WO2006090555A1 - Akt ACTIVATING AGENT - Google Patents

Akt ACTIVATING AGENT Download PDF

Info

Publication number
WO2006090555A1
WO2006090555A1 PCT/JP2006/301326 JP2006301326W WO2006090555A1 WO 2006090555 A1 WO2006090555 A1 WO 2006090555A1 JP 2006301326 W JP2006301326 W JP 2006301326W WO 2006090555 A1 WO2006090555 A1 WO 2006090555A1
Authority
WO
WIPO (PCT)
Prior art keywords
leu
ile
gdnf
akt
cells
Prior art date
Application number
PCT/JP2006/301326
Other languages
French (fr)
Japanese (ja)
Inventor
Atsumi Nitta
Toshitaka Nabeshima
Original Assignee
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University filed Critical National University Corporation Nagoya University
Priority to JP2007504648A priority Critical patent/JPWO2006090555A1/en
Publication of WO2006090555A1 publication Critical patent/WO2006090555A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to an Akt activator.
  • the Akt activator of the present invention can be used for the treatment or prevention of diseases involving Akt through the activity of Akt.
  • GDNF glial cell line-derived neurotrophic factor
  • Leu-Ile When Leu-lie was administered to mice given the most commonly abused stimulant methamphetamine in Japan, Leu-Ile suppressed the increase in place preference and momentum caused by methamphetamine, and was already formed. It has also been shown to have an inhibitory effect on increased place preference and momentum (Nitta et al, 2003 (Non-Patent Document 4)). These studies suggested that Leu-Ile could be a drug-dependent treatment. However, it has not yet been elucidated what protein Leu-Ile binds to in vivo and what kind of signal pathway it produces and induces GDNF.
  • GDNF has a protective effect on fetal mesoderm-derived dopaminergic neurons, motor neurons, hippocampal neurons, cerebral cortex neurons, etc. that are not only drug dependent (Houeno u et al "1996; Lin et al” 1993 Trupp et al “1997; Wang et al” 1997 (Non-Patent Documents 5 to 8)), and application as a therapeutic agent for Parkinson's disease and spinal cord injury is also expected. According to a survey by the Ministry of Health, Labor and Welfare, the number of Parkinson's disease patients in Japan alone is 141,000. In 2014, the number of patients with spinal cord injury was 100,000 (the 2001 survey on the actual condition of children with physical disabilities and persons with disabilities). Have a degenerative disease.
  • Non-Patent Document 1 Green- Sadan T, Kinor ⁇ , Roth-Deri I, Geffen- Aricha R, Schindler CJ, Yadid G: Transplantation of glial cell line-derived neurotrophic factor-expressing c ells into the striatum and nucleus accumbens attenuates acquisition of cocaine self— a dministration in rats. Eur J Neurosci, 18: 2093—2098 (2003)
  • Non-Patent Document 2 Messer CJ, Eisch AJ, Carlezon WA Jr, Whisler K, Shen L, Wolf DH, Westphal H, Collins F, Russell DS, Nestler EJ: Role for GDNF in biochemical and b ehavioral adaptations to drugs of abuse. Neuron, 2b: 247-257 (2000)
  • Non-Patent Document 3 Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L, F urukawa S: Hydrophobic dipeptide Leu—lie protects against neuronal death by indu cing brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis. J Neurosci Res, 78: 250—258 (2004)
  • Non-Patent Document 4 Nitta A, Yamada Y, Nakajima A, Noda Y, Yamada K, Nabeshima T: C andidate genes or compounds for therapeutic tools against methamphetamine and / or morphine-induced dependence. Folia Pharmacologica Japonica, 122: 81-83 (2003)
  • Non-Patent Document 5 Houenou LJ, Oppenheim RW, Li L, Lo AC, Prevette D: Regulation of spinal motoneuron survival by GDNF during development and following injury. Tissue Res, 286: 219-223 (1996)
  • Non-Patent Document 6 Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F: GDNF: a glial eel 1 line-derived neurotropnic factor for midbrain dopaminergic neurons. Science, 260: 1130-1132 (1993)
  • Non-Special Reference 7 Trupp M, Belluardo N, Funakoshi H, Ibanez CF: Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret p roto— oncogene, and GDNF receptor-alpha indicates multiple mechanisms of tropnic actions in the adult rat CNS.J Neurosci, 17: 3554-3567 (1997)
  • GDNF glial cell line-derived neurotrophic factor
  • c-ret p roto— oncogene GDNF receptor-alpha indicates multiple mechanisms of tropnic actions in the adult rat CNS.J Neurosci, 17: 3554-3567 (1997)
  • Non-Patent Document 8 Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ: Glial cell line- der ived neurotrophic factor protects against ischemia— induced injury in the cerebral cor tex. J Neurosci, 17: 4341-4348 (1997 )
  • Non-Patent Document 9 Lee CS, Tee LY, Dusenbery S, Takata T, Golden JP, Pierchala BA, Gottling DI, Johnson EM Jr, Choi DW, Snider JB: Neurotrophin and GDNF family liga nds promote survival and alter excitotoxic vulnerability of neurons derived from muri ne embryonic stem cells. Exp Neurol, 191: 65-76 (2005)
  • Non-Patent Document 10 Riaz SS, Theofilopoulos S, Jauniaux E, Stern GM, Bradford HF: The differentiation potential of human foetal neuronal progenitor cells in vitro. Brain Res Dev Brain Res, 153: 39—51 (2004)
  • Non-Special Terms 12 Tzeng SF, Tsai MJ, Hung S, Cheng H: Neuronal morphological change of size-sieved stem cells induced by neurotrophic stimuli. Neurosci Lett, 367: 2 3-28 (2004)
  • Non-Patent Document 13 Yoo YM, Kim YJ, Lee U, Paik DJ, Yoo HT, Park CW, Kim YB, Lee SG, Kim WK, Yoo CJ: Neurotrophic factor in the treatment of Parkinson disease. N eurosurg Focus, 15: 1 (2003)
  • GDNF has a neuroprotective action and is expected to be applied to the treatment of neurodegenerative diseases.
  • GDNF cannot cross the blood-brain barrier when administered peripherally and is degraded by proteases in the blood, it cannot be expected to act on the brain. Therefore, it is desirable to develop a drug that can effectively increase the amount of GDNF produced in the brain or nerve tissue by oral administration.
  • the present inventors have found Leu-Ile (previously reported). However, it is completely unknown how Leu-Ile induces GDNF production!
  • the present invention aims to provide a new application of Leu-Ile by clarifying its action point and action mechanism.
  • the present inventors have conducted research for the purpose of elucidating the GDNF production regulation mechanism of Leu-Ile, and have obtained the following findings.
  • Leu-Ile is cell membrane permeable.
  • Hsc70 As a result of mass spectrometry of Leu_Ile binding protein, Hsc70 was identified.
  • NF- ⁇ was translocated into the nucleus and activated.
  • Leu-Ile binds to Hsc70 and activates NF- ⁇ B and CREB via the Hsp90 / Akt pathway (the pathway in which Akt is activated by binding to Hsp90). It was thought to induce the production of GDNF. It was found that Leu-Ile induces GDN F production through the Hsp90 / Akt signaling pathway, and Hsc70 and Hsp90 / Akt could be identified as new target genes responsible for the regulation of GDNF expression.
  • Leu-Ile induces GDNF production through a signal pathway via Hsp90 / Akt. That is, it has been found that Leu-Ile has an action of activating Akt, and as a result of this action, production of GDNF is induced.
  • Leu-Ile has Akt activity.
  • the ability to activate Akt means that it can regulate various signaling pathways involving Akt. Therefore, Leu-Ile is effective for diseases that can have therapeutic and prophylactic effects by regulating the gnnal pathway involved in Akt! /.
  • the present invention has been completed based on the above knowledge and consideration, and provides the following configuration.
  • the present invention is an Akt activator comprising any one of compounds (a) to (c) as an active ingredient.
  • the peptide as an active ingredient is Leu-lie.
  • the Akt activator of the present invention is preferably used for the treatment or prevention of Parkinson's disease, spinal cord injury, drug dependence, Alheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia.
  • Parkinson's disease spinal cord injury, drug dependence, Alheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia.
  • Another embodiment of the present invention provides a food containing the Akt activator.
  • the present invention includes a step of administering the Akt activator to a living body, including Parkinson's disease, spinal cord injury, drug dependence, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism Or a method for preventing or treating schizophrenia.
  • AP2 activator protein 2
  • CEB cytoplasmic extraction buffer and REB: cAMP respo nse element binding protein
  • CsA cyclosporin A
  • DMEM Dulbecco's modified Eagle e's medium ⁇
  • DTT dithiothreitol
  • EDTA ethylenediamine tetracetic acid
  • egr- 1 ear ly growth response- 1
  • egr- 2 earlygrowth response- 2
  • F12HAM Ham's nutrient mixture
  • F12 FBS: fetal bovine serum
  • FGF fibloblast growth factor
  • FITC Fluoresce in isothiocyanate isomer 1
  • FK506 tacrolimus
  • FKBP FK506 binding protein
  • GDNF fa mily receptor- a GDNF fa mily receptor- a
  • IL-1 interleukin— lbeta
  • MALDI Matrix-assisted laser desorpti on / ionization
  • MNF myocyte nuclear factor
  • MRE metal response element
  • MS Mass spectrometry
  • MTT methyl thiazol tetrazolium
  • NCBI National Center for Biot echnology Information
  • NRSE neural-restrictive silencer elements
  • ODN oligodeoxynucleotide
  • PBS phosphate buffer s aline
  • PDB protein data bank
  • PDVF polyvinylidene fluoride
  • PI 3K phosphatidylinositol-3 kinase
  • PMSF phenylmethansulfonylfluoride
  • RCSB Res earch Collaboratory
  • FIG. L Results of Leu-Ile cell membrane permeability experiment.
  • A Add only FITC-labeled Leu-Ile or FITC to the supernatant of cultured neurons, and examine the dose dependence of these cell membrane permeabilities by measuring the fluorescence intensity of FITC in the cells 30 minutes later. did.
  • B FITC-labeled Leu-Ile (10 g / ml) was added to cultured neurons, and the time dependence of cell membrane permeation after addition was examined.
  • C FITC-labeled Leu-Ile (10 ⁇ g / ml) and various concentrations of Leu-Ile were added together to cultured neurons, and the intracellular FITC fluorescence intensity was measured after 30 minutes.
  • FITC (10 g / ml) and various concentrations of Leu-Ile were added to cultured neurons together, and the fluorescence intensity increased even after measuring intracellular FITC fluorescence intensity after 30 minutes The power was restrained.
  • FIG. 2 Results of Leu-Ile binding protein isolation experiment.
  • A Lane 1: Leu-lie fluorescently labeled on the N-terminal side and mouse brain lysate were allowed to act at 4 ° C or 37 ° C.
  • Lane 2 Leu-Ile fluorescently labeled on the C-terminal side and mouse brain lysate were allowed to act at 4 ° C or 37 ° C. These electrophoretic images were read with a fluorescence scanner.
  • B Mouse brain lysate was reacted with Leu-Ile-conjugated Affigel 10 (lane 1) or! /, Nana! /, Affigel 10 (lane 2), and Leu-Ile binding protein was Purified.
  • the Leu-Ile binding protein was subjected to silver staining after electrophoresis and mass analysis was performed. Lane l; Leu-Ile binding protein. Lane 2; control. The arrow indicates the protein subjected to mass analysis. (C): The sample used for mass analysis was subjected to Western blotting of Hsc70.
  • FIG. 3 Results of measuring the binding affinity between Leu-Ile and Hsc70 or Hsp70 with a quartz crystal.
  • A Leu-Ile, Pro-Leu or lie-Pro was adsorbed on a quartz crystal unit and fixed in PBS. Thereafter, Hsc70, Hsp70, or heat-denatured Hsc70 or Hsp70 at 25 ° C. was added to PBS. The frequency at that time was counted. The dissociation constant was calculated with the software AQUA
  • FIG. 4 Shows the binding site between Leu-lie and Hsc. Ascase domain of Hsc70 (Flaherty et al., 1990) And Leu-Ile combine.
  • FIG. 5 Number of non-activated NF- ⁇ B cells and the amount of inactivated NF- ⁇ B in the nucleus.
  • A Leu-lie (10 ⁇ g / ml), TNF- ⁇ (100 ng / ml) and GDNF (50 ng / ml) were allowed to act on the cells for 30 minutes.
  • A-a Cells in which typical NF- ⁇ B is not activated.
  • A-b Typical NF- ⁇ B-active cells.
  • A-c percentage of cells in which NF- ⁇ is not activated. For each culture dish, 8 fields were counted (75 x 55 m each) and examined using 4 culture dishes. * P ⁇ 0.05 vs. control (Sheffe test).
  • FIG. 6 Effect of NF- ⁇ on cell survival and GDNF expression in cultured neurons.
  • Leu-Ile (10 ⁇ g / ml) was allowed to act for 1 day in the presence or absence of sulfasalazine.
  • FIG. 7 CREB phosphorylation and GDNF expression level.
  • Leu-Ile (10 ⁇ g / ml) was allowed to act on cultured neurons for 0, 10, 20 or 30 minutes, and phosphorylated CREB was measured by Western blot. Phosphorylated CREB increased from 20 minutes after the action of Leu-Ile and was maintained until 30 minutes. A typical Western plot result is shown.
  • B Antisense or sense nucleotide of CREB was allowed to act on cultured neurons (ODN) for 24 hours. The amount of CREB protein was measured by Western plot.
  • Leu-Ile (10 g / ml) was allowed to act for 24 hours in the presence or absence of antisense or sense oligonucleotide of CREB.
  • the expression level of GDNF was examined by Western blot.
  • the ability of Leu-Ile to increase the expression level of GDNF Antisense oligonucleotide suppressed its action. Values are expressed as (n 4) mean standard deviation. * P ⁇ 0.05 vs. control (0 hour) (Sheffe test).
  • FIG. 8 shows the effect of Leu-Ile on the expression of GDNF protein and GDNF mRNA.
  • A The expression level of GDNF protein after 24 hours when Leu-Ile, Pro-Leu or Ile-Pro (10 ⁇ g / ml) was added to cultured neurons. Only Leu-Ile increases GDNF protein expression.
  • B Expression level change of GDNF mRNA after addition of Leu-Ile. The expression level of GDNF mRNA increased 12 or 18 hours after adding Leu-Ile.
  • FIG. 9 Effect of Leu-Ile on CREB and Akt signaling.
  • Leu-Ile (10 ⁇ g / ml) was allowed to act on cultured neurons for 0, 10, 20 or 30 minutes. The degree of phosphorylation of Akt, ERK, CaMKII, and PKC- ⁇ was measured by Western blot.
  • B Leu-Ile and PI3 k inhibitor or Hsp90 inhibitor were allowed to act for 30 minutes.
  • B) The degree of Akt phosphate was measured by Western plot.
  • FIG. 12 Partial nucleotide sequence of human GDNF promoter II, exon 1 and first intron. The 1st to 174th bases are exon 1. The transcription factor binding site is underlined. These amino acid sequences are listed in GenBank AF053749. Abbreviations: activator protein 2, P- 2), early growth response- 1, egr- 1), early growth response- 2 (egr- 2), C factor (GCF), myocyte nuclear factor (MNF), metal response element -A (MRE-A), metal response element— B (MRE— B), trans-acting transcription factor 1 (SP1), Up-stream stimulatory factor (USF), yin yang-1 (YY1).
  • activator protein 2 P- 2
  • P- 2 early growth response- 1
  • C factor GCF
  • MNF myocyte nuclear factor
  • MRE-A metal response element -A
  • MRE— B metal response element— B
  • SP1 Up-stream stimulatory factor
  • USF Up-stream stimulatory factor
  • peptides are represented such that the left end is the amino end and the right end is the carboxy terminus.
  • the indication that the form is L may be omitted.
  • dipeptides are expressed. Therefore, “peptide” is used as a term including peptides of various lengths.
  • Akt activator refers to a substance having an action of activating Akt.
  • Akt is a serine Z threonine kinase, also called Protein Kinase B (PKB), which is activated in the PI3 kinase pathway.
  • PPKB Protein Kinase B
  • Akt activity up-regulates the signaling pathway via Akt.
  • NF- ⁇ B and CREB are activated by the activity of Akt. Therefore, Akt activator can be regarded as activator of NF- ⁇ B and CREB.
  • the activity of NF- ⁇ and CREB stimulates the production of BDNF. Therefore, the Akt activator can be excluded as a BDNF production inducer.
  • the Akt activator of the present invention can exert an effect on the treatment and prevention of diseases associated with Akt through the regulation of Akt activity. Therefore, the Akt activator of the present invention can be applied to “diseases in which a preventive or therapeutic effect can be obtained by regulating Akt”. “Disease in which preventive or therapeutic effects can be obtained by modulating Akt” can be restated as “disease characterized by abnormal Atk activity”. That is, the diseases (target diseases) that are the subject of the present invention include diseases caused as a result of Akt activity deviating from the normal range. For example, Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia fall under such diseases.
  • a disease in which a prophylactic effect or a therapeutic effect is obtained by the production induction of GDNF is one of the preferable target diseases of the present invention.
  • Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia fall under such diseases.
  • disease is used interchangeably with a word indicating an abnormal state such as a disease, illness, or disease state.
  • the Akt activator of the present invention includes a peptide (dipeptide) comprising Leu and lie as an active ingredient.
  • Leu Leucine
  • 2-aminoisocabronic acid 2-aminoisocabronic acid, and its L form is represented by the following chemical formula.
  • lie isoleucine
  • 2-amino-3-methyl-n-valeric acid 2-amino-3-methyl-n-valeric acid, and its form is represented by the following chemical formula.
  • these two amino acid residues are preferably linked in the order of leucine and isoleucine from the N- terminal side to the c-terminal side.
  • each amino acid residue is in the L form, but the amino acid residue Some or all of the groups may be in D form.
  • a compound obtained by modifying a part of a certain compound may have properties and characteristics similar to those of the compound before modification. That is, the modification may not affect the specific properties of the compound.
  • a modified product obtained by modifying the above peptide can be used as an active ingredient in the present invention as long as the Akt activity is maintained.
  • a modified form of the peptide (hereinafter referred to as “peptide modified form”) is used as an active ingredient.
  • the “modified peptide” refers to a part of the basic structure (dipeptide) composed of Leu and lie (dipeptides) may be substituted with other atomic groups or the like.
  • a compound having a structure different from the basic structure at least in part by adding a modification such as addition of a molecule of this type is known to those skilled in the art or consists of Leu and lie using means for ⁇ . Modifications such as substitutions based on dipeptides can be designed.
  • it is considered easy for those skilled in the art to prepare a target modified product using well-known or ⁇ means based on the profitable design and investigate its properties and actions.
  • modified peptide in the present invention include peptide derivatives in which a part of the side chain (atom or atomic group) is substituted with another atom or atomic group in each amino acid residue.
  • Such peptide derivatives can be prepared by any manufacturing process designed to yield the peptide derivative as a final product.
  • the target peptide derivative is a peptide in which a part (for example, an atomic group that is a part of a side chain) is apparently substituted by a specific atomic group
  • Peptide derivatives may be produced by a substitution reaction using the apparently basic peptide as a starting material and using the specific atomic group, or, for example, a suitable substitution reaction using a peptide having another structure as a starting material.
  • Etc. may be a plurality of steps in some cases). Therefore, for example, in the case of a derivative of a Leu-Ile dipeptide, the Leu-Ile dipeptide may not be used as a starting material.
  • atoms or atomic groups herein include hydroxyl groups, halogens (fluorine, chlorine, fluorine, iodine, etc.), alkyl groups (methyl group, ethyl group, n -propyl group, isopropyl group, etc.), hydroxyalkyl groups (Hydroxymethyl group, hydroxyethyl group, etc.), alkoxy group (methoxy group, ethoxy group, etc.), isyl group (formyl group, acetyl group, malol group, benzoyl group, etc.), etc. .
  • the modified peptide of the present invention includes those in which the functional group in the constituent amino acid residue is protected by an appropriate protecting group.
  • an acyl group, an alkyl group, a monosaccharide, an oligosaccharide, a polysaccharide and the like can be used.
  • Such a protecting group is linked by an amide bond, an ester bond, a urethane bond, a urea bond, or the like according to the peptide site to which the protecting group is bound, the kind of the protecting group to be used, or the like.
  • the modified peptide of the present invention by attaching (linking) amino acids.
  • the number of amino acids added is not so large in terms of solubility and bioavailability.
  • the number of amino acids to be added is, for example, 1 to 9, preferably 1 to 5, more preferably 1 to 3, and most preferably 1 or 2. It should be noted that amino acids may be applied on both sides of the basic peptide (or modified peptide).
  • modified peptide of the present invention one modified with a sugar chain attachment can be mentioned.
  • Various peptides classified as alkylamines, alkylamides, sulfiers, sulfonamides, amides, amides, amino alcohols, esters, amino aldehydes, etc. by replacing the N-terminal or C-terminal with other atoms Derivatives are also included in the modified peptide of the present invention.
  • a peptide derivative constituted by combining the various modification methods described above may be used as the modified peptide of the present invention.
  • the peptide or a salt of the modified peptide is used as an active ingredient.
  • the salt of the present invention is not particularly limited as long as it is pharmaceutically acceptable, and is a salt (inorganic acid salt) with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, boric acid, formic acid, acetic acid, lactic acid, fumaric acid. Examples thereof include salts (organic acid salts) with maleic acid, tartaric acid, citrate, and the like. These salts can be prepared by conventional means. [0021] Peptides, modified peptides, or these!
  • peptides typically contained in the Akt activator of the present invention are typically The use of a compound that is linear but has a cyclic structure is not excluded. That is, a peptide or the like that forms a cyclic structure partially or entirely by linking side chains of amino acid residues or the like can be used as an active ingredient of the Akt activator of the present invention.
  • the peptide and the like in the present invention can be produced by a known peptide synthesis method (for example, solid phase synthesis method, liquid phase synthesis method). However, when the peptide of the present invention exists in nature, it can also be prepared by operations such as extraction and purification. Examples of sources for obtaining the peptide of the present invention include animal cells (including humans), plant cells, body fluids (blood, urine, etc.) and the like.
  • the peptide of the present invention may be prepared using a genetic engineering technique. That is, the peptide of the present invention can also be prepared by introducing a nucleic acid encoding the peptide of the present invention into an appropriate host cell and recovering the peptide expressed in the transformant. The recovered peptide is purified as necessary. The recovered peptide or the like can be subjected to an appropriate substitution reaction to be converted into a desired modified peptide.
  • Leu-Ile is commercially available and can be obtained from a domestic chemical company (KOKUSAN CHEMICAL Co., Ltd. Tokyo, Japan).
  • the Akt activator of the present invention can be used as a drug for a specific disease, for example, as a food (food additive) for reducing the risk of suffering from a specific disease. It can also be used as a research reagent for studying the onset mechanism or progress mechanism of a specific disease. That is, the Akt activity modulator of the present invention can be provided in the form of a drug, food (food additive), research reagent, and the like.
  • Formulation when provided as a drug can be performed according to a conventional method.
  • other pharmaceutically acceptable ingredients e.g., carriers, excipients, disintegrants, buffers, emollients, suspensions, soothing agents, stabilizers, preservatives, preservatives
  • Agent physiological saline, etc.
  • excipient lactose, starch, sorbitol, D-manntol, sucrose and the like can be used.
  • disintegrant starch, carboxymethyl cellulose, calcium carbonate, or the like can be used. Buffers such as phosphate, kenate, acetate, etc. Can be used.
  • emulsifier gum arabic, sodium alginate, tragacanth and the like can be used.
  • suspending agent glyceryl monostearate, aluminum monostearate, methinorescenellose, carboxymethylcellulose, hydroxymethylcellulose, sodium lauryl sulfate and the like can be used.
  • soothing agent benzyl alcohol, chlorobutanol, sorbitol and the like can be used.
  • stabilizer polypropylene alcohol, diethylin sulfite, ascorbic acid and the like can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methyl paraben, and the like can be used.
  • antiseptics that can be used include salt benzalkonium, nonoxybenzoic acid, and chlorobutanol.
  • the dosage form for formulation is not particularly limited, and can be prepared, for example, as tablets, powders, fine granules, granules, force capsules, syrups, injections, external preparations, suppositories, and the like.
  • the drug of the present invention thus formulated is administered orally or parenterally depending on its form.
  • the content of the active ingredient (peptide or the like) in the drug of the present invention generally varies depending on the dosage form. For example, it is about 0.001 wt% to about 90 wt% so as to achieve a desired dose.
  • target diseases using the above drugs (Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, schizophrenia, etc.)
  • Prevention methods or treatment methods (hereinafter, these two methods are collectively referred to as “treatment methods”).
  • the therapeutic method of the present invention includes the above peptides, peptide modifications, or these! / Includes the step of administering a drug containing any salt as an active ingredient to the living body.
  • the administration route is not particularly limited, and examples thereof include oral, intravenous, intradermal, subcutaneous, intramuscular, intraperitoneal, transdermal, and transmucosal.
  • the dose of the drug varies depending on symptoms, patient age, sex, weight, and the like, but those skilled in the art can appropriately set an appropriate dose.
  • the amount of active ingredient per day for adults is about 0.1 to about 1000 mg, preferably about lmg to about lOOmg.
  • the dose can be set to be
  • the administration schedule is, for example, once to several times a day, once every two days. Times, or once every three days. In setting the administration schedule, it is possible to consider the patient's medical condition and the duration of drug effect.
  • a food (or food-added carotenoid) containing the Akt activator of the present invention is provided.
  • examples of food include milk and soft drinks.
  • food-added calories it can be provided in the form of powder, granule powder, tablet, etc.
  • the amount added should be expected to have a therapeutic or prophylactic effect.
  • the amount to be added can be determined in consideration of the medical condition, health status, age, sex, weight, etc. of the subject.
  • Leu-Ile has high solubility and is tasteless and odorless.
  • Leu-Ile is a substance that is constantly present in the living body, so it can be said that its safety is high. In this way, Leu-Ile has a special characteristic that is preferred as a substance added to food.
  • the Akt activator of the present invention is provided as a research reagent.
  • the label may be modified in advance. It can also be provided in the form of a kit combining various reagents necessary for the use of the Akt activator or a reaction container.
  • Cyclosporin A and tacrolimus which are used to prevent rejection after organ transplantation, are immunophilin ligands that bind to endogenous immunophilin and exhibit immunosuppressive action.
  • CsA and tacrolimus have been reported to suppress neurodegeneration in a variety of pathological models with only immunosuppressive action, and research has been conducted even for their usefulness as neuroprotective drugs (Ogawa et al., 1993; Sharkey and Butcher., 1994; Shiga et al., 1992; Tanaka and Ogawa., 2004) o However, for patients with neurodegenerative diseases, these drugs may also have neuroprotective effects, but at the same time immune function As a result, a major problem remains.
  • Leu-Ile is a peptide discovered in search of non-immunosuppressive immunophilin ligands. Leu-Ile is similar to the structure of the immunophilin binding site of tacrolimus and has been shown to induce the production of GDNF in the same way as takuguchi rim.
  • FK506 binding proteinl2 FKBP12
  • FKBP12 FK506 binding proteinl2
  • mice 7-week-old ICR male mice (Japan SLC, Shizuoka) were used. This study was conducted based on the Nagoya University School of Medicine Animal Experiment Fund ⁇ and Principles of Laboratory Animal Care (National Institutes of Health Publication 85-23, 1985).
  • FITC-labeled Leu-Il to the culture supernatant of cultured neurons to a concentration of 0-1.5 ⁇ g / ml, remove the supernatant after 10-20 minutes, wash with physiological buffer, and wash the cells.
  • the material was peeled and collected with a rubber policeman. After centrifugation, the intensity of fluorescence (excitation wavelength: 485 nm, fluorescence wavelength: 518) in the supernatant was measured with a plate reader for fluorescence measurement. Calibration curves for FITC-labeled Leu-Ile and FITC were prepared for each experiment.
  • Agarose beads £ 3 ⁇ 46 ⁇ 10 (810 '1 ⁇ 0, CA, USA) were packed into a 30 ml syringe (Terumo, Tokyo) (diameter 22 mm, height 26.5 mm) to make a column.
  • the column was washed with 100 ml of 0.1 M sodium bicarbonate solution (pH 8.5) to wash the beads, and Leu-Ile (Kokusan Kagaku, Tokyo) dissolved in 0.1 M sodium bicarbonate solution (pH 8.5) (30 mg / ml) and the beads were reacted at 4 ° C for 3 hours.
  • the gel stained with 1-2-4 was washed three times with distilled water for 10 minutes, and a gel piece containing the target protein was cut out using a scalpel.
  • the gel pieces were reacted with 100 ⁇ l of decolorizing solution (18.5 mg / ml Na CI, 18.5 mg / ml CuS04, 18.5 mg / ml Na2S203) for 5 minutes and washed with distilled water until the gel pieces became transparent. After dehydration with acetonitrile, the gel pieces were dried in a vacuum centrifuge for 5 minutes.
  • sample buffer was boiled at 95 ° C for 5 minutes in the sample used for mass spectrometry, and electrophoresis was performed using 5-20% gradient gel (BIO RAD).
  • the primary antibody (rat anti-Hsc70 antibody 3; i rabbit anti-Hsp70 antibody (Stressgen, B, and then Canada) was used to react once at 4 ° C.
  • TBS Tris buffer saline
  • secondary antibody peroxidase labeled goat anti-rat IgG (H + L ) antibody 3 ⁇ 47t ⁇ peroxidase labeled goat anti-rabbit IgG (H + L) antibody (Kirkegaard & Perry Laboratries, MD, USA)
  • ECLTM Anamersham Pharmacia Biotec, UK
  • the quartz crystal microbalance method is changed by molecular bond 'dissociation, polymerization' decomposition.
  • the molecular reaction can be measured at the nanogram level without labeling with a fluorescent substance.
  • the lens sensor chip (Y-Siam, Tokyo) was washed twice with Piranha solution (7.5% H202, 25% H2S04) for 5 minutes, and then 5 mM 3,3-dithiodipropionic acid solution was placed on the 100 ⁇ 1 sensor chip at room temperature. Let stand for 30 minutes.
  • Dipeptide is prepared by placing 100 ⁇ ⁇ phosphate buffer containing Leu-Ile, Pro-Leu (domestic chemistry) or lie-Pro (domestic chemistry) (10 g / ml) on the sensor chip for about 1 hour at room temperature. Was immobilized on a sensor chip.
  • Pro-Leu and lie-Pro are the same hydrophobic dipeptides as Leu-Ile, but do not show GDNF production-inducing action (Nitta et al, 2004), so they were used as negative controls.
  • Hsp70 Stressgen
  • Hsc70 Stressgen
  • Hsc70 is divided into 44 KD ATPase domain, 18 KD substrate binding domain, and 10 KD C-terminal domain from the N-terminal side.
  • S and SB Protein data bank
  • PDB Protein data bank
  • FITC-labeled Leu-Ile permeates the cell membrane.
  • Fig. 1A the fluorescence intensity of intracellular FITC increased with increasing concentration of FITC-labeled Leu-Ile.
  • Figure 1B FITC itself can penetrate cell membranes FITC-labeled Leu-I le is easier to penetrate.
  • FITC-labeled Leu-Ile membrane permeability To determine whether it is caused by Leu-Ile, not FITC, add excess Leu-Ile to the culture supernatant at the same time as FITC-labeled Leu-Ile or FITC. I'm sorry.
  • FITC-labeled Leu-Ile was used, the fluorescence intensity of FITC incorporated into cells decreased in a dose-dependent manner with Leu-Ile, and cell membrane permeability was suppressed (Fig. 1C). When the Leu-Ile was added at the same time, FITC intracellular uptake was not suppressed. From these results, it was shown that Leu-Ile has cell membrane permeability.
  • Hsc70 peptide shock cognate protein 70
  • Fig. 11 As a result of Western blotting of the eluate purified with Affige® 10 using an antibody of Hsc70, a band thought to be Hsc70 was detected (FIG. 2C). On the other hand, no force band was detected by Western blotting for Hsp70 having 81% homology with Hsc70 (data not shown). Hsc70 is a protein that is expressed constantly.
  • Hsp70 is known to be induced by exposure to stress such as heat ischemia (Dworniczak and Mirault., 1987). Since the brain used in the test was unstressed, it is thought that the binding between Hsp70 and Leu-Ile could not be observed.
  • Hsc70 and Hsp70 and Leu-Ile were measured using a quartz crystal biosensor.
  • Hsc70 or Hsp70 was reacted with a crystal oscillator with Leu-Ile, Pro-Leu, or lie-Pro, the frequency of only those with Leu-Ile binding decreased (Fig. 3A).
  • the addition of heat-denatured Hsc70 and Hsp70 incubated at 5 ° C for 5 minutes did not reduce the frequency, so the heat-denatured Hsc70 and Hsp70 do not bind to Leu-Ile! ( Figure 3A).
  • Hsc70 is divided into 44 KD ATPase domain, 18 KD substrate binding domain and 10 KD C terminal domain from the N-terminal side. et al., 2003; Flaherty et al., 1990; Morshauser et al., 1999).
  • MOE molecular simulation software
  • the ATPase domain was -119.044 kCal
  • the substrate binding domain was -It was shown that Leu-lie binds to 76.711 kCal and C-terminal domain with a strength of -64.337 kCal (Fig. 4).
  • Tacrolimus is thought to suppress the dephosphorylation effect of calci-eurin by binding to FKBP12 and to express immunosuppressive activity by suppressing the production of interleukin2 (Gr iffith et al., 1995; Schreiber et al., 1991).
  • Leu-Ile is a force obtained as an analog of the partial structure of tacrolimus. FKBP12 does not bind and does not have calci-eurin inhibitory activity. Therefore, Leu-Ile does not suppress immune activity. (Nitta et al., 2004) 0
  • tacrolimus an important factor for the neuroprotective action of tacrolimus is FKBP52 (Hsp56) (Gold et al., 1999).
  • FKBP52 Hsp56
  • the force shown to bind Hsc70 and Hsp70 to Leu-lie FKBP52 and Hsc70 and Hsp70 are reported to bind to steroid receptors together with Hsp90 to form a complex (Bagchi et al, 1991; Mc Laughlin et al., 2002)
  • tacrolimus and Leu-Ile may induce neuroprotective effects by exerting some effect on these complexes.
  • Hsc70 and Hsp70 belong to the heat shock protein 70 family and have a similar function to prevent protein misfolding and aggregation because they have 81% amino acid homology (Dworniczak and Mirault., 1987; Young et al., 2003)
  • energy of ATP there is a report that is delivered to the Hsp90 (Bagchi et al, 19 91 ;.. McLaughlin et al, 2002) 0
  • Hsc7 The possibility of binding indicates that Leu-Ile is involved in the protein transfer between Hsc70 and Hsp90 using the energy of ATP!
  • Hsp90 functions to regulate intracellular signals related to cell cycle, cell proliferation and apoptosis (Zhang and Burrows et al., 2004), Leu-lie is responsible for inducing GDNF production and nerve activity through signal pathways mediated by Hsp90. It is considered that a protective action is being developed.
  • Hsp70 has the function of suppressing the activity of I ⁇ B kinase and suppresses the transcription of tumor necrosis factor- (TNF-) by suppressing the activity of NF- ⁇ B.
  • TNF- tumor necrosis factor-
  • Leu-lie suppresses the action of Hsc70 and Hsp70, and the transcription factor of GDNF
  • GDNF production was induced by activating NF- ⁇ B. Therefore, in the following, we focused on the signal pathway regulated by Hsc70 and the transcription factor of GDNF, and examined the relationship between Hsc70 and the signal inducing GDNF production.
  • Leu-Ile induces GDNF production in cultured rat hippocampal neurons
  • GDNF was obtained from rat glial cells (B49) as a trophic factor for fetal substantia nigra donominin neurons and was expected to be applied as a therapeutic drug for Parkinson's disease caused by substantia nigra dopamine neurons (Lin et al, 1993). . Later, it became clear that GNDF had a strong survival effect on spinal motor nerves and sympathetic nerves (Henderson et al, 1994). It became apparent that it plays an important role in the control of migration to the enteric nervous system and organ formation (Moore et al., 1996; Pichel et al, 1996; Sanchez et al., 1996.).
  • GDNF a homodimeric secreted protein, binds to the GDNF family receptor-a (GFR al) on the cell membrane, forms a complex with the receptor RET, and transmits a signal into the cell.
  • the ligand GDNF was found in 1993 as a neurotrophic factor (Lin et al, 1993). However, its receptor, RET, was discovered as an oncogene in 1985 (Takahashi et al., 1985), and since long ago, detailed studies on diseases caused by RET mutations and intracellular signaling pathways of RET Has been done. Diseases caused by RET mutations include multiple endocrine adenomas and familial medullary thyroid carcinoma.
  • Pathological changes include neoplastic lesions in the thyroid, parathyroid and adrenal medulla, or neural crest cell-derived Abnormalities in ectoderm (Airaksinen et al., 1999; Mulligan et al., 1994; Romeo et al "1994; Santoro et al., 1990) o
  • the RET gene is a proto-oncogene. This may support that GDNF / RET signals are strongly involved in cell survival, proliferation and differentiation.
  • RET is a transmembrane tyrosine kinase receptor, and three isoforms (RET9, RET43, RET51) with different intracellular domain lengths signal in the cell (Lorenzo et al "1995; Myers et al. al "1995; Takahashi et al., 1989).
  • RET forms a dimer and activates intracellular signals by autophosphorylating tyrosine residues (T yr) (Grimm et al. al., 2001; Schl essinger, 2000).
  • RET When RET is stimulated by GDNF, Tyr905, Tyrl015, Tyrl062 and Tyrl096 of RET are autophosphorylated (Coulpier et al., 2002; Ichihara et al., 2004). Of these four tyrosine residues, Tyrl062 is phosphatidylinosito. ⁇ It is considered that the neuroprotective effect of GDNF / RET is expressed by activating the 3 kinase (PI3K) / Akt pathway (Besset et al., 2000; Coulpier et al., 2002; Encinas et al Hayashi et al., 2000; Kobayashi and Matsuoka., 2000; Takahashi., 2001).
  • PI3K 3 kinase
  • GDNF glial cell or nerve cell
  • IL-1 a glioblastoma U- The force that stimulates the production of GDNF when acting on 87MG It has been reported that the action of IL-1? On the neuroblastoma SK-N-AS suppresses the production of GDNF (Verity et al, 1999 ).
  • Such a complex expression pattern of GDNF is thought to be regulated by its promoter region (Tanaka et al., 2001).
  • GDNF promoter region includes transcription regulators such as NF- ⁇ B, CREB, trans-acting transcription factor 1 (SP1), sine oculis-related homeobox 2 homolog (Six2), and silencers that suppress transcription neura ⁇ restrictive
  • SP1 trans-acting transcription factor 1
  • Six2 sine oculis-related homeobox 2 homolog
  • NRSE silencer elements
  • Hsp70 and Hsc70 are Leu-Ile binding proteins, but in the following, Leu-Ile induces G DNF production via any signal after Hsp70 and Hsc70 bind.
  • NF- ⁇ ⁇ ( ⁇ et al, 2000), whose activity is suppressed by inducing the expression of Hsp70, which has a deep relationship with damage and site force-in, and neuroprotection
  • Wistar ST rat pregnancy day 17 (Japan SLC) was used. This study was conducted based on the Nagoya University School of Medicine Animal Experiment Fund ⁇ and Principles of Laboratory Animal Care (Nationa 1 Institutes of Health Publication 85-23, 1985).
  • fetuses from the 17th day of pregnancy were removed from Wistar ST rats, and the hippocampus was removed in ice-cooled L15 medium (Sigma Aldrich Japan, Tokyo). After trypsin (Invitrogen, NY, USA) was allowed to act at 37 ° C for 15 minutes, fetal calf serum (fe tal bovine serum: FBS) to stop the reaction, phosphate buffer saline (PBS) (1.3 mmol / NaCl, 81 mmol / 1 Na2HP04, 26.8 mmol / 1 KCl, 14.7 mmol / 1 KH2P04) (pH 7.4 ) was added to the container containing the hippocampus and shaken gently to remove the PBS.
  • PBS phosphate buffer saline
  • DMEM / F12HAM Dulbecco s modified Eagles medium / Ham s nutrient mixture F12 (Sigma Aldrich Japan) (Sigma Aldrich Japan) to this, and dissociate the cells by repeating pipetting 10 times to obtain 96 wells.
  • the culture was started at a cell density of 250,000 cells / cm 2 using a plate or a 6 cm petri dish (NALGE NUNC Internatial, Tokyo).
  • Leu-Ile (10 g / ml) was allowed to act on hippocampal neurons cultured in a 6 cm petri dish for 30 minutes, and after removing the culture supernatant, the cultured hippocampal neurons were washed with PBS and cytoplasmic extraction buffer (CEB) (10 The reaction was carried out on ice for 5 minutes with mM Tris-HCl (pH 7.9), 60 mM KCl, 1 mM EDTA, 1 mM dithiothreitol (DTT).
  • CAB cytoplasmic extraction buffer
  • Protease inhibitors (1 ⁇ g / ml leupeptin, 1 ⁇ g / ml pepstatin, 20 ⁇ g / ml phosphoramidon, 0.2 mg / ml EDTA, 2 ⁇ g / ml aprotinin , 0.5 mM PMSF) containing 0.4% Nonidet P-40 / CEB 300 ⁇ l for 5 minutes, cells were gently peeled off with a rubber policeman and collected, and centrifuged at 1,000 g for 5 minutes.
  • the precipitate obtained by centrifugation was washed with CEB containing a protease inhibitor, nuclear extraction buffer (NEB) (20 mM Tris—HC1 (pH 7.9), 0.4 M NaCl, 1.5 mM MgC12, 1.5 mM EDTA, 1 mM DTT, 25% glycerol) was stirred well and left on ice for 10 minutes. This solution was centrifuged at 16,000 g for 5 minutes and the supernatant was recovered as a nuclear extract (Yoo et al, 2000).
  • NEB nuclear extraction buffer
  • CREB antisense oligonucleotide corresponding to the start codon region of CREB (5'-GCT CCA GAG TCC ATG GTC AT-3 ': SEQ ID NO: 1) or CREB sense oligonucleotide (5'-AT GAC CAT GGA CTC TGG AGC- 3 ': 1 ⁇ g of SEQ ID NO: 2) was cultivated in a 6-cm dish and transferred to a sea urchin strain, and introduced with Lipofectamine Plus transfection reagent (Invitro gen) (Gonzalez et al., 1989 Sato- Bigbee and DeVries., 199 6).
  • Lipofectamine Plus transfection reagent Invitro gen
  • Leu-Ile (10 ⁇ g / ml) added to cells transfected with CREB antisense oligonucleotide and cultured for 24 hours (Afshari et al., 2001; Johnson et al., 2000), Western blotting of GDNF Used as a sample.
  • the cells were used for 1 day.
  • PI3K inhibitor LY294002 (30 ⁇ ) (Sigma Aldrich Japan) or geldanamycin (10 ⁇ ) (Sigma Aldrich Japan), which inhibits Hsp90 complex formation, and Leu-lie were allowed to act simultaneously for 30 minutes. Cells were used for Western blotting of Akt and CREB.
  • the amount of protein in the sample was measured with DC Protein Assey Kit II (BIO-RAD, CA, USA). An equal volume of sample buffer to the diluted sample was boiled at 95 ° C for 5 minutes and electrophoresed on a 10% polyacrylamide gel.
  • the membrane was blocked in a blocking buffer (KPL, MD, USA) for 2 hours at room temperature with gentle agitation.
  • the primary antibody mouse mon oclonai anti-GDNF antibody (R & D systems, MN, USA), rabbit anti-phospho-Ca, diluted 1000 times with blocking buffer in PDVF membrane)
  • MTT Atssey is a method for measuring the amount of color developed by soluble crystals of purple formazan product formed by reduction of yellow MTT by mitochondria in living cells. Since the mitochondria's MTT reducing power is proportional to the number of viable cells, the cell viability can be measured by measuring the absorbance of the product, and it is widely used for counting the number of viable cells in culture experiments. (Liptay et al., 1999; Uludag and Sefton., 1990).
  • a purple formazan product crystal formed by reduction of MTT was solubilized by adding 200 ul of 50% dimethylformamide, 20% SDS at pH 4.7, and a microplate reader with a wavelength of 570 nm (Model 450, BIO 'RAD ) To measure the absorbance. Since the amount of color development was proportional to the number of viable cells, the viability was determined with the absorbance of control cells as 100%.
  • GDNF mRNA For quantification of GDNF mRNA, a real-time RT-PCR method using iCycler System (Bio-Rad) was used. RNeasy (registered trademark) Mini Kit (Quiagen) was used to extract mRNA from cultured neurons. Reverse transcription from 1 ⁇ g of mRNA to cDNA was performed using oligo primers and Superscriptll RT (Life Technologies). Of the 20 ⁇ 1 reaction product, 1 ⁇ 1 was used for PCR. Platinum (registered trademark) Quantitative PCR SuperMix-UDG (Invitrogen) was used for the PCR reaction.
  • ribosomal mRNA As a control, quantification of ribosomal mRNA (TaqMan Ribosaomal RNA control Reagents; Applied Biosystem) was also corrected for variations between samples.
  • 5′-AGCTGCCAGCCCAGAGAATT-3 ′ (bp 288-307) (SEQ ID NO: 3) and 5 and GCACCCCCGATTTTTGC-3 ′ (bp 354-370) (SEQ ID NO: 4) were used as forward and reverse primers, respectively.
  • the probe for detection was dye probe being 5 and CAGAGGGAAAGGTCGCAGAGGCC-3 ′ (bp 309-331) (SEQ ID NO: 5) was used.
  • Leu-lie has also been shown to promote NF-kappa intranuclear translocation (Hayashi et al., 2000; Yoo et al., 2000; Zhu et al., 2004) 0
  • the amount of NF- ⁇ B in the nucleus was examined by Western blotting, the amount of NF- ⁇ present in the nucleus in cells treated with Leu-Ile was controlled. Compared to 196 ⁇ 16% (Fig. 5 ⁇ ).
  • the GDNF expression level increased to 188 ⁇ 13% in the cells treated with Leu-lie (10 ⁇ g / ml) compared to the control, sulfasalazine (100 M).
  • Leu-lie (10 g / ml) the expression level of GDNF did not increase.
  • sulfasalazine alone the expression level of GDNF was not different from the control (Fig. 6B).
  • Leu-Ile's neuroprotective action and GDNF production-inducing action may be mediated by NF- ⁇ B.
  • CREB antisense oligonucleotide By applying CREB antisense oligonucleotide to cultured hippocampal neurons, the expression level of CREB is reduced to 63 ⁇ 13% (Fig. 7B). Leu-Ile was allowed to act on these cells, and then Western blotting of GDNF was performed. Compared with the control, the expression level of GDNF was reduced to 72 ⁇ 10% in cells treated with CREB antisense oligonucleotide alone. In addition, in cells treated only with Leu-Ile (10 g / ml), the GDNF expression level increased to 188 ⁇ 13% compared to the control cells. Cells treated with Leu-Ile together with CREB antisense oligonucleotide.
  • Leu-Ile has an effect of inhibiting cell death and inducing GDNF production. It was confirmed that it had.
  • CREB is activated (Shaywitz and Greenberg., 1999; Wang et al., 1999). It was investigated whether ERK, Akt, CaMK and PKC are activated by Leu-Ile. As a result, only Akt phosphate was observed within 30 minutes when Leu-Ile was absorbed and CREB activity was observed. In addition, in order to investigate whether Akt phosphate induced by Leu-Ile is mediated by PI3K, Leu-Ile and PI3K inhibitor LY294002 were simultaneously administered to cells. When activated, the Akt phosphate chain induced by Leu-Ile was not suppressed.
  • GDNF I RET signals in human neuroblastoma TGW cells and early neuroectodermal cancer cells SK-N-MC promote CREB phosphorylation via ERK and Akt phosphorylation via PI3K.
  • ERK was not phosphorylated even when Leu-Ile was allowed to act
  • Akt was phosphorylated without PI3K
  • the acid was thought to be activated through a pathway different from the GDN F / RET signal.
  • Hsp90 has been reported as a factor that regulates phosphorylation of Akt, and the signal pathway of Hsp90 I Akt regulates the phosphorylation of CREB (Doong et al. al., 2003; Du and Montminy., 1998).
  • Akt phosphorylation of CREB
  • Lekt-Ile-induced phosphorylation of Akt and CREB phosphorylation was suppressed. It was thought that CREB was activated through the Hsp90 / Akt signaling pathway to induce GDNF production.
  • Hsp90 and Hsc70 form a complex and are known to regulate protein delivery and activity (Bagchi et al., 1991; McLaughlin et al., 2002). And the possibility of changing the binding ability of Hsp90. In this study, it was not possible to show how the interaction between Hsp90 and Hsc70 changes when Leu-Ile is applied. However, there are reports that Hsp90 and Hsc70 form a complex, and exchange various proteins and regulate the activity. Therefore, Leu-Ile changes the properties of these complexes. Hsp90 is thought to activate Akt (Fig. 10).
  • Leu-Ile is cell membrane permeable.
  • Hsc70 As a result of mass spectrometry of Leu_Ile binding protein, Hsc70 was identified.
  • NF- ⁇ was translocated into the nucleus and activated.
  • Leu-Ile binds to Hsc70 and activates NF- ⁇ and CREB through the Hsp90 / Akt pathway to induce GDNF production. It was found that Leu-Ile induces GDNF production through the Hsp90 / Akt signaling pathway, and Hsc70 and Hsp90 / Akt could be identified as new target genes responsible for the regulation of GDNF expression.
  • Beere HM The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci, 117: 2641—2651 (2004)
  • Besset V, Scott RP, Ibanez CF Signaling complexes and protein-protein interactio ns involved in the activation of the Ras and phosphatidylinositol 3— kinase pathways by the c— Ret receptor tyrosine kinase. J Biol Chem, 275: 39159—39166 (2000 )
  • Gold BG Neuroimmunophilin ligands: evaluation of their therapeutic potential for t he treatment of neurological disorders.
  • Nitta A Murai R, Maruyama K, Furukawa S: FK506 protects dopaminergic degene ration through induction of GDNF in rodent brain.
  • Mizuno Y and Fisher A edito rs. Mapping the progress of Alzheimer's and Parkinson 's disease. New York, NY: K luwer Academic / Plenum Publishers, 463-467 (2002)
  • Tanaka M, Ito S, Kiuchi K Novel alternative promoters of mouse glial cell line—der ived neurotrophic factor gene. Biochim Biophys Acta, 1494: 63-74 (2000)
  • Tanaka M, Ito S, Kiuchi K The 5 and untranslated region of the mouse glial cell line- derived neurotrophic factor gene regulates expression at both the transcriptional an d translational levels.
  • the Akt activator of the present invention can be used as a drug or food for a disease for which a preventive or therapeutic effect can be obtained by regulating Akt, or as a reagent for studying the onset mechanism or progress mechanism of the disease.
  • the active ingredient of the present invention has the advantage that it is easy to prepare because the basic structure is a very simple dipeptide.
  • the present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Rheumatology (AREA)
  • Cardiology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Psychology (AREA)
  • Pain & Pain Management (AREA)

Abstract

Novel use of Leu-Ile. There is provided an Akt activating agent comprising as an active ingredient any of the following compounds: (a) peptides composed of Leu and Ile, (b) products of modification of peptides composed of Leu and Ile, and (c) pharmaceutically acceptable salts of compounds (a) or (b).

Description

Akt活性化剤  Akt activator
技術分野  Technical field
[0001] 本発明は Akt活性化剤に関する。本発明の Akt活性化剤は Aktの活性ィ匕を介して、 Aktが関与する疾患の治療や予防に利用できる。  [0001] The present invention relates to an Akt activator. The Akt activator of the present invention can be used for the treatment or prevention of diseases involving Akt through the activity of Akt.
背景技術  Background art
[0002] 近年、日本の将来を担う若年層にお 、て薬物乱用者が増え、薬物依存症が大きな 社会問題となりつつある。そのため、薬物依存形成機構の解明および治療法の開発 は緊急を要する課題である。これまでの研究では、 glial cell line-derived neurotrophi c factor (GDNF)が薬物依存を抑制することが報告されている(Green- Sadan et al., 2 003; Messer, 2000 (非特許文献 1及び 2) )。し力し、 GDNFは高分子タンパク質であり 、血液脳関門を通過できずに血中のプロテアーゼによって分解されてしまうため、末 梢からの投与では治療効果を得ることが困難である。そこで、我々は GDNFを産生誘 導する低分子量の疎水性ジペプチド Leu-Ile (Nitta et al., 2004 (非特許文献 3) )を用 V、て薬物依存に対する治療効果を検討した。  [0002] In recent years, the number of drug abusers has increased in the younger generation who will lead the future of Japan, and drug addiction is becoming a major social problem. Therefore, elucidation of the mechanism of drug dependence formation and development of treatment methods are urgent issues. Previous studies have reported that glial cell line-derived neurotrophic factor (GDNF) suppresses drug dependence (Green- Sadan et al., 2 003; Messer, 2000 (Non-Patent Documents 1 and 2). )). However, since GDNF is a high molecular protein and cannot be passed through the blood-brain barrier and is degraded by proteases in the blood, it is difficult to obtain a therapeutic effect by administration from the terminal. Therefore, we examined the therapeutic effects on drug dependence using the low molecular weight hydrophobic dipeptide Leu-Ile (Nitta et al., 2004 (Non-patent Document 3)) that induces the production of GDNF.
国内で最も多く乱用されている覚醒剤メタンフェタミンを投与したマウスに対して Leu -lieを投与したところ、 Leu-Ileはメタンフェタミンによって引き起こされる場所嗜好性お よび運動量の増加を抑制し、すでに形成されてしまった場所嗜好性や運動量の増加 に対しても抑制効果のあることが示された (Nitta et al, 2003 (非特許文献 4))。これら の研究によって、 Leu-Ileが薬物依存の治療薬となる可能性が示唆された。しかし、 Le u-Ileが生体内でどのタンパク質と結合し、どの様なシグナル経路を介して GDNFを産 生誘導して 、るのかはまだ解明されて 、な 、。  When Leu-lie was administered to mice given the most commonly abused stimulant methamphetamine in Japan, Leu-Ile suppressed the increase in place preference and momentum caused by methamphetamine, and was already formed. It has also been shown to have an inhibitory effect on increased place preference and momentum (Nitta et al, 2003 (Non-Patent Document 4)). These studies suggested that Leu-Ile could be a drug-dependent treatment. However, it has not yet been elucidated what protein Leu-Ile binds to in vivo and what kind of signal pathway it produces and induces GDNF.
GDNFは薬物依存のみでなぐ胎児中胚葉由来ドーパミン作動性神経を始め運動 神経細胞、海馬神経細胞、大脳皮質神経細胞などに対して保護作用を持ち (Houeno u et al" 1996; Lin et al" 1993; Trupp et al" 1997; Wang et al" 1997 (非特許文献 5 〜8))、パーキンソン病や脊髄損傷の治療薬としての応用も期待されている。厚生労 働省の調査によると、 日本国内のみでも、パーキンソン病の患者数は 14万 1千人(平 成 14年度患者調査)、脊髄損傷の患者数は 10万人 (平成 13年身体障害児,身体障 害者実態調査)となっており、多くの人々が、現在の医療技術では治療困難な神経 変性疾患を抱えている。 GDNF has a protective effect on fetal mesoderm-derived dopaminergic neurons, motor neurons, hippocampal neurons, cerebral cortex neurons, etc. that are not only drug dependent (Houeno u et al "1996; Lin et al" 1993 Trupp et al "1997; Wang et al" 1997 (Non-Patent Documents 5 to 8)), and application as a therapeutic agent for Parkinson's disease and spinal cord injury is also expected. According to a survey by the Ministry of Health, Labor and Welfare, the number of Parkinson's disease patients in Japan alone is 141,000. In 2014, the number of patients with spinal cord injury was 100,000 (the 2001 survey on the actual condition of children with physical disabilities and persons with disabilities). Have a degenerative disease.
文部科学省では、これらの疾患や動脈硬化症などの生活習慣病に対して再生医 療を用いた新しい治療法の実用化を目指すため、平成 15年度より「再生医療の実現 化プロジェクト」に着手した。再生医療が実現すれば、これまでの医療を根本的に変 革する革新的医療技術となりうる。その中で、「幹細胞」を用いた再生医療を実現させ るためには、細胞増殖や分ィ匕調節に関する機構の解明が必要である。初期神経発 生にも深く関わりを持つ GDNFなどの神経栄養因子は、神経幹細胞の増殖、分化に 於いても重要な制御因子となると考えられている (Lee et al., 2005; Riaz et al., 2004; Roussa and Krieglstein., 2004; Tzeng et al., 2004; Yoo et al, 2003 (非特許文献 9〜 13))。  The Ministry of Education, Culture, Sports, Science and Technology started the “Regenerative Medicine Realization Project” in FY2003 to aim at the practical application of new treatment methods using regenerative medicine for these diseases and lifestyle-related diseases such as arteriosclerosis. did. If regenerative medicine is realized, it can be an innovative medical technology that fundamentally changes the conventional medicine. In order to realize regenerative medicine using “stem cells”, it is necessary to elucidate the mechanisms related to cell growth and regulation. Neurotrophic factors such as GDNF, which are also closely related to early neurogenesis, are thought to be important regulators of neural stem cell proliferation and differentiation (Lee et al., 2005; Riaz et al. 2004; Roussa and Krieglstein., 2004; Tzeng et al., 2004; Yoo et al, 2003 (Non-Patent Documents 9 to 13)).
非特許文献 1 : Green- Sadan T, Kinor Ν, Roth-Deri I, Geffen- Aricha R, Schindler CJ , Yadid G: Transplantation of glial cell line-derived neurotrophic factor-expressing c ells into the striatum and nucleus accumbens attenuates acquisition of cocaine self— a dministration in rats. Eur J Neurosci, 18: 2093—2098 (2003) Non-Patent Document 1: Green- Sadan T, Kinor Ν, Roth-Deri I, Geffen- Aricha R, Schindler CJ, Yadid G: Transplantation of glial cell line-derived neurotrophic factor-expressing c ells into the striatum and nucleus accumbens attenuates acquisition of cocaine self— a dministration in rats. Eur J Neurosci, 18: 2093—2098 (2003)
非特許文献 2 : Messer CJ, Eisch AJ, Carlezon WA Jr, Whisler K, Shen L, Wolf DH, Westphal H, Collins F, Russell DS, Nestler EJ: Role for GDNF in biochemical and b ehavioral adaptations to drugs of abuse. Neuron, 2b: 247-257 (2000) Non-Patent Document 2: Messer CJ, Eisch AJ, Carlezon WA Jr, Whisler K, Shen L, Wolf DH, Westphal H, Collins F, Russell DS, Nestler EJ: Role for GDNF in biochemical and b ehavioral adaptations to drugs of abuse. Neuron, 2b: 247-257 (2000)
非特許文献 3 : Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L, F urukawa S: Hydrophobic dipeptide Leu— lie protects against neuronal death by indu cing brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis. J Neurosci Res, 78: 250—258 (2004) Non-Patent Document 3: Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L, F urukawa S: Hydrophobic dipeptide Leu—lie protects against neuronal death by indu cing brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis. J Neurosci Res, 78: 250—258 (2004)
非特許文献 4 : Nitta A, Yamada Y, Nakajima A, Noda Y, Yamada K, Nabeshima T: C andidate genes or compounds for therapeutic tools against methamphetamine and/ or morphine-induced dependence. Folia Pharmacologica Japonica, 122: 81-83 (2003) 非特許文献 5 : Houenou LJ, Oppenheim RW, Li L, Lo AC, Prevette D: Regulation of spinal motoneuron survival by GDNF during development and following injury. Cell Tissue Res, 286: 219-223 (1996) Non-Patent Document 4: Nitta A, Yamada Y, Nakajima A, Noda Y, Yamada K, Nabeshima T: C andidate genes or compounds for therapeutic tools against methamphetamine and / or morphine-induced dependence. Folia Pharmacologica Japonica, 122: 81-83 (2003) Non-Patent Document 5: Houenou LJ, Oppenheim RW, Li L, Lo AC, Prevette D: Regulation of spinal motoneuron survival by GDNF during development and following injury. Tissue Res, 286: 219-223 (1996)
非特許文献 6 : Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F: GDNF: a glial eel 1 line-derived neurotropnic factor for midbrain dopaminergic neurons. Science, 260: 1130-1132 (1993) Non-Patent Document 6: Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F: GDNF: a glial eel 1 line-derived neurotropnic factor for midbrain dopaminergic neurons. Science, 260: 1130-1132 (1993)
非特言午文献 7 : Trupp M, Belluardo N, Funakoshi H, Ibanez CF: Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c- ret p roto— oncogene, and GDNF receptor-alpha indicates multiple mechanisms of tropnic actions in the adult rat CNS. J Neurosci, 17: 3554-3567 (1997) Non-Special Reference 7: Trupp M, Belluardo N, Funakoshi H, Ibanez CF: Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret p roto— oncogene, and GDNF receptor-alpha indicates multiple mechanisms of tropnic actions in the adult rat CNS.J Neurosci, 17: 3554-3567 (1997)
非特許文献 8 : Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ: Glial cell line- der ived neurotrophic factor protects against ischemia— induced injury in the cerebral cor tex. J Neurosci, 17: 4341-4348 (1997) Non-Patent Document 8: Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ: Glial cell line- der ived neurotrophic factor protects against ischemia— induced injury in the cerebral cor tex. J Neurosci, 17: 4341-4348 (1997 )
非特許文献 9 : Lee CS, Tee LY, Dusenbery S, Takata T, Golden JP, Pierchala BA, G ottlieb DI, Johnson EM Jr, Choi DW, Snider JB: Neurotrophin and GDNF family liga nds promote survival and alter excitotoxic vulnerability of neurons derived from muri ne embryonic stem cells. Exp Neurol, 191: 65-76 (2005) Non-Patent Document 9: Lee CS, Tee LY, Dusenbery S, Takata T, Golden JP, Pierchala BA, Gottlieb DI, Johnson EM Jr, Choi DW, Snider JB: Neurotrophin and GDNF family liga nds promote survival and alter excitotoxic vulnerability of neurons derived from muri ne embryonic stem cells. Exp Neurol, 191: 65-76 (2005)
非特許文献 10 : Riaz SS, Theofilopoulos S, Jauniaux E, Stern GM, Bradford HF: The differentiation potential of human foetal neuronal progenitor cells in vitro. Brain Res Dev Brain Res, 153: 39—51 (2004) Non-Patent Document 10: Riaz SS, Theofilopoulos S, Jauniaux E, Stern GM, Bradford HF: The differentiation potential of human foetal neuronal progenitor cells in vitro. Brain Res Dev Brain Res, 153: 39—51 (2004)
特言午文献 11 : Roussa E, Krieglstein K: GDNF promotes neuronal differentiation an d dopaminergic development of mouse mesencephalic neurospheres. Neurosci Lett, 361: 52-55 (2004)  Special Article 11: Roussa E, Krieglstein K: GDNF promotes neuronal differentiation an d dopaminergic development of mouse mesencephalic neurospheres. Neurosci Lett, 361: 52-55 (2004)
非特言午文献 12 : Tzeng SF, Tsai MJ, Hung Sし, Cheng H: Neuronal morphological cha nge of size-sieved stem cells induced by neurotrophic stimuli. Neurosci Lett, 367: 2 3-28 (2004) Non-Special Terms 12: Tzeng SF, Tsai MJ, Hung S, Cheng H: Neuronal morphological change of size-sieved stem cells induced by neurotrophic stimuli. Neurosci Lett, 367: 2 3-28 (2004)
非特許文献 13 :Yoo YM, Kim YJ, Lee U, Paik DJ, Yoo HT, Park CW, Kim YB, Lee SG, Kim WK, Yoo CJ: Neurotrophic factor in the treatment of Parkinson disease. N eurosurg Focus, 15: 1 (2003) Non-Patent Document 13: Yoo YM, Kim YJ, Lee U, Paik DJ, Yoo HT, Park CW, Kim YB, Lee SG, Kim WK, Yoo CJ: Neurotrophic factor in the treatment of Parkinson disease. N eurosurg Focus, 15: 1 (2003)
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0004] GDNFは神経保護作用を有し、神経変性疾患治療への応用が期待される。しかし、 GDNFは、末梢投与では血液脳関門を通過できず、血中のプロテアーゼによって分 解されてしまうため、脳への作用は期待できない。そのため、経口投与によって、脳ま たは神経組織内で GDNFの産生量を効果的に増やせるような薬の開発が望まれる。 そのような化合物を探索する中で、本発明者らは Leu-Ileを見出した (既報)。しかしな がら、 Leu-Ileがどのようにして GDNFを産生誘導するのかにつ!/、ては全く分かって!/ヽ ない。  [0004] GDNF has a neuroprotective action and is expected to be applied to the treatment of neurodegenerative diseases. However, since GDNF cannot cross the blood-brain barrier when administered peripherally and is degraded by proteases in the blood, it cannot be expected to act on the brain. Therefore, it is desirable to develop a drug that can effectively increase the amount of GDNF produced in the brain or nerve tissue by oral administration. In search of such compounds, the present inventors have found Leu-Ile (previously reported). However, it is completely unknown how Leu-Ile induces GDNF production!
そこで本発明は、その作用点及び作用機序を明らかにすることで Leu-Ileの新たな 用途を提供することを目的とする。  Therefore, the present invention aims to provide a new application of Leu-Ile by clarifying its action point and action mechanism.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者らは Leu-Ileの GDNF産生調節機構を解明することを目的として研究を行 い、以下の知見を得るに至った。 [0005] The present inventors have conducted research for the purpose of elucidating the GDNF production regulation mechanism of Leu-Ile, and have obtained the following findings.
(1) Leu-Ileは細胞膜透過性である。  (1) Leu-Ile is cell membrane permeable.
(2) FITC標識した Leu-Ileとマウス脳ホモジナイズ液を反応させたところ、 70KDの大き さのタンパク質が結合した。  (2) When FITC-labeled Leu-Ile was reacted with mouse brain homogenization solution, a 70 KD protein was bound.
(3) Leu_Ile結合タンパク質の質量分析を行った結果、 Hsc70が同定された。 (3) As a result of mass spectrometry of Leu_Ile binding protein, Hsc70 was identified.
(4)水晶発振子バイオセンサーを用いて Hsc70および Hsc70と相同性の高い Hsp70と Leu- lieの結合活性について検討したところ、 Hsc70は Kd = 1.83 X 10— 8 M、 Hsp70は K d = 1.24 X 10— 8 Mの強さで Leu-Ileと特異的に結合した。 (4) was examined for binding activity to the crystal oscillator biosensor with Hsc70 and Hsc70 highly homologous Hsp70 and Leu- lie, Hsc70 is Kd = 1.83 X 10- 8 M, Hsp70 is K d = 1.24 X bound to Leu-Ile and specifically in strength of 10- 8 M.
(5)分子シミュレーションを用いて Hsc70と Leu-Ileの結合部位を予測し、相互ポテン シャルエネルギーを計算した結果、 ATPaseドメインには- 119.044 kCal、基質結合ドメ インには- 76.711 kCal、 C末端ドメインには- 64.337 kCalの強さで Leu- lieが結合し、 H sc70は ATPaseドメインと結合する可能性が高いことが示唆された。  (5) The molecular potential was used to predict the binding site of Hsc70 and Leu-Ile, and the mutual potential energy was calculated. As a result, -119.044 kCal for the ATPase domain and -76.711 kCal for the substrate-binding domain, C-terminal domain It was suggested that Leu-lie binds at a strength of -64.337 kCal, and that H sc70 is likely to bind to the ATPase domain.
(6) Leu-Ileを作用させた培養海馬神経細胞では、 NF- κ Βが核内に移行し、活性ィ匕 された。  (6) In cultured hippocampal neurons treated with Leu-Ile, NF-κΒ was translocated into the nucleus and activated.
(7) Leu-Ileを作用させた培養海馬神経細胞では、神経細胞死が抑制され、 GDNFの 産生が誘導された力 NF- κ B阻害剤の sulfasalazineと Leu-Ileを同時に作用させた 細胞群では、 Leu-Ileの効果が抑制された。 (7) In cultured hippocampal neurons treated with Leu-Ile, NF-κB inhibitors sulfasalazine and Leu-Ile were allowed to act simultaneously, in which nerve cell death was suppressed and GDNF production was induced. In the cell population, the effect of Leu-Ile was suppressed.
(8) Leu-Ileを作用させた培養海馬神経細胞では、コントロール群に比べ CREBのリン 酸化の程度が増加した。  (8) In the cultured hippocampal neurons treated with Leu-Ile, the degree of phosphorylation of CREB increased compared to the control group.
(9) CREBアンチセンスオリゴヌクレオチドを培養海馬神経細胞に作用させると、 Leu- Ileの GDNF産生誘導効果が抑制された。  (9) When CREB antisense oligonucleotide was allowed to act on cultured hippocampal neurons, Leu-Ile's GDNF production-inducing effect was suppressed.
(10) Leu-Ileを作用させた培養海馬神経細胞では、 Aktのリン酸ィ匕の程度が増加した 力 CaMKII, PKC-?および ERKについては変化がなかった。  (10) In cultured hippocampal neurons treated with Leu-Ile, there was no change in CaMKII, PKC-?
(11) PI3K阻害剤の LY294002と Leu-Ileを同時に作用させた細胞では、 Leu-Ileによつ て誘導された Aktおよび CREBのリン酸化は抑制されなかった。一方、 Hsp90の阻害 剤である geldanamycinと Leu-Ileを同時に作用させた細胞では Leu-Ileによって誘導さ れた Aktおよび CREBのリン酸化を抑制した。  (11) In cells treated with the PI3K inhibitors LY294002 and Leu-Ile simultaneously, phosphorylation of Akt and CREB induced by Leu-Ile was not suppressed. On the other hand, in cells treated with geldanamycin, an inhibitor of Hsp90, and Leu-Ile simultaneously, phosphorylation of Akt and CREB induced by Leu-Ile was suppressed.
[0006] 以上の知見から Leu-Ileが Hsc70に結合し、 Hsp90/Aktの経路(Hsp90が結合するこ とによって Aktが活性化される経路)を介して NF- κ Bおよび CREBを活性化し、 GDNF の産生を誘導すると考えられた。 Hsp90/Aktのシグナル経路によって Leu-Ileが GDN Fを産生誘導することが分かり、 GDNFの発現調節を担う新たなターゲット遺伝子とし て Hsc70および Hsp90/Aktを特定することができた。  [0006] Based on the above findings, Leu-Ile binds to Hsc70 and activates NF-κB and CREB via the Hsp90 / Akt pathway (the pathway in which Akt is activated by binding to Hsp90). It was thought to induce the production of GDNF. It was found that Leu-Ile induces GDN F production through the Hsp90 / Akt signaling pathway, and Hsc70 and Hsp90 / Akt could be identified as new target genes responsible for the regulation of GDNF expression.
[0007] 以上のように、 Hsp90/Aktを介したシグナル経路によって Leu-Ileが GDNFを産生誘 導することが明かとなった。即ち、 Leu-Ileは Aktを活性ィ匕する作用を有し、この作用が 発揮される結果、 GDNFの産生が誘導されることが判明した。  [0007] As described above, it has been clarified that Leu-Ile induces GDNF production through a signal pathway via Hsp90 / Akt. That is, it has been found that Leu-Ile has an action of activating Akt, and as a result of this action, production of GDNF is induced.
本発明者らは、 Leu-Ileが Akt活性ィ匕作用を有する点に注目した。 Aktを活性化でき るということは、 Aktが関与する種々のシグナル経路を調節できることを意味する。従 つて、 Aktが関与するグナル経路を調節することで治療効果や予防効果が得られる 疾患に対して Leu-Ileが有効であると!/、える。  The present inventors have noted that Leu-Ile has Akt activity. The ability to activate Akt means that it can regulate various signaling pathways involving Akt. Therefore, Leu-Ile is effective for diseases that can have therapeutic and prophylactic effects by regulating the gnnal pathway involved in Akt! /.
本発明は、以上の知見及び考察に基づき完成されたものであって、以下の構成を提 供する。  The present invention has been completed based on the above knowledge and consideration, and provides the following configuration.
本発明は (a)〜(c)の ヽずれかの化合物を有効成分として含有する Akt活性化剤であ る。  The present invention is an Akt activator comprising any one of compounds (a) to (c) as an active ingredient.
(a)Leu及び lieからなるペプチド; (b) Leu及び lieからなるペプチドの修飾体; (a) a peptide comprising Leu and lie; (b) a modified form of a peptide comprising Leu and lie;
(c)薬学的に許容可能な、(a)又は (b)の塩。 (c) A pharmaceutically acceptable salt of ( a ) or (b).
本発明の一態様では、有効成分としてのペプチドが Leu— lieであることを特徴とす る。  In one embodiment of the present invention, the peptide as an active ingredient is Leu-lie.
本発明の Akt活性化剤は好ましくは、 パーキンソン病、脊髄損傷、薬物依存、アル ッハイマー病、水頭症、脳損傷、脳梗塞、 痴呆症、リューマチ症、又は統合失調症 の治療又は予防に使用される。  The Akt activator of the present invention is preferably used for the treatment or prevention of Parkinson's disease, spinal cord injury, drug dependence, Alheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia. The
本発明の他の態様は、上記 Akt活性化剤を含有する食品を提供する。  Another embodiment of the present invention provides a food containing the Akt activator.
本発明は更に他の態様として、上記 Akt活性化剤を生体に投与するステップを含む 、パーキンソン病、脊髄損傷、薬物依存、アルツハイマー病、水頭症、脳損傷、脳梗 塞、痴呆症、リューマチ症、又は統合失調症の予防又は治療方法を提供する。  In still another aspect, the present invention includes a step of administering the Akt activator to a living body, including Parkinson's disease, spinal cord injury, drug dependence, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism Or a method for preventing or treating schizophrenia.
尚、本明細書中では必要に応じて以下の略号を使用する。  In the present specification, the following abbreviations are used as necessary.
AP2: activator protein 2、 CEB: cytoplasmic extraction buffer し REB: cAMP respo nse element binding protein、 CsA: cyclosporin A、 DMEM: Dulbecco' s modified Eagl e' s medium^ DTT: dithiothreitol、 EDTA: ethylenediamine tetracetic acid、 egr- 1: ear ly growth response- 1、 egr- 2: earlygrowth response- 2、 F12HAM: Ham' s nutrient mi xture F12、 FBS: fetal bovine serum、 FGF: fibloblast growth factor FITC: Fluoresce in isothiocyanate isomer 1、 FK506: tacrolimus FKBP: FK506 binding protein、 GCF : GC factor GDNF: glial cell line-derived neurotrophic factor GFR- a?: GDNF fa mily receptor- a、 IL— 1 : interleukin— lbeta、 MALDI: Matrix-assisted laser desorpti on/ ionization^ MNF: myocyte nuclear factor MRE: metal response element MS: M ass spectrometry MTT: methyl thiazol tetrazolium、 NCBI: National Center for Biot echnology Information^ NEB: nuclear extraction buffer NF— κ B: nuclear factor— kap pa B、 NRSE: neural-restrictive silencer elements ODN: oligodeoxynucleotide、 PBS: phosphate buffer s aline PDB: protein data bank、 PDVF: polyvinylidene fluoride PI 3K: phosphatidylinositol-3 kinase PMSF: phenylmethansulfonylfluoride、 RCSB: Res earch Collaboratory for Structural Bioinformatics、 SDS: sodium dodecyl sulfate Six2 : sine oculis— related homeobox 2 homology SPl: trans-acting transcription factor 1、 TBS: Tris buffer saline TFA: trifluoroacetic acid、 TNF- : tumore necrosis factor— alpha TOF: time of flight-time of flight、 Tyr: tyrosine USF: Up-stream stimulatory factor YY1 : yin yang— 1。 AP2: activator protein 2, CEB: cytoplasmic extraction buffer and REB: cAMP respo nse element binding protein, CsA: cyclosporin A, DMEM: Dulbecco's modified Eagle e's medium ^ DTT: dithiothreitol, EDTA: ethylenediamine tetracetic acid, egr- 1: ear ly growth response- 1, egr- 2: earlygrowth response- 2, F12HAM: Ham's nutrient mixture F12, FBS: fetal bovine serum, FGF: fibloblast growth factor FITC: Fluoresce in isothiocyanate isomer 1, FK506: tacrolimus FKBP: FK506 binding protein, GCF: GC factor GDNF: glial cell line-derived neurotrophic factor GFR-a? : GDNF fa mily receptor- a, IL-1: interleukin— lbeta, MALDI: Matrix-assisted laser desorpti on / ionization ^ MNF: myocyte nuclear factor MRE: metal response element MS: Mass spectrometry MTT: methyl thiazol tetrazolium, NCBI: National Center for Biot echnology Information ^ NEB: nuclear extraction buffer NF— κ B: nuclear factor— kap pa B, NRSE: neural-restrictive silencer elements ODN: oligodeoxynucleotide, PBS: phosphate buffer s aline PDB: protein data bank, PDVF: polyvinylidene fluoride PI 3K: phosphatidylinositol-3 kinase PMSF: phenylmethansulfonylfluoride, RCSB: Res earch Collaboratory for Structural Bioinformatics, SDS: sodium dodecyl sulfate Six2: sine oculis— related homeobox 2 homology SPl: trans-acting transcription factor 1, TBS: Tris buffer saline TFA: trifluoroacetic acid, TNF-: tumore necrosis factor— alpha TOF: time of flight-time of flight, Tyr: tyrosine USF: Up-stream stimulatory factor YY1: yin yang— 1.
図面の簡単な説明 Brief Description of Drawings
[図 l]Leu-Ileの細胞膜透過性実験の結果。 A : FITC標識 Leu-Ile又は FITCのみを培 養神経細胞の上清に添加し、 30分後の細胞内の FITCの蛍光強度を測定することに よって、これらの細胞膜透過の用量依存性を検討した。 B :培養神経細胞に FITC標 識 Leu-Ile (10 g/ml)を加え、添加後の細胞膜透過に対する時間依存性を検討した 。 C: FITC標識 Leu-Ile (10 μ g/ml)とさまざまな濃度の Leu-Ileを一緒に培養神経細胞 に添加し、 30分後の細胞内 FITC蛍光強度を測定したところ、高濃度の Leu-Ileは、 FI TC標識 Leu-Ile添カ卩による蛍光強度増加を抑制した。 D :—方、 FITC (10 g/ml)とさ まざまな濃度の Leu-Ileを一緒に培養神経細胞に添加し、 30分後の細胞内 FITC蛍光 強度を測定しても、蛍光強度増加を抑制しな力つた。 [Fig. L] Results of Leu-Ile cell membrane permeability experiment. A: Add only FITC-labeled Leu-Ile or FITC to the supernatant of cultured neurons, and examine the dose dependence of these cell membrane permeabilities by measuring the fluorescence intensity of FITC in the cells 30 minutes later. did. B: FITC-labeled Leu-Ile (10 g / ml) was added to cultured neurons, and the time dependence of cell membrane permeation after addition was examined. C: FITC-labeled Leu-Ile (10 μg / ml) and various concentrations of Leu-Ile were added together to cultured neurons, and the intracellular FITC fluorescence intensity was measured after 30 minutes. -Ile suppressed the increase in fluorescence intensity caused by FI TC-labeled Leu-Ile supplement. D:-, FITC (10 g / ml) and various concentrations of Leu-Ile were added to cultured neurons together, and the fluorescence intensity increased even after measuring intracellular FITC fluorescence intensity after 30 minutes The power was restrained.
[図 2]Leu-Ile結合蛋白の単離実験の結果。(A):レーン 1 :N末端側に蛍光標識した Leu -lieとマウス脳溶解液を 4°Cまたは 37°Cで作用させた。レーン 2:C末端側に蛍光標識 した Leu-Ileとマウス脳溶解液を 4°Cまたは 37°Cで作用させた。これらの電気泳動像は 、蛍光スキャナーで読み取った。(B):マウス脳溶解液を Leu-Ileを結合させたァフィゲ ル 10(レーン 1)又は結合させて!/、な!/、ァフィゲル 10(レーン 2)と反応させ、 Leu-Ile結合 蛋白を精製した。 Leu-Ile結合蛋白について、電気泳動後、銀染色を行い、質量解析 を行った。レーン l ;Leu-Ile結合蛋白。レーン 2;コントロール。矢印は、質量解析を行 つた蛋白を示す。(C):質量解析に使用したサンプルで、 Hsc70のウェスタンブロットを 行った。  [Fig. 2] Results of Leu-Ile binding protein isolation experiment. (A): Lane 1: Leu-lie fluorescently labeled on the N-terminal side and mouse brain lysate were allowed to act at 4 ° C or 37 ° C. Lane 2: Leu-Ile fluorescently labeled on the C-terminal side and mouse brain lysate were allowed to act at 4 ° C or 37 ° C. These electrophoretic images were read with a fluorescence scanner. (B): Mouse brain lysate was reacted with Leu-Ile-conjugated Affigel 10 (lane 1) or! /, Nana! /, Affigel 10 (lane 2), and Leu-Ile binding protein was Purified. The Leu-Ile binding protein was subjected to silver staining after electrophoresis and mass analysis was performed. Lane l; Leu-Ile binding protein. Lane 2; control. The arrow indicates the protein subjected to mass analysis. (C): The sample used for mass analysis was subjected to Western blotting of Hsc70.
[図 3]Leu-Ileと Hsc70または Hsp70との結合親和性を水晶振動子で測定した結果。 (A) : Leu-Ile, Pro-Leu又は lie-Proを、水晶振動子に吸着させ、 PBS中に固定した。その 後、 25°Cで Hsc70、 Hsp70、又は熱変性させた Hsc70若しくは Hsp70を PBS中に加えて いった。そのときの振動数を計数した。解離定数は、ソフトウェア AQUAで計算させた  [Fig. 3] Results of measuring the binding affinity between Leu-Ile and Hsc70 or Hsp70 with a quartz crystal. (A): Leu-Ile, Pro-Leu or lie-Pro was adsorbed on a quartz crystal unit and fixed in PBS. Thereafter, Hsc70, Hsp70, or heat-denatured Hsc70 or Hsp70 at 25 ° C. was added to PBS. The frequency at that time was counted. The dissociation constant was calculated with the software AQUA
[図 4]Leu- lieと Hscの結合部位を示す。 Hsc70の ATPaseドメイン(Flaherty et al., 1990) と Leu-Ileは結合する。 [Fig. 4] Shows the binding site between Leu-lie and Hsc. Ascase domain of Hsc70 (Flaherty et al., 1990) And Leu-Ile combine.
[図 5]活性化されていない NF- κ Bの細胞数および、核内での不活性化 NF- κ Bの発 現量。(A):Leu- lie (10 μ g/ ml)、 TNF- α (100 ng/ml)及び GDNF(50 ng/ml)を 30分間 細胞に作用させた。(A-a):典型的な NF- κ Bが活性ィ匕されていない細胞。(A-b):典型 的な NF- κ B-活性ィ匕細胞。(A-c):NF- κ Βが活性ィ匕されていない細胞の割合。 1枚の 各培養皿について、 8つの視野について、計数を行い (それぞれ 75 X 55 m)、 4枚の 培養皿を用いて検討を行った。 *P〈0.05 対コントロール (Sheffe test)。(B):Leu- Ile(10 μ g/ ml)、 TNF- a (100 ng/ml)及び GDNF(50 ng/ml)を 30分間細胞に作用させ、ゥェ スタンプロットを行った。典型的な実験結果を示す。その強度についても検討を行い( n=4)、平均士標準偏差で示した。 *P〈0.05 対コントロール (Sheffe test)。  [Fig. 5] Number of non-activated NF-κB cells and the amount of inactivated NF-κB in the nucleus. (A): Leu-lie (10 μg / ml), TNF-α (100 ng / ml) and GDNF (50 ng / ml) were allowed to act on the cells for 30 minutes. (A-a): Cells in which typical NF-κB is not activated. (A-b): Typical NF-κB-active cells. (A-c): percentage of cells in which NF-κΒ is not activated. For each culture dish, 8 fields were counted (75 x 55 m each) and examined using 4 culture dishes. * P <0.05 vs. control (Sheffe test). (B): Leu-Ile (10 μg / ml), TNF-a (100 ng / ml) and GDNF (50 ng / ml) were allowed to act on the cells for 30 minutes, and Westamp lot was performed. Typical experimental results are shown. The strength was also examined (n = 4), and the average standard deviation was shown. * P <0.05 vs. control (Sheffe test).
[図 6]培養神経細胞における、細胞生存および GDNF発現におよぼす NF- κ Βの影 響。(A)sulfasalazine(25 M)存在または非存在化で培養神経細胞に Leu- Ile(10 g /ml)を 3日間作用させた。細胞生存効果については、 MTT法で検討した。 Leu-Ileは 生存細胞数を増加させたが、 sulfasalazineは Leu-Ileのその効果を抑制した。値は (n= 6)標準偏差で示した。 *P<0.05 対コントロール (Sheffe test)。(B):sulfasalazine存在下 または非存在下で、 Leu-Ile(10 μ g/ml)を 1日間作用させた。 GDNFの発現量をゥェ スタンプロットで検討した。典型的な実験結果を示す。実験結果は平均士標準偏差 で示した。 Leu-Ileは GDNFの発現を誘導した力 sulfasalazineはその作用を抑制した 。値は (n=4)平均士標準偏差で示した。 *P〈0.05 対コントロール (Sheffe test)。 [Fig. 6] Effect of NF-κΒ on cell survival and GDNF expression in cultured neurons. (A) Leu-Ile (10 g / ml) was allowed to act on cultured neurons for 3 days in the presence or absence of sulfasalazine (25 M). The cell survival effect was examined by the MTT method. Leu-Ile increased the number of viable cells, but sulfasalazine suppressed its effect of Leu-Ile. Values are expressed as (n = 6) standard deviation. * P <0.05 versus control (Sheffe test). (B): Leu-Ile (10 μg / ml) was allowed to act for 1 day in the presence or absence of sulfasalazine. The expression level of GDNF was examined in the stamp lot. Typical experimental results are shown. The experimental results are shown in average standard deviation. Leu-Ile induced GDNF expression, and sulfasalazine suppressed its action. Values are expressed as (n = 4) mean standard deviation. * P <0.05 vs. control (Sheffe test).
[図 7]CREBのリン酸化および GDNFの発現量。(A):培養神経細胞に Leu-Ile(10 μ g/ ml)を 0、 10、 20または 30分間作用させ、リン酸化 CREBをウェスタンブロットで測定した 。リン酸化 CREBは、 Leu-Ileを作用させてから 20分後から増加し、 30分後まで維持さ れた。典型的なウェスタンプロットの結果を示した。(B):培養神経細胞に CREBのアン チセンス又はセンスヌクレオチドを (ODN)24時間作用させた。 CREBの蛋白量をウェス タンプロットで測定した。(C):CREBのアンチセンス又はセンスオリゴヌクレオチドの存 在下または非存在下で Leu-Ile(10 g/ml)を 24時間作用させた。 GDNFの発現量を ウェスタンブロットで検討した。 Leu-Ileは GDNFの発現量を増加させる力 アンチセン スオリゴヌクレオチドは、その作用を抑制した。値は (n=4)平均士標準偏差で示した。 * P〈0.05 対コントロール (0時間) (Sheffe test)。 [Fig. 7] CREB phosphorylation and GDNF expression level. (A): Leu-Ile (10 μg / ml) was allowed to act on cultured neurons for 0, 10, 20 or 30 minutes, and phosphorylated CREB was measured by Western blot. Phosphorylated CREB increased from 20 minutes after the action of Leu-Ile and was maintained until 30 minutes. A typical Western plot result is shown. (B): Antisense or sense nucleotide of CREB was allowed to act on cultured neurons (ODN) for 24 hours. The amount of CREB protein was measured by Western plot. (C): Leu-Ile (10 g / ml) was allowed to act for 24 hours in the presence or absence of antisense or sense oligonucleotide of CREB. The expression level of GDNF was examined by Western blot. The ability of Leu-Ile to increase the expression level of GDNF Antisense oligonucleotide suppressed its action. Values are expressed as (n = 4) mean standard deviation. * P <0.05 vs. control (0 hour) (Sheffe test).
[図 8]GDNF蛋白及び GDNF mRNAの発現に対する Leu-Ileの作用。 A: Leu-Ile、 Pro- Leu又は Ile-Pro(10 μ g/ml)を培養神経細胞に添カ卩した場合の 24時間後の GDNF蛋 白の発現量。 Leu-Ileのみが GDNF蛋白の発現を増加させる。 B : Leu-Ileを添加後の GDNF mRNAの発現量変化。 Leu-Ileを添カ卩後 12又は 18時間後に GDNF mRNAの発 現量が増加している。  FIG. 8 shows the effect of Leu-Ile on the expression of GDNF protein and GDNF mRNA. A: The expression level of GDNF protein after 24 hours when Leu-Ile, Pro-Leu or Ile-Pro (10 μg / ml) was added to cultured neurons. Only Leu-Ile increases GDNF protein expression. B: Expression level change of GDNF mRNA after addition of Leu-Ile. The expression level of GDNF mRNA increased 12 or 18 hours after adding Leu-Ile.
[図 9]CREBおよび Aktのシグナル伝達における Leu-Ileの作用。(A):培養神経細胞に Leu-Ile(10 μ g/ml)を 0、 10、 20または 30分間作用させた。 Akt、 ERK、 CaMKII,および PKC- γのリン酸化の程度をウェスタンブロットで測定した。(B),(C):Leu-Ileおよび PI3 k阻害剤または Hsp90阻害剤を 30分間作用させた。(B): Aktのリン酸ィ匕の程度をウェス タンプロットで測定した。(C):CREBのリン酸化の程度をウェスタンブロットで測定した。 典型的なウェスタンプロットの実験結果を示す (上側)。バンドの強度を測定し、数値 化した (下側)。値は (n=4)平均士標準偏差で示した。 *Pく 0.05 対コントロール (0時間 )( ¾neffe test)。  [Fig. 9] Effect of Leu-Ile on CREB and Akt signaling. (A): Leu-Ile (10 μg / ml) was allowed to act on cultured neurons for 0, 10, 20 or 30 minutes. The degree of phosphorylation of Akt, ERK, CaMKII, and PKC-γ was measured by Western blot. (B), (C): Leu-Ile and PI3 k inhibitor or Hsp90 inhibitor were allowed to act for 30 minutes. (B): The degree of Akt phosphate was measured by Western plot. (C): The degree of CREB phosphorylation was measured by Western blot. Shown are the results of a typical Western plot experiment (top). The band intensity was measured and digitized (lower). Values are expressed as (n = 4) mean standard deviation. * P 0.05 vs. control (0 hour) (¾neffe test).
[図 10]予想される Leu- lieの作用経路。  [Figure 10] Expected Leu-lie action pathway.
[図 11]マスコットサーチの結果。質量解析の結果カゝら得られたアミノ酸断片をマスコッ トソフトウェアで解析を行った。 10個のペプチドが、 Hsc70の配列と一致した。  [Figure 11] Results of mascot search. The amino acid fragments obtained as a result of mass analysis were analyzed with mascot software. Ten peptides matched the sequence of Hsc70.
[図 12]ヒト GDNFプロモーター II、ェキソン 1及び第 1イントロンの一部の塩基配列。 1か ら 174番目の塩基はェキソン 1である。転写因子結合部位には下線を付した。これら のアミノ酸配列は GenBankの AF053749に掲載されている。略語: activator protein 2 、 P- 2), early growth response- 1、egr- 1), early growth response- 2 (egr- 2), C facto r (GCF), myocyte nuclear factor (MNF), metal response element- A (MRE- A), metal response element— B (MRE— B), trans-acting transcription factor 1 (SP1), Up-stream stimulatory factor (USF), yin yang-1 (YY1)。 [FIG. 12] Partial nucleotide sequence of human GDNF promoter II, exon 1 and first intron. The 1st to 174th bases are exon 1. The transcription factor binding site is underlined. These amino acid sequences are listed in GenBank AF053749. Abbreviations: activator protein 2, P- 2), early growth response- 1, egr- 1), early growth response- 2 (egr- 2), C factor (GCF), myocyte nuclear factor (MNF), metal response element -A (MRE-A), metal response element— B (MRE— B), trans-acting transcription factor 1 (SP1), Up-stream stimulatory factor (USF), yin yang-1 (YY1).
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本明細書では慣例の標記法に従 、左端がァミノ末端、右端力カルボキシ末端とな るようにペプチドを表記する。また、アミノ酸残基力 形の場合には、 L形である旨の表 示を省略することがある。また、特に記載のない限り本明細書では、ジペプチドをはじ め様々な長さのペプチドを含む用語として「ペプチド」を使用する。 In the present specification, according to the conventional notation, peptides are represented such that the left end is the amino end and the right end is the carboxy terminus. In the case of amino acid residue strength forms, the indication that the form is L may be omitted. In addition, unless otherwise stated, in this specification, dipeptides are expressed. Therefore, “peptide” is used as a term including peptides of various lengths.
[0010] 本発明の第 1の局面は Akt活性化剤に関する。本明細書において「Akt活性化剤」 とは、 Aktを活性化する作用を有する物質のことをいう。 Aktは Protein Kinase B (PKB) とも呼ばれるセリン Zスレオニンキナーゼであって、 PI3キナーゼ経路で活性ィ匕される 。 Aktは細胞周期、インスリン代謝などの様々な現象に関与していることが報告されて いる。  [0010] A first aspect of the present invention relates to an Akt activator. As used herein, “Akt activator” refers to a substance having an action of activating Akt. Akt is a serine Z threonine kinase, also called Protein Kinase B (PKB), which is activated in the PI3 kinase pathway. Akt has been reported to be involved in various phenomena such as cell cycle and insulin metabolism.
Aktの活性ィ匕によって、 Aktを介したシグナル経路が上方調節される。例えば Aktの 活性ィ匕によって NF- κ Bや CREBが活性ィ匕される。このことから Akt活性化剤を、 NF- κ Bや CREBの活性化剤として捉えることもできる。一方、 NF- κ Βや CREBの活性ィ匕 は BDNFの産生誘導を促す。従って、 Akt活性化剤を、 BDNFの産生誘導剤として捉 免ることちでさる。  Akt activity up-regulates the signaling pathway via Akt. For example, NF-κB and CREB are activated by the activity of Akt. Therefore, Akt activator can be regarded as activator of NF-κB and CREB. On the other hand, the activity of NF-κΒ and CREB stimulates the production of BDNF. Therefore, the Akt activator can be excluded as a BDNF production inducer.
[0011] 本発明の Akt活性化剤は、 Aktの活性調節を通して、 Aktが関与する疾患の治療、 予防に効果を発揮することができる。従って、「Aktの調節によって予防効果又は治 療効果が得られる疾患」に対して本発明の Akt活性化剤が適用され得る。「Aktの調 節によって予防効果又は治療効果が得られる疾患」を「Atk活性の異常によって特徴 づけられる疾患」と言い換えることができる。即ち、本発明の対象となる疾患 (対象疾 患)には、 Akt活性が正常範囲から逸脱した結果として引き起こされる疾患が含まれる 。例えば、パーキンソン病、脊髄損傷、アルツハイマー病、水頭症、脳損傷、脳梗塞、 痴呆症、リューマチ症、又は統合失調症等がこのような疾患に該当する。  [0011] The Akt activator of the present invention can exert an effect on the treatment and prevention of diseases associated with Akt through the regulation of Akt activity. Therefore, the Akt activator of the present invention can be applied to “diseases in which a preventive or therapeutic effect can be obtained by regulating Akt”. “Disease in which preventive or therapeutic effects can be obtained by modulating Akt” can be restated as “disease characterized by abnormal Atk activity”. That is, the diseases (target diseases) that are the subject of the present invention include diseases caused as a result of Akt activity deviating from the normal range. For example, Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia fall under such diseases.
[0012] 本発明者らの研究によって、以下に詳述する本発明の有効成分が Aktを介して GD NFの産生を誘導することが明ら力となった。この事実から、本発明の Akt活性化剤に よれば Aktを介した GDNAの産生誘導を引き起こすことができる。従って、 GDNFの産 生誘導によって予防効果又は治療効果が得られる疾患は、本発明の好適な対象疾 患の一つである。例えば、パーキンソン病、脊髄損傷、アルツハイマー病、水頭症、 脳損傷、脳梗塞、痴呆症、リューマチ症、又は統合失調症等がこのような疾患に該当 する。  [0012] The study by the present inventors has revealed that the active ingredient of the present invention described in detail below induces the production of GDNF via Akt. From this fact, the Akt activator of the present invention can induce the production of GDNA via Akt. Therefore, a disease in which a prophylactic effect or a therapeutic effect is obtained by the production induction of GDNF is one of the preferable target diseases of the present invention. For example, Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia fall under such diseases.
尚、 AKt又は GDNFと疾患との関連についていくつかの報告(Tas SW, Remans PH, Reeaquist KA, l ak PP. Signal transduction pathways and transcription factors as th erapeutic targets in inflammatory disease: towards innovative antirheumatic therapy. Curr Pharm Des. 2005; 11(4):581— 611.、 Rickle A, Bogdanovic N, Volkman I, Winbla d B, Ravid R, Cowburn RF. Akt activity in Alzheimer's disease and other neurodege nerative disorders. Neuroreport. 2004 Apr 29;15(6):955— 9.)力 Sある。 There are some reports on the relationship between AKt or GDNF and diseases (Tas SW, Remans PH, Reeaquist KA, lak PP. Signal transduction pathways and transcription factors as th erapeutic targets in inflammatory disease: towards innovative antirheumatic therapy. Curr Pharm Des. 2005; 11 (4): 581—611., Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF. Akt activity in Alzheimer's Neuroreport. 2004 Apr 29; 15 (6): 955— 9.) Force S. Disease and other neurodege nerative disorders.
尚、本明細書において用語「疾患」は、疾病、病気、又は病態など、正常でない状 態を表す言葉と交換可能に用いられる。  In this specification, the term “disease” is used interchangeably with a word indicating an abnormal state such as a disease, illness, or disease state.
本発明の Akt活性化剤はその一態様にお!、て、 Leu及び lieからなるペプチド(ジぺ プチド)を有効成分として含む。 Leu (ロイシン)は別名 2—ァミノイソカブロン酸と呼ば れ、その L形は以下の化学式で表される。  In one embodiment, the Akt activator of the present invention includes a peptide (dipeptide) comprising Leu and lie as an active ingredient. Leu (Leucine) is also called 2-aminoisocabronic acid, and its L form is represented by the following chemical formula.
[化 1] [Chemical 1]
COOH COOH
H2NCH H 2 NCH
CH2 CH 2
I I
CHaCH CHaCH
CH3 一方、 lie (イソロイシン)は別名 2—アミノー 3—メチルー n—吉草酸と呼ばれ、そのし 形は以下の化学式で表される。 On the other hand, lie (isoleucine) is also known as 2-amino-3-methyl-n-valeric acid, and its form is represented by the following chemical formula.
[化 2] [Chemical 2]
C00H C00H
腿 CH  Thigh CH
CH3CH CH 3 CH
CH2 CH 2
I I
CH3 CH 3
本発明のペプチドでは好ましくはこれら二つのアミノ酸残基力 sN末端側から c末端 側に向かってロイシン、イソロイシンの順に連結されている。 In the peptide of the present invention, these two amino acid residues are preferably linked in the order of leucine and isoleucine from the N- terminal side to the c-terminal side.
本発明にお 、て各アミノ酸残基は 、ずれも L形であることが好ま 、が、アミノ酸残 基の一部又は全部が D形であってもよ 、。 In the present invention, it is preferred that each amino acid residue is in the L form, but the amino acid residue Some or all of the groups may be in D form.
[0014] 一般に、ある化合物の一部に修飾を施して得られる化合物が修飾前の化合物と同 様の性質や特性を有する場合がある。即ち、修飾が化合物の特定の性質等に影響 を及ぼさない場合がある。このことを考慮すれば、上記ペプチドに修飾を施して得ら れる修飾体であっても、 Akt活性ィ匕作用を維持する限りにおいて、本発明における有 効成分として使用され得る。 [0014] In general, a compound obtained by modifying a part of a certain compound may have properties and characteristics similar to those of the compound before modification. That is, the modification may not affect the specific properties of the compound. In consideration of this, even a modified product obtained by modifying the above peptide can be used as an active ingredient in the present invention as long as the Akt activity is maintained.
そこで、本発明の Akt活性化剤は他の態様において、上記ペプチドの修飾体 (以下 、「ペプチド修飾体」という)を有効成分とする。本発明における「ペプチド修飾体」と は、 Leuと lieからなる基本構造 (ジペプチド)に対して、その一部 (複数箇所であっても よい)を他の原子団等で置換すること、或いは他の分子を付加すること等の修飾を施 すことによって、少なくとも一部において前記基本構造と相違する構造の化合物をい 当業者であれば、周知ないし β用の手段を用いて Leuと lieからなるジペプチドを基 本とした置換体などの修飾体をデザインすることができる。また、カゝかるデザインに基 づき、周知ないし β用の手段を用いて目的の修飾体を調製し、その性質や作用を調 ベることも当業者には容易と考えられる。  Therefore, in another embodiment of the Akt activator of the present invention, a modified form of the peptide (hereinafter referred to as “peptide modified form”) is used as an active ingredient. In the present invention, the “modified peptide” refers to a part of the basic structure (dipeptide) composed of Leu and lie (dipeptides) may be substituted with other atomic groups or the like. A compound having a structure different from the basic structure at least in part by adding a modification such as addition of a molecule of this type is known to those skilled in the art or consists of Leu and lie using means for β. Modifications such as substitutions based on dipeptides can be designed. Moreover, it is considered easy for those skilled in the art to prepare a target modified product using well-known or β means based on the profitable design and investigate its properties and actions.
[0015] 本発明におけるペプチド修飾体の代表例としては、各アミノ酸残基において側鎖の 一部 (原子又は原子団)が他の原子又は原子団で置換されたペプチド誘導体を挙げ ることができる。このようなペプチド誘導体は、最終生成物として当該ペプチド誘導体 が得られるように設計された任意の製造工程によって調製することができる。したがつ て、目的のペプチド誘導体が、あるペプチドにおいて一部(例えば側鎖の一部である 原子団)が特定の原子団によって見かけ上置換されたものである場合には、当該目 的のペプチド誘導体はこの見かけ上基本となるペプチドを出発材料として当該特定 の原子団を用 、た置換反応によって製造されたものであっても、或いは例えば他の 構造のペプチドを出発材料として適当な置換反応等 (場合によって複数工程であつ てもよい)によって製造されたものであってもよい。したがって例えば Leu-Ileからなる ジペプチドの誘導体の場合、 Leu-Ileからなるジペプチドが出発材料として用いられ ていなくともよい。 ここでの他の原子又は原子団としては、ヒドロキシル基、ハロゲン (フッ素、塩素、臭 素、ヨウ素等)、アルキル基 (メチル基、ェチル基、 n—プロピル基、イソプロピル基等) 、ヒドロキシアルキル基 (ヒドロキシメチル基、ヒドロキシェチル基等)、アルコキシ基 (メ トキシ基、エトキシ基等)、ァシル基 (ホルミル基、ァセチル基、マロ-ル基、ベンゾィ ル基等)等を例示することができる。 [0015] Representative examples of the modified peptide in the present invention include peptide derivatives in which a part of the side chain (atom or atomic group) is substituted with another atom or atomic group in each amino acid residue. . Such peptide derivatives can be prepared by any manufacturing process designed to yield the peptide derivative as a final product. Therefore, when the target peptide derivative is a peptide in which a part (for example, an atomic group that is a part of a side chain) is apparently substituted by a specific atomic group, Peptide derivatives may be produced by a substitution reaction using the apparently basic peptide as a starting material and using the specific atomic group, or, for example, a suitable substitution reaction using a peptide having another structure as a starting material. Etc. (may be a plurality of steps in some cases). Therefore, for example, in the case of a derivative of a Leu-Ile dipeptide, the Leu-Ile dipeptide may not be used as a starting material. Other atoms or atomic groups herein include hydroxyl groups, halogens (fluorine, chlorine, fluorine, iodine, etc.), alkyl groups (methyl group, ethyl group, n -propyl group, isopropyl group, etc.), hydroxyalkyl groups (Hydroxymethyl group, hydroxyethyl group, etc.), alkoxy group (methoxy group, ethoxy group, etc.), isyl group (formyl group, acetyl group, malol group, benzoyl group, etc.), etc. .
[0016] 尚、本発明のペプチド修飾体には、構成アミノ酸残基内の官能基が適当な保護基 によって保護されているものも含まれる。このような目的に使用される保護基としては 、ァシル基、アルキル基、単糖、オリゴ糖、多糖等を用いることができる。このような保 護基は、保護基を結合させるペプチド部位や使用する保護基の種類などに応じて、 アミド結合、エステル結合、ウレタン結合、尿素結合等によって連結される。 [0016] The modified peptide of the present invention includes those in which the functional group in the constituent amino acid residue is protected by an appropriate protecting group. As the protecting group used for such purposes, an acyl group, an alkyl group, a monosaccharide, an oligosaccharide, a polysaccharide and the like can be used. Such a protecting group is linked by an amide bond, an ester bond, a urethane bond, a urea bond, or the like according to the peptide site to which the protecting group is bound, the kind of the protecting group to be used, or the like.
[0017] アミノ酸を付カ卩 (連結)することによって本発明のペプチド修飾体を形成することも可 能である。但し、溶解性や生体内利用率の面力 アミノ酸の付加数はあまり多くない ことが好ましいと考えられる。具体的には付加するアミノ酸の数としては例えば 1〜9 個、好ましくは 1〜5個、更に好ましくは 1〜3個、最も好ましくは 1個又は 2個である。 尚、基本となるペプチド (又はペプチド修飾体)の両側にぉ 、てアミノ酸の付力卩が行 なわれていてもよい。 [0017] It is also possible to form the modified peptide of the present invention by attaching (linking) amino acids. However, it is considered preferable that the number of amino acids added is not so large in terms of solubility and bioavailability. Specifically, the number of amino acids to be added is, for example, 1 to 9, preferably 1 to 5, more preferably 1 to 3, and most preferably 1 or 2. It should be noted that amino acids may be applied on both sides of the basic peptide (or modified peptide).
[0018] 本発明のペプチド修飾体の更なる例としては、糖鎖の付カ卩による修飾が施されてい るものを挙げることができる。また、 N末端又は C末端が他の原子等で置換されること によってアルキルァミン、アルキルアミド、スルフィエル、スルフォ-ルアミド、ノヽライド、 アミド、ァミノアルコール、エステル、ァミノアルデヒド等に分類される各種ペプチド誘 導体も本発明のペプチド修飾体に含まれる。  [0018] As a further example of the modified peptide of the present invention, one modified with a sugar chain attachment can be mentioned. Various peptides classified as alkylamines, alkylamides, sulfiers, sulfonamides, amides, amides, amino alcohols, esters, amino aldehydes, etc. by replacing the N-terminal or C-terminal with other atoms Derivatives are also included in the modified peptide of the present invention.
[0019] 尚、以上で説明した各種の修飾方法を組み合わせることによって構成されるぺプチ ド誘導体を本発明のペプチド修飾体としてもょ 、。  [0019] A peptide derivative constituted by combining the various modification methods described above may be used as the modified peptide of the present invention.
[0020] 本発明の Akt活性化剤は更に他の態様において、上記ペプチド又は上記ペプチド 修飾体の塩を有効成分とする。本発明の塩は薬学的に許容可能な限りその種類は 特に限定されず、塩酸、リン酸、硫酸、硝酸、ホウ酸等との塩 (無機酸塩)や、ギ酸、 酢酸、乳酸、フマル酸、マレイン酸、酒石酸、クェン酸等との塩 (有機酸塩)をその例 として挙げることができる。これらの塩の調製は慣用手段によって行なうことができる。 [0021] 本発明の Akt活性化剤に含有されるペプチド、ペプチド修飾体、或 、はこれら!/、ず れかの塩 (以下、これらをまとめて「ペプチド等」という)は典型的には直鎖状であるが 、環状構造を有する化合物の使用を排除するものではない。即ち、アミノ酸残基の側 鎖同士の連結などによって部分的又は全体的に環状構造を形成するペプチド等を、 本発明の Akt活性化剤の有効成分として使用することもできる。 [0020] In still another embodiment of the Akt activator of the present invention, the peptide or a salt of the modified peptide is used as an active ingredient. The salt of the present invention is not particularly limited as long as it is pharmaceutically acceptable, and is a salt (inorganic acid salt) with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, boric acid, formic acid, acetic acid, lactic acid, fumaric acid. Examples thereof include salts (organic acid salts) with maleic acid, tartaric acid, citrate, and the like. These salts can be prepared by conventional means. [0021] Peptides, modified peptides, or these! /, Any of their salts (hereinafter collectively referred to as "peptides") typically contained in the Akt activator of the present invention are typically The use of a compound that is linear but has a cyclic structure is not excluded. That is, a peptide or the like that forms a cyclic structure partially or entirely by linking side chains of amino acid residues or the like can be used as an active ingredient of the Akt activator of the present invention.
[0022] 本発明におけるペプチド等は、公知のペプチド合成法 (例えば固相合成法、液相 合成法)によって製造することができる。但し、本発明のペプチド等が天然に存在す る場合には、抽出、精製などの操作によってそれを調製することもできる。本発明の ペプチド等の取得源としては例えば、動物細胞 (ヒトを含む)、植物細胞、体液 (血液 、尿等)等が考えられる。  [0022] The peptide and the like in the present invention can be produced by a known peptide synthesis method (for example, solid phase synthesis method, liquid phase synthesis method). However, when the peptide of the present invention exists in nature, it can also be prepared by operations such as extraction and purification. Examples of sources for obtaining the peptide of the present invention include animal cells (including humans), plant cells, body fluids (blood, urine, etc.) and the like.
遺伝子工学的手法を用いて本発明のペプチド等を調製してもよい。即ち、本発明 のペプチド等をコードする核酸を適当な宿主細胞に導入し、形質転換体内で発現さ れたペプチド等を回収することにより本発明のペプチド等を調製することもできる。回 収されたペプチド等は必要に応じて精製される。回収されたペプチド等を適当な置 換反応に供し、所望のペプチド修飾体に変換することもできる。  The peptide of the present invention may be prepared using a genetic engineering technique. That is, the peptide of the present invention can also be prepared by introducing a nucleic acid encoding the peptide of the present invention into an appropriate host cell and recovering the peptide expressed in the transformant. The recovered peptide is purified as necessary. The recovered peptide or the like can be subjected to an appropriate substitution reaction to be converted into a desired modified peptide.
本発明におけるペプチド等の中で例えば Leu-Ile等は市販されており、国産化学株 式会社(KOKUSAN CHEMICAL Co.,Ltd.東京、日本)より入手することができる。  Among peptides and the like in the present invention, for example, Leu-Ile is commercially available and can be obtained from a domestic chemical company (KOKUSAN CHEMICAL Co., Ltd. Tokyo, Japan).
[0023] 本発明の Akt活性化剤は、特定の疾患に対する薬剤として利用可能であることは勿 論のこと、例えば特定の疾患への罹患リスクを軽減するための食品(食品添加物)と して、或いは特定の疾患の発症機構や進展機構を研究するための研究用試薬とし ても利用可能である。即ち、本発明の Akt活性調節剤は薬剤、食品 (食品添加物)、 研究用試薬などの形態で提供され得る。  [0023] Of course, the Akt activator of the present invention can be used as a drug for a specific disease, for example, as a food (food additive) for reducing the risk of suffering from a specific disease. It can also be used as a research reagent for studying the onset mechanism or progress mechanism of a specific disease. That is, the Akt activity modulator of the present invention can be provided in the form of a drug, food (food additive), research reagent, and the like.
[0024] 薬剤として提供される場合の製剤化は常法に従って行うことができる。製剤化する 場合には、製剤上許容される他の成分 (例えば、担体、賦形剤、崩壊剤、緩衝剤、乳 ィ匕剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させる ことができる。賦形剤としては乳糖、デンプン、ソルビトール、 D-マン-トール、白糖等 を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸 カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クェン酸塩、酢酸塩等 を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント 等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸 アルミニウム、メチノレセノレロース、カルボキシメチルセルロース、ヒドロキシメチルセル ロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルァ ルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプ ロピレンダリコール、ジエチリン亜硫酸塩、ァスコルビン酸等を用いることができる。保 存剤としてはフエノール、塩化ベンザルコ-ゥム、ベンジルアルコール、クロロブタノ ール、メチルパラベン等を用いることができる。防腐剤としては塩ィ匕ベンザルコ -ゥム 、ノ ォキシ安息香酸、クロロブタノール等と用いることができる。 [0024] Formulation when provided as a drug can be performed according to a conventional method. When formulating, other pharmaceutically acceptable ingredients (e.g., carriers, excipients, disintegrants, buffers, emollients, suspensions, soothing agents, stabilizers, preservatives, preservatives) Agent, physiological saline, etc.). As the excipient, lactose, starch, sorbitol, D-manntol, sucrose and the like can be used. As the disintegrant, starch, carboxymethyl cellulose, calcium carbonate, or the like can be used. Buffers such as phosphate, kenate, acetate, etc. Can be used. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As the suspending agent, glyceryl monostearate, aluminum monostearate, methinorescenellose, carboxymethylcellulose, hydroxymethylcellulose, sodium lauryl sulfate and the like can be used. As the soothing agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. As the stabilizer, polypropylene alcohol, diethylin sulfite, ascorbic acid and the like can be used. As preservatives, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methyl paraben, and the like can be used. Examples of antiseptics that can be used include salt benzalkonium, nonoxybenzoic acid, and chlorobutanol.
[0025] 製剤化する場合の剤型も特に限定されず、例えば錠剤、散剤、細粒剤、顆粒剤、力 プセル剤、シロップ剤、注射剤、外用剤、及び座剤などとして調製できる。  [0025] The dosage form for formulation is not particularly limited, and can be prepared, for example, as tablets, powders, fine granules, granules, force capsules, syrups, injections, external preparations, suppositories, and the like.
このように製剤化した本発明の薬剤はその形態に応じて経口投与又は非経口投与 The drug of the present invention thus formulated is administered orally or parenterally depending on its form.
(静脈内、動脈内、皮下、筋肉、腹腔内注射など)によって患者に適用され得る。 本発明の薬剤中における有効成分 (ペプチド等)の含量は一般に剤型によって異 なる力 所望の投与量を達成できるように例えば約 0.001重量%〜約 90重量%とする (Intravenous, intraarterial, subcutaneous, intramuscular, intraperitoneal injection, etc.) can be applied to the patient. The content of the active ingredient (peptide or the like) in the drug of the present invention generally varies depending on the dosage form. For example, it is about 0.001 wt% to about 90 wt% so as to achieve a desired dose.
[0026] 本発明の他の局面では以上の薬剤を使用した対象疾患 (パーキンソン病、脊髄損 傷、アルツハイマー病、水頭症、脳損傷、脳梗塞、痴呆症、リューマチ症、又は統合 失調症等)に対する予防方法又は治療方法 (以下、これら二つの方法をまとめて「治 療方法等」という)が提供される。本発明の治療方法等は、上記のペプチド、ペプチド 修飾体、又はこれら!/ヽずれかの塩を有効成分として含む薬剤を生体に投与するステ ップを含む。投与経路は特に限定されず例えば経口、静脈内、皮内、皮下、筋肉内 、腹腔内、経皮、経粘膜などを挙げることができる。 [0026] In another aspect of the present invention, target diseases using the above drugs (Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, schizophrenia, etc.) Prevention methods or treatment methods (hereinafter, these two methods are collectively referred to as “treatment methods”). The therapeutic method of the present invention includes the above peptides, peptide modifications, or these! / Includes the step of administering a drug containing any salt as an active ingredient to the living body. The administration route is not particularly limited, and examples thereof include oral, intravenous, intradermal, subcutaneous, intramuscular, intraperitoneal, transdermal, and transmucosal.
[0027] 薬剤の投与量は症状、患者の年齢、性別、及び体重などによって異なるが、当業 者であれば適宜適当な投与量を設定することが可能である。例えば、 Leu-Ileを有効 成分として含む薬剤を使用する場合には、成人 (体重約 60kg)を対象として一日当た りの有効成分量が約 0.1〜約 1000mg、好ましくは約 lmg〜約 lOOmgとなるよう投与量を 設定することができる。投与スケジュールとしては例えば一日一回〜数回、二日に一 回、或いは三日に一回などを採用できる。投与スケジュールの設定においては、患 者の病状や薬剤の効果持続時間などを考慮することができる。 [0027] The dose of the drug varies depending on symptoms, patient age, sex, weight, and the like, but those skilled in the art can appropriately set an appropriate dose. For example, when using a drug containing Leu-Ile as an active ingredient, the amount of active ingredient per day for adults (body weight of about 60 kg) is about 0.1 to about 1000 mg, preferably about lmg to about lOOmg. The dose can be set to be The administration schedule is, for example, once to several times a day, once every two days. Times, or once every three days. In setting the administration schedule, it is possible to consider the patient's medical condition and the duration of drug effect.
[0028] 本発明の更なる一態様では、本発明の Akt活性剤を含有した食品(又は食品添カロ 物)が提供される。ここでの食品として牛乳や清涼飲料水等を例示できる。食品添カロ 物の場合は粉末、顆粒末、タブレット等の形状で提供することができる。このような食 品又は食品添加物として Akt活性化剤を利用する場合の添加量は、治療的又は予 防的効果が期待できる量とする。添加量は、対象となる者の病状、健康状態、年齢、 性別、体重などを考慮して定めることができる。  [0028] In a further aspect of the present invention, a food (or food-added carotenoid) containing the Akt activator of the present invention is provided. Examples of food here include milk and soft drinks. In the case of food-added calories, it can be provided in the form of powder, granule powder, tablet, etc. When using an Akt activator as such food or food additive, the amount added should be expected to have a therapeutic or prophylactic effect. The amount to be added can be determined in consideration of the medical condition, health status, age, sex, weight, etc. of the subject.
Leu-Ileは高い溶解度を有し、また無味無臭である。また、 Leu-Ileは生体内におい て定常的に存在する物質であることからその安全性も高いといえる。このように、食品 に添加する物質として好まし ヽ特性な ヽし特徴を Leu-Ileは備える。  Leu-Ile has high solubility and is tasteless and odorless. In addition, Leu-Ile is a substance that is constantly present in the living body, so it can be said that its safety is high. In this way, Leu-Ile has a special characteristic that is preferred as a substance added to food.
[0029] 本発明の一態様では、本発明の Akt活性化剤が研究用試薬として提供される。この 場合、予め標識ィ匕などの修飾を施しておいてもよい。また、 Akt活性化剤を使用する 際に必要な各種の試薬、又は反応用容器などを組み合わせたキットの形態で提供 することちでさる。  [0029] In one embodiment of the present invention, the Akt activator of the present invention is provided as a research reagent. In this case, the label may be modified in advance. It can also be provided in the form of a kit combining various reagents necessary for the use of the Akt activator or a reaction container.
実施例 1  Example 1
[0030] 1.マウス脳内における Leu-Ile結合タンパク質の同定  [0030] 1. Identification of Leu-Ile binding protein in mouse brain
1 - 1 目的  1-1 Purpose
臓器移植後の拒絶反応予防薬として用いられている cyclosporin A (CsA)やタクロリ ムス (FK506)は、内因性ィムノフィリンと結合し、免疫抑制作用を示すィムノフイリンリ ガンドである。 CsAやタクロリムスは免疫抑制作用のみでなぐ様々な病態モデルに おける神経変性を抑制することが報告され、神経保護薬としての有用性にっ ヽても 研究が進められてきた(Ogawa et al., 1993; Sharkey and Butcher., 1994; Shiga et al. , 1992;田中と小川., 2004) oしかし、神経変性疾患の患者にとっては、これらの薬剤 は神経保護作用を有していても同時に免疫機能を抑制してしまうため、大きな問題 点が残る。そのため、神経保護作用のみを有する非免疫抑制性ィムノフィリンリガンド についての研究が行われるようになった(Gold., 2000; Gold and Nutt., 2002; Herdeg an et al., 2000; Snyder et al" 1998)。 Leu-Ileは非免疫抑制性ィムノフィリンリガンドを探索する中で発見されたペプチドで ある。 Leu-Ileはタクロリムスのィムノフィリン結合部位の構造と類似しており、タク口リム スと同様に GDNFの産生を誘導することが示されている。しかし、タクロリムスの結合タ ンパク質である FK506 binding proteinl2 (FKBP12)とは結合しない事が分かっており 、 Leu-Ileがタクロリムスとは異なる作用で GDNFを産生誘導して 、る可能性が示唆さ れている(Nitta et al., 2002; 2004) 0 Cyclosporin A (CsA) and tacrolimus (FK506), which are used to prevent rejection after organ transplantation, are immunophilin ligands that bind to endogenous immunophilin and exhibit immunosuppressive action. CsA and tacrolimus have been reported to suppress neurodegeneration in a variety of pathological models with only immunosuppressive action, and research has been conducted even for their usefulness as neuroprotective drugs (Ogawa et al., 1993; Sharkey and Butcher., 1994; Shiga et al., 1992; Tanaka and Ogawa., 2004) o However, for patients with neurodegenerative diseases, these drugs may also have neuroprotective effects, but at the same time immune function As a result, a major problem remains. This has led to studies on non-immunosuppressive immunophilin ligands that have only neuroprotective effects (Gold., 2000; Gold and Nutt., 2002; Herdeg an et al., 2000; Snyder et al "1998). Leu-Ile is a peptide discovered in search of non-immunosuppressive immunophilin ligands. Leu-Ile is similar to the structure of the immunophilin binding site of tacrolimus and has been shown to induce the production of GDNF in the same way as takuguchi rim. However, it has been found that it does not bind to FK506 binding proteinl2 (FKBP12), which is a binding protein of tacrolimus, suggesting that Leu-Ile may induce GDNF production by a different action from tacrolimus. (Nitta et al., 2002; 2004) 0
そこで以下では Leu-Ileがどのような仕組みで GDNFの産生を誘導しているのかを調 ベるため、マウス脳ホモジナイズ液を用いて Leu-Ileの脳内結合タンパク質の同定を 行った。  Therefore, in the following, in order to investigate how Leu-Ile induces GDNF production, we identified the binding protein of Leu-Ile in the brain using mouse brain homogenization solution.
[0031] 1 - 2 実験材料および方法  [0031] 1-2 Experimental Materials and Methods
1 - 2 - 1 動物  1-2-1 animals
実験には、 7週齢の ICR雄性マウス(日本 SLC、静岡)を使用した。なお、本研究は 名古屋大学医学部動物実験指金†および Principles of Laboratory Animal Care (Natio nal Institutes of Health Publication 85-23, 1985)に基づいて行った。  In the experiment, 7-week-old ICR male mice (Japan SLC, Shizuoka) were used. This study was conducted based on the Nagoya University School of Medicine Animal Experiment Fund † and Principles of Laboratory Animal Care (National Institutes of Health Publication 85-23, 1985).
[0032] 1 - 2 - 2 Leu-Ileが細胞膜を透過することの証明実験  [0032] 1-2-2 Demonstration experiment of Leu-Ile permeating cell membrane
FITCで標識した Leu-Ilを培養神経細胞の培養上清に 0〜1.5 μ g/mlの濃度になるよ うに加え、 10〜20分後に上清を取り除き、生理的緩衝液で洗浄し、細胞をラバーポリ スマンで剥離回収した。遠心後、その上清中の蛍光 (励起波長 485nm、蛍光波長 51 8應)強度を蛍光測定用プレートリーダーで測定した。実験毎に、 FITC標識 Leu-Ile および FITCの検量線を作成した。  Add FITC-labeled Leu-Il to the culture supernatant of cultured neurons to a concentration of 0-1.5 μg / ml, remove the supernatant after 10-20 minutes, wash with physiological buffer, and wash the cells. The material was peeled and collected with a rubber policeman. After centrifugation, the intensity of fluorescence (excitation wavelength: 485 nm, fluorescence wavelength: 518) in the supernatant was measured with a plate reader for fluorescence measurement. Calibration curves for FITC-labeled Leu-Ile and FITC were prepared for each experiment.
[0033] 1 - 2 - 3 fluorescein isothiocyanate (FITC)標識した Leu- lieとマウス脳内タンパク質 との結合実験  [0033] 1-2-3 Binding experiments between fluorescein isothiocyanate (FITC) -labeled Leu-lie and mouse brain protein
ペントバルビタールによる麻酔下で 7週齢の ICR雄性マウス力も^ | を摘出し、ホモ ジナイズバッファー((0.25M NaCl, 5mM ethylenediamine tetracetic acid (EDTA) , 1% TritonX— 100, 0.25% dehydroacetic acid sodium salt monohydrate, ImM phenylmeth ansulfonylfluoride (PMSF) , 1 ^ g/ml leupeptin, 1 ^ g/ml aprotinin, 5 ^ g/ml pepstatin A)を含む 20mM Tris-HCl (pH7.4))をカ卩え、 30秒間ホモジナイザー(heat systems, N Y, USA)でホモジナイズした。この液を 4°C10,000gで 1時間遠心し、上清を回収したも のを脳ホモジナイズ液として実験に用いた。 Nまたは C末端側に FITCを結合させた Le u— lie (Thermo Electron Corporation, Ulm, Germany) (10 mg/ ml)と月 ¾ホモンナイス 液 (総タンパク質量 6 mg/ ml)を 4°Cまたは 37°Cで 3時間反応させたのちサンプルバッ ファー(125 mM Tris-HCl, pH 6.8, 10% 2- mercaptoethanol, 4% sodium dodecyl sulfat e (SDS), 10% sucrose, 0.004% bromophenol blue)を同用量カ卩ぇ 95°Cで 5分間煮沸し、 30 /z gのタンパク質を 10%ポリアクリルアミドゲルを用いて電気泳動を行った。蛍光バ ンドの検出には FluorImager595 (Molecular Dynamics, CA, USA)を用いた。 Under anesthesia with pentobarbital, 7-week-old ICR male mice were also removed with ^ | homogenization buffer ((0.25M NaCl, 5mM ethylenediamine tetracetic acid (EDTA), 1% TritonX—100, 0.25% dehydroacetic acid sodium salt Add 20 mM Tris-HCl (pH7.4)) containing monohydrate, ImM phenylmethansulfonylfluoride (PMSF), 1 ^ g / ml leupeptin, 1 ^ g / ml aprotinin, 5 ^ g / ml pepstatin A) for 30 seconds. Homogenization was performed with a homogenizer (heat systems, NY, USA). This solution was centrifuged at 10,000g for 4 hours at 4 ° C, and the supernatant was recovered. Was used as a brain homogenizing solution in the experiment. Leu—lie (Thermo Electron Corporation, Ulm, Germany) (10 mg / ml) with N- and C-terminal ends of FITC and monthly ¾ homomonise solution (total protein 6 mg / ml) at 4 ° C or 37 Sample buffer (125 mM Tris-HCl, pH 6.8, 10% 2-mercaptoethanol, 4% sodium dodecyl sulfate (SDS), 10% sucrose, 0.004% bromophenol blue) after reacting at ° C for 3 hours Boiled at 95 ° C for 5 minutes and electrophoresed 30 / zg protein using 10% polyacrylamide gel. FluorImager595 (Molecular Dynamics, CA, USA) was used to detect the fluorescent band.
[0034] 1 - 2-4 Affige卜 10による Leu- lie結合タンパク質の精製 [0034] 1-2-4 Purification of Leu-lie binding protein by Affige 卜 10
ァガロースビーズ £¾6卜10 (810 '1^0, CA, USA)を 30 mlシリンジ(テルモ、東京) に充填し(直径 22 mm、高さ 26.5 mm)これをカラムとした。カラムに 100 mlの 0.1 M炭 酸水素ナトリウム溶液 (pH 8.5)を流してビーズを洗浄し、 0.1 M炭酸水素ナトリウム溶 液 (pH 8.5)に溶解した Leu-Ile (国産化学、東京) (30 mg/ ml)とビーズを 4°Cで 3時間 反応させた。 0.1 Mリン酸緩衝液(pH 7.4)でビーズを洗浄し、ビーズに結合しなかつ た Leu-Ileを除去した後に、 2— 2— 2と同様の脳ホモジナイズ液(6 mg/ ml) 20 mlを力 ラムに加え、 Leu-Ileを結合したビーズと 4°Cでー晚反応させた。 100 mlの 0.1 Mリン酸 緩衝液(pH 7.4)でビーズを洗浄した後、 Leu-Ileに結合したタンパク質を 0.17 M glyci ne-HCl溶液(pH 3)で溶出した。コントロールとして Leu-Ileを結合させていないビー ズを用い、同様の操作を行った。これを 5-20%グラジュェントゲル(BIORAD)を用い て電気泳動し、銀染色「第一」キット (第一化学薬品、東京)を用いて銀染色を行った  Agarose beads £ ¾6 卜 10 (810 '1 ^ 0, CA, USA) were packed into a 30 ml syringe (Terumo, Tokyo) (diameter 22 mm, height 26.5 mm) to make a column. The column was washed with 100 ml of 0.1 M sodium bicarbonate solution (pH 8.5) to wash the beads, and Leu-Ile (Kokusan Kagaku, Tokyo) dissolved in 0.1 M sodium bicarbonate solution (pH 8.5) (30 mg / ml) and the beads were reacted at 4 ° C for 3 hours. After washing the beads with 0.1 M phosphate buffer (pH 7.4) and removing Leu-Ile that did not bind to the beads, 20 ml of brain homogenization solution (6 mg / ml) similar to 2-2-2 was added. In addition to the force ram, the reaction was carried out at 4 ° C with beads conjugated with Leu-Ile. After washing the beads with 100 ml of 0.1 M phosphate buffer (pH 7.4), the protein bound to Leu-Ile was eluted with 0.17 M glycine-HCl solution (pH 3). The same operation was performed using beads not bound with Leu-Ile as a control. This was electrophoresed using a 5-20% gradient gel (BIORAD) and silver stained using the silver staining “Daiichi” kit (Daiichi Kagaku, Tokyo).
[0035] 1 - 2- 5 Leu-Ile結合タンパク質の trypsin処理と質量分析 [0035] 1-2-5 trypsin treatment and mass spectrometry of Leu-Ile binding protein
1— 2—4で銀染色したゲルを蒸留水で 10分間 3回洗い、外科用メスを用いて目的 のタンパク質を含むゲル片を切りだした。ゲル片に 100 μ 1の脱色液(18.5 mg/ ml Na CI, 18.5 mg/ ml CuS04, 18.5 mg/ ml Na2S203)を 5分間反応させ、ゲル片が透明に なるまで蒸留水で洗浄した。 acetonitrileによって脱水した後、ゲル片を真空遠心機で 5分間乾燥させた。 30 1の 10 mM dithiothreitol溶液をゲル片に浸透させ、室温で 30 分間反応させた後、 dithiothreitol溶液を取り除き、 100 mM iodoacetamideを 30 μ \ 加えてアルミホイルで遮光し、室温で 30分間アルキル化した。再度ゲル片に acetonit rileを加えて脱水、乾燥させ、 10 μ 1の trypsin (0.01 μ g/ ul) (Promega, WI, USA)を 浸透させた後、 100 mM炭酸水素アンモ-ゥム液を 100 1加えて 37°Cでー晚反応さ せた。(1)5 % acetonitrile、 0.1 % trifluoroacetic acid (TFA)を含む 100 mM炭酸水素ァ ンモ -ゥム液、(2)50% acetonitrile, 0.1 % TFAを含む 100 mM炭酸水素アンモ-ゥム 液、(3)80 % acetonitrile, 0.1 % TFAを含む 100 mM炭酸水素アンモ-ゥム液を順次加 え、ゲル片からペプチド断片を溶出した。溶出物を乾燥させ、 5 % acetonitrile, 0.1 % ギ酸、 0.1 % TFAを含む水溶液に溶かし、質量分析装置 Q- Tof2 (Micromass, Manche ster, UK)を用いてペプチド断片の配列を分析した。分析結果はマスコットサーチ (M atnx Science, MA, U¾A)を用いて Nationalし enter for Biotechnology Information (N CBInr: http://www.ncbi. nlm.nih.gov/ Entrez/)のデータベース検索 行った (Perki ns et al., 1999)。スコア計算は Mowseアルゴリズムに基づいて行い、スコアが 44以上 のとき、統計学的に危険率 5%以下の信頼性があることを示す (Pappin et al, 1993)。 1 - 2 - 6 ウェスタンブロッテイング The gel stained with 1-2-4 was washed three times with distilled water for 10 minutes, and a gel piece containing the target protein was cut out using a scalpel. The gel pieces were reacted with 100 μl of decolorizing solution (18.5 mg / ml Na CI, 18.5 mg / ml CuS04, 18.5 mg / ml Na2S203) for 5 minutes and washed with distilled water until the gel pieces became transparent. After dehydration with acetonitrile, the gel pieces were dried in a vacuum centrifuge for 5 minutes. 30 1 10 mM dithiothreitol solution was infiltrated into the gel piece and reacted at room temperature for 30 minutes, then the dithiothreitol solution was removed, 100 μm iodoacetamide was added 30 μ \, light-shielded with aluminum foil, and alkylated at room temperature for 30 minutes . Acetonit to gel pieces again Add rile, dehydrate and dry, infiltrate with 10 μl trypsin (0.01 μg / ul) (Promega, WI, USA), add 100 mM 100 mM ammonium bicarbonate solution, 37 ° It was made to react with C. (1) 100 mM bicarbonate solution containing 5% acetonitrile and 0.1% trifluoroacetic acid (TFA), (2) 100 mM bicarbonate solution containing 50% acetonitrile, 0.1% TFA, ( 3) 100 mM ammonium bicarbonate solution containing 80% acetonitrile and 0.1% TFA was sequentially added to elute the peptide fragments from the gel pieces. The eluate was dried and dissolved in an aqueous solution containing 5% acetonitrile, 0.1% formic acid and 0.1% TFA, and the sequence of the peptide fragment was analyzed using a mass spectrometer Q-Tof2 (Micromass, Manchester, UK). Analytical results were searched using a mascot search (Matnx Science, MA, U¾A) and a database search of enter for Biotechnology Information (N CBInr: http://www.ncbi.nlm.nih.gov/Entrez/) ( Perki ns et al., 1999). The score calculation is based on the Mowse algorithm, and when the score is 44 or higher, it is statistically reliable with a risk factor of 5% or less (Pappin et al, 1993). 1-2-6 Western blotting
質量分析に用いたサンプルに等容量のサンプルバッファーをカ卩ぇ 95°Cで 5分間煮 沸し、 5-20%グラジュェントゲル(BIO RAD)を用いて電気泳動を行った。  An equal volume of sample buffer was boiled at 95 ° C for 5 minutes in the sample used for mass spectrometry, and electrophoresis was performed using 5-20% gradient gel (BIO RAD).
ポリアクリルアミドゲルから semi- dry transfer法により polyvinylidene fluoride (PDVF)膜 (Millipore, MA, USA)へタンパク質を転写した後、膜をブロッキングバッファー(KPL, MD, USA)中で、穏やかに攪拌しながら 2時間室温でブロッキングした。 Transfer protein from polyacrylamide gel to polyvinylidene fluoride (PDVF) membrane (Millipore, MA, USA) by semi-dry transfer method, and then gently agitate the membrane in blocking buffer (KPL, MD, USA) 2 Blocked for hours at room temperature.
次に、 PDVF膜をブロッキングバッファーで 1000倍に希釈した一次抗体(rat anti-Hs c70 antibody 3;た i rabbit anti— Hsp70 antibody (Stressgen, Bし, Canadaリ と 4°しで一 晚反応させた。 Tris buffer saline (TBS) (10 mM Tris- HC1, 137 mM NaCl, 0.1% Twee n-20)にて 15分間 3回洗浄した後、 2次抗体(peroxidase labeled goat anti-rat IgG (H +L) antibody ¾7t ^peroxidase labeled goat anti-rabbit IgG (H+L) antibody (Kirkega ard & Perry Laboratries, MD, USA) )と室温で 2時間反応させた。その後 TBSで 3回洗 浄し、 ECLTM (Amersham Pharmacia Biotec, UK)を 1分間反応させた。 FPM100 (富 士写真フィルム、東京)現像機を用いて hyperfilm (Amersham Bioscience, NA, UK)に 現像した。 Hyperfilmに現像されたバンドの強度解析には ATTO Densito Graph (アト 一、東京)を用いた。 [0037] 1 - 2 - 7 水晶発振子バイオセンサーによる heat shock cognate protein 70 (Hsc70) および heat shock protein 70 (Hsp70)と Leu- lieの結合力の検討 Next, the primary antibody (rat anti-Hsc70 antibody 3; i rabbit anti-Hsp70 antibody (Stressgen, B, and then Canada) was used to react once at 4 ° C. After washing with Tris buffer saline (TBS) (10 mM Tris-HC1, 137 mM NaCl, 0.1% Tween-20) three times for 15 minutes, secondary antibody (peroxidase labeled goat anti-rat IgG (H + L ) antibody ¾7t ^ peroxidase labeled goat anti-rabbit IgG (H + L) antibody (Kirkegaard & Perry Laboratries, MD, USA)) for 2 hours at room temperature, then washed 3 times with TBS, ECLTM (Amersham Pharmacia Biotec, UK) was allowed to react for 1 minute and developed into a hyperfilm (Amersham Bioscience, NA, UK) using an FPM100 (Fuji Photo Film, Tokyo) processor. ATTO Densito Graph (Atoichi, Tokyo) was used. [0037] 1-2-7 Examination of binding force between heat shock cognate protein 70 (Hsc70) and heat shock protein 70 (Hsp70) and Leu- lie by quartz crystal biosensor
水晶発振子マイクロバランス法は分子の結合'解離、重合'分解によって変化する 水晶発振子の絶対重量の増減を振動数の変化でとらえることにより、蛍光物質など で標識することなく分子反応をナノグラムレベルで定量することができる(Motomiya et al., 2003;岡畑と古澤., 2004; Sauerbrey., 1959)。水晶体センサーチップ (ィ -シァ ム、東京)をピランハ溶液(7.5 % H202, 25 % H2S04)で 5分間 2回洗浄後、 5mM 3,3- dithiodipropionic acid溶液を 100 μ 1センサーチップにのせて室温で 30分間静置した 。 留水で洗净後、 l-(3-dimethylaminopropyl-3-ethylcarbodiimide hydrochloride (1 00 mg/ ml)と N- hydroxysuccinimide (100 mg/ ml)の等量混合液 100 μ 1をセンサーチ ップにのせて室温で 30分間静置し、蒸留水で洗浄した。  The quartz crystal microbalance method is changed by molecular bond 'dissociation, polymerization' decomposition. By detecting the increase or decrease in the absolute weight of the quartz crystal by the change in frequency, the molecular reaction can be measured at the nanogram level without labeling with a fluorescent substance. (Motomiya et al., 2003; Okahata and Furusawa., 2004; Sauerbrey., 1959). The lens sensor chip (Y-Siam, Tokyo) was washed twice with Piranha solution (7.5% H202, 25% H2S04) for 5 minutes, and then 5 mM 3,3-dithiodipropionic acid solution was placed on the 100 μ1 sensor chip at room temperature. Let stand for 30 minutes. After washing with distilled water, 100 μ1 of an equal volume mixture of l- (3-dimethylaminopropyl-3-ethylcarbodiimide hydrochloride (100 mg / ml) and N-hydroxysuccinimide (100 mg / ml) is placed on the sensor chip. The mixture was allowed to stand at room temperature for 30 minutes and washed with distilled water.
Leu- Ile、 Pro- Leu (国産化学)または lie- Pro (国産化学)(10 g/ ml)を含む 100 μ \ のリン酸緩衝液をセンサーチップにのせて室温で約 1時間反応させ、ジペプチドをセ ンサーチップに固定化した。 Pro-Leuおよび lie-Proは Leu-Ileと同じ疎水性ジぺプチ ドであるが GDNF産生誘導作用を示さないこと(Nitta et al, 2004)から、これらをネガ ティブコントロールとして用いた。  Dipeptide is prepared by placing 100 μ \ phosphate buffer containing Leu-Ile, Pro-Leu (domestic chemistry) or lie-Pro (domestic chemistry) (10 g / ml) on the sensor chip for about 1 hour at room temperature. Was immobilized on a sensor chip. Pro-Leu and lie-Pro are the same hydrophobic dipeptides as Leu-Ile, but do not show GDNF production-inducing action (Nitta et al, 2004), so they were used as negative controls.
ジペプチドを固定化したセンサーチップを AFFINIX Q (ィ -シアム、東京)にセットし 、リン酸緩衝液中で振動数を安定ィ匕させた後、 Hsp70 (Stressgen) (1.79, 3.57, 7.14, 14.3, 28.6 nM)または Hsc70 (Stressgen) (1.79, 3.57, 7.14, 14.3, 28.6 nM)を含むリ ン酸緩衝液を逐次添カ卩した。周波数変化は AFFINIX Q User Analysis (ィ -シアム) でモニターし、 Hsp70または Hsc70とジペプチドの結合の程度を可視化した。周波数 力も濃度-結合飽和曲線を求め、解離定数 (Kd値)を算出した。  After setting the sensor chip with the dipeptide immobilized on AFFINIX Q (Y-Siam, Tokyo), stabilizing the frequency in phosphate buffer, Hsp70 (Stressgen) (1.79, 3.57, 7.14, 14.3, 28.6 nM) or Hsc70 (Stressgen) (1.79, 3.57, 7.14, 14.3, 28.6 nM) was added successively. The frequency change was monitored by AFFINIX Q User Analysis (Y-Siam) to visualize the degree of binding of Hsp70 or Hsc70 to the dipeptide. For the frequency force, a concentration-binding saturation curve was obtained, and the dissociation constant (Kd value) was calculated.
[0038] 1 - 2 - 8 分子シミュレーションを用いた Hsc70と Leu-Ileの結合部位の予測 [0038] 1-2-8 Prediction of binding sites of Hsc70 and Leu-Ile using molecular simulation
Hsc70は N末端側から 44KDの ATPaseドメイン、 18KDの基質結合ドメインおよび 10K Dの C末端ドメインに分けられ、それぞれの立体構造が既に明ら力となっているため、 力、子ンユ^レ ~~ンヨンソフトゥエフ ~~ (MuE; Chemicalし omputing GroupQuebec,し ana da)を用いることによって Leu-Ileが Hsc70のどの部位に結合して!/、るのかを予測する こと力 eさる。 Researchし ollaboratory for Structural Bioinformatics (Sし SB)のァ ~~タ ベ' ~~スサイ卜である protein data bank (PDB) (http://pdbbeta.rcsb.org/pdb/Welcome· do)力 得られたそれぞれのドメインの 3次元構造データ(3HSC (Flaherty et al.,1990 )、 7HSC (Morshauser et al, 1999)および 1UOD (Chou et al, 2003) )を利用し、 MO E (分子力場: MMFF94x、カットオフ: 9.5 nm)を用いて Hsc70と Leu-Ileの結合部位の 解析を行った。 Hsc70 is divided into 44 KD ATPase domain, 18 KD substrate binding domain, and 10 KD C-terminal domain from the N-terminal side. The ability to predict which site of Leu-Ile binds to / by Hsc70 by using Nyeon Soft-Fu ~~ (MuE; Chemical and omputing GroupQuebec, and ana da). Research and ollaboratory for Structural Bioinformatics (S and SB) Protein data bank (PDB) (http://pdbbeta.rcsb.org/pdb/Welcome·do) force 3D structure data of each domain (3HSC (Flaherty et al. 1990), 7HSC (Morshauser et al, 1999) and 1UOD (Chou et al, 2003)), and using MO E (molecular force field: MMFF94x, cut-off: 9.5 nm) with Hsc70 and Leu-Ile. The binding site was analyzed.
[0039] 1 - 3 結果  [0039] 1-3 results
1 - 3 - 1 Leu- lieの膜透過性  1-3-1 Leu-lie membrane permeability
FITC標識 Leu-Ileが細胞膜を透過することを証明した。図 1 Aに示すように FITC標 識 Leu-Ileの濃度の上昇に伴って細胞内 FITCの蛍光強度も増加した。また、時間経 過との関係についても検討したところ、 FITC標識 Leu-Ileが細胞内に取り込まれるの は非常に早ぐ培養細胞への添加後 120分で飽和状態となり、それ以上の取り込み は観察されなくなった (図 1B)。 FITCそのものも細胞膜を透過する力 FITC標識 Leu-I leのほうが、より透過しやすい。 FITC標識 Leu-Ileの膜透過性力 FITCでなく Leu-Ile に起因するものかどうかを検討するために、過剰量の Leu-Ileを FITC標識 Leu-Ileまた は FITCと同時に培養上清に添カ卩した。 FITC標識 Leu-Ileを用いた場合には、 Leu-Ile の用量依存的に細胞内に取り込まれる FITCの蛍光強度は減少し、細胞膜通過性が 抑制された (図 1C)が、 FITCと過剰量の Leu-Ileを同時に添カ卩した場合には、 FITCの 細胞内取り込みは抑制されな力つた。これらの結果から、 Leu-Ileが細胞膜透過性を 持つことが示された。  It was proved that FITC-labeled Leu-Ile permeates the cell membrane. As shown in Fig. 1A, the fluorescence intensity of intracellular FITC increased with increasing concentration of FITC-labeled Leu-Ile. We also examined the relationship with the passage of time and found that FITC-labeled Leu-Ile was taken up into cells very quickly after 120 minutes of addition to cultured cells, and further uptake was observed. No longer (Figure 1B). FITC itself can penetrate cell membranes FITC-labeled Leu-I le is easier to penetrate. FITC-labeled Leu-Ile membrane permeability To determine whether it is caused by Leu-Ile, not FITC, add excess Leu-Ile to the culture supernatant at the same time as FITC-labeled Leu-Ile or FITC. I'm sorry. When FITC-labeled Leu-Ile was used, the fluorescence intensity of FITC incorporated into cells decreased in a dose-dependent manner with Leu-Ile, and cell membrane permeability was suppressed (Fig. 1C). When the Leu-Ile was added at the same time, FITC intracellular uptake was not suppressed. From these results, it was shown that Leu-Ile has cell membrane permeability.
[0040] 1 - 3 - 2 FITC標識した Leu-Ileによる脳内結合タンパク質の検討  [0040] 1-3-2 Examination of FITC-labeled Leu-Ile binding protein in the brain
Nまたは C末端に FITC標識した Leu-Ileとマウス脳ホモジナイズ液を反応させたもの を電気泳動し、蛍光スキャナーによって画像を得た(図 2A)。 C末端側に FITC標識し た Leu-Ileに比べて、 N末端側に標識した Leu-Ileの方がより多くのタンパク質と結合し ていた力 Nおよび C末端側に FITC標識した Leu-Ile両方に 70KDの大きさのタンパク 質が結合した。また、それぞれの結合は 4°Cと 37°Cの温度差の影響をほとんど受けな かった。  A mixture of Leu-Ile labeled with FITC at the N or C terminus and mouse brain homogenized solution was electrophoresed, and an image was obtained using a fluorescence scanner (Fig. 2A). Compared to Leu-Ile labeled with FITC on the C-terminal side, the force of binding of more proteins to Leu-Ile labeled on the N-terminal side Both N and Leu-Ile labeled with FITC on the C-terminal side A protein of 70 KD size was bound. In addition, each bond was almost unaffected by the temperature difference between 4 ° C and 37 ° C.
[0041] 1 - 3 - 3 Leu- lie結合タンパク質の同定  [0041] 1-3-3 Identification of Leu-lie binding protein
ァガロースビーズ Affigd- 10によって精製した溶出液を電気泳動し、銀染色した結 果、 1— 3— 1で行った実験と同様に 70KDの大きさにバンドが認められた(図 2B)。こ れが Leu-Ileと特異的に結合しているタンパク質であると考え、 trypsinによって消化し 7こ後、 Matrix- assisted laser aesorption/ ionization- time of flight/time of flight— Mas s spectrometry (MALDI-TOF/TOF-MS)を用いてタンパク質の質量分析を行った。 マスコットサーチを用いて NCBInrのデータベースを検索したところ 10本のペプチド鎖 力 ¾eat shock cognate protein 70 (Hsc70)の配列と一致し、スコア力 96であったこと から、 Hsc70が Leu-Ileの結合タンパク質である可能性が極めて高!、と考えられた(図 11)。 Hsc70の抗体を用いて Affige卜 10によって精製した溶出液のウェスタンブロッテ イングを行った結果、 Hsc70と考えられるバンドが検出された(図 2C)。一方、 Hsc70と 81%の相同性を有する Hsp70についてもウェスタンブロットを行った力 バンドは検出 されなかった (データ示さず)。 Hsc70は恒常的に発現しているタンパク質である力 H sp70は熱ゃ虚血などのストレスに暴露されたときに発現誘導されることが知られており (Dworniczak and Mirault., 1987)、今回実験に用いた脳が非ストレス下であったため 、 Hsp70と Leu-Ileとの結合が観察できなかったと考えられる。 The eluate purified with agarose beads Affigd-10 was electrophoresed and silver stained. As a result, a band with a size of 70 KD was recognized as in the experiment conducted in 1-3-1. (Fig. 2B). It is considered that this is a protein that specifically binds to Leu-Ile, digested with trypsin, and then 7 minutes later, Matrix-assisted laser aesorption / ionization- time of flight / time of flight— Mas s spectrometry (MALDI- Protein mass spectrometry was performed using TOF / TOF-MS). When searching the NCBInr database using mascot search, the peptide chain strength was consistent with the sequence of 10 peptide shock cognate protein 70 (Hsc70) and scored 96, indicating that Hsc70 is a Leu-Ile binding protein. The possibility was extremely high! (Fig. 11). As a result of Western blotting of the eluate purified with Affige® 10 using an antibody of Hsc70, a band thought to be Hsc70 was detected (FIG. 2C). On the other hand, no force band was detected by Western blotting for Hsp70 having 81% homology with Hsc70 (data not shown). Hsc70 is a protein that is expressed constantly. Hsp70 is known to be induced by exposure to stress such as heat ischemia (Dworniczak and Mirault., 1987). Since the brain used in the test was unstressed, it is thought that the binding between Hsp70 and Leu-Ile could not be observed.
[0042] 1 - 3 -4 水晶発振子バイオセンサーによる Hsc70および Hsp70と Leu- lieの結合力 の検討 [0042] 1-3 -4 Examination of binding force of Hsc70 and Hsp70 with Leu-lie using quartz crystal biosensor
Hsc70および Hsp70と Leu-Ileの結合活性について水晶発振子バイオセンサーを用 いて測定した。 Leu-Ile、 Pro-Leuまたは lie-Proを結合させた水晶発振子に Hsc70また は Hsp70を反応させると、 Leu-Ileを結合させたもののみ振動数が減少した(図 3A)。 9 5°Cで 5分間インキュベートして熱変性させた Hsc70および Hsp70を加えても、振動数 が減少しなかったことから、熱変性させた Hsc70および Hsp70は Leu-Ileと結合しな!、こ とが分かった(図 3A)。 Hsc70または Hsp70と Leu-Ileの解離定数を求めた結果、 Hsc7 0は Kd = 1.83 X 10— 8 M、 Hsp70は Kd = 1.24 X 10— 8 Mの強さで Leu- lieと結合する事が 分かった(図 3B)。水晶発振子バイオセンサーによる実験では Hsc70のみでなく Hsp7 0も Leu-Ileと結合することが示された。 The binding activity of Hsc70 and Hsp70 and Leu-Ile was measured using a quartz crystal biosensor. When Hsc70 or Hsp70 was reacted with a crystal oscillator with Leu-Ile, Pro-Leu, or lie-Pro, the frequency of only those with Leu-Ile binding decreased (Fig. 3A). 9 The addition of heat-denatured Hsc70 and Hsp70 incubated at 5 ° C for 5 minutes did not reduce the frequency, so the heat-denatured Hsc70 and Hsp70 do not bind to Leu-Ile! (Figure 3A). Result of obtaining the dissociation constant of Hsc70 or Hsp70 and Leu-Ile, Hsc7 0 is Kd = 1.83 X 10- 8 M, Hsp70 is found to bind Leu- lie in the intensity of Kd = 1.24 X 10- 8 M (Figure 3B). Quartz crystal biosensor experiments have shown that not only Hsc70 but also Hsp70 binds to Leu-Ile.
[0043] 1 - 3 - 5 分子シミュレーションを用いた Hsc70と Leu-Ileの結合部位の予測 [0043] 1-3-5 Prediction of binding sites of Hsc70 and Leu-Ile using molecular simulation
Hsc70は N末端側から 44KDの ATPaseドメイン、 18KDの基質結合ドメインおよび 10K Dの C末端ドメインに分けられ、それぞれの立体構造が既に明ら力となっている(Chou et al., 2003; Flaherty et al.,1990; Morshauser et al., 1999)。 Leu— lieがどのドメイン に結合して 、るのかを分子シミュレーションソフトウェアー(MOE)を用いて解析し、相 互ポテンシャルエネルギーを計算した結果、 ATPaseドメインには- 119.044 kCal、基 質結合ドメインには- 76.711 kCal、 C末端ドメインには- 64.337 kCalの強さで Leu- lieが 結合することが示された(図 4)。 Hsc70 is divided into 44 KD ATPase domain, 18 KD substrate binding domain and 10 KD C terminal domain from the N-terminal side. et al., 2003; Flaherty et al., 1990; Morshauser et al., 1999). The domain of Leu—lie bound to and analyzed using molecular simulation software (MOE), and the mutual potential energy was calculated. As a result, the ATPase domain was -119.044 kCal, and the substrate binding domain was -It was shown that Leu-lie binds to 76.711 kCal and C-terminal domain with a strength of -64.337 kCal (Fig. 4).
1 -4 考察 1 -4 Discussion
FITCを結合した Leu-Ileと脳ホモジナイズ液を反応させた実験では、 70KDのタンパ ク質カ eu-Ileと特異的に結合することが示された。この時、反応温度を 4°Cから 37°C に変化させても結合の程度に差がな力つたことから、これらの結合は温度の影響を受 けやすい酵素的な反応ではないと考えられる。 Leu-Ileと特異的に結合する 70KDのタ ンパク質の質量分析を行ったところ Hsc70が同定され、水晶発振子バイオセンサーに よる実験では Hsc70のみでなく Hsp70も Leu-Ileと特異的に結合する可能性が示唆さ れた。  In an experiment in which FITC-conjugated Leu-Ile was reacted with brain homogenization solution, it was shown to specifically bind to 70 KD protein eu-Ile. At this time, even if the reaction temperature was changed from 4 ° C to 37 ° C, there was no difference in the degree of binding, so these bonds are not considered to be enzymatic reactions that are sensitive to temperature. . Mass spectrometry of a 70KD protein that specifically binds to Leu-Ile identified Hsc70. In an experiment using a quartz crystal biosensor, not only Hsc70 but also Hsp70 specifically binds to Leu-Ile. The possibility was suggested.
タクロリムスは FKBP12に結合する事でカルシ-ユーリンの脱リン酸ィ匕作用を抑制し 、 interleukin2の産生を抑制することで免疫抑制作用を発現すると考えられている(Gr iffith et al., 1995; Schreiber et al., 1991)。 Leu-Ileはタクロリムスの部分構造の類似 体として得られた力 FKBP12〖こは結合せず、カルシ-ユーリン阻害活性を持たない 事からも、 Leu-Ileは免疫活性を抑制することなぐ神経保護作用を誘導することが示 唆されている(Nitta et al., 2004) 0 Tacrolimus is thought to suppress the dephosphorylation effect of calci-eurin by binding to FKBP12 and to express immunosuppressive activity by suppressing the production of interleukin2 (Gr iffith et al., 1995; Schreiber et al., 1991). Leu-Ile is a force obtained as an analog of the partial structure of tacrolimus. FKBP12 does not bind and does not have calci-eurin inhibitory activity. Therefore, Leu-Ile does not suppress immune activity. (Nitta et al., 2004) 0
また、タクロリムスの神経保護作用に関する重要な因子は FKBP52 (Hsp56)であるこ とが示唆されいる(Gold et al., 1999)。本研究では Hsc70および Hsp70と Leu- lieが結 合することが示された力 FKBP52と Hsc70および Hsp70は Hsp90と共にステロイド受容 体に結合し、複合体を形成しているという報告があることから(Bagchi et al, 1991; Mc Laughlin et al., 2002)、タクロリムスと Leu-Ileはこれらの複合体に何らかの作用をおよ ぼすことによって神経保護作用を誘導している可能性が考えられる。  It has also been suggested that an important factor for the neuroprotective action of tacrolimus is FKBP52 (Hsp56) (Gold et al., 1999). In this study, the force shown to bind Hsc70 and Hsp70 to Leu-lie FKBP52 and Hsc70 and Hsp70 are reported to bind to steroid receptors together with Hsp90 to form a complex (Bagchi et al, 1991; Mc Laughlin et al., 2002), tacrolimus and Leu-Ile may induce neuroprotective effects by exerting some effect on these complexes.
Hsc70と Hsp70はヒートショックプロテイン 70ファミリーに属し、 81%のアミノ酸相同配 列を有して ヽることから、タンパク質のミスホールディングや凝集を防ぐ類似した機能 を持ち(Dworniczak and Mirault., 1987; Young et al., 2003)、結合したタンパク質は ATPのエネルギーを用いて Hsp90に受け渡されるという報告がある(Bagchi et al., 19 91; McLaughlin et al., 2002) 0分子シミュレーションを用いた解析では Leu-Ileが Hsc7 0の ATPaseドメインに強く結合する可能性が示されたことから、 ATPのエネルギーを用 V、た Hsc70と Hsp90間のタンパク質受け渡しに Leu-Ileが関与して!/、る可能性が示唆さ れた。 Hsp90は細胞周期、細胞増殖およびアポトーシスに関わる細胞内シグナルを 調節する働きをもつので(Zhang and Burrows et al., 2004)、 Leu- lieは Hsp90を介した シグナル経路によって GDNFの産生誘導作用や神経保護作用を発現していると考え られる。 Hsc70 and Hsp70 belong to the heat shock protein 70 family and have a similar function to prevent protein misfolding and aggregation because they have 81% amino acid homology (Dworniczak and Mirault., 1987; Young et al., 2003) By using the energy of ATP there is a report that is delivered to the Hsp90 (Bagchi et al, 19 91 ;.. McLaughlin et al, 2002) 0 In the analysis using the molecular simulation strongly to the ATPase domain of 0 Leu-Ile is Hsc7 The possibility of binding indicates that Leu-Ile is involved in the protein transfer between Hsc70 and Hsp90 using the energy of ATP! Since Hsp90 functions to regulate intracellular signals related to cell cycle, cell proliferation and apoptosis (Zhang and Burrows et al., 2004), Leu-lie is responsible for inducing GDNF production and nerve activity through signal pathways mediated by Hsp90. It is considered that a protective action is being developed.
また、免疫細胞においては、 Hsp70が I κ B kinaseの活性を抑制する機能を有し、 N F- κ Bの活性を抑えることによって、 tumor necrosis factor- (TNF- )の転写を抑 制するという報告がなされている(Beere et al., 2004; Feinstein et al., 1996; Yoo et a 1., 2000) oこのことから、 Leu- lieが Hsc70および Hsp70の作用を抑制し、 GDNFの転写 因子でもある NF- κ Bを活性ィ匕することによって GDNFを産生誘導している可能性が 考えられた。そこで、以下では、 Hsc70が調節しているシグナル経路と GDNFの転写 因子に焦点をしぼり、 GDNFの産生を誘導しているシグナルと Hsc70との関係につい て検討を行った。  In immune cells, Hsp70 has the function of suppressing the activity of IκB kinase and suppresses the transcription of tumor necrosis factor- (TNF-) by suppressing the activity of NF-κB. (Beere et al., 2004; Feinstein et al., 1996; Yoo et a 1., 2000) o From this, Leu-lie suppresses the action of Hsc70 and Hsp70, and the transcription factor of GDNF However, it was considered that GDNF production was induced by activating NF-κB. Therefore, in the following, we focused on the signal pathway regulated by Hsc70 and the transcription factor of GDNF, and examined the relationship between Hsc70 and the signal inducing GDNF production.
実施例 2 Example 2
2.ラット培養海馬神経細胞における Leu-Ileの GDNF産生誘導作用 2. Leu-Ile induces GDNF production in cultured rat hippocampal neurons
2- 1 目的 2- 1 Purpose
GDNFは胎児黒質ドーノ ミン神経に対する栄養因子としてラットグリア細胞 (B49)か ら得られ、黒質ドーパミン神経の変性によって起こるパーキンソン病の治療薬への応 用が期待された (Lin et al, 1993)。その後、 GNDFは脊髄運動神経や交感神経に対 しても強力な生存効果を持つことが明ら力となり(Henderson et al, 1994)、発生段階 に於いては、 GDNFが神経冠細胞の腎臓、腸神経系への遊走制御や器官形成に重 要な役割を果たしていることが明ら力となった(Moore et al., 1996; Pichel et al,. 1996 ; Sanchez et al., 1996.)。  GDNF was obtained from rat glial cells (B49) as a trophic factor for fetal substantia nigra donominin neurons and was expected to be applied as a therapeutic drug for Parkinson's disease caused by substantia nigra dopamine neurons (Lin et al, 1993). . Later, it became clear that GNDF had a strong survival effect on spinal motor nerves and sympathetic nerves (Henderson et al, 1994). It became apparent that it plays an important role in the control of migration to the enteric nervous system and organ formation (Moore et al., 1996; Pichel et al, 1996; Sanchez et al., 1996.).
ホモ二量体の分泌タンパク質である GDNFは、細胞膜上の GDNF family receptor- a (GFR a l)に結合後、受容体 RETと複合体を形成し、細胞内にシグナルを伝達する。 リガンドである GDNFは 1993年に神経栄養因子としてみいだされた(Lin et al, 1993) 。し力し、その受容体である RETは癌遺伝子として 1985年に発見され (Takahashi et al ,. 1985)、古くから RETの突然変異がひき起こす疾患や RETの細胞内シグナル経路 についての詳細な研究が行われてきた。 RETの突然変異による疾患には多発性内 分泌腺腫症、家族性甲状腺髄様癌があり、その病理的変化としては甲状腺,副甲状 腺および副腎髄質での腫瘍性病変、または神経冠細胞由来の外胚葉に異常が認め られる (Airaksinen et al., 1999; Mulligan et al., 1994; Romeo et al" 1994; Santoro et al., 1990) oこの様に RET遺伝子が癌原遺伝子であることは、 GDNF/RETのシグナル が細胞の生存、増殖および分ィ匕に強く関わっている事を裏付けるものであろう。 GDNF, a homodimeric secreted protein, binds to the GDNF family receptor-a (GFR al) on the cell membrane, forms a complex with the receptor RET, and transmits a signal into the cell. The ligand GDNF was found in 1993 as a neurotrophic factor (Lin et al, 1993). However, its receptor, RET, was discovered as an oncogene in 1985 (Takahashi et al., 1985), and since long ago, detailed studies on diseases caused by RET mutations and intracellular signaling pathways of RET Has been done. Diseases caused by RET mutations include multiple endocrine adenomas and familial medullary thyroid carcinoma. Pathological changes include neoplastic lesions in the thyroid, parathyroid and adrenal medulla, or neural crest cell-derived Abnormalities in ectoderm (Airaksinen et al., 1999; Mulligan et al., 1994; Romeo et al "1994; Santoro et al., 1990) o In this way, the RET gene is a proto-oncogene. This may support that GDNF / RET signals are strongly involved in cell survival, proliferation and differentiation.
RETは膜貫通型チロシンキナーゼ受容体で、細胞内ドメインの長さが異なる 3種の ァイソフォーム(RET9、 RET43、 RET51)が細胞内にシグナルを伝えている(Lorenzo e t al" 1995; Myers et al" 1995; Takahashi et al., 1989)。リガンドである GDNFゝ neurtu rin、 artemin、 persephinが RETに結合すると、 RETは二量体を形成し、チロシン残基 (T yr)を自己リン酸化することで細胞内シグナルを活性化する(Grimm et al., 2001; Schl essinger, 2000)。 GDNFにより RETを刺激すると RETの Tyr905、 Tyrl015、 Tyrl062お よび Tyrl096を自己リン酸化させるが(Coulpier et al., 2002; Ichihara et al., 2004)、 この 4つのチロシン残基のうち、 Tyrl062が phosphatidylinosito卜 3 kinase (PI3K)/Akt 経路を活性ィ匕することによって、 GDNF/RETの神経保護作用が発現すると考えられ て ヽる (Besset et al., 2000; Coulpier et al., 2002; Encinas et al., 200丄; Hayashi et al ., 2000; Kobayashi and Matsuoka., 2000; Takahashi., 2001)。  RET is a transmembrane tyrosine kinase receptor, and three isoforms (RET9, RET43, RET51) with different intracellular domain lengths signal in the cell (Lorenzo et al "1995; Myers et al. al "1995; Takahashi et al., 1989). When the ligands GDNF ゝ neurtu rin, artemin, and persephin bind to RET, RET forms a dimer and activates intracellular signals by autophosphorylating tyrosine residues (T yr) (Grimm et al. al., 2001; Schl essinger, 2000). When RET is stimulated by GDNF, Tyr905, Tyrl015, Tyrl062 and Tyrl096 of RET are autophosphorylated (Coulpier et al., 2002; Ichihara et al., 2004). Of these four tyrosine residues, Tyrl062 is phosphatidylinosito.活性 It is considered that the neuroprotective effect of GDNF / RET is expressed by activating the 3 kinase (PI3K) / Akt pathway (Besset et al., 2000; Coulpier et al., 2002; Encinas et al Hayashi et al., 2000; Kobayashi and Matsuoka., 2000; Takahashi., 2001).
これまでの研究によって GDNF/RETによって活性ィ匕される細胞内シグナル経路に つ 、ての解明は進んで 、るが、 GDNFの産生を促す転写調節機構にっ 、てはまだよ く分かっていない。 GDNFの産生を誘導する物質としては、 TNF- a、 interleukin-1? ( IL-1? )などの炎症性サイト力イン、 fibloblast growth factor (FGF)などの栄養因子、 興奮性アミノ酸などが報告されている(Marco et al., 2002; Taylor et al., 2003; Verity et al, 1999) oまた、 GDNFは脊髄損傷など障害を受けることによつてもすばやく誘導 されることが分かっている(Satake et al., 2000)。し力し、 GDNFの発現調節パターン はグリア細胞または神経細胞によって異なり、例えば、 IL-1?を膠芽細胞腫である U- 87MGに作用させると GDNFの産生が促進される力 IL-1?を神経芽腫である SK- N- ASに作用させると GDNFの産生を抑制することが報告されている(Verity et al, 1999 )。このような GDNFの複雑な発現パターンはそのプロモーター領域によって調節され ていると考えられている(Tanaka et al., 2001)。 Elucidation of the intracellular signal pathway activated by GDNF / RET has been progressed by previous studies, but the transcriptional regulatory mechanism that promotes the production of GDNF is not yet well understood. . Substances that induce GDNF production include TNF-a, inflammatory site force-in such as interleukin-1? (IL-1?), Nutritional factors such as fibloblast growth factor (FGF), and excitatory amino acids. (Marco et al., 2002; Taylor et al., 2003; Verity et al, 1999) o It has also been found that GDNF is also rapidly induced by injury such as spinal cord injury (Satake et al., 2000). However, the expression regulation pattern of GDNF varies depending on the glial cell or nerve cell, for example, IL-1? Is a glioblastoma U- The force that stimulates the production of GDNF when acting on 87MG It has been reported that the action of IL-1? On the neuroblastoma SK-N-AS suppresses the production of GDNF (Verity et al, 1999 ). Such a complex expression pattern of GDNF is thought to be regulated by its promoter region (Tanaka et al., 2001).
GDNFのプロモーター領域には NF- κ B、 CREB、 trans-acting transcription factor 1 (SP1)、 sine oculis-related homeobox 2 homolog (Six2)などの転写調節因子結合部 位や転写を抑制するサイレンサー neura卜 restrictive silencer elements (NRSE)結合 部位が存在し(Brodbeck et al., 2004; Tanaka et al., 2000; Woodbury et al., 1998)、 これらの因子が複雑に影響しあうことで転写調節を行っている(図 12)。例えば、恒常 的な GDNFの発現には SP1が、発生段階での神経管や体節などにおける GDNF発現 誘導には Six2力 障害やサイト力インによる GDNFの誘導には NF- κ Βが関わる事が 知られている(Baecker et al" 1999; Brodbeck et al., 2004; Grimm et al" 1998; Maru yama et al., 2004; Tanaka et al., 2001)。 Leu- lieによる GDNFの産生誘導効果は、こ れらの転写調節因子のいずれかが活性ィ匕することによって発現すると考えられる。 上記 1.では Hsp70および Hsc70が Leu-Ileの結合タンパク質である事を示したが、 以下では、 Leu-Ileが Hsp70および Hsc70が結合した後、どの様なシグナルを介して G DNFの産生を誘導するのかを調べるため、特に障害やサイト力インとの関係が深ぐ Hsp70を発現誘導することによって活性が抑制される NF- κ Β (Υοο et al, 2000)、お よび、神経保護作用とつながりが深い CREBに焦点をしぼって検討した。  GDNF promoter region includes transcription regulators such as NF-κB, CREB, trans-acting transcription factor 1 (SP1), sine oculis-related homeobox 2 homolog (Six2), and silencers that suppress transcription neura 卜 restrictive There is a silencer elements (NRSE) binding site (Brodbeck et al., 2004; Tanaka et al., 2000; Woodbury et al., 1998), and these factors influence transcription in complex ways. (Figure 12). For example, constant GDNF expression may involve SP1, and induction of GDNF expression in the neural tube or somite at the developmental stage may involve Six2 force disorder or GDNF induction by site force-in may involve NF-κΒ. Known (Baecker et al "1999; Brodbeck et al., 2004; Grimm et al" 1998; Maruyama et al., 2004; Tanaka et al., 2001). The GDNF production-inducing effect by Leu-lie is thought to be expressed by the activation of any of these transcriptional regulators. In the above 1., it was shown that Hsp70 and Hsc70 are Leu-Ile binding proteins, but in the following, Leu-Ile induces G DNF production via any signal after Hsp70 and Hsc70 bind. NF-κ Β (Υοο et al, 2000), whose activity is suppressed by inducing the expression of Hsp70, which has a deep relationship with damage and site force-in, and neuroprotection However, the focus was on deep CREB.
[0046] 2- 2 実験材料および方法 [0046] 2-2 Experimental materials and methods
2- 2 - 1 動物  2- 2-1 animals
実験には、 Wistar系 STラット妊娠 17日目(日本 SLC)を使用した。なお、本研究は名 古屋大学医学部動物実験指金†および Principles of Laboratory Animal Care (Nationa 1 Institutes of Health Publication 85-23, 1985)に基づいて行った。  In the experiment, Wistar ST rat pregnancy day 17 (Japan SLC) was used. This study was conducted based on the Nagoya University School of Medicine Animal Experiment Fund † and Principles of Laboratory Animal Care (Nationa 1 Institutes of Health Publication 85-23, 1985).
[0047] 2- 2 - 2 ラット海馬神経細胞培養方法 [0047] 2-2-2 Rat Hippocampal Neuron Culture Method
ペントバルビタールによる麻酔下で Wistar系 STラットから妊娠 17日目の胎仔を取り 出し、氷冷した L15倍地 (シグマアルドリッチジャパン、東京)中で海馬を取り出した。 trypsin (Invitrogen, NY, USA)を 37°Cで 15分間作用させた後、海馬に牛胎児血清(fe tal bovine serum: FBS)をカ卩えて反応を停止し、 phosphate buffer saline (PBS) (1.3 m mol/1 NaCl, 81 mmol/1 Na2HP04, 26.8 mmol/1 KCl, 14.7 mmol/1 KH2P04) (pH 7.4 )を海馬の入った容器に加えて穏やかに震とうし、 PBSを取り除いた。これに 10% FBS 3む Dulbecco s modified Eagle s medium/ Ham s nutrient mixture F12 (DMEM/ F12HAM) (シグマアルドリッチジャパン)を 10 ml加え、 10回ピペッティングをくりかえ すことで細胞を解離させ、 96穴プレートまたは 6 cmシャーレ(NALGE NUNC Internati onal,東京)を用いてそれぞれ 250,000 cells/ cm2の細胞密度で培養を開始した。 37 °C、 5% COで 1日間培養した後、 N2サプリメント(Invitrogen)を含む DMEM/ F12HAM Under anesthesia with pentobarbital, fetuses from the 17th day of pregnancy were removed from Wistar ST rats, and the hippocampus was removed in ice-cooled L15 medium (Sigma Aldrich Japan, Tokyo). After trypsin (Invitrogen, NY, USA) was allowed to act at 37 ° C for 15 minutes, fetal calf serum (fe tal bovine serum: FBS) to stop the reaction, phosphate buffer saline (PBS) (1.3 mmol / NaCl, 81 mmol / 1 Na2HP04, 26.8 mmol / 1 KCl, 14.7 mmol / 1 KH2P04) (pH 7.4 ) Was added to the container containing the hippocampus and shaken gently to remove the PBS. Add 10 ml of Dulbecco s modified Eagles medium / Ham s nutrient mixture F12 (DMEM / F12HAM) (Sigma Aldrich Japan) to this, and dissociate the cells by repeating pipetting 10 times to obtain 96 wells. The culture was started at a cell density of 250,000 cells / cm 2 using a plate or a 6 cm petri dish (NALGE NUNC Internatial, Tokyo). DMEM / F12HAM with N2 supplement (Invitrogen) after 1 day incubation at 37 ° C, 5% CO
2  2
無血清培地に換え、さらに 1日培養した細胞を免疫染色、ウェスタンブロッテイング、 または methyl thiazol tetrazolium (MTT)アツセィの実験に用いた。  Cells replaced with serum-free medium and further cultured for 1 day were used for immunostaining, western blotting, or methyl thiazol tetrazolium (MTT) experiments.
[0048] 2 - 2 - 3 培養海馬神経細胞を用 ヽた NF- κ Β免疫組織染色  [0048] 2-2-3 NF-κ Β immunohistochemical staining using cultured hippocampal neurons
2— 2— 2で培養した海馬神経細胞に Leu- lie (10 μ g/ml), TNF- α (100 ng/ml) ( 大日本製薬(大阪)より恵与)または GDNF(50 ng/ml) (Amgen, CA, USAより恵与)を 2 時間作用させた。細胞を- 20°Cのメタノールで 20分間固定し、 4°Cの PBSで 15分間 3回 洗浄した。 2%牛胎児血清アルブミン(bovin serum albumin: BSA)、 10%FBSを含む PBS 溶液で細胞を 37°C 1時間インキュベーションし、 PBSで 1000倍に希釈した rabbit anti p65/ NF- κ B antibody (Lockland, PA, USA)をカ卩ぇ 4°Cでー晚作用させた。ネガティ ブコントロールは PBSのみを細胞に加えて 4°C中でー晚放置した。細胞を PBSで 15分 間 3回洗浄した後、 PBSで 1000倍希釈した Alexa Fluor 546 goat anti-rabbit IgG (H+L ) (Molecular Probes, OR, USA)を 3時間反応させ、 PBSで 15分間 3回洗浄した。染色 した細胞はカバーガラスで封入し、蛍光顕微鏡 axioscop 2 plus (Zeiss, NY, USA)で 観察した(Zhu et al., 2004)。  In hippocampal neurons cultured in 2-2-2, Leu-lie (10 μg / ml), TNF-α (100 ng / ml) (benefit from Dainippon Pharmaceutical (Osaka)) or GDNF (50 ng / ml) ) (Given from Amgen, CA, USA) for 2 hours. Cells were fixed with -20 ° C methanol for 20 minutes and washed 3 times with 4 ° C PBS for 15 minutes. Cells were incubated with PBS solution containing 2% bovine serum albumin (BSA) and 10% FBS at 37 ° C for 1 hour and diluted 1000 times with PBS rabbit anti p65 / NF-κB antibody (Lockland , PA, USA) at 4 ° C. As a negative control, PBS alone was added to the cells and left at 4 ° C. The cells were washed 3 times with PBS for 15 minutes, then reacted with Alexa Fluor 546 goat anti-rabbit IgG (H + L) (Molecular Probes, OR, USA) diluted 1000-fold with PBS for 3 hours, and PBS for 15 minutes. Washed 3 times. Stained cells were sealed with a cover glass and observed with a fluorescence microscope axioscop 2 plus (Zeiss, NY, USA) (Zhu et al., 2004).
[0049] 2 - 2 -4 培養海馬神経細胞力 の細胞核の単離  [0049] 2-2 -4 Isolation of the nucleus of cultured hippocampal neurons
6 cmシャーレで培養した海馬神経細胞に Leu-Ile (10 g/ml)を 30分間作用させ、 培養上清を取り除いた後、培養海馬神経細胞を PBSで洗い、 cytoplasmic extraction buffer (CEB) (10 mM Tris - HCl (pH 7.9), 60 mM KCl, 1 mM EDTA, 1 mM dithiothrei tol (DTT) )と 5分間氷上で反応させた。プロテアーゼ阻害剤(1 μ g/ml leupeptin, 1 μ g/ml pepstatin, 20 μ g/ ml phosphoramidon, 0.2 mg/ml EDTA, 2 μ g/ml aprotinin , 0.5 mM PMSF)を含む 0.4% Nonidet P- 40/CEB 300 μ 1に 5分間馴染ませた後、ラバ 一ポリスマンで穏やかに細胞を剥ぎ取り回収し、 l ,000gで 5分間遠心した。遠心して 得られた沈殿物をプロテアーゼ阻害剤を含む CEBで洗浄し、 nuclear extraction buffe r (NEB) (20 mM Tris— HC1 (pH 7.9), 0.4 M NaCl, 1.5 mM MgC12, 1.5 mM EDTA, 1 mM DTT, 25% glycerol)をカ卩ぇ充分に撹拌した後、 10分間氷上に放置した。この溶液 を 5分間 16,000gで遠心し、上清を核抽出液として回収した (Yoo et al, 2000)。 Leu-Ile (10 g / ml) was allowed to act on hippocampal neurons cultured in a 6 cm petri dish for 30 minutes, and after removing the culture supernatant, the cultured hippocampal neurons were washed with PBS and cytoplasmic extraction buffer (CEB) (10 The reaction was carried out on ice for 5 minutes with mM Tris-HCl (pH 7.9), 60 mM KCl, 1 mM EDTA, 1 mM dithiothreitol (DTT). Protease inhibitors (1 μg / ml leupeptin, 1 μg / ml pepstatin, 20 μg / ml phosphoramidon, 0.2 mg / ml EDTA, 2 μg / ml aprotinin , 0.5 mM PMSF) containing 0.4% Nonidet P-40 / CEB 300 μl for 5 minutes, cells were gently peeled off with a rubber policeman and collected, and centrifuged at 1,000 g for 5 minutes. The precipitate obtained by centrifugation was washed with CEB containing a protease inhibitor, nuclear extraction buffer (NEB) (20 mM Tris—HC1 (pH 7.9), 0.4 M NaCl, 1.5 mM MgC12, 1.5 mM EDTA, 1 mM DTT, 25% glycerol) was stirred well and left on ice for 10 minutes. This solution was centrifuged at 16,000 g for 5 minutes and the supernatant was recovered as a nuclear extract (Yoo et al, 2000).
[0050] 2 - 2 - 5 CREBアンチセンスオリゴヌクレオチド添カ卩による培養海馬神経細胞の CR EB発現抑制 [0050] 2-2-5 CREB antisense oligonucleotide supplementation suppresses CR EB expression in cultured hippocampal neurons
CREBの開始コドン領域に対応する CREBアンチセンスオリゴヌクレオチド(5'-GCT CCA GAG TCC ATG GTC AT- 3':配列番号 1)または CREBセンスオリゴヌクレオチ ド(5'- AT GAC CAT GGA CTC TGG AGC- 3':配列番号 2)を 1 μ gずつ 6cmシヤー レに培 した海' ネ申経糸田胞にカ卩え、 Lipofectamine Plus transfection reagent (Invitro gen)を用いて遺伝子導入した(Gonzalez et al. , 1989; Sato- Bigbee and DeVries., 199 6)。 CREBアンチセンスオリゴヌクレオチドを遺伝子導入した細胞に Leu-Ile ( 10 μ g/ ml)を加え 24時間培養したものを (Afshari et al., 2001 ; Johnson et al. , 2000)、 GDNF のウェスタンブロッテイングのサンプルとして用いた。  CREB antisense oligonucleotide corresponding to the start codon region of CREB (5'-GCT CCA GAG TCC ATG GTC AT-3 ': SEQ ID NO: 1) or CREB sense oligonucleotide (5'-AT GAC CAT GGA CTC TGG AGC- 3 ': 1 μg of SEQ ID NO: 2) was cultivated in a 6-cm dish and transferred to a sea urchin strain, and introduced with Lipofectamine Plus transfection reagent (Invitro gen) (Gonzalez et al., 1989 Sato- Bigbee and DeVries., 199 6). Leu-Ile (10 μg / ml) added to cells transfected with CREB antisense oligonucleotide and cultured for 24 hours (Afshari et al., 2001; Johnson et al., 2000), Western blotting of GDNF Used as a sample.
[0051] 2 - 2 - 6 培養海馬神経細胞からのサンプル調製とウェスタンブロッテイング  [0051] 2-2-6 Sample preparation and Western blotting from cultured hippocampal neurons
Akt、 CaMKII, ERKおよび PKC-?のウェスタンブロッテイングには Leu- lie (10 μ g/ ml)を 10、 20または 30分間作用させた培養海馬神経細胞を用い、 GDNFのウェスタン ブロッテイングには Leu-Ile (10 μ g/ ml)を 1日作用させた細胞を用いた。また、 PI3K の阻害剤である LY294002 (30 μ Μ) (シグマアルドリッチジャパン)または Hsp90の複 合体形成を阻害する geldanamycin (10 μ Μ) (シグマアルドリッチジャパン)と Leu- lie を同時に 30分間作用させた細胞を用いて Aktおよび CREBのウェスタンブロッテイング を行った。 Leu-Ileを作用させた培養海馬神経細胞の培養上清を取り除き、細胞を PB Sで洗い、 precipitation buffer (20 mM Tris— HC1 (pH 7.6), 150 mM NaCl, 1 mM sodiu m orthovanadate, 2 mM EDTA, 50 mM NaF, 1% Nonidet P— 40, 1 mM PMSF, 20 μ g /ml aprotinin, 20 μ g/ml leupeptin, , 20 μ g/ml pepstatin)を 300 μ 1カロ免、セノレスク レイパーを用いて回収した。ホモジナイザーで 30秒間細胞を破砕した後、 4°C10,000 gで 1時間遠心し、その上清をウェスタンブロッテイングのサンプルとした。 Akt, CaMKII, ERK and PKC-? Western blotting using cultured hippocampal neurons treated with Leu-lie (10 μg / ml) for 10, 20 or 30 minutes, and Leu-Ile (10 μg / ml) for Western blotting of GDNF The cells were used for 1 day. Also, PI3K inhibitor LY294002 (30 μΜ) (Sigma Aldrich Japan) or geldanamycin (10 μΜ) (Sigma Aldrich Japan), which inhibits Hsp90 complex formation, and Leu-lie were allowed to act simultaneously for 30 minutes. Cells were used for Western blotting of Akt and CREB. Remove the culture supernatant of cultured hippocampal neurons treated with Leu-Ile, wash the cells with PBS, precipitation buffer (20 mM Tris—HC1 (pH 7.6), 150 mM NaCl, 1 mM sodiu m orthovanadate, 2 mM EDTA, 50 mM NaF, 1% Nonidet P—40, 1 mM PMSF, 20 μg / ml aprotinin, 20 μg / ml leupeptin,, 20 μg / ml pepstatin) And recovered. Disrupt cells for 30 seconds with a homogenizer, and then 4 ° C 10,000 The mixture was centrifuged at g for 1 hour, and the supernatant was used as a sample for Western blotting.
サンプルのタンパク質量は DC Protein Assey Kit II (BIO- RAD, CA, USA)で測定し た。希釈したサンプルと等容量のサンプルバッファーをカ卩ぇ 95°Cで 5分間煮沸し、 10% ポリアクリルアミドゲルで電気泳動を行った。  The amount of protein in the sample was measured with DC Protein Assey Kit II (BIO-RAD, CA, USA). An equal volume of sample buffer to the diluted sample was boiled at 95 ° C for 5 minutes and electrophoresed on a 10% polyacrylamide gel.
ポリアクリルアミドゲルから semi-dry transfer法により PDVF膜へタンパク質を転写し た後、膜をブロッキングバッファー(KPL, MD, USA)中で、穏やかに攪拌しながら 2時 間室温でブロッキングした。  After transferring the protein from the polyacrylamide gel to the PDVF membrane by the semi-dry transfer method, the membrane was blocked in a blocking buffer (KPL, MD, USA) for 2 hours at room temperature with gentle agitation.
次に、 PDVF膜をブロッキングバッファーで 1000倍に希釈した一次抗体(mouse mon oclonai anti— GDNF antibody (R&D systems, MN, USA)、 rabbit anti- phospho- Ca Next, the primary antibody (mouse mon oclonai anti-GDNF antibody (R & D systems, MN, USA), rabbit anti-phospho-Ca, diluted 1000 times with blocking buffer in PDVF membrane)
MKII antibody (Promega, WI, USA)、 rabbit antト NF- κ B antibody (Lockland)、 mous e monoclonal anti- CREB antibody (Santa Cruz Biotechnology, CA, USA)、 rabbit antMKII antibody (Promega, WI, USA), rabbit ant to NF-κB antibody (Lockland), mouse monoclonal anti-CREB antibody (Santa Cruz Biotechnology, CA, USA), rabbit ant
1- phospho- CREB antibody (Cell Signaling Technology, MA, USA)、 rabbit anti- pho spho- Akt (Ser2448) (Cell Signaling Technology)、 anti-Akt antibody (Cell Signaling Technology)、 anti- phospho- PKC-? antibody (Cell signaling Technology)、 mouse m onoclonal anti- phospho- ERK antibody (Cell signaling Technology)、 rat anti- Hsc70 antibodyまたは anti- Hsp90 antibody (Stressgen) )と 4°Cでー晚反応させた。 TBS (10 m M Tris-HCl, 137 mM NaCl, 0.1% Tween-20)にて 15分間 3回洗浄した後、 2次抗体(p eroxidase labeled goat anti-mouse IgG (H+L) antioodyま 7こ ίま peroxidase labeled goa t anti-rabbit IgG (H+L) antibody (Kirkegaard & Perry Laboratries, MD, USA) )と至 温で 2時間反応させた。その後 TBSで 3回洗浄し、 ECLTM (Amersham Pharmacia Biot ec, UK)を 1分間反応させた。 FPM100 (富士写真フィルム、東京)現像機を用いて hyp erfilm (Amersham Bioscience, NA, UK)に現像した。 Hyperfilmに現像されたバンドの 強度解析には ATTO Densito Graph (アト一、東京)を用いた。 1-phospho-CREB antibody (Cell Signaling Technology, MA, USA), rabbit anti-pho spho- Akt (Ser2448) (Cell Signaling Technology), anti-Akt antibody (Cell Signaling Technology), anti-phospho-PKC-? Antibody (Cell signaling Technology), mouse monoclonal anti-phospho-ERK antibody (Cell signaling Technology), rat anti-Hsc70 antibody or anti-Hsp90 antibody (Stressgen)) were reacted at 4 ° C. After washing 3 times with TBS (10 mM Tris-HCl, 137 mM NaCl, 0.1% Tween-20) for 15 minutes, secondary antibody (peroxidase labeled goat anti-mouse IgG (H + L) antioody 7 peroxidase labeled goat anti-rabbit IgG (H + L) antibody (Kirkegaard & Perry Laboratries, MD, USA)) for 2 hours at a temperature. Thereafter, the plate was washed 3 times with TBS and reacted with ECL ™ (Amersham Pharmacia Biotec, UK) for 1 minute. Development was performed on a hyperfilm (Amersham Bioscience, NA, UK) using a FPM100 (Fuji Photo Film, Tokyo) processor. ATTO Densito Graph (Atoichi, Tokyo) was used for intensity analysis of the band developed on Hyperfilm.
2- 2- 7 MTTアツセィ  2- 2--7 MTT Atsey
MTTアツセィは生存細胞のミトコンドリアによって黄色の MTTが還元されてできた紫 色の formazan生成物の結晶を可溶ィ匕し、発色量を測定する方法である。ミトコンドリア の MTT還元力は生存細胞数に比例するため、生成物の吸光度を測定する事で細胞 生存率を測定することができ、培養実験系における生存細胞数の計数に汎用されて いる(Liptay et al. , 1999; Uludag and Sefton. , 1990)。 MTT Atssey is a method for measuring the amount of color developed by soluble crystals of purple formazan product formed by reduction of yellow MTT by mitochondria in living cells. Since the mitochondria's MTT reducing power is proportional to the number of viable cells, the cell viability can be measured by measuring the absorbance of the product, and it is widely used for counting the number of viable cells in culture experiments. (Liptay et al., 1999; Uludag and Sefton., 1990).
DMEM/ F12HAMに溶解した Leu- Ile ( 10 μ g/ ml)および NF- κ Bの阻害剤 sulfasala zine dOO ju M) (シグマアルドリッチジャパン)を 96穴プレートで培養した培養海馬神 経細胞に加えて 3日間培養した。 10 μ 1の ΜΤΤ溶液 (シグマアルドリッチジャパン) ( 1 0 mg/ ml)を加えて 37°Cで 1時間インキュベーションした後、上清を取り除いた。 MTT が還元されてできた紫色の formazan生成物の結晶を pH 4.7の 50% dimethylformamide , 20% SDSを 200 ulカ卩えて可溶化し、 570 nmの波長のマイクロプレートリーダー(Model 450, BIO ' RAD)で吸光度を測定した。発色量は生存細胞数に比例するためコント口 ール細胞の吸光度を 100%として生存率を求めた。  In addition to Leu-Ile (10 μg / ml) and NF-κB inhibitor sulfasala zine dOO ju M) (Sigma Aldrich Japan) dissolved in DMEM / F12HAM in addition to cultured hippocampal neuronal cells cultured in 96-well plates Cultured for 3 days. 10 μl of cocoon solution (Sigma Aldrich Japan) (10 mg / ml) was added and incubated at 37 ° C. for 1 hour, and then the supernatant was removed. A purple formazan product crystal formed by reduction of MTT was solubilized by adding 200 ul of 50% dimethylformamide, 20% SDS at pH 4.7, and a microplate reader with a wavelength of 570 nm (Model 450, BIO 'RAD ) To measure the absorbance. Since the amount of color development was proportional to the number of viable cells, the viability was determined with the absorbance of control cells as 100%.
[0053] 2 - 2 - 8 GDNF mRNAの定量  [0053] 2-2-8 Quantification of GDNF mRNA
GDNF mRNAの定量には、 iCycler System(Bio- Rad社)を利用したリアルタイム RT- PCR法を用いた。培養神経細胞からの mRNAの抽出には RNeasy (登録商標) Mini Ki t(Quiagen社)を用いた。 mRNA 1 μ gから cDNAへの逆転写を行い、その際には、オリ ゴプライマーと Superscriptll RT(Life Technologies)を用いた。 20 μ 1の反応生成物の 中から 1 μ 1を PCRに使用した。 PCR反応には Platinum (登録商標) Quantitative PCR SuperMix-UDG (Invitrogen)を用いた。コントロールとして、リボゾーム mRNAの定量(T aqMan Ribosaomal RNA control Reagents; Applied Biosystem)も | 時【こ行 ヽ、サン プル間のばらつきを補正した。 GDNFの検出には、フォワードおよびリバースプライマ 一として、それぞれ 5'-AGCTGCCAGCCCAGAGAATT-3'(bp 288-307) (配列番号 3 )及び 5し GCACCCCCGATTTTTGC- 3'(bp 354- 370) (配列番号 4)を用い、検出のた めのプローブには dye probe being 5し CAGAGGGAAAGGTCGCAGAGGCC- 3'(bp 309-331) (配列番号 5)を用いた。  For quantification of GDNF mRNA, a real-time RT-PCR method using iCycler System (Bio-Rad) was used. RNeasy (registered trademark) Mini Kit (Quiagen) was used to extract mRNA from cultured neurons. Reverse transcription from 1 μg of mRNA to cDNA was performed using oligo primers and Superscriptll RT (Life Technologies). Of the 20 μ1 reaction product, 1 μ1 was used for PCR. Platinum (registered trademark) Quantitative PCR SuperMix-UDG (Invitrogen) was used for the PCR reaction. As a control, quantification of ribosomal mRNA (TaqMan Ribosaomal RNA control Reagents; Applied Biosystem) was also corrected for variations between samples. For detection of GDNF, 5′-AGCTGCCAGCCCAGAGAATT-3 ′ (bp 288-307) (SEQ ID NO: 3) and 5 and GCACCCCCGATTTTTGC-3 ′ (bp 354-370) (SEQ ID NO: 4) were used as forward and reverse primers, respectively. The probe for detection was dye probe being 5 and CAGAGGGAAAGGTCGCAGAGGCC-3 ′ (bp 309-331) (SEQ ID NO: 5) was used.
[0054] 2 - 2 - 9 統計解析  [0054] 2-2-9 Statistical analysis
結果は全て平均値と標準誤差によって示した。統計解析には一元配置分散分析を 行い、有意差が認められた場合、さら Scheffeの多重比較検定を行った。なお、危険 率が 5%以下で差がある場合を有意な差があるとした。  All results are shown as mean values and standard errors. For statistical analysis, one-way analysis of variance was performed. If a significant difference was observed, Scheffe's multiple comparison test was performed. When the risk rate is 5% or less, there is a significant difference.
[0055] 2 - 3 結果  [0055] 2-3 results
2 - 3 - 1 Leu— lieによる NF— κ Βの核内移行 培養海馬初代神経細胞に、 Leu-Ile、 TNF- aまたは GDNFを作用させ、抗 NF- κ Β 抗体で免疫染色を行い、蛍光顕微鏡で細胞数を計測したところ、単位面積 0.66mm2 中に 4500個の細胞があり、そのうち、細胞核が染まっていない細胞はコントロール群 で 7.9 ± 1.31%、 Leu-Ileを作用させた群で 3.1 ± 0.83%、 TNF- αを作用させた群で 2.1 ± 0.54%、 GDNFを作用させた群で 2.4± 0.59%であった。コントロール群に比べ Leu-Ile 、 TNF- aおよび GDNFを作用させた細胞では、細胞核が染まっていない細胞数が有 意に減少した(図 5A)。免疫染色では、コントロールにおいても多くの細胞で NF- κ B の核移行が観察された力 これまで報告されて 、るとおりポジティブコントロールの T NF- aおよび GDNFが NF- κ Βの核内移行を促進し、 Leu- lieも NF- κ Β核内移行を促 進することが示された(Hayashi et al., 2000; Yoo et al., 2000; Zhu et al., 2004) 0 また、細胞から核のみを単離し、核内の NF- κ Bの量をウェスタンブロッテイングで 検討したところ、 Leu-Ileを作用させた細胞で核内に存在する NF- κ Βの量がコント口 ールに比べて 196 ± 16%に増加した(図 5Β)。 2-3-1 Translocation of NF—κ 移行 into the nucleus by Leu—lie Leu-Ile, TNF-a, or GDNF was allowed to act on cultured hippocampal primary neurons, immunostained with anti-NF-κΒ antibody, and the number of cells measured with a fluorescence microscope was 4500 in a unit area of 0.66 mm 2 Cells, of which cells are not stained, 7.9 ± 1.31% in the control group, 3.1 ± 0.83% in the group treated with Leu-Ile, 2.1 ± 0.54% in the group treated with TNF-α It was 2.4 ± 0.59% in the group treated with GDNF. In cells treated with Leu-Ile, TNF-a, and GDNF, the number of cells that were not stained was significantly reduced compared to the control group (Fig. 5A). In immunostaining, NF-κB nuclear translocation was observed in many cells even in controls. As previously reported, TNF-a and GDNF in the positive controls showed nuclear translocation of NF-κΒ. And Leu-lie has also been shown to promote NF-kappa intranuclear translocation (Hayashi et al., 2000; Yoo et al., 2000; Zhu et al., 2004) 0 When only the nucleus was isolated and the amount of NF-κB in the nucleus was examined by Western blotting, the amount of NF-κΒ present in the nucleus in cells treated with Leu-Ile was controlled. Compared to 196 ± 16% (Fig. 5 Β).
[0056] 2 - 3 - 2 Leu-Ileの細胞死抑制および GDNF産生誘導におよぼす NF- κ Β阻害剤 の作用 [0056] 2-3-2 Effects of NF-κΒ inhibitors on Leu-Ile cell death suppression and GDNF production induction
培養神経細胞は培養開始後、経時的に細胞死をおこし、 3日目には培養開始時の 58.6 ± 2.7 %に細胞数が減少する。 ΜΤΤアツセィを行った結果、コントロールに比べ、 Leu-Ile (10 μ g/ml)を加えた群は細胞数が 119 ± 1.4%に増加した。 NF- κ Βの阻害剤 である sulfasalazine (100 μ Μ)を Leu-Ileと同時に作用させた細胞群とコントロール群と では生存細胞数の差はなぐ Leu-Ileの効果が有意に抑制されていた (図 6A)。また、 GDNFのウェスタンブロッテイングを行った結果、コントロールに比べ、 Leu- lie (10 μ g /ml)を作用させた細胞では GDNFの発現量力 188 ± 13%に増加した力 sulfasalazine (100 M)と Leu- lie (10 g/ml)を一緒に作用させた細胞では GDNFの発現量は増 加しなかった。 sulfasalazineのみを作用させた細胞では GDNFの発現量にコントロー ルとの差は無かった(図 6B)。 sulfasalazineが Leu-Ileの神経保護作用および GDNF産 生誘導作用も抑制したことから、 Leu-Ileの神経保護作用と GDNF産生誘導作用は NF - κ Bを介している可能性が示唆された。  Cultured neurons die over time after the start of culture, and on day 3, the number of cells decreases to 58.6 ± 2.7% at the start of culture. As a result of the assay, the number of cells in the group to which Leu-Ile (10 μg / ml) was added increased to 119 ± 1.4% compared to the control. There was no difference in the number of viable cells between the cells treated with sulfasalazine (100 μΜ), an inhibitor of NF-κΒ, simultaneously with Leu-Ile, and the control group. The effect of Leu-Ile was significantly suppressed. (Figure 6A). In addition, as a result of Western blotting of GDNF, the GDNF expression level increased to 188 ± 13% in the cells treated with Leu-lie (10 μg / ml) compared to the control, sulfasalazine (100 M). In cells treated with Leu-lie (10 g / ml), the expression level of GDNF did not increase. In cells treated with sulfasalazine alone, the expression level of GDNF was not different from the control (Fig. 6B). Since sulfasalazine also suppressed Leu-Ile's neuroprotective action and GDNF production-inducing action, it was suggested that Leu-Ile's neuroprotective action and GDNF production-inducing action may be mediated by NF-κB.
[0057] 2 - 3 - 3 Leu-Ileによる CREBリン酸ィ匕作用と GDNF産生誘導作用 培養海馬神経細胞に Leu-Ileを作用させ、ウェスタンブロッテイング法を用いて CRE Bのリン酸ィ匕の程度を検討したところ、 30分間 Leu-Ileを作用させた細胞ではコント口 ールの細胞に比べて 164± 14%に CREBのリン酸化が誘導された(図 7A)。 [0057] 2-3-3 CREB phosphate action and GDNF production-inducing action by Leu-Ile Leu-Ile was allowed to act on cultured hippocampal neurons, and the degree of CRE B phosphate was examined using the Western blotting method. In contrast, CREB phosphorylation was induced in 164 ± 14% (Fig. 7A).
CREBアンチセンスオリゴヌクレオチドを培養海馬神経細胞に作用させることによつ て、 CREBの発現量は 63 ± 13%に低下する(図 7B)。この細胞に Leu-Ileを作用させた 後、 GDNFのウェスタンブロッテイングを行った。コントロールに比べ CREBアンチセン スオリゴヌクレオチドのみを作用させた細胞では GDNFの発現量が 72 ± 10%に減少し た。また、 Leu-Ile (10 g/ml)のみを作用させた細胞ではコントロールに比べ GDNF の発現量が 188± 13%に増加した力 CREBアンチセンスオリゴヌクレオチドと Leu-Ile を一緒に作用させた細胞では、 Leu-Ileのみを作用させた細胞に比べ 69 ± 9.2%に減 少した。 CREBセンスオリゴヌクレオチドを作用させた細胞はコントロールに比べ CREB のリン酸化の程度に差は無かった(図 7C)。 CREBアンチセンスオリゴヌクレオチドを 作用させ、 CREBの発現を低下させた細胞では GDNF産生誘導作用が抑制されたこ とから、 Leu-Ileの GDNF産生誘導作用に CREBが関与して 、る可能性が示唆された。  By applying CREB antisense oligonucleotide to cultured hippocampal neurons, the expression level of CREB is reduced to 63 ± 13% (Fig. 7B). Leu-Ile was allowed to act on these cells, and then Western blotting of GDNF was performed. Compared with the control, the expression level of GDNF was reduced to 72 ± 10% in cells treated with CREB antisense oligonucleotide alone. In addition, in cells treated only with Leu-Ile (10 g / ml), the GDNF expression level increased to 188 ± 13% compared to the control cells. Cells treated with Leu-Ile together with CREB antisense oligonucleotide. However, it decreased to 69 ± 9.2% compared to cells treated with Leu-Ile alone. Cells treated with CREB sense oligonucleotide did not differ in the degree of phosphorylation of CREB compared to control (FIG. 7C). In cells where CREB antisense oligonucleotides acted and CREB expression was reduced, the GDNF production-inducing action was suppressed, suggesting that CREB may be involved in Leu-Ile's GDNF production-inducing action. It was.
Leu-Ile, Pro-Leu又は Ile-Pro(10 μ g/ml)を培養神経細胞に添加した場合の 24時間 後の GDNF蛋白の発現増加につ!/、て検討したところ、 Leu-Ileのみが GDNF蛋白の発 現を増加させた (図 8A)。さらに、リアルタイム RT-PCR法を用いることによって、 Leu-Il eを添カ卩してから 12又は 18時間後に GDNF mRNAの発現が増加していることを見出し た (図 8B)。これらの実験結果は、我々の以前の報告 (Nitta et al, 2004)と一致してい る。  When Leu-Ile, Pro-Leu or Ile-Pro (10 μg / ml) was added to cultured neurons, the increase in GDNF protein expression after 24 hours was examined. Increased GDNF protein expression (Fig. 8A). Furthermore, it was found that the expression of GDNF mRNA was increased 12 or 18 hours after adding Leu-Ile by using real-time RT-PCR (FIG. 8B). These experimental results are consistent with our previous report (Nitta et al, 2004).
2- 3 -4 Hsp90/Aktを介した Leu-Ileの CREBリン酸化作用と GDNF産生誘導作用 CREBの転写因子を活性ィ匕している分子を明らかにするため Leu-Ileを作用させた 培養海馬神経細胞を用いて Akt、 CaMKIU PKC-?および ERKのリン酸化の程度を調 ベた結果、 Aktのリン酸化の程度は 154±8.6%に増加した力 CaMKIU PKC-?および ERKについては今回の実験条件下でリン酸ィ匕の程度は増加しな力つた(図 9A)。 PI3 Kの阻害剤である LY294002 (30 μ Μ)と Leu-Ileを同時に 30分間作用させた細胞では Leu-Ileによって誘導された Aktのリン酸ィ匕は抑制されなかった力 Hsp90の複合体形 成を阻害する geldanamycin (10 μ Μ)と Leu-Ileを同時に作用させた細胞では Leu-Ile によって誘導された Aktのリン酸化を 52 ± 7.5%に抑制した(図 9B)。また、 LY294002と Leu-Ileを同時に 30分間作用させた細胞では Leu-Ileによって誘導された CREBのリン 酸化は抑制されなかった力 geldanamycinと Leu-Ileを同時に 30分間作用させた細胞 では 50 ± 8.2%に抑制された(図 9C)。 2-3-4 Leu-Ile-mediated CREB phosphorylation and GDNF production induction through Hsp90 / Akt Cultured hippocampus treated with Leu-Ile to elucidate molecules that activate CREB transcription factors As a result of investigating the degree of phosphorylation of Akt, CaMKIU PKC-? And ERK using nerve cells, the degree of phosphorylation of Akt increased to 154 ± 8.6%. This experiment was conducted for CaMKIU PKC-? And ERK. Under the conditions, the degree of phosphate was not increased (Fig. 9A). In the cells treated with LY294002 (30 μΜ), an inhibitor of PI3 K, and Leu-Ile at the same time for 30 minutes, the Akt phosphate induced by Leu-Ile was not suppressed. Complex formation of Hsp90 In cells treated with geldanamycin (10 μΜ) and Leu-Ile simultaneously, Leu-Ile Inhibited Akt phosphorylation by 52 ± 7.5% (FIG. 9B). In addition, in cells treated with LY294002 and Leu-Ile simultaneously for 30 minutes, the phosphorylation of CREB induced by Leu-Ile was not suppressed. In cells treated with geldanamycin and Leu-Ile simultaneously for 30 minutes, 50 ± 8.2 % (Fig. 9C).
2 -4 考察 2 -4 Discussion
本研究では、培養海馬初代神経細胞の生存に対する Leu-Ileの効果を MTTアツセ ィによって計測し、 GDNFの発現量に対する Leu-Ileの効果をウェスタンブロッテイング 法を用いて検討した。生存細胞数を直接計数で検討し、 GDNFの発現量を酵素免疫 測定法を用いて検討した既報 (Nitta et al, 2004)と同様に Leu-Ileは細胞死抑制作 用および GDNF産生誘導作用を有することが確認できた。  In this study, the effect of Leu-Ile on the survival of cultured hippocampal primary neurons was measured by MTT assay, and the effect of Leu-Ile on the expression level of GDNF was examined using Western blotting. Similar to the previous report (Nitta et al, 2004) where the number of viable cells was examined by direct counting and the expression level of GDNF was examined using an enzyme immunoassay, Leu-Ile has an effect of inhibiting cell death and inducing GDNF production. It was confirmed that it had.
GDNFのプロモーター領域に結合配列を有する転写因子 NF- κ Bおよび CREBの 活性ィ匕が Leu-Ileを作用させた細胞で観察された。また、 NF- κ Β阻害剤の sulfas alazi neまたは CREBのアンチセンスオリゴヌクレオチドを作用させた細胞では Leu-Ileによる GDNFの産生誘導効果が観察されなくなったことから、 Leu-Ileは NF- κ Βおよび CRE Βを介して GDNFの産生を誘導して 、ると考えられた。  Activity of transcription factors NF-κB and CREB having binding sequences in the promoter region of GDNF was observed in cells treated with Leu-Ile. In addition, Leu-Ile was not observed to induce GDNF production in cells treated with NF-κΒ inhibitor sulfas alazine or CREB antisense oligonucleotide. And was thought to induce GDNF production via CRE 介.
これまでの研究で、 TNF- aや FK960などが NF- κ Βまたは CREBを介して GDNFを 誘導することが報告されているが(Koyama et al. , 2004; Maruyama et al., 2004)、 GD NFが活性化するシグナル経路上にも PI3K/Aktを介した NF- κ Βの活性化および ER Kを介した CREBの活性化が観察される(Feng et al., 1999; Hayashi et al. , 2000)。培 養海馬神経細胞は GDNF、 GFR-ひおよび RETを共に発現しているため、誘導された GDNF力RETに作用し、 PI3K/Aktおよび ERKを介して NF- κ Βや CREBを活性ィ匕し、 さらに GDNFの産生を誘導する正のフィードバック制御が働 、て 、る可能性も考えら れる(Lenhard et al" 1998; 2002) 0 Previous studies have reported that TNF-a and FK960 induce GDNF via NF-κΒ or CREB (Koyama et al., 2004; Maruyama et al., 2004). Activation of NF-κΒ via PI3K / Akt and activation of CREB via ER K are also observed on the signal pathway that is activated by NF (Feng et al., 1999; Hayashi et al., 2000). Since cultured hippocampal neurons express both GDNF, GFR- and RET, they act on the induced GDNF force RET and activate NF-κΒ and CREB via PI3K / Akt and ERK. In addition, there is a possibility that positive feedback control that induces the production of GDNF works (Lenhard et al "1998; 2002) 0
そこで、 CREBを活性化することが報告されている(Shaywitz and Greenberg., 1999; Wang et al., 1999) ERK, Akt、 CaMKおよび PKCが Leu-Ileによって活性化されるかを 調べた。この結果、 Leu-Ileをカ卩えて力も CREBの活性ィ匕が観察される 30分以内には A ktのリン酸ィ匕のみが観察された。さらに、 Leu-Ileによって誘導される Aktのリン酸ィ匕が PI3Kを介しているかを調べるため、 Leu-Ileと PI3Kの阻害剤 LY294002を同時に細胞 に作用させたところ、 Leu-Ileが誘導する Aktのリン酸ィ匕は抑制されな力つた。ヒト神経 芽腫である TGW細胞および初期神経外胚葉癌細胞である SK-N-MCにおける GDNF I RETのシグナルは ERKを介して CREBのリン酸化を促進し、 PI3Kを介して Aktのリン 酸化を促進することが報告されている(Hayashi et al, 2000)。本研究では Leu-Ileを 作用させても ERKがリン酸化されないこと、および、 PI3Kを介さず Aktがリン酸化され ていることから、 Leu-Ileを短時間作用させた時に観察される CREBのリン酸ィ匕は GDN F/RETのシグナルとは異なる経路を介して活性ィ匕されていると考えられた。 Therefore, it has been reported that CREB is activated (Shaywitz and Greenberg., 1999; Wang et al., 1999). It was investigated whether ERK, Akt, CaMK and PKC are activated by Leu-Ile. As a result, only Akt phosphate was observed within 30 minutes when Leu-Ile was absorbed and CREB activity was observed. In addition, in order to investigate whether Akt phosphate induced by Leu-Ile is mediated by PI3K, Leu-Ile and PI3K inhibitor LY294002 were simultaneously administered to cells. When activated, the Akt phosphate chain induced by Leu-Ile was not suppressed. GDNF I RET signals in human neuroblastoma TGW cells and early neuroectodermal cancer cells SK-N-MC promote CREB phosphorylation via ERK and Akt phosphorylation via PI3K. Has been reported to promote (Hayashi et al, 2000). In this study, ERK was not phosphorylated even when Leu-Ile was allowed to act, and since Akt was phosphorylated without PI3K, the CREB phosphorylation observed when Leu-Ile was allowed to act for a short time. The acid was thought to be activated through a pathway different from the GDN F / RET signal.
Aktのリン酸化を調節している因子には PI3Kの他に Hsp90も報告されており、 Hsp90 I Aktのシグナル経路が CREBのリン酸ィ匕を調節していることも報告されている(Doong et al., 2003; Du and Montminy., 1998)。 Hsp90の複合体形成を阻害する geldanamy cinを用いて Aktおよび CREBのリン酸ィ匕の程度を調べた結果、 Leu-Ileが誘導する Akt のリン酸化および CREBのリン酸化が抑制されたことから、 Hsp90/Aktのシグナル経路 を介して CREBを活性ィ匕し、 GDNFを産生誘導して 、ると考えられた。  In addition to PI3K, Hsp90 has been reported as a factor that regulates phosphorylation of Akt, and the signal pathway of Hsp90 I Akt regulates the phosphorylation of CREB (Doong et al. al., 2003; Du and Montminy., 1998). As a result of investigating the degree of Akt and CREB phosphorylation using geldanamy cin, which inhibits Hsp90 complex formation, Lekt-Ile-induced phosphorylation of Akt and CREB phosphorylation was suppressed. It was thought that CREB was activated through the Hsp90 / Akt signaling pathway to induce GDNF production.
Hsp90と Hsc70は複合体を形成し、タンパク質の受け渡しや、活性の調節を行って いる事が知られており(Bagchi et al., 1991; McLaughlin et al., 2002)、 Leu- lieが Hsc7 0と Hsp90の結合能を変化させている可能性が考えられた。本研究では、 Leu-Ileを作 用させた時に Hsp90と Hsc70との相互作用がどの様に変化するのかを示す事はでき なかった。しカゝし、 Hsp90と Hsc70が複合体を形成し、種々のタンパク質の受け渡しや 活性調節を行って 、ると 、う報告があることから、 Leu-Ileがこれらの複合体の性質を 変化させ、 Hsp90が Aktを活性ィ匕すると考えられる(図 10)。  Hsp90 and Hsc70 form a complex and are known to regulate protein delivery and activity (Bagchi et al., 1991; McLaughlin et al., 2002). And the possibility of changing the binding ability of Hsp90. In this study, it was not possible to show how the interaction between Hsp90 and Hsc70 changes when Leu-Ile is applied. However, there are reports that Hsp90 and Hsc70 form a complex, and exchange various proteins and regulate the activity. Therefore, Leu-Ile changes the properties of these complexes. Hsp90 is thought to activate Akt (Fig. 10).
3.まとめ 3. Summary
以上の結果から以下の知見が得られた。  The following knowledge was obtained from the above results.
(1) Leu-Ileは細胞膜透過性である。  (1) Leu-Ile is cell membrane permeable.
(2) FITC標識した Leu-Ileとマウス脳ホモジナイズ液を反応させたところ、 70KDの大き さのタンパク質が結合した。  (2) When FITC-labeled Leu-Ile was reacted with mouse brain homogenization solution, a 70 KD protein was bound.
(3) Leu_Ile結合タンパク質の質量分析を行った結果、 Hsc70が同定された。  (3) As a result of mass spectrometry of Leu_Ile binding protein, Hsc70 was identified.
(4)水晶発振子バイオセンサーを用いて Hsc70および Hsc70と相同性の高い Hsp70と Leu-Ileの結合活性について検討したところ、 Hsc70は Kd = 1.83 X 10— 8 M、 Hsp70は K d = 1.24 X 10— 8 Mの強さで Leu-Ileと特異的に結合した。 (4) was examined for binding activity of Hsc70 and Hsc70 and highly homologous Hsp70 and Leu-Ile using quartz crystal biosensor, Hsc70 is Kd = 1.83 X 10- 8 M, Hsp70 is K bound to Leu-Ile and specifically in strength of d = 1.24 X 10- 8 M.
(5)分子シミュレーションを用いて Hsc70と Leu-Ileの結合部位を予測し、相互ポテン シャルエネルギーを計算した結果、 ATPaseドメインには- 119.044 kCal、基質結合ドメ インには- 76.711 kCal、 C末端ドメインには- 64.337 kCalの強さで Leu- lieが結合し、 H sc70は ATPaseドメインと結合する可能性が高いことが示唆された。  (5) The molecular potential was used to predict the binding site of Hsc70 and Leu-Ile, and the mutual potential energy was calculated. As a result, -119.044 kCal for the ATPase domain and -76.711 kCal for the substrate-binding domain, C-terminal domain It was suggested that Leu-lie binds at a strength of -64.337 kCal, and that H sc70 is likely to bind to the ATPase domain.
(6) Leu-Ileを作用させた培養海馬神経細胞では、 NF- κ Βが核内に移行し、活性ィ匕 された。  (6) In cultured hippocampal neurons treated with Leu-Ile, NF-κΒ was translocated into the nucleus and activated.
(7) Leu-Ileを作用させた培養海馬神経細胞では、神経細胞死が抑制され、 GDNFの 産生が誘導された力 NF- κ B阻害剤の sulfasalazineと Leu-Ileを同時に作用させた 細胞群では、 Leu-Ileの効果が抑制された。  (7) In cultured hippocampal neurons treated with Leu-Ile, a group of cells in which neuronal cell death was suppressed and GDNF production was induced NF-κB inhibitors sulfasalazine and Leu-Ile were allowed to act simultaneously Then, the effect of Leu-Ile was suppressed.
(8) Leu-Ileを作用させた培養海馬神経細胞では、コントロール群に比べ CREBのリン 酸化の程度が増加した。  (8) In the cultured hippocampal neurons treated with Leu-Ile, the degree of phosphorylation of CREB increased compared to the control group.
(9) CREBアンチセンスオリゴヌクレオチドを培養海馬神経細胞に作用させると、 Leu- Ileの GDNF産生誘導効果が抑制された。  (9) When CREB antisense oligonucleotide was allowed to act on cultured hippocampal neurons, Leu-Ile's GDNF production-inducing effect was suppressed.
(10) Leu-Ileを作用させた培養海馬神経細胞では、 Aktのリン酸ィ匕の程度が増加した 力 CaMKII, PKC-?および ERKについては変化がなかった。  (10) In cultured hippocampal neurons treated with Leu-Ile, there was no change in CaMKII, PKC-?
(11) PI3K阻害剤の LY294002と Leu-Ileを同時に作用させた細胞では、 Leu-Ileによつ て誘導された Aktおよび CREBのリン酸化は抑制されなかった。一方、 Hsp90の阻害 剤である geldanamycinと Leu-Ileを同時に作用させた細胞では Leu-Ileによって誘導さ れた Aktおよび CREBのリン酸化を抑制した。  (11) In cells treated with the PI3K inhibitors LY294002 and Leu-Ile simultaneously, phosphorylation of Akt and CREB induced by Leu-Ile was not suppressed. On the other hand, in cells treated with geldanamycin, an inhibitor of Hsp90, and Leu-Ile simultaneously, phosphorylation of Akt and CREB induced by Leu-Ile was suppressed.
[0061] 以上の知見から Leu-Ileが Hsc70に結合し、 Hsp90/Aktの経路を介して NF- κ Βおよ び CREBを活性化し、 GDNFの産生を誘導すると考えられた。 Hsp90/Aktのシグナル 経路によって Leu-Ileが GDNFを産生誘導することが分かり、 GDNFの発現調節を担う 新たなターゲット遺伝子として Hsc70および Hsp90/Aktを特定することができた。  [0061] From the above findings, it was considered that Leu-Ile binds to Hsc70 and activates NF-κΒ and CREB through the Hsp90 / Akt pathway to induce GDNF production. It was found that Leu-Ile induces GDNF production through the Hsp90 / Akt signaling pathway, and Hsc70 and Hsp90 / Akt could be identified as new target genes responsible for the regulation of GDNF expression.
[0062] 引用文献  [0062] Cited reference
Afshan Fb, Chu AK, Sato— Bigbeeし: Effect of cyclic AMP on the expression of my elin basic protein species and myelin proteolipid protein in committed oligodendrocy tes: differential involvement of the transcription factor CREB. J Neurosci Res, 66: 3 7-45 (2001) Afshan Fb, Chu AK, Sato— Bigbee: Effect of cyclic AMP on the expression of my elin basic protein species and myelin proteolipid protein in committed oligodendrocy tes: differential involvement of the transcription factor CREB. J Neurosci Res, 66: 3 7-45 (2001)
Airaksinen MS, Titievsky A, Saarma M: GDNF family neurotrophic factor signaling : four masters, one servant? Mol Cell Neurosci, 13: 313-325 (1999)  Airaksinen MS, Titievsky A, Saarma M: GDNF family neurotrophic factor signaling : four masters, one servant? Mol Cell Neurosci, 13: 313-325 (1999)
Baecker PA, Lee WH, Verity AN, Eglen RM, Johnson RM: Characterization of a p romoter for the human glial cell line-derived neurotrophic factor gene. Brain Res Mo 1 Brain Res, 69: 209-222 (1999)  Baecker PA, Lee WH, Verity AN, Eglen RM, Johnson RM: Characterization of a promoter for the human glial cell line-derived neurotrophic factor gene.Brain Res Mo 1 Brain Res, 69: 209-222 (1999)
Bagchi MK, Tsai SY, Tsai MJ, O'Malley BW: Progesterone enhances target gene t ranscription by receptor free of heat shock proteins hsp90, hsp56, and hsp70. Mol Cell Biol, 11: 4998-5004 (1991)  Bagchi MK, Tsai SY, Tsai MJ, O'Malley BW: Progesterone enhances target gene t ranscription by receptor free of heat shock proteins hsp90, hsp56, and hsp70. Mol Cell Biol, 11: 4998-5004 (1991)
Beere HM: The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci, 117: 2641—2651 (2004)  Beere HM: The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci, 117: 2641—2651 (2004)
Besset V, Scott RP, Ibanez CF: Signaling complexes and protein-protein interactio ns involved in the activation of the Ras and phosphatidylinositol 3— kinase pathways by the c— Ret receptor tyrosine kinase. J Biol Chem, 275: 39159—39166 (2000)  Besset V, Scott RP, Ibanez CF: Signaling complexes and protein-protein interactio ns involved in the activation of the Ras and phosphatidylinositol 3— kinase pathways by the c— Ret receptor tyrosine kinase. J Biol Chem, 275: 39159—39166 (2000 )
Brodbeck S, Besenbeck B, Englert C: The transcription factor Six2 activates expr ession of the GDNF gene as well as its own promoter. Mech Dev, 121: 1211-1222 ( 2004)  Brodbeck S, Besenbeck B, Englert C: The transcription factor Six2 activates expr ession of the GDNF gene as well as its own promoter. Mech Dev, 121: 1211-1222 (2004)
Chou CC, Forouhar F, Yeh YH, Shr HL, Wang C, Hsiao CD: Crystal structure of the C- terminal 10- kDa subdomain of Hsc70. J Biol Chem, 278: 30311-30316 (2003) Chou CC, Forouhar F, Yeh YH, Shr HL, Wang C, Hsiao CD: Crystal structure of the C-terminal 10-kDa subdomain of Hsc70. J Biol Chem, 278: 30311-30316 (2003)
Coulpier M, Anders J, Ibanez CF: Coordinated activation of autophosphorylation s ites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF me diated neuronal differentiation and survival. J Biol Chem, 277: 1991-1999 (2002)Coulpier M, Anders J, Ibanez CF: Coordinated activation of autophosphorylation s ites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF me diated neuronal differentiation and survival.J Biol Chem, 277: 1991-1999 (2002)
Doong H, Rizzo K, Fang S, Kulpa V, Weissman AM, Kohn EC: CAIR- 1/BAG- 3 a brogates heat shock protein— 70 chaperone complex-mediated protein degradation: a ccumulation of poly— ubiquitinated Hsp90 client proteins. J Biol Chem, 278: 28490—2 8500 (2003) Doong H, Rizzo K, Fang S, Kulpa V, Weissman AM, Kohn EC: CAIR-1 / BAG-3 a brogates heat shock protein— 70 chaperone complex-mediated protein degradation: a ccumulation of poly—ubiquitinated Hsp90 client proteins. Biol Chem, 278: 28490—2 8500 (2003)
Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 273: 32377-32379 (1998) Dworniczak B, Mirault ME: Structure and expression of a human gene coding for a 71 kd heat shock 'cognate' protein. Nucleic Acids Res, 15: 5181-5197 (1987)Du K, Montminy M: CREB is a regulatory target for the protein kinase Akt / PKB. J Biol Chem, 273: 32377-32379 (1998) Dworniczak B, Mirault ME: Structure and expression of a human gene coding for a 71 kd heat shock 'cognate' protein. Nucleic Acids Res, 15: 5181-5197 (1987)
Encinas M, Tansey MG, Tsui— Pierchala BA, Cornelia JX, Milbrandt J, Johnson EM Jr: c- Src is required for glial cell line-derived neurotrophic factor (GDNF) family lig and- mediated neuronal survival via a phosphatidylinositol- 3 kinase (PI3K)- depende nt pathway. J Neurosci, 21: 1464-1472 (2001) Encinas M, Tansey MG, Tsui— Pierchala BA, Cornelia JX, Milbrandt J, Johnson EM Jr: c- Src is required for glial cell line-derived neurotrophic factor (GDNF) family lig and- mediated neuronal survival via a phosphatidylinositol-3 kinase (PI3K)-depende nt pathway. J Neurosci, 21: 1464-1472 (2001)
Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ: Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFka ppaB activation. J Biol Chem, 271: 17724-17732 (1996)  Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ: Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFka ppaB activation. J Biol Chem, 271: 17724-17732 (1996)
Feng L, Wang CY, Jiang H, Oho C, Dugich— Djordjevic M, Mei L, Lu B: Differenti al signaling of glial cell line-derived neurothrophic factor and brain-derived neurotro phic factor in cultured ventral mesencephalic neurons. Neuroscience, 93: 265-273 ( 1999)  Feng L, Wang CY, Jiang H, Oho C, Dugich— Djordjevic M, Mei L, Lu B: Differential signaling of glial cell line-derived neurothrophic factor and brain-derived neurotro phic factor in cultured ventral mesencephalic neurons. Neuroscience, 93 : 265-273 (1999)
Flaherty KM, DeLuca— Flaherty C, McKay DB: Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346: 623-628 (199 0)  Flaherty KM, DeLuca— Flaherty C, McKay DB: Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346: 623-628 (199 0)
Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS: Immunophilin FK506- bi nding protein 52 (not FK506- binding protein 12) mediates the neurotrophic action o f FK506. J Pharmacol Exp Ther, 289: 1202-1210 (1999)  Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS: Immunophilin FK506- binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther, 289: 1202-1210 (1999)
Gold BG: Neuroimmunophilin ligands: evaluation of their therapeutic potential for t he treatment of neurological disorders. Expert Opin Investig Drugs, 9: 2331-2342 (2 000)  Gold BG: Neuroimmunophilin ligands: evaluation of their therapeutic potential for t he treatment of neurological disorders. Expert Opin Investig Drugs, 9: 2331-2342 (2 000)
Gold BG, Nutt JG: Neuroimmunophilin ligands in the treatment of Parkinson's dise ase. Curr Opin Pharmacol, 2: 82—86 (2002)  Gold BG, Nutt JG: Neuroimmunophilin ligands in the treatment of Parkinson's dise ase. Curr Opin Pharmacol, 2: 82-86 (2002)
Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W, Vale WW, Montminy MR: A cluster of phosphorylation sites on the cyclic AMP— regulated nucl ear factor CREB predicted by its sequence. Nature, 337: 749-752 (1989)  Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W, Vale WW, Montminy MR: A cluster of phosphorylation sites on the cyclic AMP— regulated nucl ear factor CREB predicted by its sequence. Nature, 337: 749- 752 (1989)
Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA: X-ray structure of calcineurin inhibited by the i mmunophilin- immunosuppressant FKBP12- FK506 complex. Cell, 82: 507-522 (1995 ) Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA: X-ray structure of calcineurin inhibited by the i mmunophilin-immunsuppressant FKBP12- FK506 complex.Cell, 82: 507-522 (1995)
Grimm L, Holinski— Feder E, Teodoridis J, Scheffer B, Schindelhauer D, Meitinger T, Ueffing M: Analysis of the human GDNF gene reveals an inducible promoter, thre e exons, a triplet repeat within the 3し UTR and alternative splice products. Hum Mo 1 Genet, 7: 1873-1886 (1998)  Grimm L, Holinski— Feder E, Teodoridis J, Scheffer B, Schindelhauer D, Meitinger T, Ueffing M: Analysis of the human GDNF gene reveals an inducible promoter, three exons, a triplet repeat within the 3 UTR and alternative splice products Hum Mo 1 Genet, 7: 1873-1886 (1998)
Grimm J, Sachs M, Britsch S, Di Cesare S, Schwarz— Romond T, Alitalo K, Birchme ier W: Novel p62dok family members, dok— 4 and dok— 5, are substrates of the c— Ret receptor tyrosine kinase and mediate neuronal differentiation. J Cell Biol, 154: 345— 354 (2001)  Grimm J, Sachs M, Britsch S, Di Cesare S, Schwarz— Romond T, Alitalo K, Birchme ier W: Novel p62dok family members, dok— 4 and dok— 5, are substrates of the c— Ret receptor tyrosine kinase and mediate neuronal differentiation. J Cell Biol, 154: 345— 354 (2001)
Hayashi H, Ichihara M, Iwashita T, Murakami H, Shimono Y, Kawai K, Kurokawa K, Murakumo Y, Imai T, Funahashi H, Nakao A, Takahashi M: Characterization of i ntracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neur otrophic factor. Oncogene, 19: 4469-4475 (2000)  Hayashi H, Ichihara M, Iwashita T, Murakami H, Shimono Y, Kawai K, Kurokawa K, Murakumo Y, Imai T, Funahashi H, Nakao A, Takahashi M: Characterization of i ntracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neur otrophic factor.Oncogene, 19: 4469-4475 (2000)
Herdegan T, rischer G, Bold BG: immunophilin ligands as a novel treatment of ne urological disorders. Trends Pharmacol ¾ci, 21: 3-5 (2000)  Herdegan T, rischer G, Bold BG: immunophilin ligands as a novel treatment of neurological disorders. Trends Pharmacol ¾ci, 21: 3-5 (2000)
Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Sim mons LC, Moffet B, Vandlen RA, Rosenthal A: GDNF: a potent survival factor for m otoneurons present in peripheral nerve and muscle. Science, 266: 1062 - 1064 (1994) Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Sim mons LC, Moffet B, Vandlen RA, Rosenthal A: GDNF: a potent survival factor for mtonetones present in peripheral nerve and muscle. Science, 266 : 1062-1064 (1994)
Ichihara M, Murakumo Y, Takahashi M: RET and neuroendocrine tumors. Cancer Lett, 204: 197-211 (2004) Ichihara M, Murakumo Y, Takahashi M: RET and neuroendocrine tumors. Cancer Lett, 204: 197-211 (2004)
Johnson JR, Chu AK, Sato— Bigbee C: Possible role of CREB in the stimulation of o ligodendrocyte precursor cell proliferation by neurotrophin— 3. J Neurochem, 74: 140 9-1417 (2000)  Johnson JR, Chu AK, Sato— Bigbee C: Possible role of CREB in the stimulation of o ligodendrocyte precursor cell proliferation by neurotrophin— 3. J Neurochem, 74: 140 9-1417 (2000)
Kobayashi M, Matsuoka I: Enhancement of sympathetic neuron survival by synergi stic action of NT3 and GDNF. Neuroreport, 11: 2541-2545 (2000)  Kobayashi M, Matsuoka I: Enhancement of sympathetic neuron survival by synergi stic action of NT3 and GDNF. Neuroreport, 11: 2541-2545 (2000)
Koyama Y, Egawa H, Osakada M, Baba A, Matsuda T: Increase by FK960, a novel cognitive enhancer, in glial cell line-derived neurotrophic factor production in cultu red rat astrocytes. Biochem Pharmacol, 68: 275-282 (2004) Koyama Y, Egawa H, Osakada M, Baba A, Matsuda T: Increase by FK960, a novel cognitive enhancer, in glial cell line-derived neurotrophic factor production in cultu red rat astrocytes. Biochem Pharmacol, 68: 275-282 (2004)
Lenhard T, Schober A, Suter— Crazzolara C, Unsicker K: Fibroblast growth factor— 2 requires glial— cell— line— derived neurotrophic factor for exerting its neuroprotectiv e actions on glutamate— lesioned hippocampal neurons. Mol Cell Neurosci, 20: 181—1 97 (2002)  Lenhard T, Schober A, Suter— Crazzolara C, Unsicker K: Fibroblast growth factor— 2 requires glial— cell— line— derived neurotrophic factor for exerting its neuroprotective actions on glutamate— lesioned hippocampal neurons. Mol Cell Neurosci, 20: 181— 1 97 (2002)
Lenhard T, Suter— Crazzolara C: Developmental expression of GDNF, neurturin an d their receptors in rat hippocampus. Neuroreport, 9: 2927-2931 (1998)  Lenhard T, Suter— Crazzolara C: Developmental expression of GDNF, neurturin an d their receptors in rat hippocampus. Neuroreport, 9: 2927-2931 (1998)
Liptay S, Bachem M, Hacker G, Adler G, Debatin KM, Schmid RM: Inhibition of n uclear factor kappa B and induction of apoptosis in T— lymphocytes by sulfasalazine. Br J Pharmacol, 128: 1361-1369 (1999)  Liptay S, Bachem M, Hacker G, Adler G, Debatin KM, Schmid RM: Inhibition of nuclear factor kappa B and induction of apoptosis in T— lymphocytes by sulfasalazine. Br J Pharmacol, 128: 1361-1369 (1999)
Lorenzo MJ, Eng C, Mulligan LM, Stonehouse TJ, Healey CS, Ponder BA, Smith DP: Multiple mRNA isoforms of the human RET proto— oncogene generated by altern ate splicing. Oncogene, 10: 1377—1383 (1995)  Lorenzo MJ, Eng C, Mulligan LM, Stonehouse TJ, Healey CS, Ponder BA, Smith DP: Multiple mRNA isoforms of the human RET proto— oncogene generated by altern ate splicing. Oncogene, 10: 1377—1383 (1995)
Marco S, Canudas AM, Canals JM, Gavalda N, Perez— Navarro E, Alberch J: Excit atory amino acids differentially regulate the expression of GDNF, neurturin, and thei r receptors in the adult rat striatum. Exp Neurol, 174: 243-252 (2002)  Marco S, Canudas AM, Canals JM, Gavalda N, Perez—Navarro E, Alberch J: Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol, 174: 243- 252 (2002)
Maruyama W, Nitta A, Shamoto— Nagai M, Hirata Y, Akao Y, Yodim M, Furukawa S, Nabeshima T, Naoi M: N- Propargyl- 1 (R)- aminoindan, rasagiline, increases glial c ell line-derived neurotrophic factor (GDNF) in neuroblastoma SH- SY5Y cells throug h activation of NF- kappaB transcription factor. Neurochem Int, 44: 393-400 (2004) Maruyama W, Nitta A, Shamoto— Nagai M, Hirata Y, Akao Y, Yodim M, Furukawa S, Nabeshima T, Naoi M: N-Propargyl-1 (R) -aminoindan, rasagiline, increases glial c ell line-derived neurotrophic factor (GDNF) in neuroblastoma SH- SY5Y cells throug h activation of NF- kappaB transcription factor. Neurochem Int, 44: 393-400 (2004)
McLaughlin SH, Smith HW, Jackson SE: Stimulation of the weak ATPase activity o f human hsp90 by a client protein. J Mol Biol, 315: 787-798 (2002) McLaughlin SH, Smith HW, Jackson SE: Stimulation of the weak ATPase activity o f human hsp90 by a client protein. J Mol Biol, 315: 787-798 (2002)
Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A: Renal and neuronal abnormalities in mice 1 acking GDNF. Nature, 382: 76—79 (1996)  Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A: Renal and neuronal abnormalities in mice 1 acking GDNF. Nature, 382: 76—79 ( 1996)
Motomiya Y, Ando Y, Haraoka K, Sun X, Iwamoto H, Uchimura T, Maruyama I: Ci rculating level of 2— macroglobulin— β 2— microglobulin complex in hemodialysis pati ents. Kidney International, 64: 2244-2252 (2003) Motomiya Y, Ando Y, Haraoka K, Sun X, Iwamoto H, Uchimura T, Maruyama I: Circulating level of 2— macroglobulin— β 2— microglobulin complex in hemodialysis pati ents.Kidney International, 64: 2244-2252 (2003)
Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER: High— resoluti on solution structure of the 18 kDa substrate-binding domain of the mammalian cha perone protein Hsc70. J Mol Biol, 289: 1387-1403 (1999)  Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER: High— resoluti on solution structure of the 18 kDa substrate-binding domain of the mammalian cha perone protein Hsc70. J Mol Biol, 289: 1387-1403 ( 1999)
Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, Ponder MA, Fri lling A, Jackson CE, Lehnert H, Neumann H, Thibodeau SN, Ponder B: Specific mut ations of the RET proto— oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet, 6: 70-74 (1994)  Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, Ponder MA, Frilling A, Jackson CE, Lehnert H, Neumann H, Thibodeau SN, Ponder B: Specific mutation of the RET proto— oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet, 6: 70-74 (1994)
Myers SM, Eng C, Ponder BA, Mulligan LM: Characterization of RET proto— oncog ene 3' splicing variants and polyadenylation sites: a novel C- terminus for RET. One ogene, 11: 2039-2045 (1995)  Myers SM, Eng C, Ponder BA, Mulligan LM: Characterization of RET proto— oncog ene 3 'splicing variants and polyadenylation sites: a novel C- terminus for RET. One ogene, 11: 2039-2045 (1995)
Nitta A, Murai R, Maruyama K, Furukawa S: FK506 protects dopaminergic degene ration through induction of GDNF in rodent brain. In: Mizuno Y and Fisher A, edito rs. Mapping the progress of Alzheimer' s and Parkinson' s disease. New York, NY: K luwer Academic/Plenum Publishers, 463-467 (2002)  Nitta A, Murai R, Maruyama K, Furukawa S: FK506 protects dopaminergic degene ration through induction of GDNF in rodent brain. In: Mizuno Y and Fisher A, edito rs. Mapping the progress of Alzheimer's and Parkinson 's disease. New York, NY: K luwer Academic / Plenum Publishers, 463-467 (2002)
Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L, Furukawa S (2 004) Hydrophobic dipeptide Leu- lie protects against neuronal death by inducing bra in-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthes is. J Neurosci Res 78:250-258  Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L, Furukawa S (2 004) Hydrophobic dipeptide Leu- lie protects against neuronal death by inducing bra in-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthes is. J Neurosci Res 78: 250-258
Ogawa N, Tanaka K, Kondo Y, Asanuma M, Mizukawa K, Mori A: The preventive effect of cyclosporin A, an immunosuppressant, on the late onset reduction of musca rinic acetylcholine receptors in gerbil hippocampus after transient forebrain ischemia . Neurosci Lett, 152: 173—176 (1993)  Ogawa N, Tanaka K, Kondo Y, Asanuma M, Mizukawa K, Mori A: The preventive effect of cyclosporin A, an immunosuppressant, on the late onset reduction of musca rinic acetylcholine receptors in gerbil hippocampus after transient forebrain ischemia. Neurosci Lett, 152 : 173—176 (1993)
岡畑 恵雄、古澤 宏幸: 水晶発振子マイクロバランス法 蛋白質核酸酵素 49: 17 54-1758 (2004)  OKAHATA, Megumi, FURUZAWA, Hiroyuki: Quartz crystal microbalance protein nucleic acid enzyme 49: 17 54-1758 (2004)
Pappin DJ, Hojrup P, Bieasby AJ: Rapid iaentincation of proteins by peptide— mass fingerprinting. Curr Biol, 3: 327-332 (1993)  Pappin DJ, Hojrup P, Bieasby AJ: Rapid iaentincation of proteins by peptide— mass fingerprinting. Curr Biol, 3: 327-332 (1993)
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identifi cation by searching sequence databases using mass spectrometry data. Electrophore sis, 20: 3551-3567 (1999) Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identifi cation by searching sequence databases using mass spectrometry data. Electrophore sis, 20: 3551-3567 (1999)
Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H: Defects in enteric innervation and kidney development in mice lacking GDNF. Nature, 382: 73-76 (1996)  Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H: Defects in enteric innervation and kidney development in mice lacking GDNF. Nature, 382: 73-76 (1996)
Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciard i R, Lerone M, Kaariainen H, Martucciello G: Point mutations affecting the tyrosine kinase domain of the RET proto- oncogene in Hirschsprung's disease. Nature, 367: 3 77-378 (1994)  Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciard i R, Lerone M, Kaariainen H, Martucciello G: Point mutations affecting the tyrosine kinase domain of the RET proto- oncogene in Hirschsprung's disease Nature, 367: 3 77-378 (1994)
Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M: Renal agenesi s and the absence of enteric neurons in mice lacking GDNF. Nature, 382: 70-73 (19 96)  Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M: Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature, 382: 70-73 (19 96)
Santoro M, Rosati R, Grieco M, Berlingieri MT, D'Amato GL, de Franciscis V, Fu sco A: The ret proto— oncogene is consistently expressed in human pheochromocyto mas and thyroid medullary carcinomas. Oncogene, 5: 1595-1598 (1990)  Santoro M, Rosati R, Grieco M, Berlingieri MT, D'Amato GL, de Franciscis V, Fu sco A: The ret proto— oncogene is consistently expressed in human pheochromocyto mas and thyroid medullary carcinomas. Oncogene, 5: 1595-1598 ( 1990)
Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K: U p- regulation of glial cell line-derived neurotrophic factor (GDNF) following traumati c spinal cord injury. Neuroreport, 11: 3877—3881 (2000)  Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K: Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumati c spinal cord injury. Neuroreport, 11: 3877—3881 (2000)
Sato— Bigbee C, DeVries GH: Treatment of oligodendrocytes with antisense oligod eoxynucleotide directed against CREB mRNA: effect on the cyclic AMP— dependent i nduction of myelin basic protein expression. J Neurosci Res, 46: 98-107 (1996) Sato— Bigbee C, DeVries GH: Treatment of oligodendrocytes with antisense oligod eoxynucleotide directed against CREB mRNA: effect on the cyclic AMP— dependent induction of myelin basic protein expression. J Neurosci Res, 46: 98-107 (1996)
Sauerbrey GZ: Use of quartz crystal vibrator for weighting thin films on a micro- b alance. J Physics, 155: 2067222 (1959) Sauerbrey GZ: Use of quartz crystal vibrator for weighting thin films on a micro-b alance.J Physics, 155: 2067222 (1959)
Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell, 103: 211-225 (20 00)  Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell, 103: 211-225 (20 00)
Schreiber SL: Chemistry and biology of the immunophilins and their immunosuppre ssive ligands. Science, 251: 283-287 (1991)  Schreiber SL: Chemistry and biology of the immunophilins and their immunosuppre ssive ligands. Science, 251: 283-287 (1991)
Sharkey J, Butcher SP: Immunophilins mediate the neuroprotective effects of FK50 6 in focal cerebral ischaemia. Nature, 371: 336-339 (1994) Sharkey J, Butcher SP: Immunophilins mediate the neuroprotective effects of FK50 6 in focal cerebral ischaemia. Nature, 371: 336-339 (1994)
Shaywitz AJ, Greenberg ME: CREB: a stimulus-induced transcription factor activa ted by a diverse array of extracellular signals. Annu Rev Biochem, 68: 821-861 (199 9)  Shaywitz AJ, Greenberg ME: CREB: a stimulus-induced transcription factor activa ted by a diverse array of extracellular signals.Annu Rev Biochem, 68: 821-861 (199 9)
^higa Y, Onodera H, Matsuo Y, Kogure K: Cyclosporin A protects against ischemi a- reperfusion injury in the brain. Brain Res, 595: 145-148 (1992)  ^ higa Y, Onodera H, Matsuo Y, Kogure K: Cyclosporin A protects against ischemi a- reperfusion injury in the brain. Brain Res, 595: 145-148 (1992)
Snyder SH, Sabatini DM, Lai MM, Steiner JP, Hamilton GS, Suzdak PD: Neural ac tions of immunophilin ligands. Trends Pharmacol Sci, 19: 21-26 (1998)  Snyder SH, Sabatini DM, Lai MM, Steiner JP, Hamilton GS, Suzdak PD: Neural activations of immunophilin ligands.Trends Pharmacol Sci, 19: 21-26 (1998)
Takahashi M: The GDNF/RET signaling pathway and human diseases. Cytokine G rowth Factor Rev, 12: 361—373 (2001)  Takahashi M: The GDNF / RET signaling pathway and human diseases.Cytokine G rowth Factor Rev, 12: 361—373 (2001)
Takahashi M, Buma Y, Hiai H: Isolation of ret proto— oncogene cDNA with an amin o- terminal signal sequence. Oncogene, 4: 805-806 (1989)  Takahashi M, Buma Y, Hiai H: Isolation of ret proto— oncogene cDNA with an amin o-terminal signal sequence. Oncogene, 4: 805-806 (1989)
Takahashi M, Ritz J, Cooper GM: Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 42: 581—588 (1985)  Takahashi M, Ritz J, Cooper GM: Activation of a novel human transforming gene, ret, by DNA rearrangement.Cell, 42: 581—588 (1985)
Tanaka M, Ito S, Kiuchi K: Novel alternative promoters of mouse glial cell line— der ived neurotrophic factor gene. Biochim Biophys Acta, 1494: 63-74 (2000)  Tanaka M, Ito S, Kiuchi K: Novel alternative promoters of mouse glial cell line—der ived neurotrophic factor gene. Biochim Biophys Acta, 1494: 63-74 (2000)
Tanaka M, Ito S, Kiuchi K: The 5し untranslated region of the mouse glial cell line- derived neurotrophic factor gene regulates expression at both the transcriptional an d translational levels. Brain Res Mol Brain Res, 91: 81-95 (2001)  Tanaka M, Ito S, Kiuchi K: The 5 and untranslated region of the mouse glial cell line- derived neurotrophic factor gene regulates expression at both the transcriptional an d translational levels.Brain Res Mol Brain Res, 91: 81-95 (2001)
Tanaka M, Ito S, Matsushita N, Mori N, Kiuchi K: Promoter analysis and character istics of the 5し untranslated region of the mouse glial cell line-derived neurotrophic factor gene. Brain Res Mol Brain Res, 85: 91—102 (2000)  Tanaka M, Ito S, Matsushita N, Mori N, Kiuchi K: Promoter analysis and character istics of the 5 and untranslated region of the mouse glial cell line-derived neurotrophic factor gene. Brain Res Mol Brain Res, 85: 91—102 ( 2000)
田中 健一、小川 紀雄: ィムノフィリンリガンドー免疫抑制薬力 神経保護薬へ 日本神経精神薬理学雑誌 24: 71-74 (2004)  Kenichi Tanaka, Norio Ogawa: Imphiphilin ligand-immunosuppressive drug to neuroprotective drug The Japanese Journal of Neuropsychopharmacology 24: 71-74 (2004)
Taylor ¾, Srinivasan B, Wordinger RJ, Roque RS: uiutamate stimulates neurotroph in expression in cultured Muller cells. Brain Res Mol Brain Res, 111: 189-197 (2003 Taylor ¾, Srinivasan B, Wordinger RJ, Roque RS: uiutamate stimulates neurotroph in expression in cultured Muller cells. Brain Res Mol Brain Res, 111: 189-197 (2003
) )
Uludag H, S eft on MV: Color imetric assay for cellular activity in microcapsules. Bio materials, 11: 708-712 (1990) Uludag H, S eft on MV: Color imetric assay for cellular activity in microcapsules. Bio materials, 11: 708-712 (1990)
Verity AN, Wyatt TL, Lee W, Hajos B, Baecker PA, Eglen RM, Johnson RM: Diffe rential regulation of glial cell line-derived neurotrophic factor (GDNF) expression in human neuroblastoma and glioblastoma cell lines. J Neurosci Res, 55: 187-197 (199 9)  Verity AN, Wyatt TL, Lee W, Hajos B, Baecker PA, Eglen RM, Johnson RM: Differential regulation of glial cell line-derived neurotrophic factor (GDNF) expression in human neuroblastoma and glioblastoma cell lines.J Neurosci Res, 55: 187-197 (199 9)
Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF: The antiapoptotic g ene mcl— 1 is up-regulated by the phosphatidylinositol 3— kinase/ Akt signaling pathw ay through a transcription factor complex containing CREB. Mol Cell Biol, 197: 619 5-206 (1999)  Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF: The antiapoptotic gene mcl— 1 is up-regulated by the phosphatidylinositol 3— kinase / Akt signaling pathw ay through a transcription factor complex containing CREB. Mol Cell Biol, 197: 619 5-206 (1999)
Woodbury D, Schaar DG, Ramakrishnan L, Black IB: Novel structure of the human GDNF gene. Brain Res, 803: 95—104 (1998)  Woodbury D, Schaar DG, Ramakrishnan L, Black IB: Novel structure of the human GDNF gene. Brain Res, 803: 95—104 (1998)
Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS: Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through pr eventing I kappa B kinase activation in respiratory epithelial cells. J Immunol, 164: 5 416-5423 (2000)  Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS: Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through pr eventing I kappa B kinase activation in respiratory epithelial cells. Immunol, 164: 5 416-5423 (2000)
Young JC, Barral JM, Ulrich Hartl F: More than folding: localized functions of cyto solic chaperones. Trends Biochem Sci, 28: 541-547 (2003)  Young JC, Barral JM, Ulrich Hartl F: More than folding: localized functions of cyto solic chaperones.Trends Biochem Sci, 28: 541-547 (2003)
Zhang H, Burrows F: Targeting multiple signal transduction pathways through inhi bition of Hsp90. J Mol Med, 82: 488-499 (2004)  Zhang H, Burrows F: Targeting multiple signal transduction pathways through inhi bition of Hsp90. J Mol Med, 82: 488-499 (2004)
Zhu Y, Culmsee C, Klumpp S, Krieglstein J: Neuroprotection by transforming grow th factor— beta 1 involves activation of nuclear factor— kappaB through phosphatidylin ositol— 3—〇H kinase/ Akt and mitogen— activated protein kinase— extracellular— signal regulated kinase 1,2 signaling pathways. Neuroscience, 123: 897-906 (2004).  Zhu Y, Culmsee C, Klumpp S, Krieglstein J: Neuroprotection by transforming grow th factor— beta 1 involves activation of nuclear factor— kappaB through phosphatidylin ositol— 3—〇H kinase / Akt and mitogen— activated protein kinase— extracellular— signal regulated kinase 1,2 signaling pathways. Neuroscience, 123: 897-906 (2004).
産業上の利用可能性 Industrial applicability
本発明の Akt活性化剤は、 Aktの調節によって予防効果又は治療効果が得られる 疾患に対する薬剤又は食品として、或いは当該疾患の発症機構や進展機構などを 研究するための試薬として利用され得る。本発明の有効成分は基本構造がジぺプチ ドという非常に単純なものであるため、その調製が容易であるという利点を有する。 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものでは ない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。 The Akt activator of the present invention can be used as a drug or food for a disease for which a preventive or therapeutic effect can be obtained by regulating Akt, or as a reagent for studying the onset mechanism or progress mechanism of the disease. The active ingredient of the present invention has the advantage that it is easy to prepare because the basic structure is a very simple dipeptide. The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その 全ての内容を援用によって引用することとする。  The contents of papers, published patent gazettes, patent gazettes, etc. specified in this specification are incorporated by reference in their entirety.

Claims

請求の範囲 The scope of the claims
[1] (a)〜(c)の 、ずれかの化合物を有効成分として含有する Akt活性化剤:  [1] An Akt activator comprising any one of the compounds (a) to (c) as an active ingredient:
(a) Leu及び lieからなるペプチド;  (a) a peptide comprising Leu and lie;
(b) Leu及び lieからなるペプチドの修飾体;  (b) a modified form of a peptide comprising Leu and lie;
(c)薬学的に許容可能な、(a)又は (b)の塩。  (c) A pharmaceutically acceptable salt of (a) or (b).
[2] 前記ペプチドが Leu— lieである、請求項 1に記載の Akt活性化剤。  [2] The Akt activator according to claim 1, wherein the peptide is Leu-lie.
[3] Hsp90の結合によって Aktが活性ィ匕される経路を介して Aktを活性ィ匕することを特徴 とする、請求項 1又は 2に記載の Akt活性化剤。  [3] The Akt activator according to claim 1 or 2, wherein Akt is activated through a pathway in which Akt is activated by the binding of Hsp90.
[4] パーキンソン病、脊髄損傷、アルツハイマー病、水頭症、脳損傷、脳梗塞、痴呆症[4] Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia
、リューマチ症、又は統合失調症の治療又は予防に使用されることを特徴とする、請 求項 1〜3の 、ずれかに記載の Akt活性化剤。 The Akt activator according to any one of claims 1 to 3, which is used for the treatment or prevention of rheumatism or schizophrenia.
[5] 請求項 1〜3の 、ずれかに記載の Akt活性化剤を含有する食品。 [5] A food containing the Akt activator according to any one of claims 1 to 3.
[6] 以下のステップを含む、パーキンソン病、脊髄損傷、アルツハイマー病、水頭症、脳 損傷、脳梗塞、痴呆症、リューマチ症、又は統合失調症の予防又は治療方法: (A)請求項 1〜3のいずれかに記載の Akt活性化剤を生体に投与するステップ。 [6] A method for preventing or treating Parkinson's disease, spinal cord injury, Alzheimer's disease, hydrocephalus, brain injury, cerebral infarction, dementia, rheumatism, or schizophrenia, comprising the following steps: (A) Claims 1 to 4. A step of administering the Akt activator according to any one of 3 to a living body.
PCT/JP2006/301326 2005-02-25 2006-01-27 Akt ACTIVATING AGENT WO2006090555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504648A JPWO2006090555A1 (en) 2005-02-25 2006-01-27 Akt activator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005051829 2005-02-25
JP2005-051829 2005-02-25

Publications (1)

Publication Number Publication Date
WO2006090555A1 true WO2006090555A1 (en) 2006-08-31

Family

ID=36927200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301326 WO2006090555A1 (en) 2005-02-25 2006-01-27 Akt ACTIVATING AGENT

Country Status (2)

Country Link
JP (1) JPWO2006090555A1 (en)
WO (1) WO2006090555A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050754A1 (en) * 2006-10-23 2008-05-02 National University Corporation Nagoya University Intracerebral oxidation inhibitor and use thereof
WO2009093671A1 (en) * 2008-01-24 2009-07-30 Kyowa Hakko Bio Co., Ltd. Antidepressant/antianxiety agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138952A (en) * 1988-08-26 1990-05-28 Morishita Pharmaceut Co Ltd Nutrient transfusion composition containing dipeptide of l-leucine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138952A (en) * 1988-08-26 1990-05-28 Morishita Pharmaceut Co Ltd Nutrient transfusion composition containing dipeptide of l-leucine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ISHIBASHI N. ET AL.: "Bitterness of Leucine-containing Peptides", AGRIC. BIOL. CHEM., vol. 51, no. 9, 1987, pages 2389 - 2394, XP003001582 *
NITTA A. ET AL.: "Hydrophobic Dipeptide Leu-Ile Protects Against Neuronal Death by Inducing Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor Synthesis", J. NEUROSCI. RES., vol. 78, 2004, pages 250 - 258, XP003001581 *
NITTA A. ET AL.: "Methamphetamine ni yoru Yakubutsu Izon Keisei ni Kan'yo suru Tanpaku no Kaiseki to Chiryoyaku no Kaihatsu", FOLIA. PHARMACOL. JPN., vol. 122, no. 1, 2003, pages 81P - 83P, XP003001583 *
SATO S. ET AL.: "Modulation of Akt kinase activity by binding to Hsp90", PROC. NATL. ACAD. SCI. USA, vol. 97, no. 20, 2000, pages 10832 - 10837, XP002906322 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050754A1 (en) * 2006-10-23 2008-05-02 National University Corporation Nagoya University Intracerebral oxidation inhibitor and use thereof
WO2009093671A1 (en) * 2008-01-24 2009-07-30 Kyowa Hakko Bio Co., Ltd. Antidepressant/antianxiety agent

Also Published As

Publication number Publication date
JPWO2006090555A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
Jiang et al. Casein kinase 1α: biological mechanisms and theranostic potential
Elkouzi et al. Emerging therapies in Parkinson disease—repurposed drugs and new approaches
Wilkaniec et al. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity
Sun et al. Modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21
US10330671B2 (en) Modulation of synaptic maintenance
Spitali et al. Autophagy is impaired in the tibialis anterior of dystrophin null mice
US10240156B2 (en) Modulation of synaptic maintenance
Li et al. Neuropeptide VGF C-terminal peptide TLQP-62 alleviates lipopolysaccharide-induced memory deficits and anxiety-like and depression-like behaviors in mice: the role of BDNF/TrkB signaling
Li et al. Recovery of post-stroke cognitive and motor deficiencies by Shuxuening injection via regulating hippocampal BDNF-mediated Neurotrophin/Trk Signaling
Gu et al. Piperlongumine attenuates experimental autoimmune encephalomyelitis through inhibition of NF-kappaB activity
Zhang et al. Cyclic-AMP response element binding protein and tau are involved in the neuroprotective mechanisms of nerve growth factor during focal cerebral ischemia/reperfusion in rats
Ma et al. Rosiglitazone improves learning and memory ability in rats with type 2 diabetes through the insulin signaling pathway
Mohammad-Gharibani et al. Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model
Batra et al. A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases
Barger et al. Molecular mechanisms of cytokine-induced neuroprotection: NFκB and neuroplasticity
Tu et al. Urolithin A exhibits a neuroprotective effect against Alzheimer’s disease by inhibiting DYRK1A activity
AU2006214489A1 (en) Metabolic-based methods for modulating gene expression
WO2006090555A1 (en) Akt ACTIVATING AGENT
Lee et al. Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVECs
Ardley Ring finger ubiquitin protein ligases and their implication to the pathogenesis of human diseases
Zhou et al. Notopterygium incisum Root Extract (NRE) Alleviates Epileptiform Symptoms in PTZ-Induced Acute Seizure Mice
Zhang et al. Effects of PI3K/Akt signaling pathway on serum C-reactive protein, serum amyloid A and cognitive dysfunction in mice with Alzheimer’s disease
WO2013149976A1 (en) Indole-pyrimidine derivatives and their therapeutic uses
Ferreira Establishing the relevance of Tau isoform imbalance in the onset and progression of Machado-Joseph disease
Chen et al. Tetramethylpyrazine Derivative T-006 Ameliorates the Amyloid-β Plagues of Transgenic Alzhermer's Mice by Modulation of TLR4-mediated MyD88/NF-κB Signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504648

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712492

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712492

Country of ref document: EP