供試した 5系統それぞれで、凍害防御処理 (インキュベーション)の要 '不要、保存 容器の種類とそれに適した最低予備凍結時間は異なって ヽたものの、すべての培養 細胞にっ 、て超低温保存後の生存が認められた(図 4)。その生存率はシロイヌナズ ナ CoH)株、タバコ BY-2株では 95%に達する極めて高いものであり、もっとも低いミヤ コグサにお 、ても遺伝資源保存施設 (カルチャーコレクション)の基準である 50% ( cLellan, et ai: aintenance or algae ana protozoa, in Maintenance of Microorganisms and Cultured Cells" (Kirs op BE and Doyle A eds.) Adademic Press, London, pp.183-208, 1991)を超えるものであった。さらに、凍害防御処理を振盪しな 力 Sら 60分間行い、予備凍結を少なくとも 6時間行った場合に、保存容器の種類を問わ ず、供試したすべての培養細胞系統において最も高い生存率を得られることが明ら カゝとなった。 For each of the five lines tested, frost damage protection treatment (incubation) is not necessary, but the type of storage container and the appropriate minimum pre-freezing time are different, but for all cultured cells, Survival was observed (Figure 4). Its survival rate is Arabidopsis NA CoH) and tobacco BY-2 strains are extremely high, reaching 95%, and even the lowest Miyakogusa is 50% (cLellan, et ai: aintenance or algae ana protozoa, in Maintenance of Microorganisms and Cultured Cells "(Kirs op BE and Doyle A eds.) Adademic Press, London, pp.183-208, 1991). It is clear that the highest viability can be obtained in all the cultured cell lines tested, regardless of the type of storage container, when the shaking force is applied for 60 minutes and preliminary freezing is performed for at least 6 hours. It became a trap.
以上に示したように、今回開発した超低温保存法、すなわちグリセリン、ショ糖、プロ リンカゝらなる凍害防御溶液を使用し、市販の簡易凍結保存容器あるいは EPSチュー ブラックをプログラムフリーザーの代替として予備凍結に使用する手法は、従来困難 であった広範な植物種'培養細胞系統への応用が可能であることが示された。  As shown above, using the ultra-low temperature storage method developed this time, that is, using a freezing protection solution such as glycerin, sucrose, and prolinker, a commercially available simple cryopreservation container or EPS tube is used as a pre-freeze as an alternative to the program freezer. It was shown that the technique used in the above can be applied to a wide range of plant species that have been difficult in the past.
産業上の利用可能性  Industrial applicability
[0019] 本発明の凍害防御溶液を使用した予備凍結法による超低温保存では、供する植 物培養細胞系統の処理 (遠心分離による細胞の回収一凍害防御溶液の添加'再懸 濁一クライオバイアルへの分注)を常温で少なくとも 120分間にわたって連続的に操 作し続けられる。また、本発明の凍害防御溶液を凍害防御処理に使用することで、高 価なプログラムフリーザーを使用することなぐ安価で入手が容易な凍結保存容器も しくは EPSチューブラックを用いて簡便に植物培養細胞の超低温保存を行える。さら に、本発明に開示された方法は、広範な植物種 ·培養細胞系統への応用が可能であ る。 [0019] In ultra-low temperature storage by the prefreezing method using the frost damage protection solution of the present invention, treatment of the cultured plant cell line (recovered cells by centrifugation, addition of the frost damage protection solution to the resuspended cryovial) Dispensing) can be continuously operated at room temperature for at least 120 minutes. In addition, by using the frost damage prevention solution of the present invention for frost damage protection treatment, it is possible to easily cultivate plants using a cryopreservation container or an EPS tube rack that is inexpensive and easily available without using an expensive program freezer. Allows ultra-low temperature storage of cells. Furthermore, the method disclosed in the present invention can be applied to a wide range of plant species and cultured cell lines.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]凍害防御溶液へのプロリン添加がシロイヌナズナ培養細胞 T87株の超低温保存 に与える影響を示した図である(実施例 3)。 T87細胞を凍害防御溶液 (2Mグリセリン 、 0.4Mショ糖、 0— 86.9mMプロリン)に懸濁した後に、プログラムフリーザーを用いて 冷却率 0.5°C/分で 35°Cまで予備凍結した。  [0020] FIG. 1 is a graph showing the effect of proline addition to a frost damage prevention solution on the cryogenic storage of Arabidopsis cultured cell strain T87 (Example 3). T87 cells were suspended in frost damage protection solution (2M glycerin, 0.4M sucrose, 0-86.9 mM proline), and then pre-frozen to 35 ° C using a program freezer at a cooling rate of 0.5 ° C / min.
[図 2]凍害防御処理時間がシロイヌナズナ培養細胞 T87株の超低温保存に与える影 響を示した図である(実施例 3)。 T87細胞を凍害防御溶液に懸濁し、静置あるいは振 盪しながら 0— 120分間凍害防御処理を行った。凍害防御処理の後、プログラムフリ 一ザ一を用いて冷却率 0.5°C/分で 35°Cまで予備凍結した。 FIG. 2 shows the effect of frost damage protection treatment time on the cryogenic storage of Arabidopsis cultured cell strain T87 (Example 3). Suspend T87 cells in anti-frost damage solution and leave or shake. Protected against frost damage for 0-120 minutes with shaking. After the frost damage prevention treatment, it was pre-frozen to 35 ° C at a cooling rate of 0.5 ° C / min using a program freezer.
[図 3]プログラムフリーザーを使用しないシロイヌナズナ培養細胞 T87株の超低温保 存を示した図である(実施例 4)。(a)では凍結保存容器〃 Mr. Frosty" (Nalgene社)を使 用し、 30°Cもしくは 80°Cで 1一 8時間予備凍結した。(b)では発泡ポリスチレン (EPS) チューブラック(HS4283および SD-14)を使用し、 -30°Cで 1一 8時間予備凍結した。 FIG. 3 is a diagram showing ultra-low temperature preservation of Arabidopsis cultured cell strain T87 without using a program freezer (Example 4). In (a), cryopreservation container 〃 Mr. Frosty ”(Nalgene) was used and pre-frozen for 18 hours at 30 ° C or 80 ° C. In (b), expanded polystyrene (EPS) tube rack (HS4283 And SD-14) and pre-frozen at -30 ° C for 1-8 hours.
[図 4]プログラムフリーザーを使用しない超低温保存法の各種培養細胞系統への応 用を示した図である(実施例 5)。(a)、(b)はシロイヌナズナ培養細胞 Cd-0株、(c)、 (d) はニンジン培養細胞、( 、(1)はミヤコグサ Gifo培養細胞、(g)、(h)はタバコ培養細胞 BY-2株、(i)、(j)はイネ培養細胞を用いた。各培養細胞は凍害防御溶液に懸濁し、 0 分間もしくは振盪しながら 60分間凍害防御処理を行った。凍害防御処理の後、(a)、 (c)、(e)、(g)、(i)は凍結保存容器" Mr. Frosty" (Nalgene社)を使用し、(b)、(d)、(1)、(h)、 (j)は EPSチューブラック HS4283 (マルェム)を使用して、 30°Cで 2— 6時間予備凍結し FIG. 4 is a diagram showing application of the cryogenic storage method without using a program freezer to various cultured cell lines (Example 5). (A), (b) Arabidopsis cultured cells Cd-0 strain, (c), (d) carrot cultured cells, (, (1) Miyagigusa Gifo cultured cells, (g), (h) tobacco cultured cells Rice cultured cells were used for BY-2 strains, (i) and (j), and each cultured cell was suspended in frost damage protection solution and subjected to frost damage protection treatment for 0 minutes or 60 minutes with shaking. After that, (a), (c), (e), (g), (i) use a cryopreservation container "Mr. Frosty" (Nalgene), and (b), (d), (1), (H), (j) are pre-frozen for 2-6 hours at 30 ° C using EPS tube rack HS4283 (Marem).

Claims

請求の範囲 The scope of the claims
[I] 以下の (a)— (c)を含む、植物細胞の凍害防御溶液:  [I] Frost protection solution for plant cells containing the following (a) — (c):
(a) 1一 3Mグリセリン、  (a) 1 3M glycerin,
(b) 0.2— 0.8Mショ糖、および  (b) 0.2-0.8M sucrose, and
(c) 0.4— 400mMプロリン。  (c) 0.4—400 mM proline.
[2] 以下の (a)— (c)を含む、請求項 1記載の凍害防御溶液。  [2] The frost damage prevention solution according to claim 1, comprising the following (a) — (c):
(a) 2Mグリセリン、  (a) 2M glycerin,
(b) 0.4Mショ糖、および  (b) 0.4M sucrose, and
(c) 8.7— 86.9mMプロリン。  (c) 8.7—86.9 mM proline.
[3] 植物細胞がシロイヌナズナ培養細胞である、請求項 1記載の凍害防御溶液。  [3] The frost damage prevention solution according to claim 1, wherein the plant cell is a cultured cell of Arabidopsis thaliana.
[4] シロイヌナズナ培養細胞が T87株である、請求項 3記載の凍害防御溶液。 [4] The frost damage prevention solution according to claim 3, wherein the cultured cell of Arabidopsis thaliana is T87 strain.
[5] 請求項 1記載の凍害防御溶液の超低温保存法における使用。 [5] Use of the frost damage prevention solution according to claim 1 in a cryogenic storage method.
[6] 凍結防御溶液が以下の (a)— (c)を含む、請求項 5記載の使用。 [6] The use according to claim 5, wherein the cryoprotective solution comprises the following (a) — (c):
(a) 2Mグリセリン、  (a) 2M glycerin,
(b) 0.4Mショ糖、および  (b) 0.4M sucrose, and
(c) 8.7— 86.9mMプロリン。  (c) 8.7—86.9 mM proline.
[7] 以下の工程 (A)— (D)による植物細胞の凍結方法:  [7] Method of freezing plant cells by the following steps (A) — (D):
(A) 植物細胞を請求項 1記載の凍害防御溶液に懸濁する工程、  (A) a step of suspending plant cells in the frost damage prevention solution according to claim 1,
(B) 工程 (A)の懸濁液が含まれる小容器を、保存容器に入れる工程、 (B) The step of putting the small container containing the suspension of step (A) into a storage container,
(C) 工程 (B)の保存容器をフリーザーに入れる工程、および (C) the step of placing the storage container of step (B) into a freezer, and
(D) あらかじめ定められた時間の後に、保存容器をフリーザーから出す工程。  (D) The process of removing the storage container from the freezer after a predetermined time.
[8] 植物細胞がカルスである、請求項 7記載の凍結方法。 8. The freezing method according to claim 7, wherein the plant cell is callus.
[9] 工程 (B)の保存容器が動物細胞用簡易凍結保存容器である、請求項 7記載の凍結 方法。  [9] The freezing method according to claim 7, wherein the storage container in the step (B) is a simple cryopreservation container for animal cells.
[10] 工程 (B)の保存容器が発泡ポリスチレンチューブラックである、請求項 7記載の凍結 方法。  [10] The freezing method according to claim 7, wherein the storage container in the step (B) is an expanded polystyrene tube rack.
[II] 工程 (C)のフリーザー内の温度が 20 40°Cである、請求項 7記載の凍結方法。  [II] The freezing method according to claim 7, wherein the temperature in the freezer of step (C) is 20 40 ° C.
[12] 工程 (D)のあら力じめ定められた時間が 4一 10時間である、請求項 7記載の凍結方 法。 [12] The method of freezing according to claim 7, wherein the predetermined time in step (D) is 4 to 10 hours. Law.
[13] 工程 (A)の後に懸濁液を 60分間振盪する工程を含み、さらに工程 (D)のあら力じめ 定められた時間が 6— 8時間である、請求項 7記載の凍結方法。  [13] The freezing method according to claim 7, further comprising a step of shaking the suspension for 60 minutes after step (A), and further, the time specified in step (D) is 6 to 8 hours .
[14] 工程 (A)の植物細胞力 シロイヌナズナ、ニンジン、ミヤコダサ、タバコ、イネの 、ず れかに由来する、請求項 7記載の凍結方法。  [14] The freezing method according to claim 7, wherein the plant cell strength in the step (A) is derived from any one of Arabidopsis thaliana, carrot, Miyakodasa, tobacco, and rice.
[15] 工程 (A)の植物細胞力 シロイヌナズナ CoH)株もしくはタバコ BY-2株のいずれかに 由来する、請求項 7記載の凍結方法。  [15] The freezing method according to claim 7, wherein the method is derived from either plant cell force Arabidopsis CoH) or tobacco BY-2 strain in step (A).
[16] 請求項 7記載の凍結方法で凍結された植物細胞の培養物。  16. A culture of plant cells frozen by the freezing method according to claim 7.
PCT/JP2005/004363 2005-03-11 2005-03-11 Ultra-low temperature storage technique for cultured plant cells WO2006095439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/004363 WO2006095439A1 (en) 2005-03-11 2005-03-11 Ultra-low temperature storage technique for cultured plant cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/004363 WO2006095439A1 (en) 2005-03-11 2005-03-11 Ultra-low temperature storage technique for cultured plant cells

Publications (1)

Publication Number Publication Date
WO2006095439A1 true WO2006095439A1 (en) 2006-09-14

Family

ID=36953050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004363 WO2006095439A1 (en) 2005-03-11 2005-03-11 Ultra-low temperature storage technique for cultured plant cells

Country Status (1)

Country Link
WO (1) WO2006095439A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263801A (en) * 2009-05-12 2010-11-25 Hitachi Plant Technologies Ltd Freezing preservation method, freezing device, freezing preservation system
CN102823581A (en) * 2012-09-14 2012-12-19 上海交通大学 Screening method of allogenic material for promoting vitrification ultra-low temperature storage
CN108795839A (en) * 2018-07-02 2018-11-13 中国科学院成都生物研究所 A kind of method of stem of noble dendrobium single-cell suspension culture
EP3403502A1 (en) * 2017-05-17 2018-11-21 Association For The Advancement Of Tissue Engineering and Cell Based Technologies Cryoprotectant and/or cryopreservant composition, methods and uses thereof
CN112913833A (en) * 2021-01-29 2021-06-08 华夏源细胞工程集团股份有限公司 Programmed cooling method for human umbilical cord mesenchymal stem cell working cell bank
CN115176708A (en) * 2022-08-12 2022-10-14 江苏省中国科学院植物研究所 Ultralow temperature cryopreservation method for embryonic callus of larea
CN117136833A (en) * 2023-08-18 2023-12-01 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Sargassum periwinkle germplasm preservation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000943A1 (en) * 1995-06-20 1997-01-09 Bnfl Fluorochemicals Limited Cell treatment
JPH0987102A (en) * 1995-09-27 1997-03-31 Yakult Honsha Co Ltd Freezing and preserving of plant cell and thawing of the frozen plant cell
WO1997039812A2 (en) * 1996-04-05 1997-10-30 Convolve, Inc. Method and apparatus for reduced vibration of human operated machines
JP2000350576A (en) * 1999-04-06 2000-12-19 Mitsui Chemicals Inc Freezing and preservation of cultured cell of plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000943A1 (en) * 1995-06-20 1997-01-09 Bnfl Fluorochemicals Limited Cell treatment
JPH0987102A (en) * 1995-09-27 1997-03-31 Yakult Honsha Co Ltd Freezing and preserving of plant cell and thawing of the frozen plant cell
WO1997039812A2 (en) * 1996-04-05 1997-10-30 Convolve, Inc. Method and apparatus for reduced vibration of human operated machines
JP2000350576A (en) * 1999-04-06 2000-12-19 Mitsui Chemicals Inc Freezing and preservation of cultured cell of plant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI T. ET AL.: "I. Kakushu Kaiseki Sochi no Genri to Shiyorei, 3. Doshokubutsu Saibo. Biseibutsu no Baiyo to Hozon Shokubutsu Saibo", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 49, no. 11, 2004, pages 1551 - 1557, XP003002061 *
MEIJER E.G.M. ET AL.: "Retention of the capacity to produce plants from protoplasts in cryopreserved cell lines of rice (Oryza sativa L.)", PLANT CELL REP, vol. 10, no. 4, 1991, pages 171 - 174, XP003002059 *
SADIA B. ET AL.: "Culture treatments for enhancing post-thaw recovery of cryopreserved suspension cells of potato cv", DESIREE, CELL MOL. BIOL. LETT., vol. 8, no. 4, 2003, pages 979 - 989, XP003002060 *
SANTARIUS K.A. ET AL.: "FREEZING OF ISOLATED THYLAKOID MEMBRANES IN COMPLEX MEDIA VIII. DIFFERENTIAL CRYOPROTECTION BY SUCROSE PROLINE AND GLYCEROL", PHYSIOLOGICAL PLANTARUM, vol. 84, no. 1, 1992, pages 87 - 93, XP003002062 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263801A (en) * 2009-05-12 2010-11-25 Hitachi Plant Technologies Ltd Freezing preservation method, freezing device, freezing preservation system
CN102823581A (en) * 2012-09-14 2012-12-19 上海交通大学 Screening method of allogenic material for promoting vitrification ultra-low temperature storage
CN102823581B (en) * 2012-09-14 2014-08-13 上海交通大学 Screening method of allogenic material for promoting vitrification ultra-low temperature storage
EP3403502A1 (en) * 2017-05-17 2018-11-21 Association For The Advancement Of Tissue Engineering and Cell Based Technologies Cryoprotectant and/or cryopreservant composition, methods and uses thereof
CN108795839A (en) * 2018-07-02 2018-11-13 中国科学院成都生物研究所 A kind of method of stem of noble dendrobium single-cell suspension culture
CN112913833A (en) * 2021-01-29 2021-06-08 华夏源细胞工程集团股份有限公司 Programmed cooling method for human umbilical cord mesenchymal stem cell working cell bank
CN112913833B (en) * 2021-01-29 2022-10-14 华夏源细胞工程集团股份有限公司 Programmed cooling method for human umbilical cord mesenchymal stem cell working cell bank
CN115176708A (en) * 2022-08-12 2022-10-14 江苏省中国科学院植物研究所 Ultralow temperature cryopreservation method for embryonic callus of larea
CN115176708B (en) * 2022-08-12 2023-07-04 江苏省中国科学院植物研究所 Ultralow-temperature cryopreservation method for embryogenic callus of larch
CN117136833A (en) * 2023-08-18 2023-12-01 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Sargassum periwinkle germplasm preservation method
CN117136833B (en) * 2023-08-18 2024-05-24 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Sargassum periwinkle germplasm preservation method

Similar Documents

Publication Publication Date Title
Menges et al. Cryopreservation of transformed and wild‐type Arabidopsis and tobacco cell suspension cultures
US6753182B1 (en) Cryopreservation of plant cells
Kartha et al. Freeze-preservation of pea meristems in liquid nitrogen and subsequent plant regeneration
WO2006095439A1 (en) Ultra-low temperature storage technique for cultured plant cells
Withers 4. In-vitro conservation
Klimaszewska et al. Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix× eurolepis) and black spruce (Picea mariana)
Grout Introduction to the in vitro preservation of plant cells, tissues and organs
CA2910925A1 (en) Freeze preservation of living cells
Grout et al. Structural observations on the growth of potato shoot-tip cultures after thawing from liquid nitrogen
Menges et al. Synchronization, transformation, and cryopreservation of suspension-cultured cells
CN105994255A (en) Freezing and thawing of MDCK cell
Bajaj The regeneration of plants from frozen pollen embryos and zygotic embryos of wheat and rice
Schrcnemakers et al. A two-step or equilibrium freezing procedure for the cryopreservation of plant cell suspensions
Pence Cryopreservation of bryophytes and ferns
WO2014045202A2 (en) Cell preparation method
Find et al. Cryopreservation of an embryogenic suspension culture of Picea sitchensis and subsequent plant regeneration
Do et al. Cryopreservation of in vitro-produced bovine embryos by vitrification: In pursuit of a simplified, standardized procedure that improves pregnancy rates to promote cattle industry use
Santos et al. Viability assessment of Genipa americana L.(Rubiaceae) embryonic axes after cryopreservation using in vitro culture
WO2006052835A2 (en) Cryopreservation of cells
Miaja et al. Low temperature storage and cryopreservation of a Vitis vinifera L. germplasm collection: first results
Fretz et al. Cryopreservation of embryogenic suspension cultures of barley (Hordeum vulgare L.)
Ben-Amar et al. Osmotic priming-induced cryotolerance uncovers rejuvenation of grapevine cell cultures: Morphogenetic changes and gene expression pattern highlighting enhanced embryogenic potential
Bin An introduction to cryopreservation of plant germplasm
KR20080053023A (en) Technique of cryopreservation using somatic embryo in japanese larch (larix leptolepis) and induction of embryogenic culture
JPH0987102A (en) Freezing and preserving of plant cell and thawing of the frozen plant cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05720634

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5720634

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP