WO2006093359A1 - Method of extracting residual pesticides and extraction kit - Google Patents

Method of extracting residual pesticides and extraction kit Download PDF

Info

Publication number
WO2006093359A1
WO2006093359A1 PCT/JP2006/304682 JP2006304682W WO2006093359A1 WO 2006093359 A1 WO2006093359 A1 WO 2006093359A1 JP 2006304682 W JP2006304682 W JP 2006304682W WO 2006093359 A1 WO2006093359 A1 WO 2006093359A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
logpow
extraction
hydrophobic solvent
hydrophobic
Prior art date
Application number
PCT/JP2006/304682
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Kitayama
Masaki Kozono
Takashi Ohmori
Original Assignee
Nippon Meat Packers, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Meat Packers, Inc. filed Critical Nippon Meat Packers, Inc.
Priority to BRPI0608051-0A priority Critical patent/BRPI0608051A2/en
Priority to CN200680013965.8A priority patent/CN101166965B/en
Publication of WO2006093359A1 publication Critical patent/WO2006093359A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4061Solvent extraction

Definitions

  • the present invention relates to a method for extracting residual agricultural chemicals and an extraction kit. More specifically, the present invention relates to a method for easily and efficiently extracting residual agricultural chemicals contained in agricultural products, and an extraction kit used therefor. Background art
  • the conventional method is aimed at measuring a small number of residual substances and is not suitable for measuring many residual substances.
  • a wide variety of chemicals are used as pesticides, and the importance of methods for measuring many types of pesticides at once has been increasing in order to simplify measurement and to make quick measurements. See 44. (5). 234-245 (2003), “Trial of skill evaluation for screening analysis of 104 pesticide residues in crops”.
  • the present inventors have studied a simple pretreatment method (extracting method of residual agricultural chemicals), and by using an extraction solvent completely different from the conventional extraction solvent and treating agricultural products with a pretreatment agent. It was found that residual agricultural chemicals can be extracted easily and efficiently. More specifically, the present inventors examined a combination of 1) an extraction pesticide capable of efficiently extracting the target pesticide, while not extracting impurities, and 2) a pretreatment agent. .
  • logPow octanol water partition coefficient
  • the mixed solvent is a hydrophobic solvent, preferably a n-hexane (logPow, 3.9) as a main component, and a logPow of about -1.0 to 0 hydrophilic solvent, preferably acetone.
  • a solvent to which an appropriate amount of (logPow, -0.24) is added is exemplified.
  • the above solvent is mainly a hydrophobic solvent, there is a problem in permeability to vegetables with high water content. Therefore, the problem was improved by subjecting the agricultural product sample to a dehydration process using a dehydrating agent, preferably diatomaceous earth.
  • a dehydrating agent preferably diatomaceous earth. This method enabled extraction using a hydrophobic solvent with low polarity such as n-hexane, which could not be used conventionally.
  • the present invention is based on such knowledge, and provides a method for easily and efficiently extracting residual agricultural chemicals from agricultural products and an extraction kit used for the method.
  • the present invention made to solve the above problems is a method for extracting residual agricultural chemicals from agricultural products comprising the following steps.
  • the mixed solvent of the hydrophobic solvent and the hydrophilic solvent it is preferable to use an n-hexane-acetone mixed solvent, and at the same time or after the step of treating with a dehydrating agent, activated carbon treatment and / or reverse phase chromatography. More preferably, it is treated with a photographic support.
  • the extraction kit of the present invention is a kit used in the above method, comprising a pretreatment agent mainly composed of a dehydrating agent, and a hydrophobic solvent or a hydrophobic solvent-hydrophilic solvent having a logPow of 0 to 4. It consists of an extractant consisting of a mixed solvent.
  • a mixed solvent of n-hexane and acetone as the mixed solvent of the above-mentioned hydrophobic solvent and hydrophilic solvent, and the above pretreatment agent together with the dehydrating agent is a small amount of activated carbon and a carrier for reverse phase chromatography. It is preferable to include one kind.
  • the method of the present invention is a method for extracting residual agricultural chemicals comprising the steps described above.
  • an agricultural product is first processed into a shape from which residual agricultural chemicals can be extracted.
  • This step is performed in an appropriate manner depending on the type of agricultural product. For example, when agricultural products such as vegetables and fruits are cut, they are cut into small pieces, and when they are beans and cereals, they are ground and pulverized. In any case, it is processed into a shape that improves the extraction efficiency of residual pesticides according to the form of agricultural products.
  • the processed agricultural products (hereinafter referred to as agricultural samples) are then subjected to a dehydration process.
  • a solvent mainly composed of a hydrophobic solvent is used as the extraction solvent. Therefore, if the water content of the agricultural product sample is large, the solvent is not compatible with the solvent. Reduce water content.
  • any conventional dehydrating agent can be used as the dehydrating agent.
  • Examples thereof include diatomaceous earth, molecular sieve, silica gel, anhydrous sodium sulfate, and anhydrous magnesium sulfate.
  • the amount of dehydrating agent used can be adjusted as appropriate according to the water content in the agricultural product sample, the dehydrating ability of the dehydrating agent, etc., but usually 0.5 to 3 times the weight of the agricultural product sample (weight ratio) It is said to be about.
  • the agricultural product sample dehydrated in the above process is subjected to an extraction process using a mixed solvent consisting of a hydrophobic solvent or a hydrophobic solvent having a logPow of 0 to 4 and a hydrophilic solvent.
  • a conventional solvent can be used if the logPow is within this range.
  • n-hexane logPow, 3.9
  • examples include ethynole acetate (logPow, 0.73), dichloromethane (logPow, 1.25), benzene (logPow, 2.13), toluene (logPow, 2.69), carbon tetrachloride (logPow, 2.64), etc.
  • These solvents may be used as a mixture of two or more.
  • a mixed solvent of a hydrophobic solvent and a hydrophilic solvent may be used.
  • the hydrophobic solvent include octane (logPow, 5.0) in addition to the solvents described above. .
  • hydrophilic solvents such as acetone (lo g Pow, -0 24. ), Methanol (logPow, - 0. 82), Etanoru (. LogPow, -0 32), Asetonitoriru (. LogPow, -0 3), such as Conventional solvents can be used.
  • n-hexane As the hydrophobic solvent.
  • Acetone is preferably used as the aqueous solvent. Therefore, a preferred example of a mixed solvent of a hydrophobic solvent and a hydrophilic solvent is a mixed solvent of n- hexane monoaceton.
  • the extraction step is performed by mixing the extraction solvent and the agricultural product sample by an appropriate method, and examples thereof include mixing using a homogenizer. At this time, an appropriate dehydrating agent may coexist.
  • the extraction time can be adjusted as appropriate depending on the type of agricultural product sample, mixing method, etc., but when a homogenizer is used, it can be adjusted to about 1 to 10 minutes, usually about 2 to 5 minutes. Done.
  • activated charcoal treatment may be performed when components such as pigments are extracted.
  • degreasing treatment using a carrier for reverse phase chromatography eg, Ci 8 carrier, C 8 carrier, etc.
  • a carrier for reverse phase chromatography eg, Ci 8 carrier, C 8 carrier, etc.
  • These activated carbon treatment and degreasing treatment can be performed in the dehydration step and Z or extraction step.
  • the extract is separated by conventional means such as filtration and centrifugation.
  • the separated extract can be subjected to steps such as drying and re-dissolution as needed, and then analysis and quantification of residual pesticides using conventional instrumental analysis means such as GC / MS. .
  • GC / MS instrumental analysis means
  • pH is not lowered due to the formation of sulfate due to the removal of water, and pH adjustment is not necessary when measuring agricultural products containing onions such as cabbage and onion, which was necessary in the conventional method. became.
  • the residual pesticide extraction kit of the present invention is a kit used in the above method, a pretreatment agent mainly composed of a dehydrating agent, and a hydrophobic solvent or hydrophobic solvent-hydrophilic solvent having a logPow of 0 to 4 It is comprised with the extractant which consists of these mixed solvents.
  • Examples of the dehydrating agent contained in the pretreatment agent include the above-mentioned dehydrating agents, and examples of the solvent include a hydrophobic solvent having a logPow of 0 to 4 or a mixed solvent of a hydrophobic solvent and a hydrophilic solvent. can do.
  • the pretreatment agent may contain at least one of the above-mentioned activated carbon and the carrier for reversed phase chromatography, together with the dehydrating agent. Acts as a degreasing agent.
  • kit of the present invention it may be used according to the extraction method of the present invention.
  • Agricultural products subject to the present invention are not particularly limited as long as they require the measurement of residual agricultural chemicals.
  • vegetables for example, spinach, onion, Chinese cabbage, cabbage, cucumber, eggplant, tomato, etc.
  • fruits Eg, strawberries, apples, pears, tangerines, etc.
  • beans eg, soybeans, red beans, broad beans, sardines, etc.
  • seeds eg, sesame, chestnuts, peanuts, etc.
  • cereals eg, rice, wheat, barley, oats
  • Corn, etc. moss (eg, sweet potato, sweet potato, sweet potato, long potato etc.).
  • the pesticides to be extracted are not limited as long as they are agricultural chemicals used in the agricultural field. Industrial use available
  • the amount of extracted impurities such as pigments is reduced, the operation is simplified and the measurement accuracy is improved. Improvement can be achieved. Furthermore, since agricultural products are treated with a dehydrating agent, the production of sulfate ions from sulfur-containing agricultural products can be suppressed, and it is possible to measure pesticide components that are unstable under acidic conditions.
  • Powdered frame (1) 10 g of soybean was weighed (2), 20 ml of water was added and left for 15 minutes (3). Acetonitrile 50 ml 1 was added (4) and homogenized at 10,000 rpm for 3 minutes (5). After suction filtration (6), 2 O ml of acetonitrile was added to the residue (7), homogenized again (8), and suction filtered (9). The two filtrates were combined (10), and acetonitrile was added to adjust the volume to 100 ml (11).
  • Cifludol 03 Ciproconaso 'One Le 02 Kassahos
  • the method of the present invention shows a higher recovery rate.
  • various residual agricultural chemicals can be efficiently removed. It was found that it can be extracted.
  • the extraction efficiency of each component was examined by changing the mixing ratio of n-hexane: acetone in the extract.
  • a recovery test was conducted when 100 ppb of various agricultural chemicals were added to the target agricultural products. The results are shown in Table 5.
  • Example 5
  • Example 6 an addition recovery test was performed in the same manner as in Example 6 except that benzene (logPow, 2.13) was used as the extract. The results are also shown in Table 6.
  • Example 6 an addition recovery test was performed in the same manner as in Example 6 except that octane (logPow, 5.0) was used as the extract. The results are also shown in Table 6.
  • Example 6 an addition recovery test was conducted in the same manner as in Example 6 except that acetonitrile (logPow, -0.3) was used as the extract. The results are also shown in Table 6.
  • logPow is 0 by comparing Example 6 and 7 and Comparative Example 4 and 5, as indicated by the impossibility of measurement.
  • octane logPow, 5.0
  • nitronitrile logPow, -0.3
  • logPow n-hexane
  • benzene logPow, 2.13

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A method of extracting residual pesticides in an agricultural product and a kit to be used therein. Namely, a method of extracting residual pesticides which comprises: (1) the step of processing an agricultural product into a form allowing the extraction of the residual pesticides; (2) the step of treating the thus processed agricultural product with a dehydrating agent; and (3) the step of extracting the residual pesticides from the thus dehydrated agricultural product by using a hydrophobic solvent, which has an octanol/water competition coefficient (logPow) of from 0 to 4, or a solvent mixture of a hydrophobic solvent with a hydrophilic solvent. A kit to be used in the method as described above. By using the above method and kit, the procedure can be simplified and an effect of reducing the amount of extracted contaminants such as coloring matters can be established.

Description

明細書 残留農薬の抽出方法及び抽出キット 技術分野  Description Residual pesticide extraction method and extraction kit Technical Field
本発明は残留農薬の抽出方法及び抽出キットに関する。 より詳細には、 農産物が 含有する残留農薬を簡便にして且つ効率的に抽出する方法及びそれに使用する抽出 キットに関する。 背景技術  The present invention relates to a method for extracting residual agricultural chemicals and an extraction kit. More specifically, the present invention relates to a method for easily and efficiently extracting residual agricultural chemicals contained in agricultural products, and an extraction kit used therefor. Background art
従来より、 農産物の生産性を高めるために種々の農薬が使用されてきた。 近年、 食物中の残留物質への関心が高まり、 残留物質の測定が重視されてきている。 これ に対応する形で、 日本国政府の方でも、 農産物中に残存する残留物質に関する基準 を設定しょうとしている (食安発第 0124001号日本国厚生労働省医薬食品局食品安 全部長通知 別添 「食品に残留する農薬、 飼料添加物又は動物用医薬品の成分であ る物質の試験法」 参照)。  Conventionally, various pesticides have been used to increase the productivity of agricultural products. In recent years, interest in residual substances in food has increased, and the measurement of residual substances has been emphasized. Corresponding to this, the Japanese government is also trying to set standards for residual substances remaining in agricultural products (No. 0124001 from Japan, Food and Drug Administration, Ministry of Health, Labor and Welfare) (See “Methods for testing substances remaining in foods that are constituents of pesticides, feed additives or veterinary drugs”).
しかし、 従来法は、 少数の残留物質の測定を目標にしており、 多くの残留物質の 測定には適していなかった。農薬としては極めて多種多様の薬剤が使用されており、 測定の簡便化及ぴ迅速ィヒを図るためには、 多種類の農薬を一度に測定する方法の重 要性が高まっている (食衛詰 44. (5) . 234-245 (2003) , 「農作物中の 104種農薬残留ス クリーニング分析に関わる試験技能評価の試み」 参照)。  However, the conventional method is aimed at measuring a small number of residual substances and is not suitable for measuring many residual substances. A wide variety of chemicals are used as pesticides, and the importance of methods for measuring many types of pesticides at once has been increasing in order to simplify measurement and to make quick measurements. See 44. (5). 234-245 (2003), “Trial of skill evaluation for screening analysis of 104 pesticide residues in crops”.
具体的には、従来の残留農薬の測定法は、測定ステップが煩雑で、時間(約 6 H)、 費用、 手間 (約 3 0工程) がかかり、 より簡便な手法及びキットが必要とされてい た。 また、 水分の多い野菜'果実の測定では、 親水性の高いァセトニトリルゃァセ トンなどの溶媒を使用しているため、 色素など測定対象以外の成分も抽出され、 こ れら夾雑物の除去に手間がかかること、 更に、 係る手間をかけても残存する夾雑物 が、 測定時のノイズとなることが問題となっていた。  Specifically, conventional methods for measuring residual pesticides require complicated steps, time (approximately 6 H), cost, and labor (approximately 30 steps), and simpler methods and kits are required. It was. In addition, in the measurement of high-moisture vegetables and fruits, a solvent such as acetonitrile, which has a high hydrophilicity, is used, so that components other than the measurement target such as pigment are also extracted, and these impurities can be removed. There is a problem that it takes time, and the impurities remaining even after such time and effort become noise during measurement.
一方、 農薬の多くは低極性であり親水性の高い溶媒による抽出が適当でないもの が多かった。 また、 従来法では、 タマネギゃキャベツなどのようにィォゥ成分を含 む場合、 産生した硫酸イオンで酸性となり、 酸性条件下では破壌される農薬成分も あつたため p H調整が必要であった。 さらに、 大豆など脂肪含量の高いものについ ては脱脂のために工程を増やすかあるいは GPCなどの高価な機器が必要とされてい た。 発明の開示 On the other hand, many of the pesticides have low polarity and many are not suitable for extraction with highly hydrophilic solvents. In addition, in the conventional method, when onion contains cabbage and other ingredients such as cabbage, pesticide ingredients that become acidic with the sulfate ions produced and are destroyed under acidic conditions. Because of the heat, pH adjustment was necessary. Furthermore, for those with a high fat content such as soybeans, the number of processes was increased for degreasing, or expensive equipment such as GPC was required. Disclosure of the invention
上述のように、 従来の残留農薬の測定法においては、 農産物から残留農薬を抽出 する工程 (前処理工程) が非常に長く且つ煩雑であって、 時間を要し、 測定上の問 題となっていた。  As described above, in the conventional method for measuring residual pesticides, the process of extracting residual pesticides from agricultural products (pretreatment process) is very long and cumbersome, requiring time and is a measurement problem. It was.
そこで、 本発明者らは、 簡易な前処理法 (残留農薬の抽出方法) を検討したとこ ろ、 従来の抽出溶媒と全く異なる抽出溶媒を使用すること及び農産物を前処理剤で 処理することにより、 簡便且つ効率的に残留農薬を抽出し得ることを見出した。 より具体的には、 本発明者らは、 1 ) 目的とする農薬を効率良く抽出でき、 その 一方で夾雑物質を抽出することのない抽出溶媒と、 2 ) 前処理剤との組み合わせを 検討した。  Therefore, the present inventors have studied a simple pretreatment method (extracting method of residual agricultural chemicals), and by using an extraction solvent completely different from the conventional extraction solvent and treating agricultural products with a pretreatment agent. It was found that residual agricultural chemicals can be extracted easily and efficiently. More specifically, the present inventors examined a combination of 1) an extraction pesticide capable of efficiently extracting the target pesticide, while not extracting impurities, and 2) a pretreatment agent. .
まず、 上記 1 ) を検討するに当たっては、 農薬の化学的性質に着目して検討を行 つた。 具体的には、 化合物の極性の指標としてォクタノール 水分配係数 (本明細 書では、 logPowと表記する) に着目した。 logPowは、 物質の疎水性の程度を表す指 標として広く用いられている (logPowについては、 日本国立医薬品食品衛生研究所 H P 医薬品情報検索のデータベースなど参照)。  First, when examining 1) above, we focused on the chemical properties of pesticides. Specifically, we focused on the octanol water partition coefficient (referred to as logPow in this specification) as an indicator of the polarity of the compound. logPow is widely used as an indicator of the degree of hydrophobicity of a substance (for information on logPow, see the National Institute of Health Sciences HP database for searching drug information).
農薬の多くは logPowが 2〜 7の間である。 これらの農薬を幅広く効率的に溶解す るには logPowが 3〜4程度の極性を示す溶媒が適当である。 一方、 ジクロルボスの 様に logPowが 1程度のものや、 ァセフェート、 メタミ ドホスのようにマイナスの値 を示す農薬もある。 これらの農薬をも溶解するためにはより高い極性の溶媒が必要 となる。  Most pesticides have logPow between 2-7. In order to dissolve these pesticides widely and efficiently, a solvent having a polarity of logPow of about 3 to 4 is suitable. On the other hand, some pesticides have a logPow of about 1 such as dichlorvos, and some pesticides have negative values such as facetate and methamidophos. In order to dissolve these pesticides, a more polar solvent is required.
そこで、 logPowを 0カゝら 4程度の極性の疎水性溶媒を使用する力、 又は疎水性溶 媒と親水性溶媒の混合溶媒を使用して、 脱水処理を施した試料を材料に農薬の抽出 を行ったところ、色素やその他の夾雑物の抽出量が著しく低くなることを見出した。 上記の混合溶媒としては、 疎水性溶媒、 好ましくは、 n—へキサン (logPow, 3. 9) を主体として、 そこに logPowが- 1. 0〜0程度の親水性溶媒、 好ましくは、 アセトン Therefore, using a force of using a hydrophobic solvent with a logPow of about 0 to 4 or a mixed solvent of a hydrophobic solvent and a hydrophilic solvent, a pesticide is extracted from the dehydrated sample as a material. As a result, it was found that the amount of pigments and other impurities extracted was significantly reduced. The mixed solvent is a hydrophobic solvent, preferably a n-hexane (logPow, 3.9) as a main component, and a logPow of about -1.0 to 0 hydrophilic solvent, preferably acetone.
(logPow, -0. 24)を適量添加した溶媒が例示される。 次に、 前記の 2 ) に関し、 上記の溶媒は疎水性溶媒を主体とするため水分の多い 野菜などへの浸透性に問題がある。 そこで、 農産物試料を脱水剤、 好ましくは珪藻 土を使用する脱水工程に、 予め付すことにより問題点を改善した。 本方法により従 来は使用できなかった n—へキサンのような低極性の疎水性溶媒を用いた抽出が可 能になった。 A solvent to which an appropriate amount of (logPow, -0.24) is added is exemplified. Next, with respect to the above 2), since the above solvent is mainly a hydrophobic solvent, there is a problem in permeability to vegetables with high water content. Therefore, the problem was improved by subjecting the agricultural product sample to a dehydration process using a dehydrating agent, preferably diatomaceous earth. This method enabled extraction using a hydrophobic solvent with low polarity such as n-hexane, which could not be used conventionally.
本発明は係る知見に基づくもので、 農産物から簡便且つ効率的に残留農薬を抽出 する方法及びそれに使用する抽出キットを提供するものである。  The present invention is based on such knowledge, and provides a method for easily and efficiently extracting residual agricultural chemicals from agricultural products and an extraction kit used for the method.
上記の課題を解決するためになされた本願発明は、 下記の工程からなる農産物中 の残留農薬の抽出方法である。  The present invention made to solve the above problems is a method for extracting residual agricultural chemicals from agricultural products comprising the following steps.
(1)農産物を、 残留農薬を抽出可能な形状に加工する工程;  (1) A process of processing agricultural products into a shape from which residual agricultural chemicals can be extracted;
(2)上記の処理がされた農産物を脱水剤で処理する工程;及び  (2) a step of treating the agricultural product subjected to the above treatment with a dehydrating agent; and
(3)脱水処理された農産物から、 logPowが 0〜 4である疎水性溶媒又は疎水性溶媒一 親水性溶媒の混合溶媒を使用して残留農薬を抽出する工程。  (3) A step of extracting residual agricultural chemicals from dehydrated agricultural products using a hydrophobic solvent having a logPow of 0 to 4 or a mixed solvent of a hydrophobic solvent and a hydrophilic solvent.
上記の疎水性溶媒一親水性溶媒の混合溶媒としては n—へキサンーァセトン混合 溶媒を使用するのが好ましく、 更に脱水剤で処理する工程と同時又はその後に、 活 性炭処理及び/又は逆相クロマトグラフィー用担体で処理するのがより好ましい。 本発明の抽出キットは、 上記の方法に使用されるキットであり、 脱水剤を主成分 とする前処理剤、及び logPowが 0〜 4である疎水性溶媒又は疎水性溶媒一親水性溶 媒の混合溶媒からなる抽出剤で構成される。 上記の疎水性溶媒一親水性溶媒の混合 溶媒としては n—へキサン一アセトン混合溶媒を使用するのが好ましく、 また上記 の前処理剤は脱水剤と共に、 活性炭及び逆相クロマトグラフィー用担体の少なくと も一種を含むことが好ましい。 発明を実施するための最良の形態  As the mixed solvent of the hydrophobic solvent and the hydrophilic solvent, it is preferable to use an n-hexane-acetone mixed solvent, and at the same time or after the step of treating with a dehydrating agent, activated carbon treatment and / or reverse phase chromatography. More preferably, it is treated with a photographic support. The extraction kit of the present invention is a kit used in the above method, comprising a pretreatment agent mainly composed of a dehydrating agent, and a hydrophobic solvent or a hydrophobic solvent-hydrophilic solvent having a logPow of 0 to 4. It consists of an extractant consisting of a mixed solvent. It is preferable to use a mixed solvent of n-hexane and acetone as the mixed solvent of the above-mentioned hydrophobic solvent and hydrophilic solvent, and the above pretreatment agent together with the dehydrating agent is a small amount of activated carbon and a carrier for reverse phase chromatography. It is preferable to include one kind. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法は前記の工程よりなる残留農薬の抽出方法である。  The method of the present invention is a method for extracting residual agricultural chemicals comprising the steps described above.
本発明の方法においては、最初に農産物を残留農薬を抽出可能な形状に加工する。 この工程は農産物の種類に応じて適宜な態様にて行われる。 例えば、 農産物が野菜 類、 果実類などのような場合には、 裁断して小片化することにより行われ、 豆類、 穀類のような場合には粉砕して粉末化することにより行われる。 何れにしても、 農 産物の形態に応じて、 残留農薬の抽出効率が向上するような形状に加工する。 かくして加工された農産物 (以下、 農産物試料という) は次いで脱水工程に付さ れる。 前述のように、 本発明の方法においては、 抽出溶媒として疎水性溶媒を主体 とする溶媒が使用されるので、 農産物試料の含水量が多いと溶媒との親和性に欠け るので、 脱水剤により水分含量を低減させる。 In the method of the present invention, an agricultural product is first processed into a shape from which residual agricultural chemicals can be extracted. This step is performed in an appropriate manner depending on the type of agricultural product. For example, when agricultural products such as vegetables and fruits are cut, they are cut into small pieces, and when they are beans and cereals, they are ground and pulverized. In any case, it is processed into a shape that improves the extraction efficiency of residual pesticides according to the form of agricultural products. The processed agricultural products (hereinafter referred to as agricultural samples) are then subjected to a dehydration process. As described above, in the method of the present invention, a solvent mainly composed of a hydrophobic solvent is used as the extraction solvent. Therefore, if the water content of the agricultural product sample is large, the solvent is not compatible with the solvent. Reduce water content.
脱水剤としては慣用の脱水剤の何れも使用することができ、 例えば珪藻土、 モレ キュラーシーブ、 シリカゲル、 無水硫酸ナトリウム、 無水硫酸マグネシゥムなどが 例示できる。  Any conventional dehydrating agent can be used as the dehydrating agent. Examples thereof include diatomaceous earth, molecular sieve, silica gel, anhydrous sodium sulfate, and anhydrous magnesium sulfate.
係る脱水剤の使用量は、 農産物試料中の水分含量、 脱水剤の脱水能などに応じて 適宜調整することができるが、 通常、 農産物試料に対して 0 . 5〜3倍量 (重量比) 程度とされる。  The amount of dehydrating agent used can be adjusted as appropriate according to the water content in the agricultural product sample, the dehydrating ability of the dehydrating agent, etc., but usually 0.5 to 3 times the weight of the agricultural product sample (weight ratio) It is said to be about.
上記の工程で脱水された農産物試料は、 logPowが 0〜 4である疎水性溶媒又は疎 水性溶媒一親水性溶媒からなる混合溶媒による抽出工程に付される。  The agricultural product sample dehydrated in the above process is subjected to an extraction process using a mixed solvent consisting of a hydrophobic solvent or a hydrophobic solvent having a logPow of 0 to 4 and a hydrophilic solvent.
この工程で使用される logPowが 0〜 4である疎水性溶媒としては、 logPowがこの 範囲であれば慣用の溶媒を使用することができるが、 例えば n—へキサン (logPow, 3. 9)、酢酸ェチノレ (logPow, 0. 73)、ジクロロメタン (logPow, 1. 25)、ベンゼン(logPow, 2. 13)、 トルエン (logPow, 2. 69)、 四塩化炭素 (logPow, 2. 64) などが例示され、 これらの溶媒は 2種以上を混合して使用してもよい。  As the hydrophobic solvent having a logPow of 0 to 4 used in this step, a conventional solvent can be used if the logPow is within this range. For example, n-hexane (logPow, 3.9), Examples include ethynole acetate (logPow, 0.73), dichloromethane (logPow, 1.25), benzene (logPow, 2.13), toluene (logPow, 2.69), carbon tetrachloride (logPow, 2.64), etc. These solvents may be used as a mixture of two or more.
また、抽出溶媒としては、疎水性溶媒と親水性溶媒の混合溶媒を使用してもよく、 疎水性溶媒としては、 上記記載の溶媒の他、 オクタン (logPow, 5. 0) などが例示で きる。  Further, as the extraction solvent, a mixed solvent of a hydrophobic solvent and a hydrophilic solvent may be used. Examples of the hydrophobic solvent include octane (logPow, 5.0) in addition to the solvents described above. .
親水性溶媒としては、 例えばアセトン(logPow, -0. 24)、 メタノール(logPow, - 0. 82)、 ェタノール(logPow, -0. 32)、 ァセトニトリル(logPow, -0. 3)などの慣用の 溶媒を使用することができる。 The hydrophilic solvents, such as acetone (lo g Pow, -0 24. ), Methanol (logPow, - 0. 82), Etanoru (. LogPow, -0 32), Asetonitoriru (. LogPow, -0 3), such as Conventional solvents can be used.
疎水性溶媒一親水性溶媒における混合比としては、 疎水性溶媒:親水性溶媒 = 9 5〜3 0 : 5〜7 0 (容量比、 溶媒の混合比に関しては以下同様)、 好ましくは 8 0 〜4 5 : 2 0〜5 5、 より好ましくは 5 0 : 5 0の比率の溶媒が使用される。 親水 性溶媒量がこの範囲より多くなると色素などの夾雑物の抽出量が増え、 またこの範 囲より少なくなると残留農薬の抽出量が低減するお'それがある。  The mixing ratio of the hydrophobic solvent to the hydrophilic solvent is as follows: Hydrophobic solvent: hydrophilic solvent = 95 to 30: 5 to 70 (volume ratio, solvent mixing ratio is the same below), preferably 80 to A solvent with a ratio of 45:20 to 55, more preferably 50:50 is used. If the amount of hydrophilic solvent exceeds this range, the amount of extracted pigments and other contaminants increases, and if the amount falls below this range, the amount of residual pesticides may decrease.
上述の疎水性溶媒及ぴ親水性溶媒において、 溶媒の毒性、 沸点、 融点、 価格など を勘案すると、 疎水性溶媒としては n—へキサンを使用するのが好ましく、 また親 水性溶媒としてはアセトンを使用するのが好ましい。 従って、 疎水性溶媒一親水性 溶媒の混合溶媒の好ましい例としては、 n —へキサン一ァセトン混合溶媒が挙げら れる。 In consideration of the toxicity, boiling point, melting point, price, etc. of the above-mentioned hydrophobic solvent and hydrophilic solvent, it is preferable to use n-hexane as the hydrophobic solvent. Acetone is preferably used as the aqueous solvent. Therefore, a preferred example of a mixed solvent of a hydrophobic solvent and a hydrophilic solvent is a mixed solvent of n- hexane monoaceton.
抽出工程は、上記の抽出溶媒と農産物試料を適宜な方法で混合することに行われ、 例えばホモジナイザーを使用した混合などが例示できる。 この際、 適当な脱水剤を 共存させてもよレ、。  The extraction step is performed by mixing the extraction solvent and the agricultural product sample by an appropriate method, and examples thereof include mixing using a homogenizer. At this time, an appropriate dehydrating agent may coexist.
抽出時間は、 農産物試料の種類、 混合手段などに応じて適宜調整することができ るが、 ホモジナイザーを使用した場合には 1 〜 1 0分程度、 通常 2 〜 5分程度でホ モジナイズすることにより行われる。  The extraction time can be adjusted as appropriate depending on the type of agricultural product sample, mixing method, etc., but when a homogenizer is used, it can be adjusted to about 1 to 10 minutes, usually about 2 to 5 minutes. Done.
なお、 本発明の方法においても、 色素などの成分が抽出されて来る場合には活性 炭処理を行ってもよい。 また、 大豆などのように脂肪分が多い農産物の場合には逆 相クロマトグラフィー用担体(例えば C i 8担体、 C 8担体等) を使用した脱脂処理を してもよい。 これらの操作により、 抽出液中の色素などの夾雑物含量及び脂肪含量 が著しく低減するので、 機器分析に際してもサンプルの前処理工程の簡略化や測定 時のノィズの低減に寄与することができる。 In the method of the present invention, activated charcoal treatment may be performed when components such as pigments are extracted. In the case of agricultural products with a high fat content such as soybeans, degreasing treatment using a carrier for reverse phase chromatography (eg, Ci 8 carrier, C 8 carrier, etc.) may be performed. By these operations, the contents of impurities such as pigments and the fat content in the extract are remarkably reduced, so that it is possible to contribute to simplification of the sample pretreatment process and reduction of noise during measurement in the instrumental analysis.
これらの活性炭処理及び脱脂処理は、 前記の脱水工程及び Z又は抽出工程におい て行うことができる。  These activated carbon treatment and degreasing treatment can be performed in the dehydration step and Z or extraction step.
上記の抽出工程の後、 濾過、 遠心分離などの慣用の手段で抽出液を分離する。 分 離された抽出液は、 必要に応じて、 乾固、 再溶解などの工程を経た後、 G C /M S などの慣用の機器分析手段を用いて、 残留農薬の分析 ·定量を行うことができる。 本発明の方法によれば、 色素やその他夾雑物の除去の手間を軽減でき、 ノイズの ない測定データを、 時間 (約 6 H→約 1 H)、費用、手間 (約 3 0工程→約 1 0工程) をかけずに得ることが可能となった。 また、 水分が除去されているために硫酸ィォ ンが生じることによる pH低下も起こらず、従来法で必要だったタマネギゃキャベツ などのィォゥ成分含有農産物の測定時の p H調整も不必要となった。  After the extraction step, the extract is separated by conventional means such as filtration and centrifugation. The separated extract can be subjected to steps such as drying and re-dissolution as needed, and then analysis and quantification of residual pesticides using conventional instrumental analysis means such as GC / MS. . According to the method of the present invention, it is possible to reduce the labor of removing pigments and other contaminants, and the measurement data without noise can be saved in time (approximately 6 H → approximately 1 H), cost, labor (approximately 30 steps → approximately 1 (0 step). In addition, pH is not lowered due to the formation of sulfate due to the removal of water, and pH adjustment is not necessary when measuring agricultural products containing onions such as cabbage and onion, which was necessary in the conventional method. became.
このように、 農産物中の残留農薬測定において、 従来法より簡便に、 短時間で、 少なレ、有機溶媒の使用で、 よりノイズの少ないデータを得ることが可能となつた。 本発明の残留農薬抽出キットは、 上記の方法に使用されるキットであり、 脱水剤 を主成分とする前処理剤、及び logPowが 0 〜 4である疎水性溶媒又は疎水性溶媒— 親水性溶媒の混合溶媒からなる抽出剤で構成される。 前処理剤に含まれる脱水剤としては前記の脱水剤が例示でき、 また抽出剤である logPowが 0〜 4である疎水性溶媒又は疎水性溶媒一親水性溶媒の混合溶媒も前記の 溶媒を例示する'ことができる。 In this way, in the measurement of pesticide residues in agricultural products, it has become possible to obtain data with less noise by using organic solvents in a shorter time, in a shorter time, and using organic solvents. The residual pesticide extraction kit of the present invention is a kit used in the above method, a pretreatment agent mainly composed of a dehydrating agent, and a hydrophobic solvent or hydrophobic solvent-hydrophilic solvent having a logPow of 0 to 4 It is comprised with the extractant which consists of these mixed solvents. Examples of the dehydrating agent contained in the pretreatment agent include the above-mentioned dehydrating agents, and examples of the solvent include a hydrophobic solvent having a logPow of 0 to 4 or a mixed solvent of a hydrophobic solvent and a hydrophilic solvent. can do.
なお、 前処理剤には、 脱水剤と共に、 前述した活性炭及び逆相クロマトグラフィ 一用担体の少なくとも一種を含んでいてもよく、 活性炭及び逆相クロマトグラフィ 一用担体は前記のとおり、 色素成分の除去と脱脂剤として作用する。  In addition, the pretreatment agent may contain at least one of the above-mentioned activated carbon and the carrier for reversed phase chromatography, together with the dehydrating agent. Acts as a degreasing agent.
本発明のキットの使用方法としては、 前記の本発明の抽出方法に準じて使用すれ ばよい。  As a method of using the kit of the present invention, it may be used according to the extraction method of the present invention.
本発明の対象となる農産物としては残留農薬の測定を必要とする農産物であれば 特に限定されず、 例えば、 野菜類 (例えばホウレン草、 玉ねぎ、 白菜、 キャベツ、 きゅうり、 なす、 トマト等)、果実類 (例えば柿、 りんご、 梨、 みかん等)、 豆類 (例 えば大豆、 小豆、 そらまめ、 ささげ等)、 種実類 (例えばごま、 栗、 落花生等)、 穀 類 (例えば米、 小麦、 大麦、 薷麦、 とうもろこし等)、 芋類 (例えばじやがいも、 さ つまいも、 さといも、 ながいも等) などが例示できる。  Agricultural products subject to the present invention are not particularly limited as long as they require the measurement of residual agricultural chemicals. For example, vegetables (for example, spinach, onion, Chinese cabbage, cabbage, cucumber, eggplant, tomato, etc.), fruits (Eg, strawberries, apples, pears, tangerines, etc.), beans (eg, soybeans, red beans, broad beans, sardines, etc.), seeds (eg, sesame, chestnuts, peanuts, etc.), cereals (eg, rice, wheat, barley, oats) , Corn, etc.), moss (eg, sweet potato, sweet potato, sweet potato, long potato etc.).
抽出対象とされる農薬は、 農業の分野で使用されている農薬である限り限定され るものではない。 産業上の利用可能十生  The pesticides to be extracted are not limited as long as they are agricultural chemicals used in the agricultural field. Industrial use available
本発明の方法及ぴキットによれば、 抽出溶媒として疎水性溶媒を主体とする溶媒 が使用されるので、 色素などの夾雑物の抽出量が少なくなり、 操作が簡便化される と共に測定精度の向上が図れる。 更に、 農産物を脱水剤で処理しているので、 含硫 農産物からの硫酸イオンの産生を抑制でき、 酸性条件下で不安定な農薬成分の測定 をも行うことができるという格別な効果を奏する。 実施例  According to the method and kit of the present invention, since a solvent mainly composed of a hydrophobic solvent is used as an extraction solvent, the amount of extracted impurities such as pigments is reduced, the operation is simplified and the measurement accuracy is improved. Improvement can be achieved. Furthermore, since agricultural products are treated with a dehydrating agent, the production of sulfate ions from sulfur-containing agricultural products can be suppressed, and it is possible to measure pesticide components that are unstable under acidic conditions. Example
以下、 比較例及び実施例に基づいて、 本発明をより詳細に説明するが、 本発明は これらの実施例に限定されるものではない。 なお、 各例において、 カツコ付の数字 は工程のステップ数を表す。  EXAMPLES Hereinafter, although this invention is demonstrated in detail based on a comparative example and an Example, this invention is not limited to these Examples. In each example, the numbers with brackets indicate the number of steps in the process.
比較例 1 (従来法 1 ) Comparative example 1 (conventional method 1)
ホウレン草全草からひげ根および変質葉を除去し(1)、 フードプロッセッサ一で細 切 ·均質化した(2)。 20 gを秤量し (3)、 ァセトニトリノレ 50m lを加え(4)、 10000 回転で 3分間ホモジナイズした(5)。 吸引ろ過(6)の後、 残留物にァセトニトリル 2 0 ml を加え(7)再度ホモジナイズ (8)し、 吸引ろ過した(9)。 2つのろ液をあわせて (10)、 ァセトニトリルを添カ卩し 100m 1に定容した(11)。 そのうち 20m lを分液口 一トに分取(12)し、 塩ィ匕ナトリウム 10 g (13)と 0. 5Mリン酸緩衝液 (PH7. 0) 20m 1を 加え(14)、 1 0分間振盪(15)した。 ァセトニトリル層を分取し(16)、 無水硫酸ナト リゥムを加えて脱水(17)したものをろ過し(18)、 35°Cの温度条件下で減圧濃縮(19) をおこなった。 乾固直前に減圧濃縮を中止し、 窒素気流下で乾固(20)した後、 残留 物をトルエン · ァセ トニ ト リル混液(l : 3) 2 m 1 に溶解(21)し抽出液とした。 ENVI-Carv/LC-NH2 (6ml, 500mg/5oomg)固相抽出カラムをトルエン 'ァセトニトリル混 液(1 : 3) 1 O m lでコンディショニングしておき(22)、 抽出液を負荷 (23)した。 さら に 20m 1のトルエン'ァセトニトリル混液(1 : 3) 20m 1を流し溶出液を分取 (24)後、 35°Cの温度条件下で減圧濃縮をおこない lm 1以下に濃縮した(25)。ァセトン 1 O ral を加え、再度 lm 1以下に濃縮 (26)した後、アセトン 5 m 1を加えさらに濃縮を行つ た(27)。 乾固直前に減圧濃縮を中止し、 窒素気流下で乾固(28)した。 残留物をァセ トン ' n—へキサン混液(l : l) 2m 1で溶解して(29)試験溶液とし、 サンプルバイァ ルに移して(30) GC/MSによる分析 (31)に供した。 比較例 2 (従来法 2 ) Remove spine roots and altered leaves from whole spinach (1) and fine-tune with a food processor. Cutting · Homogenized (2). 20 g was weighed (3), 50 ml of acetonitrile was added (4), and homogenized at 10000 rpm for 3 minutes (5). After suction filtration (6), 20 ml of acetonitrile was added to the residue (7), homogenized again (8), and suction filtered (9). The two filtrates were combined (10), added with acetonitrile, and adjusted to a volume of 100 ml (11). The 20 m l was separated (12) to a separating port Ichito them, and Shioi匕sodium 10 g (13) 0. 5M phosphate buffer (P H7. 0) 20 m 1 was added (14), 1 0 Shake for 15 minutes (15). The acetonitrile layer was separated (16), dehydrated by adding anhydrous sodium sulfate (17), filtered (18), and concentrated under reduced pressure (35) at 35 ° C. Concentration under reduced pressure was stopped immediately before drying, followed by drying (20) under a nitrogen stream, and the residue was dissolved in toluene-acetonitrile mixture (l: 3) 2 ml (21) did. ENVI-Carv / LC-NH 2 (6ml, 500mg / 5oomg) solid-phase extraction column was conditioned with 1Oml of toluene 'acetonitrile (1: 3) (22), and the extract was loaded (23) . Further, 20 ml of toluene-acetonitrile mixed solution (1: 3) was poured into 20 ml, and the eluate was separated (24), and then concentrated under reduced pressure at a temperature of 35 ° C. to concentrate to lm 1 or less (25). Aceton 1 O ral was added and concentrated again to lm 1 or less (26), and then acetone 5 ml was added and further concentrated (27). Concentration under reduced pressure was stopped immediately before drying, and drying (28) was performed under a nitrogen stream. Dissolve the residue in a mixture of acetone and n-hexane (l: l) 2 ml (29) to make the test solution, transfer to the sample vial (30), and use for analysis by GC / MS (31). did. Comparative Example 2 (Conventional method 2)
粉枠(1)した大豆.10 gを秤量し(2)、水 2 0 m 1を添加し 1 5分間放置した(3)。ァ セトニトリル 50m 1を加え(4)、 10000回転で 3分間ホモジナイズした(5)。 吸引ろ 過(6)の後、残留物にァセトニトリノレ 2 O mlを加え(7)再度ホモジナイズ (8)し、吸引 ろ過した(9)。 2つのろ液をあわせて(10)、 ァセトニトリルを添加し 100m 1に定容 した(11)。 そのうち 20m lを分液ロートに分取(12)し、 塩ィヒナトリウム 10 g (13)と 0. 5Mリン酸緩衝液 (pH7. 0) 20m 1を加え(14)、 1 0分間振盪(15)した後、ァセトニト リル層を分取した(16)。 Bond Elut C18 (6ml, lg)固相抽出カラムをァセトニトリル 10m 1でコンディショニングしておき(17)、 分取したァセトニトリル層を負荷(18) した。カラムに 2m 1のァセトニトリルを加え溶出をおこなった(19)。溶出液に無水 硫酸ナトリゥムを加えて脱水(20)したものをろ過し(21)、 35°Cの温度条件下で減圧 濃縮 (22)をおこなった。 乾固直前に減圧濃縮を中止し、 窒素気流下で乾固 (23)した 後、残留物をトルエン'ァセトニトリル混液(1:3) 2m 1に溶解 (24)し抽出液とした。 ENVI-Carv/LC-NH2(6ml, 500mg/5oomg)固相抽出カラムをトルエン ·ァセトニトリル混 液(1:3) 1 Om 1でコンディショニングしておき(25)、 抽出液を負荷(26)した。 さら に 20m 1のトルエン ·ァセトニトリル混液(1:3) 20m 1を流し溶出液を分取 (27)後、 35°Cの温度条件下で減圧濃縮をおこない lm 1以下に濃縮した(28)。アセトン 1 Oml を加え、再度 lm 1以下に濃縮 (29)した後、アセトン 5m 1を加えさらに濃縮を行つ た(30)。 乾固直前に減圧濃縮を中止し、 窒素気流下で乾固(31)した。 残留物をァセ トン . n —へキサン混液(i:i)2m 1で溶解して(32)試験溶液とし、 サンプルバイァ ルに移して (33) GC/MSによる分析 (34)に供した。 実施例 1 (本発明方法 1) Powdered frame (1). 10 g of soybean was weighed (2), 20 ml of water was added and left for 15 minutes (3). Acetonitrile 50 ml 1 was added (4) and homogenized at 10,000 rpm for 3 minutes (5). After suction filtration (6), 2 O ml of acetonitrile was added to the residue (7), homogenized again (8), and suction filtered (9). The two filtrates were combined (10), and acetonitrile was added to adjust the volume to 100 ml (11). Dispense 20 ml of the solution into a separatory funnel (12), add 10 g (13) of sodium chloride salt and 20 ml of 0.5 M phosphate buffer (pH 7.0) (14), and shake for 10 minutes (15) After that, the acetonitrile layer was separated (16). A Bond Elut C 18 (6 ml, lg) solid phase extraction column was conditioned with acetonitrile (10 ml) (17), and the fractionated acetonitrile layer was loaded (18). The column was eluted with 2 ml 1 acetonitrile (19). The eluate was dehydrated (20) by adding anhydrous sodium sulfate, filtered (21), and concentrated under reduced pressure (22) at 35 ° C. Concentration under reduced pressure was stopped immediately before drying, and drying (23) was performed under a nitrogen stream. Thereafter, the residue was dissolved (24) in a toluene / acetonitrile mixed solution (1: 3) 2 ml 1 to obtain an extract. ENVI-Carv / LC-NH 2 (6ml, 500mg / 5oomg) solid phase extraction column was conditioned with toluene-acetonitrile (1: 3) 1 Om 1 (25), and the extract was loaded (26) . Further, 20 ml of toluene-acetonitrile mixed solution (1: 3) was flowed through 20 ml, and the eluate was separated (27), and then concentrated under reduced pressure at a temperature of 35 ° C. to concentrate to lm 1 or less (28). After adding 1 ml of acetone and concentrating again to lm 1 or less (29), the mixture was further concentrated by adding 5 ml of acetone (30). Concentration under reduced pressure was stopped immediately before drying, and drying (31) was performed under a nitrogen stream. The residue § seton n - hexane mixture. (I: i) was dissolved in 2m 1 and (32) the test solution, subjected to a sample-by-transferred to § Le (33) Analysis by GC / MS (34) did. Example 1 (Method 1 of the present invention)
ホウレン草全草からひげ根および変質葉を除去し(1)、 フードプロッセッサ一で細 切 ·均質化した(2)。 2gを秤量し(3)、 前処理剤 (珪藻土 2 g、 活性炭 0.3 g ) とよ く混ぜ合わせ (4)た後 、 抽出液(n—へキサン:アセトン = 1 : l)25m 1 (5)と無水 硫酸ナトリゥム 5 gを加え(6)、 10000回転で 3分間ホモジナイズした(7)。 5000回転 で 1 0分の遠心により上清を得 (8)、 35°Cで減圧乾固し(9)、 アセトン 2 m 1に溶解 した(10)。 これをサンプルバイアルに移して(11)、 GC/MSによる分析(12)に供した。 実施例 2 (本発明方法 2)  The roots and altered leaves were removed from the whole spinach (1), and then chopped and homogenized with a food processor (2). Weigh 2 g (3), mix well with pretreatment agent (diatomaceous earth 2 g, activated carbon 0.3 g) (4), then extract (n-hexane: acetone = 1: l) 25m 1 (5) And 5 g of anhydrous sodium sulfate (6) were added, and homogenized for 3 minutes at 10,000 rpm (7). The supernatant was obtained by centrifugation at 5000 rpm for 10 minutes (8), dried under reduced pressure at 35 ° C (9), and dissolved in 2 ml of acetone (10). This was transferred to a sample vial (11) and subjected to analysis by GC / MS (12). Example 2 (Method 2 of the present invention)
粉枠 (1)した大豆 2gを秤量し(2)、 前処理剤 (珪藻土 2g、 C18逆相ビーズ 2g、 活 性炭 0.3g)とよく混ぜ合わせ (3)た後 、抽出液(n—へキサン:アセトン =1: 1)25 m 1 (4)と無水硫酸ナトリウム 5 gを加え(5)、 10000回転で 3分間ホモジナイズした (6)。 5000回転で 10分の遠心により上清を得(7)、 35°Cで減圧乾固し(8)、 アセトン 2m lに溶解した(9)。これをサンプルバイアルに移して(10)、 GC/MSによる分析(11) に供した。 上記従来法 1及び 2と本発明方法 1及び 2の工程数及びその方法を実施する際の 所要時間 (分) は以下のとおりである。 Powder frame (1) Weighed 2 g of soybean (2), mixed well with pretreatment agent (diatomaceous earth 2 g, C 18 reverse phase beads 2 g, activated charcoal 0.3 g) (3), and then extracted liquid (n— Hexane: acetone = 1: 1) 25 m 1 (4) and 5 g of anhydrous sodium sulfate were added (5), and homogenized for 3 minutes at 10,000 rpm (6). The supernatant was obtained by centrifugation at 5000 rpm for 10 minutes (7), dried under reduced pressure at 35 ° C (8), and dissolved in 2 ml of acetone (9). This was transferred to a sample vial (10) and subjected to analysis by GC / MS (11). The number of steps of the conventional methods 1 and 2 and the inventive methods 1 and 2 and the required time (minutes) for carrying out the method are as follows.
従来法 1 31工程 310分  Conventional method 1 31 steps 310 minutes
従来法 2 34工程 340分 本発明方法 1 1 2工程 6 4分 Conventional method 2 34 steps 340 minutes Inventive method 1 1 2 step 6 4 min
本発明方法 2 1 1工程 5 9分  Invention method 2 1 1 step 5 9 minutes
上記従来法 1及び 2と本発明方法 1及び 2において、 対象農産物に各種農薬を 1 0 0 p p b添カ卩した場合の回収試験を行った。その結果を、表 1〜4に示す。なお、 表 1及び 2は、 それぞれ本発明方法 1及び 2の結果であり、 表 3及び 4は、 それぞ れ従来法 1及び 2によ98899099998099999999 9る結果 (回収率:%、 以下同様) である。 In the conventional methods 1 and 2 and the methods 1 and 2 of the present invention, a recovery test was conducted in the case where various agricultural chemicals were added to the target agricultural product at 100 ppp. The results are shown in Tables 1-4. Tables 1 and 2 show the results of the method 1 and 2 of the present invention, respectively. Tables 3 and 4 show the results of 988999099998099999999 9 according to the conventional methods 1 and 2, respectively (recovery rate:%, the same applies hereinafter). is there.
838888069808376 480211 838888069808376 480211
Ό862023584042397 89111 表 1 (本発明方法 1 ) 100 ppb添加回収試験による回収率  Ό862023584042397 89111 Table 1 (Method 1 of the present invention) Recovery rate by 100 ppb addition recovery test
ピレスロイド系 回収率 含窒素系 回収率 有機リン  Pyrethroid recovery rate nitrogen-containing recovery rate organophosphorus
ァクリナトリン イソプロカルプ EPN 93.2 シハロトリン 01 エスプロカルプ ァセフェート 62.2 シハロトリン 02 クロ口プロファム ェテ'ィフ Iンホス 87.3 シフルトリン 01 シ 'エトフェンカルプ エトプロホス 92.7 シフル Jン 02 シフ口コナソ 'ール 01 ェ卜リンホス 91 .0 シフルトリン 03 シプロコナゾ-ル 02 1 11 カス'サホス 95.3 シフルトリン 04 チ才へ'ンカルフ' 09899888899999990089999999 999 Acrinathrin Isoprocarp EPN 93.2 Cyhalothrin 01 Esplocalc facet 62.2 Cyhalothrin 02 Black mouth prophate Iifos 87.3 Cifluthrin 01 Shietofencarp ethoprophos 92.7 Ciflu Jun 02 Schiff mouth conasole 01 Chelyphos Phosphate 91 03 Cyproconazole 02 1 11 Kas' Sahos 95.3 Cyfluthrin 04 To the old 'N Calf' 09899888899999990089999999 999
373457553600875^^76535500 022771 キナルホス 95.1 シへ'ルメトリン テニルクロール ^ ο30 ο 8420 ο ο 934689344090 Ο 80368. クロルピリホス 92.4 シへ。ルメトリン 02 テフ'コナ' /一ル クロルフェンヒンホス 01 96.9 シへ。ルメトリン 03 テブフ Iンピラト' クロルフェンヒ'ンホス 02 92.0 シへルメトリン 04 トリァシ'メノール 01 シ 'クロルホ"ス 49.2 テフルトリン ド Jァシ'メノール 02 シ'メチルビンホス 87.4 亍'ルタメトリン ハ"クロフ'トラ'/ール タ'ィァシ 'ノン 95.3 フェンハ'レレ—ト ビリプロキシフェン チオメトン 82.9 フェンハ'レレ-ト 02 ピリミカルブ テルブホス 92.7 フルシトリン 01 フエナリモル ハ^チオン 94.6 フルシトリン 02 フエノブカルプ ハ°ラチオンメチル 100.4 フルハ'リネート 01 プレチラクロ-ル ビラクロホス 88.5 フルハ'リネート 02 プロビコナ'ノ '-ル 01 ピリミホスメチル 93.7 ヘ レメトリン フ'口ビコナ'ノ'ール 02 フエニトロチオン 95.7 へ'ルメトリン 02 ― へ'ンダイォカルフ' フェンスルホスチン 87.8  373457553600875 ^^ 76535500 022771 Quinalhos 95.1 Sihelu'lemethrin Tenylchlor ^ ο30 ο 8420 ο ο 934689344090 Ο 80368. Chlorpyrifos 92.4 Lumetrin 02 Tef 'Kona' / 1 Le Chlorfenhinhos 01 96.9 Lumethrin 03 Tebufu Impirato 'Chlorfenhynhos 02 92.0 Sihelmetrine 04 Triash' Menol 01 Si 'Chlorho "49.2 Tefluthrin de Jashi' Menol 02 Si 'Methylvinfos 87.4 'Yashi' Non 95.3 Fenha's Relate Biliproxyfen Thiometon 82.9 Fenha 'Reele 02 Pirimicarb terbufos 92.7 Fulcitrin 01 Fenarimol Ha thion 94.6 Fulcitrin 02 Fennobalp halathion methyl 100.4 Fruha'linate 01 Pretilachlor 8.5 halaphos 'Linate 02 Probicona' No '-l 01 Pirimiphos methyl 93.7 Remetrin f Mouth Bicona' No '02 Huenitrothion 95.7 To' Lumetrin 02 ― Hendai Calf 'Fensulfostine 87.8
へ °ン亍'ィメタリン フェンチ才ン 91 .9 有機塩素系 回収率 ミクロプタニル フェン卜エー卜 97.5 一 BHC 92 メチ才力ルブ 01 フ°ロチォホス 97.3 /? -BHC 4 メチ才カルプ 02 ホサロン 82.4 r-BHc メトラクロール ホスチアーセ01 87.0 9'9 Organic Chlorine Recovery Microptanyl Fen'A 卜 97.5 One BHC 92 Mechi Talent Lubu 01 Frochihos 97.3 /? -BHC 4 Mechi Calp 02 Hosalon 82.4 r-BHc Metra Kroll Hostia 01 87.0
5 -BHC 03 メフエナセト ホスチアーセ 2 87.8 ρ,ρ-DDD 98 メプロニル マラチオン 93.8 ρ,ρ-DDE レナシル メタミドホス 49.3 ο,ρ - DD丁 5 -BHC 03 Mefenacet Phostiase 2 87.8 ρ, ρ-DDD 98 Mepronil Malathion 93.8 ρ, ρ-DDE Lenacil methamidophos 49.3 ο, ρ -DD
ρ,ρ-DDT  ρ, ρ-DDT
アルト'リン 91  Alt'lin 91
亍'ィルト 'リン 95  亍 'Ilt' Lynn 95
エンドリン 9  Endrin 9
ハルフェンフロックス 03 表 2 (本発明方法 2) 〗00 ppb添加回収試験による回収率 Halfenphlox 03 Table 2 (Method 2 of the present invention) 回収 Recovery rate from 00 ppb addition recovery test
有機リン系 回収率 Organic phosphorus recovery
EPN 84.5 ァセフェート 60.1 ェ亍イフェンホス 83.1 エトプロホス 85.1 ェ卜リンホス 82.1 カス'サホス 81 .2 キナルホス 87.1 クロルヒ'リホス 84.1 クロルフェンヒ"ンホス 01 89.1 クロルフェンヒ'ンホス 02 90.5 シ'クロルホ'ス 40.5 シ'メチルヒ'ンホス 80.1 ダイァシ'ノン 89.1 チ才メトン 80.1 亍ルブホス 80.7 八-ラチオン 89.6 ハラチオンメチル 90.5 ヒ-ラクロホス 83.8 ビリミホスメチル 86.4 フエニトロチオン 84.9 フェンスルホスチン 80.6 フェンチ才ン 92.6 フェントェート 94.3 フ"ロチ才ホス 81 .5 ホサロン 79.5 ホスチアーセ" 01 81 .0 ホスチアーセ" 02 79.8 マラチ才ン 91 .6 メタミ卜"ホス 42.1 EPN 84.5 Acephate 60.1 Eifenphos 83.1 Etoprophos 85.1 Elyphos phos 82.1 Kas' Sahos 81.2 Kinalhos 87.1 Chlorhe'rifos 84.1 Chlorfenhi 01nhos 01 89.1 Chlorfenhienhos 02 90.5 Non 89.1 Chi-Met 80.1 亍 Rubufos 80.7 8-Lathion 89.6 Halathion Methyl 90.5 Hy-Lacrofos 83.8 Birimifosmethyl 86.4 Fennitrothion 84.9 Fensulfostin 80.6 Fento 94.3 Fento 94.3 F "Rothi Phos 81.5 Hosarone 79.5 Hostia" 01 81. 0 Hostiace "02 79.8 Malachi, 91.6 Metami" Hos 42.1
Figure imgf000011_0001
Figure imgf000011_0001
表 3 (従来法 1 ) 100 ppb添加回収試験による回収率 Table 3 (Conventional method 1) Recovery rate by 100 ppb addition recovery test
_899 _899
046- 353  046- 353
Figure imgf000012_0001
Figure imgf000012_0001
亍'ィルト 'リン 亍 'Ilt' Lynn
ェント 'リン Yent 'Lin
ハルフェンプロックス Halfenprox
II 表 4 (従来法 2) 1 00 ppb添加回収試験による回収率 II Table 4 (Conventional method 2) Recovery rate by 100 ppb addition recovery test
ピレスロイド系 ~回収率 含窒素系 回収率 有機リン系  Pyrethroid system ~ recovery rate Nitrogen-containing recovery rate Organophosphorus system
ァクリナトリン イソフ "ロカルフ' EPN  Acrinatrin Isofu "Locarfu" EPN
シハロトリン 01 エスプロカルフ' ァセフェート  Cihalothrin 01 Espuro Calf's Face
シ Λロトリン 02 クロロフ"口ファム ェ亍ィフ Iンホス  Shi Λ Rotorin 02 Chloroph "Mouth Fam
シフルトリン 01 シ'エトフェンカルフ' エト ホス  Sifluthrin 01 Shi'etofencalf 'Ethos
シフルトリン 02 回 シプロコナ'ノ'一ル 01 エトリンホス  Cyfluthrin 02 times Cyprokona 'no' one 01 Etrinphos
シフルドル 03 シプロコナソ '一ル 02 カスサホス  Cifludol 03 Ciproconaso 'One Le 02 Kassahos
又878887775777887776876676878776 99  Also 878887775777887776876676878776 99
シフルトリン 04 3088404392679620711 1 チォへ'ンカルブ キナルホス  Sifluthrin 04 3088 404 392 679 620 711 1
5^^8348253460925726233270214965611 61  5 ^^ 8348253460925726233270214965611 61
シヘ レメトリン 亍ニルクロール クロルピリホス  Shihe Remethrin 亍 Nilchlor Chlorpyrifos
シへ"ルメトリン 02 亍プコナゾール クロルフェンビンホス 01  Sihe "lumetrin 02 亍 pconazole chlorfenvinphos 01
シへ"ルメトリン 03 テブフェンピラト' クロルフェンビンホス 02  Sihe "Lumetrin 03 Tebufenpyrat 'Chlorfenvinphos 02
シへ。ルメトリン 04 トリアジ'メノール 01 シ 'クロルホ'ス  To Shi. Lumetrin 04 Triazi 'Menol 01 Si' Chlorho '
テフルトリン トリアジ'メノール 02 シ"メチルヒンホス  Tefluthrin Triazi 'Menol 02 Shi "Methylhinphos
亍 'ルタメトリン ハ'クロブトラソ'一ル ダイァシ'ノン  亍 'Lutamethrin Ha' 'Kurobutoraso' 'Le Daisy' Non
フェンハ"レレー卜 ピリプロキシフェン チオメトン  Fenha "Relay 卜 Pyriproxyfen Thiometon
フェン /\"レレー卜 02 ピリミカルブ テルブホス  Fen / \ "Lelay Pass 02 Pirimicarb terbujos
フルシトリン 01 フエナリモル ハ°ラチ才ン  Furcitrin 01 Fenarimole
フルシトリン 02 フエノブカルフ' / ラチ才ンメチル  Furcitrin 02 Huenobcalf '/ Lachi
フルハ'リネ—ト 01 フ'レチラクロール ビラクロホス  Furuha 'Linet 01' Retilachlor Bilacrofos
フルハ'リネート 02 プロピコナゾール 01 48777799778887786769577677 777 ピリミホスメチル  Fulha 'linate 02 propiconazole 01 48777799778887786769577677 777 pyrimifosmethyl
へ 'ルメトリン プロビコナ ール 02 3285222238976233387966631171 1 フエ二卜ロチオン  'Lumetrin Probiconal 02 3285222238976233387966631171 1
へ。ル外リン 02 ― へ'ンダイ才力ルブ フェンスルホスチン  What. Out of phosphorus 02-Hendai talent Lubu Fensulfostine
ン亍 'ィメタリン フェンチ才ン  メ タ 'Metallin' Fence
有機塩素系 ミクロブタニル フェントェ-ト  Organochlorine microbutanyl phentoate
ひ— BHG メチォカル; 7'01 : ロチ才ホス  Hi-BHG Mechical; 7'01: Loti
β -B C メチォカルブ 02 ホサロン  β -B C Mechiocarb 02 Hosalon
r -BHC メトラクロール ホスチアーセ' 01  r -BHC Metolachlor Hostia '01
5 -BHC メフエナセト ホスチアーセ' 02  5-BHC Mehuenacet Phosphate '02
ρ,ρ-DDD メプロニル マラチオン  ρ, ρ-DDD Mepronil Malathion
ρ,ρ-DDE レナシル メタミドホス  ρ, ρ-DDE Lenacil methamidophos
ο,ρ-DDT  ο, ρ-DDT
ρ,ρ-DDT 84878768888488796668666 857687 アルト"リン π35004467^500597660 02050425911 * ρ, ρ-DDT 84878768888488796668666 857687 Alto "Rin π35004467 ^ 500597660 02050425911 *
-928444302855898506255357 61111 テ'ィルト "リン  -928444302855898506255357 61111 Theil "Rin
エンドリン  Endrin
Λルフ Iンフ ¾ックス  ΛLuff I Inf ¾x
上記表 1〜4を比較すると明らかなように、 2、 3の例外を除き、 本発明の方法 の方が高い回収率を示し、 本発明の方法によれば、 種々の残留農薬を効率的に抽出 できることが判明した。 次いで、 抽出液の n—へキサン:アセトンの混合比率を変えて、 各成分の抽出効 率を調べた。 As is clear when Tables 1 to 4 are compared, with the exception of a few, the method of the present invention shows a higher recovery rate. According to the method of the present invention, various residual agricultural chemicals can be efficiently removed. It was found that it can be extracted. Next, the extraction efficiency of each component was examined by changing the mixing ratio of n-hexane: acetone in the extract.
実施例 3 Example 3
前記本発明方法 1において、 抽出液として n—へキサン:アセトン = 1 0 : 0を 使用し、 対象農産物に各種農薬を 1 0 0 p p b添加した場合の回収試験を行った。 その結果を表 5に示す。 In the method 1 of the present invention, n-hexane: acetone = 10.0: 0 is used as the extract. A recovery test was conducted when 100 ppb of various agricultural chemicals were added to the target agricultural products. The results are shown in Table 5.
実施例 4 Example 4
実施例 3において、 抽出液として n キサン:アセトン = 7 : 3の混合比率の 液を用いた以外は同様にして添加回収試験を行った。 その結果を表 5に併せて示す。 実施例 5  In Example 3, an addition recovery test was conducted in the same manner except that a liquid having a mixing ratio of n-xane: acetone = 7: 3 was used as the extract. The results are also shown in Table 5. Example 5
実施例 3において、 抽出液として n キサン:アセトン = 3 : 7の混合比率の 液を用いた以外は同様にして添加回収試験を行った。 その結果を表 5に併せて示す。 比較例 3  In Example 3, an addition recovery test was conducted in the same manner except that a liquid having a mixing ratio of n-xane: acetone = 3: 7 was used as the extract. The results are also shown in Table 5. Comparative Example 3
実施例 3において、 抽出液として n キサン:アセトン = 0 : 1 0の混合比率 の液を用いた以外は同様にレて添加回収試験を行った。 その結果を表 5に併せて示 す。 In Example 3, an addition recovery test was conducted in the same manner except that a liquid having a mixing ratio of n-xane: acetone = 0: 10 was used as the extraction liquid. The results are also shown in Table 5.
表 5 100PPb添加回収試験による回収率 又卓 Table 5 Recovery rate by 100 PP b addition recovery test
n—へキサン:アセトン  n-hexane: acetone
農薬名  Pesticide name
実施例 3 実施例 4 実施例 5 比較例 3  Example 3 Example 4 Example 5 Comparative Example 3
10:0 7:3 3:7 0:10 ピレスロイド系  10: 0 7: 3 3: 7 0:10 pyrethroid
ァクリナトリン 98.9 93.7 55.4  Acrinatrin 98.9 93.7 55.4
シ Λロトリン 01 00.1
Figure imgf000015_0001
87.5 80.2
Λ Rotrin 01 00.1
Figure imgf000015_0001
87.5 80.2
シハロトリン 02 98.1 85.4 79.4  Cyhalothrin 02 98.1 85.4 79.4
亍フルトリン 77.1 75.3  亍 Flutrin 77.1 75.3
フェンハ"レレ一ト 00.3 92.4 85.1  Fenha "Lereto 00.3 92.4 85.1
フェンハ'レレート 02 94.1 90.1 84.1 Fenha'relate 02 94.1 90.1 84.1
-系  -System
9 99 9  9 99 9
45 8フ  45 8
3 82 2  3 82 2
Figure imgf000015_0002
Figure imgf000015_0002
示されるように、 抽出液としてアセトンのみを使用した場合には抽出結果 が良くないが、 アセトンに Π—へキサンが混合してある抽出液、 好ましくは少なく とも 3 0 %程度以上の n —へキサンが混合された抽出液が好ましい抽出結果を示す ことが確認された。 更に、 n—へキサン一アセトン系以外の有機溶媒の抽出液での抽出結果を調べた。 実施例 6 As shown, when only acetone is used as the extract, the extraction results Although it was not good, it was confirmed that an extract obtained by mixing Π-hexane with acetone, preferably an extract obtained by mixing at least about 30% of n-hexane, shows a preferable extraction result. . Furthermore, the extraction result with the extract of organic solvents other than n-hexane monoacetone was examined. Example 6
前記本発明方法 1において、 抽出液として n—へキサンを使用し、 対象農産物に 各種農薬を 1 0 0 p p b添カ卩した場合の回収試験を行った。その結果を表 6に示す。 実施例 7  In the method 1 of the present invention, a recovery test was conducted when n-hexane was used as an extract and various agricultural chemicals were added to the target agricultural product at 100 ppb. The results are shown in Table 6. Example 7
実施例 6において、 抽出液としてベンゼン (logPow, 2. 13) を用いた以外は、 実 施例 6と同様に添加回収試験を行った。 その結果を表 6に併せて示す。  In Example 6, an addition recovery test was performed in the same manner as in Example 6 except that benzene (logPow, 2.13) was used as the extract. The results are also shown in Table 6.
比較例 4 Comparative Example 4
実施例 6において、 抽出液としてオクタン (logPow, 5. 0) を用いた以外は、 実施 例 6と同様に添加回収試験を行つた。 その結果を表 6に併せて示す。  In Example 6, an addition recovery test was performed in the same manner as in Example 6 except that octane (logPow, 5.0) was used as the extract. The results are also shown in Table 6.
比較例 5 Comparative Example 5
実施例 6において、 抽出液としてァセトニトリル (logPow, -0. 3) を用いた以外 は、 実施例 6と同様に添加回収試験を行った。 その結果を表 6に併せて示す。 In Example 6, an addition recovery test was conducted in the same manner as in Example 6 except that acetonitrile (logPow, -0.3) was used as the extract. The results are also shown in Table 6.
100ppb添加回収試験による回収率 実施例 6 実施例 7 比較例 4 比較例 5 Recovery rate by 100ppb addition recovery test Example 6 Example 7 Comparative example 4 Comparative example 5
n—へキサン へンセ'ン オクタン ァセトニトリル  n-hexane hexane octane acetonitrile
3.9 2.13 5.0 -0.3  3.9 2.13 5.0 -0.3
ピ bスロイド系  Pi b sroid
ァクリナトリン 96.7 .2 X Acrinatrin 96.7 .2 X
シハロトリン 01 99.5 00.5 X Cyhalothrin 01 99.5 00.5 X
シハロトリン 02 01.1 97.9 X Cyhalothrin 02 01.1 97.9 X
9999  9999
997 97 99.1 71.6  997 97 99.1 71.6
848  848
Figure imgf000017_0001
Figure imgf000017_0001
X; 夾雑により計測不能 に示されるように、 実施例 6と 7及ぴ比較例 4と 5の対比により logPowが 0 〜 4の範囲の外にあるオクタン (logPow, 5.0) ゃァセトニトリル (logPow, -0.3) を抽出液に用いた場合は良い結果を得られなかった。 一方、 logPowが 0〜4の範囲 内である n—へキサン(logPow, 3.9)やベンゼン (logPow, 2.13) を用いた場合は、 良好な抽出効率を得られることが確認された。 X; logPow is 0 by comparing Example 6 and 7 and Comparative Example 4 and 5, as indicated by the impossibility of measurement. When octane (logPow, 5.0) nitronitrile (logPow, -0.3) outside the range of ~ 4 was used in the extract, good results were not obtained. On the other hand, when n-hexane (logPow, 3.9) or benzene (logPow, 2.13) with logPow in the range of 0 to 4 was used, it was confirmed that good extraction efficiency could be obtained.

Claims

請求の範囲 The scope of the claims
1 . 下記の工程からなる農産物中の残留農薬の抽出方法。 1. A method for extracting residual pesticides in agricultural products comprising the following steps.
(1)農産物を、 残留農薬を抽出可能な形状に加工する工程;  (1) A process of processing agricultural products into a shape from which residual agricultural chemicals can be extracted;
(2)上記の処理がされた農産物を脱水剤で処理する工程;及び  (2) a step of treating the agricultural product subjected to the above treatment with a dehydrating agent; and
(3)脱水処理された農産物から、 ォクタノール/水分配係数 (logPow) が 0〜4であ る疎水性溶媒又は疎水性溶媒一親水性溶媒の混合溶媒を使用して残留農薬を抽出す る工程。  (3) A process of extracting residual agricultural chemicals from dehydrated agricultural products using a hydrophobic solvent with a octanol / water partition coefficient (logPow) of 0 to 4 or a mixed solvent of a hydrophobic solvent and a hydrophilic solvent. .
2 . 疎水性溶媒一親水性溶媒の混合溶媒が η—へキサンーァセトン混合溶媒であ る請求項 1記載の抽出方法。  2. The extraction method according to claim 1, wherein the mixed solvent of the hydrophobic solvent and the hydrophilic solvent is a η-hexaneasetone mixed solvent.
3 . 脱水剤で処理する工程と同時又はその後に、 活性炭処理及び/又は逆相ク ロマトグラフィ一用担体で処理する請求項 1又は 2記載の抽出方法。  3. The extraction method according to claim 1 or 2, wherein treatment with activated carbon treatment and / or reverse phase chromatography support is carried out simultaneously with or after the treatment with the dehydrating agent.
4 . 脱水剤を主成分とする前処理剤、 及びォクタノール/水分配係数 (logPow) が 0〜 4である疎水性溶媒又は疎水性溶媒一親水性溶媒の混合溶媒からなる抽出剤 で構成される農産物中の残留農薬の抽出キット。  4. Consists of a pretreatment agent composed mainly of a dehydrating agent and an extractant consisting of a hydrophobic solvent having a octanol / water partition coefficient (logPow) of 0 to 4 or a mixed solvent of a hydrophobic solvent and a hydrophilic solvent. Extraction kit for residual pesticides in agricultural products.
5 . 疎水性溶媒一親水性溶媒の混合溶媒が n—へキサンーァセトン混合溶媒であ る請求項 4記載の抽出キット。  5. The extraction kit according to claim 4, wherein the mixed solvent of the hydrophobic solvent and the hydrophilic solvent is an n-hexane-aceton mixed solvent.
6 . 前処理剤が脱水剤と共に、 活性炭及び逆相クロマトグラフィ一用担体の少な くとも一種を含む請求項 4又は 5記載の抽出キット。  6. The extraction kit according to claim 4 or 5, wherein the pretreatment agent contains at least one of activated carbon and a carrier for reversed phase chromatography together with a dehydrating agent.
PCT/JP2006/304682 2005-03-04 2006-03-03 Method of extracting residual pesticides and extraction kit WO2006093359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0608051-0A BRPI0608051A2 (en) 2005-03-04 2006-03-03 pesticide residue extraction method and extraction kit
CN200680013965.8A CN101166965B (en) 2005-03-04 2006-03-03 Method of extracting residual pesticides and extraction kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-060563 2005-03-04
JP2005060563A JP4275633B2 (en) 2005-03-04 2005-03-04 Pesticide residue extraction method and extraction kit

Publications (1)

Publication Number Publication Date
WO2006093359A1 true WO2006093359A1 (en) 2006-09-08

Family

ID=36941377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304682 WO2006093359A1 (en) 2005-03-04 2006-03-03 Method of extracting residual pesticides and extraction kit

Country Status (4)

Country Link
JP (1) JP4275633B2 (en)
CN (1) CN101166965B (en)
BR (1) BRPI0608051A2 (en)
WO (1) WO2006093359A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813582A (en) * 2010-04-01 2010-08-25 北京市农林科学院 Integrated pesticide residue detection pretreatment device and pretreatment method
CN103163265A (en) * 2013-03-18 2013-06-19 中国农业科学院烟草研究所 Method for determining residual quantity of myclobutanil by SPE-GC/ECD (Solid Phase Extraction-Gas Chromatography-Electron Capture Detector)
CN103308629A (en) * 2013-05-28 2013-09-18 福建出入境检验检疫局检验检疫技术中心 Method for preparing natural substrate standard sample with chlorpyrifos residue in tea
CN103712846A (en) * 2012-10-09 2014-04-09 吉林大学 Method for treating organophosphorus pesticide residues in cereal beverage before detection
CN104316638A (en) * 2014-10-31 2015-01-28 济南出入境检验检疫局检验检疫技术中心 LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) measurement method for simultaneously detecting seven molluscicides in vegetables and fruits
CN104897805A (en) * 2015-05-14 2015-09-09 成都中医药大学 Method for rapid detection of paclobutrazol residue in plant traditional Chinese medicinal materials
CN104931614A (en) * 2015-06-04 2015-09-23 河南省农业科学院农业质量标准与检测技术研究所 GC-NPD (gas chromatography-nitrogen phosphorus detector) method for cyproconazole residues and application of method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435804B (en) * 2008-12-18 2011-08-17 清华大学 Analysis method for detecting DDT component in marine vehicle antifouling paint
JP5493745B2 (en) * 2009-11-13 2014-05-14 トッパン・フォームズ株式会社 Chemical substance separation kit and separation method
JP5395847B2 (en) * 2011-06-17 2014-01-22 日清食品ホールディングス株式会社 Residual pesticide automatic pretreatment system and residual pesticide extraction method using the same
CN102692468A (en) * 2012-05-22 2012-09-26 天津出入境检验检疫局动植物与食品检测中心 Reagent kit for detecting pretreatment of common bactericide in perilla leaf, and method thereof
TWI500915B (en) * 2014-07-18 2015-09-21 Agricultural Chemicals And Toxic Substances Res Inst Council Of Agriculture A quick extraction kit for a procedure of detecting pesticide residues in agricultural products and a method of taking primary test liquid from agricultural sample by the quick extraction kit
CN105353067B (en) * 2015-11-23 2017-05-03 何裕松 Method for determining pesticide residue in tea
CN107063821A (en) * 2017-02-28 2017-08-18 梧州市雅正农业科技有限公司 The extraction of Tea Polyphenols and detection method in a kind of tea of six fort
CN107727760B (en) * 2017-09-22 2021-02-26 北京市食品安全监控和风险评估中心(北京市食品检验所) Method for measuring residual quantity of enantiomer of pesticide in tea
CN110681180A (en) * 2019-10-10 2020-01-14 深圳市龙华区中心医院 Method for extracting endocrine disruptors
CN112850834B (en) * 2021-01-14 2023-04-07 安道麦股份有限公司 Treatment method of acephate extraction raffinate wastewater
CN113311089B (en) * 2021-05-31 2022-03-04 浙江正明检测有限公司 Pendimethalin detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149104A (en) * 2001-11-19 2003-05-21 Mitsubishi Heavy Ind Ltd Analytical method of residual contaminant
JP2004340627A (en) * 2003-05-13 2004-12-02 Saika Gijutsu Kenkyusho Analytical system for residual chemical substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149104A (en) * 2001-11-19 2003-05-21 Mitsubishi Heavy Ind Ltd Analytical method of residual contaminant
JP2004340627A (en) * 2003-05-13 2004-12-02 Saika Gijutsu Kenkyusho Analytical system for residual chemical substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OGAWA M. ET AL.: "GPC Oyobi GC/MS-SIM o Mochiita Nosanbutuschu no Zanryu Enso no Jinsoku Issei Bunseki. (Rapid determination of Multiple Pesticide Residues in Agricultural Products by GPC Clean-up and GC/MS-SIM)", SHOKUHIN EISEIGAKU ZASSHI, vol. 38, no. 2, 5 April 1997 (1997-04-05), pages 48 - 61, XP003004647 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813582A (en) * 2010-04-01 2010-08-25 北京市农林科学院 Integrated pesticide residue detection pretreatment device and pretreatment method
CN103712846A (en) * 2012-10-09 2014-04-09 吉林大学 Method for treating organophosphorus pesticide residues in cereal beverage before detection
CN103163265A (en) * 2013-03-18 2013-06-19 中国农业科学院烟草研究所 Method for determining residual quantity of myclobutanil by SPE-GC/ECD (Solid Phase Extraction-Gas Chromatography-Electron Capture Detector)
CN103308629A (en) * 2013-05-28 2013-09-18 福建出入境检验检疫局检验检疫技术中心 Method for preparing natural substrate standard sample with chlorpyrifos residue in tea
CN104316638A (en) * 2014-10-31 2015-01-28 济南出入境检验检疫局检验检疫技术中心 LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) measurement method for simultaneously detecting seven molluscicides in vegetables and fruits
CN104316638B (en) * 2014-10-31 2015-10-28 济南出入境检验检疫局检验检疫技术中心 Detect the LC-MS/MS assay method of 7 kinds of invertebrate poisons in vegetables and fruit simultaneously
CN104897805A (en) * 2015-05-14 2015-09-09 成都中医药大学 Method for rapid detection of paclobutrazol residue in plant traditional Chinese medicinal materials
CN104931614A (en) * 2015-06-04 2015-09-23 河南省农业科学院农业质量标准与检测技术研究所 GC-NPD (gas chromatography-nitrogen phosphorus detector) method for cyproconazole residues and application of method

Also Published As

Publication number Publication date
BRPI0608051A2 (en) 2009-11-03
CN101166965B (en) 2012-12-05
JP2006242825A (en) 2006-09-14
CN101166965A (en) 2008-04-23
JP4275633B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2006093359A1 (en) Method of extracting residual pesticides and extraction kit
Wang et al. A single-step solid phase extraction for the simultaneous determination of 8 mycotoxins in fruits by ultra-high performance liquid chromatography tandem mass spectrometry
González-Curbelo et al. Evolution and applications of the QuEChERS method
Ambrus et al. General method for determination of pesticide residues in samples of plant origin, soil, and water. I. Extraction and cleanup
Beyer et al. Applications of sample preparation techniques in the analysis of pesticides and PCBs in food
Mendiola et al. Use of compressed fluids for sample preparation: Food applications
Pérez-Ortega et al. Generic sample treatment method for simultaneous determination of multiclass pesticides and mycotoxins in wines by liquid chromatography–mass spectrometry
Francesquett et al. Simultaneous determination of the quaternary ammonium pesticides paraquat, diquat, chlormequat, and mepiquat in barley and wheat using a modified quick polar pesticides method, diluted standard addition calibration and hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry
Varela-Martinez et al. Quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction
Inselsbacher Recovery of individual soil nitrogen forms after sieving and extraction
US20090214734A1 (en) Method of Extracting Residual Pesticides and Extraction Kit
CN110146616A (en) The remaining detection method of pesticide in a kind of rice, rice stem
Cavaliere et al. Aflatoxin M1 determination in cheese by liquid chromatography–tandem mass spectrometry
CN107300596A (en) A kind of method of the organophosphate ester flame retardant content detection suitable for a variety of foods
May et al. Determination of pesticide residues in soy-based beverages using a QuEChERS method (with clean-up optimized by central composite design) and ultra-high-performance liquid chromatography-tandem mass spectrometry
Han et al. Study of the pesticides distribution in peel, pulp and paper bag and the safety of pear bagging
Zanella et al. An overview about recent advances in sample preparation techniques for pesticide residues analysis in cereals and feedstuffs
Wang et al. Determination of pesticide residues in strawberries by ultra-performance liquid chromatography-tandem mass spectrometry
Lawrence et al. Effect of temperature and solvent composition on extraction of fumonisins B1 and B2 from corn products
Bedassa et al. The QuEChERS analytical method combined with low density solvent based dispersive liquid–liquid microextraction for quantitative extraction of multiclass pesticide residues in cereals
Anvar Nojedeh Sadat et al. Application of in‐situ formed polymer‐based dispersive solid phase extraction in combination with solidification of floating organic droplet‐based dispersive liquid–liquid microextraction for the extraction of neonicotinoid pesticides from milk samples
Luo et al. High pressure assisted extraction for cadmium decontamination of long rice grain
Di Muccio et al. Simplified clean-up for the determination of benzimidazolic fungicides by high-performance liquid chromatography with UV detection
CN109900825A (en) The method for separating and detecting for the mycotoxin that corn generates in bulk grain container transportational process
Niell et al. Development of methods for multiresidue analysis of rice post-emergence herbicides in loam soil and their possible applications to soils of different composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013965.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0608051

Country of ref document: BR

Kind code of ref document: A2