WO2006090457A1 - Base station of mobile communication system - Google Patents

Base station of mobile communication system Download PDF

Info

Publication number
WO2006090457A1
WO2006090457A1 PCT/JP2005/003023 JP2005003023W WO2006090457A1 WO 2006090457 A1 WO2006090457 A1 WO 2006090457A1 JP 2005003023 W JP2005003023 W JP 2005003023W WO 2006090457 A1 WO2006090457 A1 WO 2006090457A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
reception
transmission
timing
mobile station
Prior art date
Application number
PCT/JP2005/003023
Other languages
French (fr)
Japanese (ja)
Inventor
Genya Kotani
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2005/003023 priority Critical patent/WO2006090457A1/en
Publication of WO2006090457A1 publication Critical patent/WO2006090457A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/007Open loop measurement
    • H04W56/0075Open loop measurement based on arrival time vs. expected arrival time
    • H04W56/0085Open loop measurement based on arrival time vs. expected arrival time detecting a given structure in the signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a transmission / reception timing correction process required when a radio signal propagation delay caused by a distance between a base station and a mobile station changes due to movement of a terminal in a TDMA mobile communication system having a large cell radius. is there.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-191068
  • Patent Document 2 Japanese Patent Laid-Open No. 11 340934
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-358638
  • the radio signal propagation delay increases as the cell radius increases and the distance between the base station and the terminal increases.
  • the uplink transmission signal from the terminal is defined by TDMA and deviates from the base station reception timing, and cannot be received by the base station. Therefore, if the terminal moves beyond a certain distance, communication with the previous base station cannot be continued, and if the handover destination base station cannot find it, the communication itself is disconnected. It was.
  • the present invention has been made to solve the above-described problems, and in a mobile communication system, particularly a TDMA communication system, when a radio signal propagation delay due to a distance between base stations is large.
  • the purpose is to construct a system that can continue communication between base stations without performing transmission timing correction on the terminal side and cover a large area with as little transmission output as possible in an area where traffic is small.
  • a base station is a synchronization that calculates a time difference between a receiver that receives an uplink control signal of mobile station power, a detection timing of a synchronization signal from the mobile station, and a detection timing expected by the base station.
  • a signal detection time difference measurement unit; and a reception allowable range control unit that determines a reception allowable range of the synchronization signal detection unit based on the latest measurement result of the synchronization signal detection timing and a plurality of past synchronization signal detection timings. Is.
  • a base station is a synchronization that calculates a time difference between a receiver that receives an uplink control signal from a mobile station, a detection timing of a synchronization signal of mobile station power, and a detection timing expected by the base station.
  • FIG. 1 is a diagram showing a system configuration of a TDMA communication system according to the present invention.
  • FIG. 2 is a diagram for explaining a permissible reception range of a synchronization signal of a base station before establishing synchronization with a mobile station in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining a permissible range of receiving a synchronization signal of a base station after establishing synchronization with a mobile station in Embodiment 1 of the present invention.
  • Fig. 4 is a diagram for explaining fluctuations in the reception timing of a synchronization signal according to movement of a mobile station after synchronization is established in Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing the processing contents of adjustment of the allowable reception range of the uplink synchronization signal of the base station according to the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a case where a signal propagation delay fluctuates due to movement of a mobile station, and a received signal interferes with an adjacent slot.
  • FIG. 7 is a flowchart showing processing contents when a received signal interferes with an adjacent slot due to a propagation delay variation during communication according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing transmission / reception timings of synchronization signals of a base station and a mobile station after synchronization is established according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart showing processing contents of transmission timing control according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart showing processing contents of transmission timing control according to the second embodiment of the present invention.
  • FIG. 11 is a flowchart showing the processing contents when adjusting transmission / reception timing according to the third embodiment of the present invention. It is a chart.
  • FIG. 12 is a flowchart showing another processing content when adjusting transmission / reception timing according to the third embodiment of the present invention.
  • FIG. 13 is a flowchart showing details of transmission / reception timing adjustment processing according to the fourth embodiment of the present invention.
  • FIG. 14 is a flowchart showing details of transmission / reception timing adjustment processing according to the fourth embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of the TDMA communication system according to the first exemplary embodiment of the present invention.
  • the base station 2 includes a transmission / reception unit 3 that communicates with the mobile station 1, a TDMA control unit 4 that controls radio signal transmission / reception timing, and a synchronization signal detection unit that detects an uplink signal from the base station. And 5.
  • the TDMA control unit 4 controls one or more transmission / reception units 3 provided in the base station 2.
  • the TDMA control unit 4 Based on the synchronization signal detection timing report from the synchronization signal detection unit 5, the TDMA control unit 4 sends an adjustment signal for adjusting the next synchronization signal reception allowable range to the synchronization signal detection unit 5, and the transmission / reception unit Determine the timing for sending a transmission / reception control signal to switch between transmission and reception for 3.
  • Each transceiver 3 is connected to an antenna and communicates with a mobile station.
  • FIG. 2 shows an example of synchronization signal reception timing at the base station before synchronization is established.
  • Figure 2 (a) is a TDMA transmission frame, (b) is a TDMA reception frame, (c) is a format of the reception signal, (d) is a TDMA reception slot, and (e) is a synchronization signal before synchronization is established.
  • (F) is a diagram showing a reception signal at the limit timing at which synchronization can be established.
  • the received signal according to the present invention is also a synchronization signal, followed by data and power.
  • the part before the synchronization signal contains, for example, a bit string such as a start symbol or preamble for demodulation by the transceiver 3, and the part after the control data contains, for example, an error detection or correction bit. is doing.
  • a in Fig. 2 (c) is the allowable reception range of the synchronization signal when no fluctuation of the signal propagation delay is assumed
  • B is the allowable reception range considering the delay due to the distance between the base stations and mobile stations to the maximum. It is.
  • the permissible reception range B is defined by the TDMA frame, and the end of the received signal is placed within the guard bits, and is extended to the maximum range that does not affect the adjacent TDMA slot. As a result, the uplink control signal from the distant mobile station 1 can also be received.
  • FIG. 3 shows an example of synchronization signal detection timing in the base station after establishment of synchronization.
  • Fig. 3 (a) shows the format of the TDMA received signal
  • Fig. 3 (b) shows the mth slot received for the reception timing of this TDMA received signal
  • Fig. 3 (c) shows the mth slot received before synchronization is established. It is a reception tolerance range.
  • the synchronization signal reception allowable range is set to the maximum range that can be received using the guard bit before synchronization is established.
  • FIG. 3 (d) shows the actual reception timing of the first TDMA reception signal
  • FIG. 3 (e) shows the detection timing of the synchronization signal included in this reception signal.
  • the allowable reception range is set in a range longer than the length of the synchronization signal, assuming that the mobile station moves and the timing is shifted. Specifically, it depends on a system to which the present invention is applied, that is, an assumed moving speed, the number of synchronization signal bits, a data transmission speed, and the like.
  • Figure 4 illustrates the adjustment of the final bit position.
  • Figure 4 (a) is a diagram comparing the first allowable reception range after synchronization and the actual control signal reception frame. is there.
  • (B), (c), (d), and (e) are the detection timings of the first, second, third, and nth synchronization signals, respectively.
  • (F) is the (n + 1) th synchronization signal estimation detection timing
  • (g) is the (n + 1) th reception tolerance range determined based on the estimation timing.
  • FIG. 5 is a flowchart for explaining the operation at that time.
  • step S2 the reception allowable range of the first synchronization signal is determined from the detection timing of the synchronization signal in step SO (step S2). The reception allowable range at that time is as described above.
  • the count P is smaller than n and the P-th uplink synchronization signal is detected (step S5), the detection timing force is also estimated for the next synchronization signal detection timing (step S6). It is determined whether or not the next synchronization signal estimated position is within the current reception allowable range (step S7).
  • next synchronization signal estimation position should be within the current reception allowable range. In this case (S7: Yes), the reception allowable range is Return to step S3. On the other hand, if it is estimated that the next synchronization signal whose movement speed is high does not fall within the current allowable reception range (S7: No), the next synchronous signal reception allowable range is newly determined in step S8, and the step S3 Return to. This process increases the possibility of following the mobile station.
  • step S4 the (n + 1) th time from the latest n synchronization signal detection timings.
  • the synchronization signal detection timing is estimated (step S9), and the (n + 1) th synchronization signal reception allowable range is determined from the estimated detection timing (step S10).
  • step S9 the process returns to step S9 to estimate the (n + 2) th synchronization signal detection timing from the past n synchronization signal detection timings! Repeat n + 3), (n + 4) ... and so on until communication is completed.
  • the timing estimation method for example, for each n detection timings, a difference between a certain detection timing and the previous detection timing is taken, and an average value of the differences is taken. Estimate the detection timing. Also, the estimation in step S8 above takes the difference from the previous detection timing according to the number of samples so far, and calculates the difference from the reference timing by taking the average value of the difference, and the next synchronization Estimate signal reception tolerance.
  • the number of samples n determined in advance is determined by the specifications of the system to which the present invention is applied. However, in a system with a short synchronization signal, if the reception tolerance is widened, the probability of false detection increases, so the tolerance is exceeded. If it is assumed that the moving speed of the mobile station is high, n is relatively small so that the mobile station can follow the movement. On the other hand, in the case of a false detection probability with a long synchronization signal, the allowable reception range can be accurately estimated by increasing n.
  • the mobile station does not adjust the transmission timing while reducing the possibility of erroneous detection by narrowing the allowable reception range of the synchronization signal within the guard bit range within the reception TDMA slot.
  • the detection timing is delayed beyond the guard bit range.
  • FIG. 6 shows a case where the detection timing of the uplink synchronization signal in the base station goes out of the guard bit range of the TDMA slot. For example, when mobile station 1 moves away from base station 2, the detection timing of the synchronization signal from mobile station 1 at base station 2 gradually delays and the specified guard bit is used up. When I interfere with the slot.
  • FIG. 7 is a flowchart for explaining the processing in the case of going out of the above guard bit range.
  • step S100 if it is determined that the next detection timing interferes with the adjacent (m + 1) slot (step S101), the (m + 1) slot moves to another position. Check whether it is used for communication with the station (step S 10 2). If the (m + 1) slot is not used by this check, the process proceeds to step S103, the detection timing is delayed to the (m + 1) slot at the next detection, the communication of the mth slot is continued, The (m + 1) th slot is blocked (unusable) so that the terminal does not use it (step S104). When the communication of the first lot is completed (step S105), the block of the (m + 1) th slot is also released and usable (step S106).
  • the allowable reception range of the synchronization signal is made as narrow as possible only by providing a margin for the number of bits determined by the system specifications in addition to the length of the synchronization signal. In this way, by continuing communication while estimating the next detection timing, false detection of synchronization signals is reduced.
  • step S102 determines whether the (m + 1) slot is used. If it is determined in step S102 that the (m + 1) slot is used, the mobile station that is communicating in the (m + 1) slot is within the same base station. The slot switching is instructed (step S107). If the slot in the base station is empty and switching is successful (step S108: Yes), the reception timing is delayed to the empty (m + 1) slot and the subsequent communication is performed (step S103). On the other hand, if switching is not possible because there is no free space, the mobile station in communication in the (m + 1) th slot is instructed to perform handover to another base station (step S109).
  • step S110 If handover to another base station is successful due to this handover instruction (step S110: Yes), the process proceeds to step S103, and communication is performed by delaying the detection timing to the (m + 1) slot. Continue. On the other hand, when there is no suitable base station or when handover to another base station fails, the communication in the m-th slot is terminated in an out-of-synchronization state (step S111).
  • the synchronization signal reception allowable range after establishment of synchronization is limited, the reception allowable range is sequentially shifted according to the movement of the mobile station, and adjacent slots are also used as necessary.
  • the propagation delay of the radio signal is long due to the long distance between the base station and the mobile station, it is possible to perform communication with less misdetection of the synchronization signal without performing transmission timing control in the mobile station.
  • the cell radius can be increased.
  • radio signal propagation delay was supported by controlling the reception timing of the base station (the position of the first bit and the last bit of the received signal). Describes a TDMA communication system that enables communication by controlling the transmission timing of the base station, thereby reducing the number of false detections of synchronization signals that are not transmitted to the mobile station! .
  • Embodiment 2 the maximum allowable reception range is established before synchronization is established, and after synchronization is established, a range slightly longer than the length of the synchronization signal is received based on the reception timing received at the time of establishment of synchronization. This is the same as in the first embodiment up to the point where the allowable range is determined, the detection timing force is estimated n times and the detection timing of the next synchronization signal is estimated.
  • the second embodiment is characterized in that the transmission timing of the base station is adjusted based on the estimated reception timing.
  • the system configuration diagram of the second embodiment is the same as that of FIG. 1 of the first embodiment.
  • the delay time is the distance between the base station and the mobile station. It is determined based on internal processing in the mobile station. If the internal processing in the mobile station that received the radio wave is constant, the delay time will eventually change based on the distance. Therefore, the timing at which the signal from the mobile station is received by the base station can be adjusted by adjusting the transmission timing of the previous base station.
  • FIG. 8 is a diagram showing transmission / reception timings according to the second embodiment of the present invention.
  • Figure 8 (a) shows the structure of the TDMA received frame of the base station.
  • FIG. 8 (b) shows the reception timing of the received signal in the m-th reception slot for the TDMA reception frame in FIG. 8 (a).
  • D shows the case where the optimal timing force is also delayed by D.
  • Figure 8 (c) shows the structure of the TDMA transmission frame of the base station.
  • (d) shows the transmission signal when the transmission timing is uncorrected for the mth transmission slot.
  • (E) shows the transmission signal when the transmission timing can be adjusted optimally. If there is a delay amount D as shown in (b), if the transmission timing can be advanced by the amount of delay D as shown in (e), the base station will receive the mth received signal. Slots can be received at the optimal timing.
  • FIGS. 8 (h) and 8 (i) are diagrams showing the maximum ranges when the detection timing of the downlink synchronization signal is shifted due to the movement of the mobile station in the next frame.
  • E indicates the maximum allowable detection range in the next frame.
  • the mobile station reception tolerance range is adjusted so that when a downlink synchronization signal is detected, its frame timing is corrected based on the detection timing, and the detection timing is positioned at the center of the reception tolerance range.
  • Figure 8 (j) shows the transmission timing after correction of the mth transmission slot. Since there is a limit on the synchronization signal reception allowable range on the mobile station side, the transmission signal is transmitted earlier than the delay amount D by the adjustment amount E.
  • FIG. 8 (k) shows the TDMA reception frame of the base station again! /, But shows the reception mth slot of the frame next to the reception mth slot in FIG. 8 (a).
  • Fig. 8 (1) shows the reception timing of the received signal after the transmission timing correction for the mth slot.
  • E which is smaller than the delay amount D
  • F D-E. Note that the example in FIG. 8 is a case where the distance of the mobile station to the base station changes between FIGS. 8 (a) to (k), and the mobile station moves as if it is separated from the base station power. Of course, if you continue, the amount of delay will be larger than D—E.
  • FIG. 9 is a flowchart showing processing contents of transmission timing control according to the second embodiment of the present invention.
  • the base station 2 receives the synchronization signal from the mobile station 1 (step S200).
  • the synchronization signal reception count P l (step S201), and the synchronization signal reception allowable range is determined based on the timing at which synchronization is established (step S202). As described above, this allowable reception range is set to a range longer than the length of the synchronization signal after synchronization is established.
  • step S203 the count P is incremented by one (step S203). It is determined whether the count P exceeds the parameter n! /! (Step S204). If it does not exceed the parameter n, the synchronization signal is received as it is (step S205). The next synchronization signal detection timing is estimated for both the synchronization establishment start force and the transition force of the detection timing until now (step S206). As a result, it is determined whether or not the next synchronization signal detection timing is within the allowable reception range (step S207). [0038] When the mobile station moves faster and the reception allowable range force detection timing falls off during n sample collections, based on the detection timing estimated in step S206, Advance the transmission timing and adjust it to be within the allowable reception range (step S208). On the other hand, if the reception permissible range power does not deviate, the process returns to step S204, and sampling of the detection timing is continued up to n times.
  • step S209 the process proceeds to step S209, and the past n synchronization signal detection timings are compared with the synchronization signal detection timing when synchronization is established. Force Estimate the next synchronization signal detection timing. Using this estimated detection timing, the transmission timing of the (n + 1) -th base station power is adjusted (step S210). After receiving the (n + 1) th synchronization signal (step S211), transmission is performed at the adjusted transmission timing (step S212), and the (n + 1) th detection timing is used to estimate the next detection timing (step Return to S209).
  • the base station operation when the next transmission timing interferes with the transmission (m-1) slot as a result of adjusting the transmission timing during communication using the transmission and reception mth slots Will be described with reference to the flowchart of FIG.
  • the next transmission timing interferes with the transmission (m-1) slot (S213). It is further determined whether the slot is communicating with another mobile station (S214). If the transmission (m-1) slot is not used, the transmission timing is advanced to the transmission (m-1) slot timing, and communication is continued (S215). At that time, the transmission (m-1) slot is blocked (unusable) so that other mobile stations do not use it (S216). Thereafter, when the communication is completed (S217), the transmission slot (m-1) is unblocked (S218).
  • Embodiment 2 by adjusting the transmission timing of the base station so that the synchronization signal is received within the allowable reception range, the radio signal having a long distance between the base station and the mobile station is obtained. Even in situations where the signal propagation delay is large, the mobile station can perform communication with less misdetection of the synchronization signal without controlling the transmission timing. In particular, even in a mobile communication system such as PHS that was originally designed on the assumption that the cell radius is small, the cell radius can be increased.
  • Embodiments 1 and 2 above even if the propagation timing of the radio signal is long due to the long distance between the base stations and the base station by adjusting either the reception timing or the transmission timing of the base station, the transmission timing in the mobile station
  • the TDMA communication system that can perform communication with less synchronization signal misdetection without performing control of the TDMA has been described
  • Embodiment 3 the reception timing is adjusted and this adjustment can be performed.
  • the radio signal propagation delay is larger by adjusting the transmission timing of the base station.
  • step S110 of FIG. 7 of Embodiment 1 when the handover cannot be performed to other CSs that have slots that can move within the same base station, the transmission timing of the base station By adjusting the frequency, the base station can follow the movement of the mobile station further than in the first embodiment.
  • FIG. 11 is a flowchart showing the processing contents in the transmission / reception timing adjustment of the third embodiment.
  • the processing contents up to step S110 are the same as those in FIG.
  • the base station adjusts the transmission timing of the base station based on the estimation result of the reception timing of the synchronization signal of the mth slot,
  • the adjustment amount is determined (step S112).
  • the adjustment amount is adjusted so that the end of the received signal does not protrude from the guard bit of the mth slot and does not enter the (m + 1) th slot.
  • Embodiment 3 the reception timing of the synchronization signal is controlled, and when the slot adjacent to the communicating slot is in use and handover is not possible, By adjusting the transmission timing of the station, a TDMA communication system that can cope with situations where the propagation delay of radio signals becomes longer is obtained.
  • the cell radius can be increased even in a mobile communication system such as PHS that was originally designed with the assumption that the cell radius was small! /.
  • the transmission timing of the base station is adjusted after the handover failure.
  • the (m + 1) th slot is communicating in step S102. If determined, the transmission timing of the base station in the m-th slot may be adjusted (step S 114). If the delay of the received signal is further increased and the transmission timing cannot be adjusted any further due to deviation from the mobile station reception tolerance (step S115), the (m + 1) Instruct the mobile station that is communicating in the slot to switch to another slot in the same base station (step S107), and if the switch is not successful, further instruct handover (step S110) obviously!
  • the transmission timing of the base station is further adjusted.
  • the transmission timing of the base station is adjusted and the adjustment can no longer be performed.
  • This section describes a TDMA communication system that adjusts the reception timing at each stage and has a larger radio signal propagation delay and can cope with the situation.
  • FIG. 13 is a flowchart showing details of transmission / reception timing adjustment processing according to the fourth embodiment. It is.
  • the transmission timing is adjusted in the same way as in the second embodiment to cope with fluctuations in the signal propagation delay of the mobile station.
  • step S222 other base stations are contacted. If the handover of this is unsuccessful, the reception timing is further adjusted and communication is continued. That is, in step S224, the amount of adjustment of the detection timing of the synchronization signal of the base station in the m-th reception slot is determined by estimating the detection timing power of the last n synchronization signals.
  • step S225 If interference can be avoided by adjusting the reception timing (S225), continue communication and return to step S213 again to check whether the next transmission timing is strong enough to interfere with the transmission (m-1) slot. To do. On the other hand, if interference avoidance is impossible due to adjustment of the reception timing, the communication using the transmission and reception mth slot is terminated.
  • FIG. 14 is a flowchart showing the processing contents in such a case.
  • step S224 the reception timing of the base station in the mth reception slot is adjusted in step S224. If interference can be avoided by adjusting the reception timing (S225), the process returns to step S213 again. On the other hand, if interference cannot be avoided by adjusting the reception timing, the mobile station in communication at the (m-1) transmission slot is instructed to switch to a slot in the same base station. (S219). As a result, when the slot switching is successful (S220), communication is continued using the transmission (m-1) slot from the transmission mth slot as it is. On the other hand, if the switching fails, the mobile station in communication in the transmission (m-1) slot is instructed to perform handover to another base station (S221). If the handover to another base station succeeds (S222), the communication is continued using the transmission lot and the transmission (m-1) slot as it is. If the handover fails, the transmission is performed. Communication using the mth slot is terminated (S223).
  • the reception timing is further adjusted, so that the propagation delay of the radio signal with a long base station-to-mobile station distance is further increased. Even in large situations, the mobile station does not control transmission timing Therefore, it is possible to perform communication with less erroneous detection of the synchronization signal.
  • the reception timing is adjusted after transmission timing adjustment becomes impossible.
  • the reception timing may be adjusted simultaneously with the transmission timing adjustment. With this configuration, the amount of transmission timing that can be adjusted with a single adjustment increases, so that the same effect as described above can be obtained without performing transmission timing control in the mobile station.
  • the TDMA communication system according to the present invention can be applied to a mobile phone or PHS.

Abstract

There are included a receiver that receives an upstream signal from a first mobile station; a sync signal detection timing measuring means that measures a detection timing of an upstream sync signal included in the received upstream signal; and a reception tolerance control means that decides a reception tolerance of the sync signal of the sync signal detecting means, based on the measurement results of the latest detection timing and of a plurality of past detection timings. Thus, even when the distance between the base station and the mobile station increases due to a movement of the mobile station and hence the propagation delay of the radio signals increases, the communication can be performed with less erroneous detection of the sync signal and without any control of transmission timing at the mobile station.

Description

明 細 書  Specification
移動通信システムの基地局  Base station for mobile communication system
技術分野  Technical field
[0001] この発明は、セル半径が大きい TDMA移動通信システムにおいて、基地局と移動 局間の距離で生じる無線信号伝搬遅延が端末の移動によって変化する場合に必要 となる送受信タイミング補正処理に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a transmission / reception timing correction process required when a radio signal propagation delay caused by a distance between a base station and a mobile station changes due to movement of a terminal in a TDMA mobile communication system having a large cell radius. is there.
背景技術  Background art
[0002] 従来の TDMA通信システムにおいては、基地局 移動局間距離で生じる無線信 号伝搬遅延を基地局で補償する場合、例えば、下記特許文献 1のように、基地局側 の受信許容範囲を広げることによって、遠方の端末からの信号を受信できるようにし ていた。この場合、受信許容範囲は各基地局ごとに固定であり、 TDMAスロットごと に可変とするものではな力つた。また、下記特許文献 2のように基地局側受信タイミン グを調整する方式をとるものもあり、基地局 移動局間距離が長くなり遅延量が大き い場合には、隣接 TDM ロットにまで当該スロットの受信タイミングを遅延させるも のもある。このとき、隣接 TDM ロットにまで当該スロットを遅延させるための条件 は、隣接 TDMAスロットが未使用であるカゝ、隣接 TDMAスロットでの通信でも同様に 遅延を発生させ、受信タイミングを遅らせることができると 、うものであった。  [0002] In a conventional TDMA communication system, when a base station compensates for a radio signal propagation delay caused by a distance between base stations and mobile stations, for example, the allowable reception range on the base station side is set as in Patent Document 1 below. By spreading, it was possible to receive signals from distant terminals. In this case, the permissible reception range is fixed for each base station and cannot be varied for each TDMA slot. Also, there is a method that adjusts the reception timing on the base station side as described in Patent Document 2 below, and when the distance between base stations and mobile stations is long and the amount of delay is large, the corresponding slot is extended to the adjacent TDM lot. There are some that delay the reception timing. At this time, the condition for delaying the slot to the adjacent TDM lot is that the adjacent TDMA slot is not used, and that the communication can be delayed in the adjacent TDMA slot and the reception timing can be delayed. And it was a natural thing.
[0003] 特許文献 1の方法によれば、基地局 移動局間で無線信号伝搬遅延が大きい遠方 の端末との通信が可能となるが、全スロットについて一律に受信許容範囲を広げた 分、同期信号を誤検出して通信品質が瞬間的に劣化する確率が高くなる。また、受 信許容範囲が基地局ごとに固定であるため、近傍の端末との通話時も遠方の端末と 同じ受信許容範囲で運用することになるため、上記同期信号の誤検出という点でさら に不利となる。  [0003] According to the method of Patent Document 1, communication with a distant terminal having a large radio signal propagation delay is possible between base stations and mobile stations. However, since the reception allowable range is uniformly expanded for all slots, synchronization is achieved. The probability that the communication quality is instantaneously deteriorated due to erroneous detection of the signal increases. In addition, since the permissible reception range is fixed for each base station, operation is performed within the same permissible reception range as that of a distant terminal during a call with a nearby terminal. Disadvantageous.
[0004] また、特許文献 2の方法によれば、基地局 移動局間距離が長くなり、無線信号伝 搬遅延が大きくなつても通信を継続することが出来る可能性が高くなるが、隣接 TD MAスロットが使用中の場合、当該スロットと同様の受信タイミング遅延を発生させな ければ、通信を «続することが出来ない。 [0005] また、特許文献 3には、 TDMA通信にぉ 、て、基地局が伝搬遅延時間及び過去 所定時間分の伝搬遅延時間の変化量に基づいて次に受信すべきフレームのタイム ァライメント値を決定し、その決定した値を移動局側に送信して移動局が送信タイミン グの調整を行うことが記載されて 、る。 [0004] Further, according to the method of Patent Document 2, the distance between base stations and mobile stations becomes long, and the possibility that communication can be continued even when the radio signal propagation delay becomes large increases. When the MA slot is in use, communication cannot be continued unless the same reception timing delay as that slot is generated. [0005] Further, in Patent Document 3, the time alignment value of the frame to be received next by the base station based on the propagation delay time and the amount of change in the propagation delay time for a predetermined past time is used for TDMA communication. It is described that the mobile station adjusts the transmission timing by transmitting the determined value to the mobile station side.
[0006] 特許文献 1:特開 2002-191068号公報  [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-191068
[0007] 特許文献 2 :特開平 11 340934号公報  [0007] Patent Document 2: Japanese Patent Laid-Open No. 11 340934
[0008] 特許文献 3 :特開 2001— 358638号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-358638
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 無線通信システムでは、セル半径が大きくなり、基地局一端末間の距離が長くなる ほど、無線信号伝搬遅延が大きくなる。この遅延が大きくなると、端末からの上り送信 信号が TDMAで規定されて 、る基地局受信タイミングを逸脱してしま 、、基地局で 受信することが出来なくなる。従って、ある一定以上の距離に端末が移動すると、そ れまでの基地局と通信が継続できなくなり、ハンドオーバー先基地局が見つ力 ない 場合は、通信そのものが切断されてしまうという問題があった。  [0009] In a wireless communication system, the radio signal propagation delay increases as the cell radius increases and the distance between the base station and the terminal increases. When this delay increases, the uplink transmission signal from the terminal is defined by TDMA and deviates from the base station reception timing, and cannot be received by the base station. Therefore, if the terminal moves beyond a certain distance, communication with the previous base station cannot be continued, and if the handover destination base station cannot find it, the communication itself is disconnected. It was.
[0010] 本発明は上記のような問題点を解決するためになされたものであり、移動通信シス テム、特に TDMA通信システムにおいて、基地局一端末間距離による無線信号伝搬 遅延が大きくなつた場合に、端末側で送信タイミング補正を実施することなぐ基地局 一端末間通信を継続させ、トラフィックが小さいエリアにおいてできるだけ小さな送信 出力で大きなエリアをカバーできるシステムを構築することを目的とする。  [0010] The present invention has been made to solve the above-described problems, and in a mobile communication system, particularly a TDMA communication system, when a radio signal propagation delay due to a distance between base stations is large. In addition, the purpose is to construct a system that can continue communication between base stations without performing transmission timing correction on the terminal side and cover a large area with as little transmission output as possible in an area where traffic is small.
課題を解決するための手段  Means for solving the problem
[0011] 本発明に係る基地局は、移動局力 の上り制御信号を受信する受信機と、移動 局からの同期信号の検出タイミングと、基地局が期待する検出タイミングとの時間差 を計算する同期信号検出時間差測定手段と、最新の前記同期信号検出タイミングお よび過去の複数の同期信号検出タイミングの測定結果に基づき前記同期信号検出 手段の受信許容範囲を決定する受信許容範囲制御手段とを備えたものである。 発明の効果 [0012] 本発明に係る基地局は、移動局からの上り制御信号を受信する受信機と、移動局 力 の同期信号の検出タイミングと、基地局が期待する検出タイミングとの時間差を 計算する同期信号検出時間差測定手段と、最新の前記同期信号検出タイミングおよ び過去の複数の同期信号検出タイミングの測定結果に基づき前記同期信号検出手 段の受信許容範囲を決定する受信許容範囲制御手段とを備えたため、基地局 -移 動局間距離が長ぐ無線信号の伝搬遅延が大きい状況でも、移動局において送信タ イミングの制御を行うことなぐ同期信号の誤検出の少ない通信を行うことができる。 図面の簡単な説明 [0011] A base station according to the present invention is a synchronization that calculates a time difference between a receiver that receives an uplink control signal of mobile station power, a detection timing of a synchronization signal from the mobile station, and a detection timing expected by the base station. A signal detection time difference measurement unit; and a reception allowable range control unit that determines a reception allowable range of the synchronization signal detection unit based on the latest measurement result of the synchronization signal detection timing and a plurality of past synchronization signal detection timings. Is. The invention's effect [0012] A base station according to the present invention is a synchronization that calculates a time difference between a receiver that receives an uplink control signal from a mobile station, a detection timing of a synchronization signal of mobile station power, and a detection timing expected by the base station. A signal detection time difference measurement means; and a reception tolerance range control means for determining a reception tolerance range of the synchronization signal detection means based on the latest measurement result of the synchronization signal detection timing and a plurality of past synchronization signal detection timings. Therefore, even when the propagation delay of a radio signal is long and the distance between the base station and the mobile station is long, communication with less false detection of the synchronization signal can be performed without controlling the transmission timing in the mobile station. Brief Description of Drawings
[0013] [図 1]本発明の TDMA通信システムのシステム構成を示す図である。 FIG. 1 is a diagram showing a system configuration of a TDMA communication system according to the present invention.
[図 2]本発明の実施の形態 1にお 、て、移動局との同期確立前の基地局の同期信号 の受信許容範囲を説明する図である。  FIG. 2 is a diagram for explaining a permissible reception range of a synchronization signal of a base station before establishing synchronization with a mobile station in Embodiment 1 of the present invention.
[図 3]本発明の実施の形態 1にお 、て、移動局との同期確立後の基地局の同期信号 の受信許容範囲を説明する図である。  FIG. 3 is a diagram for explaining a permissible range of receiving a synchronization signal of a base station after establishing synchronization with a mobile station in Embodiment 1 of the present invention.
[図 4]本発明の実施の形態 1において、同期確立後に移動局の移動に応じた同期信 号の受信タイミングの変動を説明する図である。  [Fig. 4] Fig. 4 is a diagram for explaining fluctuations in the reception timing of a synchronization signal according to movement of a mobile station after synchronization is established in Embodiment 1 of the present invention.
[図 5]本発明の実施の形態 1の基地局の上り同期信号の受信許容範囲の調整の処 理内容を示すフローチャートである。  FIG. 5 is a flowchart showing the processing contents of adjustment of the allowable reception range of the uplink synchronization signal of the base station according to the first embodiment of the present invention.
[図 6]移動局の移動により信号伝搬遅延が変動し、受信信号が隣接するスロットに干 渉する場合について説明する図である。  FIG. 6 is a diagram for explaining a case where a signal propagation delay fluctuates due to movement of a mobile station, and a received signal interferes with an adjacent slot.
[図 7]本発明の実施の形態 1の通信中に伝搬遅延の変動により受信信号が隣接スロ ットに干渉する場合の処理内容を示すフローチャートである。  FIG. 7 is a flowchart showing processing contents when a received signal interferes with an adjacent slot due to a propagation delay variation during communication according to Embodiment 1 of the present invention.
[図 8]本発明の実施の形態 2の同期確立後の基地局および移動局の同期信号の送 受信タイミングを示す図である。  FIG. 8 is a diagram showing transmission / reception timings of synchronization signals of a base station and a mobile station after synchronization is established according to Embodiment 2 of the present invention.
[図 9]本発明の実施の形態 2の送信タイミング制御の処理内容を示すフローチャート である。  FIG. 9 is a flowchart showing processing contents of transmission timing control according to the second embodiment of the present invention.
[図 10]本発明の実施の形態 2の送信タイミング制御の処理内容を示すフローチャート である。  FIG. 10 is a flowchart showing processing contents of transmission timing control according to the second embodiment of the present invention.
[図 11]本発明の実施の形態 3の送受信タイミング調整の際の処理内容を示すフロー チャートである。 FIG. 11 is a flowchart showing the processing contents when adjusting transmission / reception timing according to the third embodiment of the present invention. It is a chart.
[図 12]本発明の実施の形態 3の送受信タイミング調整の際の他の処理内容を示すフ ローチャートである。  FIG. 12 is a flowchart showing another processing content when adjusting transmission / reception timing according to the third embodiment of the present invention.
[図 13]本発明の実施の形態 4の送受信タイミングの調整処理内容を示すフローチヤ ートである。 FIG. 13 is a flowchart showing details of transmission / reception timing adjustment processing according to the fourth embodiment of the present invention.
[図 14]本発明の実施の形態 4の送受信タイミングの調整処理内容を示すフローチヤ ートである。  FIG. 14 is a flowchart showing details of transmission / reception timing adjustment processing according to the fourth embodiment of the present invention.
符号の説明  Explanation of symbols
[0014] 1 移動局 [0014] 1 Mobile station
2 基地局  2 Base station
3 送受信機  3 Transceiver
4 TDMA制御部  4 TDMA controller
5 同期信号検出部  5 Sync signal detector
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 実施の形態 1.  [0015] Embodiment 1.
図 1は本発明の実施の形態 1にかかる TDMA通信システムの構成を示す図である 。説明の便宜のために移動局 1は 1つしか示していないが、基地局のセル内には複 数の移動局が存在する。ここで、基地局 2は、移動局 1と通信を行う送受信部 3と、無 線信号の送受信タイミングを制御する TDMA制御部 4と、基地局からの上り信号を 検出するための同期信号検出部 5とを有する。 TDMA制御部 4は基地局 2内に具備 する 1系統以上の送受信部 3の制御を行う。 TDMA制御部 4は同期信号検出部 5か らの同期信号検出タイミング報告に基づいて、次の同期信号受信許容範囲を調整す るための調整信号を同期信号検出部 5に送り、また、送受信部 3に対して送信および 受信の切替を行う送受信制御信号を出すタイミングを決定する。それぞれの送受信 部 3はアンテナに接続され、移動局と通信を行う。  FIG. 1 is a diagram showing a configuration of the TDMA communication system according to the first exemplary embodiment of the present invention. For convenience of explanation, only one mobile station 1 is shown, but there are multiple mobile stations in the base station cell. Here, the base station 2 includes a transmission / reception unit 3 that communicates with the mobile station 1, a TDMA control unit 4 that controls radio signal transmission / reception timing, and a synchronization signal detection unit that detects an uplink signal from the base station. And 5. The TDMA control unit 4 controls one or more transmission / reception units 3 provided in the base station 2. Based on the synchronization signal detection timing report from the synchronization signal detection unit 5, the TDMA control unit 4 sends an adjustment signal for adjusting the next synchronization signal reception allowable range to the synchronization signal detection unit 5, and the transmission / reception unit Determine the timing for sending a transmission / reception control signal to switch between transmission and reception for 3. Each transceiver 3 is connected to an antenna and communicates with a mobile station.
[0016] 図 2は、同期確立前の基地局における同期信号受信タイミングの一例を示したもの である。図 2 (a)は TDMA送信フレーム、 (b)は TDMA受信フレーム、 (c)は受信信 号のフォーマット、 (d)は TDMA受信スロット、 (e)は同期確立前における同期信号 の受信許容範囲、 (f)は同期が確立できる限界のタイミングの受信信号を示す図であ る。図 2 (c)に示したように、本発明に係る受信信号は同期信号とそれに続くデータと 力もなる。また、同期信号の前の部分は例えば送受信部 3で復調するためのスタート シンボルもしくはプリアンブル等のビット列が入り、また制御データより後の部分は例 えば誤り検出あるいは訂正のビット等が入ることを想定している。 FIG. 2 shows an example of synchronization signal reception timing at the base station before synchronization is established. Figure 2 (a) is a TDMA transmission frame, (b) is a TDMA reception frame, (c) is a format of the reception signal, (d) is a TDMA reception slot, and (e) is a synchronization signal before synchronization is established. (F) is a diagram showing a reception signal at the limit timing at which synchronization can be established. As shown in FIG. 2 (c), the received signal according to the present invention is also a synchronization signal, followed by data and power. In addition, it is assumed that the part before the synchronization signal contains, for example, a bit string such as a start symbol or preamble for demodulation by the transceiver 3, and the part after the control data contains, for example, an error detection or correction bit. is doing.
ここで、図 2 (c)の Aは信号伝搬遅延の変動を想定しない場合の同期信号の受信許 容範囲、また Bは基地局 移動局間の距離による遅延を最大限考慮した受信許容範 囲である。受信許容範囲 Bは TDMAフレームで規定されて 、るガードビット内に受信 信号の終端が入るようにし、隣接 TDMAスロットには影響がないような最大範囲に広 げている。これにより、遠方の移動局 1からの上り制御信号も受信可能となる。  Here, A in Fig. 2 (c) is the allowable reception range of the synchronization signal when no fluctuation of the signal propagation delay is assumed, and B is the allowable reception range considering the delay due to the distance between the base stations and mobile stations to the maximum. It is. The permissible reception range B is defined by the TDMA frame, and the end of the received signal is placed within the guard bits, and is extended to the maximum range that does not affect the adjacent TDMA slot. As a result, the uplink control signal from the distant mobile station 1 can also be received.
[0017] 次に、図 3は、同期確立後の基地局における同期信号検出タイミングの一例を示し たものである。図 3 (a)は、 TDMA受信信号のフォーマット、図 3 (b)は、この TDMA 受信信号の受信タイミングに対する受信第 mスロット、図 3 (c)は同期確立前のこの受 信第 mスロットの受信許容範囲である。図 3 (c)に示す通り、同期確立前は同期信号 の受信許容範囲はガードビットも使用して受信できる最大範囲に設定されて 、る。続 いて、図 3 (d)は実際の第一回目の TDMA受信信号の受信タイミング、図 3 (e)は、 この受信信号に含まれる同期信号の検出タイミングである。このように実際に第一回 目の受信信号が受信されて場合、その同期信号が検出されると基地局と移動局の同 期が確立される。そして、同期信号の検出タイミングに合わせて、図 3 (f)のように、受 信許容範囲を狭める。このように同期信号の受信許容範囲を狭めることで、同期信号 の誤検出を防止することができる。その際の受信許容範囲は、移動局が移動してタイ ミングがずれることを想定して、同期信号の長さよりも長い範囲で設定される。具体的 には、本発明を適用するシステム、すなわち、想定する移動速度、同期信号ビット数 、データ伝送速度などに依存する。  Next, FIG. 3 shows an example of synchronization signal detection timing in the base station after establishment of synchronization. Fig. 3 (a) shows the format of the TDMA received signal, Fig. 3 (b) shows the mth slot received for the reception timing of this TDMA received signal, and Fig. 3 (c) shows the mth slot received before synchronization is established. It is a reception tolerance range. As shown in Fig. 3 (c), the synchronization signal reception allowable range is set to the maximum range that can be received using the guard bit before synchronization is established. Next, FIG. 3 (d) shows the actual reception timing of the first TDMA reception signal, and FIG. 3 (e) shows the detection timing of the synchronization signal included in this reception signal. Thus, when the first received signal is actually received, synchronization between the base station and the mobile station is established when the synchronization signal is detected. Then, in accordance with the detection timing of the sync signal, the allowable reception range is narrowed as shown in Fig. 3 (f). By narrowing the allowable reception range of the synchronization signal in this way, erroneous detection of the synchronization signal can be prevented. In this case, the allowable reception range is set in a range longer than the length of the synchronization signal, assuming that the mobile station moves and the timing is shifted. Specifically, it depends on a system to which the present invention is applied, that is, an assumed moving speed, the number of synchronization signal bits, a data transmission speed, and the like.
[0018] ここで、通話が継続する際には移動局の移動に伴って、受信信号の遅延時間に変 化が生じるため、その遅延時間に合わせて基地局側で期待する当該スロットの先頭 ビットと最終ビットの位置の調整を行うことを図示したものが図 4である。図 4 (a)は同 期確立後 1回目の受信許容範囲と実際の制御信号の受信フレームと比較する図で ある。また、 (b)、 (c)、 (d)、 (e)はそれぞれ、 1、 2、 3、 n回目の同期信号の検出タイ ミングである。(f)は (n+ 1)回目の同期信号推定検出タイミングであり、(g)はその推 定タイミングに基づいて決定された (n+ 1)回目の受信許容範囲である。また、図 5は その際の動作を説明するフローチャートである。まず、移動局 1からの同期信号を基 地局 2において受信すると、基地局 2と移動局 1との同期が取られ (ステップ SO)、カウ ント P= lとしてカウントが開始される (ステップ Sl)。次いで、ステップ SOにおける同期 信号の検出タイミングから 1回目の同期信号の受信許容範囲が決定される (ステップ S2)。その際の受信許容範囲は上記したとおりである。 [0018] Here, when the call continues, the delay time of the received signal changes with the movement of the mobile station. Therefore, the first bit of the slot expected on the base station side according to the delay time Figure 4 illustrates the adjustment of the final bit position. Figure 4 (a) is a diagram comparing the first allowable reception range after synchronization and the actual control signal reception frame. is there. (B), (c), (d), and (e) are the detection timings of the first, second, third, and nth synchronization signals, respectively. (F) is the (n + 1) th synchronization signal estimation detection timing, and (g) is the (n + 1) th reception tolerance range determined based on the estimation timing. FIG. 5 is a flowchart for explaining the operation at that time. First, when the synchronization signal from mobile station 1 is received at base station 2, base station 2 and mobile station 1 are synchronized (step SO), and counting is started with count P = l (step Sl ). Next, the reception allowable range of the first synchronization signal is determined from the detection timing of the synchronization signal in step SO (step S2). The reception allowable range at that time is as described above.
[0019] 次に、カウントを一つ増やし(P = P+1、ステップ S3)、そのカウントが予め定められ たパラメータ nと比較して大小を判断する (ステップ S4)。カウント Pが nより小さい場合 で、 P回目の上り同期信号を検出すると (ステップ S5)、その検出タイミング力も次回 の同期信号検出タイミングを推定する (ステップ S6)。この次回の同期信号推定位置 が現在の受信許容範囲内にあるカゝ否かを判断する (ステップ S7)。  Next, the count is incremented by 1 (P = P + 1, step S3), and the count is compared with a predetermined parameter n to determine the magnitude (step S4). When the count P is smaller than n and the P-th uplink synchronization signal is detected (step S5), the detection timing force is also estimated for the next synchronization signal detection timing (step S6). It is determined whether or not the next synchronization signal estimated position is within the current reception allowable range (step S7).
[0020] すなわち、移動局 1の移動速度が大きくない場合は、次回の同期信号推定位置が現 在の受信許容範囲に入るはずであり、その場合 (S7 :Yes)は、受信許容範囲はその ままでステップ S3に戻る。一方、移動速度が大きぐ次回の同期信号が現在の受信 許容範囲に入らないと推定される場合 (S7 :No)、ステップ S8で新たに次回同期信 号受信許容範囲を確定して力 ステップ S3に戻る。このように処理することで移動局 に追従できる可能性が高くなる。  [0020] That is, if the moving speed of mobile station 1 is not large, the next synchronization signal estimation position should be within the current reception allowable range. In this case (S7: Yes), the reception allowable range is Return to step S3. On the other hand, if it is estimated that the next synchronization signal whose movement speed is high does not fall within the current allowable reception range (S7: No), the next synchronous signal reception allowable range is newly determined in step S8, and the step S3 Return to. This process increases the possibility of following the mobile station.
[0021] 上記ステップ S3— S8のループを繰り返してサンプル数が充分に集まり、ステップ S 4においてカウント Pが nに達すると、最近の過去 n回分の同期信号検出タイミングか ら (n+1)回目の同期信号検出タイミングを推定し (ステップ S9)、この推定した検出タイ ミングから (n+1)回目の同期信号受信許容範囲を確定する (ステップ S10)。そして、 ( n+1)回目の同期信号を検出すると、ステップ S9に戻って過去 n回分の同期信号検 出タイミングから (n+ 2)回目の同期信号検出タイミングを推定すると!/、うステップを( n+ 3)回目、(n+4)回目…と繰り返し、通信終了まで行う。  [0021] The loop of steps S3—S8 above is repeated to gather a sufficient number of samples. When the count P reaches n in step S4, the (n + 1) th time from the latest n synchronization signal detection timings. The synchronization signal detection timing is estimated (step S9), and the (n + 1) th synchronization signal reception allowable range is determined from the estimated detection timing (step S10). Then, when the (n + 1) th synchronization signal is detected, the process returns to step S9 to estimate the (n + 2) th synchronization signal detection timing from the past n synchronization signal detection timings! Repeat n + 3), (n + 4) ... and so on until communication is completed.
[0022] 上記タイミング推定の方法は、例えば、各 n回分の検出タイミングについて、ある検 出タイミングとその 1回前の検出タイミングとの差分をとり、その差分の平均値をとつて 検出タイミングを推定する。また、上記ステップ S8における推定もそれまでのサンプ ル数に応じて 1回前検出タイミングとの差分を取り、その差分について平均値をとるこ とで基準タイミングとの差分を計算して次回の同期信号受信許容範囲を推定する。 [0022] For the timing estimation method, for example, for each n detection timings, a difference between a certain detection timing and the previous detection timing is taken, and an average value of the differences is taken. Estimate the detection timing. Also, the estimation in step S8 above takes the difference from the previous detection timing according to the number of samples so far, and calculates the difference from the reference timing by taking the average value of the difference, and the next synchronization Estimate signal reception tolerance.
[0023] 予め決定されるサンプル数 nは、本発明を適用するシステムの仕様によって決定さ れるが、同期信号が短いシステムで、受信許容範囲を広げると誤検出の確率が増え てしまうため許容範囲を広げられな 、場合で、移動局の移動速度が速 、ことが想定 される場合には nを比較的小さくして移動局の移動に追従できるようにする。逆に、同 期信号が長ぐ誤検出の確率力 、さいシステムでは、 nを大きくすることで受信許容 範囲を精度良く推定することができる。  [0023] The number of samples n determined in advance is determined by the specifications of the system to which the present invention is applied. However, in a system with a short synchronization signal, if the reception tolerance is widened, the probability of false detection increases, so the tolerance is exceeded. If it is assumed that the moving speed of the mobile station is high, n is relatively small so that the mobile station can follow the movement. On the other hand, in the case of a false detection probability with a long synchronization signal, the allowable reception range can be accurately estimated by increasing n.
[0024] 以上では、受信 TDMAスロット内でガードビットの範囲内において同期信号の受信 許容範囲を狭くして誤検出の可能性を減らしながら、移動局側で送信タイミングの調 整を行うことなく通話を継続することができる方法を示したが、以下では、ガードビット の範囲外にまで検出タイミングが遅延していく場合について説明する。  [0024] With the above, the mobile station does not adjust the transmission timing while reducing the possibility of erroneous detection by narrowing the allowable reception range of the synchronization signal within the guard bit range within the reception TDMA slot. In the following, we explain the case where the detection timing is delayed beyond the guard bit range.
[0025] 図 6は、基地局における上り同期信号の検出タイミングが TDMAスロットのガードビ ットの範囲外に外れていく場合を示している。例えば、基地局 2から移動局 1が遠ざか る方向に移動していくと、基地局 2における移動局 1からの同期信号の検出タイミング が徐々に遅延して規定のガードビットを使いきると、さらに隣接スロットに干渉していつ てしまう。  FIG. 6 shows a case where the detection timing of the uplink synchronization signal in the base station goes out of the guard bit range of the TDMA slot. For example, when mobile station 1 moves away from base station 2, the detection timing of the synchronization signal from mobile station 1 at base station 2 gradually delays and the specified guard bit is used up. When I interfere with the slot.
[0026] 図 7は、上記したガードビットの範囲外に外れていく場合の処理について説明する フローチャートである。第 mスロットで通信中 (ステップ S 100)に、次回の検出タイミン グが隣接する第 (m+ 1)スロットに干渉すると判断された場合 (ステップ S101)、第 (m + 1)スロットが別の移動局との通信で使用されているかをチェックする (ステップ S 10 2)。このチェックにより第 (m+ 1)スロットが使用されていない場合はステップ S103に 進み、次回の検出の際に第 (m+ 1)スロットまで検出タイミング遅延させ、第 mスロット の通信を継続し、他の端末が使用しないように第 (m+ 1)スロットを閉塞 (使用不可) する (ステップ S 104)。そして、第 ロットの通信が終了した場合 (ステップ S 105)、第 (m+ 1)スロットの閉塞も解除して使用可能とする (ステップ S106)。  [0026] FIG. 7 is a flowchart for explaining the processing in the case of going out of the above guard bit range. During communication in the m-th slot (step S100), if it is determined that the next detection timing interferes with the adjacent (m + 1) slot (step S101), the (m + 1) slot moves to another position. Check whether it is used for communication with the station (step S 10 2). If the (m + 1) slot is not used by this check, the process proceeds to step S103, the detection timing is delayed to the (m + 1) slot at the next detection, the communication of the mth slot is continued, The (m + 1) th slot is blocked (unusable) so that the terminal does not use it (step S104). When the communication of the first lot is completed (step S105), the block of the (m + 1) th slot is also released and usable (step S106).
なお、ステップ S103で検出タイミングを遅延させて第 (m+ 1)スロットを使用する場合 も、上記したように同期信号の受信許容範囲は、同期信号の長さに加えシステム仕 様で決定されるビット数の余裕を持たせるのみで可能な限り狭くする。このように次回 の検出タイミングを推定しながら通信を継続することで、同期信号の誤検出を少なく する。 When using the (m + 1) th slot with the detection timing delayed in step S103 However, as described above, the allowable reception range of the synchronization signal is made as narrow as possible only by providing a margin for the number of bits determined by the system specifications in addition to the length of the synchronization signal. In this way, by continuing communication while estimating the next detection timing, false detection of synchronization signals is reduced.
[0027] 一方、ステップ S102のチェックにおいて、第(m+ 1)スロットが使用されていると判 断された場合は、第 (m+ 1)スロットで通信中の移動局に対して、同一基地局内でス ロットの切替を指示する (ステップ S 107)。当該基地局内のスロットで空きがあり切替が 成功した場合 (ステップ S 108: Yes)、空 ヽた第 (m+ 1)スロットまで受信タイミングを 遅延させてその後の通信を行う (ステップ S 103)。一方、空きがなく切替ができなかつ た場合は、第 (m+ 1)スロットで通信中の移動局に対し、他の基地局へのハンドォー バーを指示する(ステップ S 109)。  [0027] On the other hand, if it is determined in step S102 that the (m + 1) slot is used, the mobile station that is communicating in the (m + 1) slot is within the same base station. The slot switching is instructed (step S107). If the slot in the base station is empty and switching is successful (step S108: Yes), the reception timing is delayed to the empty (m + 1) slot and the subsequent communication is performed (step S103). On the other hand, if switching is not possible because there is no free space, the mobile station in communication in the (m + 1) th slot is instructed to perform handover to another base station (step S109).
[0028] このハンドオーバー指示により他の基地局へのハンドオーバーが成功した場合 (ス テツプ S110 :Yes)、ステップ S103に進み、そのまま第(m+ 1)スロットにまで検出タ イミングを遅延して通信を継続する。一方、適当な基地局がない、もしくは、他の基地 局へのハンドオーバーが失敗した場合は、第 mスロットの通信は同期はずれ状態とな つて終了される(ステップ S111)。  [0028] If handover to another base station is successful due to this handover instruction (step S110: Yes), the process proceeds to step S103, and communication is performed by delaying the detection timing to the (m + 1) slot. Continue. On the other hand, when there is no suitable base station or when handover to another base station fails, the communication in the m-th slot is terminated in an out-of-synchronization state (step S111).
なお、以上の説明では、伝搬遅延が徐々に長くなる場合について説明したが、当 然のことながら逆に伝搬遅延が徐々に短くなり、第 (m— 1)スロットに干渉する場合も 同様の処理により対応できる。  In the above description, the case where the propagation delay is gradually increased has been described. However, it is natural that the same processing is performed when the propagation delay gradually decreases and the interference with the (m-1) th slot occurs. It can respond by.
[0029] 以上のように、同期確立後の同期信号受信許容範囲を制限し、また、受信許容範 囲を移動局の移動に応じて順次シフトし、さらに隣接スロットも必要に応じて使用する ことで、基地局 移動局間距離が長ぐ無線信号の伝搬遅延が大きい状況でも、移 動局において送信タイミングの制御を行うことなぐ同期信号の誤検出の少ない通信 を行うことができる。特に、 PHSなど、本来セル半径が小さいことを前提としてシステ ム設計された移動通信システムにお 、ても、セル半径を大きくすることができる。  [0029] As described above, the synchronization signal reception allowable range after establishment of synchronization is limited, the reception allowable range is sequentially shifted according to the movement of the mobile station, and adjacent slots are also used as necessary. Thus, even in a situation where the propagation delay of the radio signal is long due to the long distance between the base station and the mobile station, it is possible to perform communication with less misdetection of the synchronization signal without performing transmission timing control in the mobile station. In particular, even in a mobile communication system such as PHS that was originally designed on the assumption that the cell radius is small, the cell radius can be increased.
[0030] 実施の形態 2.  [0030] Embodiment 2.
上記実施の形態 1では基地局の受信タイミング (受信信号の先頭ビットと最終ビット の位置)を制御することで無線信号伝搬遅延に対応していたが、本実施の形態 2で は基地局力もの送信タイミングを制御することで、移動局にお!、て送信タイミングの制 御を行うことなぐ同期信号の誤検出を少なくして通信を行うことができる TDMA通信 システムについて説明する。 In Embodiment 1 above, radio signal propagation delay was supported by controlling the reception timing of the base station (the position of the first bit and the last bit of the received signal). Describes a TDMA communication system that enables communication by controlling the transmission timing of the base station, thereby reducing the number of false detections of synchronization signals that are not transmitted to the mobile station! .
[0031] 本実施の形態 2は同期確立前には受信許容範囲を最大限にとり、同期確立後は同 期確立時に受信した受信タイミングに基づいて同期信号の長さより前後にわずかに 長い範囲を受信許容範囲と定め、 n回同期信号を受信して検出タイミング力 次回の 同期信号の検出タイミングを推定する点までは上記実施の形態 1と同様である。本実 施の形態 2ではこの推定した受信タイミングに基づ 、て、基地局の送信タイミングを 調整する点に特徴がある。  [0031] In Embodiment 2, the maximum allowable reception range is established before synchronization is established, and after synchronization is established, a range slightly longer than the length of the synchronization signal is received based on the reception timing received at the time of establishment of synchronization. This is the same as in the first embodiment up to the point where the allowable range is determined, the detection timing force is estimated n times and the detection timing of the next synchronization signal is estimated. The second embodiment is characterized in that the transmission timing of the base station is adjusted based on the estimated reception timing.
[0032] 本実施の形態 2のシステム構成図は実施の形態 1の図 1と同様である。  The system configuration diagram of the second embodiment is the same as that of FIG. 1 of the first embodiment.
ここで、基地局力 移動局に送信し、当該移動局力 の同期信号が返されて基地局 において受信される場合、その間の時間差、即ち遅延時間というのは基地局と移動 局間の距離と移動局内の内部処理に基づいて決定される。そのうち、電波を受信し た移動局内の内部処理を一定とすると、結局は距離に基づいて遅延時間に変化が 現れる。そのため、移動局からの信号を基地局で受信するタイミングは、その一つ前 の基地局の送信タイミングを調整することで調整可能である。  Here, when a base station power is transmitted to a mobile station and a synchronization signal of the mobile station power is returned and received at the base station, the time difference between them, that is, the delay time is the distance between the base station and the mobile station. It is determined based on internal processing in the mobile station. If the internal processing in the mobile station that received the radio wave is constant, the delay time will eventually change based on the distance. Therefore, the timing at which the signal from the mobile station is received by the base station can be adjusted by adjusting the transmission timing of the previous base station.
[0033] 図 8は本発明の実施の形態 2の送受信タイミングを示す図である。図 8 (a)は基地局 の TDMA受信フレームの構成を示す図である。図 8 (b)は図 8 (a)の TDMA受信フ レームに対する受信第 mスロットの受信信号の受信タイミングを示して 、る。 Dは最適 なタイミング力も Dだけ遅延して 、る場合を示して 、る。図 8 (c)は基地局の TDMA 送信フレームの構成を示す図である。 (d)は送信第 mスロットに対して送信タイミング が未補正の場合の送信信号である。また、(e)は送信タイミングを最適に調整できた 場合の送信信号である。 (b)のように遅延量 Dが存在する場合に、 (e)のように遅延 量 Dの分だけ送信タイミングを早めて送信を行えることができれば、次に基地局が受 信する受信第 mスロットは最適なタイミングで受信が行える。  FIG. 8 is a diagram showing transmission / reception timings according to the second embodiment of the present invention. Figure 8 (a) shows the structure of the TDMA received frame of the base station. FIG. 8 (b) shows the reception timing of the received signal in the m-th reception slot for the TDMA reception frame in FIG. 8 (a). D shows the case where the optimal timing force is also delayed by D. Figure 8 (c) shows the structure of the TDMA transmission frame of the base station. (d) shows the transmission signal when the transmission timing is uncorrected for the mth transmission slot. (E) shows the transmission signal when the transmission timing can be adjusted optimally. If there is a delay amount D as shown in (b), if the transmission timing can be advanced by the amount of delay D as shown in (e), the base station will receive the mth received signal. Slots can be received at the optimal timing.
[0034] しかし、実際には移動局における基地局からの下り同期信号の受信許容範囲内で送 信タイミングの調整を行わな 、と移動局にぉ 、て下り同期信号を受信できなくなるた め、移動局が追従できる最大値範囲内で送信タイミングの調整を行う。図 8 (f)は移 動局の下り同期信号の受信許容範囲である。図 8 (g)は今回の同期信号検出位置、 即ち、基地局の送信第 mスロットを送信信号が移動局で受信された場合の同期信号 検出位置である。図 8 (h)および (i)はそれぞれ次フレームにおいて移動局の移動に より下り同期信号の検出タイミングがずれる場合の最大範囲を示す図である。図中 E は次フレームにおける最大の検出許容範囲を示している。移動局の受信許容範囲 は、下り同期信号を検出すると、その検出タイミングを基準に自身のフレームタイミン グを修正して、その検出タイミングが受信許容範囲の中央に位置するように調整する ものである。図 8 (j)は送信第 mスロットの補正後の送信タイミングである。移動局側の 同期信号受信許容範囲の制限があるため、遅延量 Dに対して調整量 Eだけ送信タイ ミングを早めて送信信号を送信する。 However, in practice, the mobile station cannot receive the downlink synchronization signal unless the transmission timing is adjusted within the allowable reception range of the downlink synchronization signal from the base station in the mobile station. The transmission timing is adjusted within the maximum value range that the mobile station can follow. Figure 8 (f) shows the transition. This is the allowable reception range of the downlink synchronization signal of the mobile station. Fig. 8 (g) shows the synchronization signal detection position this time, that is, the synchronization signal detection position when the transmission signal is received by the mobile station in the mth slot of the base station. FIGS. 8 (h) and 8 (i) are diagrams showing the maximum ranges when the detection timing of the downlink synchronization signal is shifted due to the movement of the mobile station in the next frame. In the figure, E indicates the maximum allowable detection range in the next frame. The mobile station reception tolerance range is adjusted so that when a downlink synchronization signal is detected, its frame timing is corrected based on the detection timing, and the detection timing is positioned at the center of the reception tolerance range. . Figure 8 (j) shows the transmission timing after correction of the mth transmission slot. Since there is a limit on the synchronization signal reception allowable range on the mobile station side, the transmission signal is transmitted earlier than the delay amount D by the adjustment amount E.
[0035] 図 8 (k)は再び基地局の TDMA受信フレームを示して!/、るが、上記図 8 (a)の受信 第 mスロットの次フレームの受信第 mスロットを示している。図 8 (1)はその受信第 mス ロットに対する送信タイミング補正後の受信信号の受信タイミングを示して 、る。上記 の通り、遅延量 Dに対して、調整量はそれよりも小さい Eであったため、 F = D— Eの分 だけ最適なタイミング力もまだ遅延している。なお、図 8の例は、図 8 (a)から (k)まで の間に基地局に対する移動局の距離が変わらな力つた場合であり、移動局が基地局 力 離れているように移動しつづけた場合は、当然ながら遅延量は D— Eよりも大きく なる。 FIG. 8 (k) shows the TDMA reception frame of the base station again! /, But shows the reception mth slot of the frame next to the reception mth slot in FIG. 8 (a). Fig. 8 (1) shows the reception timing of the received signal after the transmission timing correction for the mth slot. As described above, since the adjustment amount is E, which is smaller than the delay amount D, the optimal timing force is still delayed by F = D-E. Note that the example in FIG. 8 is a case where the distance of the mobile station to the base station changes between FIGS. 8 (a) to (k), and the mobile station moves as if it is separated from the base station power. Of course, if you continue, the amount of delay will be larger than D—E.
[0036] 図 9は本発明の実施の形態 2の送信タイミング制御の処理内容を示すフローチヤ一 トである。まず、移動局 1からの同期信号を基地局 2において受信する (ステップ S20 0)。同期信号の受信カウント P= lとして (ステップ S201)、同期が確立されたタイミン グに基づき同期信号の受信許容範囲を確定する (ステップ S202)。この受信許容範 囲は上記したように同期確立後は同期信号の長さより前後に長い範囲を設定する。  FIG. 9 is a flowchart showing processing contents of transmission timing control according to the second embodiment of the present invention. First, the base station 2 receives the synchronization signal from the mobile station 1 (step S200). The synchronization signal reception count P = l (step S201), and the synchronization signal reception allowable range is determined based on the timing at which synchronization is established (step S202). As described above, this allowable reception range is set to a range longer than the length of the synchronization signal after synchronization is established.
[0037] 次に、カウント Pを一つ増やす (ステップ S203)。カウント Pがパラメータ nを超えて!/ヽ る力否かを判定し (ステップ S 204)、超えていない場合はそのまま同期信号の受信を 行い (ステップ S 205)。同期確立開始力も現在までの検出タイミングの推移力も次回 の同期信号の検出タイミングを推定する (ステップ S206)。その結果、次回の同期信 号の検出タイミングが受信許容範囲に入るか否かを判定する (ステップ S 207)。 [0038] 移動局の移動速度が速ぐ n回のサンプル収集の間に受信許容範囲力 検出タイミ ングが外れてしまうような場合には、ステップ S206で推定した検出タイミングに基づ いて基地局の送信タイミングを早め、受信許容範囲に入るように調整する (ステップ S 208)。一方、受信許容範囲力も逸脱しない場合はステップ S204に戻って、 n回まで 検出タイミングのサンプル収集を継続する。 [0037] Next, the count P is incremented by one (step S203). It is determined whether the count P exceeds the parameter n! /! (Step S204). If it does not exceed the parameter n, the synchronization signal is received as it is (step S205). The next synchronization signal detection timing is estimated for both the synchronization establishment start force and the transition force of the detection timing until now (step S206). As a result, it is determined whether or not the next synchronization signal detection timing is within the allowable reception range (step S207). [0038] When the mobile station moves faster and the reception allowable range force detection timing falls off during n sample collections, based on the detection timing estimated in step S206, Advance the transmission timing and adjust it to be within the allowable reception range (step S208). On the other hand, if the reception permissible range power does not deviate, the process returns to step S204, and sampling of the detection timing is continued up to n times.
[0039] n回のサンプル収集が終わり、ステップ S204においてカウント P=nとなった場合は 、ステップ S209に進み、過去 n回分の同期信号検出タイミングを同期確立時の同期 信号の検出タイミングとの比較力 次回の同期信号の検出タイミングを推定する。こ の推定した検出タイミングを用いて (n+ 1)回目の基地局力もの送信タイミングを調整 する (ステップ S210)。 (n+ 1)回目の同期信号を受信した後 (ステップ S211)、調整 した送信タイミングにて送信を行い (ステップ S212)、 (n+ 1)回目の検出タイミングは 次回の検出タイミングの推定に用いる (ステップ S 209に戻る)。  [0039] When n times of sample collection are completed and the count P = n in step S204, the process proceeds to step S209, and the past n synchronization signal detection timings are compared with the synchronization signal detection timing when synchronization is established. Force Estimate the next synchronization signal detection timing. Using this estimated detection timing, the transmission timing of the (n + 1) -th base station power is adjusted (step S210). After receiving the (n + 1) th synchronization signal (step S211), transmission is performed at the adjusted transmission timing (step S212), and the (n + 1) th detection timing is used to estimate the next detection timing (step Return to S209).
[0040] さらに、送信および受信第 mスロットを用いて通信中に、送信タイミングによる調整 を行っていった結果、次回送信タイミングが送信第 (m— 1)スロットに干渉する場合の 基地局の動作について図 10のフローチャートを用いて説明する。送信第 ロットを 用いて通信中に、次回送信タイミングが送信第 (m— 1)スロットに干渉するかの判定を 行い(S213)、干渉すると判定された場合には、送信第 (m— 1)スロットが他の移動局 により通信中かをさらに判定する(S214)。送信第 (m— 1)スロットが使用されていな い場合、送信第 (m-1)スロットタイミングまで送信タイミングを早め、通信を継続する( S215)。その際、送信第 (m— 1)スロットを他の移動局が使用しないように閉塞 (使用 不可)とする(S216)。その後、当該通信が終了した場合は(S217)、送信第 (m— 1) スロットの閉塞を解除する(S218)。  [0040] Furthermore, the base station operation when the next transmission timing interferes with the transmission (m-1) slot as a result of adjusting the transmission timing during communication using the transmission and reception mth slots Will be described with reference to the flowchart of FIG. During communication using the first transmission lot, it is determined whether the next transmission timing interferes with the transmission (m-1) slot (S213). It is further determined whether the slot is communicating with another mobile station (S214). If the transmission (m-1) slot is not used, the transmission timing is advanced to the transmission (m-1) slot timing, and communication is continued (S215). At that time, the transmission (m-1) slot is blocked (unusable) so that other mobile stations do not use it (S216). Thereafter, when the communication is completed (S217), the transmission slot (m-1) is unblocked (S218).
[0041] 一方、送信第 (m— 1)スロットが使用中の場合、送信第 (m— 1)スロットで通信中の移 動局に対して、同一基地局内の別のスロットを使用するように切替指示を出す (S21 9)。この切替が成功した場合 (S220)、そのまま第 mスロットから第 (m— 1)スロットま で使用して通信を継続し (S215— S218)、切替が成功しな力つた場合には、送信第 (m— 1)スロットで通信中の移動局に対し、さらに他の基地局へハンドオーバを指示 する(S221)。 [0042] ハンドオーバが成功した場合は(S222)、そのまま送信第 (m— 1)スロットを使用し て通信を継続し (S215— S218)、ハンドオーバが成功しな力つた場合は、当該送信 第 mスロットの通信を終了する(S223)。 [0041] On the other hand, when the transmission (m-1) slot is in use, a different slot in the same base station is used for the mobile station communicating in the transmission (m-1) slot. A switching instruction is issued (S21 9). If this switching is successful (S220), communication is continued using the mth slot to the (m-1) slot as it is (S215-S218). (m-1) Instructs the mobile station in communication in the slot to perform handover to another base station (S221). [0042] When the handover is successful (S222), communication is continued using the transmission (m-1) slot as it is (S215-S218). The slot communication is terminated (S223).
[0043] 以上のように、本実施の形態 2では、受信許容範囲内に同期信号が受信されるよう に基地局の送信タイミングを調整することで、基地局 移動局間距離が長ぐ無線信 号の伝搬遅延が大き 、状況でも、移動局にぉ 、て送信タイミングの制御を行うことな ぐ同期信号の誤検出の少ない通信を行うことができる。特に、 PHSなど、本来セル 半径が小さ ヽことを前提としてシステム設計された移動通信システムにお 、ても、セ ル半径を大きくすることができる。  [0043] As described above, in Embodiment 2, by adjusting the transmission timing of the base station so that the synchronization signal is received within the allowable reception range, the radio signal having a long distance between the base station and the mobile station is obtained. Even in situations where the signal propagation delay is large, the mobile station can perform communication with less misdetection of the synchronization signal without controlling the transmission timing. In particular, even in a mobile communication system such as PHS that was originally designed on the assumption that the cell radius is small, the cell radius can be increased.
[0044] 実施の形態 3.  [0044] Embodiment 3.
上記実施の形態 1および 2では、受信タイミングあるいは基地局の送信タイミングの いずれか一方を調整することで基地局 移動局間距離が長ぐ無線信号の伝搬遅延 が大きい状況でも、移動局において送信タイミングの制御を行うことなぐ同期信号の 誤検出の少な!/、通信を行うことができる TDMA通信システムにつ ヽて説明したが、 本実施の形態 3では、受信タイミングを調整し、この調整が出来なくなった段階で、さ らに基地局の送信タイミングを調整することで、より無線信号の伝搬遅延が大きい状 況でも対応可能な TDMA通信システムについて説明する。  In Embodiments 1 and 2 above, even if the propagation timing of the radio signal is long due to the long distance between the base stations and the base station by adjusting either the reception timing or the transmission timing of the base station, the transmission timing in the mobile station Although the TDMA communication system that can perform communication with less synchronization signal misdetection without performing control of the TDMA has been described, in Embodiment 3, the reception timing is adjusted and this adjustment can be performed. At this stage, we will explain a TDMA communication system that can cope with situations where the radio signal propagation delay is larger by adjusting the transmission timing of the base station.
[0045] 本実施の形態 3では、実施の形態 1の図 7のステップ S110で、同一基地局内に移 動できるスロットがなぐ他の CSにもハンドオーバーができない場合に、基地局の送 信タイミングを調整することで、上記実施の形態 1よりもさらに移動局の移動に追従で きる基地局につ 、てである。  [0045] In Embodiment 3, in step S110 of FIG. 7 of Embodiment 1, when the handover cannot be performed to other CSs that have slots that can move within the same base station, the transmission timing of the base station By adjusting the frequency, the base station can follow the movement of the mobile station further than in the first embodiment.
[0046] 図 11は本実施の形態 3の送受信タイミング調整の際の処理内容を示すフローチヤ ートである。図 11においてステップ S110までの処理内容は、上記実施の形態 1の図 5と同様なので省略する。ステップ S 110で他の基地局へのハンドオーバーが成功し な力つた場合、基地局は第 mスロットの同期信号の受信タイミングの推定結果に基づ き基地局の送信タイミングを調整することとし、その調整量を決定する (ステップ S112 )。調整量は、受信信号の終端が第 mスロットのガードビットからはみ出して第 (m+ 1 )スロットにかからないような量に調整する。 [0047] 以上のように、本実施の形態 3では、同期信号の受信タイミングを制御し、また、通 信中のスロットと隣接するスロットが使用中で、かつハンドオーバーができない場合に は、基地局の送信タイミングを調整することで、無線信号の伝搬遅延がより長くなるよ うな状況にも対応可能な TDMA通信システムを得る。特に、 PHSなど、本来セル半 径が小さ!/、ことを前提としてシステム設計された移動通信システムにお 、ても、セル 半径を大きくすることができる。 FIG. 11 is a flowchart showing the processing contents in the transmission / reception timing adjustment of the third embodiment. In FIG. 11, the processing contents up to step S110 are the same as those in FIG. If handover to another base station is not successful in step S110, the base station adjusts the transmission timing of the base station based on the estimation result of the reception timing of the synchronization signal of the mth slot, The adjustment amount is determined (step S112). The adjustment amount is adjusted so that the end of the received signal does not protrude from the guard bit of the mth slot and does not enter the (m + 1) th slot. [0047] As described above, in Embodiment 3, the reception timing of the synchronization signal is controlled, and when the slot adjacent to the communicating slot is in use and handover is not possible, By adjusting the transmission timing of the station, a TDMA communication system that can cope with situations where the propagation delay of radio signals becomes longer is obtained. In particular, the cell radius can be increased even in a mobile communication system such as PHS that was originally designed with the assumption that the cell radius was small! /.
[0048] なお、上記では、ハンドオーバー失敗後に基地局の送信タイミングを調整することと したが、さらに別の例として、図 12に示すようにステップ S102で第 (m+ 1)スロットが 通信中と判断された場合に、第 mスロットの基地局の送信タイミングを調整することと しても良い (ステップ S 114)。受信信号の遅延がさらに大きくなり、移動局の受信許容 範囲を逸脱するなどでこれ以上、送信タイミングを調整することが不可能な場合は (ス テツプ S115)、第 mスロットと隣接する第 (m+ 1)スロットで通信中の移動局に対して 同一基地局内の別スロットに切替を指示し (ステップ S107)、切替に成功しな力つた 場合に、さらにハンドオーバーを指示する (ステップ S 110)構成としてもよ!、。  [0048] In the above, the transmission timing of the base station is adjusted after the handover failure. As yet another example, as shown in FIG. 12, the (m + 1) th slot is communicating in step S102. If determined, the transmission timing of the base station in the m-th slot may be adjusted (step S 114). If the delay of the received signal is further increased and the transmission timing cannot be adjusted any further due to deviation from the mobile station reception tolerance (step S115), the (m + 1) Instruct the mobile station that is communicating in the slot to switch to another slot in the same base station (step S107), and if the switch is not successful, further instruct handover (step S110) Anyway!
[0049] 第(m+ 1)スロット使用中の移動局のスロットの切替が成功、あるいは他の基地局 へのハンドオーバーが成功した場合に、第 (m+ 1)スロットタイミングまで受信タイミン グを遅延させて第 mスロットの通信を継続する点については上記実施の形態 1の図 5 のステップ S 103— S 106までと同様である。  [0049] When the switching of the slot of the mobile station in use of the (m + 1) slot is successful, or when the handover to another base station is successful, the reception timing is delayed until the (m + 1) slot timing. The point of continuing communication in the mth slot is the same as steps S103 to S106 in FIG. 5 of the first embodiment.
また、上記ではいずれも遅延時間が長くなり第 mスロットの通信が第 (m+ 1)スロット の通信に干渉する場合について説明したが、移動局が近づいてくるような場合、第 m スロットの通信が第 (m— 1)スロットに干渉するような場合も、受信タイミングを早め、あ るいは送信タイミングを遅くすることで調整が可能である。  Also, in the above description, the case where the delay time is long and the communication in the mth slot interferes with the communication in the (m + 1) th slot has been described, but when the mobile station approaches, the communication in the mth slot is not performed. Even in the case of interference with the (m-1) th slot, adjustment is possible by increasing the reception timing or delaying the transmission timing.
[0050] 実施の形態 4.  [0050] Embodiment 4.
上記実施の形態 3では、受信タイミングを調整後、さらに基地局の送信タイミングを 調整するものであつたが、本実施の形態 4では、逆に基地局の送信タイミングを調整 し、調整できなくなった段階で、受信タイミングを調整することで、より無線信号の伝 搬遅延が大き 、状況でも対応可能な TDMA通信システムにつ ヽて説明する。  In the third embodiment, after adjusting the reception timing, the transmission timing of the base station is further adjusted. However, in the fourth embodiment, the transmission timing of the base station is adjusted and the adjustment can no longer be performed. This section describes a TDMA communication system that adjusts the reception timing at each stage and has a larger radio signal propagation delay and can cope with the situation.
[0051] 図 13は、本実施の形態 4の送受信タイミングの調整処理内容を示すフローチャート である。本実施の形態 4では、図 9に示したように実施の形態 2と同様に送信タイミン グを調整して移動局の信号伝搬遅延の変動に対応するが、ステップ S222で他の基 地局へのハンドオーバが成功しな力つた場合に、さらに受信タイミングを調整して通 信を継続する。すなわち、ステップ S224では受信第 mスロットの基地局の同期信号 の検出タイミングの調整量を最近の過去 n回分の同期信号の検出タイミング力 推測 し、決定する。そして、受信タイミング調整により干渉の回避が可能な場合 (S225)、 通信を継続して再びステップ S213に戻り、次回送信タイミングが送信第 (m— 1)スロ ットに干渉する力否かを確認する。一方、受信タイミングの調整により干渉回避が不 可能な場合は、当該送信および受信第 mスロットを使用した通信を終了する。 FIG. 13 is a flowchart showing details of transmission / reception timing adjustment processing according to the fourth embodiment. It is. In the fourth embodiment, as shown in FIG. 9, the transmission timing is adjusted in the same way as in the second embodiment to cope with fluctuations in the signal propagation delay of the mobile station. However, in step S222, other base stations are contacted. If the handover of this is unsuccessful, the reception timing is further adjusted and communication is continued. That is, in step S224, the amount of adjustment of the detection timing of the synchronization signal of the base station in the m-th reception slot is determined by estimating the detection timing power of the last n synchronization signals. If interference can be avoided by adjusting the reception timing (S225), continue communication and return to step S213 again to check whether the next transmission timing is strong enough to interfere with the transmission (m-1) slot. To do. On the other hand, if interference avoidance is impossible due to adjustment of the reception timing, the communication using the transmission and reception mth slot is terminated.
[0052] その他の例として、次回送信タイミングが第 (m— 1)スロットに干渉する場合であって、 送信第(m— 1)スロットが通信中である場合に、同一基地局内の他のスロットへの切 替を行うのではなぐ受信タイミングを調整することとしてもよい。図 14は、そのような 場合の処理内容を示すフローチャートである。 [0052] As another example, when the next transmission timing interferes with the (m-1) slot and the transmission (m-1) slot is communicating, another slot in the same base station is used. It is also possible to adjust the reception timing rather than switching to. FIG. 14 is a flowchart showing the processing contents in such a case.
ステップ S214で送信第 (m— 1)スロットが通信中である場合に、ステップ S224で受 信第 mスロットの基地局の受信タイミングの調整を行う。この受信タイミングの調整に より干渉の回避が可能な場合 (S225)、再びステップ S213に戻る。一方、受信タイミ ングの調整により干渉の回避が不可能となった場合には、送信第 (m— 1)スロットにて 通信中の移動局に対し、同一基地局内のスロットに切り替えるよう指示を出す (S219 )。その結果、スロット切替が成功した場合には(S220)、そのまま送信第 mスロットか ら送信第 (m— 1)スロットを使用して通信を継続する。一方、切替が失敗した場合には 、さらに送信第 (m— 1)スロットで通信中の移動局に対し、他の基地局へのハンドォー バを指示する(S221)。他の基地局へのハンドオーバが成功すれば(S222)、その まま通信を送信第 ロットおよび送信第 (m-1)スロットを使用して通信を継続し、 ハンドオーバが失敗した場合には、当該送信第 mスロットを使用した通信を終了する (S223)。  If the (m−1) th transmission slot is communicating in step S214, the reception timing of the base station in the mth reception slot is adjusted in step S224. If interference can be avoided by adjusting the reception timing (S225), the process returns to step S213 again. On the other hand, if interference cannot be avoided by adjusting the reception timing, the mobile station in communication at the (m-1) transmission slot is instructed to switch to a slot in the same base station. (S219). As a result, when the slot switching is successful (S220), communication is continued using the transmission (m-1) slot from the transmission mth slot as it is. On the other hand, if the switching fails, the mobile station in communication in the transmission (m-1) slot is instructed to perform handover to another base station (S221). If the handover to another base station succeeds (S222), the communication is continued using the transmission lot and the transmission (m-1) slot as it is. If the handover fails, the transmission is performed. Communication using the mth slot is terminated (S223).
[0053] 以上のように、本実施の形態 4では、送信タイミング調整が出来なくなった場合に、 さらに受信タイミングを調整することで、基地局 移動局間距離が長ぐ無線信号の 伝搬遅延がより大きい状況でも、移動局において送信タイミングの制御を行うことなく 、同期信号の誤検出の少ない通信を行うことができる。 As described above, in the fourth embodiment, when the transmission timing cannot be adjusted, the reception timing is further adjusted, so that the propagation delay of the radio signal with a long base station-to-mobile station distance is further increased. Even in large situations, the mobile station does not control transmission timing Therefore, it is possible to perform communication with less erroneous detection of the synchronization signal.
[0054] なお、上記では送信タイミング調整が出来なくなった後で、受信タイミングを調整す る構成としたが、送信タイミング調整と同時に受信タイミングを調整するような構成とし てもよい。このような構成とすることで 1回の調整で調整できる送信タイミング量が増え るため、移動局において送信タイミングの制御を行うことなぐ上記と同等の効果を得 ることがでさる。  [0054] In the above description, the reception timing is adjusted after transmission timing adjustment becomes impossible. However, the reception timing may be adjusted simultaneously with the transmission timing adjustment. With this configuration, the amount of transmission timing that can be adjusted with a single adjustment increases, so that the same effect as described above can be obtained without performing transmission timing control in the mobile station.
産業上の利用可能性  Industrial applicability
[0055] 本発明に係る TDMA通信システムは、携帯電話あるいは PHSなどに適用できる。 [0055] The TDMA communication system according to the present invention can be applied to a mobile phone or PHS.

Claims

請求の範囲 The scope of the claims
[1] 第一の移動局からの上り信号を受信する受信機と、  [1] a receiver that receives an upstream signal from the first mobile station;
受信した上り信号に含まれる上り同期信号の検出タイミングを測定する同期信号検 出タイミング測定手段と、  Synchronization signal detection timing measuring means for measuring the detection timing of the uplink synchronization signal included in the received uplink signal;
最新の前記検出タイミングおよび過去の複数の前記検出タイミングの測定結果に基 づき前記同期信号検出手段の前記同期信号の受信許容範囲を決定する受信許容 範囲制御手段とを備えたことを特徴とする移動通信システムの基地局。  And a reception allowable range control means for determining a reception allowable range of the synchronization signal of the synchronization signal detection means based on the latest detection timing and a plurality of past detection timing measurement results. A communication system base station.
[2] 前記受信許容範囲制御手段が、前記基地局と前記第一の移動局との同期が確立さ れる前は、前記受信許容範囲は 1つの受信スロットにおいて使用できる最大範囲で 設定し、前記同期が確立された後は前記測定した最新の前記検出タイミングおよび 過去の複数の前記検出タイミングに基づき前記受信許容範囲を決定することを特徴 とする請求項 1記載の移動通信システムの基地局。  [2] The reception allowable range control means sets the reception allowable range to a maximum range that can be used in one reception slot before the synchronization between the base station and the first mobile station is established. The base station of the mobile communication system according to claim 1, wherein after the synchronization is established, the reception allowable range is determined based on the measured latest detection timing and a plurality of past detection timings.
[3] 前記決定した受信許容範囲で受信すると前記上り信号の終端もしくは前端が現行の 受信スロットを外れ、当該受信スロットに隣接する受信スロットに干渉するかを判定す る受信スロット干渉判定手段と、  [3] Receiving slot interference determining means for determining whether a terminal end or front end of the uplink signal deviates from a current receiving slot and interferes with a receiving slot adjacent to the receiving slot when receiving within the determined allowable reception range;
この受信スロット干渉判定手段により干渉すると判定された場合に、当該隣接する受 信スロットが他の移動局と通信中力否かを判定する受信スロット使用判定手段と、 この受信スロット使用判定手段による判定の結果、隣接する受信スロットが通信して いない場合は前記隣接する受信スロットも使用して通信を行うとともに、隣接する受 信スロットが通信している場合は、前記他の移動局に別の受信スロットを使用して通 信を行うよう指示する別受信スロット使用指示を出し、この指示により空いた隣接する 受信スロットを使用して前記第一の移動局が通信を行うよう制御する通信制御手段を さらに備えたことを特徴とする請求項 2に記載の移動通信システムの基地局。  When the reception slot interference determination means determines that interference occurs, the reception slot use determination means for determining whether the adjacent reception slot is in communication with other mobile stations, and the determination by the reception slot use determination means As a result, when the adjacent receiving slot is not communicating, the adjacent receiving slot is also used for communication, and when the adjacent receiving slot is communicating, the other mobile station receives another reception. A communication control means for issuing an instruction to use another receiving slot instructing to perform communication using the slot, and controlling the first mobile station to perform communication using an adjacent receiving slot vacated by this instruction; The base station of the mobile communication system according to claim 2, further comprising:
[4] 前記通信制御手段が、さらに、前記別受信スロット使用指示により前記他の移動局が 別の受信スロットを使用できない場合に別の基地局へのハンドオーバーを指示し、こ のハンドオーバーに成功した場合に前記隣接する受信スロットを使用して前記第一 の移動局が通信を行うとともに、このハンドオーバーが失敗した場合は、前記第一の 移動局が通信を終了するよう制御することを特徴とする請求項 3に記載の移動通信 システムの基地局。 [4] The communication control means further instructs a handover to another base station when the other mobile station cannot use another reception slot according to the instruction to use another reception slot, and performs this handover. If successful, the first mobile station communicates using the adjacent receiving slot, and if this handover fails, the first mobile station is controlled to terminate communication. The mobile communication according to claim 3, System base station.
[5] 前記同期信号検出タイミング測定手段により測定した最新の前記検出タイミングおよ び過去の複数の前記検出タイミングに基づき、前記送信機の次回の送信タイミングを 決定する送信タイミング制御手段をさらに備え、  [5] Further comprising transmission timing control means for determining the next transmission timing of the transmitter based on the latest detection timing measured by the synchronization signal detection timing measurement means and the plurality of past detection timings,
前記通信制御手段が、前記ハンドオーバーが失敗した場合に、さらに前記送信タイミ ング制御手段により前記現行の受信スロットで通信を継続できるよう送信タイミングを 調整することを特徴とする請求項 3に記載の移動通信システムの基地局。  4. The communication control unit according to claim 3, wherein, when the handover fails, the communication control unit further adjusts a transmission timing so that communication can be continued in the current reception slot by the transmission timing control unit. A base station for a mobile communication system.
[6] 前記同期信号検出タイミング測定手段により測定した最新の前記検出タイミングおよ び過去の複数の前記検出タイミングに基づき、前記送信機の次回の送信タイミングを 決定する送信タイミング制御手段と、  [6] Transmission timing control means for determining the next transmission timing of the transmitter based on the latest detection timing measured by the synchronization signal detection timing measurement means and a plurality of the past detection timings;
前記受信スロット使用判定手段の判定の結果、隣接する受信スロットが通信して ヽ る場合に、前記送信タイミング制御手段により前記現行の受信スロットで通信を継続 できるよう送信タイミングを調整し、この送信タイミング調整ができなくなった場合に、 隣接する受信スロットで通信している移動局に対して別の受信スロットを使用して通 信を行うよう指示し、この指示により空いた隣接する受信スロットを使用して前記第一 の移動局が通信を行うよう制御する通信制御手段をさらに備えたことを特徴とする請 求項 2に記載の移動通信システムの基地局。  As a result of the determination by the reception slot use determination means, when adjacent reception slots are communicating, the transmission timing control means adjusts the transmission timing so that communication can be continued in the current reception slot. When the adjustment cannot be performed, the mobile station communicating with the adjacent reception slot is instructed to communicate using another reception slot, and the adjacent reception slot vacated by this instruction is used. The base station of the mobile communication system according to claim 2, further comprising communication control means for controlling the first mobile station to perform communication.
[7] 前記通信制御手段が、さらに、前記指示により前記他の移動局が別の受信スロットを 使用できな 、場合に別の基地局へのハンドオーバーを指示し、このハンドオーバー に成功した場合に前記隣接する受信スロットを使用して前記第一の移動局が通信を 行うとともに、このハンドオーバーが失敗した場合は、前記第一の移動局が通信を終 了するよう制御することを特徴とする請求項 6に記載の移動通信システムの基地局。  [7] When the communication control means further instructs the handover to another base station if the other mobile station cannot use another reception slot according to the instruction, and the handover succeeds. The first mobile station communicates using the adjacent reception slot at the same time, and if the handover fails, the first mobile station is controlled to terminate the communication. The base station of the mobile communication system according to claim 6.
[8] 第一の移動局に対して同期を確立するための同期信号を含んだ下り信号を送信す る送信機と、  [8] a transmitter for transmitting a downlink signal including a synchronization signal for establishing synchronization with the first mobile station;
前記送信機力 の下り信号を受信して一定した時間の内部処理を行ったのち上り信 号を返送する移動局力 の上り信号を受信する受信機と、  A receiver that receives the uplink signal of the mobile station power that receives the downlink signal of the transmitter power and performs internal processing for a fixed time and then returns the uplink signal;
受信した上り信号に含まれる上り同期信号の検出タイミングを測定する同期信号検 出タイミング測定手段と、 測定した最新の検出タイミングおよび過去の複数の検出タイミングに基づき、前記 送信機の次回の送信タイミングを決定する送信タイミング制御手段とを備えたことを 特徴とする移動通信システムの基地局。 Synchronization signal detection timing measuring means for measuring the detection timing of the uplink synchronization signal included in the received uplink signal; A base station for a mobile communication system, comprising: transmission timing control means for determining a next transmission timing of the transmitter based on the latest measured detection timing and a plurality of past detection timings.
[9] 前記送信タイミング制御手段で決定した送信タイミングで送信すると前記第一の移動 局の受信許容範囲内で下り信号が受信できる力否かを判定し、受信できないと判定 した場合は、前記第一の移動局の受信許容範囲内となるよう調整する送信タイミング 調整手段を備えたことを特徴とする請求項 8に記載の移動通信システムの基地局。  [9] If transmission is performed at the transmission timing determined by the transmission timing control means, it is determined whether or not the downlink signal can be received within the reception allowable range of the first mobile station. 9. The base station of the mobile communication system according to claim 8, further comprising transmission timing adjustment means for adjusting so as to be within a reception allowable range of one mobile station.
[10] 前記決定した送信タイミングで送信すると前記送信信号の終端もしくは前端が現行 の送信スロットを外れ、当該送信スロットに隣接する送信スロットに干渉するカゝ否かを 判定する送信スロット干渉判定手段と、  [10] Transmission slot interference determination means for determining whether or not the terminal or front end of the transmission signal deviates from the current transmission slot when transmitting at the determined transmission timing and interferes with a transmission slot adjacent to the transmission slot. ,
この送信スロット干渉判定手段により隣接する送信スロットに干渉すると判定された場 合に、当該隣接する送信スロットが他の移動局と通信中か否かを判定する送信スロッ ト使用判定手段と、  A transmission slot use determining means for determining whether or not the adjacent transmission slot is communicating with another mobile station when the transmission slot interference determining means determines that the adjacent transmission slot interferes;
この送信スロット使用判定手段の判定の結果、隣接する送信スロットが通信して ヽ ない場合は前記隣接する送信スロットも使用して通信を行うとともに、隣接する送信ス ロットが通信している場合は、前記他の移動局に別の送信スロットを使用して通信を 行うよう指示する別送信スロット使用指示を出し、この指示により空いた隣接する送信 スロットを使用して前記第一の移動局が通信を行うよう制御する通信制御手段をさら に備えたことを特徴とする請求項 8に記載の移動通信システムの基地局。  As a result of the determination by the transmission slot use determining means, if the adjacent transmission slot does not communicate, the adjacent transmission slot is also used for communication, and if the adjacent transmission slot is communicating, An instruction to use another transmission slot is issued to instruct the other mobile station to perform communication using another transmission slot, and the first mobile station performs communication using an adjacent transmission slot vacated by this instruction. 9. The base station of the mobile communication system according to claim 8, further comprising communication control means for performing control.
[11] 前記通信制御手段が、さらに、前記別送信スロット使用指示により他の移動局が別の 送信スロットを使用できない場合に別の基地局へのハンドオーバーを指示し、このハ ンドオーバーに成功した場合に前記隣接するスロットを使用して通信を行うよう制御 する通信制御手段をさらに備えたことを特徴とする請求項 10に記載の移動通信シス テムの基地局。  [11] The communication control means further instructs the handover to another base station when another mobile station cannot use another transmission slot according to the instruction to use another transmission slot, and succeeds in this handover. 11. The base station of the mobile communication system according to claim 10, further comprising communication control means for performing control so that communication is performed using the adjacent slot in the case of being performed.
[12] 前記同期信号検出タイミング測定手段が測定した最新の検出タイミングおよび過去 の複数の検出タイミングに基づき前記同期信号検出手段の前記同期信号の受信許 容範囲を決定する受信許容範囲制御手段をさらに備え、  [12] A reception tolerance range control means for determining a reception tolerance range of the synchronization signal of the synchronization signal detection means based on the latest detection timing measured by the synchronization signal detection timing measurement means and a plurality of past detection timings. Prepared,
前記通信制御手段が、前記ハンドオーバーが失敗した場合、さらに、この受信許容 範囲制御手段により、前記下り同期信号の受信許容範囲を調整することで、受信スロ ットにおける同期信号の受信許容範囲を調整することを特徴とする請求項 11に記載 の移動通信システムの基地局。 When the communication control means fails in the handover, the reception control further 12. The base station of the mobile communication system according to claim 11, wherein the reception tolerance range of the synchronization signal in the reception slot is adjusted by adjusting the reception tolerance range of the downlink synchronization signal by range control means. .
[13] 前記決定した送信タイミングで送信すると前記送信信号の終端もしくは前端が現行 の送信スロットを外れ、当該送信スロットに隣接する送信スロットに干渉するカゝ否かを 判定する送信スロット干渉判定手段と、  [13] Transmission slot interference determination means for determining whether or not the terminal or front end of the transmission signal deviates from the current transmission slot when transmitting at the determined transmission timing and interferes with a transmission slot adjacent to the transmission slot. ,
この送信スロット干渉判定手段により隣接する送信スロットに干渉すると判定された場 合に、当該隣接する送信スロットが他の移動局と通信中か否かを判定する送信スロッ ト使用判定手段と、  A transmission slot use determining means for determining whether or not the adjacent transmission slot is communicating with another mobile station when the transmission slot interference determining means determines that the adjacent transmission slot interferes;
前記同期信号検出タイミング測定手段が測定した最新の検出タイミングおよび過去 の複数の検出タイミングに基づき前記同期信号検出手段の前記下り同期信号の受 信許容範囲を決定する受信許容範囲制御手段と、  A reception tolerance range control means for determining a reception tolerance range of the downlink synchronization signal of the synchronization signal detection means based on the latest detection timing and a plurality of past detection timings measured by the synchronization signal detection timing measurement means;
この判定の結果、隣接する送信スロットが通信して 、な 、場合は前記隣接する送信 スロットも使用して通信を行うとともに、隣接する送信スロットが通信している場合は、 送信タイミングを制御する代わりに、前記受信許容範囲制御手段により受信スロット における前記下り同期信号の受信許容範囲を調整する通信制御手段とをさらに備え たことを特徴とする請求項 8に記載の移動通信システムの基地局。  As a result of this determination, adjacent transmission slots communicate with each other, in which case the adjacent transmission slots are also used for communication, and when adjacent transmission slots are communicating, instead of controlling transmission timing. 9. The base station of the mobile communication system according to claim 8, further comprising communication control means for adjusting a reception allowable range of the downlink synchronization signal in a reception slot by the reception allowable range control means.
[14] 前記通信制御手段が、前記受信許容範囲調整による受信タイミングの調整ができな くなつた場合に、隣接する送信スロットで通信して 、る移動局に対して別の送信スロッ トを使用して通信を行うよう指示し、この指示により空いた隣接する送信スロットを使用 して前記第一の移動局が通信を行うよう制御することを特徴とする請求項 8に記載の 移動通信システムの基地局。  [14] When the communication control means cannot adjust the reception timing by adjusting the reception allowable range, it communicates in an adjacent transmission slot and uses another transmission slot for the mobile station. 9. The mobile communication system according to claim 8, wherein the communication is instructed to perform communication, and the first mobile station performs communication using an adjacent transmission slot vacated by this instruction. base station.
[15] 前記通信制御手段が、さらに、前記別送信スロット使用指示により前記他の移動局が 別の送信スロットを使用できない場合に別の基地局へのハンドオーバーを指示し、こ のハンドオーバーに成功した場合に前記隣接する送信スロットを使用して前記第一 の移動局が通信を行うとともに、このハンドオーバーが失敗した場合は、前記第一の 移動局が通信を終了するよう制御することを特徴とする請求項 13に記載の移動通信 システムの基地局。  [15] The communication control means further instructs a handover to another base station when the other mobile station cannot use another transmission slot according to the instruction to use another transmission slot. If successful, the first mobile station communicates using the adjacent transmission slot, and if this handover fails, the first mobile station is controlled to terminate communication. The base station of the mobile communication system according to claim 13,
PCT/JP2005/003023 2005-02-24 2005-02-24 Base station of mobile communication system WO2006090457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003023 WO2006090457A1 (en) 2005-02-24 2005-02-24 Base station of mobile communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003023 WO2006090457A1 (en) 2005-02-24 2005-02-24 Base station of mobile communication system

Publications (1)

Publication Number Publication Date
WO2006090457A1 true WO2006090457A1 (en) 2006-08-31

Family

ID=36927108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003023 WO2006090457A1 (en) 2005-02-24 2005-02-24 Base station of mobile communication system

Country Status (1)

Country Link
WO (1) WO2006090457A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200042A (en) * 2009-02-25 2010-09-09 Kyocera Corp Radio base station and communication control method
WO2018167984A1 (en) * 2017-03-17 2018-09-20 富士通株式会社 Wireless communication device, wireless communication system, and transmission timing adjustment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155208A (en) * 1997-07-31 1999-02-26 Nippon Telegr & Teleph Corp <Ntt> Radio burst signal reception device
JPH1174876A (en) * 1997-08-27 1999-03-16 Mitsubishi Electric Corp Frame synchronization controller
JPH11340934A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Time division multiple access communication equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155208A (en) * 1997-07-31 1999-02-26 Nippon Telegr & Teleph Corp <Ntt> Radio burst signal reception device
JPH1174876A (en) * 1997-08-27 1999-03-16 Mitsubishi Electric Corp Frame synchronization controller
JPH11340934A (en) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd Time division multiple access communication equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200042A (en) * 2009-02-25 2010-09-09 Kyocera Corp Radio base station and communication control method
WO2018167984A1 (en) * 2017-03-17 2018-09-20 富士通株式会社 Wireless communication device, wireless communication system, and transmission timing adjustment method

Similar Documents

Publication Publication Date Title
KR100589934B1 (en) Synchronization of timing advance and deviation
US6014376A (en) Method for over-the-air synchronization adjustment in a communication system
JP3250762B2 (en) Mobile communication system base station synchronization method
EP1185120A1 (en) Base station apparatus and handover control method
EP2296411B1 (en) Transmission power control method and system
US6463261B1 (en) Radio communication device and radio communication method
WO1996002984A1 (en) A method in a diversity receiver
JP2000013867A (en) Transmission timing correction method for mobile station
WO2006090457A1 (en) Base station of mobile communication system
US6295290B1 (en) Telecommunications systems
EP2009817B1 (en) Wireless communication system, base station, and wireless communication method
JP2000308149A (en) Device and method for extending service radius in mobile communication system
JP3043699B2 (en) TDMA-TDD base station synchronizer
KR100226125B1 (en) Method for time alignment transmission of mobile wireless telephone system using split-window
JPH09275382A (en) Synchronization adjustment method in time division duplex communication method and communication system using it
JP4009232B2 (en) Base station for subscriber radio access system
JP2000332719A (en) Synchronous demodulator and method therefor
CA2622884A1 (en) Synchronization of timing advance and deviation
AU2323600A (en) Portable telephone
CN1205811A (en) Method and appts. for power control in a telephone system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05719473

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5719473

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP