WO2006092211A1 - Urethane modified water-reducible alkyd resins - Google Patents

Urethane modified water-reducible alkyd resins Download PDF

Info

Publication number
WO2006092211A1
WO2006092211A1 PCT/EP2006/001503 EP2006001503W WO2006092211A1 WO 2006092211 A1 WO2006092211 A1 WO 2006092211A1 EP 2006001503 W EP2006001503 W EP 2006001503W WO 2006092211 A1 WO2006092211 A1 WO 2006092211A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acids
acid
acids
alkyd resins
urethane modified
Prior art date
Application number
PCT/EP2006/001503
Other languages
French (fr)
Other versions
WO2006092211A8 (en
Inventor
Gerhard Reidlinger
Edmund Urbano
Ewald Zrin
Manfred Gogg
Johannes Scherz
Original Assignee
Cytec Surface Specialties Austria Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytec Surface Specialties Austria Gmbh filed Critical Cytec Surface Specialties Austria Gmbh
Priority to EP06707085A priority Critical patent/EP1856176A1/en
Priority to CN2006800063199A priority patent/CN101128500B/en
Priority to CA2598494A priority patent/CA2598494C/en
Priority to MX2007010719A priority patent/MX2007010719A/en
Priority to JP2007557363A priority patent/JP5106126B2/en
Priority to US11/817,246 priority patent/US8372914B2/en
Publication of WO2006092211A1 publication Critical patent/WO2006092211A1/en
Publication of WO2006092211A8 publication Critical patent/WO2006092211A8/en
Priority to NO20074983A priority patent/NO20074983L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • C14C11/003Surface finishing of leather using macromolecular compounds
    • C14C11/006Surface finishing of leather using macromolecular compounds using polymeric products of isocyanates (or isothiocyanates) with compounds having active hydrogen

Definitions

  • the present invention relates to urethane modified water-reducible alkyd resins.
  • Alkyd resins may be rendered water-reducible by grafting with olefinically unsaturated carboxylic acids, especially alpha-unsaturated carboxylic acids like methacrylic acid or by cocondensation with polycarboxylic acids such as tetrahydrophthalic acid or hydroxycarboxylic acids having acid groups which do not react, or only react to a small extent, under polycondensation conditions by esterification, yet impart hydrophilicity after being neutralised with alkaline compounds to provide a sufficient number of anionic groups in the resin molecules.
  • carboxylic acids especially alpha-unsaturated carboxylic acids like methacrylic acid or by cocondensation with polycarboxylic acids such as tetrahydrophthalic acid or hydroxycarboxylic acids having acid groups which do not react, or only react to a small extent, under polycondensation conditions by esterification, yet impart hydrophilicity after being neutralised with alkaline compounds to provide a sufficient number of anionic groups in
  • Water-reducible alkyd resins where fatty acids bearing grafts derived from acrylic monomers have been known, i. a. from EP-A 0 267 562, EP-A 0 295 403, and EP-A 0 758 365.
  • the maximum value of mass fraction of solids realised with the technology described therein was approximately 45 %.
  • a lower degree of hydrophilic modification allows a higher mass fraction of solids and improves the water and humidity resistance of the paint film, on the other hand impairs the dispersibility of the alkyd resin in water and reduces the stability of the dispersion.
  • grafted fatty acids B can selectively be esterified with polyhydric alcohols A so that the carboxylic acid group of the graft acids B2 remains unesterified.
  • These grafted fatty acids B are made by grafting olefinically unsaturated carboxylic acids B2 which preferentially carry substituents on the carbon atom in alpha position to the carboxyl group, such as methacrylic acid, ethacrylic acid (2-methylene butanoic acid or 2-ethyl acrylic acid), 2-vinyl propionic acid and tiglinic acid (trans-2,3-dimethyl acrylic acid) onto fatty acids Bl.
  • the drying behaviour of the hydroxy functional intermediate ABC obtained by polyesterification from A, B, and C is controlled by the composition of the fatty acid mixture, and branching is controlled by the functionality of the alcohols A.
  • Esterification in the process to make the intermediate ABC is conducted in a way to remove the water formed by the reaction to an extent which corresponds to the number of acid groups which shall be esterified, leaving out, of course, those acid groups which are attached to the olefinically unsaturated carboxylic acids B2 forming the graft branches. This allows to selectively esterify only the acid groups of the fatty acids Bl and C, but not those of B2.
  • Tlie invention therefore relates to urethane modified water-reducible alkyd resinsABCD, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made by grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C and polyfunctional isocyanates D.
  • the intermediate ABC with a dicarboxylic or tricarboxylic acid E or an anhydride thereof such as phthalic anhydride or trimellithic anhydride, tetrahydrophthalic acid anhydride, maleic anhydride, adipic acid, malonic acid, oxalic acid, and succinic acid or its anhydride, in order to increase its molar mass before reaction with the polyfunctional isocyanate D, yielding a product ABCDE.
  • a dicarboxylic or tricarboxylic acid E or an anhydride thereof such as phthalic anhydride or trimellithic anhydride, tetrahydrophthalic acid anhydride, maleic anhydride, adipic acid, malonic acid, oxalic acid, and succinic acid or its anhydride
  • the invention further relates to a process for the synthesis of urethane modified water- reducible alkyd resins ABCD and ABCDE, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made by grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C, optionally, di- or tricarboxylic acids E or anhydrides thereof, and polyfunctional isocyanates D.
  • products ABCDE will be comprised by mention of products ABCD hereinafter.
  • fatty acids Bl are grafted with olefinically unsaturated carboxylic acids B2 which preferably carry, in the alpha position relative to the carboxyl group, a substituent selected from the group consisting of linear, branched, and cyclic alkyl radicals having from 1 to 8 carbon atoms, and aryl radicals having from 5 to 10 carbon atoms which may optionally be substituted with one of the alkyl radicals mentioned supra.
  • olefinically unsaturated monomers B3 capable of radical copolymerisation may also be grafted onto the fatty acids Bl, selected from the group consisting of olefinically unsaturated carboxylic acidsB31 such as acrylic acid, monoesters B32 of aliphatic alcohols and olefinically unsaturated dicarboxylic acids such as monomethyl maleinate, esters B32 of aliphatic alcohols and the olefinically unsaturated carboxylic acids B31 such as methyl (meth)acrylate, ethyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl(meth)acrylate, as well as diesters of olefinically unsaturated dicarboxylic acids such as dimethyl maleinate, hydroxy functional esters B33 of di- and polyhydric alcohols and the olefinically unsaturated carboxylic adds mentioned as
  • the grafted fatty acids B are esterified with di- or polyhydric alcohols A and ungrafted fatty acids C which have a minimum content of olefinic double bonds of 1,97 mol/kg, corresponding to an iodine number of 50 cg/g, under removal of the water formed in the reaction.
  • the amounts of substance and functionalities of the educts used are chosen such that the condensation products have an average hydroxyl functionality of at least 1.1, preferably from 1.5 to 3.0, and especially preferred, at least 1.9.
  • the intermediate ABC is then reacted with a di- or tricarboxylic acid or its anhydride, E, under formation of (ABC) n E which again is hydroxy functional, and where n is 2 or 3.
  • these hydroxy functional condensation products ABC or (ABC) n E are reacted with polyfunctional isocyanates D under polyaddition to form urethanes. Then, the remaining carboxyl groups of the adducts ABCD are at least partly neutralised and the neutralised adducts converted to the aqueous phase.
  • the di- or polyhydric alcohols A are aliphatic linear or branched alcohols having from 3 to 12 carbon atoms and at least two hydroxyl groups, such as ethylene glycol, 1,2- and 1,3- propylene glycol, 1,4-butane diol, 1,6-hexane diol, neopentyl glycol, diethylene glycol, dipropylene glycol, and other ether alcohols derived from these.
  • Preferred polyhydric alcohols are glycerol, trimethylol ethane, trimethylol propane, diglycerol, ditrimethylol ethane and ditrimethylol propane, erythritol, pentaerythritol, dipentaerythritol and sugar alcohols such as sorbitol, mannitol, and arabitol.
  • the grafted fatty acids B are derived from fatty acids Bl grafted with olefinically unsaturated carboxylic acids B2, and optionally, further olefinically unsaturated monomers B3 as mentioned supra.
  • the fatty acids Bl according to the invention are at least mono-olefinically unsaturated aliphatic mono carboxylic acids, having from 4 to 24 carbon atoms.
  • unsaturated fatty acids mention is made of lauroleic, myristoleic, palmitoleic, oleic, gadoleic, erucic, and ricinoleic acids, and of linoleic and linolenic acids. It is also possible to use mixtures of fatty acids prepared from vegetable oils such as soy bean oil fatty acid, linseed oil fatty acid, sunflower oil fatty acid, safflower oil fatty acid, rubber seed oil fatty acid and tall oil fatty acid.
  • the olefinically unsaturated carboxylic acids B2 preferably carry a substituent in alpha position with relation to the carboxyl group, which substituent is selected from the group consisting of linear, branched, and cyclic alkyl radicals having from 1 to 8 carbon atoms and of aryl radicals having from 5 to 10 carbon atoms which may additionally be substituted with the aforementioned alkyl radicals. It is further preferred that these acids have at least one free carboxyl group, particularly preferably not more than one carboxyl group.
  • these acids are acrylic acid, methacrylic acid, vinyl acetic acid, crotonic and isocrotonic acid, the dicarboxylic acids maleic and fumaric acid, citraconic, mesaconic and itaconic acid, as well as their monoesters with linear, branched or cyclic alkanols having from 1 to 20 carbon atoms, particularly preferred are those monocarboxylic acids having a substituent in the alpha position such as methacrylic acid, ethacrylic acid, 2-vinyl propionic acid, and tiglinic acid.
  • the most preferred acid is methacrylic acid. It is, however, also possible to use acrylic acid alone, or preferably, in mixture with methacrylic acid.
  • the ungrafted fatty acids C may be selected from the unsaturated fatty acids as cited under Bl, and also from saturated fatty acids having from 6 to 30 carbon atoms such as caproic acid, caprylic acid, 2-ethyl hexanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid.
  • the fatty acids C may also be selected from mixtures of fatty acids which are based on naturally occurring fats, such as cotton seed oil fatty acid, peanut oil fatty acid, coconut oil fatty acid, linseed oil fatty acid, palm kernel oil fatty acid, olive oil fatty acid, palm oil fatty acid, castor oil fatty acid, rapeseed oil fatty acid, safflower oil fatty acid, soybean oil fatty acid, and tall oil fatty acid. It is likewise possible to use isomerised fatty acids where the double bonds are in conjugated position, such as isomerised polyunsaturated fatty acids made from sunflower oil or soy bean oil fatty acids (conjugated fatty acids).
  • naturally occurring fats such as cotton seed oil fatty acid, peanut oil fatty acid, coconut oil fatty acid, linseed oil fatty acid, palm kernel oil fatty acid, olive oil fatty acid, palm oil fatty acid, castor oil fatty acid, rapeseed oil fatty acid, safflower oil
  • the polyfunctional isocyanates D which are used according to the invention are selected from aromatic and aliphatic isocyanates, preferably diisocyanates, such as toluylene diiso- cyanate (TDI), bis-(4-isocyanatophenyl) methane (MDI), tetramethyl xylylene diisocyanate (TMXDI), bis-(4-isocyanatocyclohexyl) methane (HMDI), 1,6-diisocyanatohexane (HDI), and isophorone diisocyanate (IPDI). Mixtures of these may also be used.
  • TDI toluylene diiso- cyanate
  • MDI bis-(4-isocyanatophenyl) methane
  • TXDI tetramethyl xylylene diisocyanate
  • HMDI bis-(4-isocyanatocyclohexyl) methane
  • HDI 1,6
  • the dicarboxylic or tricarboxylic acids E may be aliphatic linear, branched, or cyclic, and aromatic in nature, and may preferably be selected from the group consisting of phthalic acid, trimellithic acid, tetrahydrophthalic acid, maleic acid, adipic acid, malonic acid, oxalic acid, succinic acid, and the anhydrides thereof, to the extent that they exist.
  • fatty acids Bl or a mixture of such fatty acids are grafted with the olefinically unsaturated carboxylic acids B2, and optionally, monomers B3, in the presence of radical initiators, such as peroxides, at a temperature of from 80 0 C to 160 0 C, optionally in solution.
  • radical initiators such as peroxides
  • the increase in acid number which is effected by the graft procedure ranges approximately from an additional 80 mg/g to 250 mg/g, preferably from 100 mg/g to 150 mg/g.
  • the acid number is defined according to DIN EN ISO 2114 (formerly DIN 53 402) as the ratio of the mass m KOH of potassium hydroxide needed to neutralise the sample under analysis, and the mass m B of this sample (mass of the solids of the sample if this is a solution or dispersion); the customary unit is "mg/g".
  • the grafted fatty acids B of the first step are esterified with polyhydric alcohols A and optionally, with ungrafted fatty acids C which have a minimum content of olefinic double bonds of 3.15 mol/kg, preferably at least 4.73 mol/kg, corresponding to an iodine number of at least 80 cg/g, preferably at least 120 cg/g, under removal of water formed in the reaction.
  • the amounts of substance and functionalities of the educts used are preferably chosen such that the condensation products ABC have an average hydroxyl functionality of at least 1.9, preferably at least 2.0.
  • this corresponds to equal amounts of substance (the SI unit of which is "mol") of (monocarboxylic) fatty acids to trihydric alcohols. If additional (ungrafted) fatty acids C are added, 1 mol of trihydric alcohol must be added for each 1 mol of fatty acid, as an example.
  • the monoesters of the trihydric alcohols may be mixed with diesters of tetrahydric alcohols or tetraesters of hexahydric alcohols. This allows to increase the amount of fatty acids introduced into the alkyd; if drying fatty acids are used herein, the oil length of the alkyd can be increased to from 40 % up to 60 %, without adversely affecting the hydrophilicity.
  • the intermediates ABC can be reacted with a polybasic acid, preferably a di- or tri-functional acid, E, before the reaction with the isocyanate.
  • This esterification is best effected with an acid anhydride, and optionally in the presence of catalysts such as titanium alkoxides because transesterification should be kept at a low level in this step. Catalysts that do not form coloured salts are preferred here.
  • the number of carboxyl groups of component E added in this reaction should be a maximum of 50 % of the number of hydroxyl groups in the intermediate ABC.
  • This modification allows to limit the amount of urethane bonds in the final product, to a range of mass fraction of urethane groups (-O-CO- NH-) of from 1 % to about 25 %.
  • a compound (ABC) n E is thereby formed which is hydroxy functional, and where n is 2 or 3. For the sake of brevity this is referred to as ABCE hereinbelow.
  • the hydroxy functional condensation products ABC or ABCE are reacted with polyfunctional isocyanates D under polyaddition to form urethanes.
  • the hydroxy functional intermediates are oligomeric in nature, this can be effected in bulk, i. e. without addition of solvents.
  • the reaction can be accelerated by increasing the temperature to not more than 120 0 C. It has been found that reaction temperatures higher than 130 0 C facilitate the decarboxylation reaction occurring between the isocyanates and the carboxylic acid groups that have remained of the acids B2. On the other hand, temperatures of less than 70 0 C are not recommended because the reaction rate is too low.
  • the adduct ABCD or ABCED is neutralised and converted to the aqueous phase.
  • basic compounds such as alkali hydroxides, lithium hydroxide being preferred, and preferably with a volatile base, such as organic amines, or ammonia. It is possible to add the basic compound dissolved in water, to the reaction product ABCD or
  • the degree of neutralisation needed depends on the nature of the fatty acids and alcohols, as well as on the degree of grafting, and is preferably from 30 % to
  • the degree of neutralisation is the ratio of neutralised acid groups (acid anions) to the total number of acid groups, neutralised and non-neutralised.
  • Aqueous binder dispersions having a mass fraction of solids of from 35 % to 55 %, preferably from 40 % to 50 %, can be prepared by this technology.
  • the urethane modified grafted alkyds ABCD or ABCED according to the present invention offer a wider range of properties, because the polymer structure can be tailored to the application. Binders prepared from these resins can be used to prepare paints for a wide range of substrates from wood to leather, textiles, paper, and cardboard, and also metals and mineral substrates such as stone, concrete, or plaster. Coatings prepared with the alkyd resins of the present invention show good adhesion, high flexibility, fast drying, and little discolouration. At a given degree of hydrophilic modification, compared to earlier technologies, the resistance to water and humidity have been improved.
  • Example 2 230 g of the grafted fatty acid of Example 2 were charged to a reactor, together with 67 g of trimethylol propane and 70 g of sunflower oil fatty acid, and heated to 175 0 C.
  • the mixture was kept under esterification conditions at a constant temperature of 175 °C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 n ⁇ g/g had been reached. All solvent was then removed by distillation under reduced pressure.
  • 30 g of toluylene diisocyanate were added at 70 0 C, the temperature slowly rising due to the exothermic reaction to 100 0 C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached.
  • the solid resin was emulsified by adding 580 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 37 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s 1 of 9500 mPa-s, an average particle size of 150 nm, an acid number of 70 mg/g, and a pH of 8.5, measured at 10 % strength in water.
  • Example 2 200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, 15 g of isomerised sunflower oil fatty -acid, and 55 g of native sunflower oil fatty acid, and heated to 175 0 C.
  • the mixture was kept under esterification conditions at a constant temperature of 175 °C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 mg/g had been reached.
  • AU solvent was then removed by distillation under reduced pressure.
  • 60 g of isophorone diisocyanate were added at 70 0 C, the temperature slowly rising due to the exothermic reaction to 100 0 C.
  • the solid resin was emulsified by adding 480 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 42 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s '1 of 4500 mPa-s, an average particle size of 65 nm, an acid number of 55 mg/g, and a pH of 8.2, measured at 10 % strength in water.
  • Example 2 200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, and 140 g of sunflower oil fatty acid, and heated to 175 0 C.
  • the mixture was kept under esterification conditions at a constant temperature of 175 0 C under removal of water by azeotropic distillation with xylene until an acid number of approximately 65 mg/g had been reached. All solvent was then removed by distillation under reduced pressure.
  • 55 g of toluylene diisocyanate were added at 70 0 C, the temperature slowly rising due to the exothermic reaction to 100 0 C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached.
  • the solid resin was emulsified by adding 610 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 40 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s "1 of 3500 mPa-s, an average particle size of 120 nm, an acid number of 52 mg/g, and a pH of 8.8, measured at 10 % strength in water.
  • Example 2 200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, 15 g of isomerised sunflower fatty acid, and 55 g of native sunflower oil fatty acid, and heated to 175 0 C.
  • the mixture was kept under esterification conditions at a constant temperature of 175 0 C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 mg/g had been reached.
  • AU solvent was then removed by distillation under reduced pressure.
  • 30 g of isophorone diisocyanate were added at 70 0 G, the temperature slowly rising due to the exothermic reaction to 100 0 C.
  • the solid resin was emulsified by adding 490 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 40 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s "1 of 3800 mPa-s, an average particle size of 60 nm, an acid number of 60 mg/g, and a pH of 8.3, measured at 10 % strength in water.
  • Example 2 200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, 15 g of isomerised sunflower oil fatty acid, and 55 g of native sunflower oil fatty acid, and heated to 175 0 C.
  • the mixture was kept under esterification conditions at a constant temperature of 175 0 C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 mg/g had been reached. All residual solvent was then removed by distillation under reduced pressure.
  • 55 g of toluylene diisocyanate were added at 70 0 C, the temperature slowly rising due to the exothermic reaction to 100 0 C.
  • the solid resin was emulsified by adding 470 ml of water in which 5 g of lithium hydroxide mono- hydrate had been dissolved, yielding an aqueous emulsion of the binder with a mass fraction of solids of 43 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s 1 of 5300 mPa-s, an average particle size of 53 nm, an acid number of 55 mg/g, and a pH of 8.3, measured at 10 % strength in water.
  • the solid resin was emulsified by adding 1320 ml of water and 53 g of ammonia (25 % strength solution in water), yielding an aqueous emulsion of the binder with a mass fraction of solids of 42 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s "1 of 8300 mPa-s, an average particle size of 120 nm, an acid number of 54 mg/g, and a pH of 8.3, measured at 10 % strength in water.
  • ammonia 25 % strength solution in water
  • the solid resin was emulsified by adding 617 ml of water and 23.7 g of ammonia (25 % strength solution in water), yielding an aqueous emulsion of the binder with a mass fraction of solids of 40 %, a dynamic viscosity measured at 23 0 C and a shear rate of 10 s "1 of 6600 mPa-s, an average particle size of 140 nm, an acid number of 57 mg/g, and a pH of 8.4, measured at 10 % strength in water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

Urethane modified water-reducible alkyd resins ABCD, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made hϜ grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C and polyfunctional isocyanates D, a process for their production, and a method of use thereof in coating binders

Description

Urethane Modified Water-Reducible Alkyd Resins
The present invention relates to urethane modified water-reducible alkyd resins.
Alkyd resins may be rendered water-reducible by grafting with olefinically unsaturated carboxylic acids, especially alpha-unsaturated carboxylic acids like methacrylic acid or by cocondensation with polycarboxylic acids such as tetrahydrophthalic acid or hydroxycarboxylic acids having acid groups which do not react, or only react to a small extent, under polycondensation conditions by esterification, yet impart hydrophilicity after being neutralised with alkaline compounds to provide a sufficient number of anionic groups in the resin molecules.
Water-reducible alkyd resins where fatty acids bearing grafts derived from acrylic monomers have been known, i. a. from EP-A 0 267 562, EP-A 0 295 403, and EP-A 0 758 365. The maximum value of mass fraction of solids realised with the technology described therein was approximately 45 %. There is also a connection between the maximum mass fraction of solids and the degree of hydrophilic modification. A lower degree of hydrophilic modification allows a higher mass fraction of solids and improves the water and humidity resistance of the paint film, on the other hand impairs the dispersibility of the alkyd resin in water and reduces the stability of the dispersion.
When grafting olefinically unsaturated carboxylic acids onto a preformed alkyd resin, moieties derived from unsaturated fatty acids ("drying fatty acids") are attacked preferentially which impairs the drying behaviour of the resin. Cocondensation during the formation of the polyester with compounds having a functionality in excess of 2 is basically feasible, yet this may lead to the formation of branched polymers that have high viscosities and therefore need to be diluted using more solvent in order to yield resin solutions which are still easily processable. There is a need, therefore, for water reducible alkyd resins which can be tailored in hydrophilicity and drying behaviour according to the application envisaged, as well as to provide an adapted process for the synthesis of such alkyd resins.
During the experiments that have led to the present invention, it has been found that grafted fatty acids B can selectively be esterified with polyhydric alcohols A so that the carboxylic acid group of the graft acids B2 remains unesterified. These grafted fatty acids B are made by grafting olefinically unsaturated carboxylic acids B2 which preferentially carry substituents on the carbon atom in alpha position to the carboxyl group, such as methacrylic acid, ethacrylic acid (2-methylene butanoic acid or 2-ethyl acrylic acid), 2-vinyl propionic acid and tiglinic acid (trans-2,3-dimethyl acrylic acid) onto fatty acids Bl.
By addition of further (semi-drying or drying) fatty acids C to the grafted fatty acids B, and proper selection of the composition of the ,alcohol mixture, the drying behaviour of the hydroxy functional intermediate ABC obtained by polyesterification from A, B, and C is controlled by the composition of the fatty acid mixture, and branching is controlled by the functionality of the alcohols A. Esterification in the process to make the intermediate ABC is conducted in a way to remove the water formed by the reaction to an extent which corresponds to the number of acid groups which shall be esterified, leaving out, of course, those acid groups which are attached to the olefinically unsaturated carboxylic acids B2 forming the graft branches. This allows to selectively esterify only the acid groups of the fatty acids Bl and C, but not those of B2.
Surprisingly, it has been found that the hydroxy functional intermediates ABC can be reacted with a polyfunctional isocyanate D, without addition of a solvent, where only the hydroxyl groups are added to the isocyanate groups under formation of a urethane bond, without decarboxylation occurring by reaction of isocyanates with the residual carboxylic acid groups in ABC. Tlie invention therefore relates to urethane modified water-reducible alkyd resinsABCD, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made by grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C and polyfunctional isocyanates D.
In another embodiment of the invention, it is also possible to react the intermediate ABC with a dicarboxylic or tricarboxylic acid E or an anhydride thereof such as phthalic anhydride or trimellithic anhydride, tetrahydrophthalic acid anhydride, maleic anhydride, adipic acid, malonic acid, oxalic acid, and succinic acid or its anhydride, in order to increase its molar mass before reaction with the polyfunctional isocyanate D, yielding a product ABCDE.
The invention further relates to a process for the synthesis of urethane modified water- reducible alkyd resins ABCD and ABCDE, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made by grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C, optionally, di- or tricarboxylic acids E or anhydrides thereof, and polyfunctional isocyanates D. For the sake of simplicity, products ABCDE will be comprised by mention of products ABCD hereinafter.
According to this process, in a first step, fatty acids Bl are grafted with olefinically unsaturated carboxylic acids B2 which preferably carry, in the alpha position relative to the carboxyl group, a substituent selected from the group consisting of linear, branched, and cyclic alkyl radicals having from 1 to 8 carbon atoms, and aryl radicals having from 5 to 10 carbon atoms which may optionally be substituted with one of the alkyl radicals mentioned supra. In the grafting step, in addition to the acids B2, other olefinically unsaturated monomers B3 capable of radical copolymerisation may also be grafted onto the fatty acids Bl, selected from the group consisting of olefinically unsaturated carboxylic acidsB31 such as acrylic acid, monoesters B32 of aliphatic alcohols and olefinically unsaturated dicarboxylic acids such as monomethyl maleinate, esters B32 of aliphatic alcohols and the olefinically unsaturated carboxylic acids B31 such as methyl (meth)acrylate, ethyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl(meth)acrylate, as well as diesters of olefinically unsaturated dicarboxylic acids such as dimethyl maleinate, hydroxy functional esters B33 of di- and polyhydric alcohols and the olefinically unsaturated carboxylic adds mentioned as B31, such as hydroxyethyl (meth)acrylate and hydroxypropyl (meth)acrylate, and aromatic vinyl compounds B34 such as styrene, p-methylstyrene and vinyl toluene, and other vinyl compounds B35 such as vinyl acetate, vinyl chloride, and (meth)acrylonitrile.
In the second step, the grafted fatty acids B are esterified with di- or polyhydric alcohols A and ungrafted fatty acids C which have a minimum content of olefinic double bonds of 1,97 mol/kg, corresponding to an iodine number of 50 cg/g, under removal of the water formed in the reaction. The amounts of substance and functionalities of the educts used are chosen such that the condensation products have an average hydroxyl functionality of at least 1.1, preferably from 1.5 to 3.0, and especially preferred, at least 1.9.
Optionally, the intermediate ABC is then reacted with a di- or tricarboxylic acid or its anhydride, E, under formation of (ABC)nE which again is hydroxy functional, and where n is 2 or 3.
In another embodiment of the invention, it is also possible to perform a transesterifcation of vegetable oils, such as soybean oil, sunflower oil, safflower oil, linseed oil, rapeseed oil, and cottonseed oil, which are esters of the fatty acids C, with the polyhydric alcohols A and esterifying the resulting monoesters of the polyhydric alcohols A with the grafted fatty acids B and further dicarboxylic or tricarboxylic acids E or anhydrides thereof in order to increase its molar mass, which process yields an intermediate (ABC)nE.
In the third step, these hydroxy functional condensation products ABC or (ABC)nE are reacted with polyfunctional isocyanates D under polyaddition to form urethanes. Then, the remaining carboxyl groups of the adducts ABCD are at least partly neutralised and the neutralised adducts converted to the aqueous phase. The di- or polyhydric alcohols A are aliphatic linear or branched alcohols having from 3 to 12 carbon atoms and at least two hydroxyl groups, such as ethylene glycol, 1,2- and 1,3- propylene glycol, 1,4-butane diol, 1,6-hexane diol, neopentyl glycol, diethylene glycol, dipropylene glycol, and other ether alcohols derived from these. Preferred polyhydric alcohols are glycerol, trimethylol ethane, trimethylol propane, diglycerol, ditrimethylol ethane and ditrimethylol propane, erythritol, pentaerythritol, dipentaerythritol and sugar alcohols such as sorbitol, mannitol, and arabitol.
The grafted fatty acids B are derived from fatty acids Bl grafted with olefinically unsaturated carboxylic acids B2, and optionally, further olefinically unsaturated monomers B3 as mentioned supra.
The fatty acids Bl according to the invention are at least mono-olefinically unsaturated aliphatic mono carboxylic acids, having from 4 to 24 carbon atoms. Among these unsaturated fatty acids, mention is made of lauroleic, myristoleic, palmitoleic, oleic, gadoleic, erucic, and ricinoleic acids, and of linoleic and linolenic acids. It is also possible to use mixtures of fatty acids prepared from vegetable oils such as soy bean oil fatty acid, linseed oil fatty acid, sunflower oil fatty acid, safflower oil fatty acid, rubber seed oil fatty acid and tall oil fatty acid.
The olefinically unsaturated carboxylic acids B2 preferably carry a substituent in alpha position with relation to the carboxyl group, which substituent is selected from the group consisting of linear, branched, and cyclic alkyl radicals having from 1 to 8 carbon atoms and of aryl radicals having from 5 to 10 carbon atoms which may additionally be substituted with the aforementioned alkyl radicals. It is further preferred that these acids have at least one free carboxyl group, particularly preferably not more than one carboxyl group. Examples of these acids are acrylic acid, methacrylic acid, vinyl acetic acid, crotonic and isocrotonic acid, the dicarboxylic acids maleic and fumaric acid, citraconic, mesaconic and itaconic acid, as well as their monoesters with linear, branched or cyclic alkanols having from 1 to 20 carbon atoms, particularly preferred are those monocarboxylic acids having a substituent in the alpha position such as methacrylic acid, ethacrylic acid, 2-vinyl propionic acid, and tiglinic acid. The most preferred acid is methacrylic acid. It is, however, also possible to use acrylic acid alone, or preferably, in mixture with methacrylic acid.
The ungrafted fatty acids C may be selected from the unsaturated fatty acids as cited under Bl, and also from saturated fatty acids having from 6 to 30 carbon atoms such as caproic acid, caprylic acid, 2-ethyl hexanoic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid. Further, the fatty acids C may also be selected from mixtures of fatty acids which are based on naturally occurring fats, such as cotton seed oil fatty acid, peanut oil fatty acid, coconut oil fatty acid, linseed oil fatty acid, palm kernel oil fatty acid, olive oil fatty acid, palm oil fatty acid, castor oil fatty acid, rapeseed oil fatty acid, safflower oil fatty acid, soybean oil fatty acid, and tall oil fatty acid. It is likewise possible to use isomerised fatty acids where the double bonds are in conjugated position, such as isomerised polyunsaturated fatty acids made from sunflower oil or soy bean oil fatty acids (conjugated fatty acids).
The polyfunctional isocyanates D which are used according to the invention are selected from aromatic and aliphatic isocyanates, preferably diisocyanates, such as toluylene diiso- cyanate (TDI), bis-(4-isocyanatophenyl) methane (MDI), tetramethyl xylylene diisocyanate (TMXDI), bis-(4-isocyanatocyclohexyl) methane (HMDI), 1,6-diisocyanatohexane (HDI), and isophorone diisocyanate (IPDI). Mixtures of these may also be used.
The dicarboxylic or tricarboxylic acids E may be aliphatic linear, branched, or cyclic, and aromatic in nature, and may preferably be selected from the group consisting of phthalic acid, trimellithic acid, tetrahydrophthalic acid, maleic acid, adipic acid, malonic acid, oxalic acid, succinic acid, and the anhydrides thereof, to the extent that they exist.
In the process according to the invention, in the first step, fatty acids Bl or a mixture of such fatty acids are grafted with the olefinically unsaturated carboxylic acids B2, and optionally, monomers B3, in the presence of radical initiators, such as peroxides, at a temperature of from 80 0C to 160 0C, optionally in solution. The increase in acid number which is effected by the graft procedure ranges approximately from an additional 80 mg/g to 250 mg/g, preferably from 100 mg/g to 150 mg/g.
The acid number is defined according to DIN EN ISO 2114 (formerly DIN 53 402) as the ratio of the mass m KOH of potassium hydroxide needed to neutralise the sample under analysis, and the mass mB of this sample (mass of the solids of the sample if this is a solution or dispersion); the customary unit is "mg/g".
In the second step, the grafted fatty acids B of the first step are esterified with polyhydric alcohols A and optionally, with ungrafted fatty acids C which have a minimum content of olefinic double bonds of 3.15 mol/kg, preferably at least 4.73 mol/kg, corresponding to an iodine number of at least 80 cg/g, preferably at least 120 cg/g, under removal of water formed in the reaction. The amounts of substance and functionalities of the educts used are preferably chosen such that the condensation products ABC have an average hydroxyl functionality of at least 1.9, preferably at least 2.0. In the case of the preferred trihydric alcohols, this corresponds to equal amounts of substance (the SI unit of which is "mol") of (monocarboxylic) fatty acids to trihydric alcohols. If additional (ungrafted) fatty acids C are added, 1 mol of trihydric alcohol must be added for each 1 mol of fatty acid, as an example.
In a further preferred embodiment, the monoesters of the trihydric alcohols may be mixed with diesters of tetrahydric alcohols or tetraesters of hexahydric alcohols. This allows to increase the amount of fatty acids introduced into the alkyd; if drying fatty acids are used herein, the oil length of the alkyd can be increased to from 40 % up to 60 %, without adversely affecting the hydrophilicity.
Optionally, the intermediates ABC can be reacted with a polybasic acid, preferably a di- or tri-functional acid, E, before the reaction with the isocyanate. This esterification is best effected with an acid anhydride, and optionally in the presence of catalysts such as titanium alkoxides because transesterification should be kept at a low level in this step. Catalysts that do not form coloured salts are preferred here. The number of carboxyl groups of component E added in this reaction should be a maximum of 50 % of the number of hydroxyl groups in the intermediate ABC. This modification allows to limit the amount of urethane bonds in the final product, to a range of mass fraction of urethane groups (-O-CO- NH-) of from 1 % to about 25 %. A compound (ABC)nE is thereby formed which is hydroxy functional, and where n is 2 or 3. For the sake of brevity this is referred to as ABCE hereinbelow.
In the third step, the hydroxy functional condensation products ABC or ABCE are reacted with polyfunctional isocyanates D under polyaddition to form urethanes. As the hydroxy functional intermediates are oligomeric in nature, this can be effected in bulk, i. e. without addition of solvents. The reaction can be accelerated by increasing the temperature to not more than 120 0C. It has been found that reaction temperatures higher than 130 0C facilitate the decarboxylation reaction occurring between the isocyanates and the carboxylic acid groups that have remained of the acids B2. On the other hand, temperatures of less than 70 0C are not recommended because the reaction rate is too low.
Then, the adduct ABCD or ABCED is neutralised and converted to the aqueous phase. This is done by using basic compounds such as alkali hydroxides, lithium hydroxide being preferred, and preferably with a volatile base, such as organic amines, or ammonia. It is possible to add the basic compound dissolved in water, to the reaction product ABCD or
ABCED, and transfer the mixture into water; another possibility is to add the basic compounds to water and to feed the reaction product into the stirred aqueous solution of the said basic compound. The degree of neutralisation needed depends on the nature of the fatty acids and alcohols, as well as on the degree of grafting, and is preferably from 30 % to
100 %, particularly preferably from 50 % to 85 %. The degree of neutralisation is the ratio of neutralised acid groups (acid anions) to the total number of acid groups, neutralised and non-neutralised. Aqueous binder dispersions having a mass fraction of solids of from 35 % to 55 %, preferably from 40 % to 50 %, can be prepared by this technology. The urethane modified grafted alkyds ABCD or ABCED according to the present invention offer a wider range of properties, because the polymer structure can be tailored to the application. Binders prepared from these resins can be used to prepare paints for a wide range of substrates from wood to leather, textiles, paper, and cardboard, and also metals and mineral substrates such as stone, concrete, or plaster. Coatings prepared with the alkyd resins of the present invention show good adhesion, high flexibility, fast drying, and little discolouration. At a given degree of hydrophilic modification, compared to earlier technologies, the resistance to water and humidity have been improved.
The invention is further described in the Examples which are not intended to be limiting.
Examples
Example 1
71 g of linseed oil fatty acid were charged in a reactor and heated to 140 0C. A monomer mixture consisting of 55 g of isobutyl methacrylate, 10 g of para methyl styrene and 35 g of methacrylic acid together with 4 g of di-tert. butyl peroxide were added continuously over eight hours. The mixture was kept at 140 °C thereafter until a conversion to polymer of at least 99 % had been reached, as witnessed by the mass fraction of solids. Finally, the reaction mixture was diluted with xylene. The solution had a mass fraction of solids of 85 %, and an acid number of 203 mg/g.
Example 2
71 g of linseed oil fatty acid were charged in a reactor and heated to 140 0C. A monomer mixture consisting of 60 g of isobutyl methacrylate, 10 g of para methyl styrene and 30 g of acrylic acid together with 4 g of di-tert. butyl peroxide was added continuously over eight hours. The mixture was kept at 140 0C thereafter until a conversion to polymer of at least 99 % had been reached, as witnessed by the mass fraction of solids. Finally, the reaction mixture was diluted with xylene. The solution had a mass fraction of solids of 85 %, and an acid number of 210 mg/g.
Example 3
230 g of the grafted fatty acid of Example 2 were charged to a reactor, together with 67 g of trimethylol propane and 70 g of sunflower oil fatty acid, and heated to 175 0C. The mixture was kept under esterification conditions at a constant temperature of 175 °C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 nαg/g had been reached. All solvent was then removed by distillation under reduced pressure. Within thirty minutes, 30 g of toluylene diisocyanate were added at 70 0C, the temperature slowly rising due to the exothermic reaction to 100 0C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached. Additional diisocyanate was added if there was need, when repeating this experiment, care being taken that no residual free isocyanate was left after reaching the desired value of the Staudinger index. Then, the solid resin was emulsified by adding 580 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 37 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s1 of 9500 mPa-s, an average particle size of 150 nm, an acid number of 70 mg/g, and a pH of 8.5, measured at 10 % strength in water.
Example 4
200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, 15 g of isomerised sunflower oil fatty -acid, and 55 g of native sunflower oil fatty acid, and heated to 175 0C. The mixture was kept under esterification conditions at a constant temperature of 175 °C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 mg/g had been reached. AU solvent was then removed by distillation under reduced pressure. Within thirty minutes, 60 g of isophorone diisocyanate were added at 70 0C, the temperature slowly rising due to the exothermic reaction to 100 0C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached. Additional diisocyanate was added if there was need, when repeating this experiment, care being taken that no residual free isocyanate was left after reaching the desired value of the Staudinger index. Then, the solid resin was emulsified by adding 480 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 42 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s'1 of 4500 mPa-s, an average particle size of 65 nm, an acid number of 55 mg/g, and a pH of 8.2, measured at 10 % strength in water.
Example 5
200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, and 140 g of sunflower oil fatty acid, and heated to 175 0C. The mixture was kept under esterification conditions at a constant temperature of 175 0C under removal of water by azeotropic distillation with xylene until an acid number of approximately 65 mg/g had been reached. All solvent was then removed by distillation under reduced pressure. Within thirty minutes, 55 g of toluylene diisocyanate were added at 70 0C, the temperature slowly rising due to the exothermic reaction to 100 0C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached. Additional diisocyanate was added if there was need, when repeating this experiment, care being taken that no residual free isocyanate was left after reaching the desired value of the Staudinger index. Then, the solid resin was emulsified by adding 610 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 40 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s"1 of 3500 mPa-s, an average particle size of 120 nm, an acid number of 52 mg/g, and a pH of 8.8, measured at 10 % strength in water. Example 6
200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, 15 g of isomerised sunflower fatty acid, and 55 g of native sunflower oil fatty acid, and heated to 175 0C. The mixture was kept under esterification conditions at a constant temperature of 175 0C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 mg/g had been reached. AU solvent was then removed by distillation under reduced pressure. Within thirty minutes, 30 g of isophorone diisocyanate were added at 70 0G, the temperature slowly rising due to the exothermic reaction to 100 0C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached. Additional diisocyanate was added if there was need, when repeating this experiment, care being taken that no residual free isocyanate was left after reaching the desired value of the Staudinger index. Then, the solid resin was emulsified by adding 490 ml of water and 15 g of an aqueous ammonia solution of 25 % strength, yielding an aqueous emulsion of the binder with a mass fraction of solids of 40 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s"1 of 3800 mPa-s, an average particle size of 60 nm, an acid number of 60 mg/g, and a pH of 8.3, measured at 10 % strength in water.
Example 7
200 g of the grafted fatty acid of Example 1 were charged to a reactor, together with 67 g of trimethylol propane, 15 g of isomerised sunflower oil fatty acid, and 55 g of native sunflower oil fatty acid, and heated to 175 0C. The mixture was kept under esterification conditions at a constant temperature of 175 0C under removal of water by azeotropic distillation with xylene until an acid number of approximately 75 mg/g had been reached. All residual solvent was then removed by distillation under reduced pressure. Within thirty minutes, 55 g of toluylene diisocyanate were added at 70 0C, the temperature slowly rising due to the exothermic reaction to 100 0C. At this temperature, the reaction was continued until a Staudinger index of 8.5 cmVg had been reached. Additional diisocyanate was added if there was need, when repeating this experiment, care being taken that no residual free isocyanate was left after reaching the desired value of the Staudinger index. Then, the solid resin was emulsified by adding 470 ml of water in which 5 g of lithium hydroxide mono- hydrate had been dissolved, yielding an aqueous emulsion of the binder with a mass fraction of solids of 43 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s1 of 5300 mPa-s, an average particle size of 53 nm, an acid number of 55 mg/g, and a pH of 8.3, measured at 10 % strength in water.
Example 8
373 g of soy bean oil and 98 g of pentaerythritol were transesterified at 260 °C using 0.05 g of lithium hydroxide as a catalyst. When a sample was completely soluble in ethanol forming a single phase, the mixture was cooled to 180 0C, 89 g of phthalic anhydride were added and esterification was continued at 225 0C until an acid number of 5 mg/g had been reached. Thereafter, 430 g of the grafted fatty acid of example 1 were added at 160 0C, and the mixture was heated to 175 0C. At this temperature, esterification was continued until an acid number of 62 mg/g was reached, the water formed being removed by azeotropic distillation with xylene. All residual solvent was then removed by distillation under reduced pressure. Within thirty minutes, 85 g of isophorone diisocyanate were added at 70 0C, the temperature slowly rising due to the exothermic reaction to 100 0C. At this temperature, the reaction was continued as in Example 4 until a Staudinger index of 9 cmVg had been reached. No residual free isocyanate was left after reaching this desired value of the Staudinger index. Then, the solid resin was emulsified by adding 1320 ml of water and 53 g of ammonia (25 % strength solution in water), yielding an aqueous emulsion of the binder with a mass fraction of solids of 42 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s"1 of 8300 mPa-s, an average particle size of 120 nm, an acid number of 54 mg/g, and a pH of 8.3, measured at 10 % strength in water. Example 9
56 g of soy bean oil and 40 g of trimethylol propane were transesterified at 260 0C using 0.01 g of lithium hydroxide as a catalyst. When a sample was completely soluble in ethanol forming a single phase, the mixture was cooled to 180 0C, 91 g of phthalic anhydride, 47 g of trimethylol propane and 23 g of benzoic acid were added and esterification was continued at 230 0C until an acid number of 3 mg/g had been reached. Thereafter, 202 g of the grafted fatty acid of example 1 were added at 160 °C, and the mixture was heated to 175 0C. At this temperature, esterification was continued until an acid number of 62 mg/g had been reached, the water formed being removed by azeotropic distillation with xylene. All residual solvent was then removed by distillation under reduced pressure. Within thirty minutes, 36 g of isophorone diisocyanate were added at 70 °C, the temperature slowly rising due to the exothermic reaction to 100 °C. At this temperature, the reaction was continued as in Example 4 until a Staudinger index of 10.5 cmVg had been reached. No residual free isocyanate was left after reaching this desired value of the Staudinger index. Then, the solid resin was emulsified by adding 617 ml of water and 23.7 g of ammonia (25 % strength solution in water), yielding an aqueous emulsion of the binder with a mass fraction of solids of 40 %, a dynamic viscosity measured at 23 0C and a shear rate of 10 s"1 of 6600 mPa-s, an average particle size of 140 nm, an acid number of 57 mg/g, and a pH of 8.4, measured at 10 % strength in water.

Claims

Patent Claims
1. Urethane modified water-reducible alkyd resins ABCD, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made by grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C and polyfunctional isocyanates D.
2. The urethane modified water-reducible alkyd resins ABCD of claim 1, further comprising moieties derived from dicarboxylic or tricarboxylic acids E or anhydride thereof.
3. The urethane modified water-reducible alkyd resins ABCD of claim 1, wherein the olefinically unsaturated carboxylic acids B2 carry a substituent in the alpha position to the carboxyl group, the said substituent being selected from the group consisting of linear, branched or cyclic alkyl radicals having from 1 to 8 carbon atoms and from aryl radicals having from 5 to 10 carbon atoms.
4. The urethane modified water-reducible alkyd resins ABCD of claim 1, wherein the fatty acids Bl are at least mono-olefinically unsaturated monocarboxylic acids having from
4 to 24 carbon atoms.
5. The urethane modified water-reducible alkyd resins ABCD of claim 1, wherein the ungrafted fatty acids C are selected from the group consisting of at least mono-olefinically unsaturated monocarboxylic acids having from 4 to 24 carbon atoms, and saturated fatty acids having from 6 to 30 carbon atoms, with the proviso that the ungrafted fatty acids C or a mixture thereof have a minimum content of double bonds of 3.15 mol/kg.
6. The urethane modified water-reducible alkyd resins ABCD of claim 1, wherein the mass fraction of urethane groups is from 1 % to 25 %, based on the mass of the resins ABCD.
7. The urethane modified water-reducible alkyd resins ABCD of claim 1, wherein the degree of neutralisation in an aqueous dispersion thereof is from 30 % to 100 %.
8. A process for the production of aqueous dispersions of urethane modified water- reducible alkyd resins ABCD, comprising moieties derived from polyhydric alcohols A, modified fatty acids B made by grafting olefinically unsaturated carboxylic acids B2 onto fatty acids Bl, ungrafted fatty acids C, and polyfunctional isocyanates D, comprising the steps of
-grafting fatty acids Bl with olefinically unsaturated carboxylic acids B2 -esterifying the grafted fatty acids B with polyhydric alcohols A and ungrafted fatty acids C which have a minimum content of olefinic double bonds of 1,97 mol/kg, under removal of the water formed in the reaction, wherein the amounts of substance and functionalities of the educts used in this step are chosen such that the condensation products have an average hydroxyl functionality of at least 1.1, -reacting these hydroxy functional condensation products ABC with polyfunctional isocyanates D under polyaddition to form the respective urethanes, and
-at least partly neutralising the remaining carboxyl groups of the adductsABCD and converting the neutralised adducts to the aqueous phase.
9. The process of claim 8 wherein the condensation products ABC of the second step are reacted, before the third step, with a di- or tricarboxylic acid or its anhydride,E, under formation of (ABC)nE which is hydroxy functional, and where n is 2 or 3.
10. A method of use of the urethane modified alkyd resins of claim 1 or 2 as binders in paints for coating wood, leather, textiles, paper, cardbord, metals, and mineral substrates.
PCT/EP2006/001503 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins WO2006092211A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06707085A EP1856176A1 (en) 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins
CN2006800063199A CN101128500B (en) 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins
CA2598494A CA2598494C (en) 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins
MX2007010719A MX2007010719A (en) 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins.
JP2007557363A JP5106126B2 (en) 2005-03-02 2006-02-20 Urethane-modified water-dilutable alkyd resin
US11/817,246 US8372914B2 (en) 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins
NO20074983A NO20074983L (en) 2005-03-02 2007-10-02 Urethane-modified water-reducible alkyd resins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05004547A EP1705197A1 (en) 2005-03-02 2005-03-02 Urethane modified water-reducible alkyd resins
EP05004547.5 2005-03-02

Publications (2)

Publication Number Publication Date
WO2006092211A1 true WO2006092211A1 (en) 2006-09-08
WO2006092211A8 WO2006092211A8 (en) 2007-08-30

Family

ID=34934017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/001503 WO2006092211A1 (en) 2005-03-02 2006-02-20 Urethane modified water-reducible alkyd resins

Country Status (8)

Country Link
US (1) US8372914B2 (en)
EP (2) EP1705197A1 (en)
JP (1) JP5106126B2 (en)
CN (1) CN101128500B (en)
CA (1) CA2598494C (en)
MX (1) MX2007010719A (en)
NO (1) NO20074983L (en)
WO (1) WO2006092211A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007048189A1 (en) 2007-10-08 2009-04-09 Evonik Röhm Gmbh Aqueous dispersions comprising at least one alkyd resin and at least one polymer having at least one (meth) acrylate segment
WO2009146977A1 (en) * 2008-06-06 2009-12-10 Evonik Röhm Gmbh Aqueous dispersions comprising at least one alkyd resin
DE102008002254A1 (en) 2008-06-06 2010-01-21 Evonik Röhm Gmbh Monomer mixture, useful for preparing a polymer, which is useful to prepare a coating composition, preferably lacquers and aqueous dispersion, comprises a carbonyl group containing monomer and another carbonyl group containing monomer
DE102008046075A1 (en) 2008-09-08 2010-03-11 Evonik Röhm Gmbh (Meth) acrylate monomer, polymer and coating agent
DE102009026820A1 (en) 2008-09-08 2010-03-11 Evonik Röhm Gmbh Functionalized (meth) acrylate monomer, polymer, coating agent and method of preparation and crosslinking
DE102009001217A1 (en) 2009-02-27 2010-09-02 Evonik Röhm Gmbh Monomer mixture, useful for preparing a polymer, which is useful to prepare a coating composition, preferably lacquers and aqueous dispersion, comprises a carbonyl group containing monomer and another carbonyl group containing monomer
US20110036414A1 (en) * 2008-03-31 2011-02-17 Heineken Supply Chain B.V. Pressure regulator and beverage tapping apparatus provided therewith
EP2410028A1 (en) 2010-07-24 2012-01-25 Cytec Austria GmbH Urethane modified water-reducible alkyd resin compositions
DE102011088149A1 (en) 2011-12-09 2013-06-13 Evonik Industries Ag A coated composite comprising a composite material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000491A1 (en) * 2007-06-04 2008-12-10 Cytec Surface Specialties Austria GmbH Polysiloxane and urethane modified water-reducible alkyd resins
EP2303359B1 (en) * 2008-05-29 2020-02-26 Roche Diabetes Care GmbH Modular medical infusion device with means for identification/authentication between its components
EP2409999A1 (en) 2010-07-24 2012-01-25 Cytec Austria GmbH Polyurethane dispersions, a process of making, and a method of use thereof
BR112014000456A2 (en) * 2011-07-24 2017-02-14 Allnex Austria Gmbh mixtures of at least one acrylic resin dispersion a and a second dispersion b
CN103173110A (en) * 2011-12-26 2013-06-26 西安长庆图博可特石油管道涂层有限公司 Oil pipe external anticorrosive coating and preparation method thereof
US10174135B2 (en) 2013-11-25 2019-01-08 Arkema Inc. Low viscosity, water-borne, acrylic modified alkyd dispersion and method of production thereof
CN103833948B (en) * 2014-03-12 2016-03-30 中钞油墨有限公司 A kind of phenylethene modified polyurethane alkyd resin and method for making
CN110498891B (en) * 2019-08-22 2021-09-21 华南理工大学 Y-shaped structure macromonomer and Y-shaped side chain polycarboxylate superplasticizer based on same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267562A2 (en) * 1986-11-14 1988-05-18 Vianova Kunstharz Aktiengesellschaft Process for the preparation of water dilutable paint binders drying in the air
EP0437743A2 (en) * 1989-12-22 1991-07-24 Vianova Kunstharz Aktiengesellschaft Process for the preparation of air-drying aqueous binder emulsions and their use in the formulation of aqueous dipping paints

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192433A (en) * 1981-05-20 1982-11-26 Nippon Synthetic Chem Ind Co Ltd:The Water dilution type alkyd resin
AT388921B (en) * 1987-06-17 1989-09-25 Vianova Kunstharz Ag WATER-DISCOVERABLE VARNISH VARNISHES BASED ON WATER-SOLUBLE ALKYD RESINS
DE4135571A1 (en) * 1991-10-29 1993-05-06 Bayer Ag, 5090 Leverkusen, De COATING AGENTS, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF COATINGS
US5394206A (en) * 1993-06-04 1995-02-28 Eastman Kodak Company Orientation independent, detachable film cartridge, memory module
AT400719B (en) 1994-04-07 1996-03-25 Vianova Kunstharz Ag METHOD FOR PRODUCING WATER-THINNABLE AIR-DRYING LACQUER AND THE USE THEREOF
KR100905063B1 (en) * 2002-06-13 2009-06-30 니폰 페인트 가부시키가이샤 Water base resin composition
AT412971B (en) * 2003-07-23 2005-09-26 Surface Specialties Austria HYDROXYFUNCTIONAL BINDER COMPONENTS, PROCESS FOR THEIR PREPARATION AND THEIR USE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267562A2 (en) * 1986-11-14 1988-05-18 Vianova Kunstharz Aktiengesellschaft Process for the preparation of water dilutable paint binders drying in the air
EP0437743A2 (en) * 1989-12-22 1991-07-24 Vianova Kunstharz Aktiengesellschaft Process for the preparation of air-drying aqueous binder emulsions and their use in the formulation of aqueous dipping paints

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007048189A1 (en) 2007-10-08 2009-04-09 Evonik Röhm Gmbh Aqueous dispersions comprising at least one alkyd resin and at least one polymer having at least one (meth) acrylate segment
US20110036414A1 (en) * 2008-03-31 2011-02-17 Heineken Supply Chain B.V. Pressure regulator and beverage tapping apparatus provided therewith
WO2009146977A1 (en) * 2008-06-06 2009-12-10 Evonik Röhm Gmbh Aqueous dispersions comprising at least one alkyd resin
DE102008002254A1 (en) 2008-06-06 2010-01-21 Evonik Röhm Gmbh Monomer mixture, useful for preparing a polymer, which is useful to prepare a coating composition, preferably lacquers and aqueous dispersion, comprises a carbonyl group containing monomer and another carbonyl group containing monomer
DE102008002257A1 (en) 2008-06-06 2010-01-28 Evonik Röhm Gmbh Aqueous dispersions comprising at least one alkyd resin
DE102008046075A1 (en) 2008-09-08 2010-03-11 Evonik Röhm Gmbh (Meth) acrylate monomer, polymer and coating agent
DE102009026820A1 (en) 2008-09-08 2010-03-11 Evonik Röhm Gmbh Functionalized (meth) acrylate monomer, polymer, coating agent and method of preparation and crosslinking
DE102009001217A1 (en) 2009-02-27 2010-09-02 Evonik Röhm Gmbh Monomer mixture, useful for preparing a polymer, which is useful to prepare a coating composition, preferably lacquers and aqueous dispersion, comprises a carbonyl group containing monomer and another carbonyl group containing monomer
EP2410028A1 (en) 2010-07-24 2012-01-25 Cytec Austria GmbH Urethane modified water-reducible alkyd resin compositions
WO2012013612A1 (en) 2010-07-24 2012-02-02 Cytec Austria Gmbh Urethane modified water-reducible alkyd resin compositions
US8957128B2 (en) 2010-07-24 2015-02-17 Allnex Austria Gmbh Urethane modified water-reducible alkyd resin compositions
DE102011088149A1 (en) 2011-12-09 2013-06-13 Evonik Industries Ag A coated composite comprising a composite material
WO2013083362A2 (en) 2011-12-09 2013-06-13 Evonik Industries Ag Coated composite body comprising a composite material

Also Published As

Publication number Publication date
NO20074983L (en) 2007-10-02
US20080319141A1 (en) 2008-12-25
CN101128500B (en) 2011-01-12
US8372914B2 (en) 2013-02-12
WO2006092211A8 (en) 2007-08-30
CA2598494A1 (en) 2006-09-08
JP5106126B2 (en) 2012-12-26
EP1856176A1 (en) 2007-11-21
EP1705197A1 (en) 2006-09-27
JP2008531792A (en) 2008-08-14
CN101128500A (en) 2008-02-20
MX2007010719A (en) 2007-11-13
CA2598494C (en) 2014-11-25

Similar Documents

Publication Publication Date Title
CA2598494C (en) Urethane modified water-reducible alkyd resins
EP3137530B1 (en) Curable aqueous polyurethane dispersions made from renewable resources.
EP2121802B1 (en) Grafted autoxidisable polyester resin
CZ105494A3 (en) Coating compositions, process of their preparation and their use for production of coatings
TWI527765B (en) Urethane modified water-reducible alkyd resin compositions
CA2689564C (en) Polysiloxane and urethane modified water-reducible alkyd resins
EP2596035B1 (en) Polyurethane dispersions, a process of making, and a method of use thereof
EP2900721B1 (en) Urethane alkyd comprising strong acidic groups
KR20000005699A (en) Binder for coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006707085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2598494

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200680006319.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/010719

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007557363

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWE Wipo information: entry into national phase

Ref document number: 4351/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2006707085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11817246

Country of ref document: US