WO2006089476A1 - Méthode de contrôle de puissance dans un canal partagé de contrôle haute vitesse - Google Patents

Méthode de contrôle de puissance dans un canal partagé de contrôle haute vitesse Download PDF

Info

Publication number
WO2006089476A1
WO2006089476A1 PCT/CN2006/000246 CN2006000246W WO2006089476A1 WO 2006089476 A1 WO2006089476 A1 WO 2006089476A1 CN 2006000246 W CN2006000246 W CN 2006000246W WO 2006089476 A1 WO2006089476 A1 WO 2006089476A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
scch
power
high speed
downlink
Prior art date
Application number
PCT/CN2006/000246
Other languages
English (en)
French (fr)
Inventor
Rongqiang Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36927028&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006089476(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to DE602006007966T priority Critical patent/DE602006007966D1/de
Priority to AT06705667T priority patent/ATE437485T1/de
Priority to EP06705667A priority patent/EP1860787B2/en
Publication of WO2006089476A1 publication Critical patent/WO2006089476A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • the present invention relates to a power control method in a wireless communication system, and more particularly to a power control method for a downlink high speed shared control channel.
  • HSDPA High Speed Downlink Packet Access
  • CDMA Code-Division Multiple Access
  • the main features of the HSDPA system include: Adopting 2ms short frame, using HARQ (Hybrid Automatic Repeat Request) and AMC (Adaptive Modulation and Coding) technology in the physical layer, introducing 16QAM (Quarature) Amplitude Modulation, high-order modulation improves spectrum utilization, and realizes shared channel scheduling of each UE (User Equipment) by code division and time division.
  • the HARQ technology uses the SAW (Stop and Wait) protocol. After the NodeB sends data to the UE, it needs to obtain the ACK (ACKnowledge, acknowledgment) or NACK (Not ACKnowledge) of the UE. It has been received correctly in order to decide whether to retransmit data or to send new data.
  • the AMC technical requirement is that the UE feeds back the channel quality indicator CQI (Channel Quality Indicator) of the downlink measurement to determine the coding rate and transmission format of the downlink HSDPA data on the NodeB side.
  • CQI Channel Quality Indicator
  • the CDMA system utilizes HSDPA's downlink physical channel HS-SCCH (High Speed Shared Control Channel), HS-PDSCH (High Speed Physical Downlink Shared Channel) and accompanying downlink dedicated channel, and uplink physics.
  • the channel HS-DPCCH (high speed-dedicated physical control channel) and the accompanying uplink DPCH (Dedicated Physical Channel) implement data transmission between the UTRAN (Universal Transmission Radio Access Network) and the UE.
  • the uplink HS-DPCCH carries information ACK or NACK, or channel quality indication information CQI, corresponding to the uplink dedicated channel, which is used to feed back the correct data frame in the downlink HS-PDSCH.
  • the DPCH can be used to carry services in addition to the high-level signaling of the RRC (Radio Resource Control) connection establishment, maintenance, and reconfiguration of the HSDPA.
  • the HS-SCCH channel carries downlink signaling for demodulating HS-PDSCH, including HS-PDSCH channel code, process number, new data indication, transport block size index, incremental redundancy and constellation mapping, etc.;
  • HS-PDSCH channel carries HS - Data frame of the DSCH transport channel. After the UE completes the data frame demodulation in the HS-PDSCH, it feeds back to the NodeB whether to correctly receive the information ACK or NACK of the data frame, and feeds back the channel quality status information to the NodeB according to the feedback period and the repetition period of the CQI.
  • HS-SCCH is the source of HSDPA downlink data transmission. Only when the HS-SCCH transmission power requirement is fully satisfied, the demodulation performance of HS-SCCH can be ensured. Therefore, the priority of HS-SCCH channel in power allocation should be higher than HS- PDSCH channel.
  • NodeB uses HS-SCCHs for each user by means of time division and code division.
  • the HS-PDSCHs subframe is sent to the UEs, and each UE demodulates the HS-SCCHs channel of the air interface according to the HS-SCCH channel code set allocated when the HS-DSCH link is established.
  • Each UE has at most four HS-SCCH channel code sets, and each subframe NodeB selects one of them to transmit signaling, and the UE must demodulate the entire HS-SCCHs channel code set to identify the currently used HS-SCCH channel.
  • UE and NodeB will follow the following principles:
  • the UE If the UE does not detect its own control information in the current subframe, then in the next subframe, the UE will listen to all HS-SCCH channels in the HS-SCCH set. If the UE detects its own control information, then in the next subframe, the UE only needs to listen to the same HS-SCCH channel. After detecting that the HS-SCCH channel carries its own control information, the UE starts to receive the HS-PDSCHs channel. By demodulating the HS-PDSCH data frame and the CRC check of the MAC-hs PDU data block, it is determined whether the first time slot of the uplink feedback channel HS-DPCCH carries an ACK or a NACK.
  • the ACK/NACK or CQI information carried by the HS-DPCCH is different from that in the non-compressed mode, and needs to be adjusted, as follows:
  • the UE will not demodulate the physical channel HS-SCCH or HS a corresponding subframe of the PDSCHs, and therefore does not feed back the ACK or NACK information of the subframe; if the UE determines that a part of the HS-DPCCH slot to be carried with the ACK/NACK information overlaps with a transmission gap of the uplink DPCH, then In the time slot, the UE does not send ACK/NACK information; if the UE determines that a part of the HS-DPCCH slot that will carry the CQI information overlaps with a transmission gap of the uplink DPCH, then in the subframe, the UE does not The CQI information is sent; however, the UE needs to transmit for the CQI value in the HS-DPCCH subframe that does
  • the UE sets the CQI value of the HS-DPCCH subframe and the CQI value of the next N-cqi__transmitl repeated subframes to DTX, and then sends the signal to the NodeB.
  • the NodeB Based on the uplink HS-DPCCH timing relationship, the NodeB performs the demodulation of the HS-DPCCH bearer information, uses the CQI for data scheduling and transmission format selection, and uses ACK/NACK to determine whether the new transmission is retransmission.
  • the HS-SCCH downlink transmit power can be obtained by the HS-SCCH power offset parameter configured by the SRNC, but the fixed power offset parameter cannot satisfy the HS-SCCH under different conditions.
  • Downstream transmit power demand For example: In different transmission environments, the HS-SCCH may be inconsistent based on the bias parameter requirements accompanying the downlink dedicated channel pilot transmit power; when the HSDPA user enters the soft handoff region with the dedicated channel, the soft handoff is accompanied by the dedicated channel.
  • the region gains gain, resulting in a decrease in the associated dedicated channel pilot power of the HSDPA serving cell, such that the HS-SCCH is biased based on the biasing parameters associated with the downlink dedicated pilot transmit power.
  • the SRNC cannot predict the power offset requirements in various complex environments, and at the same time aggravate the parameter reconfiguration of the user frequently entering and leaving the soft handover area. The burden of signaling processing and time There is a big delay between them.
  • the UE side cannot correctly demodulate.
  • the UE cannot demodulate the data frame HS-PDSCH, which may result in The data transmission rate is reduced or even data transmission is impossible, so that the user data transmission QoS cannot be guaranteed, and the system transmission power is also wasted; in addition, if the HS-SCCH transmission power is high, although the demodulation performance of the HS-SCCH is guaranteed, However, the power consumption of the downlink data frame HS-PDSCH is also reduced accordingly, so that power is wasted and system capacity is reduced.
  • the problem to be solved by the present invention is to provide a power control method for a downlink high speed shared control channel to solve the defect that the power of the downlink high speed shared control channel cannot be dynamically controlled in the prior art.
  • the present invention discloses a power control method for a downlink high speed shared control channel, and the method includes the following steps:
  • the base station NodeB side adjusts the transmit power offset parameter of the downlink high speed shared control channel HS-SCCH according to the demodulation performance of the downlink high speed shared control channel HS-SCCH; C. according to the adjusted downlink high speed shared control
  • the power offset parameter of the channel HS-SCCH adjusts the transmit power of the downlink high speed shared control channel HS-SCCH. Determining the demodulation performance of the downlink high-speed shared control channel HS-SCCH according to step A is based on the number of acknowledgment information ACK or non-acknowledgment information NACK received by the base station NodeB, by counting the number of discontinuous transmission information DTX, and should feed back ACK The information of /NACK becomes the number of DTXs determined.
  • the demodulation performance of the channel quality indication information CQI determines the number of discontinuous transmission information DTX due to unreasonable power setting of the uplink high-speed dedicated physical control channel.
  • the adjustment of the power offset parameter in step B includes: increasing the power offset parameter or lowering the power offset parameter.
  • the transmit power offset parameter of the downlink high speed shared control channel HS-SCCH is determined by the downlink transmit power offset value and the power offset adjustment value of the downlink high speed shared control channel HS-SCCH.
  • the power offset parameter When the power offset parameter is reduced, first setting different thresholds of the number of non-contiguous transmission information DTX after filtering the M high-speed physical downlink shared channel HS-PDSCH data frames, and determining corresponding according to the threshold range Reduce the power offset adjustment value.
  • a counter that counts the number of discontinuous transmission information DTX is periodically reset.
  • the adjustment step for increasing the power offset parameter adjustment value is greater than the adjustment step for lowering the power offset parameter adjustment value.
  • the invention can effectively perform closed-loop adjustment of the HSDPA downlink physical channel HS-SCCH power, and can effectively implement the HS-SCCH transmit power regardless of whether the SRNC is configured with the power offset parameter of the HS-SCCH accompanying dedicated channel pilot. Control can also solve the situation where the SRNC does not configure the HS-SCCH transmit power offset parameter.
  • the present invention is directed to the low or high transmission power of the downlink channel HS-SCCH, and adaptively raises or reduces the processing, which can effectively ensure the demodulation performance requirement of the HS-SCCH channel, ensure the user data transmission rate can be guaranteed, and can The NodeB downlink transmit power can be fully utilized. These all illustrate the adaptive closing of the downlink channel HS-SCCH.
  • the loop power control can effectively guarantee the QoS of the user data transmission, and the stability and reliability of the system transmission are relatively high, and the system transmission capacity can also be optimized.
  • FIG. 1 is a flow chart showing the basic principle of a power control method for a downlink high speed shared control channel according to the present invention
  • FIG. 2 is a timing diagram of a high-speed downlink packet access user transmitting and receiving data frames between a base station NodeB and a user equipment according to the present invention
  • FIG. 3 is a flow chart of a first embodiment of a power control method for a downlink high speed shared control channel according to the present invention
  • FIG. 4 is a flow chart showing a second embodiment of a power control method for a downlink high speed shared control channel of the present invention.
  • the basic principle of the present invention is to determine whether the NodeB side increases or decreases the HS-SCCH transmission power by determining the demodulation performance of the UE-side HS-SCCH channel on the NodeB side.
  • the closed-loop power control of the HS-SCCH the low transmit power will cause the deterioration of the user's transmission performance, so the priority is higher.
  • the UE-side demodulation performance determination value is used for fast power adjustment; The high priority is relatively low, and the slow power adjustment is performed on the UE side demodulation performance determination value according to the longer-term statistical HS-SCCH.
  • the demodulation performance is obtained by demodulating an uplink HS-DPCCH (High Speed-dedicated Physical Control Channel) by the base station NodeB, and acquiring information such as ACK or NACK and CQI carried by the uplink HS-DPCCH, according to the information.
  • the performance of the downlink HS-SCCH is determined.
  • the performance of the channel is actually whether the downlink HS-SCCH transmission power is reasonable.
  • the downlink HS-SCCH power is mainly affected by the power offset parameter, and the NodeB is initially set.
  • User HS-SCCH downlink transmit power offset value PowerOffset HS - SCC H, power offset adjustment value ⁇ , and accompanying dedicated channel pilot slot power Power DCH - Pil .
  • the demodulation performance of the downlink high speed shared control channel HS-SCCH is determined at the base station NodeB side.
  • the NodeB side should receive the ACK/NACK information and channel quality indicator (CQI) fed back by the UE.
  • CQI channel quality indicator
  • the ACK/NACK information should be fed back. It becomes a DTX value. This requires the NodeB to perform multipath search and channel determination on the HS-DPCCH according to the pilot time slots in each slot of the DPCCH (Dedicated Physical Control Channel).
  • the uplink HS-DPCCH sent by the user equipment UE to the NodeB is transmitted through multiple paths when the transmitted signal is spatially propagated
  • the uplink HS-DPCCH transmitted by the user equipment UE to the NodeB is transmitted through multiple paths, and the propagation path of each path is different for each path.
  • NodeB needs to search for these paths and obtain channel characteristic information of these paths.
  • the despreading and descrambling of each path of the HS-DPCCH channel can be implemented.
  • the channel information parameters (such as phase information and amplitude information) of the corresponding path of the HS-DPCCH are obtained by interpolation, and The channel is used to perform channel correction on the result of despreading and descrambling the path, and the influence of the propagation channel on the received signal is removed.
  • the path information demodulated from each path is accumulated in a maximum ratio combining manner to obtain ACK or NACK and CQI information after demodulation of the HS-DPCCH channel.
  • HS-DPCCH is not continuous in time, only in
  • the UE After the HS-PDSCH channel sends a data frame to the UE, the UE sends a bearer ACK or NACK signal after the dedicated physical control channel DPCCH delays the m*256 chips time interval, otherwise sends a DTX (Discontinuous Transmission) signal.
  • a bearer ACK or NACK signal after the dedicated physical control channel DPCCH delays the m*256 chips time interval, otherwise sends a DTX (Discontinuous Transmission) signal.
  • valid ACK or NACK demodulated data can be selected; the HS-DPCCH information carrying the CQI has no relationship with whether the downlink data frame HS-PDSCH is transmitted, according to the delay parameter m satisfying the condition, the user UE It will determine when to transmit the HS-DPCCH information carrying the CQI, and the NodeB can select the CQI effective demodulation information on the HS-DPCCH according to the criteria of the delay parameter m and the CQI transmission. In this way, ACK or NACK and CQI demodulation information carried by the uplink channel HS-DPCCH can be obtained.
  • the delay parameter m first describe the uplink and downlink between several physical channels of HSDP A. Timing relationship. The UE and the UTRAN must comply with this timing relationship between the various physical channels, otherwise the correct transmission of the HS-DSCH data cannot be performed. There are five starting positions for the NodeB to transmit HS-SCCH and HS-PDSCH subframes relative to the starting position of each frame of the primary common control physical channel P-CCPCH. See Figure 2, "HSDPA users between NodeB and UE. The transmitting and receiving processes are respectively identified as subframe 0, subframe 1, ..., subframe 4.
  • the frame length of the primary common control physical channel P-CCPCH is 10 ms, and the start positions of the HS-SCCH and HS-PDSCH subframes are periodically repeated after 10 ms.
  • the UE determines the delay of the received data frame HS-PDSCH relative to the P-CCPCH by monitoring the delay between the HS-SCCH subframe and the P-CCPCH.
  • the NodeB calculates the corresponding delay parameter m according to the same delay parameter information, so that the HS-DPCCH channel can be correctly demodulated. Otherwise, if the UE and the NodeB are the same HS- The DPCCH subframe is inconsistent with respect to the delay parameter m accompanying the uplink dedicated channel, and the HSDPA data transmission cannot be performed.
  • the start position of the subframe 0 of the HSDPA downlink physical channel HS-PDSCH is aligned with the start position of the P-CCPCH radio frame; the start position of the subframe i of the HS-PDSCH is relative to the start of the subframe i of the HS-PDSCH. Position, delay 2 slots.
  • the HS-SCCH signaling subframe and the HS-PDSCH data subframe transmitted by the NodeB will follow this timing requirement.
  • the starting position of the UE uplink transmitting HS-DPCCH is delayed by m*256 chipss with respect to the starting position of the uplink DPCH transmitted by the UE.
  • m (T Tx diff /256) + l0l , where is the start time of the downlink B-transmitted HS-PDSCH subframe i of the NodeB and the downlink transmit dedicated channel DPCH frame including the start position of the subframe
  • the feedback time of the ACK or NACK and CQI carried by the HS-DPCCH is independent of each other, and the feedback of the ACK or the NACK satisfies the above formula of m, and the five subframe periods respectively correspond to five possible m parameters.
  • the UE uses the 5 possible m parameter values of the HS-DSCH radio link, utilizes the CQI feedback period k given by the RRC message when the HS-DSCH radio link is established or reconfigured, and the CFN connection of the dedicated channel.
  • Frame number calculate m that satisfies the condition according to the following formula:
  • the UE transmits the CQI in the HS-DPCCH subframe that is accompanied by the uplink DPCH frame by m*256 chipss. If retransmission of ACK or NACK or CQI is involved, the corresponding repeated transmission is performed after the HS-DPCCH subframe according to the number of retransmissions configured by the upper layer. The above subframes satisfying the transmission condition are removed, and in other subframes, the UE does not transmit the CQI in the HS-DPCCH.
  • the HS-SCCH demodulation performance is determined by ACK or NACK demodulation performance and CQI demodulation performance.
  • the number of received DTXs is recorded by the compression pattern of the user's downlink accompanying dedicated channel and the compression pattern information of the uplink accompanying dedicated channel, and the DTX generated by the compressed slot is recorded as Invalid statistics are removed and not used as the statistical value of the number of DTXs.
  • the number of DTXs received in the place where the ACK or NACK should be received is counted as the demodulation performance of the HS-SCCH channel.
  • the compressed pattern information has a recommended definition format in the 3GPP protocol, and the RC informs the base station NodeB and the mobile phone UE of the parameters defined by the compressed pattern by signaling, and clarifies which consecutive time slots do not transmit data. If the uplink channel HS-DPCCH demodulation performance meets the requirements, the ACK/NACK carried by the user UE through the HS-DPCCH channel can be correctly demodulated by the base station NodeB without being demodulated into DTX by mistake.
  • the only possibility is that The user UE does not demodulate the downlink channel HS-SCCH at all, and therefore does not feed the ACK/NACK information through the uplink channel HS-DPCCH, so that the base station NodeB cannot receive the feedback from the UE after receiving an HS-PDSCH data frame.
  • the indication information is ACK/NACK, but the DTX value without any information.
  • the number of DTXs received in the place where the ACK or NACK should be received is larger, indicating that the HS-SCCH demodulation performance is worse, and HS needs to be increased.
  • -SCCH downlink transmit power if the number of received DTX is small, almost equal to 0, indicating that the HS-SCCH demodulation performance is better than the performance requirement, and the HS-SCCH downlink transmit power needs to be down-regulated, by up- or down-regulating the HS-SCCH power.
  • the offset value can be achieved.
  • CQI demodulation performance is determined.
  • the CQI feedback has no relationship with whether the HS-PDSCH data frame is sent, whether the uplink feedback channel HS-DPCCH demodulation performance is abnormal can be determined by counting the error of the CQI.
  • the error statistics period of CQI is assumed to be T stat _ BER .
  • the coding matrix is used to reverse Coding, the anti-coded bit and the bit after demodulation are error-calculated, and the error rate in the statistical period is averaged to obtain the CQI statistical error CQI_Stat_BER, assuming the HS-DPCCH transmit power Under normal circumstances, the CQI error is CQI-Standard-BER.
  • the HS-DPCCH transmit power is normal, otherwise the HS-DPCCH power is abnormal.
  • the number of DTXs detected by the NodeB is too large, but the HS-SCCH downlink transmit power offset is not adjusted.
  • the parameter update process is used to initiate the update process of the HS-DPCCH power offset parameter adjustment to the SRNC, through the Uu port of the SRNC.
  • the reconfiguration process configures the UE with a new ACK/NACk that meets the requirements and the power offset of the CQI.
  • the base station NodeB side adjusts the transmit power offset parameter of the downlink high-speed shared control channel HS-SCCH according to the demodulation performance of the downlink high-speed shared control channel HS-SCCH; the power offset parameter adjustment includes: High power bias parameters or reduced power bias parameters.
  • the power offset parameter adjustment value is increased, different thresholds of the number of statistics of the discontinuous transmission information DTX in the N high-speed physical downlink shared channel HS-PDSCH data frames are set, including: a first threshold, a second threshold, And the nth threshold, the first threshold ⁇ the second threshold ⁇ . . . 11 threshold; and setting the corresponding power offset adjustment value in the threshold range: ⁇
  • the reduced power offset adjustment value is ⁇ !, ⁇ 2 ⁇ ⁇ . ⁇ 5 where ⁇ ... > ⁇ ⁇ - 1 , when the number of statistically filtered discontinuous transmission information DTX is less than the Ml threshold, The power offset adjustment value is reduced by ⁇ 1 ; when the number of times of the filtered non-continuous transmission information DTX is greater than the M1 threshold and less than the second threshold, the power offset adjustment value is reduced by ⁇ 2 ; and so on.
  • a threshold M1 threshold can be set. If the number of discontinuous transmission information DTX obtained by using statistics is less than the M1 threshold, the corresponding power offset adjustment value ⁇ !
  • the corresponding power offset adjustment value is 0.
  • Ml threshold ⁇ statistically obtained filtered non- If the number of information DTX is continuously transmitted.
  • the corresponding power offset adjustment value is 0.
  • the power offset adjustment value ⁇ 2 , ⁇ > ⁇ 2 when the ⁇ 2 threshold ⁇ statistically obtained number of filtered discontinuous transmission information DTX, the corresponding power offset adjustment value is 0.
  • the value of the power adjustment amount can be adjusted, and can be obtained by link level simulation, that is, the value is gradually substituted by simulation, and the optimal value is determined. Since the adjustment of the power offset parameter is lower, the adjustment is more important and the time requirement is shorter, so the adjustment step will be relatively larger, and the adjustment step of the power offset parameter setting is higher. The distance is determined to be stable and reliable, and the step size is mainly fine-tuned.
  • Step sl03 according to the adjusted power offset parameter of the downlink high-speed shared control channel HS-SCCH, the base station NodeB directly adjusts the transmit power of the downlink high-speed shared control channel HS-SCCH.
  • a first embodiment of the present invention will be described below with reference to FIG. 3. This embodiment describes a case where the downlink HS-SCCH power control method is applied when the downlink HS-SCCH transmission power is biased.
  • step s301 is performed to determine a downlink high speed shared control channel on the NodeB side of the base station.
  • the UE After the base station NodeB transmits the data frame HS-PDSCH in the downlink, the UE transmits the ACK or NACK information and the CQI information that satisfies the transmission condition after the uplink dedicated channel DPCH delays the m*256 chipss time interval.
  • the NodeB demodulates the uplink HS-DPCCH channel and obtains the ACK or NACK and CQI information of the bearer.
  • the information that should be fed back ACK or NACK by the information statistics becomes the number of DTXs.
  • Step s302 The base station NodeB side increases the transmit power offset parameter of the downlink high speed shared control channel HS-SCCH according to the demodulation performance of the downlink high speed shared control channel HS-SCCH. According to the HS-SCCH closed-loop power control, the transmission power is low and needs to be quickly adjusted. After the N HS-PDSCH data frames are transmitted, the number of received DTXs and the set value of N are small.
  • the different thresholds of the number of statistics of DTX in N HS-PDSCH data frames are set and the relationship is: TH—DTX— NumlnN ⁇ THJDTX—NumInN 2 ⁇ THJDTX_NumInN 3 ⁇ TH— DTX—NumInN
  • the corresponding power offset adjustment value and relationship are: A! ⁇ A 2 ⁇ A 3
  • the adjusted value ⁇ of the HS-SCCH downlink transmission power offset is determined by using the statistically obtained DTX number Stat_DTX_NumInN.
  • ⁇ 3 ; If the HS-SCCH power offset adjustment value ⁇ is not equal to 0, the HS-SCCH power offset adjustment value is ⁇ At the same time, the counter of the statistical DTX number is periodically reset.
  • Step s303 The base station NodeB directly increases the transmit power of the downlink high speed shared control channel HS-SCCH according to the adjusted power offset parameter of the downlink high speed shared control channel HS-SCCH.
  • a second embodiment of the present invention will be described below with reference to FIG. 4. This embodiment describes a case where downlink HS-SCCH power control is applied when the downlink HS-SCCH transmission power is too high.
  • step s401 is performed to determine the demodulation performance of the downlink high speed shared control channel HS-SCCH on the NodeB side of the base station.
  • the base station NodeB transmits the data frame HS-PDSCH in the downlink
  • the UE transmits the ACK or NACK information and the CQI information that satisfies the transmission condition after the uplink dedicated channel DPCH delays the m*256 chipss time interval.
  • the NodeB demodulates the uplink HS-DPCCH channel and acquires the ACK or NACK and CQI information of the bearer.
  • the information that should be fed back ACK or NACK by the information statistics becomes the number of DTXs.
  • Step s402 The base station NodeB side reduces the transmit power offset parameter of the downlink high speed shared control channel HS-SCCH according to the demodulation performance of the downlink high speed shared control channel HS-SCCH.
  • the transmit power is too high and needs to be slowed down.
  • the transmitting power is too high and the slow down is the main one. Therefore, the adjustment step should be small. The balance is adjusted by multiple downward adjustments to prevent the adjustment step from being too large and causing instability.
  • the threshold of the number of statistics of the DTX in the M HS-PDSCH data frames is assumed to be: TH_DTX_NumInM 1
  • the corresponding power offset adjustment value is ⁇ 1 ⁇
  • the adjusted value ⁇ of the HS-SCCH downlink transmission power offset is determined by using the statistically obtained DTX number Stat_DTX_NumInM.
  • Step s403 The base station NodeB directly reduces the transmit power of the downlink high speed shared control channel HS-SCCH according to the adjusted power offset parameter of the downlink high speed shared control channel HS-SCCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Selective Calling Equipment (AREA)

Description

下行高速共享控制信道的功率控制方法
技术领域
本发明涉及无线通信系统中的功率控制方法, 尤其涉及一种下行高速 共享控制信道的功率控制方法。
背景技术
HSDPA ( High Speed Downlink Packet Access, 高速下行包接入 )作为 高速下行数据包接入技术,在 2002年 3月引入到了 3GPP Release5的版本中, 基于下行共享信道, 提供数据业务, 理论最高速率超过 10Mb/s, 比较好的 解决了 CDMA ( Code-Division Multiple Access, 码分多址接入) 系统下行 容量受限的问题。
HSDPA系统的主要特点包括: 采用 2ms的短帧, 在物理层采用 HARQ ( Hybrid Automatic Repeat Request , 混合自适应重传请求) 和 AMC ( Adaptive Modulation and Coding, 自适应调制编码)技术, 引入 16QAM ( Quadrature Amplitude Modulation, 正交振幅调制) 高阶调制提高频谱利 用率, 通过码分和时分实现各个 UE ( User Equipment, 用户设备) 的共享 信道调度。 HARQ技术采用了 SAW ( Stop and Wait, 停止和等待)协议, 要求 NodeB发送了数据给 UE后, 需要获取 UE反馈 ACK ( ACKnowledge, 确认信息)或 NACK ( Not ACKnowledge, 不确认信息) , 应答数据是否 已正确接收, 以便决定是重传数据还是新发数据。 AMC技术要求 UE反馈 下行测量的信道质量指示 CQI ( Channel Quality Indicator,信道质量指示), 以便决定 NodeB侧下行 HSDPA数据的编码速率和传输格式。
CDMA系统利用 HSDPA的下行物理信道 HS-SCCH( High Speed Shared Control Channel, 高速共享控制信道) , HS-PDSCH ( High Speed Physical Downlink Shared Channel, 高速物理下行共享信道 )和伴随下行专用信道, 以及上行物理信道 HS-DPCCH ( high speed-dedicated physical control channel, 高速专用物理控制信道)和伴随上行 DPCH ( Dedicated physical channel, 专用信道) 实现 UTRAN (通用传输无线接入网)和 UE之间的数 据传输。 上行 HS- DPCCH承载反馈下行 HS-PDSCH中数据帧接收正确与否 的信息 ACK或 NACK, 或者信道质量指示信息 CQI, 伴随上行专用信道 DPCH除去承载 HSDPA的 RRC ( Radio Resource Control, 无线资源控制) 连接建立、 维护和重配置的高层信令外, 还可以用来承载业务。 HS-SCCH 信道承载解调 HS-PDSCH的下行信令, 包括 HS-PDSCH信道码, 进程号, 新数据指示, 传输块大小索引, 增量冗余和星座映射方式等; HS-PDSCH 信道承载 HS-DSCH传输信道的数据帧。 UE完成 HS-PDSCH中数据帧解调 后, 反馈给 NodeB是否正确接收数据帧的信息 ACK或 NACK, 并根据 CQI 的反馈周期和重复周期, 反馈信道质量状况信息给 NodeB。
HS-SCCH信道的功率控制是利用伴随下行专用信道的导频功率偏置 来实现的, 假设下行专用信道导频时隙功率为 PowerDCH_pii。t, 无线链路建 立或者重配置时高层配置的 HS-SCCH功率偏置参数为 PowerOffsetHS-SCcH, 则 HS-SCCH子帧时隙发射功率 PHS-SCcH=PowerDCH_Pii。t+PowerOffsetHS_SCCH。 HS-SCCH是 HSDPA下行数据发送的源头, 只有充分满足 HS-SCCH发射功 率需求的情况下, 才能确保 HS-SCCH的解调性能, 所以 HS-SCCH信道在 功率分配上优先级应该高于 HS-PDSCH信道。
NodeB通过时分和码分的方式, 把各个用户的 HS-SCCHs和
HS-PDSCHs子帧下发给 UEs, 每个 UE根据 HS-DSCH链路建立时分配的 HS-SCCH信道码集, 解调空口的 HS-SCCHs信道。 每个 UE的 HS-SCCH信 道码集最多有 4个, 每个子帧 NodeB选择其中一个发送信令, UE必须解调 整个 HS-SCCHs信道码集, 识别目前使用的 HS-SCCH信道。 UE和 NodeB将 遵循下面的原则:
如果 UE在当前子帧中没有检测到属于自己的控制信息,那么在下一个 子帧中, UE将监听 HS-SCCH集中所有的 HS-SCCH信道。 如果 UE检测到了 属于自己的控制信息, 那么在下一个子帧中, UE只需要监听相同的 HS-SCCH信道。 UE在检测到 HS-SCCH信道上承载了属于自己的控制信息 后, 开始接收 HS-PDSCHs信道。 通过对 HS-PDSCH数据帧的解调以及 MAC-hs PDU数据块的 CRC校验, 确定上行反馈信道 HS-DPCCH的第一时 隙承载 ACK还是 NACK。 同时根据 HS-DSCH链路建立或者重配置确定的 CQI反馈周期和重复周期, 确定是否需要在 HS-DPCCH子帧的第 2, 3个时 隙, 承载 CQI的编码信息。 在压缩模式下, HS-DPCCH承载的 ACK/NACK或者 CQI信息和非压缩 模式下不一样, 需要做调整, 具体如下:
如果用户下行物理信道 HS-SCCH子帧的一部分或者相关的下行物理 信道 HS-PDSCHs子帧的一部分, 与下行专用信道 DPCH的一个传输 gap重 叠, 那么 UE将不解调物理信道 HS-SCCH或者 HS-PDSCHs的相应子帧, 因 此不反馈该子帧的 ACK或者 NACK信息; 如果 UE判断, 将要承载 ACK/NACK信息的 HS-DPCCH时隙的一部分与上行 DPCH的一个传输 gap 会发生重叠, 那么在该时隙中, UE不会发送 ACK/NACK信息; 如果 UE判 断 ,将要承载 CQI信息的 HS-DPCCH时隙的一部分与上行 DPCH的一个传输 gap会发生重叠, 那么在该子帧中, UE不会发送 CQI信息; 但是对于需要 重复的 N—cqi— transmit 1个其他没有发生重叠的 HS-DPCCH子帧中的 CQI 值, UE需要发送。如果 UE当前的 HS-DPCCH子帧需要承载上报的 CQI信息, 但是获取该 CQI值的 3个时隙信噪比测量时间与下行传输 gap全部或者部分 发生了重叠, 导致获取的 HS-PDSCHs接收信噪比不准确, 获得的 CQI值不 可用。 因此 UE把该 HS-DPCCH子帧的 CQI值以及接下来的 N—cqi__transmitl 个重复子帧的 CQI值设置为 DTX , 然后发送给 NodeB。
NodeB根据上行 HS-DPCCH定时关系, 进行 HS-DPCCH承载信息的解 调, 利用 CQI进行数据调度和传输格式选择, 利用 ACK/NACK确定新发还 是重传。
但是, 现有技术中下行信道的功率控制有以下缺陷: HS-SCCH下行 发射功率可以通过 SRNC配置的 HS- SCCH功率偏置参数得到, 然而固定功 率偏置参数无法满足不同情况下的 HS-SCCH下行发射功率需求。 比如: 在 不同的传输环境下, HS-SCCH基于伴随下行专用信道导频发射功率的偏置 参数要求可能会不一致; 在 HSDPA用户进入伴随专用信道的软切换区域 时, 由于伴随专用信道在软切换区域获得了增益,导致 HSDPA服务小区的 伴随专用信道导频功率降低,使得 HS-SCCH基于伴随下行专用导频发射功 率的偏置参数偏低。如果 HS-SCCH的功率控制始终由 SRNC来配置和维护, 则 SRNC无法预知各种复杂环境下的功率偏置需求, 同时对于用户频繁的 进入和离开软切换区域的参数重配置而言, 加重了信令处理的负担并且时 间上有很大的延迟。
另外, 如果一旦 HS-SCCH发射功率偏低, 使得 UE侧无法正确解调, 此时对应数据帧 HS-PDSCH分配的功率即使很大, UE也无法解调出数据 帧 HS-PDSCH, 就会导致数据传输速率降低甚至无法进行数据传输, 使得 用户数据传输 QoS无法得到保证,并且系统发射功率也被浪费了; 另外如 果 HS-SCCH发射功率偏高, 则尽管保证了 HS-SCCH的解调性能, 但是 下行数据帧 HS-PDSCH可使用功率相应也减小了,使得功率被浪费, 系统 容量会降低。
发明内容
本发明要解决的问题是提供一种下行高速共享控制信道的功率控制 方法, 以解决现有技术中不能动态控制下行高速共享控制信道的功率的缺 陷。 为了解决上述问题, 本发明公开了一种下行高速共享控制信道的功率 控制方法, 该方法包括以下步骤:
A、 在基站 NodeB侧确定下行高速共享控制信道 HS-SCCH的解调性
^ .
B、 在基站 NodeB侧根据所述下行高速共享控制信道 HS-SCCH的解 调性能, 对下行高速共享控制信道 HS-SCCH的发射功率偏置参数进行调 整; C、 根据调整后的下行高速共享控制信道 HS-SCCH的功率偏置参数, 调整下行高速共享控制信道 HS-SCCH的发射功率。 步骤 A所述确定下行高速共享控制信道 HS-SCCH的解调性能, 是根 据基站 NodeB接收到的确认信息 ACK或不确认信息 NACK的数量,通过 统计非连续传输信息 DTX的数量,以及应该反馈 ACK/NACK的信息而变 成了 DTX的数量确定的。 还需要对所述 DTX 的数量进行筛选: 用接收到的非连续传输信息 DTX个数, 减去由于压縮时隙产生的非连续传输信息 DTX个数; 并且减 去由于上行高速专用物理控制信道 HS-DPCCH的功率设置不合理导致的 非连续传输信息 DTX个数。 利用用户下行伴随专用信道的压缩图案, 和上行伴随专用信道专用压 缩图案的数量, 减去由于压缩时隙产生的非连续传输信息 DTX个数。
所述才 据信道质量指示信息 CQI 的解调性能确定由于上行高速专用 物理控制信道的功率设置不合理导致的非连续传输信息 DTX个数。 步驟 B所述对功率偏置参数调整包括:升高功率偏置参数或降低功率 偏置参数。
所述下行高速共享控制信道 HS-SCCH的发射功率偏置参数由下行高 速共享控制信道 HS-SCCH的下行发射功率偏置值、功率偏置调整值确定。
所述升高功率偏置参数时, 设定非连续传输信息 DTX在 N个高速物 理下行共享信道 HS- PDSCH数据帧中统计个数的不同门限,并根据所述门 限范围设定对应的升高功率偏置调整值。
所述降低功率偏置参数时, 首先设定在发送 M个高速物理下行共享 信道 HS-PDSCH数据帧后统计经过筛选的非连续传输信息 DTX个数的不 同门限, 并根据所述门限范围确定对应的降低功率偏置调整值。 对所述非连续传输信息 DTX个数进行计数的计数器周期性复位。 升高功率偏置参数调整值的调整步距大于降低功率偏置参数调整值 的调整步距。
与现有技术相比本发明具有以下优点:
本发明能有效的进行 HSDPA下行物理信道 HS-SCCH^射功率的闭环 调整,无论 SRNC是否配置了 HS-SCCH伴随专用信道导频的功率偏置参数, 都能对 HS-SCCH的发射功率进行有效控制, 同时也能解决 SRNC不配置 HS-SCCH发射功率偏置参数的情况。
本发明针对下行信道 HS-SCCH发射功率偏低或者偏高, 进行自适应 的升高或者降低处理, 能够有效保证 HS-SCCH信道的解调性能要求, 确 保用户数据传输速率能够得到保证,同时能够使得 NodeB下行发射功率能 够得到充分的利用。 这些都说明了对下行信道 HS-SCCH进行自适应的闭 环功率控制, 能够使得用户数据传输的 QoS得到有效的保证, 并且会使得 系统传输的稳健性和可靠性都比较高, 系统可传输容量也会得到优化。 附图说明
图 1是本发明下行高速共享控制信道的功率控制方法基本原理的流程 图;
图 2是本发明中高速下行包接入用户在基站 NodeB与用户设备之间发 射和接收数据帧的定时关系图;
图 3是本发明下行高速共享控制信道的功率控制方法的第一实施例流 程图;
图 4是本发明下行高速共享控制信道的功率控制方法的第二实施例流 程图。
具体实施方式
本发明的基本原理是通过在 NodeB侧确定 UE侧 HS-SCCH信道的解 调性能,来决定 NodeB侧提高或降低 HS-SCCH发射功率。 HS-SCCH的闭环 功率控制中,发射功率偏低会带来用户传输性能的恶化,所以优先级更高, 根据统计的 HS-SCCH在 UE侧解调性能确定值做快速功率调整; 发射功率 偏高的优先级相对低一些 , 根据更长时间统计的 HS-SCCH在 UE侧解调性 能确定值做慢速功率调整。 所述解调性能是通过基站 NodeB解调上行 HS-DPCCH(high speed-dedicated physical control channel , 高速专用物理控 制信道), 获取上行 HS-DPCCH承载的 ACK或 NACK和 CQI等信息, 根据这 些信息对下行 HS- SCCH的性能进行确定,这里所说信道的性能实际就是下 行 HS-SCCH的发射功率是否合理; 所述下行 HS-SCCH^射功率主要受功 率偏置参数影响, NodeB根据初始设定的用户 HS-SCCH下行发射功率偏置 值 PowerOffsetHS-SCCH,功率偏置调整值 σ , 以及伴随专用信道导频时隙功 率 PowerDCHPilt , 确 定 HS-SCCH 下 行 发 射 功 率 PHS-SCCH , PHs-sccH=PowerDCH_piiot+PowerOffsetHS-sccH+cy , 其中 PowerOffsetHS_SCCH可以 为 SR C配置的参数或者 NodeB自己设定的初始值。 如果增加功率偏置参 数, 则下行 HS-SCCH发射功率会升高; 如果减少功率偏置参数, 则下行 HS-SCCH发射功率会降低。 因此, 根据下行 HS-SCCH的发射功率是否合 理,改变下行 HS-SCCH功率偏置参数调整值,以增大或减小功率偏置参数, 进而动态调整下行 HS-SCCH的发射功率。
下面结合图 1说明本发明的原理。
首先, 根据步驟 slOl , 在基站 NodeB侧确定下行高速共享控制信道 HS-SCCH的解调性能。 NodeB向 UE发送一个 HS-PDSCH数据帧后, NodeB 侧应该收到 UE反馈的 ACK/NACK信息和信道质量指示(CQI ) , 通过解调 上行信道 HS-DPCCH, 统计本应该反馈 ACK/NACK的信息却变成了 DTX 值。 这就需要 NodeB根据 DPCCH ( Dedicated physical control channel, 专用 物理控制信道)每个时隙中的导频时隙对 HS-DPCCH进行多径搜索和信道 确定。 由于当发射信号经过空间传播后, 会经过多条不同的路径到达接收 端,对于由用户设备 UE向 NodeB发送的上行 HS-DPCCH会经过多条路径传 播, 针对每一条路径在空间的传播路径不同, 导致传播信道特性不同, 比 如相位信息和幅度信息, NodeB需要对这些路径进行搜索, 并获得这些路 径信道特性信息。 利用这些路径信息可以实现 HS-DPCCH信道每条路径的 解扩解扰; 然后利用每条路径信道特性信息, 插值获得 HS-DPCCH对应该 路径的信道信息参数(比如相位信息和幅度信息) , 并利用它对该路径解 扩解扰后的结果进行信道纠偏, 去除传播信道对接收信号的影响。 将从每 条路径解调出来的路径信息按照最大比合并的方式进行累加获得 HS-DPCCH信道解调后的 ACK或 NACK和 CQI信息。
对于一个用户来说, HS-DPCCH在时间上不是连续的, 只有在
HS-PDSCH信道向 UE发送数据帧后, UE才会在专用物理控制信道 DPCCH 延迟 m*256chips时间间隔后, 发送承载 ACK或 NACK信号, 否则发送 DTX ( Discontinuous Transmission, 非连续传输)信号。 才艮据这个时间特性, 可以选出有效的 ACK或 NACK解调后数据; 承载 CQI的 HS-DPCCH信息与 下行是否发送数据帧 HS-PDSCH没有关系, 根据满足条件的延时参数 m, 用户 UE会确定何时发送承载 CQI的 HS-DPCCH信息, NodeB可以根据延时 参数 m和 CQI发送的准则, 选出 HS-DPCCH上的 CQI有效解调信息。 这样就 能获取上行信道 HS-DPCCH承载的 ACK或 NACK和 CQI解调信息。
为了说明延时参数 m, 先要描述 HSDP A上下行的几个物理信道之间 的定时关系。 UE和 UTRAN必须遵守各个物理信道之间的这种定时关系 , 否则无法进行 HS-DSCH数据的正确传输。 相对于主公共控制物理信道 P-CCPCH每帧的起始位置, NodeB发射 HS-SCCH和 HS-PDSCH子帧的起始 位置有 5种, 参见图 2, "HSDPA用户在 NodeB和 UE之间的发射和接收过 程",分别标识为子帧 0,子帧 1, ...,子帧 4。主公共控制物理信道 P-CCPCH 的帧长为 10ms , 10ms后 HS-SCCH和 HS-PDSCH子帧的起始位置会相应周 期性重复。 UE通过监听 HS-SCCH子帧和 P-CCPCH之间的延时, 确定接收 数据帧 HS-PDSCH相对于 P-CCPCH的延时
Figure imgf000010_0001
, 利用 RRC连接建立时 高层配置的下行专用信到 DPCH相对于 P-CCPCH的延时 τΰΛ:/ )„ , 获取上行 反馈信道 HS-DPCCH子帧相对于上行伴随专用信道的发射延时参数 m。 NodeB在接收上行信道 HS-DPCCH子帧时, 按照相同的延时参数信息, 计 算出对应的延时参数 m, 才能正确的解调 HS-DPCCH信道, 否则如果 UE和 NodeB对同一个 HS-DPCCH子帧相对于伴随上行专用信道的延时参数 m计 算不一致, 就无法进行 HSDPA的数据传输。
图 2中 HSDPA下行物理信道 HS-PDSCH的子帧 0起始位置和 P-CCPCH 无线帧起始位置对齐; HS-PDSCH的子帧 i起始位置相对于 HS-PDSCH的子 帧 i的起始位置, 延迟 2个时隙。 NodeB发射的 HS-SCCH信令子帧和 HS-PDSCH数据子帧将遵循这种定时要求。
UE上行发射 HS-DPCCH的起始位置相对于 UE发射的上行 DPCH的起 始位置,延迟 m*256chips。其中 m的计算为: m = (TTx diff /256) + l0l ,其中 是 NodeB下行发射 HS-PDSCH子帧 i的起始时刻 和包含该子帧起始 位置在内的下行发射专用信道 DPCH帧的起始时刻 τ画, n的差, ΤΤχ = τΗ3_ρ議, i—TDPCH,n。 HS-DPCCH承载的 ACK或 NACK和 CQI的反馈 时间是彼此独立的, ACK或 NACK的反馈满足上面的 m计算公式即可, 5 个子帧周期分别对应 5个可能的 m参数。对于 CQI的反馈, UE根据 HS-DSCH 无线链路的 5个可能的 m参数值, 利用 HS-DSCH无线链路建立或者重配置 时 RRC消息给定的 CQI反馈周期 k, 以及专用信道的 CFN连接帧号, 按照下 面的式子计算满足条件的 m:
(5 X CFN + [m x 256chips 176S0chipsl) mod(fc / 2ms) = 0 对于满足上面条件的延时参数 m , UE会在伴随上行 DPCH帧晚 m*256chips的 HS-DPCCH子帧中发送 CQI。如果涉及 ACK或 NACK或者 CQI 的重传, 则根据高层配置的重传次数, 在 HS- DPCCH子帧后进行相应的重 复发送。 除去上述满足发送条件的子帧, 在其它子帧中, UE不会在 HS-DPCCH中发送 CQI。
HS-SCCH解调性能通过 ACK或 NACK解调性能和 CQI解调性能进行确 定。 首先, 统计发送 N个 HS-PDSCH数据帧后, 接收到的 DTX个数, 利用 用户下行伴随专用信道的压缩图案, 和上行伴随专用信道的压缩图案信 息, 把由于压缩时隙产生的 DTX记为无效统计并去掉, 不作为 DTX个数的 统计值,统计在本应收到 ACK或 NACK的地方却收到 DTX的个数, 作为 HS-SCCH信道的解调性能确定。 所述压缩图案信息在 3GPP协议中有推荐 的定义格式, R C通过信令会把压缩图案定义的参数告诉基站 NodeB和手 机 UE, 明确哪些连续时隙不传输数据。如果上行信道 HS-DPCCH解调性能 满足要求, 则用户 UE通过 HS-DPCCH信道承载的 ACK/NACK, 能够被基 站 NodeB正确解调出来, 而不会被错误的解调成 DTX, 只有的可能是用户 UE根本没有解调出下行信道 HS-SCCH , 因此不会通过上行信道 HS-DPCCH^馈 ACK/NACK信息 , 使得基站 NodeB发出一个 HS-PDSCH数 据帧后, 无法收到 UE反馈的是否正确接收的指示信息 ACK/NACK, 而是 无任何信息的 DTX值。 在这种情况下, 发送 N个 HS-PDSCH数据帧后, 统 计本应收到 ACK或 NACK的地方却收到 DTX的个数越大,说明 HS-SCCH解 调性能越差,需要调高 HS-SCCH下行发射功率;如果收到的 DTX个数很小, 几乎等于 0 , 说明 HS-SCCH解调性能已经好过了性能要求, 需要下调 HS-SCCH下行发射功率, 通过上调或者下调 HS-SCCH功率偏置值就可以 实现。 为了确保统计的 DTX值能真实的反映 HS-SCCH信道的解调性能,还 需要排除由于上行信道 HS-DPCCH解调性能偏差导致 DTX值偏大的情况, 这可以通过上行信道 HS-DPCCH承载的 CQI解调性能来确定。 由于 CQI反 馈与是否发送了 HS-PDSCH数据帧没有关系, 所以可以通过统计 CQI的误 码来确定上行反馈信道 HS-DPCCH解调性能是否异常。 CQI的误码统计周 期假设为 Tstat_BER, 对统计周期内的每个 CQI解调值, 利用编码矩阵进行反 编码, 把反编码出来的 bit和解调后硬判的 bit进行误码计算, 并对统计周期 内的误码率进行平均, 获得 CQI统计误码 CQI— Stat—BER, 假设 HS-DPCCH 发射功率正常情况下的 CQI误码为 CQI—Standard一 BER,则如果 CQI— Stat— BER≤CQI— Standard— BER, 说明 HS-DPCCH发射功率正常, 否则 说明 HS-DPCCH^射功率出现异常 , 此时尽管 NodeB检测到的 DTX个数偏 大,但是不对 HS-SCCH下行发射功率偏置做调整,而是利用参数更新过程, 向 SRNC发起 HS-DPCCH功率偏置参数调整的更新过程 , 通过 SRNC的 Uu 口重配置过程向 UE配置新的符合要求的 ACK/NACk以及 CQI的功率偏值。
步骤 sl02 , 在基站 NodeB 侧根据所述下行高速共享控制信道 HS-SCCH的解调性能,对下行高速共享控制信道 HS-SCCH的发射功率偏 置参数进行调整; 对功率偏置参数调整包括: 升高功率偏置参数或降低功 率偏置参数。所述升高功率偏置参数调整值时,设定非连续传输信息 DTX 在 N个高速物理下行共享信道 HS-PDSCH数据帧中统计个数的不同门限, 包括: 第一门限、 第二门限、 和第 n门限, 所述第一门限 <第二门 限< ...... <第11门限; 并设定所述门限范围内对应的功率偏置调整值: Δ
Δ2 Δη-1,其中, t^〈 < ...... <Δη-ΐ5 利用统计得到的, 并经过筛选的 非连续传输信息 DTX个数在对应的门限范围内采用对应的功率偏置调整 值。 所述降低功率偏置调整值时, 首先设定在发送 Μ个高速物理下行共 享信道 HS-PDSCH数据帧后统计经过筛选的非连续传输信息 DTX个数的 不同门限, Ml门限、 M2门限 ...... Mn门限,所述 Ml门限< M2门限< ...... <
Mn门限,降低功率偏置调整值为 δ!、 δ2 δη.ΐ 5其中 δ^δ^…… >δη-1, 当统计经过筛选的非连续传输信息 DTX个数小于 Ml 门限时, 降低功率 偏置调整值为 δ1 ; 当统计经过筛选的非连续传输信息 DTX个数大于 Ml 门限且小于第二门限时, 降低功率偏置调整值为 δ2; 依次类推。 例如, 可 以设定一个门限 Ml 门限, 如果利用统计得到的非连续传输信息 DTX个 数小于第 Ml 门限, 则以对应的功率偏置调整值 δ! , 如果 Ml 门限 <统计 得到的经过筛选的非连续传输信息 DTX个数, 则对应的功率偏置调整值 0。 又如, 可以设定两个门限, Ml门限和 M2门限, 当利用统计得到的非 连续传输信息 DTX个数小于第 Ml门限, 则以对应的功率偏置调整值 δΐ 5 当第 Ml 门限 <统计得到的经过筛选的非连续传输信息 DTX个数 <第 M2 门限时, 则以对应的功率偏置调整值 δ2, δ >δ2, 当 Μ2门限 <统计得到的 经过筛选的非连续传输信息 DTX个数, 则对应的功率偏置调整值 0。
所述功率调整量的值是可以调整的, 可以通过链路级仿真得到, 也就 是通过仿真将数值逐步代入, 知道确定最佳值。 由于功率偏置参数设置偏 低时的调整比偏高情况下的调整重要程度更高, 时间要求更短, 因此调整 步距会相对要大一些, 功率偏置参数设置偏高情况下的调整步距大小以稳 定可靠为原则, 步距以微调为主。
步骤 sl03, 才艮据调整后的下行高速共享控制信道 HS-SCCH的功率偏 置参数,基站 NodeB直接调整下行高速共享控制信道 HS-SCCH的发射功 率。
下面结合图 3说明本发明的第一实施例, 本实施例说明下行 HS-SCCH 发射功率偏^ ^时, 应用下行 HS-SCCH功率控制方法的情况。
首先, 执行步骤 s301 , 在基站 NodeB侧确定下行高速共享控制信道
HS-SCCH的解调性能。基站 NodeB下行发送数据帧 HS-PDSCH后, UE会在 上行专用信道 DPCH延迟 m*256chips时间间隔后, 发送承载 ACK或 NACK 信息以及满足发送条件的 CQI信息。 NodeB解调上行 HS-DPCCH信道, 获 取承载的 ACK或 NACK和 CQI信息。 通过所述信息统计本应该反馈 ACK或 NACK的信息却变成了 DTX的个数。
步驟 s302, 在基站 NodeB侧根据所述下行高速共享控制信道 HS-SCCH 的解调性能, 提高下行高速共享控制信道 HS-SCCH的发射功率偏置参数。 按照 HS-SCCH闭环功率控制中,发射功率偏低需要快速调整的特性, 统计 发送了 N个 HS-PDSCH数据帧后,接收到的 DTX个数, N的设置值以偏小为 原则。 根据发射功率偏低的程度不同, 设定 DTX在 N个 HS-PDSCH数据帧 中 统计个数的 不 同 门 限以 及关 系 为 : TH—DTX— NumlnN^ THJDTX—NumInN2<THJDTX_NumInN3<TH— DTX— NumInN4对应的功率 偏置调整值及关系为: A!<A2<A3 , 利用统计得到的 DTX个数 Stat_DTX_NumInN, 确定 HS-SCCH下行发射功率偏置的调整值 Δ。 根据下 面的原则进行选择: 如杲 Stat—DTX—NumlnN TH—DTX—NumlnNi , 则 Δ=0; 如果 TH— DTX— NumlnN^Stat— DTX— NumInN≤TH— DTX__NumInN2 , 则 A=At; 如果 ΤΗ— DTX— NumInN2<Stat_DTX— NumInN≤TH— DTX__NumInN3, 则 Δ=Δ2;
如果 TH— DTX— NumInN3<Stat— DTX— NumInN≤TH_DTX— NumInN4 , 则 Δ=Δ3; 如果 HS-SCCH功率偏置调整值 Δ不等于 0, 则 HS-SCCH功率偏置 调整值为 Δ, 同时对统计 DTX个数的计数器 Ν进行周期性复位。
步骤 s303 ,根据调整后的下行高速共享控制信道 HS-SCCH的功率偏置 参数, 基站 NodeB直接提高下行高速共享控制信道 HS-SCCH的发射功率。
下面结合图 4说明本发明的第二实施例, 本实施例说明下行 HS-SCCH 发射功率偏高时, 应用下行 HS-SCCH功率控制的情况的情况。
首先, 执行步骤 s401 , 在基站 NodeB侧确定下行高速共享控制信道 HS- SCCH的解调性能。 基站 NodeB下行发送数据帧 HS-PDSCH后, UE会 在上行专用信道 DPCH延迟 m*256chips时间间隔后, 发送承载 ACK或 NACK信息以及满足发送条件的 CQI信息。 NodeB解调上行 HS-DPCCH信 道, 获取承载的 ACK或 NACK和 CQI信息。 通过所述信息统计本应该反馈 ACK或 NACK的信息却变成了 DTX的个数。
步骤 s402, 在基站 NodeB侧根据所述下行高速共享控制信道 HS-SCCH 的解调性能, 降低下行高速共享控制信道 HS-SCCH的发射功率偏置参数。 按照 HS-SCCH闭环功率控制中,发射功率偏高需要慢速下调的特性, 统计 发送了 M=N*K个 HS-PDSCH数据帧后,接收到的 DTX个数, M的设置值以 偏大为原则。 发射功率偏高以慢速下调为主, 因此调整步距宜偏小, 通过 多次下调来达到平衡,防止调整步距过大,带来不稳定。另外因为 HS-SCCH 在正常解调情况下,不能解调出来的误码极低, 因此要求统计参数 M偏大, 假定 DTX在 M个 HS-PDSCH数据帧 中 统计个数的 门 限为 : TH_DTX_NumInM1 , 对应的功率偏置调整值为 δ1 β 利用统计得到的 DTX 个数 Stat— DTX_NumInM, 确定 HS-SCCH下行发射功率偏置的调整值 δ。 根 据下面的原则进行选择: 如果 Stat—DTX__NumInM≤TH—DTX— NumlnM" 则 δ=δ!; 如果 TH—DTX—NumlnM^StatJDTX— NumlnM, 则 δ=0; 如果同 时 K个 HS-SCCH功率偏置的快速调整值 Δ均等于 0 ,则选择 HS-SCCH慢速功 率偏置调整值 δ, HS-SCCH功率偏置调整值0=5, 否则不作调整。 同时对统 计 DTX个数的计数器 M进行周期性复位。
步骤 s403 ,根据调整后的下行高速共享控制信道 HS-SCCH的功率偏置 参数, 基站 NodeB直接降低下行高速共享控制信道 HS-SCCH的发射功率。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种下行高速共享控制信道的功率控制方法, 其特征在于, 包括 以下步骤:
A、 在基站 NodeB侧确定下行高速共享控制信道 HS-SCCH的解调性 能;
B、 在基站 NodeB侧根据所述下行高速共享控制信道 HS-SCCH的解 调性能, 对下行高速共享控制信道 HS-SCCH的发射功率偏置参数进行调 整;
C、 根据调整后的下行高速共享控制信道 HS-SCCH的功率偏置参数, 调整下行高速共享控制信道 HS-SCCH的发射功率。
2、 如权利要求 1 所述下行高速共享控制信道的功率控制方法, 其特 征在于, 步骤 A所述确定下行高速共享控制信道 HS-SCCH的解调性能, 是根据基站 NodeB接收到的确认信息 ACK或不确认信息 NACK的数量, 通过统计非连续传输信息 DTX的数量,以及应该反馈 AC NACK的信息 而变成了 DTX的数量确定的。
3、 如权利要求 2所述下行高速共享控制信道的功率控制方法, 其特 征在于, 还包括, 对所述 DTX的数量进行筛选: 用接收到的非连续传输 信息 DTX个数, 减去由于压缩时隙产生的非连续传输信息 DTX个数; 并 且减去由于上行高速专用物理控制信道 HS-DPCCH的功率设置不合理导 致的非连续传输信息 DTX个数。
4、 如权利要求 3所述下行高速共享控制信道的功率控制方法, 其特 征在于, 利用用户下行伴随专用信道的压缩图案, 和上行伴随专用信道专 用压缩图案的数量, 减去由于压缩时隙产生的非连续传输信息 DTX个数。
5、 如权利要求 3所述下行高速共享控制信道的功率控制方法, 其特 征在于,才艮据信道质量指示信息 CQI的解调性能确定由于上行高速专用物 理控制信道的功率设置不合理导致的非连续传输信息 DTX个数。
6、 如权利要求 1 所述下行高速共享控制信道的功率控制方法, 其特 征在于, 步骤 B所述对功率偏置参数调整包括: 升高功率偏置参数或降低 功率偏置参数。
7、 如权利要求 6所述下行高速共享控制信道的功率控制方法, 其特 征在于, 所述下行高速共享控制信道 HS-SCCH的发射功率偏置参数由下 行高速共享控制信道 HS-SCCH的下行发射功率偏置值、 功率偏置调整值 确定。
8、 如权利要求 6所述下行高速共享控制信道的功率控制方法, 其特 征在于, 所述升高功率偏置参数时, 设定非连续传输信息 DTX在 N个高 速物理下行共享信道 HS-PDSCH数据帧中统计个数的不同门限,并根据所 述门限范围设定对应的升高功率偏置调整值。
9、 如权利要求 6所述下行高速共享控制信道的功率控制方法, 其特 征在于, 所述降低功率偏置参数时, 首先设定在发送 M个高速物理下行 共享信道 HS-PDSCH数据帧后统计经过筛选的非连续传输信息 DTX个数 的不同门限, 并根据所述门限范围确定对应的降低功率偏置调整值。
10、 如权利要求 6至 9中任一项所述下行高速共享控制信道的功率控 制方法, 其特征在于, 对所述非连续传输信息 DTX个数进行计数的计数 器周期性复位。
11、 如权利要求 6至 9任一项所述的下行高速专用物理控制信道的功 率控制方法, 其特征在于, 升高功率偏置参数调整值的调整步距大于降低 功率偏置参数调整值的调整步距。
PCT/CN2006/000246 2005-02-24 2006-02-21 Méthode de contrôle de puissance dans un canal partagé de contrôle haute vitesse WO2006089476A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602006007966T DE602006007966D1 (de) 2005-02-24 2006-02-21 Leistungsregelverfahren in einem schnellen gemeinsam benutzten steuerkanal
AT06705667T ATE437485T1 (de) 2005-02-24 2006-02-21 Leistungsregelverfahren in einem schnellen gemeinsam benutzten steuerkanal
EP06705667A EP1860787B2 (en) 2005-02-24 2006-02-21 Power control method in high speed shared control channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510008880.8 2005-02-24
CNB2005100088808A CN100395965C (zh) 2005-02-24 2005-02-24 下行高速共享控制信道的功率控制方法

Publications (1)

Publication Number Publication Date
WO2006089476A1 true WO2006089476A1 (fr) 2006-08-31

Family

ID=36927028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000246 WO2006089476A1 (fr) 2005-02-24 2006-02-21 Méthode de contrôle de puissance dans un canal partagé de contrôle haute vitesse

Country Status (5)

Country Link
EP (1) EP1860787B2 (zh)
CN (1) CN100395965C (zh)
AT (1) ATE437485T1 (zh)
DE (1) DE602006007966D1 (zh)
WO (1) WO2006089476A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1976143A3 (en) * 2007-03-28 2011-07-06 NEC Corporation Radio base station apparatus, resource allocation method and resource allocation program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200624B (zh) * 2012-01-10 2015-11-25 鼎桥通信技术有限公司 自适应上行增强方法和无线网络控制器
WO2018127370A1 (en) * 2017-01-09 2018-07-12 Nokia Technologies Oy Flexible indication of transmission timing
CN113170456B (zh) * 2019-01-08 2022-12-27 华为技术有限公司 一种频分双工系统通信方法、相关设备以及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420704A (zh) * 2001-11-16 2003-05-28 Lg电子株式会社 在umts系统中控制hs-scch传输功率的方法
CN1431838A (zh) * 2002-01-05 2003-07-23 Lg电子株式会社 在移动通信系统中控制hs-scch功率的方法
US20040077368A1 (en) * 2002-05-15 2004-04-22 Anderson Nicholas William System, transmitter, receiver and method for communication power control
EP1467500A2 (en) 2003-04-09 2004-10-13 NTT DoCoMo, Inc. Method and system for radio communications transmission power control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002358319B2 (en) * 2001-11-16 2005-12-22 Lg Electronics Inc. Method for transmitting power control information for HS-SCCH in mobile communication system
JP2004112597A (ja) * 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 基地局装置及びパケット品質推定方法
JP3796212B2 (ja) * 2002-11-20 2006-07-12 松下電器産業株式会社 基地局装置及び送信割り当て制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420704A (zh) * 2001-11-16 2003-05-28 Lg电子株式会社 在umts系统中控制hs-scch传输功率的方法
CN1431838A (zh) * 2002-01-05 2003-07-23 Lg电子株式会社 在移动通信系统中控制hs-scch功率的方法
US20040077368A1 (en) * 2002-05-15 2004-04-22 Anderson Nicholas William System, transmitter, receiver and method for communication power control
EP1467500A2 (en) 2003-04-09 2004-10-13 NTT DoCoMo, Inc. Method and system for radio communications transmission power control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1976143A3 (en) * 2007-03-28 2011-07-06 NEC Corporation Radio base station apparatus, resource allocation method and resource allocation program

Also Published As

Publication number Publication date
CN1825776A (zh) 2006-08-30
ATE437485T1 (de) 2009-08-15
CN100395965C (zh) 2008-06-18
EP1860787A4 (en) 2008-05-14
EP1860787B1 (en) 2009-07-22
DE602006007966D1 (de) 2009-09-03
EP1860787A1 (en) 2007-11-28
EP1860787B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP4737553B2 (ja) 無線通信システム、移動局、基地局及びそれらに用いる無線通信システム制御方法並びにそのプログラム
KR100969833B1 (ko) 통신 링크 신뢰도를 검사하는 방법
US7600170B2 (en) Operation of a forward link acknowledgement channel for the reverse link data
US8014812B2 (en) Uplink control channel transit power control based on received transmission
JP5080666B2 (ja) 無線通信システム用の逆方向リンクチャンネルアーキテクチャ
US7050405B2 (en) Method and system for a data transmission in a communication system
JP4882775B2 (ja) 無線端末の通信制御方法及び無線端末
US20090150738A1 (en) Data communication apparatus, data receiving apparatus, data transmitting apparatus, and retransmission control method
WO2007051412A1 (fr) Procede de mise en oeuvre de commande de puissance du canal de commande partage a haut debit et canal d’informations partage a haut debit
AU2002304333A1 (en) Transmissions in a communication system
JP4505467B2 (ja) 移動通信方法及び移動局
WO2004084450A2 (en) Method and system for a data transmission in a communication system
JP4205937B2 (ja) 制御局装置
US9077490B2 (en) Method and device for transmitting a channel quality information
JP2008118514A (ja) 無線通信システム、無線制御装置、無線基地局装置および電力制御方法
JP4113417B2 (ja) 基地局装置および送信方法
CN100384099C (zh) 上行高速专用物理控制信道的功率控制方法
JP2004040187A (ja) 送信電力制御方法、シグナリング方法、通信端末装置及び基地局装置
WO2006083152A1 (en) A method of scheduling uplink channel of a mobile station that is in soft handover in a mobile wireless communication system
WO2006089476A1 (fr) Méthode de contrôle de puissance dans un canal partagé de contrôle haute vitesse
US8532691B2 (en) Method and device for controlling a transmit power in a radio communications system
WO2011134137A1 (zh) 一种amc调整方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006705667

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006705667

Country of ref document: EP