WO2006085725A1 - Procedes de codage et de decodage video comprenant une structure de filtrage temporel hierarchique et appareil correspondant - Google Patents

Procedes de codage et de decodage video comprenant une structure de filtrage temporel hierarchique et appareil correspondant Download PDF

Info

Publication number
WO2006085725A1
WO2006085725A1 PCT/KR2006/000470 KR2006000470W WO2006085725A1 WO 2006085725 A1 WO2006085725 A1 WO 2006085725A1 KR 2006000470 W KR2006000470 W KR 2006000470W WO 2006085725 A1 WO2006085725 A1 WO 2006085725A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
frames
prediction
video
temporal
Prior art date
Application number
PCT/KR2006/000470
Other languages
English (en)
Inventor
Woo-Jin Han
Original Assignee
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050030730A external-priority patent/KR100755689B1/ko
Application filed by Samsung Electronics Co., Ltd. filed Critical Samsung Electronics Co., Ltd.
Publication of WO2006085725A1 publication Critical patent/WO2006085725A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • H04N19/615Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding using motion compensated temporal filtering [MCTF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/19Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding using optimisation based on Lagrange multipliers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]

Definitions

  • An encoder generates a bitstream through wavelet transformation by use of a single
  • bi-directional prediction is used via a 5/3 filter mechanism, as described above in connection with FIG. 2.
  • forward prediction and update operations may be restricted because of a low-delay condition.
  • the low-delay condition is to restrict the delay time between a terminal of an encoder and a terminal of a decoder so as not to exceed a predetermined time in video compression.
  • the low-delay condition is a restriction required in real-time applications, such as real-time broadcasting that requires a low final delay time.
  • bi-directional prediction is conducted using a forward frame 330 and a backward frame 340 of the current frame when the low-delay condition is satisfied.
  • conversion to enable the bi-directional prediction may be conducted using the already-processed nearest frame 350 among the forward frames of the current frame 310.
  • the bidirectional prediction may be implemented using a plurality of forward frames.
  • the motion estimation unit 412 receives information on a prediction method from the mode conversion unit 411 according to whether the low-delay condition is violated, and supplies the entropy encoding unit 440 with a motion vector obtained as a result of the motion estimation, and motion data such as the size of a motion block, a reference frame number.
  • the quantization unit 430 quantizes the transform coefficient produced by the spatial transform unit 420. Quantization implies a job to indicate the transform coefficient expressed as a random real number value as discrete values by dividing it into fixed sections and matching them with predetermined indices. Especially, when the wavelet transform is used as the spatial transform method, an embedded quantization method is often used as the quantization method.
  • the embedded quantization method preferentially encodes components in excess of a threshold value by changing the threshold value of the transform coefficient (by 1/2); effective quantization is performed using spatial redundancy.
  • the embedded zerotrees wavelet (EZW) algorithm, set partitioning in hierarchical trees (SPIHT), embedded zeroblock coding (EZBC) and others can be used as the embedded quantization method.
  • the motion compensation unit 514 conducts motion compensation for the two reference frames using the two motion vectors calculated by the motion estimation unit 512.
  • the subtracter 519 subtracts the temporal prediction frame selected by the selection unit 518 from the current frame, to thereby eliminate temporal redundancy of a video.
  • the entropy decoding unit 610 conducts lossless decoding inversely to the entropy encoding and extracts motion data and texture data.
  • the texture data is supplied to the inverse quantization unit 620 and the motion data is supplied to the motion compensation unit 640.
  • the adder 660 adds the residual image and a prediction frame motion compensated and reconstructed, supplied from the prediction frame generation unit 650, and reconstructs a video frame.
  • Respective elements of FIGS. 4 to 6 are implemented as software or hardware such as a field-programmable gate array (FPGA) or an application- specific integrated circuit (ASIC). Also, they may reside in an addressable storage medium or they may be configured so as to be executed on one or more processors. The functions supplied by these elements may be implemented as subdivided elements, or a specific function may be executed by integrating a plurality of elements. In addition, these elements may be implemented to execute on one or more computers within a system.
  • FPGA field-programmable gate array
  • ASIC application- specific integrated circuit
  • the mode conversion unit 411 inspects whether the backward reference frame violates the low-delay condition.
  • the mode estimation unit 412 conducts motion estimation for a neighboring forward frame and an already processed frame, among the forward frames of the current frame, instead of the backward frame whose referencing is not permitted (S720).
  • the number of the forward reference frames used instead of the backward reference frame may be larger than two (2).
  • the motion estimation unit 412 conducts motion estimation for a forward frame and a backward frame of the current frame as in the conventional manner (S730).
  • the motion compensation unit 414 conducts motion compensation for the reference frame using information about a motion generated as a result of conducting motion estimation, that is, a motion vector, a reference frame number and the like (S740).
  • the prediction frame generation unit 416 generates a prediction frame for the current frame from the motion compensated reference frames (S750).
  • the prediction frame is generally generated by using a weighted average of the reference frames.
  • the weighted value of each reference frame may be the same as that described with reference to FIG. 4, or it may be inversely proportional to a temporal position distant from the current frame of each reference frame. That is, as the reference frame is more distant from the current frame, it is reflected less in the prediction.
  • the motion estimation unit 512 conducts motion estimation for two or more forward frames of the current frame (S810).
  • the motion compensation unit 514 conducts motion compensation for the reference frame using information on a motion generated as a result of conducting motion estimation, that is, a motion vector, a reference frame number and the like (S820).
  • the prediction frame generation unit 516 generates a prediction frame for the current frame from the motion compensated reference frames (S830).
  • the prediction frame in this exemplary embodiment covers a neighboring forward frame (Fl) of the motion compensated current frame, an already processed frame (F2) as the forward frame for the motion compensated current frame, and a prediction frame (F3) generated by using an arithmetical mean of Fl and F2.
  • the most appropriate prediction frame is selected by the selection unit 518 (S 840), and a residual signal is generated by subtracting the selected prediction frame from the current frame (S850).
  • the residual signal is encoded through spatial transformation, quantization and entropy encoding and is transmitted to the decoder (S860).
  • the present exemplary embodiment has been described under the assumption that two forward reference frames are used, but it should be obvious to those skilled in the art that prediction may also be conducted using more than two (2) forward reference frames.
  • a prediction frame advantageous for encoding will be used, among the motion compensated reference frames and prediction frames corresponding to an arithmetical mean of all possible combinations of the reference frames.
  • selection of the most advantageous method among the three prediction methods is the selection of a method to reduce the cost as much as possible by conducting direct encoding for each method.
  • performance of the video coding can be enhanced by effectively increasing the number of frames by using an already processed forward frame as a reference frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

La présente invention concerne un procédé et un appareil de codage et de décodage vidéo comprenant une structure de filtrage temporel hiérarchique. Un procédé de codage vidéo à un niveau temporel comportant une structure de filtrage temporel hiérarchique consiste à générer des trames de prédiction à partir d'au moins deux trames de référence qui précèdent, dans le temps, la trame du moment; à générer une trame résiduelle par soustraction des trames de prédiction de la trame du moment; et à coder et à envoyer la trame résiduelle.
PCT/KR2006/000470 2005-02-14 2006-02-09 Procedes de codage et de decodage video comprenant une structure de filtrage temporel hierarchique et appareil correspondant WO2006085725A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US65200205P 2005-02-14 2005-02-14
US60/652,002 2005-02-14
KR10-2005-0030730 2005-04-13
KR1020050030730A KR100755689B1 (ko) 2005-02-14 2005-04-13 계층적 시간적 필터링 구조를 갖는 비디오 코딩 및 디코딩방법, 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2006085725A1 true WO2006085725A1 (fr) 2006-08-17

Family

ID=36793276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/000470 WO2006085725A1 (fr) 2005-02-14 2006-02-09 Procedes de codage et de decodage video comprenant une structure de filtrage temporel hierarchique et appareil correspondant

Country Status (1)

Country Link
WO (1) WO2006085725A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257517B2 (en) 2011-07-01 2019-04-09 Samsung Electronics Co., Ltd. Method and apparatus for entropy encoding using hierarchical data unit, and method and apparatus for decoding
CN114268797A (zh) * 2021-12-23 2022-04-01 北京达佳互联信息技术有限公司 用于视频的时域滤波的方法、装置、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502510A (en) * 1993-09-17 1996-03-26 Daewoo Electronics Co., Ltd. Method for temporal filtering of video signals using a motion adaptive spatial filter
US6016162A (en) * 1991-05-31 2000-01-18 Kabushiki Kaisha Toshiba Video coding apparatus
US20020110194A1 (en) * 2000-11-17 2002-08-15 Vincent Bottreau Video coding method using a block matching process
US20050013365A1 (en) * 2003-07-18 2005-01-20 Microsoft Corporation Advanced bi-directional predictive coding of video frames

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016162A (en) * 1991-05-31 2000-01-18 Kabushiki Kaisha Toshiba Video coding apparatus
US5502510A (en) * 1993-09-17 1996-03-26 Daewoo Electronics Co., Ltd. Method for temporal filtering of video signals using a motion adaptive spatial filter
US20020110194A1 (en) * 2000-11-17 2002-08-15 Vincent Bottreau Video coding method using a block matching process
US20050013365A1 (en) * 2003-07-18 2005-01-20 Microsoft Corporation Advanced bi-directional predictive coding of video frames

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257517B2 (en) 2011-07-01 2019-04-09 Samsung Electronics Co., Ltd. Method and apparatus for entropy encoding using hierarchical data unit, and method and apparatus for decoding
RU2696211C2 (ru) * 2011-07-01 2019-07-31 Самсунг Электроникс Ко., Лтд. Способ и устройство для энтропийного кодирования с использованием иерархической единицы данных, и способ и устройство для декодирования
CN114268797A (zh) * 2021-12-23 2022-04-01 北京达佳互联信息技术有限公司 用于视频的时域滤波的方法、装置、存储介质及电子设备
CN114268797B (zh) * 2021-12-23 2024-02-06 北京达佳互联信息技术有限公司 用于视频的时域滤波的方法、装置、存储介质及电子设备

Similar Documents

Publication Publication Date Title
US8340181B2 (en) Video coding and decoding methods with hierarchical temporal filtering structure, and apparatus for the same
JP4891234B2 (ja) グリッド動き推定/補償を用いたスケーラブルビデオ符号化
KR100654436B1 (ko) 비디오 코딩 방법과 디코딩 방법, 및 비디오 인코더와디코더
US8031776B2 (en) Method and apparatus for predecoding and decoding bitstream including base layer
US7889793B2 (en) Method and apparatus for effectively compressing motion vectors in video coder based on multi-layer
KR100679011B1 (ko) 기초 계층을 이용하는 스케일러블 비디오 코딩 방법 및 장치
US8155181B2 (en) Multilayer-based video encoding method and apparatus thereof
US20060013309A1 (en) Video encoding and decoding methods and video encoder and decoder
US20050226335A1 (en) Method and apparatus for supporting motion scalability
US20050226334A1 (en) Method and apparatus for implementing motion scalability
US20060120450A1 (en) Method and apparatus for multi-layered video encoding and decoding
US20050163217A1 (en) Method and apparatus for coding and decoding video bitstream
WO2006004331A1 (fr) Procedes de codage et de decodage video, codeur et decodeur video
AU2004310915A1 (en) Method and apparatus for scalable video encoding and decoding
WO2006085725A1 (fr) Procedes de codage et de decodage video comprenant une structure de filtrage temporel hierarchique et appareil correspondant
EP1889487A1 (fr) Procede de codage video fonde sur des couches multiples, procede de decodage, codeur video, et decodeur video utilisant une prevision de lissage
KR101562343B1 (ko) 인트라 모드를 이용한 쿼터 픽셀 해상도를 갖는 영상 보간 방법 및 장치
WO2006109990A1 (fr) Procedes de codage et de decodage arithmetiques adaptatifs fondes sur le contexte et appareils a efficacite de codage amelioree et procedes de codage et decodage video et appareils mettant en oeuvre ceux-ci
WO2006006793A1 (fr) Procede de codage et decodage de video et codeur et decodeur de video
CA2277373A1 (fr) Compression multidimensionnelle des donnees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715922

Country of ref document: EP

Kind code of ref document: A1