WO2006082924A1 - Multi-antenna communication device - Google Patents

Multi-antenna communication device Download PDF

Info

Publication number
WO2006082924A1
WO2006082924A1 PCT/JP2006/301865 JP2006301865W WO2006082924A1 WO 2006082924 A1 WO2006082924 A1 WO 2006082924A1 JP 2006301865 W JP2006301865 W JP 2006301865W WO 2006082924 A1 WO2006082924 A1 WO 2006082924A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
parameter
antenna selection
transmission
adaptive modulation
Prior art date
Application number
PCT/JP2006/301865
Other languages
French (fr)
Japanese (ja)
Inventor
Xiaoming She
Jifeng Li
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006082924A1 publication Critical patent/WO2006082924A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side

Definitions

  • the present invention relates to a multi-antenna communication apparatus, a multi-antenna system, a multi-antenna communication method, and an antenna selection 'bit distribution method used in a Multiple-Input Multiple-Output (MIMO) system.
  • MIMO Multiple-Input Multiple-Output
  • MIMO technology significantly increases channel capacity compared to conventional single antenna transmission methods. Also, as space resources are almost endlessly available compared to time domain and frequency domain resources, MIMO technology can overcome the bottlenecks of the prior art, making it the core technology of the next generation wireless communication system. It becomes.
  • FIG. 1 is a diagram showing the configuration of a conventional MIMO system.
  • This MIMO system is SZ A P (serial Z parallel) conversion unit 101, a plurality of code and modulation units 102, a plurality of transmission antennas 103, a plurality of reception antennas 104, a MIMO detection unit 105, and a channel estimation unit 106 are provided.
  • An SZP converter 101, a plurality of code and modulation units 102, and a plurality of transmitting antennas 103 are included on the transmitting side, and a plurality of receiving antennas 104, a MIMO detector 105, and a channel estimation unit 106 are included on the receiving side.
  • the transmitting side and the receiving side each have n transmitting antennas 10.
  • n receive antennas 104 (where n and n are natural numbers) to transmit and receive signals.
  • the data waiting for transmission is first processed by the SZP conversion unit 101 to n pieces of data.
  • Each of the divided data substreams corresponds to one antenna 103.
  • the data substreams awaiting transmission are first input to the corresponding encoding and modulation unit 102.
  • the coding / modulation section 102 performs coding and modulation on the input data sub-stream.
  • the encoded and modulated data are sent to the corresponding transmit antenna 103 and transmitted from the corresponding transmit antenna 103.
  • channel estimation section 106 performs channel estimation based on the pilot signal of the received signal or using another scheme to estimate the current channel characteristic matrix H (for the MIMO system, the channel Properties can be represented by a matrix).
  • the matrix H obtained by the MIMO detection unit 105 detection is performed on the signal received by each receiving antenna 104, and the original transmission data is obtained.
  • Various methods can be used in MIMO detection. For example, habitual ZF (zero forcing), MMSE (least root mean square error), serial interference cancellation or other methods are often used.
  • MIMO detection section 105 includes an operation of separating the signal transmitted by each transmission antenna on the transmission side, and an operation of performing demodulation and decoding on each signal. Note that in actual MIMO detection, these two operations are not performed independently in most cases. That is, the output from the former is obtained by the latter, and the output of the latter is often required for the progress of the former. For this reason, it is generally Described in the output section 105.
  • a MIMO configuration as shown in FIG. 1 is generally called a V-BLAST (Vertical Bell Laboratories Layered Space-Time) system.
  • V-BLAST Very Bell Laboratories Layered Space-Time
  • D-BLAST Diagonal Bell Laboratories Layered Space-Time
  • an SZP conversion unit an SZP conversion unit
  • an IFFT Inverse Fast Fourier Transform
  • PZS conversion unit a PZS conversion unit
  • CP Cyclic Prefix
  • the overall throughput is increased by an increase in the number of transmit antennas. As described above, if there is an antenna with a very poor channel characteristic, the overall throughput will be increased. In some cases, only power consumption can not be increased.
  • the object of the present invention is to construct a system in which channel characteristics are sufficiently taken into consideration, thereby enabling efficient multi-antenna transmission using transmission antennas efficiently, and complicating the entire system configuration. What is needed is to provide a multi-antenna communication device, a multi-antenna transmission system, and a multi-antenna communication method.
  • the multi-antenna communication apparatus of the present invention is configured to transmit a current channel based on a received signal.
  • the antenna selection parameter and the adaptive modulation 'code parameter are obtained, these parameters are fed back to the transmitting side, and the transmitting side is obtained.
  • Antenna selection 'bit distribution control means for controlling transmission antenna selection and bit distribution of the channel, current channel characteristic matrix obtained by the channel estimation means, the fed back antenna selection parameter and adaptive modulation' coding parameter
  • a MIMO detection unit for detecting each transmission data substream and obtaining the original transmission data.
  • the antenna selection parameter and the adaptive modulation 'coding parameter are obtained by the antenna selection' bit distribution control means based on the channel characteristic matrix, and these parameters are fed back to the transmission side.
  • the antenna selection' bit distribution control means based on the channel characteristic matrix, and these parameters are fed back to the transmission side.
  • the transmitting antenna is selected based on the channel characteristic matrix on the receiving side, and bit distribution to each selected transmitting antenna is determined by the modulation multi-level number and / or coding rate of adaptive modulation. Therefore, the transmission antenna can be efficiently used to perform high-efficiency data transmission, and bit distribution can be performed with a simple configuration when performing high-efficiency multi-antenna transmission. .
  • FIG. 1 is a diagram showing the configuration of a prior art MIMO radio system.
  • FIG. 2 A diagram showing the configuration of a multi-antenna communication system according to an embodiment of the present invention
  • FIG. 3 A flow diagram of the entire system executing the multi-antenna communication method according to an embodiment of the present invention
  • FIG. 4 Antenna selection in multi-antenna communication system according to an embodiment of the present invention 'flow chart for explaining a bit distribution method
  • FIG. 5 A figure showing a comparison of performance in the method used in the present invention and the conventional method when the number of transmitting Z receiving antennas is four in all.
  • FIG. 6 A diagram showing a comparison of performance between the method used in the present invention and the conventional method when the number of transmitting Z receiving antennas is both 2.
  • FIG. 2 is a diagram showing the configuration of a multi-antenna communication system for controlling antenna selection and bit distribution according to an embodiment of the present invention.
  • the multi-antenna communication system comprises a first multi-antenna communication device having a transmitting system and a receiving system, and a second multi-antenna communication device having a transmitting system and a receiving system.
  • the present embodiment is mainly characterized in the transmission system of the first multi-antenna communication apparatus and the reception system of the second multi-antenna communication apparatus, and therefore, only that portion is shown in FIG.
  • the first multi-antenna communication apparatus is referred to as the transmitting side
  • the second multi-antenna communication apparatus is referred to as the receiving side.
  • the transmitting side includes a plurality of transmitting antennas 204, a plurality of encoding / demodulation units 203 provided corresponding to each antenna 204, an SZP conversion unit 201 for serial-to-parallel conversion of transmission data, and an SZP conversion unit. It has a plurality of transmission antenna selection units 202 which are provided between the conversion unit 201 and the plurality of coding / modulation units 203 and which are a plurality of switchers.
  • the reception side includes a plurality of reception antennas 205, a MIMO detection unit 209, a channel estimation unit 206, and an antenna selection 'bit distribution control unit 207.
  • the channel estimation unit 206 and the antenna selection 'bit distribution unit 207 are connected to the MIMO detection unit 209.
  • the transmit side and receive side of the MIMO system are each n
  • n transmit antennas 204 and n receive antennas 205 (where n and n are natural numbers)
  • the data waiting for transmission is first processed by the SZP conversion unit 201 to n pieces of data.
  • Each of n divided data substreams is one
  • the transmission antenna selection unit 202 selects transmission antennas that actually transmit from all the transmission antennas 204. Then, the adaptive modulation ′ coding unit 203 performs adaptive modulation ′ code on the data substream selected by the transmission antenna selection unit 202. The adaptive modulation 'coded data substream is transmitted by the corresponding transmission antenna.
  • the adaptive modulation 'coding unit 203 selects In performing adaptive modulation and coding on the data substreams, the required parameter M (the parameter M indicates the number of data bits currently transmitted from each transmitting antenna, and in this embodiment, Adaptive modulation on the transmitting side at the same time ⁇
  • the coding unit 203 uses the same parameter M) is obtained by channel estimation on the receiving side. That is, the receiver feeds back the acquired parameters to the transmitter via the feedback channel 208.
  • n receiving antennas 205 receive all the signals in space.
  • channel estimation section 206 performs channel estimation using, for example, a method using pilot signals in the received signal or other methods to obtain current channel characteristic matrix H.
  • Antenna selection 'bit distribution control section 207 obtains antenna selection parameter C and adaptive modulation' coding parameter M according to the method of the present invention (described in detail later) based on matrix H and feeds it back. By feeding back to the transmission side via the channel 208, antenna selection 'bit distribution control on the transmission side is performed.
  • MIMO detection section 209 applies a general MIMO detection method to a data substream. MIMO detection is performed to obtain the original transmission data. Specifically, MIMO detection section 209 separates a plurality of transmission data sub-streams mixed on the propagation path using channel characteristic matrix H, and separates a plurality of separated transmission data sub-streams. The original transmission data is obtained by performing demodulation processing and decoding processing according to the parameters C and M on the memory.
  • Antenna selection 'bit distribution control section 207 selects adaptive modulation' coding parameters so that the total data throughput from all transmitting antennas is equal before and after changing the number of antennas. . This can prevent the throughput performance of the system from being impaired due to antenna selection (for example, when the number of transmitting antennas is reduced). For example, if, at a given time, antenna selection results in transmitting data by half of the transmission antennas, transmission bits distributed to the selected transmission antennas so as not to cause a loss in the transmission rate of the system. Designate the modulation multi-value number and coding rate by which the number is doubled by the adaptive modulation 'coding norm.
  • each adaptive modulation and coding unit 203 on the transmission side at the same time use the same modulation and coding parameters. That is, the number of transmission bits distributed to the selected transmission antenna 204 is the same. As a result, only one adaptive modulation and coding parameter needs to be fed back to the plurality of adaptive modulation and coding units 203, so that the complexity for realizing the system can be achieved while effectively suppressing the parameter feedback overhead. It can be lowered.
  • FIG. 3 is a flowchart of the entire system that executes the multi-antenna communication method of the present embodiment.
  • step S301 channel estimation is performed by the channel estimation unit 206 on the receiving side based on the received signal, and the current channel characteristic matrix H is obtained.
  • channel estimation a general channel estimation method applied to the MIMO system, for example, a pilot based channel estimation method is used.
  • the current channel characteristic matrix H obtained by channel estimation is provided to the antenna selection and bit distribution control unit 207.
  • step S302 based on the channel characteristic matrix H obtained by the antenna selection 'bit distribution control unit 207, the antenna selection parameter C and the adaptive modulation' coding parameter M are obtained, and the antenna on the receiving side Selection and bit distribution control is performed (details of this process will be described later).
  • step S 303 the antenna selection parameter C and the adaptive modulation and coding parameter M are controlled by the antenna selection and bit distribution unit 207 through the feedback channel 208 to actually control data transmission on the transmission side. Feedback to the sender.
  • step S311 based on the antenna selection parameter C and the adaptive modulation 'coding parameter M in which the receiving side power is also fed back on the transmitting side, antenna selection and adaptive modulation and coding for transmission data are performed.
  • the selected transmit antenna 204 transmits the signal to the receiver side as well as the appropriate transmit antenna 204 is selected.
  • step S 304 MIMO detection is performed on the received signal by the MIMO detection unit 209 on the receiving side, and the original transmission data is obtained.
  • FIG. 4 is a flowchart showing a method of controlling antenna selection 'bit distribution in the multi-antenna communication system of the present embodiment, that is, a detailed method for realizing step S302 of FIG.
  • the antenna selection 'bit distribution control method proposed in the present embodiment will be described in detail with reference to FIG.
  • the antenna selection 'bit distribution control method of the present embodiment is a recursion process. Specifically, first, in step S401, initialization is performed.
  • the total throughput of the system is R_total bit / s / Hz, and each transmission included in S
  • the adaptive modulation ′ coding parameter on the transmission side can be represented by the number R of transmission data bits averaged.
  • an appropriate modulation 'coding parameter is selected based on the transmitter's own numerical value.
  • adaptive transmission can be realized by fixing modulation parameters and changing coding parameters based on the value of R.
  • the channel characteristic is the worst from the set of transmitting antennas S, and the transmitting antenna is selected and marked as transmitting antenna j.
  • the transmitting antenna is selected and marked as transmitting antenna j.
  • the channel characteristics of a MIMO system can be represented by an n ⁇ n matrix H, and the matrix factor H
  • method (1) is realized by the following steps.
  • transmission antennas not included in the transmission antenna set S are excluded from comparison.
  • the SINR value is the lowest, and the channel characteristics to which the transmitting antenna corresponds are considered the worst.
  • MIMO detection method various methods can be used as the MIMO detection method, and there are, for example, ordinary least mean square error method (MMSE), serial interference cancellation method (SIC), and the like.
  • MMSE ordinary least mean square error method
  • SIC serial interference cancellation method
  • method (2) is realized by the following steps.
  • the transmit antenna set S calculates the post-detection SINR value corresponding to each transmit antenna, and the post-detection SINR value differs depending on the MIMO detection method actually used, and in many references, Formulas are given.
  • the SINR value after detection of the signal transmitted from the k-th transmit antenna is expressed by the following equation.
  • H denotes the row vector in the matrix ⁇ ⁇ corresponding to the transmit antennas included in the transmit antenna set S (ie H denotes the matrix ⁇ For each column of, if the corresponding transmit antenna is not included in S, we can obtain by making the column in matrix ⁇ '0').
  • the SINR value of the signal transmitted from the k-th transmit antenna after detection is given by the following equation, and I is an n-dimensional unit matrix.
  • step S 404 the bit error rates at case A and case B are compared, that is, whether the comparison result is BER (B) ⁇ BER (A) or not! .
  • SINR values are calculated after MIMO detection of the signals of the respective transmit antennas, and MIMO detection of the signals of the respective transmit antennas is performed based on the throughput amount distributed to the respective transmit antennas. Then, determine the BER (to obtain the BER value by simulation or logic estimation). In this case, the average value of the corresponding BER values for each transmit antenna is taken as the BER for A, and is denoted here as BER (A).
  • the BER (B) is obtained by the same method, and the BER (A) is compared with the BER (B).
  • method (1) is realized by the following steps.
  • SINR value is calculated after MIMO detection of each transmit antenna signal, and the kth transmit antenna signal is in the case A and case B after detection SINR value is These are denoted as SINR (k) and SINR (k), respectively, and are the same as step S402 described above.
  • a comparison table of SINR value and BER value is determined by simulation or logical formula. By searching the comparison table, the SINR value can directly find out the corresponding BER value.
  • (C) By searching the comparison table, BER values after MIMO detection of respective transmit antenna signals in case A and case B are determined.
  • the SINR values after MIMO detection in cases A and B for the kth transmit antenna signal are BER (k) and BER (k (k), respectively.
  • Method (2) In case A, only the BER value corresponding to the transmitting antenna with the lowest SINR after MIMO detection is calculated, which is indicated as BER (A). Obtain BER (B) by the same method, and compare BER (A) with BER (B). Method (2) can significantly reduce the amount of calculation compared to the method described above. Specifically, the method (2) is realized by the following steps.
  • a comparison table of SINR value and BER value is determined by simulation or logical formula. By searching the comparison table, the SINR value can directly find out the corresponding BER value.
  • SINR ⁇ (A) arg min ⁇ SINR A (k) ⁇
  • SINR ⁇ iB arg ⁇ male ⁇
  • step S 404 if it is determined that BER (B) ⁇ BER (A), and the number of transmission antennas included in the transmission antenna set S is larger than 1, step S 405 is transferred.
  • step S 406 is transferred.
  • step S406 the entire process of parameter selection and bit distribution control is ended, and the selected transmit antenna set S, and the amount of throughput R corresponding to all the transmit antennas included in S are obtained. That is, the parameters (S, R) are selected as the final selection result.
  • antenna selection parameter C and bit distribution parameter M are obtained. It is a binary sequence of 1's and 0's, and '1' and '0' indicate that the transmitting antenna is or is being used, respectively.
  • the value of M is the same as R.
  • FIG. 5 and FIG. 6 respectively show the comparison of the BER performance of the method used in the present invention and the conventional method.
  • the horizontal axis shows the signal-to-noise ratio (SNR), and the vertical axis shows the bit error rate.
  • SNR signal-to-noise ratio
  • the total throughput of the system is 8bps ZHz and 12bps ZHz, using a channel fading channel.
  • better BER performance can be obtained by using the method of the present invention as compared to the conventional method.
  • the antenna selection parameter and the adaptive modulation 'coding parameter are obtained based on the channel characteristic matrix estimated by channel estimation section 206, and these parameters are calculated.
  • Antenna selection 'Bit distribution control section 207 that feeds back to the transmission side and controls transmission antenna selection and bit distribution on the transmission side By transmitting only the transmission antenna with good channel characteristics according to the antenna selection parameter is provided.
  • the adaptive modulation 'coding parameters allow the system to control the bit distribution (ie throughput) as well as it can.
  • transmission antenna selection unit 202 is provided on the transmission side
  • the back channel may control transmission antenna selection and bit distribution. Alternatively, it may be performed by the antenna selection 'bit distribution control unit 207 on the receiving side.
  • the present invention is not limited to this, and the configuration of FIG. .
  • the correspondence relationship between each transmission data substream and each transmission antenna may be changed.
  • the multi-antenna communication apparatus of the present invention is applicable to a multi-antenna communication system or the like that performs transmission in a fluctuating channel environment.

Abstract

An antenna selection/bit distribution control unit (207) is provided for obtaining an antenna selection parameter and an adaptive modulation/encoding parameter according to a channel characteristic matrix estimated by a channel estimation unit (206), feeding back the parameters to the transmission side, and controlling the transmission antenna selection at the transmission side and bit distribution. This enables transmission using only a transmission antenna having a preferable channel characteristic in accordance with the antenna selection parameter and control of the bit distribution (i.e., throughput) by the adaptive modulation/encoding parameter without complicating the system.

Description

明 細 書  Specification
マルチアンテナ通信装置  Multi antenna communication device
技術分野  Technical field
[0001] 本発明は、 MIMO (Multiple-Input Multiple-Output)システムに用いられるマルチ アンテナ通信装置、マルチアンテナシステム、マルチアンテナ通信方法及びアンテ ナ選択'ビット分配方法に関する。  The present invention relates to a multi-antenna communication apparatus, a multi-antenna system, a multi-antenna communication method, and an antenna selection 'bit distribution method used in a Multiple-Input Multiple-Output (MIMO) system.
背景技術  Background art
[0002] 無線ネットワークとインターネットとの融合につれ、無線通信サービスと品質に対す る要求が高まってきている力 伝送レートは将来の無線通信システムが解決しようと する主な問題の一つである。無線マルチメディアと高 、レートデータ伝送の要求を満 たすために、新しい無線通信システムを開発する必要がある。従来の研究では、主 にいかに時間領域資源と周波数領域資源を利用して通信を行うことに集中している  [0002] With the convergence of wireless networks and the Internet, the demand for wireless communication services and quality is increasing. Transmission rates are one of the main problems that future wireless communication systems attempt to solve. New wireless communication systems need to be developed to meet the requirements of wireless multimedia and high, rate data transmission. Conventional research mainly focuses on how to communicate using time domain resources and frequency domain resources.
[0003] 近年、 MIMO技術の出現によって、研究者に新しい方向が打ち出されている。 Ml MOシステムでは、送信側で複数のアンテナにより信号を送信し、受信側で複数のァ ンテナにより信号を受信する。従来のシングルアンテナ伝送方法と比べて、 MIMO 技術がチャネル容量を著しく増大させることは、研究によって明らかになつている。ま た、時間領域と周波数領域の資源と比べて、空間資源はほぼ際限なく利用できるも のであるため、 MIMO技術は従来技術のネックを乗り越えることができ、次世代の無 線通信システムのコア技術となって 、る。 Recently, with the advent of MIMO technology, a new direction has been launched for researchers. In the Ml MO system, the transmitting side transmits signals by a plurality of antennas, and the receiving side receives signals by a plurality of antennas. Research has shown that MIMO technology significantly increases channel capacity compared to conventional single antenna transmission methods. Also, as space resources are almost endlessly available compared to time domain and frequency domain resources, MIMO technology can overcome the bottlenecks of the prior art, making it the core technology of the next generation wireless communication system. It becomes.
[0004] 現在、マルチアンテナ通信システムについて行われている研究のほとんどは、空間 分割多重と時空間符号化(space— time coding)である。空間分割多重では、それ ぞれのアンテナにより異なる符号を送信することで、システム伝送レートを高め、時空 間符号ィ匕では、異なるアンテナの送信信号間に符号ィ匕冗長を入れることにより、シス テムビット誤り率を高める。最近、 MIMOと OFDMとを組み合わせた MIMO— OFD M技術が注目されている。  [0004] At present, most of the research conducted on multi-antenna communication systems is space division multiplexing and space-time coding. In space division multiplexing, the system transmission rate is increased by transmitting different codes by each antenna, and in space-time codes, system bits are inserted by inserting code redundancy between transmission signals of different antennas. Increase the error rate. Recently, MIMO-OFD M technology combining MIMO and OFDM has attracted attention.
[0005] 図 1は従来の MIMOシステムの構成を示す図である。この MIMOシステムは、 SZ P (直列 Z並列)変換部 101、複数の符号ィ匕及び変調部 102、複数の送信アンテナ 1 03、複数の受信アンテナ 104、 MIMO検出部 105、チャネル推定部 106を備える。 SZP変換部 101、複数の符号ィ匕及び変調部 102、複数の送信アンテナ 103は、送 信側に含まれ、複数の受信アンテナ 104、 MIMO検出部 105、チャネル推定部 106 は、受信側に含まれる。 FIG. 1 is a diagram showing the configuration of a conventional MIMO system. This MIMO system is SZ A P (serial Z parallel) conversion unit 101, a plurality of code and modulation units 102, a plurality of transmission antennas 103, a plurality of reception antennas 104, a MIMO detection unit 105, and a channel estimation unit 106 are provided. An SZP converter 101, a plurality of code and modulation units 102, and a plurality of transmitting antennas 103 are included on the transmitting side, and a plurality of receiving antennas 104, a MIMO detector 105, and a channel estimation unit 106 are included on the receiving side. Be
[0006] 図 1に示した構成にぉ ヽて、送信側と受信側は、それぞれ n個の送信アンテナ 10  According to the configuration shown in FIG. 1, the transmitting side and the receiving side each have n transmitting antennas 10.
T  T
3及び n個の受信アンテナ 104 (nと nは自然数である)を用いて信号の送受信を 3 and n receive antennas 104 (where n and n are natural numbers) to transmit and receive signals.
R T R R T R
行う。  Do.
[0007] 送信側では、送信待ちのデータは、まず SZP変換部 101によって、 n個のデータ  On the transmission side, the data waiting for transmission is first processed by the SZP conversion unit 101 to n pieces of data.
T  T
サブストリームに分割される。分割された各データサブストリームはそれぞれ一つのァ ンテナ 103に対応する。各送信待ちのデータサブストリームは、まずそれぞれ対応す る符号化'変調部 102に入力される。符号化'変調部 102では、入力されたデータサ ブストリームに対して符号ィ匕及び変調を行う。符号化及び変調後のデータはそれぞ れ対応する送信アンテナ 103に送られ、対応する送信アンテナ 103から送信される。  It is divided into substreams. Each of the divided data substreams corresponds to one antenna 103. The data substreams awaiting transmission are first input to the corresponding encoding and modulation unit 102. The coding / modulation section 102 performs coding and modulation on the input data sub-stream. The encoded and modulated data are sent to the corresponding transmit antenna 103 and transmitted from the corresponding transmit antenna 103.
[0008] 受信側では、まず n個の受信アンテナ 104により空間のすべての信号が受信され [0008] On the receiving side, first, all the signals in space are received by n receiving antennas 104.
R  R
、そして、チャネル推定部 106によって、受信信号のパイロット信号に基づいて、また は他の方式を用いて、チャネル推定が行われ、現在のチャネル特性行列 Hが推定さ れる(MIMOシステムにとって、そのチャネル特性は行列で表すことができる)。次に 、 MIMO検出部 105によって、得られた行列 Hに基づいて、各受信アンテナ 104に より受信された信号に対して検出が行われて、元の送信データが得られる。 MIMO 検出においては種種の方法を用いることができる。例えば常習的な ZF (ゼロフォーシ ング)、 MMSE (最小自乗平均誤差)、シリアル型干渉キャンセルまたはその他の方 法がよく用いられる。  And, channel estimation section 106 performs channel estimation based on the pilot signal of the received signal or using another scheme to estimate the current channel characteristic matrix H (for the MIMO system, the channel Properties can be represented by a matrix). Next, based on the matrix H obtained by the MIMO detection unit 105, detection is performed on the signal received by each receiving antenna 104, and the original transmission data is obtained. Various methods can be used in MIMO detection. For example, habitual ZF (zero forcing), MMSE (least root mean square error), serial interference cancellation or other methods are often used.
[0009] 通常、 MIMO検出部 105には、送信側の各送信アンテナにより送信された信号を 分離する動作、及び各信号に対して復調及び復号化を行う動作が含まれる。なお、 実際の MIMO検出において、ほとんどの場合では、これら 2つの動作は独立に行わ れることではない。つまり、前者からの出力は後者に取得され、また、前者の進行にし ばしば後者から出力を必要する。このため、一般的に復調及び復号化を MIMO検 出部 105に含めて記載する。 Usually, MIMO detection section 105 includes an operation of separating the signal transmitted by each transmission antenna on the transmission side, and an operation of performing demodulation and decoding on each signal. Note that in actual MIMO detection, these two operations are not performed independently in most cases. That is, the output from the former is obtained by the latter, and the output of the latter is often required for the progress of the former. For this reason, it is generally Described in the output section 105.
[0010] 図 1に示すような MIMO構成は一般的に V- BLAST (Vertical Bell Laboratories L ayered Space-Time)システムと呼ばれている。実際の MIMOシステムにおいては、 変化を持たせることもできる。各送信データサブストリームと各送信アンテナ間の対応 関係を変換することによって、例えば、 D- BLAST (Diagonal Bell Laboratories Layer ed Space-Time)システム等、ほかの構成の MIMOシステムを得ることができる。また 、送信側で適応変調 Z符号ィ匕部の後に SZP変換部、 IFFT (逆高速フーリエ変換) 部、 PZS変換部、 CP (Cyclic Prefix)付力卩部等を追加して、 MIMO— OFDMシステ ム〖こすることちでさる。 [0010] A MIMO configuration as shown in FIG. 1 is generally called a V-BLAST (Vertical Bell Laboratories Layered Space-Time) system. In an actual MIMO system, changes can be made. By converting the correspondence between each transmission data substream and each transmission antenna, it is possible to obtain a MIMO system of another configuration, such as a D-BLAST (Diagonal Bell Laboratories Layered Space-Time) system, for example. In addition, on the transmission side, after the adaptive modulation Z code input unit, an SZP conversion unit, an IFFT (Inverse Fast Fourier Transform) unit, a PZS conversion unit, a CP (Cyclic Prefix) addition unit, etc. are added, and a MIMO-OFDM system is added. It is an important thing to do.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0011] しかしながら、従来の MIMOシステムにおいて、通常送信アンテナの選択は行わ れず、すべてのアンテナにより信号の送信が行われる。このように、チャネルのフエ一 ジングにより、 MIMOシステムのそれぞれの送信アンテナが対応するチャネルの特 性は異なっており、実際において、ある送信アンテナが対応するチャネルの特性が 非常に悪い場合がある。  However, in the conventional MIMO system, transmission antenna selection is usually not performed, and all antennas transmit signals. Thus, due to channel fading, the characteristics of the channels to which each transmit antenna of the MIMO system corresponds may differ, and in fact, the characteristics of a channel to which a certain transmit antenna corresponds may be very bad.
[0012] 一般に、 MIMOシステムにお ヽては、送信アンテナ数を増やした分だけ全体として のスループットは増加する力 上述したようにチャネル特性の非常に悪いアンテナが あると、全体としてのスループットを増加させることができず、消費電力のみが増加す る場合ちある。  Generally, in a MIMO system, the overall throughput is increased by an increase in the number of transmit antennas. As described above, if there is an antenna with a very poor channel characteristic, the overall throughput will be increased. In some cases, only power consumption can not be increased.
[0013] また、単純に送信アンテナ数を変化させると、それに応じてシステム全体でのスル 一プットも変動し、この結果システム全体が煩雑ィ匕することも考えられる。  [0013] Also, if the number of transmitting antennas is simply changed, the throughput of the entire system also fluctuates accordingly, and as a result, the entire system may be complicated.
[0014] 本発明の目的は、チャネル特性を十分に考慮したシステムを構築することで、送信 アンテナを効率良く用いて高効率のマルチアンテナ送信を可能とし、かつシステム全 体の構成を煩雑ィ匕することのな 、マルチアンテナ通信装置、マルチアンテナ送信シ ステム及びマルチアンテナ通信方法を提供することである。  The object of the present invention is to construct a system in which channel characteristics are sufficiently taken into consideration, thereby enabling efficient multi-antenna transmission using transmission antennas efficiently, and complicating the entire system configuration. What is needed is to provide a multi-antenna communication device, a multi-antenna transmission system, and a multi-antenna communication method.
課題を解決するための手段  Means to solve the problem
[0015] 本発明のマルチアンテナ通信装置は、受信した信号に基づいて、現在のチャネル 特性行列を推定するチャンネル推定手段と、前記推定されたチャネル特性行列に基 づいて、アンテナ選択パラメータと適応変調'符号ィ匕パラメータを得て、これらのパラ メータを送信側にフィードバックし、送信側の送信アンテナ選択及びビット分配を制 御するアンテナ選択'ビット分配制御手段と、前記チャネル推定手段によって得られ る現在のチャネル特性行列と前記フィードバックしたアンテナ選択パラメータ及び適 応変調'符号化パラメータに基づいて、各送信データサブストリームに対して検出を 行い、元の送信データを得る MIMO検出手段と、を具備する構成を採る。 [0015] The multi-antenna communication apparatus of the present invention is configured to transmit a current channel based on a received signal. Based on the channel estimation means for estimating the characteristic matrix and the estimated channel characteristic matrix, the antenna selection parameter and the adaptive modulation 'code parameter are obtained, these parameters are fed back to the transmitting side, and the transmitting side is obtained. Antenna selection 'bit distribution control means for controlling transmission antenna selection and bit distribution of the channel, current channel characteristic matrix obtained by the channel estimation means, the fed back antenna selection parameter and adaptive modulation' coding parameter And a MIMO detection unit for detecting each transmission data substream and obtaining the original transmission data.
[0016] この構成によれば、アンテナ選択'ビット分配制御手段によって、チャネル特性行列 に基づいて、アンテナ選択パラメータと適応変調'符号化パラメータを得て、これらの ノ ラメータを送信側にフィードバックするようにしたので、アンテナ選択パラメータに応 じたチャネル特性の良 、送信アンテナのみを用いた送信を行うことができると共に、 適応変調 '符号化パラメータによってビット分配 (すなわちスループット)をシステムが 煩雑ィ匕しな 、ように制御できるようになる。 [0016] According to this configuration, the antenna selection parameter and the adaptive modulation 'coding parameter are obtained by the antenna selection' bit distribution control means based on the channel characteristic matrix, and these parameters are fed back to the transmission side. As a result, it is possible to perform transmission using only the transmitting antenna and to perform channel distribution (that is, throughput) complicated by the adaptive modulation 'coding parameter. You will be able to control it as you like.
発明の効果  Effect of the invention
[0017] 本発明によれば、受信側でのチャネル特性行列に基づいて送信アンテナを選択す ると共に、選択した各送信アンテナへのビット分配を適応変調の変調多値数及び又 は符号化率により制御するので、送信アンテナを効率良く用いて高効率のデータ伝 送を行うことができると共に、高効率のマルチアンテナ送信を行う際のビット分配を簡 易な構成で行うことができるようになる。  According to the present invention, the transmitting antenna is selected based on the channel characteristic matrix on the receiving side, and bit distribution to each selected transmitting antenna is determined by the modulation multi-level number and / or coding rate of adaptive modulation. Therefore, the transmission antenna can be efficiently used to perform high-efficiency data transmission, and bit distribution can be performed with a simple configuration when performing high-efficiency multi-antenna transmission. .
[0018] 換言すれば、本発明によれば、従来技術と較べて、システムを煩雑ィ匕することなぐ MIMO伝送システムの誤り率特性を有効に向上させることができる。  In other words, according to the present invention, it is possible to effectively improve the error rate performance of the MIMO transmission system which does not complicate the system, as compared with the prior art.
図面の簡単な説明  Brief description of the drawings
[0019] [図 1]従来技術による MIMO無線システムの構成を示す図 FIG. 1 is a diagram showing the configuration of a prior art MIMO radio system.
[図 2]本発明の実施の形態に係るマルチアンテナ通信システムの構成を示す図 [図 3]本発明の実施の形態に係るマルチアンテナ通信方法を実行するシステム全体 のフロー図  [FIG. 2] A diagram showing the configuration of a multi-antenna communication system according to an embodiment of the present invention [FIG. 3] A flow diagram of the entire system executing the multi-antenna communication method according to an embodiment of the present invention
[図 4]本発明の実施の形態に係るマルチアンテナ通信システムにおけるアンテナ選 択 'ビット分配方法を説明するためのフロー図 [図 5]送信 Z受信アンテナの数がともに 4である場合の本発明に用いられる方法と従 来の方法における性能の比較を示す図 [FIG. 4] Antenna selection in multi-antenna communication system according to an embodiment of the present invention 'flow chart for explaining a bit distribution method [FIG. 5] A figure showing a comparison of performance in the method used in the present invention and the conventional method when the number of transmitting Z receiving antennas is four in all.
[図 6]送信 Z受信アンテナの数がともに 2である場合の本発明に用いられる方法と従 来の方法における性能の比較を示す図  [FIG. 6] A diagram showing a comparison of performance between the method used in the present invention and the conventional method when the number of transmitting Z receiving antennas is both 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021] 図 2は本発明の一実施の形態に係るアンテナ選択及びビット分配を制御するマル チアンテナ通信システムの構成を示す図である。実際上、マルチアンテナ通信システ ムは、送信系及び受信系を備えた第 1のマルチアンテナ通信装置と、送信系及び受 信系を備えた第 2のマルチアンテナ通信装置とにより構成されるが、本実施の形態は 、主に、第 1のマルチアンテナ通信装置の送信系と、第 2のマルチアンテナ通信装置 の受信系に特徴があるため、図 2では、その部分のみを示した。なお、以下の説明で は、第 1のマルチアンテナ通信装置を送信側と呼び、第 2のマルチアンテナ通信装 置を受信側と呼ぶ。 FIG. 2 is a diagram showing the configuration of a multi-antenna communication system for controlling antenna selection and bit distribution according to an embodiment of the present invention. In practice, the multi-antenna communication system comprises a first multi-antenna communication device having a transmitting system and a receiving system, and a second multi-antenna communication device having a transmitting system and a receiving system. The present embodiment is mainly characterized in the transmission system of the first multi-antenna communication apparatus and the reception system of the second multi-antenna communication apparatus, and therefore, only that portion is shown in FIG. In the following description, the first multi-antenna communication apparatus is referred to as the transmitting side, and the second multi-antenna communication apparatus is referred to as the receiving side.
[0022] 送信側は、複数の送信アンテナ 204と、各アンテナ 204に対応して設けられた複数 の複数の符号化'変調部 203と、送信データをシリアルパラレル変換する SZP変換 部 201と、 SZP変換部 201と複数の符号化'変調部 203との間に設けられた複数の スィッチカゝらなる送信アンテナ選択部 202と、を有する。  The transmitting side includes a plurality of transmitting antennas 204, a plurality of encoding / demodulation units 203 provided corresponding to each antenna 204, an SZP conversion unit 201 for serial-to-parallel conversion of transmission data, and an SZP conversion unit. It has a plurality of transmission antenna selection units 202 which are provided between the conversion unit 201 and the plurality of coding / modulation units 203 and which are a plurality of switchers.
[0023] 受信側は、複数の受信アンテナ 205と、 MIMO検出部 209と、チャネル推定部 20 6と、アンテナ選択'ビット分配制御部 207とを有する。チャネル推定部 206とアンテ ナ選択'ビット分配部 207は MIMO検出部 209に接続されている。  The reception side includes a plurality of reception antennas 205, a MIMO detection unit 209, a channel estimation unit 206, and an antenna selection 'bit distribution control unit 207. The channel estimation unit 206 and the antenna selection 'bit distribution unit 207 are connected to the MIMO detection unit 209.
[0024] 次に、図 2を用いて本発明の実施の形態に係る MIMOシステムの動作について説 明する。図 2の構成において、 MIMOシステムの送信側及び受信側は、それぞれ n  Next, the operation of the MIMO system according to the embodiment of the present invention will be described using FIG. In the configuration of FIG. 2, the transmit side and receive side of the MIMO system are each n
T  T
個の送信アンテナ 204と n個の受信アンテナ 205 (nと nは自然数である)を用いて  With n transmit antennas 204 and n receive antennas 205 (where n and n are natural numbers)
R T R  R T R
信号の送受信を行う。  Send and receive signals.
[0025] 送信側では、送信待ちのデータは、まず SZP変換部 201によって、 n個のデータ  On the transmission side, the data waiting for transmission is first processed by the SZP conversion unit 201 to n pieces of data.
T  T
サブストリームに分割される。分割された n個のデータサブストリームはそれぞれ一つ  It is divided into substreams. Each of n divided data substreams is one
T  T
の送信アンテナ 204に対応する。 [0026] 送信アンテナ選択部 202によって、すべての送信アンテナ 204から実際に送信を 行う送信アンテナが選択される。そして、適応変調'符号化部 203によって、送信アン テナ選択部 202により選択されたデータサブストリームに対して、適応変調'符号ィ匕 が行われる。適応変調'符号化されたデータサブストリームは、対応する送信アンテ ナにより送信される。 Corresponding to the transmitting antenna 204 of The transmission antenna selection unit 202 selects transmission antennas that actually transmit from all the transmission antennas 204. Then, the adaptive modulation ′ coding unit 203 performs adaptive modulation ′ code on the data substream selected by the transmission antenna selection unit 202. The adaptive modulation 'coded data substream is transmitted by the corresponding transmission antenna.
[0027] 送信アンテナ選択部 202が送信アンテナ選択を行う際に、必要とされる制御パラメ ータ C ,C ,- - -,C (Cは送信アンテナ kの選択状況を示し、 k=l,2,…,! 1、 Cは二進  [0027] Control parameters C 1, C 2,---, C (where C represents the selection status of transmission antenna k, k = 1 ,,) are required when transmission antenna selection section 202 performs transmission antenna selection. 2, ...,! 1, C is binary
1 2 nT k T k 法数字であり、その値「1」、「0」はそれぞれ送信アンテナ kが選択されたと選択されて いない二つの状況を示す)、及び適応変調'符号化部 203が選択されたデータサブ ストリームに対して適応変調 ·符号ィ匕を行う際に、必要とされるパラメータ M (パラメ一 タ Mは現在それぞれの送信アンテナから伝送されるデータビット数を示し、本実施例 では同一時刻での送信側の適応変調 ·符号ィ匕部 203は同じパラメータ Mを使用する )は、受信側のチャネル推定によって取得される。すなわち、受信側は、取得したパラ メータをフィードバックチャネル 208を介して、送信側にフィードバックする。  1 2 nT k T k mod number whose values “1” and “0” respectively indicate two situations not selected when the transmitting antenna k is selected), and the adaptive modulation 'coding unit 203 selects In performing adaptive modulation and coding on the data substreams, the required parameter M (the parameter M indicates the number of data bits currently transmitted from each transmitting antenna, and in this embodiment, Adaptive modulation on the transmitting side at the same time · The coding unit 203 uses the same parameter M) is obtained by channel estimation on the receiving side. That is, the receiver feeds back the acquired parameters to the transmitter via the feedback channel 208.
[0028] 受信側では、まず n個の受信アンテナ 205により、空間のすべての信号が受信さ [0028] On the receiving side, first, n receiving antennas 205 receive all the signals in space.
R  R
れる。  Be
[0029] そして、チャネル推定部 206は、例えば受信信号中のパイロット信号を利用する方 法又は他の方法を用いて、チャネル推定を行い、現在のチャネル特性行列 Hを得る  Then, channel estimation section 206 performs channel estimation using, for example, a method using pilot signals in the received signal or other methods to obtain current channel characteristic matrix H.
[0030] アンテナ選択'ビット分配制御部 207は、行列 Hに基づき本発明の方法 (詳細につ いて後述する)により、アンテナ選択パラメータ C及び適応変調'符号化パラメータ M を得て、これをフィードバックチャネル 208を介して送信側にフィードバックすることで 、送信側のアンテナ選択'ビット分配制御を行う。 [0030] Antenna selection 'bit distribution control section 207 obtains antenna selection parameter C and adaptive modulation' coding parameter M according to the method of the present invention (described in detail later) based on matrix H and feeds it back. By feeding back to the transmission side via the channel 208, antenna selection 'bit distribution control on the transmission side is performed.
[0031] 次に、 MIMO検出部 209が、チャネル特性行列 Hとアンテナ選択 'ビット分配部 20 7によって取得されたパラメータ C、 Mに基づき、一般的な MIMO検出方法を利用し てデータサブストリームに対して MIMO検出を行い、元の送信データを得る。具体的 には、 MIMO検出部 209は、伝搬路上で混ざり合った複数の送信データサブストリ ームをチャネル特性行列 Hを用いて分離し、分離した複数の送信データサブストリー ムに対してパラメータ C、 Mに応じた復調処理及び復号化処理を施すことで、元の送 信データを得る。 [0031] Next, based on channel characteristic matrix H and parameters C and M obtained by antenna selection 'bit distribution section 207, MIMO detection section 209 applies a general MIMO detection method to a data substream. MIMO detection is performed to obtain the original transmission data. Specifically, MIMO detection section 209 separates a plurality of transmission data sub-streams mixed on the propagation path using channel characteristic matrix H, and separates a plurality of separated transmission data sub-streams. The original transmission data is obtained by performing demodulation processing and decoding processing according to the parameters C and M on the memory.
[0032] 図 1に示す従来の MIMOシステムと比べると、本実施の形態のマルチアンテナ通 信システムとの相違点は、以下のような 2点がある。  Compared to the conventional MIMO system shown in FIG. 1, there are the following two differences from the multi-antenna communication system of the present embodiment.
[0033] (1)図 1に示すように、従来の MIMOシステムでは、すべての時刻において全部の 送信アンテナを用いてデータの送信を行うのに対して、本実施の形態では、すべて の送信時刻において、現在のチャネル特性に基づき、適切な送信アンテナのみを選 択して送信を行う。本実施の形態において、アンテナ選択'ビット分配制御部 207は 、現在のチャネル特性行列 Hに基づき、本実施の形態で提案する方法によりパラメ ータ C ,C ,- - -,C を取得した後に、それをフィードバックチャネル 208を介して送信側 (1) As shown in FIG. 1, in the conventional MIMO system, data is transmitted using all of the transmit antennas at all times, whereas in this embodiment, all of the transmission times are used. , Select only the appropriate transmit antenna and transmit based on the current channel characteristics. In the present embodiment, the antenna selection 'bit distribution control section 207 obtains parameters C 1, C 2,---, C by the method proposed in the present embodiment based on the current channel characteristic matrix H. , Send it through feedback channel 208
1 2 nT 1 2 nT
にフィードバックする。  Give feedback to
[0034] (2)アンテナ選択'ビット分配制御部 207は、全送信アンテナからの合計データスル 一プットがアンテナ数を変化させる前後で等しくなるように、適応変調'符号化パラメ ータを選択する。これにより、アンテナ選択 (例えば送信アンテナ数を少なくした場合 )によるシステムのスループット性能を損なうことを防ぐことができる。例えば、ある時刻 において、半分の送信アンテナによりデータの送信を行うというアンテナ選択の結果 が出た場合は、システムの伝送レートに損失を与えないように、選択された送信アン テナに分配する伝送ビット数を倍にする変調多値数や符号化率を適応変調'符号化 ノ ラメータによって指定する。さらに、本実施の形態では、同一時刻での送信側の各 適応変調及び符号ィ匕部 203は同一の変調及び符号化パラメータを使用する。つまり 、選択された送信アンテナ 204に分配する伝送ビット数は同じである。これにより、複 数の適応変調及び符号化部 203に対して 1つの適応変調 ·符号化パラメータのみを フィードバックすれば済むので、パラメータのフィードバックオーバヘッドを有効に抑 えつつ、システムを実現する複雑度を下げることができる。また、フィードバックした適 応変調 ·符号化パラメータを用 Vヽた適用変調 ·符号化処理を施された送信信号を受 信した受信側では、 MIMO検出部 209において、フィードバックした適応変調 '符号 化パラメータに対応した適応復調と復号化を行うことで適応変調 '符号化前のデータ を得る。 [0035] 図 3は本実施の形態のマルチアンテナ通信方法を実行するシステム全体のフロー 図である。 (2) Antenna selection 'bit distribution control section 207 selects adaptive modulation' coding parameters so that the total data throughput from all transmitting antennas is equal before and after changing the number of antennas. . This can prevent the throughput performance of the system from being impaired due to antenna selection (for example, when the number of transmitting antennas is reduced). For example, if, at a given time, antenna selection results in transmitting data by half of the transmission antennas, transmission bits distributed to the selected transmission antennas so as not to cause a loss in the transmission rate of the system. Designate the modulation multi-value number and coding rate by which the number is doubled by the adaptive modulation 'coding norm. Furthermore, in the present embodiment, each adaptive modulation and coding unit 203 on the transmission side at the same time use the same modulation and coding parameters. That is, the number of transmission bits distributed to the selected transmission antenna 204 is the same. As a result, only one adaptive modulation and coding parameter needs to be fed back to the plurality of adaptive modulation and coding units 203, so that the complexity for realizing the system can be achieved while effectively suppressing the parameter feedback overhead. It can be lowered. Also, on the receiving side that has received the transmitted signal subjected to adaptive modulation and coding processing that has been subjected to adaptive modulation and coding parameters that have been fed back, the adaptive modulation 'coding parameter that is fed back in MIMO detection section 209 By performing adaptive demodulation and decoding corresponding to, adaptive modulation 'data before coding is obtained. FIG. 3 is a flowchart of the entire system that executes the multi-antenna communication method of the present embodiment.
[0036] まず、ステップ S301では、受信側のチャネル推定部 206によって、受信した信号に 基づき、チャネル推定が行われ、現在のチャネル特性行列 Hが得られる。チャネル推 定において、 MIMOシステムに適用される一般的なチャネル推定方法、例えばパイ ロットに基づくチャネル推定方法が用いられる。チャネル推定によって得られた現在 のチャネル特性行列 Hがアンテナ選択 ·ビット分配制御部 207に提供される。  First, in step S301, channel estimation is performed by the channel estimation unit 206 on the receiving side based on the received signal, and the current channel characteristic matrix H is obtained. In channel estimation, a general channel estimation method applied to the MIMO system, for example, a pilot based channel estimation method is used. The current channel characteristic matrix H obtained by channel estimation is provided to the antenna selection and bit distribution control unit 207.
[0037] そして、ステップ S302では、アンテナ選択'ビット分配制御部 207によって、得られ たチャネル特性行列 Hに基づき、アンテナ選択パラメータ Cと適応変調'符号化パラ メータ Mが得られ、受信側のアンテナ選択及びビット分配制御が行われる(この過程 の詳細につ 、ては後述する)。  Then, in step S302, based on the channel characteristic matrix H obtained by the antenna selection 'bit distribution control unit 207, the antenna selection parameter C and the adaptive modulation' coding parameter M are obtained, and the antenna on the receiving side Selection and bit distribution control is performed (details of this process will be described later).
[0038] その後、ステップ S303では、実際に送信側のデータ送信を制御するために、アン テナ選択パラメータ Cと適応変調 ·符号化パラメータ Mがアンテナ選択 ·ビット分配部 207によって、フィードバックチャネル 208を介して送信側にフィードバックされる。  Thereafter, in step S 303, the antenna selection parameter C and the adaptive modulation and coding parameter M are controlled by the antenna selection and bit distribution unit 207 through the feedback channel 208 to actually control data transmission on the transmission side. Feedback to the sender.
[0039] 次 、で、ステップ S311では、送信側で受信側力もフィードバックされたアンテナ選 択パラメータ Cと適応変調'符号化パラメータ Mに基づき、送信データに対してアンテ ナ選択及び適応変調 ·符号化が行われ、適切な送信アンテナ 204が選択されると共 に選択された送信アンテナ 204により受信側へ信号の送信が行われる。  [0039] Next, in step S311, based on the antenna selection parameter C and the adaptive modulation 'coding parameter M in which the receiving side power is also fed back on the transmitting side, antenna selection and adaptive modulation and coding for transmission data are performed. The selected transmit antenna 204 transmits the signal to the receiver side as well as the appropriate transmit antenna 204 is selected.
[0040] そして、ステップ S304では、受信側の MIMO検出部 209によって、受信信号に対 して MIMO検出が行われ、元の送信データが得られる。  Then, in step S 304, MIMO detection is performed on the received signal by the MIMO detection unit 209 on the receiving side, and the original transmission data is obtained.
[0041] 図 4は本実施の形態のマルチアンテナ通信システムにおけるアンテナ選択'ビット 分配制御方法、即ち図 3のステップ S302を実現する詳細な方法を示すフロー図であ る。以下図 4を用いて本実施の形態で提案するアンテナ選択'ビット分配制御方法に ついて詳細に説明する。  [0041] FIG. 4 is a flowchart showing a method of controlling antenna selection 'bit distribution in the multi-antenna communication system of the present embodiment, that is, a detailed method for realizing step S302 of FIG. The antenna selection 'bit distribution control method proposed in the present embodiment will be described in detail with reference to FIG.
[0042] 本実施の形態のアンテナ選択'ビット分配制御方法はリカージョン過程である。具体 的に、まずステップ S401では初期化される。送信アンテナ集合 Sにすベての送信ァ ンテナが含まれ、即ち S={l,2,〜,n }とされ、ただし、 nは送信アンテナの数である。  The antenna selection 'bit distribution control method of the present embodiment is a recursion process. Specifically, first, in step S401, initialization is performed. The transmit antenna set S includes all transmit antennas, ie, S = {l, 2 to n}, where n is the number of transmit antennas.
T T  T T
システムの総スループット量が R_total bit/s/Hzであり、 Sに含まれるそれぞれの送信 アンテナに分配されるスループット量は R=R_total/length(S)となり、ただし、 length (S )は集合 Sの長さ、即ち Sに含まれる送信アンテナの数である。 The total throughput of the system is R_total bit / s / Hz, and each transmission included in S The amount of throughput distributed to the antennas is R = R_total / length (S), where length (S) is the length of the set S, ie the number of transmit antennas included in S.
[0043] ここで、送信側の適応変調'符号化パラメータは平均分配された伝送データビット 数 Rで表すことができる。実際のデータ送信において、送信側自身カ¾の数値に基 づき、適切な変調'符号化パラメータを選定する。実際の操作は、変調パラメータを 固定し、 Rの数値に基づいて符号化パラメータを変更することにより、適応伝送を実 現することができる。例えば、変調方式を 64QAMに固定し、 R=2の場合は符号化率 1Z3のターボコードを選定し、 R=3の場合は符号化率 1Z2のターボコードを選定す る。 Here, the adaptive modulation ′ coding parameter on the transmission side can be represented by the number R of transmission data bits averaged. In actual data transmission, an appropriate modulation 'coding parameter is selected based on the transmitter's own numerical value. In actual operation, adaptive transmission can be realized by fixing modulation parameters and changing coding parameters based on the value of R. For example, the modulation scheme is fixed to 64 QAM, a turbo code of coding rate 1Z3 is selected in the case of R = 2, and a turbo code of coding rate 1Z2 is selected in the case of R = 3.
[0044] そして、ステップ S302では、送信アンテナ集合 Sからチャネル特性が最も悪 、送信 アンテナが選択され、送信アンテナ jと標記される。ここで、チャネル特性が最も悪い 送信アンテナを特定する方法は以下のように二つがある。  Then, in step S 302, the channel characteristic is the worst from the set of transmitting antennas S, and the transmitting antenna is selected and marked as transmitting antenna j. Here, there are two ways to identify the transmitting antenna with the worst channel characteristics as follows.
[0045] (1)チャネル特性行列 Hにおける各列のベクトル基準値 (norm)を比較することによ り、列ベクトルの基準値が最も低 、送信アンテナが対応するチャネル特性が最も悪 ヽ とされる。 (1) By comparing the vector reference value (norm) of each column in the channel characteristic matrix H, the reference value of the column vector is the lowest, and the channel characteristic corresponding to the transmitting antenna is the worst. Ru.
[0046] MIMOシステムのチャネル特性は n X nの行列 Hで示すことができ、行列因子 H (  The channel characteristics of a MIMO system can be represented by an n × n matrix H, and the matrix factor H
R T  R T
i, j)は j番目の送信アンテナから i番目の送信アンテナに送信される空間パスのチヤ ネル特性を示す。従って、行列 Hにおける列ベクトル 1, 2〜nはそれぞれ送信アン  i, j) show the channel characteristics of the spatial path transmitted from the j-th transmit antenna to the i-th transmit antenna. Therefore, the column vectors 1, 2 to n in the matrix H are respectively
T  T
テナ 1, 2〜nのチャネル特性と対応する。行列 Hにおける各列ベクトルの基準値 (ベ  It corresponds to the channel characteristics of Tena 1, 2 to n. Reference value of each column vector in matrix H
T  T
タトルにおける各因子の平方和のルート値)を計算して比較し、最も低い基準値が対 応する送信アンテナのチャネル特性が最も悪いとされる。具体的に方法(1)は以下 のステップにより実現される。  The root value of the sum of squares of each factor in the turtle is calculated and compared, and the channel characteristic of the transmitting antenna to which the lowest reference value corresponds is considered to be the worst. Specifically, method (1) is realized by the following steps.
[0047] (a)行列 Hにおける各列 1,2,… の基準値を計算し、 norm (l) ,norm (2) , · ··, nor  (A) Calculate the reference value of each column 1, 2, ... in the matrix H, and let norm (l), norm (2), · · ·, nor
τ  τ
m (n )を得る。行列 Hの k番目の基準値の計算式は以下の式に示す。  Get m (n). The equation for calculating the k-th reference value of the matrix H is shown by the following equation.
T  T
[数 1] norm(k) = [Equation 1] norm (k) =
Figure imgf000011_0001
[0048] (b)送信アンテナ集合 Sの各送信アンテナが対応する行列 Hにおける列の基準値 を互 、に比較して、基準値が最も低 ヽ列が対応する送信アンテナを基準アンテナ jと し、当該送信アンテナが対応するチャネル特性は最も悪いとされ、次式で示される。
Figure imgf000011_0001
(B) The transmit antennas of the transmit antenna set S are compared with the reference values of the columns in the matrix H corresponding to each other, and the transmit antenna corresponding to the matrix with the lowest reference value is taken as the reference antenna j. The channel characteristic to which the transmitting antenna corresponds is considered to be the worst, and is expressed by the following equation.
[数 2]  [Number 2]
/· = are inormCk)}  / · = Are inormCk)}
kes  kes
ここで、送信アンテナ集合 Sに含まれない送信アンテナが比較対象外となる。  Here, transmission antennas not included in the transmission antenna set S are excluded from comparison.
[0049] (2) MIMO検出後の各送信アンテナが対応する検出後 SINR値を計算し、検出後(2) Calculate the SINR value after detection corresponding to each transmit antenna after MIMO detection, and after detection
SINR値が最も低 、送信アンテナが対応するチャネル特性が最も悪 、とされる。 The SINR value is the lowest, and the channel characteristics to which the transmitting antenna corresponds are considered the worst.
[0050] ここで、 MIMO検出方法として種種の方法を用いることができ、例えば、通常の最 小自乗平均誤差法 (MMSE)、シリアル型干渉キャンセル法 (SIC)等がある。具体 的に、方法(2)は以下のステップにより実現される。 Here, various methods can be used as the MIMO detection method, and there are, for example, ordinary least mean square error method (MMSE), serial interference cancellation method (SIC), and the like. Specifically, method (2) is realized by the following steps.
[0051] (a)送信アンテナ集合 Sの各送信アンテナがそれぞれ対応する検出後 SINR値を 計算し、当該検出後 SINR値は実際に用いられる MIMO検出方法によって異なって おり、多くの参考文献ではその計算式が与えられている。例えば、 ZF検出では、 k番 目の送信アンテナから送信される信号の検出後 SINR値は、次式となる。 (A) The transmit antenna set S calculates the post-detection SINR value corresponding to each transmit antenna, and the post-detection SINR value differs depending on the MIMO detection method actually used, and in many references, Formulas are given. For example, in ZF detection, the SINR value after detection of the signal transmitted from the k-th transmit antenna is expressed by the following equation.
[数 3]  [Number 3]
SINR 、 ~ r ただし、 Esと Noはそれぞれ信号と雑音電力を示し、 Hは送信アンテナ集合 Sに含まれ る送信アンテナが対応する行列 Ηにおける列ベク トルを示す (即ち、 Hは、 行列 Ηの各列 に対して、 対応する送信アンテナが Sに含まれない場合は、 行列 Ηにおける当該列を 「0」 にすることで得られる)。 SINR, ~ r where E s and No denote the signal and noise power respectively, H denotes the row vector in the matrix 対 応 corresponding to the transmit antennas included in the transmit antenna set S (ie H denotes the matrix Η For each column of, if the corresponding transmit antenna is not included in S, we can obtain by making the column in matrix 「'0').
[0052] MMSE検出では、 k番目の送信アンテナから送信される信号の検出後 SINR値は 、、次次式となり、 I は n次元の単位行列である。  In the MMSE detection, the SINR value of the signal transmitted from the k-th transmit antenna after detection is given by the following equation, and I is an n-dimensional unit matrix.
[数 4]
Figure imgf000012_0001
[Number 4]
Figure imgf000012_0001
[0053] (b)送信アンテナ集合 Sの各送信アンテナが対応する検出後 SINR値を互いに比 較して、検出後 SINR値が最も低い送信アンテナを基準アンテナ jとし、当該送信アン テナが対応するチャネル特性が最も悪!ヽとされ、次式で示される。 (B) The post-detection SINR values corresponding to the respective transmit antennas of the transmit antenna set S are compared with one another, and the transmit antenna with the lowest post-detection SINR value is taken as a reference antenna j. The channel characteristic corresponding to the tena is regarded as the worst, and is expressed by the following equation.
[数 5]  [Number 5]
J = argmin{SINR ( ) }  J = argmin {SINR ()}
[0054] そして、ステップ S403では、現在の送信アンテナ集合 Sから送信アンテナ jが除去 され、送信アンテナ集合 S' =S¥{j}が得られる。すべての送信データビットが残った送 信アンテナ、即ち送信アンテナ集合 S'すべての送信アンテナに平均分配される。こ の時、送信アンテナ集合 S'の送信アンテナがそれぞれ対応する伝送データビット数 は R, =R_total/length (S, )となる。 Then, in step S403, the transmitting antenna j is removed from the current transmitting antenna set S, and a transmitting antenna set S ′ = S ¥ {j} is obtained. All transmit data bits are distributed equally to the remaining transmit antennas, ie, all transmit antennas of transmit antenna set S ′. At this time, the number of transmission data bits corresponding to each of the transmitting antennas of the transmitting antenna set S ′ is R, = R_total / length (S,).
[0055] その後、ステップ S404では、送信アンテナ jが除去される前と除去された後の受信 側のビット誤り率性能が比較される。即ち、送信アンテナ集合 Sが用いられ、送信アン テナがそれぞれ対応するスループット量は R=R_totalZlength (S)の場合の性能と 、送信アンテナ集合 S'が用いられ、送信アンテナがそれぞれ対応するスループット 量は R' =R_totalZlength (S' )の場合の性能が比較される。簡略化するために、送 信アンテナ集合 Sが用いられ、送信アンテナそれぞれ対応するスループット量が R=R _total/length (S)となる場合を場合 Aとし、送信アンテナ集合 S'が用いられ、送信 アンテナがそれぞれ対応するスループット量が R'
Figure imgf000013_0001
(S, )となる場合 を場合 Bとする。
[0055] Thereafter, in step S404, the bit error rate performances of the receiving side before and after the transmission antenna j is removed are compared. That is, the transmission antenna set S is used, and the throughput amount corresponding to each of the transmission antennas is performance when R = R_totalZlength (S) and the transmission antenna set S ′ is used, and the throughput amount corresponding to each of the transmission antennas is The performance is compared if R '= R_totalZlength (S'). For simplicity, used transmit antenna set S, the throughput quantity corresponding respectively transmit antennas and R = R _tot a l / l e ngth If the case of the (S) A, the transmission antenna set S 'is The throughput amount that each transmit antenna corresponds to is used is R '
Figure imgf000013_0001
Let B be a case where (S,) is true.
[0056] ステップ S404では、場合 Aと場合 Bにおいてのビット誤り率が比較され、即ち、比較 結果は BER (B) <BER (A)となるか否かにつ!、ての判断が行われる。  In step S 404, the bit error rates at case A and case B are compared, that is, whether the comparison result is BER (B) <BER (A) or not! .
[0057] ここで、場合 Aと場合 Bにおいての BER性能を比較する方法は以下に示すような二 つがある。  [0057] Here, there are two ways to compare the BER performance in case A and case B as shown below.
[0058] (1)場合 Aにおいての各送信アンテナの信号が MIMO検出された後の SINR値を 計算し、各送信アンテナに分配されたスループット量に基づいて、各送信アンテナの 信号が MIMO検出された後の BER (シミュレーション又は論理推定により BER値を 得る)を確定する。各送信アンテナが対応する BER値を平均化した数値を場合 Aに おいての BERとし、ここで BER(A)と標記する。同様の方法により BER(B)を得て、 BER(A)と BER (B)とを比較する。具体的に、方法(1)は以下のステップにより実現 される。 [0059] (a)それぞれ場合 Aと場合 Bにお 、ての各送信アンテナ信号の MIMO検出後 SIN R値を計算し、 k番目の送信アンテナ信号が場合 Aと場合 Bにおける検出後 SINR値 はそれぞれ SINR (k)と SINR (k)と示され、具体的に上述したステップ S402と同 (1) In the case A, SINR values are calculated after MIMO detection of the signals of the respective transmit antennas, and MIMO detection of the signals of the respective transmit antennas is performed based on the throughput amount distributed to the respective transmit antennas. Then, determine the BER (to obtain the BER value by simulation or logic estimation). In this case, the average value of the corresponding BER values for each transmit antenna is taken as the BER for A, and is denoted here as BER (A). The BER (B) is obtained by the same method, and the BER (A) is compared with the BER (B). Specifically, method (1) is realized by the following steps. (A) In each case A and B, the SINR value is calculated after MIMO detection of each transmit antenna signal, and the kth transmit antenna signal is in the case A and case B after detection SINR value is These are denoted as SINR (k) and SINR (k), respectively, and are the same as step S402 described above.
A B  A B
様の計算方法によって得られる。  It is obtained by various calculation methods.
[0060] (b)シミュレーション又は論理公式により SINR値と BER値との対照テーブルを確定 する。当該対照テーブルを検索することにより SINR値が対応する BER値を直接見 出すことができる。  (B) A comparison table of SINR value and BER value is determined by simulation or logical formula. By searching the comparison table, the SINR value can directly find out the corresponding BER value.
[0061] (c)前記対照テーブルを検索することによって、場合 Aと場合 Bにおけるそれぞれの 送信アンテナ信号の MIMO検出後 BER値が確定される。 k番目の送信アンテナ信 号が場合 Aと場合 Bにおける MIMO検出後 SINR値はそれぞれ BER (k)と BER (k  (C) By searching the comparison table, BER values after MIMO detection of respective transmit antenna signals in case A and case B are determined. The SINR values after MIMO detection in cases A and B for the kth transmit antenna signal are BER (k) and BER (k (k), respectively.
A B  A B
)と示され、ただし、 BER (k) =f (SINR (k) )、 BER (k) =f (SINR (k) )、 f ()は対照  It is indicated that), where BER (k) = f (SINR (k)), BER (k) = f (SINR (k)), f () is the control
A A B B  A A B B
テープノレ関数である。  It is a tape notch function.
[0062] (d)場合 Aと場合 Bにおける平均 BER値を計算し、次式で示される BER (A)と BER  (D) Calculate the average BER value in case A and case B, and calculate BER (A) and BER
(B)を求める。  Ask for (B).
[数 6]  [Number 6]
Bm(A) = --^— BERA (k) Bm (A) =-^ — BER A (k)
length(S)  length (S)
[数 7]  [Number 7]
BER(B) —— Y BER k) BER (B) —— Y BER k)
[0063] (2)場合 Aでは、 MIMO検出後 SINRが最も低い送信アンテナが対応する BER値 のみ計算し、 BER(A)と示す。同様の方法により BER (B)を得て、 BER (A)と BER( B)とを比較する。前述した方法と比べて、方法 (2)は著しく計算量を減少することが できる。具体的に方法(2)は以下のステップにより実現される。 (2) In case A, only the BER value corresponding to the transmitting antenna with the lowest SINR after MIMO detection is calculated, which is indicated as BER (A). Obtain BER (B) by the same method, and compare BER (A) with BER (B). Method (2) can significantly reduce the amount of calculation compared to the method described above. Specifically, the method (2) is realized by the following steps.
[0064] (a)それぞれ場合 Aと場合 Bにおける各送信アンテナの信号の MIMO検出後 SIN R値を計算し、 k番目の送信アンテナの信号が場合 Aと場合 Bにおける MIMO検出 後 SINR値はそれぞれ SINR (k)と SINR (k)と示し、具体的に上述したステップ S4  (A) Calculate SINR value after MIMO detection of the signal of each transmitting antenna in case A and case B respectively, and calculate the SINR value after MIMO detection in case A and B when signal of k-th transmission antenna is The step S4 described specifically as SINR (k) and SINR (k)
A B  A B
02と同様の計算方法によって得られる。 [0065] (b)シミュレーション又は論理公式により SINR値と BER値との対照テーブルを確定 する。当該対照テーブルを検索することにより SINR値が対応する BER値を直接見 出すことができる。 It is obtained by the same calculation method as 02. (B) A comparison table of SINR value and BER value is determined by simulation or logical formula. By searching the comparison table, the SINR value can directly find out the corresponding BER value.
[0066] (c)それぞれ場合 Aと場合 Bにおける最も低い検出後 SINR値を確定し、次式で示 される SINR (A)と SINR (B)を求める。  (C) Determine the lowest post-detection SINR value in each case A and B, and find SINR (A) and SINR (B) shown by the following equations.
min min  min min
[数 8]  [Number 8]
SINR^ (A) = arg min{SINRA (k)} SINR ^ (A) = arg min {SINR A (k)}
[数 9] [Number 9]
SINR^iB) = arg {雄 }  SINR ^ iB) = arg {male}
AS  AS
[0067] (d)対照テーブルを検索することによって、前記確定された最も低 ヽ SINR値が対 応する BER値を確定し、即ち BER (A) =f (SINR (A) )  (D) By searching the control table, the determined lowest 前 記 SINR value determines the corresponding BER value, ie, BER (A) = f (SINR (A))
min 、 BER (B) =f (SINR (B) )  min, BER (B) = f (SINR (B))
min であり、ただし f 0は対照テーブル関数である。  min, where f 0 is a comparison table function.
[0068] ステップ S404において、 BER (B)〈BER(A)であると判断され、送信アンテナ集合 Sに含まれる送信アンテナ数は 1より大きい場合は、ステップ S405〖こ移される。  In step S 404, if it is determined that BER (B) <BER (A), and the number of transmission antennas included in the transmission antenna set S is larger than 1, step S 405 is transferred.
[0069] ステップ S405では、送信アンテナ集合 Sが S 'に更新され、即ち、 S=S' ,スループ ット量 R=R 'となる。そして、ステップ S402〖こ戻って、リカージョン動作が続けられる。  In step S405, the transmitting antenna set S is updated to S ′, that is, S = S ′ and throughput R = R ′. Then, in step S402, the recursion operation is continued.
[0070] ステップ S404において、 BER (B)〈BER(A)でないと判断される場合は、ステップ S406〖こ移される。  If it is determined in step S 404 that BER (B) <BER (A) is not satisfied, step S 406 is transferred.
[0071] ステップ S406では、パラメータ選出及びビット分配制御の全過程が終了され、選択 された送信アンテナ集合 S、及び Sに含まれるすべての送信アンテナが対応するスル 一プット量 Rが得られる。つまり、最終選出結果としてパラメータ(S, R)が選択される 。言い換えると、アンテナ選択パラメータ Cとビット分配パラメータ Mが得られる。 ま 一糸且の二進法シーケンスであり、「1」、 「0」はそれぞれ送信アンテナが使用されてい る又は使用されて 、な 、ことを示す。 Mの数値は Rと同様である。  In step S406, the entire process of parameter selection and bit distribution control is ended, and the selected transmit antenna set S, and the amount of throughput R corresponding to all the transmit antennas included in S are obtained. That is, the parameters (S, R) are selected as the final selection result. In other words, antenna selection parameter C and bit distribution parameter M are obtained. It is a binary sequence of 1's and 0's, and '1' and '0' indicate that the transmitting antenna is or is being used, respectively. The value of M is the same as R.
[0072] 図 5と図 6はそれぞれ本発明に用いられる方法と従来の方法の BER性能の比較を 示す図である。横軸は信号と雑音の比(SNR)を示し、縦軸はビット誤り率を示す。  FIG. 5 and FIG. 6 respectively show the comparison of the BER performance of the method used in the present invention and the conventional method. The horizontal axis shows the signal-to-noise ratio (SNR), and the vertical axis shows the bit error rate.
[0073] 図 5に示した送信アンテナ及び受信アンテナの数はともに 4であり、即ち、 n =4と n =4の場合の比較結果である。図 6に示した送信アンテナと受信アンテナの数はともに 2であり、即ち n =2と n =2の場合の比較結果である。シミュレーションにおいて、フラ The numbers of transmit antennas and receive antennas shown in FIG. 5 are both 4, ie, n = 4 and n It is a comparison result in the case of = 4. The numbers of transmit antennas and receive antennas shown in FIG. 6 are both 2, that is, the comparison results in the case of n = 2 and n = 2. In simulation,
T R  T R
ットフェージングチャネルを使用し、システムの総スループット量は 8bpsZHzと 12bp sZHzとする。図 5と図 6の結果力も見られるように、従来の方法と比較すると、本発明 の方法を用いることにより、より良い BER性能を得ることができる。  The total throughput of the system is 8bps ZHz and 12bps ZHz, using a channel fading channel. As can be seen from the results in FIGS. 5 and 6, better BER performance can be obtained by using the method of the present invention as compared to the conventional method.
[0074] 以上説明したように、本実施の形態によれば、チャンネル推定部 206によって推定 したチャネル特性行列に基づいて、アンテナ選択パラメータと適応変調 '符号化パラ メータを得て、これらのパラメータを送信側にフィードバックし、送信側の送信アンテ ナ選択及びビット分配を制御するアンテナ選択 'ビット分配制御部 207を設けたこと により、アンテナ選択パラメータに応じたチャネル特性の良い送信アンテナのみを用 いた送信を行うことができると共に、適応変調'符号化パラメータによってビット分配( すなわちスループット)をシステムが煩雑ィ匕しな 、ように制御できるようになる。  As described above, according to the present embodiment, the antenna selection parameter and the adaptive modulation 'coding parameter are obtained based on the channel characteristic matrix estimated by channel estimation section 206, and these parameters are calculated. Antenna selection 'Bit distribution control section 207 that feeds back to the transmission side and controls transmission antenna selection and bit distribution on the transmission side By transmitting only the transmission antenna with good channel characteristics according to the antenna selection parameter is provided. The adaptive modulation 'coding parameters allow the system to control the bit distribution (ie throughput) as well as it can.
[0075] なお、本実施の形態では、送信アンテナ選択部 202を送信側に設ける場合を例に とって説明したが、これに限られず、送信アンテナ選択部 202は受信側に設置し、フ イードバックチャネルにより送信アンテナの選択及びビット分配を制御するようにして もよい。または、受信側のアンテナ選択'ビット分配制御部 207により行うようにしても よい。  In the present embodiment, although the case where transmission antenna selection unit 202 is provided on the transmission side has been described as an example, the present invention is not limited to this, transmission antenna selection unit 202 is provided on the reception side, and The back channel may control transmission antenna selection and bit distribution. Alternatively, it may be performed by the antenna selection 'bit distribution control unit 207 on the receiving side.
[0076] また、本実施の形態では、図 2に示すようなマルチアンテナ通信システムの構成を 例とつて説明したが、これに限られず、図 2の構成を適宜変更して実施してもよい。例 えば、各送信データサブストリームと各送信アンテナとの対応関係を変更可能な構成 としてもよい。また、高速フーリエ逆変換部、 CP付加部等を追加することによって、 M IMO— OFDMシステムにすることもできる。  Further, although the configuration of the multi-antenna communication system as shown in FIG. 2 has been described as an example in the present embodiment, the present invention is not limited to this, and the configuration of FIG. . For example, the correspondence relationship between each transmission data substream and each transmission antenna may be changed. In addition, it is possible to make an M IMO-OFDM system by adding a fast Fourier inverse transform unit, a CP addition unit, and the like.
[0077] 本明細書は、 2005年 2月 4日出願の中国特許出願第 200510006754.9号に基 づくものである。その内容は、すべてここに含めておく。  This specification is based on Chinese Patent Application No. 200510006754.9 filed on February 4, 2005. All the contents are included here.
産業上の利用可能性  Industrial applicability
[0078] 本発明のマルチアンテナ通信装置は、変動するチャネル環境において送信を行う マルチアンテナ通信システム等に適用可能である。 The multi-antenna communication apparatus of the present invention is applicable to a multi-antenna communication system or the like that performs transmission in a fluctuating channel environment.

Claims

請求の範囲 The scope of the claims
[1] 受信した信号に基づ ヽて、現在のチャネル特性行列を推定するチャンネル推定手 段と、  [1] Channel estimation means for estimating the current channel characteristic matrix based on the received signal,
前記推定されたチャネル特性行列に基づいて、アンテナ選択パラメータと適応変調 '符号化パラメータを得て、これらのパラメータを送信側にフィードバックし、送信側の 送信アンテナ選択及びビット分配を制御するアンテナ選択 'ビット分配制御手段と、 前記チャネル推定手段によって得られる現在のチャネル特性行列と前記フィードバ ックしたアンテナ選択パラメータ及び適応変調'符号ィ匕パラメータに基づいて、各送 信データサブストリームに対して検出を行 、、元の送信データを得る MIMO検出手段 と、  Based on the estimated channel characteristic matrix, the antenna selection parameter and the adaptive modulation 'coding parameter acquisition are obtained, and these parameters are fed back to the transmitting side to select the transmitting antenna selection and bit distribution control. Detection for each transmitted data substream is based on bit distribution control means, the current channel characteristic matrix obtained by the channel estimation means, the fed-back antenna selection parameter and the adaptive modulation 'code parameter. , MIMO detection means for obtaining the original transmission data,
を具備するマルチアンテナ通信装置。  A multi-antenna communication device comprising
[2] 前記アンテナ選択'ビット分配制御手段は、全送信アンテナ力もの合計データスル 一プットがアンテナ数を変化させる前後で等しくなるように、前記適応変調 ·符号化パ ラメータを選択する、 [2] The antenna selection 'bit distribution control means selects the adaptive modulation / coding parameter so that total data strength of all transmitting antenna powers becomes equal before and after changing the number of antennas.
請求項 1記載のマルチアンテナ通信装置。  The multi-antenna communication device according to claim 1.
[3] 前記 MIMO検出手段は、前記アンテナ選択及びビット分配装置力 提供されたアン テナ選択パラメータ及び適応変調 '符号ィ匕パラメータに基づ ヽて、各送信データサブ ストリームに対して適応復調 ·復号化を行う、 [3] The MIMO detection means may adaptively demodulate / decode each transmitted data substream based on the antenna selection parameter and the antenna modulation parameter provided and the adaptive modulation 'code parameter'. Perform
請求項 1記載のマルチアンテナ通信装置。  The multi-antenna communication device according to claim 1.
[4] 前記アンテナ選択 ·ビット分配制御手段は、前記 MIMO検出手段により得られる送 信データの BERの改善効果がなくなるまで、チャネル特性の最も悪 、アンテナから 順番に送信アンテナを減らしていくことを示すアンテナ選択パラメータを送信側にフィ ードバックする、 [4] The antenna selection and bit distribution control means may reduce the number of transmit antennas in order from the antenna until the effect of improving the BER of the transmit data obtained by the MIMO detection means disappears. Feed back the antenna selection parameters shown to the transmitter,
請求項 1記載のマルチアンテナ通信装置。  The multi-antenna communication device according to claim 1.
[5] 前記チャネル推定手段は、送信アンテナが減る毎にチャネル特性を推定し、 [5] The channel estimation means estimates channel characteristics each time the number of transmission antennas decreases.
前記アンテナ選択及びビット分配制御手段は、送信アンテナを減らす毎にチャネル 特性の最も悪 、アンテナを特定する、  The antenna selection and bit distribution control means identifies an antenna with the worst channel characteristic every time the number of transmitting antennas is reduced.
請求項 4記載のマルチアンテナ通信装置 The multi-antenna communication device according to claim 4
[6] 第 1のマルチアンテナ通信装置と、当該第 1のマルチアンテナ通信装置と通信可能 な第 2のマルチアンテナ通信装置と、を有するマルチアンテナ通信システムであって 前記第 1のマルチアンテナ通信装置は、 [6] A multi-antenna communication system comprising: a first multi-antenna communication device; and a second multi-antenna communication device capable of communicating with the first multi-antenna communication device, wherein the first multi-antenna communication device Is
前記第 2のマルチアンテナ通信装置から受信した信号に基づ 、て、現在のチヤネ ル特性行列を推定するチャンネル推定手段と、  Channel estimation means for estimating a current channel characteristic matrix based on the signal received from the second multi-antenna communication device;
前記チャネル推定手段で推定したチャネル特性行列に基づ!ヽて、アンテナ選択パ ラメータ及び適応変調'符号ィ匕パラメータを得て、これらのパラメータを前記第 2のマ ルチアンテナ通信装置にフィードバックし、前記第 2のマルチアンテナ通信装置の送 信アンテナ選択及びビット分配を制御するアンテナ選択 'ビット分配制御手段と、 前記チャネル推定手段で推定したチャネル特性行列と前記アンテナ選択 'ビット分 配制御手段で得たアンテナ選択パラメータ及び適応変調 ·符号化パラメータに基づ いて、各送信データサブストリームに対して検出を行い、元の送信データを得る MIM 0検出手段と、  Based on the channel characteristic matrix estimated by the channel estimation means, an antenna selection parameter and an adaptive modulation 'code parameter are obtained, and these parameters are fed back to the second multi-antenna communication apparatus, Antenna selection 'bit distribution control means for controlling transmission antenna selection and bit distribution of the second multi-antenna communication apparatus, channel characteristic matrix estimated by the channel estimation means, and antenna selection' bit distribution control means MIM 0 detection means for detecting each transmission data substream based on different antenna selection parameters and adaptive modulation and coding parameters to obtain original transmission data;
を具備し、  Equipped with
前記第 2のマルチアンテナ通信装置は、  The second multi-antenna communication device is
前記第 1のマルチアンテナ通信装置力もフィードバックされた前記アンテナ選択パ ラメータに基づいて、すべての送信アンテナカゝら少なくとも一つの送信アンテナを選 択してデータの送信を行うアンテナ選択手段と、  Antenna selection means for selecting data of at least one transmitting antenna and selecting at least one transmitting antenna based on the antenna selecting parameter fed back also to the first multi-antenna communication device power;
前記アンテナ選択装置により選択されたデータストリームに対して、前記第 1のマル チアンテナ通信装置力もフィードバックされた前記適応変調 ·符号ィ匕パラメータに基 づ ヽて、適応変調 ·符号化を行う複数の適応変調 ·符号化手段と、  A plurality of adaptations that perform adaptive modulation and coding based on the adaptive modulation and coding parameters that are also fed back to the first multi-antenna communication device power for the data stream selected by the antenna selection device. Modulation · encoding means,
を具備する  Equipped with
マルチアンテナ通信システム。  Multi-antenna communication system.
[7] 前記アンテナ選択'ビット分配制御手段は、全送信アンテナ力もの合計データスル 一プットがアンテナ数を変化させる前後で等しくなるように、前記適応変調 ·符号化パ ラメータを選択する、 [7] The antenna selection 'bit distribution control means selects the adaptive modulation / coding parameter so that total data strength of all transmission antenna powers become equal before and after changing the number of antennas.
請求項 6記載のマルチアンテナ通信システム。 The multi-antenna communication system according to claim 6.
[8] 前記複数の適応変調'符号化手段は、各々、前記第 1のマルチアンテナ通信装置 力もフィードバックされた同一の適応変調 '符号化パラメータを用いて適応変調 '符号 化を行う、 [8] The plurality of adaptive modulation 'coding means perform adaptive modulation' coding using the same adaptive modulation 'coding parameter in which the first multi-antenna communication device power is also fed back, respectively.
請求項 6記載のマルチアンテナ通信システム。  The multi-antenna communication system according to claim 6.
[9] 受信した信号に基づいて、現在のチャネル特性行列を推定するチャンネル推定ス テツプと、 [9] A channel estimation step of estimating the current channel characteristic matrix based on the received signal,
推定したチャネル特性行列に基づ!ヽて、アンテナ選択パラメータ及び適応変調 ·符 号化パラメータを得て、これらのパラメータを送信側のフィードバックすることで、送信 側の送信アンテナ選択及びビット分配を制御するアンテナ選択及びビット分配制御 ステップと、  Based on the estimated channel characteristic matrix! Thus, antenna selection and bit distribution control steps for controlling transmission antenna selection and bit distribution on the transmission side by obtaining antenna selection parameters and adaptive modulation and coding parameters and feeding back these parameters on the transmission side, and ,
現在のチャネル特性行列と、前記フィードバックしたアンテナ選択パラメータ及び適 応変調'符号化パラメータとに基づいて、各送信データサブストリームに対して検出を 行い、元の送信データを得るステップと、  Detecting each transmitted data substream based on the current channel characteristic matrix and the fed back antenna selection parameter and adaptive modulation 'coding parameter to obtain the original transmitted data;
を含むマルチアンテナ通信方法。  Multi-antenna communication method including:
[10] 推定したチャネル特性に基づいて、現在の送信アンテナカゝらチャネル特性が最も 悪 ヽ送信アンテナを特定し、特定した送信アンテナを除去した残りの送信アンテナを 示すアンテナ選択パラメータを取得するステップ aと、 [10] Based on the estimated channel characteristics, identify the transmitting antenna with the worst transmission channel characteristic of the current transmitting antenna, and obtain an antenna selection parameter indicating the remaining transmitting antennas from which the specified transmitting antenna has been removed. a,
前記残りの送信アンテナに送信データビットを平均的に分配する適応変調'符号化 ノ ラメータを取得するステップ bと、  Obtaining an adaptive modulation 'coding metric that averages out transmit data bits to the remaining transmit antennas; b.
前記アンテナ選択パラメータ及び前記適応変調 ·符号化パラメータを送信側にフィ ードバックし、送信側に、前記アンテナ選択パラメータに応じた送信アンテナを選択さ せるとともに前記適応変調'符号ィ匕パラメータに応じたビット分配を行わせるステップ c と、  The antenna selection parameter and the adaptive modulation · coding parameter are fed back to the transmission side, and the transmission side is made to select a transmission antenna according to the antenna selection parameter and a bit according to the adaptive modulation 'code parameter Step c of causing the distribution
チャネル特性が最も悪い送信アンテナが除去される前と除去された後の受信側の ビット誤り率 (BER)性能を比較するステップ dと、  Comparing the bit error rate (BER) performance of the receiver before and after the transmit antenna with the worst channel characteristic is removed, and d.
を含み、  Including
チャネル特性が最も悪 、送信アンテナを除去した後のビット誤り率性能が、除去す る前のビット誤り率性能より良い場合は、ステップ a〜dを繰り返し、 チャネル特性が最も悪 、送信アンテナを除去した後のビット誤り率性能が、除去す る前のビット誤り率性能より良くない場合は、現在の送信アンテナによりデータビットを 送信する、 If the channel characteristics are the worst and the bit error rate performance after removing the transmitting antenna is better than the bit error rate performance before removing, repeat steps a to d, If the channel characteristics are the worst and the bit error rate performance after removing the transmit antenna is not better than the bit error rate performance before removing, then transmit the data bits with the current transmit antenna,
マルチアンテナ通信システムにおけるアンテナ選択及びビット分配方法。  Antenna selection and bit distribution method in a multi-antenna communication system.
[11] 前記ステップ aは、 [11] The step a is
推定したチャネル特性行列における各列ベクトルの基準値を計算するステップと、 計算した基準値を互いに比較し、基準値が最も小さ!、送信アンテナのチャネル特 性が最も悪!ヽと特定するステップと、  The step of calculating the reference value of each column vector in the estimated channel characteristic matrix and the calculated reference value are compared with each other, and the reference value is the smallest! The channel characteristic of the transmitting antenna is the worst! And the step of identifying
を含む請求項 10記載のマルチアンテナ通信システムにおけるアンテナ選択及びビ ット分配方法。  The method of antenna selection and bit distribution in a multi-antenna communication system according to claim 10, comprising:
[12] 前記ステップ aは、 [12] The step a is
各送信アンテナの信号干渉比を計算するステップと、  Calculating the signal interference ratio of each transmit antenna;
計算された信号干渉比を互いに比較し、信号干渉比が最も小さ 、送信アンテナの チャネル特性が最も悪 ヽと特定するステップと、  Comparing the calculated signal interference ratios with one another to identify the signal interference ratio as the smallest and the channel characteristics of the transmitting antenna as the worst.
を含む請求項 10記載のマルチアンテナ通信システムにおけるアンテナ選択及びビ ット分配方法。  The method of antenna selection and bit distribution in a multi-antenna communication system according to claim 10, comprising:
[13] ステップ dは、 [13] Step d is
チャネル特性が最も悪 、送信アンテナを除去する前の信号干渉比と、チャネル特 性が最も悪 、送信アンテナを除去した後の信号干渉比とを計算し、これらの信号干 渉比と送信アンテナ毎に分配されたスループット量とに基づいて、 MIMO検出後の ビット誤り率を推定する、  The channel characteristics are the worst, the signal interference ratio before removing the transmitting antenna, and the signal characteristics after the removal of the transmitting antenna is the worst, and these signal interference ratios and each transmitting antenna are calculated. Estimate the bit error rate after MIMO detection based on the throughput amount distributed to
請求項 10記載のマルチアンテナ通信システムにおけるアンテナ選択及びビット分 配方法。  A method of antenna selection and bit distribution in a multi-antenna communication system according to claim 10.
[14] ステップ dでは、信号干渉比とビット誤り率とを対応付けた対照テーブルを用い、こ の対照テーブルを検索することによって、計算した信号干渉比に対応するビット誤り 率の値を得る、  [14] In step d, using a comparison table in which the signal interference ratio is associated with the bit error rate, the comparison table is searched to obtain a bit error rate value corresponding to the calculated signal interference ratio.
請求項 10記載のマルチアンテナ通信システムにおけるアンテナ選択及びビット分 配方法。 ステップ dでは、チャネル特性が最も悪!、送信アンテナを除去する前の信号干渉比 が最も小さ 、送信アンテナのビット誤り率値と、チャネル特性が最も悪 、送信アンテ ナを除去した後の信号干渉比が最も小さ!/、送信アンテナのビット誤り率値とを、それ ぞれ計算し、両者のビット誤り率を比較する、 A method of antenna selection and bit distribution in a multi-antenna communication system according to claim 10. In step d, the channel characteristic is the worst, the signal interference ratio before removing the transmitting antenna is the smallest, the bit error rate value of the transmitting antenna and the channel characteristic are the worst, and the signal interference after removing the transmitting antenna Calculate the bit error rate value of the transmitting antenna, and compare the bit error rates of the two with each other.
請求項 10記載のマルチアンテナ通信システムにおけるアンテナ選択及びビット分 配方法。  A method of antenna selection and bit distribution in a multi-antenna communication system according to claim 10.
PCT/JP2006/301865 2005-02-04 2006-02-03 Multi-antenna communication device WO2006082924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510006754.9 2005-02-04
CN 200510006754 CN1815941A (en) 2005-02-04 2005-02-04 Antenna selection and Bit distribution method and apparatus in multi-antenna transmission system

Publications (1)

Publication Number Publication Date
WO2006082924A1 true WO2006082924A1 (en) 2006-08-10

Family

ID=36777306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301865 WO2006082924A1 (en) 2005-02-04 2006-02-03 Multi-antenna communication device

Country Status (2)

Country Link
CN (1) CN1815941A (en)
WO (1) WO2006082924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532387A (en) * 2005-02-22 2008-08-14 インターデイジタル テクノロジー コーポレーション OFDM-MIMO communication system and related methods using high performance spatial symbol mapping
JP2012500554A (en) * 2008-08-20 2012-01-05 エルジー イノテック カンパニー,リミティド Multiple I / O communication system and control method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499396C (en) * 2006-08-31 2009-06-10 华为技术有限公司 Communication method and system in multi-input multi-output system
JP4734210B2 (en) * 2006-10-04 2011-07-27 富士通株式会社 Wireless communication method
CN101166047B (en) * 2006-10-17 2011-11-30 中国科学院上海微系统与信息技术研究所 Multi-antenna communication system transmitting device for channel geometric mean decomposition, receiving device, transmitting method and receiving method
CN101207595B (en) * 2006-12-21 2010-09-08 鼎桥通信技术有限公司 Sending terminal apparatus and transmission method of synchronizing sequence
JP5234291B2 (en) * 2007-09-07 2013-07-10 日本電気株式会社 Radio wave arrival state estimation system, method and program thereof
WO2010069098A1 (en) * 2008-12-15 2010-06-24 Huawei Technologies Co., Ltd. Method for transmission in a wireless communication system
WO2013181219A2 (en) * 2012-05-29 2013-12-05 Magnolia Broadband Inc. Systems and methods for enhanced rf mimo system performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200730A (en) * 1988-02-05 1989-08-11 Nec Corp Demand assigning system satellite communication equipment
JP2004535094A (en) * 2001-04-05 2004-11-18 ノーテル・ネットワークス・リミテッド Transmitter for wireless communication system using multiple codes and multiple antennas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200730A (en) * 1988-02-05 1989-08-11 Nec Corp Demand assigning system satellite communication equipment
JP2004535094A (en) * 2001-04-05 2004-11-18 ノーテル・ネットワークス・リミテッド Transmitter for wireless communication system using multiple codes and multiple antennas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOPEZ-VICARIO J. AND ANTON-HAW C.: "Joint transmit antenna selection and adaptive modulation in cross-layer oriented designs for HSDPA systems", SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS 2004, 21 July 2004 (2004-07-21), pages 523 - 527, XP010832547 *
YUANRUN TENG, MORI K., KOBAYASHI H.: "Performance Analysis of SDM-OFDM System with Adaptive Modulation Method over MIMO Channels", IEICE TECHICAL REPORT, RCS2003-41, vol. 103, no. 66, 16 May 2003 (2003-05-16), pages 75 - 82, XP002985762 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532387A (en) * 2005-02-22 2008-08-14 インターデイジタル テクノロジー コーポレーション OFDM-MIMO communication system and related methods using high performance spatial symbol mapping
JP2012500554A (en) * 2008-08-20 2012-01-05 エルジー イノテック カンパニー,リミティド Multiple I / O communication system and control method thereof

Also Published As

Publication number Publication date
CN1815941A (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US8259835B2 (en) Variable codebook for MIMO system
Zhou et al. Adaptive modulation for multiantenna transmissions with channel mean feedback
EP1566917B1 (en) Adaptive MIMO systems
KR101356508B1 (en) A method of data transmission in wireless communication system
JP4883091B2 (en) MIMO-OFDM communication system and MIMO-OFDM communication method
US7508748B2 (en) Rate selection for a multi-carrier MIMO system
US8020075B2 (en) Channel quality index feedback reduction for broadband systems
WO2006082924A1 (en) Multi-antenna communication device
US20050047517A1 (en) Adaptive modulation for multi-antenna transmissions with partial channel knowledge
KR101341524B1 (en) Apparatus for processing received signal method thereof and method for selecting mapping rule
US7397874B2 (en) Method and device for detecting vertical bell laboratories layered space-time codes
JPWO2006075661A1 (en) Wireless communication method, wireless reception device, wireless transmission device, and wireless communication system
WO2007062580A1 (en) An self-adpting transmission scheme of the channel environment in the multi-antenna wireless transmission system
US20070086549A1 (en) Method and apparatus for detecting signal in a MIMO communication system
JP2010525736A (en) Multiple-input multiple-output communication system with reduced feedback
CN104753643A (en) Adaptive interleaving method and device based on channel state information
CN102571674B (en) Limited Feedback multiple antennas ofdm system adaptive coding and modulating device and method
JP2008118380A (en) Communication device and communication method
Salim et al. Combining training and quantized feedback in multiantenna reciprocal channels
WO2011046825A1 (en) An adaptive beam-forming and space-frequency block coding transmission scheme for mimo-ofdma systems
JP4536778B2 (en) Apparatus and method for achieving cyclic delay diversity
WO2006075662A1 (en) Adaptive transmission detection method in multi-antenna communication system and multi-antenna reception device
Ngo et al. Reducing the number of neighbors in the received constellation of d min precoded MIMO systems
Adireddy et al. Optimal placement of known symbols for slowly varying frequency-selective channels
Kavitha et al. Multilevel Coding for Multiple Input Multiple Output System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713008

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713008

Country of ref document: EP