WO2006087802A1 - Tsunami detection system - Google Patents
Tsunami detection system Download PDFInfo
- Publication number
- WO2006087802A1 WO2006087802A1 PCT/JP2005/002601 JP2005002601W WO2006087802A1 WO 2006087802 A1 WO2006087802 A1 WO 2006087802A1 JP 2005002601 W JP2005002601 W JP 2005002601W WO 2006087802 A1 WO2006087802 A1 WO 2006087802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tsunami
- floating body
- detection system
- mooring
- horizontal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/14—Receivers specially adapted for specific applications
- G01S19/17—Emergency applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Definitions
- the present invention relates to a tsunami detection system capable of measuring a tsunami using radio waves of a plurality of satellite forces.
- GPS Global Positioning System
- Non-Patent Document 1 “Development of GPS Tsunami Meter” (Monthly “Ocean” extra N0.15 1998) (hereinafter referred to as Non-Patent Document 1).
- Non-Patent Document 2 The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS) etc.) (hereinafter referred to as Non-Patent Document 2).
- Non-Patent Document 3 “Development of GPS Tsunami Meter-Practical Experiment on Offshore Ofunato” (The IEICE Transactions Vol.J84-B NO.12 December pp2227-2235) (December 2001) (hereinafter, Non-Patent Document 3 Called).
- Patent Document 1 JP-A-11-63984 (hereinafter referred to as Patent Document 1).
- Patent Document 2 JP 2001-147263 A (hereinafter referred to as Patent Document 2).
- Patent Document 3 JP 2001-281323 A (hereinafter referred to as Patent Document 3).
- Non-Patent Document 1, Non-Patent Document 3, and Patent Document 1 relate to a tsunami detection system using a real-time kinematic method (hereinafter referred to as RTK method).
- Reference 2 and Patent Document 3 relate to the principle of obtaining positioning accuracy equivalent to that of the RTK method by a method different from the RTK method.
- the base station which is also a reference station
- a measurement floating body includes an anchor submerged on the seabed in a predetermined sea area.
- the floating body is connected to the anchor via a chain or other rope and a weight is attached, and a measuring device is provided on the floating body.
- the base station and the measurement floating body are equipped with a GPS receiver, and the displacement vector with respect to the base line vector of the floating body is calculated by the RTK method, so that the accurate position of the measurement floating body is obtained in real time. It is made to be required!
- Non-Patent Document 1 and Non-Patent Document 3 disclose a report based on a measurement result in a state where no tsunami has occurred
- Patent Document 1 discloses a process for determining displacement data. A configuration is disclosed that is input to the science department to determine whether the displacement is due to a tsunami.
- Patent Document 4 By the way, in Patent Document 4 described above, only the detection of wave heights including waves is performed. Also in Patent Document 1, displacement data is input to the judgment processing unit and is caused by a tsunami. Although it is only described that it is determined whether it is a failure or not, the present inventors detect tsunamis by removing short-period components such as waves by frequency discrimination and extracting long-period components including tsunami components. Has succeeded.
- Non-Patent Document 3 experiments have been carried out with a floating body installed in a sea area with a water depth of about 50m. It is small and the sea surface displacement increases as the water depth becomes shallower. If a floating body is installed offshore for early tsunami detection, it is expected that the water depth will become deeper and tsunami detection will be difficult. Therefore, an object of the present invention is to provide a tsunami detection system that does not depend on sea level displacement.
- a tsunami detection system includes a floating body moored on the sea surface by a mooring device, and a position measuring device that is provided on the floating body and can detect its own position by receiving radio waves from a plurality of satellites.
- a tsunami detection system comprising a tsunami detection device capable of detecting the presence or absence of a tsunami based on horizontal position data obtained by the position measuring device,
- a tsunami detection area setting unit that inputs horizontal position data obtained by the position measuring device at predetermined time intervals and sets a tsunami determination area according to the current measurement position of the floating body relative to the mooring center position of the floating body, and this tsunami A tsunami determination unit that determines whether or not there is a tsunami based on whether or not the next measurement position of the floating body is included in the determination region set in the determination region setting unit is provided.
- the tsunami determination area in the tsunami detection system is a movement limit line indicating a movement limit of a predetermined radius centered on the mooring center position of the floating body, and extends radially from the floating body center.
- a judgment boundary line obtained by connecting each of the intersection points where the plurality of straight lines and the movement limit line intersect each other and a plurality of line segments connecting the floating body center are respectively divided at a predetermined ratio.
- the horizontal relative position with respect to the mooring center position of the floating body is obtained by radio waves of satellite power, and the floating body is within the tsunami determination area set according to the horizontal relative position of the floating body. Because the tsunami is detected by determining whether it is present or not, the tsunami is detected even if the depth is deep! It can be detected easily and accurately only by the amount of movement in the horizontal direction.
- FIG. 1 is a perspective view showing a schematic overall configuration of a tsunami detection system according to an embodiment of the present invention. It is.
- FIG. 2 is a block diagram showing a schematic configuration of a mobile station in the tsunami detection system.
- FIG. 3 is a block diagram showing a schematic configuration of a reference station in the tsunami detection system.
- FIG. 4 is a block diagram showing a schematic configuration of a tsunami detection device provided in the reference station.
- FIG. 5 is a plan view for explaining a method for setting a tsunami determination area of the tsunami detection device.
- FIG. 6 is a plan view for explaining a method for setting a tsunami determination area of the tsunami detection device.
- FIG. 7 is a flowchart for explaining a tsunami detection method in the tsunami detection system.
- the tsunami detection system floats a floating body on the sea surface, and based on the horizontal movement amount (including distance and direction) of the floating body on the sea surface (two-dimensional horizontal plane), the presence or absence of a tsunami
- the horizontal movement of the floating body is measured by the real-time kinematic positioning method, which is a relative positioning using GPS (Global Positioning System).
- this tsunami detection system is fixed on land, has a known three-dimensional absolute position, and receives radio waves from multiple (at least four) GPS satellites 1.
- Base station 2 to obtain positioning data, and a mooring cord (such as a mooring tool) 3 such as a chain on the sea surface (specifically, the sea area where the tsunami is to be measured) at a predetermined distance from this base station 2.
- a mooring cord such as a mooring tool
- the moored floating body 4 and the mobile station 5 which is provided on the floating body 4 side and receives radio waves from a plurality of GPS satellites 1 as in the reference station 2 and obtains positioning data, and both the stations 2 and 5
- a detection device (see FIG. 3) 6 is provided.
- the tsunami detection device 6 is described as being provided in the reference station 2.
- the mobile station 5 includes a mobile-side GPS receiver (position measuring device) 11 that can receive radio waves from a GPS satellite 1 and detect positioning data, and the mobile side. GPS reception A mobile-side radio device (radio transceiver) 12 capable of transmitting the positioning data obtained by the device 11 by radio is provided.
- the reference station 2 receives a radio wave from the GPS satellite 1 and can detect positioning data, and a reference-side GPS receiver (position measuring device) 21 and the mobile-side radio A reference-side wireless device (radio transceiver) 22 that receives the positioning data transmitted by the device 12 is provided, and the tsunami detection device 6 is arranged as described above.
- the positioning data obtained by both the GPS receivers 11 and 21 are input directly and directly via the reference-side wireless device 22, and real-time based on the both positioning data.
- the kinematic positioning method which uses the carrier phase, hereafter referred to as the RTK method
- at least the horizontal relative position of the mobile station 5 with respect to the reference station 2 that is, on the sea surface of the center of the floating body 4 (in a two-dimensional horizontal plane)
- the horizontal position is accurately measured, and the presence or absence of a tsunami is detected based on this measurement position.
- the tsunami detection device 6 includes positioning data obtained at both stations 2 and 5, [for example, carrier phase value, distance between satellite and receiver antenna (pseudo distance) , Satellite orbit information, and positioning system used to include time-series data (GPS time), etc., and calculate the relative position of mobile station 5 with respect to reference station 2 using the RTK method
- a horizontal position calculation unit 31 for obtaining the current center position of the floating body 4 relative to the mooring center position of the floating body 4 (which is a relative position with respect to the reference station), that is, a horizontal relative position, and a horizontal position obtained by the horizontal position calculation unit 31 Enter the relative position and the tsunami judgment area S defined in the past, determine whether the current center position of the floating body 4 exists (is included) in the tsunami judgment area S, and the floating body 4 is tsunami If it exists in the judgment area S, it is a tsunami.
- the tsunami judgment unit 32 to be disconnected and the horizontal relative position obtained by the horizontal position calculation unit 31 are input, and the tsunami that sets the
- the position measurement of the floating body 4 by the GPS receivers 11 and 21 is performed at predetermined time intervals. Therefore, the tsunami determination period in the tsunami determination unit 32 also matches this position measurement period. It has been made.
- the above-mentioned “determined in the past” means that the previous position measurement cycle (tsunami determination cycle) This means that it was determined based on the horizontal relative position of the floating body 4 obtained in (5).
- the tsunami determination area S determined based on the position means that it will be used for tsunami determination in the next position measurement cycle (which is also the tsunami determination cycle).
- the floating body 4 is moored to an anchor (not shown) installed on the seabed via a mooring cable body 3 such as a chain.
- a mooring cable body 3 such as a chain.
- the boundary line indicating the outer edge of the movable range is referred to as a movement limit circle (movement limit line) A.
- the center position of the floating body 4 on the sea surface of the movement limit circle A is the mooring center position C.
- the mooring center position C corresponds to the horizontal position of the anchor on the seabed.
- the floating body 4 can theoretically move within the movement limit circle A, but in reality, when an external force such as wind or ocean current (force due to meteorological conditions) acts. Means that the floating body 4 moves in that direction and the mooring center position force is also separated, and in this away direction (which is also the direction of external force action), for example, the opposite direction due to the weight of the mooring cord 3 Because of this force, the movable range becomes narrower, but in the opposite direction, the movable range becomes wider because it can move excessively by the distance from the mooring center position.
- an external force such as wind or ocean current (force due to meteorological conditions) acts.
- the floating body 4 moves in that direction and the mooring center position force is also separated, and in this away direction (which is also the direction of external force action), for example, the opposite direction due to the weight of the mooring cord 3 Because of this force, the movable range becomes narrower, but in the opposite direction, the movable range becomes wider because it can move excessively by the distance from the
- this movable range is usually set to a size according to the horizontal position of the floating body 4 in consideration of external forces such as wind and ocean currents that can be assumed, and the floating body is set in a range beyond this movable range. If 4 moves, it can be judged that an excessive energy wave, that is, a tsunami, was applied.
- a portion within the movement limit circle A and excluding the movable range that can be moved by an external force that can be normally assumed is defined as a tsunami determination region S.
- a judgment boundary line B indicating the boundary of the movable range that can be moved by a normal external force
- the tsunami judgment area S is the movement limit circle A.
- the judgment boundary line B shown with diagonal lines.
- the floating body 4 is located at the mooring center position C. However, normally, the floating body 4 is either one of the two due to an external force such as wind or ocean current.
- the mooring cable 3 is floating at a position where the tension and the external force of the mooring cable body 3 are balanced.
- the tsunami determination area S includes a movement limit circle A having a predetermined radius around the mooring center position C of the floating body 4, a plurality of straight lines L extending radially from the center F of the floating body 4, and the above movement limit.
- Judgment boundary line B obtained by connecting a plurality of division points M, each of which is obtained by dividing the line segment L connecting each intersection K where the circle A intersects with the floating body center F with a predetermined ratio, into a curved line (may be a straight line) And the range between.
- the tsunami determination area S is set using the ratio to the ratio (hereinafter referred to as the area setting coefficient, specifically, a positive value smaller than 1).
- the tsunami determination area S is determined based on the current position (measurement position) of the floating body 4, that is, based on the horizontal relative position with respect to the mooring center position C, and naturally, in the mooring center position direction. Is easy to move, but difficult to move in the opposite direction, so multiple straight lines L extend radially from the center position F of the floating body 4, and the intersection K of each of these straight lines L and the movement limit circle A and the floating body center F Multiplying the line segment L by the above area setting factor to determine the movable range B of the floating body 4, and the range between the extension of this movable range B and the movement limit circle A (indicated by the diagonal lines) ) Is the tsunami determination area S.
- the movable range B is easily moved to the mooring center position C side in the direction in which the floating body 4 is being flown.
- the range on the far side becomes narrower, and on the opposite side it becomes wider.
- the region setting coefficient is determined in advance by experience, experiment, etc., and the value is constant for the line segment L in all directions of the floating body center F. Depending on the force situation, different values for each line segment L may be used in stages.
- the positioning data obtained by the mobile-side GPS receiver 11 of the mobile station 4 provided on the floating body 4 floating on the sea surface is transferred via the mobile-side and reference-side radio devices 12, 22 Then, it is input to the tsunami detection device 6 of the reference station 2, and the positioning data obtained by the reference-side GPS receiver 21 is also input to the tsunami detection device 6.
- the horizontal relative position obtained by the horizontal position calculation unit 31 and the tsunami determination region S set in the previous position measurement cycle by the tsunami determination region setting unit 33 are input to the tsunami determination unit 32, where Then, it is determined whether or not the center position of the floating body 4 exists in the tsunami determination area S (step 2).
- a tsunami determination area that is set in advance is used.
- a notification to that effect is sent from the base station 2 to, for example, the Disaster Prevention Center (step 3).
- the measurement position measured in the current position measurement cycle is the tsunami determination area setting unit.
- the tsunami detection area S for the next determination is set (step 4), and the above procedure is repeated to perform tsunami detection processing.
- the positioning data detected by the GPS receivers 21 and 11 of the reference station 2 provided on land and the mobile station 5 provided on the floating body 4 on the sea surface are used.
- the real-time kinematic positioning method which is relative positioning, accurately measures at least the amount of movement of the floating body 4 relative to the reference station 2 in the horizontal direction, and obtains the horizontal relative position of the moving force force floating body 4 to the mooring center position. And according to the horizontal relative position of the floating body 4
- the tsunami determination period is described as being performed in accordance with the position measurement period of the floating body.
- the setting of the tsunami determination area S that does not need to be aligned with the position measurement period of the floating body is performed. Although it is performed at every measurement, it may be determined whether or not the force is a tsunami by using the tsunami determination area S set n times before every predetermined number of position measurements. In this way, by increasing the interval between the tsunami determination periods to some extent, it is possible to prevent erroneous recognition due to temporary disturbances such as gusts.
- the position measurement cycle can be changed as appropriate. For example, if it is determined that the floating body is moving for each position measurement, the tsunami can be detected more quickly by shortening the tsunami determination cycle.
- the tsunami determination region has been described by calculation based on the position of the floating body with respect to the mooring center position.
- a reference direction the direction in which the floating body is located. It is also possible to obtain a tsunami determination area for this position according to the distance of the mooring center position force and use the tsunami determination area in this reference direction.
- the movement of the floating body is the same as the mooring center position regardless of the orientation of the floating body in view of the mooring center position force.
- a reference azimuth is determined in advance, and a reference tsunami determination area is set according to the position of the floating body in this reference azimuth.
- the tsunami detection device 6 is installed in the reference station 2.
- it should be a convenient location for system management regardless of where it is installed.
- it may be installed in a land-based monitoring facility other than the reference station 2, and the positioning data obtained by the mobile-side GPS receiver 11 of the mobile station 5 and the reference-side GPS receiver 21 are used.
- the obtained positioning data is sent to the monitoring facility via the reference-side wireless device 22.
- the tsunami detection device 6 can also be installed on the mobile station 2 side.
- the RT K method using GPS is used to determine the position of the floating body 4.
- a DGPS positioning method or a single positioning method which is one of the relative positioning methods, is used. It can also be used, and it is possible to use other satellite positioning methods that are not limited to GPS.
- the position of the floating body has been described as being obtained as a relative position with respect to the reference station.
- the positioning coordinate system by the satellite including the relative positioning method and the single positioning method described above is used. It can also be handled as the absolute position used.
- the horizontal position of a floating body moored on the sea surface is accurately measured using a satellite, and can be moved by an external force such as normal wind or ocean current based on this measurement position. If the area between the judgment boundary line indicating the extension of a certain range and the movement limit circle of the floating body is set as the tsunami judgment area, and the floating body exists in this tsunami judgment area, it is judged as a tsunami. Therefore, the tsunami can be detected with high accuracy simply by measuring the current horizontal position of the floating body. In particular, it greatly contributes to the reduction of damage caused by tsunami caused by a large earthquake.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
A tsunami detection system has a horizontal position calculation section (31) for obtaining, based on positioning data obtained by GPS receivers (11, 21), a horizontal relative position relative to the center position of mooring of a floating body (4); a tsunami determination region setting section (33) for setting a tsunami determination region S, which depends on the horizontal relative position of the floating body, for determination of the next time; and a tsunami determination section (32) for determining, based on the horizontal relative position of the floating body and a tsunami determination region set last time, whether the floating body is present in the tsunami determination region.
Description
明 細 書 Specification
津波検知システム Tsunami detection system
技術分野 Technical field
[0001] 本発明は、複数の衛星力 の電波を用いて津波を計測し得る津波検知システムに 関するものである。 [0001] The present invention relates to a tsunami detection system capable of measuring a tsunami using radio waves of a plurality of satellite forces.
背景技術 Background art
[0002] 近年、測位技術にぉ 、ては、 GPS (汎地球測位システム)が用いられており、陸上 および海上を問わず、物体の位置を正確に計測し得るようになって!/、る。 [0002] In recent years, GPS (Global Positioning System) has been used for positioning technology, and it has become possible to accurately measure the position of an object regardless of land or sea! .
[0003] ところで、本発明者等は、 GPSを用いて、海面の変位を計測する方法について、多 くの提案を行っており、その中には、津波を検知するシステムに関するものがあり、以 下にこれらの文献を示す。 [0003] By the way, the present inventors have made many proposals on a method for measuring the displacement of the sea surface using GPS, and some of them are related to a system for detecting a tsunami. These documents are shown below.
( 1)「GPS津波計の開発」(月刊誌「海洋」号外 N0.15 1998) (以下、非特許文献 1と 称す)。 (1) “Development of GPS Tsunami Meter” (Monthly “Ocean” extra N0.15 1998) (hereinafter referred to as Non-Patent Document 1).
(2)「ReaH:ime observation of tsunami by RTK- (JP!」 Earth Planets (2) “ReaH: ime observation of tsunami by RTK- (JP!) Earth Planets
Space, 52, 841-845, 2000 (The Society of Geomagnetism and Earth, Planetary and Space Sciences(SGEPSS) etc.) (以下、非特許文献 2と称す)。 Space, 52, 841-845, 2000 (The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS) etc.) (hereinafter referred to as Non-Patent Document 2).
(3)「GPS津波計の開発 -大船渡巿沖実用化実験」(電子情報通信学会論文誌 Vol.J84-B NO.12 December pp2227-2235) (2001年 12月)(以下、非特許文献 3と称 す)。 (3) "Development of GPS Tsunami Meter-Practical Experiment on Offshore Ofunato" (The IEICE Transactions Vol.J84-B NO.12 December pp2227-2235) (December 2001) (hereinafter, Non-Patent Document 3 Called).
(4)特開平 1 1-63984号公報 (以下、特許文献 1と称す)。 (4) JP-A-11-63984 (hereinafter referred to as Patent Document 1).
(5)特開 2001-147263号公報 (以下、特許文献 2と称す)。 (5) JP 2001-147263 A (hereinafter referred to as Patent Document 2).
(6)特開 2001-281323号公報 (以下、特許文献 3と称す)。 (6) JP 2001-281323 A (hereinafter referred to as Patent Document 3).
[0004] これらの文献の内、非特許文献 1一非特許文献 3、および特許文献 1については、 リアルタイムキネマティック方式 (以下、 RTK方式という)による津波検知システムに関 するものであるが、特許文献 2および特許文献 3については、 RTK方式とは別な方 法にて、 RTK方式と同等の測位精度を得ようとする原理に関するものである。 [0004] Of these documents, Non-Patent Document 1, Non-Patent Document 3, and Patent Document 1 relate to a tsunami detection system using a real-time kinematic method (hereinafter referred to as RTK method). Reference 2 and Patent Document 3 relate to the principle of obtaining positioning accuracy equivalent to that of the RTK method by a method different from the RTK method.
[0005] そして、津波の検知に際し、 RTK方式を用いた上記非特許文献 1一非特許文献 3
、および特許文献 1に記載された構成によると、陸上の基地局 (基準局でもある)と、 計測用浮体とからなり、またこの計測用浮体については、所定海域の海底に沈めら れたアンカーと、このアンカーにチェーンなどの索体を介して連結されるとともにゥェ イトが取り付けられた浮体本体と、この浮体本体に設けられた計測機器とから構成さ れている。 [0005] Then, when detecting a tsunami, the above non-patent document 1 using the RTK method 1 non-patent document 3 According to the configuration described in Patent Document 1, the base station (which is also a reference station) and a measurement floating body are included, and the measurement floating body includes an anchor submerged on the seabed in a predetermined sea area. The floating body is connected to the anchor via a chain or other rope and a weight is attached, and a measuring device is provided on the floating body.
[0006] そして、上記基地局および計測用浮体には GPS受信機が備えられるとともに、 RT K方式により浮体本体の基線ベクトルに対する変位ベクトルが演算されて、計測用浮 体の正確な位置がリアルタイムで求められるようにされて!、る。 [0006] The base station and the measurement floating body are equipped with a GPS receiver, and the displacement vector with respect to the base line vector of the floating body is calculated by the RTK method, so that the accurate position of the measurement floating body is obtained in real time. It is made to be required!
[0007] また、非特許文献 1一非特許文献 3には、津波が発生していない状態での計測結 果に基づく報告が開示されており、また特許文献 1においては、変位データを判断処 理部に入力し、その変位が津波によるものかに否かについて判断する構成が開示さ れている。 [0007] In addition, Non-Patent Document 1 and Non-Patent Document 3 disclose a report based on a measurement result in a state where no tsunami has occurred, and Patent Document 1 discloses a process for determining displacement data. A configuration is disclosed that is input to the science department to determine whether the displacement is due to a tsunami.
[0008] さらに、上述した文献以外では、沖合いに設置した浮体等の変位を、当該浮体等 に備えられた GPS受信機により RTK方式を用いて計測を行い、基地局に対する相 対位置を測定した後、この相対位置の変化を測定し、そして相対位置の変化から波 高を求める波高の測定方法が開示されている [例えば、特開平 10— 185564号公報 (以下、特許文献 4と称す)参照]。 [0008] Further, except for the above-mentioned documents, the displacement of a floating body installed offshore was measured using the RTK method with a GPS receiver provided on the floating body, and the relative position with respect to the base station was measured. Thereafter, a method for measuring the wave height is obtained by measuring the change in the relative position and obtaining the wave height from the change in the relative position [see, for example, Japanese Patent Laid-Open No. 10-185564 (hereinafter referred to as Patent Document 4). ].
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0009] ところで、上記特許文献 4にお 、ては、波浪を含めた波高の検出だけを行うもので あり、また特許文献 1についても、変位データを判断処理部へ入力して津波によるも のカゝ否かを判断するとしか記載されていないが、本発明者等は、周波数弁別により 波浪等の短周期成分の除去を行い、津波成分を含んだ長周期成分を抽出すること により津波の検出に成功している。 [0009] By the way, in Patent Document 4 described above, only the detection of wave heights including waves is performed. Also in Patent Document 1, displacement data is input to the judgment processing unit and is caused by a tsunami. Although it is only described that it is determined whether it is a failure or not, the present inventors detect tsunamis by removing short-period components such as waves by frequency discrimination and extracting long-period components including tsunami components. Has succeeded.
[0010] し力しながら、これまでは、非特許文献 3に示すように、水深 50m程度の海域に浮 体を設置して実験を行ってきたが、津波は水深が深い海域ほど海面変位が小さく、 水深が浅くなるに従い海面変位が大きくなるもので、早期の津波検出のために、沖合 いに浮体を設置すると水深が深くなり、津波の検出が難しくなることが予想される。
[0011] そこで、本発明は、海面の変位に依存しない津波検知システムを提供することを目 的とする。 [0010] However, until now, as shown in Non-Patent Document 3, experiments have been carried out with a floating body installed in a sea area with a water depth of about 50m. It is small and the sea surface displacement increases as the water depth becomes shallower. If a floating body is installed offshore for early tsunami detection, it is expected that the water depth will become deeper and tsunami detection will be difficult. Therefore, an object of the present invention is to provide a tsunami detection system that does not depend on sea level displacement.
課題を解決するための手段 Means for solving the problem
[0012] 本発明の津波検知システムは、係留具により海面上に係留された浮体と、この浮体 に設けられて複数の衛星からの電波を受信して自らの位置を検出し得る位置計測機 と、この位置計測機にて求められた水平位置データに基づき津波の有無を検知し得 る津波検知装置とが具備された津波検知システムであって、 [0012] A tsunami detection system according to the present invention includes a floating body moored on the sea surface by a mooring device, and a position measuring device that is provided on the floating body and can detect its own position by receiving radio waves from a plurality of satellites. A tsunami detection system comprising a tsunami detection device capable of detecting the presence or absence of a tsunami based on horizontal position data obtained by the position measuring device,
上記津波検知装置に、 In the above tsunami detection device,
所定時間おきに上記位置計測機で求められた水平位置データを入力するとともに 浮体の係留中心位置に対する当該浮体の現在の計測位置に応じて津波判定領域 を設定する津波判定領域設定部と、この津波判定領域設定部にて設定された津波 判定領域内に次回における浮体の計測位置が含まれる力否かに基づき津波の有無 を判断する津波判断部とが具備されたものである。 A tsunami detection area setting unit that inputs horizontal position data obtained by the position measuring device at predetermined time intervals and sets a tsunami determination area according to the current measurement position of the floating body relative to the mooring center position of the floating body, and this tsunami A tsunami determination unit that determines whether or not there is a tsunami based on whether or not the next measurement position of the floating body is included in the determination region set in the determination region setting unit is provided.
[0013] また、本発明に係る他の構成は、上記津波検知システムにおける津波判定領域は 浮体の係留中心位置を中心とした所定半径の移動限界を示す移動限界線と、 浮体中心から放射状に伸びる複数の直線と上記移動限界線とが交わる各交点と、 浮体中心とを結ぶ複数の線分が、それぞれ所定比率で分割された各分割点を結ん で得られる判定境界線と [0013] Further, according to another configuration of the present invention, the tsunami determination area in the tsunami detection system is a movement limit line indicating a movement limit of a predetermined radius centered on the mooring center position of the floating body, and extends radially from the floating body center. A judgment boundary line obtained by connecting each of the intersection points where the plurality of straight lines and the movement limit line intersect each other and a plurality of line segments connecting the floating body center are respectively divided at a predetermined ratio.
の間の領域とするものである。 The area between
発明の効果 The invention's effect
[0014] 上記津波検知システムによると、衛星力もの電波により浮体の係留中心位置に対 する水平相対位置を求め、そして浮体の水平相対位置に応じて設定された津波判 定領域内に、浮体が存在するカゝ否かを判断することにより津波の検知を行うようにし たので、例えば深度が深!ヽ海域で上下方向での変位を検出しにく!/ヽ場合であっても 、津波を水平方向での移動量だけで、容易に且つ精度良く検知することができる。 図面の簡単な説明 [0014] According to the above tsunami detection system, the horizontal relative position with respect to the mooring center position of the floating body is obtained by radio waves of satellite power, and the floating body is within the tsunami determination area set according to the horizontal relative position of the floating body. Because the tsunami is detected by determining whether it is present or not, the tsunami is detected even if the depth is deep! It can be detected easily and accurately only by the amount of movement in the horizontal direction. Brief Description of Drawings
[0015] [図 1]本発明の実施の形態に係る津波検知システムの概略全体構成を示す斜視図
である。 FIG. 1 is a perspective view showing a schematic overall configuration of a tsunami detection system according to an embodiment of the present invention. It is.
[図 2]同津波検知システムにおける移動局の概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of a mobile station in the tsunami detection system.
[図 3]同津波検知システムにおける基準局の概略構成を示すブロック図である。 FIG. 3 is a block diagram showing a schematic configuration of a reference station in the tsunami detection system.
[図 4]同基準局に設けられた津波検知装置の概略構成を示すブロック図である。 FIG. 4 is a block diagram showing a schematic configuration of a tsunami detection device provided in the reference station.
[図 5]同津波検知装置の津波判定領域の設定方法を説明する平面図である。 FIG. 5 is a plan view for explaining a method for setting a tsunami determination area of the tsunami detection device.
[図 6]同津波検知装置の津波判定領域の設定方法を説明する平面図である。 FIG. 6 is a plan view for explaining a method for setting a tsunami determination area of the tsunami detection device.
[図 7]同津波検知システムでの津波の検知方法を説明するフローチャートである。 発明を実施するための最良の形態 FIG. 7 is a flowchart for explaining a tsunami detection method in the tsunami detection system. BEST MODE FOR CARRYING OUT THE INVENTION
[0016] [実施の形態] [0016] [Embodiment]
以下、本発明の実施の形態に係る津波検知システムを、図 1一図 7に基づき説明す る。 Hereinafter, a tsunami detection system according to an embodiment of the present invention will be described with reference to FIGS.
[0017] 本実施の形態に係る津波検知システムは、海面上に浮体を浮かべるとともに、この 浮体の海面(二次元水平面)での水平移動量 (距離および方向も含む)に基づき、津 波の有無を検知するものであり、また浮体の水平移動量については、 GPS (汎地球 測位システム)を利用して相対測位であるリアルタイムキネマティック測位法により計 測するものである。 [0017] The tsunami detection system according to the present embodiment floats a floating body on the sea surface, and based on the horizontal movement amount (including distance and direction) of the floating body on the sea surface (two-dimensional horizontal plane), the presence or absence of a tsunami The horizontal movement of the floating body is measured by the real-time kinematic positioning method, which is a relative positioning using GPS (Global Positioning System).
[0018] すなわち、この津波検知システムには、図 1に示すように、陸上に固定されて三次 元の絶対位置が既知であるとともに複数個(少なくとも 4個)の GPS衛星 1からの電波 を受信して測位データを得る基準局 2と、この基準局 2から所定距離はなれた海面上 (具体的には、津波を計測したい海域)にチ ーンなどの係留用索体 (係留具) 3によ り係留された浮体 4と、この浮体 4側に設けられるとともに基準局 2同様に複数個の G PS衛星 1からの電波を受信して測位データを得る移動局 5と、上記両局 2, 5にて得 られた測位データを入力して当該移動局 5の現在の水平方向での計測位置 (水平位 置データであり、言い換えれば、浮体中心の計測位置である)に基づき津波の有無 を判断する津波検知装置(図 3参照) 6とが具備されている。なお、本実施の形態に おいては、上記津波検知装置 6は、基準局 2に設けられているものとして説明する。 [0018] In other words, as shown in Fig. 1, this tsunami detection system is fixed on land, has a known three-dimensional absolute position, and receives radio waves from multiple (at least four) GPS satellites 1. Base station 2 to obtain positioning data, and a mooring cord (such as a mooring tool) 3 such as a chain on the sea surface (specifically, the sea area where the tsunami is to be measured) at a predetermined distance from this base station 2. The moored floating body 4 and the mobile station 5 which is provided on the floating body 4 side and receives radio waves from a plurality of GPS satellites 1 as in the reference station 2 and obtains positioning data, and both the stations 2 and 5 A tsunami that inputs the obtained positioning data and determines the presence or absence of a tsunami based on the current horizontal measurement position of the mobile station 5 (horizontal position data, in other words, the measurement position of the floating body center) A detection device (see FIG. 3) 6 is provided. In the present embodiment, the tsunami detection device 6 is described as being provided in the reference station 2.
[0019] 上記移動局 5には、図 2に示すように、 GPS衛星 1からの電波を受信して測位デー タを検出し得る移動側 GPS受信機 (位置計測機) 11、並びに当該移動側 GPS受信
機 11で得られた測位データを無線にて送信し得る移動側無線装置 (無線送受信機 である) 12が具備されている。 [0019] As shown in Fig. 2, the mobile station 5 includes a mobile-side GPS receiver (position measuring device) 11 that can receive radio waves from a GPS satellite 1 and detect positioning data, and the mobile side. GPS reception A mobile-side radio device (radio transceiver) 12 capable of transmitting the positioning data obtained by the device 11 by radio is provided.
[0020] また、上記基準局 2には、図 3に示すように、 GPS衛星 1からの電波を受信して測位 データを検出し得る基準側 GPS受信機 (位置計測機) 21および上記移動側無線装 置 12にて送信された測位データを受信する基準側無線装置 (無線送受信機である) 22が具備されており、また上述したように津波検知装置 6が配置されている。 In addition, as shown in FIG. 3, the reference station 2 receives a radio wave from the GPS satellite 1 and can detect positioning data, and a reference-side GPS receiver (position measuring device) 21 and the mobile-side radio A reference-side wireless device (radio transceiver) 22 that receives the positioning data transmitted by the device 12 is provided, and the tsunami detection device 6 is arranged as described above.
[0021] 上記津波検知装置 6においては、上記両 GPS受信機 11, 21で得られた測位デー タが基準側無線装置 22を介しておよび直接に入力されて、これら両測位データに基 づきリアルタイムキネマティック測位法 (搬送波位相を用いるもので、以下、 RTK方式 と称す)を利用して基準局 2に対する移動局 5の少なくとも水平相対位置すなわち浮 体 4中心の海面上(二次元水平面内)での水平位置を精度良く計測し、この計測位 置に基づき津波の有無を検知するものである。 In the tsunami detection device 6, the positioning data obtained by both the GPS receivers 11 and 21 are input directly and directly via the reference-side wireless device 22, and real-time based on the both positioning data. Using the kinematic positioning method (which uses the carrier phase, hereafter referred to as the RTK method), at least the horizontal relative position of the mobile station 5 with respect to the reference station 2, that is, on the sea surface of the center of the floating body 4 (in a two-dimensional horizontal plane) The horizontal position is accurately measured, and the presence or absence of a tsunami is detected based on this measurement position.
[0022] この津波検知装置 6には、図 4に示すように、両局 2, 5にて得られた測位データ [例 えば、搬送波位相値、衛星と受信機のアンテナ間距離 (擬似距離)、衛星の軌道情 報、測位システムで採用されて 、る時系データ(GPSタイム)などが含まれて 、る]を 入力して、基準局 2に対する移動局 5の相対位置を RTK方式により演算するとともに 、浮体 4の係留中心位置 (基準局に対する相対位置である)に対する当該浮体 4の現 在の中心位置すなわち水平相対位置を求める水平位置演算部 31と、この水平位置 演算部 31で求められた水平相対位置および過去に定められた津波判定領域 Sを入 力して、現在の浮体 4の中心位置が津波判定領域 S内に存在する(含まれる)か否か を判断し、そして浮体 4が津波判定領域 S内に存在する場合には、津波であると判断 する津波判断部 32と、上記水平位置演算部 31で求められた水平相対位置を入力 するとともに当該水平相対位置と係留中心位置とに基づき将来における判定のため の津波判定領域 Sを設定する津波判定領域設定部 33とが具備されている。 [0022] As shown in Fig. 4, the tsunami detection device 6 includes positioning data obtained at both stations 2 and 5, [for example, carrier phase value, distance between satellite and receiver antenna (pseudo distance) , Satellite orbit information, and positioning system used to include time-series data (GPS time), etc., and calculate the relative position of mobile station 5 with respect to reference station 2 using the RTK method In addition, a horizontal position calculation unit 31 for obtaining the current center position of the floating body 4 relative to the mooring center position of the floating body 4 (which is a relative position with respect to the reference station), that is, a horizontal relative position, and a horizontal position obtained by the horizontal position calculation unit 31 Enter the relative position and the tsunami judgment area S defined in the past, determine whether the current center position of the floating body 4 exists (is included) in the tsunami judgment area S, and the floating body 4 is tsunami If it exists in the judgment area S, it is a tsunami. The tsunami judgment unit 32 to be disconnected and the horizontal relative position obtained by the horizontal position calculation unit 31 are input, and the tsunami that sets the tsunami judgment region S for future judgment based on the horizontal relative position and the mooring center position And a determination area setting unit 33.
[0023] なお、 GPS受信機 11, 21による浮体 4の位置計測は、所定時間ごとに行われてお り、このため、津波判断部 32での津波判定周期についても、この位置計測周期に合 わせられている。 [0023] Note that the position measurement of the floating body 4 by the GPS receivers 11 and 21 is performed at predetermined time intervals. Therefore, the tsunami determination period in the tsunami determination unit 32 also matches this position measurement period. It has been made.
[0024] すなわち、上述の「過去に定められた」とは、前回の位置計測周期 (津波判定周期
でもある)で求められた浮体 4の水平相対位置に基づき定められたことを意味してお り、上述の「将来における判定のため」とは、今回の計測で求められた浮体 4の水平 相対位置に基づき定められた津波判定領域 Sは、次回の位置計測周期 (津波判定 周期でもある)での津波の判定に利用されることを意味している。 That is, the above-mentioned “determined in the past” means that the previous position measurement cycle (tsunami determination cycle) This means that it was determined based on the horizontal relative position of the floating body 4 obtained in (5). The tsunami determination area S determined based on the position means that it will be used for tsunami determination in the next position measurement cycle (which is also the tsunami determination cycle).
[0025] ここで、津波判定判領域設定部 33における津波判定領域 Sの設定方法について 説明する。 Here, a method for setting the tsunami determination area S in the tsunami determination area setting unit 33 will be described.
[0026] まず、津波判定領域 Sを設定する際の基本的な考え方について説明しておく。 First, the basic concept when setting the tsunami determination area S will be described.
[0027] 浮体 4については、上述したように、海底に設置されたアンカー(図示せず)に、チ エーンなどの係留用索体 3を介して係留されており、このため、図 5に示すように、係 留用索体 3の長さに応じて、海面上では所定半径 Rの円内で移動可能となる。なお、 この移動可能範囲の外縁を示す境界線を移動限界円(移動限界線) Aと称する。そ して、この浮体 4の移動限界円 Aの海面上での中心位置が係留中心位置 Cとなる。 勿論、この係留中心位置 Cは、アンカーの海底での水平位置に対応するものである。 [0027] As described above, the floating body 4 is moored to an anchor (not shown) installed on the seabed via a mooring cable body 3 such as a chain. Thus, according to the length of the mooring cord 3, it can move within a circle with a predetermined radius R on the sea surface. The boundary line indicating the outer edge of the movable range is referred to as a movement limit circle (movement limit line) A. The center position of the floating body 4 on the sea surface of the movement limit circle A is the mooring center position C. Of course, the mooring center position C corresponds to the horizontal position of the anchor on the seabed.
[0028] 上述したように、浮体 4は、理論的には移動限界円 A内で移動し得るが、実際には 、風、海流などの外力(気象'海象条件による力)が作用した場合には、浮体 4がその 方向に移動して係留中心位置力も離れることになり、この離れた方向(外力の作用方 向でもある)においては、例えば係留用索体 3の重さにより、その反対方向の力が作 用するため、移動可能範囲は狭くなるが、その反対方向では、係留中心位置から離 れている分だけ余分に移動し得ることになつて移動可能範囲が広くなる。したがって 、この移動可能範囲を、通常、想定し得る風'海流などの外力を考慮して、浮体 4の 水平位置に応じた大きさに設定しておき、この移動可能範囲を超えた範囲に浮体 4 が移動した場合には、過大なエネルギーの波、すなわち津波が作用したと判断する ことができる。 [0028] As described above, the floating body 4 can theoretically move within the movement limit circle A, but in reality, when an external force such as wind or ocean current (force due to meteorological conditions) acts. Means that the floating body 4 moves in that direction and the mooring center position force is also separated, and in this away direction (which is also the direction of external force action), for example, the opposite direction due to the weight of the mooring cord 3 Because of this force, the movable range becomes narrower, but in the opposite direction, the movable range becomes wider because it can move excessively by the distance from the mooring center position. Therefore, this movable range is usually set to a size according to the horizontal position of the floating body 4 in consideration of external forces such as wind and ocean currents that can be assumed, and the floating body is set in a range beyond this movable range. If 4 moves, it can be judged that an excessive energy wave, that is, a tsunami, was applied.
[0029] このような考えに基づき、移動限界円 A内で且つ通常に想定し得る外力で移動し得 る移動可能範囲を除いた部分を、津波判定領域 Sとするものである。例えば、図 5に おいては、通常の外力で移動し得る移動可能範囲の境界を示す半径 rの円(以下、 判定境界線と称す) Bで表すと、津波判定領域 Sは移動限界円 Aと判定境界線 Bとの 間の領域 (斜線で示す)となる。
[0030] 図 5にお 、ては、浮体 4が係留中心位置 Cに位置して 、る場合にっ 、て説明したが 、通常は、風、海流などの外力により、浮体 4はいずれかの方向に流されており、係 留用索体 3の張力と外力とが釣り合つている位置で浮遊している。 [0029] Based on such an idea, a portion within the movement limit circle A and excluding the movable range that can be moved by an external force that can be normally assumed is defined as a tsunami determination region S. For example, in FIG. 5, when represented by a circle of radius r (hereinafter referred to as a judgment boundary line) B indicating the boundary of the movable range that can be moved by a normal external force, the tsunami judgment area S is the movement limit circle A. And the judgment boundary line B (shown with diagonal lines). [0030] In Fig. 5, the floating body 4 is located at the mooring center position C. However, normally, the floating body 4 is either one of the two due to an external force such as wind or ocean current. The mooring cable 3 is floating at a position where the tension and the external force of the mooring cable body 3 are balanced.
[0031] 以下、このような状態における津波判定領域 Sの設定方法を、図 6に基づき説明す る。 [0031] Hereinafter, a method for setting the tsunami determination region S in such a state will be described with reference to FIG.
[0032] この場合の津波判定領域 Sは、浮体 4の係留中心位置 Cを中心とした所定半径尺の 移動限界円 Aと、浮体 4の中心 Fから放射状に伸びる複数の直線 Lと上記移動限界 円 Aとが交わる各交点 Kと浮体中心 Fとをそれぞれ結ぶ線分 Lが所定比率で分割さ れた複数の分割点 M同士を曲線 (直線でもよい)で結ぶことにより得られる判定境界 線 Bと、の間の範囲に設定される。 [0032] In this case, the tsunami determination area S includes a movement limit circle A having a predetermined radius around the mooring center position C of the floating body 4, a plurality of straight lines L extending radially from the center F of the floating body 4, and the above movement limit. Judgment boundary line B obtained by connecting a plurality of division points M, each of which is obtained by dividing the line segment L connecting each intersection K where the circle A intersects with the floating body center F with a predetermined ratio, into a curved line (may be a straight line) And the range between.
[0033] 言い換えれば、係留中心位置 Cと同じ水平面上に浮体 4が存在していると仮定して おき、津波が来たときに次の津波判定周期で移動するであろう距離を線分 Lに対す る割合 (以下、領域設定係数と称し、具体的には、 1より小さい正の値である)を用い て、津波判定領域 Sを設定したものである。 [0033] In other words, it is assumed that the floating body 4 exists on the same horizontal plane as the mooring center position C, and the distance that will move in the next tsunami judgment cycle when a tsunami comes The tsunami determination area S is set using the ratio to the ratio (hereinafter referred to as the area setting coefficient, specifically, a positive value smaller than 1).
[0034] さらに、詳しく説明すれば、津波判定領域 Sとは浮体 4の現在位置 (計測位置)、す なわち係留中心位置 Cに対する水平相対位置に基づき定まり、当然に、係留中心位 置方向には移動しやすいが、その反対方向には移動しにくいことから、浮体 4の中心 位置 Fから放射状に複数の直線 Lを延ばし、これら各直線 Lと移動限界円 Aとの交点 Kと浮体中心 Fとを結んだ線分 Lに対して上記領域設定係数を乗じて浮体 4の移動 可能範囲 Bを特定し、この移動可能範囲 Bの外延と移動限界円 Aとの間の範囲 (斜 線で示す)が津波判定領域 Sとされる。 In more detail, the tsunami determination area S is determined based on the current position (measurement position) of the floating body 4, that is, based on the horizontal relative position with respect to the mooring center position C, and naturally, in the mooring center position direction. Is easy to move, but difficult to move in the opposite direction, so multiple straight lines L extend radially from the center position F of the floating body 4, and the intersection K of each of these straight lines L and the movement limit circle A and the floating body center F Multiplying the line segment L by the above area setting factor to determine the movable range B of the floating body 4, and the range between the extension of this movable range B and the movement limit circle A (indicated by the diagonal lines) ) Is the tsunami determination area S.
[0035] なお、図 6に示すように、上記移動可能範囲 Bは、浮体 4が流されている方向にお いては、係留中心位置 C側に移動しやすいため、当然、係留中心位置 C力も離れて いる側の範囲は狭くなるとともに、その反対側においては広くなる。 [0035] As shown in FIG. 6, the movable range B is easily moved to the mooring center position C side in the direction in which the floating body 4 is being flown. The range on the far side becomes narrower, and on the opposite side it becomes wider.
[0036] また、上記領域設定係数は、予め経験、実験などにより定められるもので、その値 は、浮体中心 Fの全方向における線分 Lに対して一定にされる力 風、海流などの外 力の状況に応じて、各線分 Lについて、段階的に異なる値を用いることもある。 [0036] The region setting coefficient is determined in advance by experience, experiment, etc., and the value is constant for the line segment L in all directions of the floating body center F. Depending on the force situation, different values for each line segment L may be used in stages.
[0037] 次に、上記津波検知システムによる津波の検知手順を、図 7のフローチャートに基
づき説明する。 [0037] Next, the tsunami detection procedure by the tsunami detection system is based on the flowchart of FIG. I will explain.
[0038] まず、海面に浮遊'係留された浮体 4に設けられた移動局 4の移動側 GPS受信機 1 1にて得られた測位データが移動側および基準側無線装置 12, 22を介して、基準 局 2の津波検知装置 6に入力され、また基準側 GPS受信機 21にて得られた測位デ ータも津波検知装置 6に入力される。 [0038] First, the positioning data obtained by the mobile-side GPS receiver 11 of the mobile station 4 provided on the floating body 4 floating on the sea surface is transferred via the mobile-side and reference-side radio devices 12, 22 Then, it is input to the tsunami detection device 6 of the reference station 2, and the positioning data obtained by the reference-side GPS receiver 21 is also input to the tsunami detection device 6.
[0039] 次に、上記津波検知装置 6においては、両局 2, 5力 の測位データが水平位置演 算部 31に入力されて、ここで、 RTK方式に基づき、基準局 2に対する移動局 5の位 置、すなわち海面上での係留中心位置 Cに対する浮体 4の中心位置 F力 所定時間 ごとに求められる (ステップ 1)。 [0039] Next, in the tsunami detection device 6 described above, positioning data of both stations 2 and 5 is input to the horizontal position calculation unit 31, where the mobile station 5 relative to the reference station 2 is based on the RTK method. The position, that is, the center position F of the floating body 4 with respect to the mooring center position C on the sea surface is obtained every predetermined time (step 1).
[0040] そして、この水平位置演算部 31で求められた水平相対位置および津波判定領域 設定部 33で前回の位置計測周期において設定された津波判定領域 Sが津波判断 部 32に入力され、ここで、浮体 4の中心位置が津波判定領域 S内に存在しているか 否かが判断される (ステップ 2)。なお、最初の津波判定周期では、予め、初期設定さ れた津波判定領域が用いられる。 [0040] Then, the horizontal relative position obtained by the horizontal position calculation unit 31 and the tsunami determination region S set in the previous position measurement cycle by the tsunami determination region setting unit 33 are input to the tsunami determination unit 32, where Then, it is determined whether or not the center position of the floating body 4 exists in the tsunami determination area S (step 2). In the initial tsunami determination period, a tsunami determination area that is set in advance is used.
[0041] 浮体 4が津波判定領域 S内に存在している場合には、風、海流などにより、浮体 4が 移動し得る範囲を超えた領域に移動していることになり、この浮体 4の移動について は、まさしく、津波によるものと判断される。 [0041] When the floating body 4 exists in the tsunami determination area S, the floating body 4 has moved to an area beyond the range where the floating body 4 can move due to wind, ocean current, etc. The movement is judged to be caused by the tsunami.
[0042] 勿論、津波であると判断された場合には、その旨が警報として、当該基準局 2から 例えば防災センターなどに通知される (ステップ 3)。 [0042] Of course, if it is determined that the event is a tsunami, a notification to that effect is sent from the base station 2 to, for example, the Disaster Prevention Center (step 3).
[0043] 一方、津波でないと判断された場合には (津波を検知した場合も含み、要するに、 津波検知処理が済むと)、今回の位置計測周期で計測された計測位置が津波判定 領域設定部 33に入力されて、次回の判定用の津波判定領域 Sが設定され (ステップ 4)、引き続き、上述した手順が繰り返されて、津波の検知処理が行われる。 [0043] On the other hand, when it is determined that it is not a tsunami (including when a tsunami is detected, in other words, after the tsunami detection processing is completed), the measurement position measured in the current position measurement cycle is the tsunami determination area setting unit. The tsunami detection area S for the next determination is set (step 4), and the above procedure is repeated to perform tsunami detection processing.
[0044] このような津波検知システムによると、陸上に設けられた基準局 2および海面上の浮 体 4に設けられた移動局 5の各 GPS受信機 21, 11にて検出された測位データを用 いて、相対測位であるリアルタイムキネマティック測位法により、基準局 2に対する浮 体 4の少なくとも水平方向での移動量を精度良く計測し、この移動量力 浮体 4の係 留中心位置に対する水平相対位置を求め、そして浮体 4の水平相対位置に応じた
津波判定領域 Sを設定するとともに、浮体 4が津波判定領域 S内に存在するカゝ否かを 判断するようにしたので、例えば深度が深い海域で上下方向での変位を検出しにく い場合であっても、津波を水平方向での移動量だけで、容易に且つ精度良く検知す ることがでさる。 [0044] According to such a tsunami detection system, the positioning data detected by the GPS receivers 21 and 11 of the reference station 2 provided on land and the mobile station 5 provided on the floating body 4 on the sea surface are used. In addition, the real-time kinematic positioning method, which is relative positioning, accurately measures at least the amount of movement of the floating body 4 relative to the reference station 2 in the horizontal direction, and obtains the horizontal relative position of the moving force force floating body 4 to the mooring center position. And according to the horizontal relative position of the floating body 4 In addition to setting the tsunami judgment area S and determining whether the floating body 4 is in the tsunami judgment area S, for example, it is difficult to detect vertical displacement in deep sea areas Even so, the tsunami can be detected easily and accurately with only the amount of movement in the horizontal direction.
[0045] また、津波判定領域 Sを設定する際に、経験または実験に基づく領域設定係数 (線 分の分割比率)を用いて定めるようにして 、るので、係留中心位置 Cと浮体 4の移動 限界円 Aとが予め分力つていることから、浮体 4の水平相対位置 (計測位置でもある) を求めるだけで、当該浮体 4がどのような位置にあっても、津波判定領域 Sを容易に 且つ簡単に特定することができる。 [0045] In addition, when setting the tsunami determination area S, it is determined by using an area setting coefficient (division ratio of line segments) based on experience or experiment. Therefore, the movement of the mooring center position C and the floating body 4 is determined. Since the limit circle A is divided in advance, it is easy to set the tsunami determination area S regardless of the position of the floating body 4 simply by obtaining the horizontal relative position (which is also the measurement position) of the floating body 4. And it can specify easily.
[0046] ところで、上記実施の形態においては、津波判定周期を、浮体の位置計測周期に 合わせて行うように説明したが、浮体の位置計測周期に合わせる必要はなぐ津波判 定領域 Sの設定は毎計測時に行うが、所定回数 nの位置計測ごとに、 n回前に設定し た津波判定領域 Sを用いて津波である力否かの判断を行うようにしてもょ 、。このよう に、津波判定周期の間隔をある程度長くすることにより、突風などの一時的な外乱に よる誤認識を防止することができる。また、位置計測周期についても、適宜、変更する こともできる。例えば、位置計測ごとに、浮体が移動していることが分力つた場合には 、津波判定周期を短くすることにより、より迅速な津波の検知を行うことができる。 In the above embodiment, the tsunami determination period is described as being performed in accordance with the position measurement period of the floating body. However, the setting of the tsunami determination area S that does not need to be aligned with the position measurement period of the floating body is performed. Although it is performed at every measurement, it may be determined whether or not the force is a tsunami by using the tsunami determination area S set n times before every predetermined number of position measurements. In this way, by increasing the interval between the tsunami determination periods to some extent, it is possible to prevent erroneous recognition due to temporary disturbances such as gusts. Further, the position measurement cycle can be changed as appropriate. For example, if it is determined that the floating body is moving for each position measurement, the tsunami can be detected more quickly by shortening the tsunami determination cycle.
[0047] また、上記実施の形態においては、係留中心位置に対する浮体の位置により、津 波判定領域を演算により求めるように説明したが、例えば浮体がある方向(以下、基 準方向と称す)〖こ位置している場合の津波判定領域を係留中心位置力もの距離に 応じて求めておき、この基準方向での津波判定領域を利用することもできる。 [0047] In the above-described embodiment, the tsunami determination region has been described by calculation based on the position of the floating body with respect to the mooring center position. However, for example, the direction in which the floating body is located (hereinafter referred to as a reference direction) It is also possible to obtain a tsunami determination area for this position according to the distance of the mooring center position force and use the tsunami determination area in this reference direction.
[0048] すなわち、浮体の移動のしゃすさは、係留中心位置力も見て浮体がどの方位にあ つても、係留中心位置に対しては同じである。このため、予め、基準方位を決めてお き、この基準方位での浮体の位置に応じて基準津波判定領域を設定しておき、浮体 の方位が異なる場合に、係留中心位置力もの距離に応じた基準津波判定領域を、 基準方位との差分だけ、係留中心位置を中心にして回転させることにより、津波判定 領域の設定作業を容易に行うことができる。 That is, the movement of the floating body is the same as the mooring center position regardless of the orientation of the floating body in view of the mooring center position force. For this reason, a reference azimuth is determined in advance, and a reference tsunami determination area is set according to the position of the floating body in this reference azimuth. By rotating the reference tsunami determination area around the mooring center position by the difference from the reference azimuth, the tsunami determination area can be set easily.
[0049] また、上記実施の形態においては、津波検知装置 6を基準局 2に設置したものとし
て説明したが、どこに設置してもよぐシステムの管理上、都合のよい場所にすればよ い。例えば、基準局 2以外の陸上の監視施設などに設置してもよぐこの場合には、 上記移動局 5の移動側 GPS受信機 11にて得られた測位データおよび基準側 GPS 受信機 21にて得られた測位データは、基準側無線装置 22を介して、上記監視施設 に送られる。勿論、津波検知装置 6を移動局 2側に設置することもできる。 [0049] In the above embodiment, it is assumed that the tsunami detection device 6 is installed in the reference station 2. However, it should be a convenient location for system management regardless of where it is installed. For example, in this case, it may be installed in a land-based monitoring facility other than the reference station 2, and the positioning data obtained by the mobile-side GPS receiver 11 of the mobile station 5 and the reference-side GPS receiver 21 are used. The obtained positioning data is sent to the monitoring facility via the reference-side wireless device 22. Of course, the tsunami detection device 6 can also be installed on the mobile station 2 side.
[0050] また、上記実施の形態においては、浮体 4の位置を求めるのに、 GPSを用いた RT K方式を用いたが、相対測位方式の一つである DGPS測位方式、若しくは単独測位 方式を用いることもでき、また GPSに限定されるものでもなぐ他の衛星測位方法を 用いることちでさる。 [0050] In the above embodiment, the RT K method using GPS is used to determine the position of the floating body 4. However, a DGPS positioning method or a single positioning method, which is one of the relative positioning methods, is used. It can also be used, and it is possible to use other satellite positioning methods that are not limited to GPS.
[0051] さらに、上記実施の形態においては、浮体の位置については、基準局に対する相 対位置として求めるように説明したが、上述した相対測位方式および単独測位方式 を含めて、衛星による測位座標系を用いた絶対位置として扱うこともできる。 [0051] Furthermore, in the above-described embodiment, the position of the floating body has been described as being obtained as a relative position with respect to the reference station. However, the positioning coordinate system by the satellite including the relative positioning method and the single positioning method described above is used. It can also be handled as the absolute position used.
産業上の利用可能性 Industrial applicability
[0052] 本発明の津波検知システムによると、海面に係留された浮体の水平位置を衛星を 用いて精度良く計測するとともに、この計測位置に基づき、通常の風、海流などの外 力により移動可能な範囲の外延を示す判定境界線と浮体の移動限界円との間の領 域を、津波判定領域に設定して、浮体がこの津波判定領域内に存在する場合には、 津波であると判断するようにしたので、単に、浮体の現在の水平位置を計測するだけ で、津波を精度良く検知することができる。特に、大地震により発生した津波による被 害の軽減に大きく貢献するものである。
[0052] According to the tsunami detection system of the present invention, the horizontal position of a floating body moored on the sea surface is accurately measured using a satellite, and can be moved by an external force such as normal wind or ocean current based on this measurement position. If the area between the judgment boundary line indicating the extension of a certain range and the movement limit circle of the floating body is set as the tsunami judgment area, and the floating body exists in this tsunami judgment area, it is judged as a tsunami. Therefore, the tsunami can be detected with high accuracy simply by measuring the current horizontal position of the floating body. In particular, it greatly contributes to the reduction of damage caused by tsunami caused by a large earthquake.
Claims
[1] 係留具により海面上に係留された浮体と、この浮体に設けられて複数の衛星からの 電波を受信して自らの位置を検出し得る位置計測機と、この位置計測機にて求めら れた水平位置データに基づき津波の有無を検知し得る津波検知装置とが具備され た津波検知システムであって、 [1] A floating body moored on the sea surface by a mooring device, a position measuring device installed on this floating body that can receive radio waves from multiple satellites and detect its own position, and this position measuring device A tsunami detection system equipped with a tsunami detection device capable of detecting the presence or absence of a tsunami based on the obtained horizontal position data,
上記津波検知装置に、 In the above tsunami detection device,
所定時間おきに上記位置計測機で求められた水平位置データを入力するとともに 浮体の係留中心位置に対する当該浮体の現在の計測位置に応じて津波判定領域 を設定する津波判定領域設定部と、この津波判定領域設定部にて設定された津波 判定領域内に次回における浮体の計測位置が含まれる力否かに基づき津波の有無 を判断する津波判断部とが具備されたことを特徴とする津波検知システム。 A tsunami detection area setting unit that inputs horizontal position data obtained by the position measuring device at predetermined time intervals and sets a tsunami determination area according to the current measurement position of the floating body relative to the mooring center position of the floating body, and this tsunami Tsunami detection system characterized by comprising a tsunami judging unit for judging the presence or absence of a tsunami based on whether or not the next measurement position of the floating body is included in the judgment region set in the judgment region setting unit .
[2] 津波判定領域は、 [2] The tsunami judgment area is
浮体の係留中心位置を中心とした所定半径の移動限界を示す移動限界線と、 浮体中心から放射状に伸びる複数の直線と上記移動限界線とが交わる各交点と、 浮体中心とを結ぶ複数の線分が、それぞれ所定比率で分割された各分割点を結ん で得られる判定境界線と A movement limit line indicating a movement limit of a predetermined radius around the mooring center position of the floating body, a plurality of lines connecting a plurality of straight lines extending from the center of the floating body and the above movement limit lines, and a plurality of lines connecting the floating body center And a decision boundary line obtained by connecting the division points divided by a predetermined ratio.
の間の領域であることを特徴とする請求項 1に記載の津波検知システム。
The tsunami detection system according to claim 1, wherein the tsunami detection system is a region in between.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007503540A JP4588065B2 (en) | 2005-02-18 | 2005-02-18 | Tsunami detection system |
PCT/JP2005/002601 WO2006087802A1 (en) | 2005-02-18 | 2005-02-18 | Tsunami detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/002601 WO2006087802A1 (en) | 2005-02-18 | 2005-02-18 | Tsunami detection system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006087802A1 true WO2006087802A1 (en) | 2006-08-24 |
Family
ID=36916218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/002601 WO2006087802A1 (en) | 2005-02-18 | 2005-02-18 | Tsunami detection system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4588065B2 (en) |
WO (1) | WO2006087802A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229432A (en) * | 2008-02-26 | 2009-10-08 | Takehiko Furukawa | Seismic sea wave observation system using gps receiver |
JP2012203747A (en) * | 2011-03-25 | 2012-10-22 | Yasuaki Iwai | Display device, drawing program, and disaster prevention system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10122860A (en) * | 1996-10-17 | 1998-05-15 | Kaijo Corp | Tidal-wave meter |
JPH1163984A (en) * | 1997-08-25 | 1999-03-05 | Teruyuki Kato | Tidal wave detecting system |
-
2005
- 2005-02-18 WO PCT/JP2005/002601 patent/WO2006087802A1/en not_active Application Discontinuation
- 2005-02-18 JP JP2007503540A patent/JP4588065B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10122860A (en) * | 1996-10-17 | 1998-05-15 | Kaijo Corp | Tidal-wave meter |
JPH1163984A (en) * | 1997-08-25 | 1999-03-05 | Teruyuki Kato | Tidal wave detecting system |
Non-Patent Citations (2)
Title |
---|
TAKASHI FUJITA: "A development pf gps wave, tide and tsunami meter", PROC. OF WORKSHOP ON WAVE, TIDE OBSERVATIONS AND MODELING IN THE ASIAN PACIFIC REGION, 2004, pages 61 - 72, XP008051839 * |
TERUYUKI KATO: "A new tsunami monitoring system using RTK-GPS", PAPERS AND ABSTRACTS FROM THE INTERNATIONAL TSUNAMI SYMPOSIUM 2001, 2001, pages 645 - 651, XP002990858 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229432A (en) * | 2008-02-26 | 2009-10-08 | Takehiko Furukawa | Seismic sea wave observation system using gps receiver |
JP2012203747A (en) * | 2011-03-25 | 2012-10-22 | Yasuaki Iwai | Display device, drawing program, and disaster prevention system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006087802A1 (en) | 2008-07-03 |
JP4588065B2 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2006132003A1 (en) | GPS receiver and GPS positioning correction method | |
EP3109674B1 (en) | Structure displacement detection device, structure displacement sharing system, structure displacement detection method and structure displacement detection program | |
JP3803177B2 (en) | Tsunami detection system | |
JP2006170920A (en) | Tide level monitoring system, sea surface buoy for tide level monitoring system and ground-based station apparatus, tide level monitoring method, and tide level monitoring program | |
CN103213657A (en) | Ship draft amount detection system and detection method thereof | |
CA2585141C (en) | Relative positioning method and relative positioning system using satellite | |
CN103852799A (en) | Shipborne gravity measurement method based on PPP technology | |
CN107462891B (en) | Three-point type deep sea submerged buoy positioning method | |
KR102583028B1 (en) | Marine Weather Observation Equipment Using Satellite Navigation System and Inertial Measurement Device, and Driving Method Thereof | |
JP5455663B2 (en) | Sea level displacement measurement system | |
JP4588065B2 (en) | Tsunami detection system | |
JP6241995B2 (en) | Diver information acquisition method and diver information acquisition system | |
JP4271481B2 (en) | Wave measuring device and wave measuring method | |
CA2585060C (en) | Relative position measurement system using satellites | |
CN1325931C (en) | Method for positioning manned submersible without fixed reference point in inertial coordinate system | |
RU2433430C2 (en) | Method for determining possibility of occurrence of catastrophic phenomena | |
RU2282217C1 (en) | Method of determining comprehensive data on ocean condition | |
JP6751852B2 (en) | Positioning method and terminal | |
Galas et al. | On precise GNSS-based sea surface monitoring systems | |
Malyszko et al. | Detecting Cantilever Beam Vibration with Accelerometers and GNSS | |
JP2005345414A (en) | Mooring sensor positioning method and system | |
Nakasone et al. | New Approach for Tsunami Detection Based on RTK-GNSS using Network of Ships | |
Di et al. | Sea Surface Height Measurement Using GNSS Buoy Based on Carrier Phase Differential Positioning | |
JPWO2006046305A1 (en) | Relative measurement method and system using satellite | |
KR20150100197A (en) | Apparatus of measuring wave-induced current and the measuring system and method equipped with the developed apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007503540 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05719271 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5719271 Country of ref document: EP |