WO2006085375A1 - Wavelength division multiplex apparatus - Google Patents

Wavelength division multiplex apparatus Download PDF

Info

Publication number
WO2006085375A1
WO2006085375A1 PCT/JP2005/002014 JP2005002014W WO2006085375A1 WO 2006085375 A1 WO2006085375 A1 WO 2006085375A1 JP 2005002014 W JP2005002014 W JP 2005002014W WO 2006085375 A1 WO2006085375 A1 WO 2006085375A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
wavelength
path
multiplexed signal
signal
Prior art date
Application number
PCT/JP2005/002014
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Suzuki
Mitsuaki Haneishi
Hiroaki Nakazato
Takashi Sakata
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/002014 priority Critical patent/WO2006085375A1/en
Publication of WO2006085375A1 publication Critical patent/WO2006085375A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements

Definitions

  • the present invention relates to a wavelength division multiplexing (WDM) apparatus, and in particular, an OADM (Optical Add Drop Module) unit (demultiplexing unit) capable of adding, dropping, and passing a wavelength to a relay station.
  • WDM wavelength division multiplexing
  • OADM Optical Add Drop Module
  • demultiplexing unit capable of adding, dropping, and passing a wavelength to a relay station.
  • OSNR Optical Noise Signal Ratio
  • OSNR (Optical Noise Signal Ratio)
  • FIG. 1 is a diagram illustrating OSNR.
  • OSNR is a value representing the difference between signal light and noise light in dB. The smaller this difference (the smaller the difference between signal light and noise light), the greater the noise in the signal received at the terminal station. It becomes difficult to receive.
  • the OSNR limit value is the maximum OSNR that can be received by the receiving unit of the terminal station.
  • the noise light includes broadband noise called ASE (Amplified Spontaneous Emission) due to optical amplification relay.
  • ASE Anamplified Spontaneous Emission
  • FIG. 2 is a diagram for explaining OSNR in a conventional WDM apparatus having a point-to-point configuration.
  • the WDM equipment is configured to include a starting station node (Node) A, a relay station node B, and a terminating station node C.
  • a plurality of relay station nodes B may be provided on the optical signal transmission path.
  • the starting station node A has a multiplexing unit (Multiplexer) ll that multiplexes and transmits optical signals of a plurality of wavelengths, and a transmission amplifier unit 12 that amplifies the transmitted optical signal.
  • Multiplexer multiplexing unit
  • the station node B has an amplifier section (In
  • the terminal station node C includes a reception amplifier unit 31 that amplifies the received optical signal and a demultiplexer 32 that demultiplexes the multiplexed optical signal.
  • FIG. 2 schematically shows a state in which the spectrum analyzer 40 is connected to the reception amplifier unit 31 of the terminal station node C.
  • the starting station A power measured by the receiving amplifier unit 31 of the terminal station node C is also increased to the terminal station node C.
  • Total OSNR force It is necessary to design the WDM equipment so that it exceeds the OSNR limit value of the receiver that receives the optical signal of each wavelength.
  • Patent Document 1 in the demultiplexer and multiplexer of the WDM optical signal, only the pass wavelength band is made equal, and the free spectral ranges representing the periodicity of the pass characteristics are made different from each other. Thus, the invention for preventing the accumulation of unnecessary ASE noise light is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-69496
  • FIG. 3 is a diagram for explaining the OSNR of a WDM apparatus having an OADM unit.
  • the central station node B includes an OADM unit 22 and amplifier units 21 and 23 on the upstream side and the downstream side, respectively.
  • the OADM unit 22 includes a separation unit 221 that separates the multiplexed optical signal for each wavelength and a multiplexing unit 222 that multiplexes again.
  • the optical signal can pass between the separation unit 221 and the multiplexing unit 222.
  • the demultiplexing unit functions as a multiplexing unit
  • the multiplexing unit functions as a demultiplexing unit. You will be ashamed.
  • the optical signal passing therethrough is separated for each wavelength, so that a noise light component (ASE light) important for measuring the OSNR is cut by the filter.
  • ASE light a noise light component
  • the signal light is a signal having a peak at a specific wavelength
  • the noise light (ASE light) is a signal that spreads in a wavelength band having a certain width.
  • the noise light component is also divided for each specific wavelength together with the signal light component. As a result, the spread of the wavelength band of the noise light component cannot be recognized, and the signal light and the noise light cannot be substantially distinguished.
  • the total OSNR is obtained by summing the OSNR for each span according to the to-end route.
  • measuring OSNR for each span requires a lot of time and labor.
  • measurement errors of the spectrum analyzer that measures OSNR are also superimposed, leading to poor measurement accuracy.
  • an object of the present invention is to measure an OSNR (Optical Noise Signal Ratio) end to end in a WDM apparatus (wavelength division multiplexing apparatus) in which a relay station node has an OADM unit. It is to provide a wavelength division multiplexing apparatus.
  • OSNR Optical Noise Signal Ratio
  • a first wavelength division multiplexing apparatus of the present invention for realizing the above object generates a first wavelength multiplexed signal by multiplexing a plurality of optical signals having different wavelengths, and generates the first wavelength multiplexed signal.
  • the first wavelength-multiplexed signal from the first node and the first wavelength-multiplexed signal received from the first node, the first wavelength-multiplexed signal is divided into optical signals for each wavelength, and further divided
  • a plurality of optical signals having different wavelengths including at least a part of the optical signal are multiplexed to generate a second wavelength multiplexed signal, and the first path for transmitting the second wavelength multiplexed signal is received.
  • a second node having a second path for transmitting the first wavelength multiplexed signal without being divided and multiplexed; and the first wavelength multiplexed signal from the second node or the second And a receiving node for receiving the wavelength division multiplexed signal.
  • a second wavelength division multiplexing apparatus is the first wavelength division multiplexing apparatus, wherein the second node transmits the first wavelength division multiplexed signal for each wavelength on the first path. And a multiplexing unit that multiplexes a plurality of optical signals having different wavelengths including at least a part of the divided optical signal to generate a second wavelength multiplexed signal.
  • the second path is branched from the first path on the upstream side of the separation unit and merges with the first path on the downstream side of the multiplexing unit.
  • a third wavelength division multiplexing apparatus is the first wavelength division multiplexing apparatus, wherein the second node is a path of the first wavelength division multiplexed signal in the OSNR measurement mode.
  • the first path is selected in the normal operation mode.
  • a fourth wavelength division multiplexing apparatus is the third wavelength division multiplexing apparatus, wherein the second node includes a plurality of switches for switching the first path or the second path. It is characterized by providing.
  • a fifth wavelength division multiplexing apparatus of the present invention includes a first node that selects and transmits either a first wavelength multiplexed signal or a dummy optical signal obtained by multiplexing a plurality of optical signals having different wavelengths.
  • the first wavelength multiplexed signal is divided into optical signals for each wavelength, and a plurality of optical signals having different wavelengths including at least a part of the divided optical signals are further multiplexed to generate a second wavelength multiplexed signal.
  • the second path for transmitting the second wavelength multiplexed signal and the second node for transmitting the dummy optical signal without being divided and multiplexed can be selected.
  • a receiving node that receives the second wavelength multiplexed signal or dummy optical signal from the second node.
  • the first node selects and transmits the dummy optical signal in an OSNR measurement mode.
  • the operation mode the first wavelength division multiplexed signal is selected and transmitted, and the second node selects the second path in the OSNR measurement mode, and in the normal operation mode, the first node is selected. The path is selected.
  • the first node selects either the first wavelength division multiplexed signal or the dummy optical signal.
  • the second node has a plurality of second switches for switching the first path or the second path.
  • An eighth wavelength division multiplexing apparatus of the present invention is the seventh wavelength division multiplexing apparatus, further comprising a control device for remotely operating the first switch and the second switch. It is characterized by.
  • the wavelength division multiplexing apparatus of the present invention by providing a bypass (second node) that relays the wavelength multiplexed signal without separating and multiplexing the wavelength multiplexed signal, the node that relays the wavelength multiplexed signal is provided. Therefore, it is possible to prevent the noise light component from disappearing by 4 points and to measure the OSNR at the end-to-end with a single OSNR measurement at the terminal station (third node) at one power point. In addition, the number of work steps can be greatly reduced.
  • FIG. 1 is a diagram for explaining OSNR.
  • FIG. 2 is a diagram for explaining OSNR in a conventional WDM apparatus having a point-to-point configuration.
  • FIG. 3 is a diagram for explaining the OSNR of a WDM apparatus having an OADM unit.
  • FIG. 4 is a diagram showing a first configuration of a WDM apparatus in an embodiment of the present invention.
  • FIG. 5 is a diagram showing another configuration example of the starting point station node A.
  • FIG. 6 is a diagram showing a configuration example of an end station node C.
  • FIG. 7 is a diagram showing a second configuration of the WDM apparatus in the embodiment of the present invention.
  • FIG. 8 is a diagram showing a system configuration for remotely controlling each switch of a node.
  • FIG. 9 is a diagram showing an example of a switch setting table held by the control terminal 80.
  • FIG. 10 is a diagram showing a flowchart for controlling the switch operation of each node. Explanation of symbols
  • A, B, C nodes
  • FIG. 4 is a diagram showing a first configuration of the WDM apparatus in the embodiment of the present invention.
  • the upstream side of the separation unit 221 of the relay station node B more specifically, between the (reception) amplifier unit 23 and the separation unit 221
  • a switch SW3 for switching the signal path is provided, and further, a switch SW1 for switching the optical signal path is provided downstream of the multiplexing unit 222, more specifically, between the multiplexing unit 222 and the (transmission) amplifier unit 24.
  • a normal path through which the optical signal passes through the OADM unit 22 and a bypass 25 through which the optical signal does not pass through the OADM unit 22 are provided between the switch SW1 and the switch SW3.
  • Switches SW1 and SW3 switch the optical signal path between the normal operation mode and the OSNR measurement mode. That is, in the normal operation mode, the switch SW3 selects a normal path for introducing the optical signal of the receiving amplifier unit 23 to the OADM unit 22, and the switch SW1 is also connected to the OA. Selects the normal nose to which the optical signal from DM section 22 is input. On the other hand, in the OSNR measurement mode, in order to prevent the optical signal from passing through the OADM unit 22, the switch SW3 selects the bypass 25 and branches the optical signal from the reception amplifier unit 23 to the bypass 25. The switch SW1 is also switched to input the optical signal from Neupath 25.
  • the optical signal does not pass through the OADM unit 22!
  • the optical signal is transmitted to the OADM unit 22.
  • the above-mentioned problem that noise light does not seem to be visible by passing through can be solved. Therefore, even if the relay station node B includes the OADM unit 22, by transmitting the no-path route, the noise light component is superposed every time the amplifier unit passes, and is received by the receiving amplifier 31 of the terminal station node C.
  • the total OSNR from the start station node A to the end station node C can be measured.
  • FIG. 5 is a diagram showing another configuration example of the starting point station node A.
  • the node that is the starting point of the OSNR measurement interval does not necessarily have a light source. Therefore, a dummy light source 50 is provided at the starting station node A, and a switch SW1 for inputting and transmitting light from the dummy light source 50 in the OSNR measurement mode is provided.
  • the dummy light source 50 generates light having the same wavelength band as that of the optical signal used in the normal operation mode.
  • switch SW1 the switch inserted between the multiplexing unit and the transmission amplifier unit in the start station node A and the terminal station node C, not limited to the relay station node B, is referred to as a switch SW1, and the reception amplifier unit and the separation unit are connected to each other.
  • the switch inserted between them is called switch SW3.
  • FIG. 6 is a diagram showing a configuration example of the end station node C.
  • the receiving amplifier unit 31 outputs the optical power bra 311 that branches the received optical signal and the output for extracting the optical signal that also splits the optical signal to the outside.
  • the terminal 312 is provided, and the OSNR check measuring instrument (spectrum analyzer) 40 is connected to the output terminal 312 to measure the OSNR from the starting station node A.
  • FIG. 7 is a diagram showing a second configuration of the WDM apparatus in the embodiment of the present invention.
  • the WDM equipment constitutes a ring system.
  • each node can be a starting station node, and each node can be a terminal station node. it can. Therefore, as shown in the figure, a dummy light source 50 is provided at each node, and switches S Wl, SW 2, and SW 3 are arranged.
  • the switch SW2 is a switch that selects either the bypassed wavelength multiplexed signal power or the optical signal from the dummy light source 50, and its output is input to the switch SW1.
  • the switch SW1 operates to select either the optical signal from the switch SW2 (from the bypass) or the optical signal from the OADM unit 22 (with normal path power).
  • Figure 7 (a) shows the case where OSNR is measured for the optical signal route between node A and node.
  • switches SW1 and SW2 are operated so that the optical signal from the dummy light source 50 is input to the transmission amplifier unit 21.
  • switches SW1 and SW3 are operated so as to bypass the OADM unit 22. Note that the switch SW3 of node B may use a 1: 1 optical power bra instead of a switch device and simply split the optical signal in two directions.
  • node C receives the optical signal from the dummy light source 50 of node A without the noise light component being cut by the OADM unit 22 of node B. Can. Therefore, by connecting the spectrum analyzer 40 to the output terminal 312 of the receiving amplifier 31 of the node C, it is possible to measure the OSNR between the node A and the node C with high accuracy in one measurement at one power point. become able to.
  • Fig. 7 (b) shows the operating position of each switch in the normal operation mode.
  • the switch SW1 of node A and node B and the switch SW3 of node B and node C are operated so that the optical signal of the light source power passes through the demultiplexing unit.
  • Switch SW 2 may be in either position.
  • FIG. 8 is a diagram showing a system configuration for remotely controlling each switch of the node.
  • the CPU 70 (70A, 70B, 70C) of each node A, B, C is connected to the remote control terminal 80.
  • the CPUs 70B and 70C of the node B and the node C are connected to the CPU 70A of the node A via the photoelectric conversion unit 90 of each node, and the CPU 70A of the node A is connected to the control terminal 80 and the LAN line.
  • Each node also includes a switch selection state memory 92 for storing the switching position of each switch.
  • the CPU 70 switches each switch SW1, SW2, S Give instructions to W3 and operate each switch.
  • the CPU 70 and the remote control terminal 80 can be connected by means such as an in-band monitoring line between the CPUs, a modem, and a serial interface in addition to the LAN interface.
  • FIG. 10 is a diagram showing a flowchart for controlling the switch operation of each node based on the table of FIG.
  • various parameters related to OSNR measurement are input to the control terminal 80 (S10). Specifically, as described above, the OSNR measurement mode or normal operation mode parameters and the parameters related to the type of each node (whether it is a start station node or relay station node or end station node) are input.
  • control terminal 80 determines that it is not in the OSNR measurement mode (in the normal operation mode) based on the input parameters (S11), the switch of each node related to the node type is determined.
  • the switch position instructs each node of the setting value in the setting table 4 in FIG.
  • step S11 for the node set as the starting station node (YES in S12), the setting value in setting table 1 in Fig. 9 is instructed.
  • the setting value in setting table 2 in Fig. 9 is instructed.
  • the setting value in setting table 3 in FIG. 9 is instructed.
  • Each node for which the set value is instructed operates switches SW1, SW2, and SW3 according to the set value (S18). Then, the selection position by the operation is overwritten and saved in the switch selection state memory 92 (S19).
  • the present invention is applied to high-accuracy measurement of end-to-end total OSNR, which is indispensable for designing WDM equipment, by providing a bypass that does not pass the OADM part that separates and multiplexes wavelength-multiplexed signals at the relay node. be able to.

Abstract

In a wavelength division multiplex apparatus having a transmitting station node, a relaying station node and a terminating station node, a bypass for passing a wavelength multiplexed signal without separating and multiplexing is provided to the relaying station node having an OADM part (demultiplexing part). In this way, noise light components can be prevented from being apparently eliminated, and a single OSNR measurement in the single terminating station node can provide an accurate measurement of a total end-to-end OSNR. Moreover, the number of operation processes can be significantly reduced.

Description

明 細 書  Specification
波長分割多重装置  Wavelength division multiplexer
技術分野  Technical field
[0001] 本発明は、波長分割多重装置 (WDM)装置に関し、特に、中継局に、中継局に波 長の Add、 Drop, Throughが可能な OADM(Optical Add Drop Module)部(多重分離 部)を備える WDM装置において、 OADM部をバイパスして、 End  TECHNICAL FIELD [0001] The present invention relates to a wavelength division multiplexing (WDM) apparatus, and in particular, an OADM (Optical Add Drop Module) unit (demultiplexing unit) capable of adding, dropping, and passing a wavelength to a relay station. In a WDM device equipped with
to Endで OSNR(Optical Noise Signal Ratio)を測定することができる WDM装置に関 する。  It relates to WDM equipment that can measure OSNR (Optical Noise Signal Ratio) from to End.
背景技術  Background art
[0002] 近年の WDM装置 (波長分割多重装置)にお 、ては、トポロジー構成が従来の [0002] In recent WDM equipment (wavelength division multiplexing equipment), the topology configuration is conventional.
Point to Point構成の形態から、リニア又はリング構成に対応すベぐ中継局に波長 の Add、 Drop, Throughが可能な OADM(Optical From the point-to-point configuration form, OADM (Optical
Add Drop Module)部(多重分離部))を有する WDM装置の導入が増加している。  The introduction of WDM equipment with the Add Drop Module) section (demultiplexing section) is increasing.
[0003] WDM装置によるシステムを構築する上で、重要となる条件の一つとして、終端局 で受信する光信号の信号 Z雑音比(OSNR((Optical Noise Signal Ratio》耐力がある [0003] One of the important conditions for constructing a system using WDM equipment is the signal Z-noise ratio (OSNR ((Optical Noise Signal Ratio)) of optical signals received at the terminal station.
[0004] 図 1は、 OSNRを説明する図である。 OSNRは、信号光と雑音光との差を dBで表し た値であり、この差が小さいほど (信号光と雑音光の差分が小さいほど)、終端局で受 信する信号における雑音が大きくなり、受信が困難となる。なお、 OSNRリミット値は、 終端局の受信部が受信できる最大の OSNRをいう。また、雑音光には、光増幅中継 による自然放出光雑音(ASE(Amplified Spontaneous Emission)と呼ばれる広帯域雑 音が含まれる。 FIG. 1 is a diagram illustrating OSNR. OSNR is a value representing the difference between signal light and noise light in dB. The smaller this difference (the smaller the difference between signal light and noise light), the greater the noise in the signal received at the terminal station. It becomes difficult to receive. The OSNR limit value is the maximum OSNR that can be received by the receiving unit of the terminal station. Also, the noise light includes broadband noise called ASE (Amplified Spontaneous Emission) due to optical amplification relay.
[0005] 図 2は、従来の Point to Point構成の WDM装置における OSNRを説明する図であ る。図 2において、 WDM装置は、始点局ノード (Node)A、中継局ノード B、終端局ノ ード Cを備えて構成される。中継局ノード Bは光信号の伝送経路上に複数設けてられ てもよい。始点局ノード Aは、複数の波長の光信号を多重して送信する多重部 (Multiplexer)l lと送信する光信号を増幅する送信アンプ部 12を有する。また、中継 局ノード Bは、通過する光信号を増幅するアンプ部 (In FIG. 2 is a diagram for explaining OSNR in a conventional WDM apparatus having a point-to-point configuration. In FIG. 2, the WDM equipment is configured to include a starting station node (Node) A, a relay station node B, and a terminating station node C. A plurality of relay station nodes B may be provided on the optical signal transmission path. The starting station node A has a multiplexing unit (Multiplexer) ll that multiplexes and transmits optical signals of a plurality of wavelengths, and a transmission amplifier unit 12 that amplifies the transmitted optical signal. Also relay The station node B has an amplifier section (In
Line Amp)21を備え、 OADM部を有していない。また、終端局ノード Cは、受信した 光信号を増幅する受信アンプ部 31と多重された光信号を分離する分離部( Demultiplexer) 32を有する。  Line Amp) 21 and no OADM section. In addition, the terminal station node C includes a reception amplifier unit 31 that amplifies the received optical signal and a demultiplexer 32 that demultiplexes the multiplexed optical signal.
[0006] 始点局ノード Aの多重部 11から終端局ノード Cの分離部 32まで光信号が伝送され る区間において、光信号がアンプ部を通過するたびに雑音成分が信号光に重畳さ れていき、アンプ部を通過するごとに、 OSNRが小さくなつていく。各アンプ部を通過 する光信号の OSNRは、各アンプ部の出力端子に OSNR確認用測定器 (スペクトル アナライザ) 40を接続することにより確認することができる。図 2では、終端局ノード C の受信アンプ部 31にスペクトルアナライザ 40が接続された状態が模式的に示されて いる。 [0006] In an interval in which an optical signal is transmitted from the multiplexing unit 11 of the starting station node A to the separating unit 32 of the terminal station node C, a noise component is superimposed on the signal light every time the optical signal passes through the amplifier unit. Every time it passes through the amplifier, the OSNR gets smaller. The OSNR of the optical signal passing through each amplifier section can be confirmed by connecting an OSNR confirmation measuring instrument (spectrum analyzer) 40 to the output terminal of each amplifier section. FIG. 2 schematically shows a state in which the spectrum analyzer 40 is connected to the reception amplifier unit 31 of the terminal station node C.
[0007] そして、 WDM装置の安定動作を保証する上で不可欠な OSNRの確認作業にお いて、終端局ノード Cの受信アンプ部 31で測定される始点局ノード A力も終端局ノー ド Cまでのトータル OSNR力 各波長の光信号を受信する受信部の OSNRリミット値 以上になるように、 WDM装置を設計する必要がある。  [0007] Then, in the OSNR confirmation work that is indispensable for ensuring the stable operation of the WDM equipment, the starting station A power measured by the receiving amplifier unit 31 of the terminal station node C is also increased to the terminal station node C. Total OSNR force It is necessary to design the WDM equipment so that it exceeds the OSNR limit value of the receiver that receives the optical signal of each wavelength.
[0008] なお、下記特許文献 1は、 WDM光信号の分波器と合波器において、通過波長帯 域のみを等しくし、通過特性の周期性を表すフリースペクトルレンジを互いに異なら せるようにすることで、不要な ASE雑音光の累積を防止する発明につ 、て開示して いる。  [0008] In Patent Document 1 below, in the demultiplexer and multiplexer of the WDM optical signal, only the pass wavelength band is made equal, and the free spectral ranges representing the periodicity of the pass characteristics are made different from each other. Thus, the invention for preventing the accumulation of unnecessary ASE noise light is disclosed.
特許文献 1:特開 2003— 69496号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-69496
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 図 3は、 OADM部を有する WDM装置の OSNRを説明する図である。図 2との比 較において、中 ϋ局ノード Bは、 OADM部 22とその上流側及び下流側それぞれに アンプ部 21、 23を備えている。 OADM部 22は、多重された光信号をー且波長ごと に分離する分離部 221と、再度多重する多重部 222を有する。分離部 221と多重部 222との間は、光信号のまま通過することができる。なお、図示される方向と逆方向に 光信号が伝送される場合、分離部は多重部として機能し、多重部は分離部として機 會することとなる。 FIG. 3 is a diagram for explaining the OSNR of a WDM apparatus having an OADM unit. In comparison with FIG. 2, the central station node B includes an OADM unit 22 and amplifier units 21 and 23 on the upstream side and the downstream side, respectively. The OADM unit 22 includes a separation unit 221 that separates the multiplexed optical signal for each wavelength and a multiplexing unit 222 that multiplexes again. The optical signal can pass between the separation unit 221 and the multiplexing unit 222. When an optical signal is transmitted in the direction opposite to the illustrated direction, the demultiplexing unit functions as a multiplexing unit, and the multiplexing unit functions as a demultiplexing unit. You will be jealous.
[0010] このような OADM部 22の分離部 221において、通過する光信号をー且波長ごとに 分離することにより、 OSNRを測定する上で重要な雑音光成分 (ASE光)がフィルタ でカットされ、信号光成分と雑音光成分の識別ができなくなり、雑音光が見力 4ナ上な くなつてしまう。信号光は、特定波長にピークを有する信号であるのに対し、雑音光( ASE光)は、ある幅をもった波長帯域に広がる信号であるところ、 OADM部 22により 、光信号を特定の波長ごとに分離することにより、雑音光成分も信号光成分とともに 特定波長ごとに分割されてしまう。これにより、雑音光成分の波長帯域の広がりを認 識できなくなり、信号光と雑音光の識別が実質的にできなくなるのである。  [0010] In such a separation unit 221 of the OADM unit 22, the optical signal passing therethrough is separated for each wavelength, so that a noise light component (ASE light) important for measuring the OSNR is cut by the filter. As a result, it becomes impossible to distinguish between the signal light component and the noise light component, and the noise light becomes less powerful. Whereas the signal light is a signal having a peak at a specific wavelength, the noise light (ASE light) is a signal that spreads in a wavelength band having a certain width. As a result, the noise light component is also divided for each specific wavelength together with the signal light component. As a result, the spread of the wavelength band of the noise light component cannot be recognized, and the signal light and the noise light cannot be substantially distinguished.
[0011] このように、光信号が中継局ノード Bの OADM部 22を通過することにより、見かけ 上雑音光成分が一旦なくなってしまい、その後、雑音光成分が含まれていない状態 力 再度アンプ部を通過するごとに雑音光成分が重畳されて 、くように見えてしまう ため、終端局ノード Cの受信アンプ 31にスペクトルアナライザを接続し、始点局ノード A力 終端局ノード Cまでのトータル OSNRを測定する場合、実際の値よりも大きい( ノイズが少ない) OSNRが測定されてしまう。すなわち、 OADM部 22を有する中継 局ノード Bを通過する光信号の経路に対する OSNRを測定することができな ヽと 、う 問題が生じる。現状、 OADM部を有する中継局ノード Bが途中に設置されている経 路において、始点局ノード Aから終点局ノード Cまでの End to Endの OSNRを測定す る場合、光信号の経路を OADM部 22の手前の直後で分割して複数のスパンごとに OSNRを測定し、 End  [0011] Thus, when the optical signal passes through the OADM unit 22 of the relay station node B, the apparent noise light component disappears once, and then the state where no noise light component is included. Since the noise light component is superimposed every time the signal passes through, a spectrum analyzer is connected to the receiving amplifier 31 of the terminal station node C, and the total OSNR up to the starting station node A force and the terminal station node C is calculated. When measuring, OSNR larger than the actual value (with less noise) is measured. That is, there is a problem that the OSNR for the optical signal path passing through the relay node B having the OADM unit 22 cannot be measured. Currently, when measuring the end-to-end OSNR from the start station node A to the end station node C on the path where the relay station node B having the OADM section is installed on the way, the optical signal path is changed to the OADM section. Divide immediately before 22 and measure OSNR for each of multiple spans.
to Endのルートに従い、各スパンごとの OSNRを合計することにより、トータル OSNR を求めている。しかし、各スパンごとに OSNRを測定するには、多くの時間と作業費 用を必要とする。また、複数回の測定が行われることから、 OSNRを測定するスぺタト ルアナライザの測定誤差も重畳され、測定精度の悪ィヒを招く。  The total OSNR is obtained by summing the OSNR for each span according to the to-end route. However, measuring OSNR for each span requires a lot of time and labor. In addition, since measurement is performed multiple times, measurement errors of the spectrum analyzer that measures OSNR are also superimposed, leading to poor measurement accuracy.
[0012] 本発明の目的は、上記問題点に鑑み、中継局ノードが OADM部を有する WDM 装置(波長分割多重装置)において、 End to Endで OSNR(Optical Noise Signal Ratio)を測定することができる波長分割多重装置を提供することにある。 In view of the above problems, an object of the present invention is to measure an OSNR (Optical Noise Signal Ratio) end to end in a WDM apparatus (wavelength division multiplexing apparatus) in which a relay station node has an OADM unit. It is to provide a wavelength division multiplexing apparatus.
課題を解決するための手段 [0013] 上記目的を実現するための本発明の第一の波長分割多重装置は、波長の異なる 複数の光信号を多重して第一の波長多重信号を生成し、当該第一の波長多重信号 を送信する第一のノードと、前記第一のノードからの前記第一の波長多重信号を受 信し、前記第一の波長多重信号を波長ごとの光信号に分割し、さらに当該分割され た光信号の少なくとも一部を含む波長の異なる複数の光信号を多重して第二の波長 多重信号を生成し、当該第二の波長多重信号を送信するための第一のパスと、受信 した前記第一の波長多重信号を分割及び多重することなく送信するための第二のパ スとを有する第二のノードと、前記第二のノードからの前記第一の波長多重信号又は 前記第二の波長多重信号を受信する受信ノードとを備えることを特徴とする。 Means for solving the problem [0013] A first wavelength division multiplexing apparatus of the present invention for realizing the above object generates a first wavelength multiplexed signal by multiplexing a plurality of optical signals having different wavelengths, and generates the first wavelength multiplexed signal. The first wavelength-multiplexed signal from the first node and the first wavelength-multiplexed signal received from the first node, the first wavelength-multiplexed signal is divided into optical signals for each wavelength, and further divided A plurality of optical signals having different wavelengths including at least a part of the optical signal are multiplexed to generate a second wavelength multiplexed signal, and the first path for transmitting the second wavelength multiplexed signal is received. A second node having a second path for transmitting the first wavelength multiplexed signal without being divided and multiplexed; and the first wavelength multiplexed signal from the second node or the second And a receiving node for receiving the wavelength division multiplexed signal.
[0014] 本発明の第二の波長分割多重装置は、上記第一の波長多重分割装置において、 前記第二のノードが、前記第一のパス上に、前記第一の波長多重信号を波長ごとの 光信号に分離する分離部と、当該分割された光信号の少なくとも一部を含む波長の 異なる複数の光信号を多重して第二の波長多重信号を生成する多重部とを有し、前 記第二のパスが、前記分離部の上流側で前記第一のパスから分岐し、前記多重部 の下流側で前記第一のパスと合流することを特徴とする。  [0014] A second wavelength division multiplexing apparatus according to the present invention is the first wavelength division multiplexing apparatus, wherein the second node transmits the first wavelength division multiplexed signal for each wavelength on the first path. And a multiplexing unit that multiplexes a plurality of optical signals having different wavelengths including at least a part of the divided optical signal to generate a second wavelength multiplexed signal. The second path is branched from the first path on the upstream side of the separation unit and merges with the first path on the downstream side of the multiplexing unit.
[0015] 本発明の第三の波長分割多重装置は、上記第一の波長多重分割装置において、 前記第二のノードが、 OSNR測定モードにおいて、前記第一の波長多重信号のパス として前記第二のパスを選択し、通常運用モードにおいて、前記第一のパスを選択 することを特徴とする。  [0015] A third wavelength division multiplexing apparatus according to the present invention is the first wavelength division multiplexing apparatus, wherein the second node is a path of the first wavelength division multiplexed signal in the OSNR measurement mode. The first path is selected in the normal operation mode.
[0016] 本発明の第四の波長分割多重装置は、上記第三の波長分割多重装置において、 前記第二のノードが、前記第一のパス又は前記第二のパスを切り換える複数のスイツ チを備えることを特徴とする。  [0016] A fourth wavelength division multiplexing apparatus according to the present invention is the third wavelength division multiplexing apparatus, wherein the second node includes a plurality of switches for switching the first path or the second path. It is characterized by providing.
[0017] 本発明の第五の波長分割多重装置は、波長の異なる複数の光信号を多重した第 一の波長多重信号又はダミー光信号のいずれかを選択して送信する第一のノードと 、前記第一の波長多重信号を波長ごとの光信号に分割し、さらに当該分割された光 信号の少なくとも一部を含む波長の異なる複数の光信号を多重して第二の波長多重 信号を生成し、当該第二の波長多重信号を送信するための第一のパスと、前記ダミ 一光信号を分割及び多重することなく送信するための第二のノ スとを選択可能に有 する第二のノードと、前記第二のノードからの前記第二の波長多重信号又はダミー 光信号を受信する受信ノードとを備えることを特徴とする。 [0017] A fifth wavelength division multiplexing apparatus of the present invention includes a first node that selects and transmits either a first wavelength multiplexed signal or a dummy optical signal obtained by multiplexing a plurality of optical signals having different wavelengths. The first wavelength multiplexed signal is divided into optical signals for each wavelength, and a plurality of optical signals having different wavelengths including at least a part of the divided optical signals are further multiplexed to generate a second wavelength multiplexed signal. The second path for transmitting the second wavelength multiplexed signal and the second node for transmitting the dummy optical signal without being divided and multiplexed can be selected. And a receiving node that receives the second wavelength multiplexed signal or dummy optical signal from the second node.
[0018] 本発明の第六の波長分割多重装置は、上記第五の波長分割多重装置において、 前記第一のノードが、 OSNR測定モードにおいて、前記ダミー光信号を選択して送 信し、通常運用モードにおいて、前記第一の波長多重信号を選択して送信し、前記 第二のノードが、 OSNR測定モードにおいて、前記第二のパスを選択し、通常運用 モードにお 、て、前記第一のパスを選択することを特徴とする。  [0018] In a sixth wavelength division multiplexing apparatus of the present invention, in the fifth wavelength division multiplexing apparatus, the first node selects and transmits the dummy optical signal in an OSNR measurement mode. In the operation mode, the first wavelength division multiplexed signal is selected and transmitted, and the second node selects the second path in the OSNR measurement mode, and in the normal operation mode, the first node is selected. The path is selected.
[0019] 本発明の第七の波長分割多重装置は、上記第六の波長分割多重装置において、 前記第一のノードが、前記第一の波長多重信号又は前記ダミー光信号のいずれか を選択するための第一のスィッチを有し、前記第二のノードが、前記第一のパス又は 前記第二のパスを切り換える複数の第二のスィッチを有することを特徴とする。  In the seventh wavelength division multiplexing apparatus of the present invention, in the sixth wavelength division multiplexing apparatus, the first node selects either the first wavelength division multiplexed signal or the dummy optical signal. The second node has a plurality of second switches for switching the first path or the second path.
[0020] 本発明の第八の波長分割多重装置は、上記第七の波長分割多重装置において、 さらに、前記第一のスィッチ及び前記第二のスィッチを遠隔で操作するための制御 装置を備えることを特徴とする。  [0020] An eighth wavelength division multiplexing apparatus of the present invention is the seventh wavelength division multiplexing apparatus, further comprising a control device for remotely operating the first switch and the second switch. It is characterized by.
発明の効果  The invention's effect
[0021] 本発明の波長分割多重装置によれば、波長多重信号を中継するノード (第二のノ ード)に、波長多重信号を分離及び多重せずに通過させるバイパスを設けることによ り、雑音光成分が見力 4ナ上なくなることを防止し、終端局 (第三のノード) 1力所におけ る 1回の OSNR測定により、 End to Endにおける OSNRを精度よく測定することがで き、また、作業工数を大幅に削減することができる。  [0021] According to the wavelength division multiplexing apparatus of the present invention, by providing a bypass (second node) that relays the wavelength multiplexed signal without separating and multiplexing the wavelength multiplexed signal, the node that relays the wavelength multiplexed signal is provided. Therefore, it is possible to prevent the noise light component from disappearing by 4 points and to measure the OSNR at the end-to-end with a single OSNR measurement at the terminal station (third node) at one power point. In addition, the number of work steps can be greatly reduced.
[0022] また、一力所での測定で End to Endの OSNR測定が可能となることから、各スパン ごとに測定された OSNRを合計して End  [0022] Since end-to-end OSNR measurement is possible at a single power point, the OSNR measured for each span is added to the end.
to Endの OSNRを求める従来の方法と比較して、 OSNRの測定精度を大幅に向上 させることが可會である。  Compared with the conventional method for determining the to-end OSNR, it is possible to significantly improve the OSNR measurement accuracy.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 l]OSNRを説明する図である。 [0023] FIG. 1 is a diagram for explaining OSNR.
[図 2]従来の Point to Point構成の WDM装置における OSNRを説明する図である。  FIG. 2 is a diagram for explaining OSNR in a conventional WDM apparatus having a point-to-point configuration.
[図 3]OADM部を有する WDM装置の OSNRを説明する図である。 [図 4]本発明の実施の形態例における WDM装置の第一の構成を示す図である。 FIG. 3 is a diagram for explaining the OSNR of a WDM apparatus having an OADM unit. FIG. 4 is a diagram showing a first configuration of a WDM apparatus in an embodiment of the present invention.
[図 5]始点局ノード Aの別の構成例を示す図である。  FIG. 5 is a diagram showing another configuration example of the starting point station node A.
[図 6]終点局ノード Cの構成例を示す図である。  FIG. 6 is a diagram showing a configuration example of an end station node C.
[図 7]本発明の実施の形態例における WDM装置の第二の構成を示す図である。  FIG. 7 is a diagram showing a second configuration of the WDM apparatus in the embodiment of the present invention.
[図 8]ノードの各スィッチを遠隔制御するためのシステム構成を示す図である。  FIG. 8 is a diagram showing a system configuration for remotely controlling each switch of a node.
[図 9]制御端末 80が保持するスィッチ設定テーブルの例を示す図である。  FIG. 9 is a diagram showing an example of a switch setting table held by the control terminal 80.
[図 10]各ノードのスィッチの動作を制御するためのフローチャートを示す図である。 符号の説明  FIG. 10 is a diagram showing a flowchart for controlling the switch operation of each node. Explanation of symbols
[0024] A、B、C :ノード [0024] A, B, C: nodes
SW1、 SW2、 SW3 :スィッチ  SW1, SW2, SW3: Switch
22 : OADM部  22: OADM Department
221 :分離部  221: Separation part
222 :多重部  222: Multiple part
25 :バイパス  25: Bypass
80 :制御端末  80: Control terminal
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、図面を参照して本発明の実施の形態について説明する。しかしながら、かか る実施の形態例が、本発明の技術的範囲を限定するものではない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment does not limit the technical scope of the present invention.
[0026] 図 4は、本発明の実施の形態例における WDM装置の第一の構成を示す図である 。 WDM装置の第一の構成は、上記図 3の構成との比較において、中継局ノード Bの 分離部 221の上流側、さらに詳しくは (受信)アンプ部 23と分離部 221との間に、光 信号のパスを切り換えるスィッチ SW3を備え、また、多重部 222の下流側、さらに詳 しくは、多重部 222と (送信)アンプ部 24との間に、光信号のパスを切り換えるスイツ チ SW1を備え、スィッチ SW1とスィッチ SW3との間に、光信号が OADM部 22を通 過する通常パスと光信号が OADM部 22を通過しないバイパス 25とが設けられる。  FIG. 4 is a diagram showing a first configuration of the WDM apparatus in the embodiment of the present invention. In the first configuration of the WDM apparatus, in comparison with the configuration of FIG. 3 above, the upstream side of the separation unit 221 of the relay station node B, more specifically, between the (reception) amplifier unit 23 and the separation unit 221 A switch SW3 for switching the signal path is provided, and further, a switch SW1 for switching the optical signal path is provided downstream of the multiplexing unit 222, more specifically, between the multiplexing unit 222 and the (transmission) amplifier unit 24. A normal path through which the optical signal passes through the OADM unit 22 and a bypass 25 through which the optical signal does not pass through the OADM unit 22 are provided between the switch SW1 and the switch SW3.
[0027] スィッチ SW1、 SW3は、通常運用モードと OSNR測定モードとで、光信号のパスを 切り換える。すなわち、通常運用モードにおいては、スィッチ SW3は、受信アンプ部 23力 の光信号を OADM部 22に導入する通常パスを選択し、スィッチ SW1も、 OA DM部 22からの光信号を入力する通常ノ スを選択する。一方、 OSNR測定モードに おいては、光信号が OADM部 22を通過しないようにするために、スィッチ SW3は、 バイパス 25を選択して、受信アンプ部 23からの光信号をバイパス 25に分岐させ、ス イッチ SW1も、ノ ィパス 25からの光信号を入力するように切り替わる。 [0027] Switches SW1 and SW3 switch the optical signal path between the normal operation mode and the OSNR measurement mode. That is, in the normal operation mode, the switch SW3 selects a normal path for introducing the optical signal of the receiving amplifier unit 23 to the OADM unit 22, and the switch SW1 is also connected to the OA. Selects the normal nose to which the optical signal from DM section 22 is input. On the other hand, in the OSNR measurement mode, in order to prevent the optical signal from passing through the OADM unit 22, the switch SW3 selects the bypass 25 and branches the optical signal from the reception amplifier unit 23 to the bypass 25. The switch SW1 is also switched to input the optical signal from Neupath 25.
[0028] このように、光信号が OADM部 22を通過しな!、バイパスを設け、 OSNR測定モー ドにおいて、光信号がこのバイノ スを伝送するようにすることで、 OADM部 22を光信 号が通過することにより、雑音光が見かけ上見えなくなってしまうという上記問題点を 解消することができる。従って、中継局ノード Bに OADM部 22を有する構成であって も、ノ ィパスルートを伝送させることにより、雑音光成分はアンプ部の通過ごとに重畳 されていき、終端局ノード Cの受信アンプ 31にスペクトルアナライザを接続して、始点 局ノード Aから終端局ノード Cに至る End to Endにおけるトータル OSNRを測定する ことができる。 [0028] In this way, the optical signal does not pass through the OADM unit 22! By providing a bypass and transmitting the binos in the OSNR measurement mode, the optical signal is transmitted to the OADM unit 22. The above-mentioned problem that noise light does not seem to be visible by passing through can be solved. Therefore, even if the relay station node B includes the OADM unit 22, by transmitting the no-path route, the noise light component is superposed every time the amplifier unit passes, and is received by the receiving amplifier 31 of the terminal station node C. By connecting a spectrum analyzer, the total OSNR from the start station node A to the end station node C can be measured.
[0029] 図 5は、始点局ノード Aの別の構成例を示す図である。 OSNR測定区間の始点とな るノード (始点局ノード A)に、必ずしも光源があるとは限らない。そこで、始点局ノード Aにダミー光源 50が設けられ、さらに、 OSNR測定モードにおいて、ダミー光源 50か らの光を入力し、送信するスィッチ SW1が設けられる。ダミー光源 50は、通常運用モ ードで使用される光信号の波長帯域と同じ波長帯域の光を発生する。なお、中継局 ノード B〖こ限らず、始点局ノード A及び終端局ノード Cにおいて、多重部と送信アンプ 部との間に挿入されるスィッチをスィッチ SW1と称し、受信アンプ部と分離部との間 に挿入されるスィッチをスィッチ SW3と称することとする。  FIG. 5 is a diagram showing another configuration example of the starting point station node A. The node that is the starting point of the OSNR measurement interval (starting station node A) does not necessarily have a light source. Therefore, a dummy light source 50 is provided at the starting station node A, and a switch SW1 for inputting and transmitting light from the dummy light source 50 in the OSNR measurement mode is provided. The dummy light source 50 generates light having the same wavelength band as that of the optical signal used in the normal operation mode. Note that the switch inserted between the multiplexing unit and the transmission amplifier unit in the start station node A and the terminal station node C, not limited to the relay station node B, is referred to as a switch SW1, and the reception amplifier unit and the separation unit are connected to each other. The switch inserted between them is called switch SW3.
[0030] 図 6は、終点局ノード Cの構成例を示す図である。 OSNR測定区間の終点となるノ ード (終点局ノード C)では、受信アンプ部 31は、受信した光信号を分岐する光力ブラ 311と、そこ力も分岐した光信号を外部に取り出すための出力端子 312を備え、出力 端子 312に OSNR確認用測定器 (スペクトルアナライザ) 40を接続して、始点局ノー ド Aからの OSNRを測定する。  FIG. 6 is a diagram showing a configuration example of the end station node C. At the node that is the end point of the OSNR measurement interval (end station node C), the receiving amplifier unit 31 outputs the optical power bra 311 that branches the received optical signal and the output for extracting the optical signal that also splits the optical signal to the outside. The terminal 312 is provided, and the OSNR check measuring instrument (spectrum analyzer) 40 is connected to the output terminal 312 to measure the OSNR from the starting station node A.
[0031] 図 7は、本発明の実施の形態例における WDM装置の第二の構成を示す図である 。第二の構成では、 WDM装置はリングシステムを構成している。リングシステムでは 、各ノードが始点局ノードとなることができ、また、各ノードが終端局ノードとなることも できる。従って、図示されるように、各ノードにダミー光源 50を設け、さらに、スィッチ S Wl、 SW2、 SW3が配置される。スィッチ SW2は、バイパスされた波長多重信号力、 ダミー光源 50からの光信号かのいずれかを選択するスィッチであり、その出力は、ス イッチ SW1に入力される。スィッチ SW1は、スィッチ SW2からの(バイパスからの)光 信号か、又は OADM部 22からの(通常パス力もの)光信号のいずれかを選択するよ う動作する。 FIG. 7 is a diagram showing a second configuration of the WDM apparatus in the embodiment of the present invention. In the second configuration, the WDM equipment constitutes a ring system. In a ring system, each node can be a starting station node, and each node can be a terminal station node. it can. Therefore, as shown in the figure, a dummy light source 50 is provided at each node, and switches S Wl, SW 2, and SW 3 are arranged. The switch SW2 is a switch that selects either the bypassed wavelength multiplexed signal power or the optical signal from the dummy light source 50, and its output is input to the switch SW1. The switch SW1 operates to select either the optical signal from the switch SW2 (from the bypass) or the optical signal from the OADM unit 22 (with normal path power).
[0032] 図 7 (a)は、ノード Aからノードの間の光信号ルートに対して OSNRを測定する場合  [0032] Figure 7 (a) shows the case where OSNR is measured for the optical signal route between node A and node.
(OSNR測定モード)における各スィッチの動作位置を示す。ノード Aでは、ダミー光 源 50からの光信号が送信アンプ部 21に入力されるように、スィッチ SW1、 SW2を動 作させる。また、ノード Bでは、 OADM部 22をバイパスさせるように、スィッチ SW1、 S W3を動作させる。なお、ノード Bのスィッチ SW3については、スィッチデバイスの代 わりに、 1 : 1の光力ブラを用い、単純に光信号を 2方向に分岐させる構成でもよい。  Indicates the operating position of each switch in (OSNR measurement mode). In the node A, the switches SW1 and SW2 are operated so that the optical signal from the dummy light source 50 is input to the transmission amplifier unit 21. In node B, switches SW1 and SW3 are operated so as to bypass the OADM unit 22. Note that the switch SW3 of node B may use a 1: 1 optical power bra instead of a switch device and simply split the optical signal in two directions.
[0033] ノード A、ノード Bでのスィッチ動作により、ノード Cでは、ノード Aのダミー光源 50か らの光信号を、ノード Bの OADM部 22にて雑音光成分がカットされることなく受信す ることができる。従って、ノード Cの受信アンプ 31の出力端子 312にスペクトルアナラ ィザ 40を接続することにより、 1力所での測定 1回で、ノード Aからノード C間の OSNR を高精度に測定することができるようになる。  [0033] By the switching operation at node A and node B, node C receives the optical signal from the dummy light source 50 of node A without the noise light component being cut by the OADM unit 22 of node B. Can. Therefore, by connecting the spectrum analyzer 40 to the output terminal 312 of the receiving amplifier 31 of the node C, it is possible to measure the OSNR between the node A and the node C with high accuracy in one measurement at one power point. become able to.
[0034] 図 7 (b)は、通常運用モードにおける各スィッチの動作位置を示す。通常運用モー ドにおいては、光源力 の光信号が多重分離部を通過するように、ノード A及びノー ド Bのスィッチ SW1、ノード B及びノード Cのスィッチ SW3を動作させる。スィッチ SW 2は、どちらの位置にあってもよい。  [0034] Fig. 7 (b) shows the operating position of each switch in the normal operation mode. In the normal operation mode, the switch SW1 of node A and node B and the switch SW3 of node B and node C are operated so that the optical signal of the light source power passes through the demultiplexing unit. Switch SW 2 may be in either position.
[0035] 図 8は、ノードの各スィッチを遠隔制御するためのシステム構成を示す図である。各 ノード A、 B、 Cの CPU70 (70A、 70B、 70C)は、遠隔の制御端末 80と接続している 。なお、図 8の構成では、ノード B及びノード Cの CPU70B、 70Cは、各ノードの光電 変換部 90を介してノード Aの CPU70Aと接続し、ノード Aの CPU70Aが制御端末 8 0と LAN回線を通じて接続している。また、各ノードは、各スィッチの切換位置を記憶 するためのスィッチ選択状態メモリ 92を備えている。  FIG. 8 is a diagram showing a system configuration for remotely controlling each switch of the node. The CPU 70 (70A, 70B, 70C) of each node A, B, C is connected to the remote control terminal 80. In the configuration of FIG. 8, the CPUs 70B and 70C of the node B and the node C are connected to the CPU 70A of the node A via the photoelectric conversion unit 90 of each node, and the CPU 70A of the node A is connected to the control terminal 80 and the LAN line. Connected. Each node also includes a switch selection state memory 92 for storing the switching position of each switch.
[0036] そして、制御端末 80からの指示に基づいて、 CPU70が各スィッチ SW1、 SW2、 S W3に指示を出し、各スィッチを動作させる。この場合、 CPU70と遠隔の制御端末 8 0との間は、 LANインターフェースのほかに、 CPU間のインバンド監視回線、モデム 、シリアルインターフェースのような手段でも接続可能である。 [0036] Then, based on an instruction from the control terminal 80, the CPU 70 switches each switch SW1, SW2, S Give instructions to W3 and operate each switch. In this case, the CPU 70 and the remote control terminal 80 can be connected by means such as an in-band monitoring line between the CPUs, a modem, and a serial interface in addition to the LAN interface.
[0037] 図 9は、制御端末 80が保持するスィッチ設定テーブルの例を示す図である。制御 端末 80は、図示されるように、通常運用モードであるか又は OSNR測定モードである 力 (条件 1)、さらに、 OSNR測定モードにおいて、始点局ノード、中継局ノード、終端 局ノードのいずれである力 (条件 2)に基づいて、各ノードのスィッチ SW1、 SW2、 S W3の切換位置を設定するためのテーブルを有する。そして、制御端末 80のォペレ ータは、各ノードのモード及び OSNR測定モードの場合のノードの種類を設定するこ とで、制御端末 80は、このテーブルに従って、各ノードの CPUにスィッチの動作に関 する指示を与える。 FIG. 9 is a diagram showing an example of a switch setting table held by the control terminal 80. As shown in the figure, the control terminal 80 is in the normal operation mode or in the OSNR measurement mode (condition 1), and in the OSNR measurement mode, any of the start station node, the relay station node, and the end station node Based on a certain force (Condition 2), it has a table for setting the switching position of switches SW1, SW2, SW3 of each node. Then, the operator of the control terminal 80 sets the mode of each node and the node type in the OSNR measurement mode, so that the control terminal 80 performs the switch operation on the CPU of each node according to this table. Give instructions.
[0038] 図 10は、図 9のテーブルに基づいて、各ノードのスィッチの動作を制御するための フローチャートを示す図である。図 10において、制御端末 80に、 OSNR測定に関す る各種パラメータを入力する(S 10)。具体的には、上述したように、 OSNR測定モー ド又は通常運用モードのパラメータ、各ノードの種類 (始点局ノードか、中継局ノード 力 終端局ノードか)に関するパラメータを入力する。  FIG. 10 is a diagram showing a flowchart for controlling the switch operation of each node based on the table of FIG. In FIG. 10, various parameters related to OSNR measurement are input to the control terminal 80 (S10). Specifically, as described above, the OSNR measurement mode or normal operation mode parameters and the parameters related to the type of each node (whether it is a start station node or relay station node or end station node) are input.
[0039] 制御端末 80は、その入力パラメータに基づ 、て、 OSNR測定モードでな 、場合 ( 通常運用モードの場合)と判定すると(S 11)、ノードの種類に関係なぐ各ノードのス イッチの切換位置が図 9の設定テーブル 4の設定値を各ノードに指示する。  [0039] If the control terminal 80 determines that it is not in the OSNR measurement mode (in the normal operation mode) based on the input parameters (S11), the switch of each node related to the node type is determined. The switch position instructs each node of the setting value in the setting table 4 in FIG.
[0040] ステップ S11で OSNR測定モードの場合において、始点局ノードに設定されたノー ドに対しては(S12の YES)、図 9の設定テーブル 1の設定値を指示する。また、中継 局ノードに設定されたノードに対しては(S13の YES)、図 9の設定テーブル 2の設定 値を指示する。また、終端局ノードに設定されたノードに対しては (S13の NO)、図 9 の設定テーブル 3の設定値を指示する。  [0040] In the case of the OSNR measurement mode in step S11, for the node set as the starting station node (YES in S12), the setting value in setting table 1 in Fig. 9 is instructed. For the node set as the relay node (YES in S13), the setting value in setting table 2 in Fig. 9 is instructed. For the node set as the terminal station node (NO in S13), the setting value in setting table 3 in FIG. 9 is instructed.
[0041] 設定値が指示された各ノードは、その設定値に従って、スィッチ SW1、 SW2、 SW 3を動作させる(S18)。そして、その動作による選択位置を、スィッチ選択状態メモリ 9 2に上書きし、保存する (S19)。  [0041] Each node for which the set value is instructed operates switches SW1, SW2, and SW3 according to the set value (S18). Then, the selection position by the operation is overwritten and saved in the switch selection state memory 92 (S19).
[0042] このように、制御端末 80により、各ノードのスィッチ動作を遠隔で制御するので、各 ノードの場所に出向いて、スィッチを制御する必要はなぐ ONSR測定の際、作業者 は、終端局ノードに出向いて、測定を行うだけでよい。従って、作業工数、時間短縮 が実現される。 [0042] In this way, the switching operation of each node is remotely controlled by the control terminal 80, so that each It is not necessary to go to the node location and control the switch. For ONSR measurement, the operator only needs to go to the terminal station node and perform the measurement. Therefore, work man-hours and time can be reduced.
産業上の利用可能性 Industrial applicability
本発明は、中継ノードにおいて波長多重信号を分離及び多重する OADM部を通 過させないバイパスを設けることで、 WDM装置を設計する上で不可欠な End to End のトータル OSNRの高精度な測定に適用することができる。  The present invention is applied to high-accuracy measurement of end-to-end total OSNR, which is indispensable for designing WDM equipment, by providing a bypass that does not pass the OADM part that separates and multiplexes wavelength-multiplexed signals at the relay node. be able to.

Claims

請求の範囲 The scope of the claims
[1] 波長の異なる複数の光信号を多重して第一の波長多重信号を生成し、当該第一の 波長多重信号を送信する第一のノードと、  [1] A first node that multiplexes a plurality of optical signals having different wavelengths to generate a first wavelength multiplexed signal, and transmits the first wavelength multiplexed signal;
前記第一のノードからの前記第一の波長多重信号を受信し、前記第一の波長多重 信号を波長ごとの光信号に分割し、さらに当該分割された光信号の少なくとも一部を 含む波長の異なる複数の光信号を多重して第二の波長多重信号を生成し、当該第 二の波長多重信号を送信するための第一のパスと、受信した前記第一の波長多重 信号を分割及び多重することなく送信するための第二のノ スとを有する第二のノード と、  Receiving the first wavelength-division multiplexed signal from the first node, dividing the first wavelength-division multiplexed signal into optical signals for each wavelength, and further including a wavelength including at least a part of the divided optical signal; A plurality of different optical signals are multiplexed to generate a second wavelength multiplexed signal, a first path for transmitting the second wavelength multiplexed signal, and the received first wavelength multiplexed signal is divided and multiplexed. A second node having a second node for transmitting without
前記第二のノードからの前記第一の波長多重信号又は前記第二の波長多重信号を 受信する受信ノードとを備えることを特徴とする波長分割多重装置。  A wavelength division multiplexing apparatus comprising: a receiving node that receives the first wavelength multiplexed signal or the second wavelength multiplexed signal from the second node.
[2] 請求項 1において、  [2] In claim 1,
前記第二のノードは、前記第一のパス上に、前記第一の波長多重信号を波長ごとの 光信号に分離する分離部と、当該分割された光信号の少なくとも一部を含む波長の 異なる複数の光信号を多重して第二の波長多重信号を生成する多重部とを有し、 前記第二のパスは、前記分離部の上流側で前記第一のパスから分岐し、前記多重 部の下流側で前記第一のパスと合流することを特徴とする波長分割多重装置。  The second node includes a separation unit that separates the first wavelength multiplexed signal into optical signals for each wavelength on the first path, and a wavelength that includes at least a part of the divided optical signals. A multiplexing unit that multiplexes a plurality of optical signals to generate a second wavelength multiplexed signal, and the second path branches from the first path upstream of the separation unit, and the multiplexing unit The wavelength division multiplexing apparatus is characterized in that it joins the first path on the downstream side.
[3] 請求項 1において、  [3] In claim 1,
前記第二のノードは、 OSNR測定モードにおいて、前記第一の波長多重信号のパス として前記第二のパスを選択し、通常運用モードにおいて、前記第一のパスを選択 することを特徴とする波長分割多重装置。  The second node selects the second path as the path of the first wavelength multiplexed signal in the OSNR measurement mode, and selects the first path in the normal operation mode. Division multiplexing equipment.
[4] 請求項 3において、  [4] In claim 3,
前記第二のノードは、前記第一のパス又は前記第二のパスを切り換える複数のスイツ チを備えることを特徴とする波長分割多重装置。  The wavelength division multiplexing apparatus, wherein the second node includes a plurality of switches for switching the first path or the second path.
[5] 波長の異なる複数の光信号を多重した第一の波長多重信号又はダミー光信号の ヽ ずれかを選択して送信する第一のノードと、  [5] a first node that selects and transmits either a first wavelength multiplexed signal obtained by multiplexing a plurality of optical signals having different wavelengths or a dummy optical signal;
前記第一の波長多重信号を波長ごとの光信号に分割し、さらに当該分割された光信 号の少なくとも一部を含む波長の異なる複数の光信号を多重して第二の波長多重信 号を生成し、当該第二の波長多重信号を送信するための第一のパスと、前記ダミー 光信号を分割及び多重することなく送信するための第二のパスとを選択可能に有す る第二のノードと、 The first wavelength multiplexed signal is divided into optical signals for each wavelength, and a plurality of optical signals having different wavelengths including at least a part of the divided optical signals are multiplexed to obtain a second wavelength multiplexed signal. A first path for transmitting the second wavelength multiplexed signal and a second path for transmitting the dummy optical signal without being divided and multiplexed can be selected. A second node,
前記第二のノードからの前記第二の波長多重信号又はダミー光信号を受信する受 信ノードとを備えることを特徴とする波長分割多重装置。  A wavelength division multiplexing apparatus comprising: a receiving node that receives the second wavelength multiplexed signal or dummy optical signal from the second node.
[6] 請求項 5において、  [6] In claim 5,
前記第一のノードは、 OSNR測定モードにおいて、前記ダミー光信号を選択して送 信し、通常運用モードにおいて、前記第一の波長多重信号を選択して送信し、 前記第二のノードは、 OSNR測定モードにおいて、前記第二のパスを選択し、通常 運用モードにおいて、前記第一のパスを選択することを特徴とする波長分割多重装 置。  The first node selects and transmits the dummy optical signal in an OSNR measurement mode, and selects and transmits the first wavelength multiplexed signal in a normal operation mode. The second node A wavelength division multiplexing apparatus, wherein the second path is selected in an OSNR measurement mode, and the first path is selected in a normal operation mode.
[7] 請求項 6において、  [7] In claim 6,
前記第一のノードは、前記第一の波長多重信号又は前記ダミー光信号の!、ずれ力ゝ を選択するための第一のスィッチを有し、  The first node has a first switch for selecting the first wavelength multiplexed signal or the dummy optical signal!
前記第二のノードは、前記第一のパス又は前記第二のパスを切り換える複数の第二 のスィッチを有することを特徴とする波長分割多重装置。  The wavelength division multiplexing apparatus, wherein the second node has a plurality of second switches for switching the first path or the second path.
[8] 請求項 7において、 [8] In claim 7,
前記第一のスィッチ及び前記第二のスィッチを遠隔で操作するための制御装置を備 えることを特徴とする波長分割多重装置。  A wavelength division multiplexing apparatus comprising a control device for remotely operating the first switch and the second switch.
PCT/JP2005/002014 2005-02-10 2005-02-10 Wavelength division multiplex apparatus WO2006085375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002014 WO2006085375A1 (en) 2005-02-10 2005-02-10 Wavelength division multiplex apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002014 WO2006085375A1 (en) 2005-02-10 2005-02-10 Wavelength division multiplex apparatus

Publications (1)

Publication Number Publication Date
WO2006085375A1 true WO2006085375A1 (en) 2006-08-17

Family

ID=36792951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002014 WO2006085375A1 (en) 2005-02-10 2005-02-10 Wavelength division multiplex apparatus

Country Status (1)

Country Link
WO (1) WO2006085375A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296831A (en) * 1992-04-21 1993-11-12 Fujitsu Ltd Snr measuring apparatus
JPH0964819A (en) * 1995-08-23 1997-03-07 Fujitsu Ltd Optical system
JP2002209236A (en) * 2001-01-12 2002-07-26 Fujitsu Ltd Optical node device and system provided with the device
JP2003086869A (en) * 2001-09-14 2003-03-20 Fujitsu Ltd Noise figure measuring device for optical amplifier
JP2004158652A (en) * 2002-11-06 2004-06-03 Fujitsu Ltd Optical amplifier, method for controlling characteristic of passing wavelength in optical amplifier and optical transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296831A (en) * 1992-04-21 1993-11-12 Fujitsu Ltd Snr measuring apparatus
JPH0964819A (en) * 1995-08-23 1997-03-07 Fujitsu Ltd Optical system
JP2002209236A (en) * 2001-01-12 2002-07-26 Fujitsu Ltd Optical node device and system provided with the device
JP2003086869A (en) * 2001-09-14 2003-03-20 Fujitsu Ltd Noise figure measuring device for optical amplifier
JP2004158652A (en) * 2002-11-06 2004-06-03 Fujitsu Ltd Optical amplifier, method for controlling characteristic of passing wavelength in optical amplifier and optical transmission system

Similar Documents

Publication Publication Date Title
EP3176968B1 (en) Optical communication device, optical communication system, and optical communication method
JP4920489B2 (en) Optical add / drop device
CN101019359B (en) Reconfigurable WDM ADM and method for operating ADD node
JP2009543487A (en) Method and apparatus for monitoring optical connection path for transparent optical network
JP2006005934A (en) Self-monitoring type passive optical subscriber network
JP5521168B2 (en) Optical transmission device and optical transmission system
JP5807338B2 (en) Optical transmission device and optical filter circuit
JP4376263B2 (en) Optical wavelength multiplexing system
JP4843659B2 (en) Optical transmission network system, optical transmission device, and passband allocation method using them
JP4930175B2 (en) Node control device for transferring signal light
JP3533316B2 (en) WDM transmission apparatus and WDM transmission system
US7844177B2 (en) Optical signal changeover device and optical signal changeover method
JP5458685B2 (en) Optical transmission equipment
EP1411666A2 (en) Two-fiber optical ring network
US8699884B2 (en) Optical transmission system and optical transmission method
JP3993591B2 (en) Bidirectional wavelength division multiplexing add / drop self-healing hub type ring network
WO2006085375A1 (en) Wavelength division multiplex apparatus
KR100498931B1 (en) Bidirectional wdm self-healing ring
JP2001197010A (en) Optical amplifier, node device, and optical communication network system
JP3586659B2 (en) OADM system and method of calculating the number of wavelengths
JP2003046456A (en) Optical transmission network system and fault monitor method for the optical transmission network system
JPH10336118A (en) Direct optical amplifier
JPWO2019044604A1 (en) Optical transmission device and spectrum control method
JP2006186538A (en) Optical transmission apparatus and method of changing optical transmission line
JP7428234B2 (en) Spectrum monitoring equipment, submarine equipment and optical communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05710066

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5710066

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP