WO2006082911A1 - Fuel cell stack - Google Patents
Fuel cell stack Download PDFInfo
- Publication number
- WO2006082911A1 WO2006082911A1 PCT/JP2006/301813 JP2006301813W WO2006082911A1 WO 2006082911 A1 WO2006082911 A1 WO 2006082911A1 JP 2006301813 W JP2006301813 W JP 2006301813W WO 2006082911 A1 WO2006082911 A1 WO 2006082911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- impurity
- cell stack
- impurities
- module
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a stack of fuel cells (cells).
- a solid polymer electrolyte fuel cell is composed of a stack of a membrane-electrode assembly (MEA) and a separator.
- MEA consists of an electrolyte membrane made of ion exchange membrane, an electrode (anode, fuel electrode) consisting of a catalyst layer placed on one side of this electrolyte membrane, and an electrode (force sword) made of a catalyst layer placed on the other side of the electrolyte membrane.
- Air electrode has a fluid passage for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and the power sword, and also has a refrigerant flow path for flowing the refrigerant.
- a diffusion layer is provided between ME A and Separeto.
- One or more cells are stacked to form a cell module, and cell modules are stacked to form a module group. Terminals, insulants, and end plates are placed at both ends of the module group in the stacking direction.
- the fuel cell stack is configured by fastening to a fastening member (eg, tension plate, tension port, etc.) extending in the module stacking direction on the outside of the module stack, and applying a tightening load to the module stack in the module stacking direction.
- a fastening member eg, tension plate, tension port, etc.
- the electrolyte membrane In order for hydrogen ions to move through the electrolyte membrane, the electrolyte membrane needs to be moderately moistened. It was generated by the above power generation reaction in addition to supplying the cell stack with the reaction gas being appropriately humidified. Water is used to wet the electrolyte membrane.
- Impurities in fluids such as reaction gas (fuel gas, oxidizing gas) and refrigerant supplied to the cell turn on in moisture contained in the gas flow. If they contain foreign materials that do not become ions or become foreign substances, they can cause deterioration of the fuel cell. For example, when ions attach to the hornworm medium, the catalyst performance decreases, and when they enter the electrolyte membrane (with ions in the hands of the molecules used for proton transfer), the proton movement in the membrane is inhibited, Japanese Patent Laid-Open No.
- Japanese Patent Laid-Open No. 2 0 3-3 3 8 3 0 5 discloses a fuel cell system in order to reduce impurities contained in a gas supplied to a cell and to reduce impurities in a stack. It discloses a fuel cell stack structure in which a cell (dummy cell) without an electrolyte membrane is provided at the end of the tack, and impurities are accumulated in the gas flow path of the dummy cell to reduce the impurities.
- the impurity reduction configuration of Japanese Patent Laid-Open No. 2 03-3-3 3 8 3 0 5 has the following problems.
- the above impurity reduction configuration does not actively take impurities, so there is a limit to the reduction of impurities, and further improvement in the purity of the fluid has been desired.
- the impurity reduction configuration described above does not actively retain the accumulated impurities, so once accumulated impurities may flow again in the fluid flow and circulate to the fuel cell. Disclosure of the invention
- An object of the present invention is to provide a fuel cell stack that can positively adsorb or remove impurities from a fluid and desirably retain the adsorbed or trapped impurities at any time.
- the present invention for achieving the above object is as follows.
- the fuel cell stack according to the present invention includes a cell module having a gas flow path, a void communicating with the gas flow path, and an impurity removing body for removing impurities from the fluid provided in the void.
- a trap module is
- the fuel cell stack has a gas manifold, the gas manifold includes a gas supply manifold and a gas exhaust manifold, and the impurity trap module includes a gas supply manifold and a gas in the fuel cell stack. This layer communicates with the exhaust manifold.
- the fuel cell stack of the present invention has a cell module and an impurity trap module, and the impurity trap modules are opposed to each other to form a void therebetween, and are electrically connected to each other at least at a part of the opposed surface.
- a pair of separators, and an impurity remover provided in a space between the pair of separators and removing impurities from the fluid.
- an impurity trap module is provided at the end of the fuel cell stack on the fluid supply side.
- an impurity trap module is provided at the fluid supply side end and the opposite end of the fuel cell stack.
- the impurity trap module is provided at the fluid supply side end of the fuel cell stack and the end opposite to the fluid supply side end of the fuel cell stack.
- the impurity removing body may be an ion exchange resin.
- the impurity removal body may capture impurities and hold the captured impurities.
- the impurity remover may include an ion exchange resin and one that traps impurities and retains the trapped impurities.
- the impurity removing module includes an ion exchange resin and a substance that traps impurities and retains the trapped impurities, and the impurity trap module having the impurity removing body composed of the ion exchange resin supplies fluid to the fuel cell stack.
- An impurity trap module is provided at the end opposite to the fluid supply side end of the fuel cell stack, which is provided at the side end and has an impurity remover composed of an element that captures and retains the trapped impurity. May be.
- the impurity trap module has substantially the same pressure loss as the cell module.
- the stack has an impurity trap module, and the impurity trap module has an impurity remover that removes impurities from the fluid, so that impurities are accumulated in the fluid flow path like a conventional dummy cell, Impurities can be adsorbed or trapped in fluids more aggressively than those that precipitate. Further, by using an impurity removal body that can retain impurities, it is possible to prevent impurities once adsorbed or trapped from flowing back into the flow and flowing into the fuel cell.
- the impurity trap module connects the gas supply manifold and gas output manifold hold, even if condensed water accumulates in the communication part of the impurity trap module when power generation is stopped (when gas supply is stopped), Impurities can be reduced, and deterioration of the cell during power outage can be suppressed.
- the impurity trap module can selectively and efficiently remove ions. Ions tend to selectively degrade the cells at the fluid supply end of the stack or a few cells from the fluid supply end (moisture contained in the gas stream passes through the manifold) Since it falls into the flow channel in the cell plane while passing 2 to 3 cells from the end cell, 2 to 3 ions from the end cell or end In-cell gas of the cell.
- the impurity trap module can be removed selectively and efficiently by arranging the impurity trap module at the fluid supply side end of the stack (to flow into the flow path and degrade the cell).
- the impurity trap module When installed at the end opposite to the fluid supply side end, the impurity trap module can selectively and efficiently remove foreign substances in the fluid. Foreign matter tends to selectively deteriorate the cells at the end opposite to the fluid supply side or two to three cells from the end opposite to the fluid supply end (included in the gas flow) Foreign matter flows through the manifold to the end opposite to the end on the fluid supply side, and flows into the cell on the side opposite to the end on the fluid supply side or into the in-cell gas flow path of two to three cells from the end. In order to degrade the cell), the impurity trap module is disposed at the end opposite to the fluid supply side of the fuel cell stack, so that foreign matters can be selectively and efficiently removed.
- the impurity trap module is provided at the fluid supply side end of the fuel cell stack and the end opposite to the fluid supply side of the fuel cell stack, the impurities at the fluid supply side end of the fuel cell stack The trap module selectively and efficiently removes ions mixed in the moisture in the gas stream, and the impurity trap module at the end opposite to the fluid supply side of the fuel cell stack Remove foreign matter selectively and efficiently. This removes both ions and foreign matter.
- the impurity removing body is an ion exchange resin
- ions contained in moisture in the gas stream are positively adsorbed and held on the ion exchange resin by ion exchange. Since holding is also performed, ions once adsorbed are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies that have absorbed and retained ions and have reduced adsorption capacity are replaced with new ion exchange resins.
- the impurity remover is one that captures impurities and retains the trapped impurities (for example, non-woven cloth or breathable vapor), foreign substances in the gas flow are actively captured and retained. Since holding is also performed, ions once trapped are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies whose trapping ability has been reduced by capturing and holding foreign substances are replaced with new impurity-removed bodies.
- the impurity remover includes an ion exchange resin and a substance that traps impurities and retains the trapped impurities, the ions mixed in the moisture in the gas stream are adsorbed and retained by the ion exchange resin. Foreign matter contained in the flow is captured and retained by the one that captures and retains the captured impurities. As a result, it is possible to supply a high-purity reaction gas that contains almost no ions or foreign substances.
- An impurity trap module having an impurity remover composed of an ion exchange resin is provided at the fluid supply side end of the fuel cell stack, and has an impurity remover composed of one that captures impurities and holds the captured impurities
- the impurity trap module is installed at the end of the fuel cell stack opposite to the fluid supply side, the ions that are likely to flow through the trap module at the end of the stack on the fluid supply side
- the foreign matter that easily flows through the trap module on the opposite end of the stack to the fluid supply side can be effectively removed by trapping impurities and holding the trapped impurities.
- the flow rate flowing through the trap module arranged in parallel with the cell module can be made substantially the same as the flow rate through each cell module.
- FIG. 1 is a side view of a fuel cell stack including an impurity trap module disposed at an end of a cell stack according to the present invention.
- FIG. 5 is a sectional view of the impurity trap module of the fuel cell stack, showing the energization site in FIG.
- FIG. 6 is a side view of a fuel cell stack including an impurity trap module disposed at an end of a cell stack and an intermediate portion in the cell stacking direction according to the present invention.
- FIG. 7 is an enlarged cross-sectional view of a part of the cell module portion of the fuel cell stack of FIGS.
- FIG. 8 is a front view of the cell module portion of the fuel cell stack of FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
- the fuel cell applied to the fuel cell stack of the present invention is, for example, a solid polymer electrolyte fuel cell 10.
- the fuel cell (cell) 10 is mounted on, for example, a fuel cell vehicle. However, it may be used for other than automobiles.
- the solid polymer electrolyte fuel cell 10 is composed of a laminate of a membrane-electrode assembly (MEA) and a separator 18.
- ME A was placed on the electrolyte membrane 1 1 made of ion exchange membrane and electrode 1 4 (anode, fuel electrode) made of catalyst layer placed on one side of electrolyte membrane 1 1 and on the other side of electrolyte membrane 1 1 It consists of an electrode 17 consisting of a catalyst layer (force sword, air electrode).
- gas flow paths 2 7, 2 8 fuel gas flow path 2 7 for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the electrodes 14, 1 7
- an oxidizing gas channel 2 8) and a cooling water channel 26 through which cooling water for cooling the fuel cell flow are formed.
- MEA and Separation 1 8 there is a diffusion layer 13 on the anode side and a diffusion layer 16 on the force sword side. It is.
- ME A and separator plate 18 are stacked to form a cell, and the cell module 19 is formed by stacking at least one layer of the cell, and the cell module 19 is stacked to form a cell stack (referred to as a module stack).
- Tension plate, tension port, etc. that extends in the cell stacking direction with a port 25 nut, and apply a tightening load to the cell stack in the module stacking direction (for example, one end A pressure plate is installed between the end plate and the inner side of the plate, a spring is placed between the end plate and the pressure plate plate at one end, and the spring force is adjusted to adjust the module stacking direction to the cell stack.
- the tightening load is applied to the fuel cell stack 2 3.
- the electrolyte membrane 11 is made of a solid polymer membrane ion exchange membrane, and hydrogen ions (protons) move through the membrane in a wet state.
- the electrolyte membrane 11 is a non-conductive membrane.
- the catalyst layers 12 and 15 are made of platinum (Pt), carbon (C), and an electrolyte.
- the diffusion layers 1 3 and 16 have gas permeability and are made of a single bond (C).
- Separator evening 18 separates either fuel gas and oxidizing gas, fuel gas and cooling water, or oxidizing gas and cooling water, and between adjacent cells, electrons flow from the anode of the adjacent cell to the cathode. An electric passage is formed.
- Separetsu 18 is impervious to gas and water and has electrical conductivity. Separator 18 is usually made of either one of force (including the case of graphite), metal (metal), or conductive resin.
- a fuel gas flow path 27 is formed in the separation side on one side of the MEA, and an oxidizing gas flow path 28 is formed in the separation side on the other side of the MEA.
- the cooling water channel 26 is provided for each cell or for each of a plurality of cells. In the example of Fig. 7, 1 module 1 9 is configured with 1 cell 1 0. The cooling water channel 26 is provided between the modules.
- the portion of the cell 10 where the MEA is provided and the fuel gas and the oxidizing gas are supplied to both sides thereof constitutes a power generation unit 34 of the fuel cell.
- the Separeto 18 usually has a square shape or a substantially square shape. However, the shape of Separation 18 is not limited to a square.
- the gas flow paths 27, 28 (fuel gas flow path 27, oxidant gas flow path 28) have a plurality of protrusions within the width of the groove group or the flow path group in which a plurality of flow grooves are parallel. It consists of a flow path.
- the gas flow path may be formed in a so-called serpentine flow path formed so as to meander in the in-plane direction of the separator by the partition wall.
- a cooling water manifold 29, a fuel gas manifold 30, and an oxidant gas manifold 31 are formed at opposite ends across the power generation unit 34. These manifolds 29, 30 and 31 are sealed together so that different fluids do not mix. Separate separators on both sides of ME A are usually sealed with adhesive 33, and adjacent cells are usually sealed with gasket 32.
- pipes 3 6, 3 7 and 3 8 for supplying and discharging cooling water, fuel gas and oxidizing gas are connected to manifolds 29, 30 and 31, respectively. As shown in FIG. 1, the cooling water, the fuel gas, and the oxidizing gas are discharged from the hole of the end plate 22 at one end of the fuel cell stack 23 in the cell stacking direction.
- the stack end on the fluid supply side and the stack end on the fluid discharge side are at the same stack end.
- Fluid reactive gas, cooling water
- flows into the stack from one end of the stack makes a U-turn at each cell 10 and trap module 50, and flows out from the same stack end as the inflow side.
- Each cell 10 and the trap module 50 are parallel to each other in terms of flow path.
- Piping 3 6, 3 7 and 3 8 are made of stainless steel piping, and have a valve and a circulation pump on the way.
- ⁇ A small amount of acid (hydrofluoric acid, sulfuric acid) dissolves from the electrolyte, so the moisture in the gas becomes acidic. Easy to wear even in the case of stainless steel) and bearings such as coating powder (which often contains fluorine in the case of resin) are mixed in, and moisture in the gas (due to humidification gas)
- the hydrogen system is partially circulated, so the generated water circulates, so there is moisture ) And cooling water, they become ions (for example, iron ions and fluorine ions) and may be foreign matter.
- Cell 10 hates impurities made up of ions and foreign matter.
- the cells 10 on the gas-filled end of the stack 23 are likely to be poisoned or the cells 10 to 2 to 3 from the gas-filled end. This is presumably because water containing ions falls into the cell flow path (or flows in by gas flow) in the first 1 to 3 cells while passing through the manifold.
- the mass is larger than that of mist containing ions, so the inertia flows through the manifold until it reaches the end of the manifold on the opposite side of the gas inlet. Since the U-turn is made through the gas flow path of a cell on the opposite side of the gas-filled end or a few cells close to that cell, the cell on the opposite side of the gas-filled end or its cell A few cells close to are poisoned intensively. As shown in FIGS.
- the fuel cell stack 23 of the present invention includes a cell module 10 having a gas flow path and An impurity trap module 50 having an empty space 52 communicating with the gas flow path and having an impurity removing body 51 for removing impurities from the fluid provided in the empty space 52 is provided.
- the fuel cell stack 23 of the present invention has a cell module 10 and at least one impurity trap module 50.
- the impurity trap module 50 is provided so as to form a parallel flow path with the cell module 10.
- the fuel cell stack 23 has a fuel gas manifold 30 and an oxidizing gas manifold 31.
- Gas manifolds 30 and 31 are fuel cell stacks 2 3. All cells 10 and impurity trap module 50 and fuel cell stack 23. Evening 2 1 and end plate 2 2 are penetrated in the cell stacking direction. It extends.
- Gas manifolds 3 0 and 3 1 are connected to pipes 3 7 and 3 8.
- the fuel gas manifold 30 and the oxidizing gas manifold 31 are formed in each cell 10 and also in the impurity trap module 50.
- the fuel gas manifold 30 and the oxidizing gas manifold 31 of each cell 10 and the impurity trap module 50 include a gas supply manifold and a gas exhaust manifold, respectively.
- the gas flow paths 2 7 and 2 8 of the cell 10 communicate the gas supply manifold and the gas discharge manifold formed in the cell. Further, a void (also referred to as a gap) 52 formed in the impurity trap module 50 communicates the gas supply manifold and the gas exhaust manifold.
- the impurity trap module 50 is a layer that connects the gas supply manifold and the gas discharge manifold formed in the impurity trap module 50.
- Impurity removal body (impurity removal body may be referred to as impurity removal body material) 5 1 is arranged in void (gap) 5 2 of impurity trap module 50.
- Impurity trap module 50 is opposed to each other, and a space (gap) 52 is provided between the separators (between a pair of separators), and is electrically connected to at least part of the opposing surface.
- (53 indicates a conductive part.
- the conductive part 53 is not coated with an electrical insulating material, and a pair of separators are in direct contact with each other or through a conductive material.
- impurities ions or ions
- Impurity removal body for removing (foreign matter) Impurity removal body may be referred to as impurity removal body material 5 1.
- the cell module 19 is electrically isolated by the electrolyte membrane 11 and the adhesive 33, while the impurity trap module 50 is a pair of conducting parts. 5 3 are connected to each other. Without this conducting portion 53, the impurity trap module 50 provided at the stack end portion electrically cuts off the cell module 19 and the terminal 20 on both sides, and the fuel cell stack is not established.
- Impurity removal body 5 1 Separation on both sides of 1 18 Fluid flow path 2 6, 2 7, 2 8 (Flow path through which fluid same as fluid flow path 2 6, 2 7, 2 8 of cell 10) The impurity is removed while the fluid flows through the fluid flow paths 2 6, 2 7 and 2 8 of the impurity trap module 50.
- the impurities in the fluid are positively adsorbed or trapped on the impurity removing body 51 and retained and removed by making sufficient contact with the dead body 51.
- the fluid flow paths 2 6, 2 7 and 2 8 of the impurity trap module 50 communicate with the fluid manifolds 2 9, 3 0 and 3 1 of the stack 2 3, respectively.
- the impurity removal for removing impurities in the fuel gas is performed in one impurity trap module 50.
- the body 51 and the impurity removing body 51 for removing the impurities of the oxidizing gas are provided in different locations in the same cell plane.
- two impurity trap modules 50 are provided, and only one impurity remover 51 for removing fuel gas impurities is provided on the cell surface of one trap module 50, and fuel is provided on the cell surface of the other trap module 50. It is advisable to provide only an impurity remover 51 that removes gas impurities.
- the impurity trap module 50 is provided at least at the fluid supply side end of the fuel cell stack 23.
- the impurity trap module 50 is also provided at the end of the fuel cell stack 23 opposite to the end of the fluid supply side.
- the impurity trap module 50 is attached to both ends of the fluid supply side end of the fuel cell stack 23 and the end opposite to the fluid supply side of the fuel cell stack. It is desirable to be provided.
- At least one impurity trap module 50 is also provided in the middle part of the fuel cell stack 23 in the cell stack direction (a plurality of impurity trap modules 50 are provided in the middle part of the stack). May also be provided).
- the impurity remover 51 may be an ion exchange resin that adsorbs and holds impurities made of ions.
- the impurity-removing body 51 is made of an ion exchange resin
- the ion exchange resin may be formed into a sheet shape or a plate shape as shown in FIG. Alternatively, as shown in FIG. 3, it may be formed into a plurality of particles, placed in a porous container 54, and mounted in a space (gap) 52.
- the impurity-removed body 51 may be one that captures impurities made of foreign substances that are not ions and retains the captured impurities (for example, a nonwoven fabric or a vapor).
- the impurity remover 51 When the impurity remover 51 is provided at a plurality of locations of the stack 23, the impurity remover 51 provided at a certain location may be an ion exchange resin that adsorbs and retains impurities made of ions.
- the impurity removing body 51 provided at the location may be one that captures impurities composed of foreign matters that are not ions and retains the captured impurities (for example, a nonwoven fabric).
- the impurity remover 51 includes an ion exchange resin and a substance that captures and traps impurities (for example, a nonwoven fabric or a vapor)
- the impurity remover 5 made of an ion exchange resin 5
- the impurity trap module 50 having 1 is preferably provided at the fluid supply side end of the fuel cell stack 23 (because the cell at the fluid supply side end is deteriorated by ions) and traps impurities.
- An impurity trap module 50 having an impurity removal body 51 made of a material that holds trapped impurities (for example, a nonwoven fabric or a vapor) has a cell on the opposite end to the fluid supply side end. Preferably, it is provided at the end of the fuel cell stack opposite to the end of the fluid supply side.
- the impurity trap module 50 has almost the same pressure loss as the cell module 10. Therefore, even if the impurity trap module 50 is inserted into the stack 23, the flow rate of the fluid flowing through each cell 10 is hardly changed. Next, functions and effects of the fuel cell stack 23 of the present invention will be described.
- the fuel cell stack 23 has an impurity trap module 50, and the impurity trap module 50 removes impurities from a fluid (fuel gas, oxidizing gas, cooling water). Since it has 5 1, it is more active than the conventional dummy cell (Japanese Patent Laid-Open No. 2 0 3-3 3 8 3 0 5) in which impurities are simply accumulated and precipitated in the fluid flow path. Impurities from the fluid can be removed by adsorption or trapping.
- an impurity remover 51 that can hold impurities, It is possible to prevent or suppress impurities adsorbed or trapped from flowing out into the flow again and flowing into the fuel cell 10.
- the impurity trap module 50 makes the gas supply manifold and the gas discharge manifold communicate with each other through the impurity removing body 51.
- the impurity trap module 50 is located at the end on the front side of the gas introduction direction in the cell stacking direction, most of the condensed water that has traveled along the inner wall surface of the gas pipes 37, 38 is transferred to the impurity trap module 50. Inflow, power generation cell
- the impurity trap module 50 has gas self-pipe 3 7 and 3
- Condensed water may accumulate in the communication part of the impurity trap module 50 when power generation is stopped (when gas supply is stopped).
- impurities can be reduced from the condensed water that is stored during power generation stop. It is possible to suppress the deterioration of the power generation cell.
- the gas supplied to the power generation cell 10 is, for example, a gas humidified with moisture contained in the off-gas, and condensed water is likely to be generated. Therefore, the present invention is particularly effective.
- the impurity trap module 50 can selectively and efficiently remove ions contained in the fluid (for example, iron ions and fluorine ions that may be dissolved in moisture in the gas).
- the ions tend to selectively degrade 2 to 3 cells 10 from the fluid supply side end of the stack 2 3 at the fluid supply side end (the moisture contained in the gas flow is The cell that is passing through the second hold or drops from the end to the in-cell flow path while passing 2 to 3 cells from the end. 2 to 3 cells flow into the in-cell gas flow path and deteriorate the cell) by placing the impurity trap module 50 at the fluid supply side end of the stack 23 Can be removed selectively and efficiently.
- ions contained in the fluid for example, iron ions and fluorine ions that may be dissolved in moisture in the gas.
- the ions tend to selectively degrade 2 to 3 cells 10 from the fluid supply side end of the stack 2 3 at the fluid supply side end (the moisture contained in the gas flow is The cell that is passing through the second hold or drops from the end to the in-
- the impurity trap module 50 When the impurity trap module 50 is provided at the end opposite to the fluid supply side end of the fuel cell stack (including the impurity removing body 51 for removing foreign matter), the impurity trap module 50 It is possible to selectively and efficiently remove foreign matter (non-ionized, relatively large foreign matter) inside.
- the foreign matter tends to selectively deteriorate the cell 10 at the end opposite to the fluid supply end or two to three cells 10 from the end opposite to the fluid supply end (gas Foreign matter contained in the flow flows through the manifold to the end opposite to the end on the fluid supply side, or within the cell plane of 2 to 3 cells from the end opposite to the end on the fluid supply side.
- the impurity trap module 50 is arranged at the end opposite to the fluid supply side of the fuel cell stack 2 3 so that the foreign matter is selectively and It can be removed efficiently.
- the fuel cell stack Impurity trap module 50 at the end of fluid supply (impurity removal body of this trap module is preferably made of ion exchange resin) selectively and efficiently removes ions mixed in moisture in gas flow
- the impurity removal body of this trap module is preferably a foreign matter removal method. Are removed selectively and efficiently. As a result, both ions and foreign substances can be removed.
- the impurity removing body 51 is an ion exchange resin
- ions contained in moisture in the gas flow are positively adsorbed and held on the ion exchange resin by ion exchange. Since retention is also performed, ions once adsorbed are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies that have reduced adsorption capacity due to adsorption and retention of ions are replaced with new ion exchange resins.
- the impurity remover 51 is one that captures impurities and retains the trapped impurities (for example, non-woven fabric or breathable vapor), foreign matter in the gas flow touches the surface of the non-woven fabric ( It is even more actively captured and retained. Also hold Therefore, the ions once trapped are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies whose trapping ability has been reduced by capturing and holding foreign substances are replaced with new impurity-removed bodies.
- the impurity remover 51 contains an ion exchange resin and something that captures and retains impurities (for example, non-woven fabric or breathable vapor), it will be mixed with moisture in the gas stream. Ions are adsorbed and retained by the ion exchange resin, and foreign substances contained in the gas flow are captured and retained by those that capture the impurities and retain the captured impurities (for example, nonwoven fabric or breathable paper). Is done. As a result, it is possible to supply a highly pure reaction gas containing almost no ions or foreign substances.
- Impurity trap module 50 having impurity remover 51 made of ion exchange resin is provided at the fluid supply side end of fuel cell stack 23 to capture and retain the trapped impurity (
- an impurity trap module 50 having an impurity removing body 51 made of a nonwoven fabric or a breathable vapor is provided at the end opposite to the fluid supply side end of the fuel cell stack 23.
- ions that tend to flow through the trap module 50 at the end of the fluid supply side of the stack 23 can be effectively removed by the ion exchange resin, and the end opposite to the end of the fluid supply side of the stack 23 That traps impurities and retains them (for example, non-woven fabric) By the over-Pas) base breathable go-between can be effectively removed.
- the impurity trap module 50 forms a parallel path with the cell module 10 and has almost the same pressure loss as each cell module 10, so the flow rate of the trap module 50 placed in parallel with the cell module 10 Can be made substantially the same as the flow rate flowing through each cell module 10. As a result, it is possible to prevent the flow rate of the cell module 10 from decreasing due to excessive flow to the trap module 50 and reducing the power generation performance of the cell module, and the flow of the trap module 50 is too small to remove impurities. Can be prevented from decreasing.
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
[1] A fuel cell stack (23) includes: a pair of separators (18) having a cell module (19) and an impurities trap module (50) and electrically communicating at least at a part of opposing surfaces of the impurities track module (50); and a impurities removal body (51) arranged in a space between the pair of separators for removing impurities from a fluid. [2] The impurities trap module (50) is arranged at the fluid supply side end of the fuel cell stack. [3] The impurities trap module (50) is arranged at the end opposite to the fluid supply side end of the fuel cell stack. [4] The impurities removal body is an ion exchange resin. [5] The impurities removal body (51) captures impurities and holds the captured impurities. [6] The impurities trap module (50) has a pressure loss almost identical to that of the cell module (19).
Description
明細書 Specification
燃料電池スタック 技術分野 Fuel cell stack technology
本発明は、 燃料電池 (セル) のスタックに関する。 背景技術 The present invention relates to a stack of fuel cells (cells). Background art
固体高分子電解質型燃料電池 (P E M F C) は、 膜—電極アッセンプリ (ME A : Membrane-Elec trode Assembly ) とセパレ一夕とを積層したものから構成される。 M E Aは、 ィォン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層か らなる電極 (アノード、 燃料極) および電解質膜の他面に配置された触媒層からなる 電極 (力ソード、 空気極) とからなる。 セパレータは、 アノード、 力ソードに燃料ガ ス (水素) および酸化ガス (酸素、 通常は空気) を供給するための流体通路を有する とともに、 冷媒を流すための冷媒流路を有する。 ME Aとセパレ一夕との間には拡散 層が設けられる。 1以上のセルを積層してセルモジュールを構成し、 セルモジュール を積層してモジュール群とし、 モジュール群の積層方向両端に、 ターミナル、 インシ ユレ一夕、 エンドプレートを配置し、 両端のエンドプレートをモジュール積層体の外 側でモジュール積層方向に延びる締結部材 (たとえば、 テンションプレート、 テンシ ヨンポルトなど) に締結し、 モジュール積層体にモジュール積層方向に締め付け荷重 を付与して、 燃料電池スタックを構成する。 A solid polymer electrolyte fuel cell (PEMFC) is composed of a stack of a membrane-electrode assembly (MEA) and a separator. MEA consists of an electrolyte membrane made of ion exchange membrane, an electrode (anode, fuel electrode) consisting of a catalyst layer placed on one side of this electrolyte membrane, and an electrode (force sword) made of a catalyst layer placed on the other side of the electrolyte membrane. Air electrode). The separator has a fluid passage for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and the power sword, and also has a refrigerant flow path for flowing the refrigerant. A diffusion layer is provided between ME A and Separeto. One or more cells are stacked to form a cell module, and cell modules are stacked to form a module group. Terminals, insulants, and end plates are placed at both ends of the module group in the stacking direction. The fuel cell stack is configured by fastening to a fastening member (eg, tension plate, tension port, etc.) extending in the module stacking direction on the outside of the module stack, and applying a tightening load to the module stack in the module stacking direction.
固体高分子電解質型燃料電池では、 アノード側では、 水素を水素イオンと電子にす る反応が行われ、 水素イオンは電解質膜中を力ソード側に移動し、 力ソード側では酸 素と水素ィオンおよび電子 (隣りの M E Aのアノードで生成した電子がセパレ一夕を 通してくる、 またはセル積層体一端のセルのアノードで生じた電子が外部回路を通つ てセル積層体他端のセルのカソ一ドに流れてくる) から水を生成する反応が行われる アノード側: H 2→2 H+ + 2 e "
力ソード側: 2 H+ + 2 e— + ( 1 / 2 ) 02 →H 20 In solid polymer electrolyte fuel cells, the reaction that converts hydrogen into hydrogen ions and electrons occurs on the anode side, and the hydrogen ions move to the force sword side in the electrolyte membrane, and oxygen and hydrogen ions on the force sword side. And electrons (electrons generated at the anode of the adjacent MEA pass through the separator overnight, or electrons generated at the anode of the cell at one end of the cell stack pass through an external circuit to the cathode of the cell at the other end of the cell stack. Reaction to produce water from the anode side: H 2 → 2 H + + 2 e " Force sword side: 2 H + + 2 e— + (1/2) 0 2 → H 2 0
電解質膜中を水素イオンが移動するためには電解質膜が適度に湿潤していることが 必要であり、 反応ガスを適度に加湿してセル積層体に供給する他、 上記発電反応で生 成した水を電解質膜の湿潤に利用している。 In order for hydrogen ions to move through the electrolyte membrane, the electrolyte membrane needs to be moderately moistened. It was generated by the above power generation reaction in addition to supplying the cell stack with the reaction gas being appropriately humidified. Water is used to wet the electrolyte membrane.
セルに供給される反応ガス (燃料ガス、 酸化ガス) および冷媒などの流体に不純物 (配管系鉄鲭、 ポンプのフッ素系樹脂の磨耗粉などがガス流中に含まれる水分中でィ オンとなっているものや、 イオンとならないで異物となっているものなど) が含まれ ていると、 それらは燃料電池を劣化させる原因となる。 たとえば、 イオンが角虫媒に付 着すると触媒性能を低下させたり、 電解質膜中に入ると (プロトン移動に使われる分 子中の手にイオンがついて) プロトンの膜中の移動を阻害し、 燃料電池を劣化させる 特開 2 0 0 1— 3 5 5 1 9号公報は、 セルに供給される冷却水を清浄に保っために 、 冷却水系で燃料電池スタック外に、 イオン交換樹脂を装備したものを開示している 。 しかし、 冷却水系のイオンを除去しても反応ガス中の加湿水中のイオンは低減され ない、 不純物除去装置が燃料電池スタックに直列に設けられているので、 冷却水の全 量が不純物除去装置を通過し、 流れの圧損を増加させてしまうこと、 などの問題があ る。 Impurities (plumbing iron iron, pumping resin abrasion powder, etc.) in fluids such as reaction gas (fuel gas, oxidizing gas) and refrigerant supplied to the cell turn on in moisture contained in the gas flow. If they contain foreign materials that do not become ions or become foreign substances, they can cause deterioration of the fuel cell. For example, when ions attach to the hornworm medium, the catalyst performance decreases, and when they enter the electrolyte membrane (with ions in the hands of the molecules used for proton transfer), the proton movement in the membrane is inhibited, Japanese Patent Laid-Open No. 2 00 1-3 5 5 1 9 which deteriorates a fuel cell is equipped with an ion exchange resin outside the fuel cell stack in the cooling water system in order to keep the cooling water supplied to the cell clean. The thing is disclosed. However, removal of ions from the cooling water system does not reduce the ions in the humidified water in the reaction gas. Since an impurity removal device is provided in series with the fuel cell stack, the entire amount of cooling water can be removed from the impurity removal device. There are problems such as passing through and increasing the flow pressure loss.
特開 2 0 0 3— 3 3 8 3 0 5号公報は、 セルに供給されるガスに含まれる不純物を 低減するために、 かつ不純物の低減をスタックで行うようにするために、 燃料電池ス タックの端部に電解質膜を有さないセル (ダミーセル) を設け、 ダミ一セルのガス流 路に不純物を蓄積させ、 不純物を低減するようにした燃料電池スタック構造を開示し ている。 しかし、 特開 2 0 0 3— 3 3 8 3 0 5号公報の不純物低減構成には、 なお、 つぎの 問題があった。 Japanese Patent Laid-Open No. 2 0 3-3 3 8 3 0 5 discloses a fuel cell system in order to reduce impurities contained in a gas supplied to a cell and to reduce impurities in a stack. It discloses a fuel cell stack structure in which a cell (dummy cell) without an electrolyte membrane is provided at the end of the tack, and impurities are accumulated in the gas flow path of the dummy cell to reduce the impurities. However, the impurity reduction configuration of Japanese Patent Laid-Open No. 2 03-3-3 3 8 3 0 5 has the following problems.
(ィ) 上記の不純物低減構成は、 積極的に不純物をとるものではないので、 不純物の 低減に限度があり、 さらなる流体の純度の向上が望まれていた。
(口) 上記の不純物低減構成は、 蓄積した不純物を積極的に保持するものではないの で、 いったん蓄積した不純物が流体の流れに乗って再度流れて燃料電池に循環するこ とがある。 発明の開示 (Ii) The above impurity reduction configuration does not actively take impurities, so there is a limit to the reduction of impurities, and further improvement in the purity of the fluid has been desired. (Mouth) The impurity reduction configuration described above does not actively retain the accumulated impurities, so once accumulated impurities may flow again in the fluid flow and circulate to the fuel cell. Disclosure of the invention
本発明の目的は、 流体から不純物を積極的に吸着または捕捉して除去でき、 望まし くはいつたん吸着または捕捉した不純物を保持できる、 燃料電池スタックを提供する ことにある。 上記目的を達成する本発明はつぎの通りである。 An object of the present invention is to provide a fuel cell stack that can positively adsorb or remove impurities from a fluid and desirably retain the adsorbed or trapped impurities at any time. The present invention for achieving the above object is as follows.
本発明の燃料電池スタックは、 ガス流路を有するセルモジュールと、 ガス流路と連 通する空所を内部に有し、 流体から不純物を除去する不純物除去体が空所内に設けら れた不純物トラップモジュールと、 を具備する。 The fuel cell stack according to the present invention includes a cell module having a gas flow path, a void communicating with the gas flow path, and an impurity removing body for removing impurities from the fluid provided in the void. A trap module.
燃料電池スタツクはガスマ二ホールドを有し、 該ガスマ二ホールドはガス供給マ二 ホールドとガス排出マ二ホールドを含み、 不純物トラップモジュ一ルは燃料電池ス夕 ックのガス供給マ二ホールドとガス排出マ二ホールドとを連通させる層である。 本発明の燃料電池スタックは、 セルモジュールと、 不純物トラップモジュールと、 を有し、 不純物トラップモジュールが、 互いに対向して間に空所を形成し、 対向面の 少なくとも一部で互いに導通している一対のセパレ一夕と、 一対のセパレ一夕の間の 空所に設けられ、 流体から不純物を除去する不純物除去体と、 を含む。 The fuel cell stack has a gas manifold, the gas manifold includes a gas supply manifold and a gas exhaust manifold, and the impurity trap module includes a gas supply manifold and a gas in the fuel cell stack. This layer communicates with the exhaust manifold. The fuel cell stack of the present invention has a cell module and an impurity trap module, and the impurity trap modules are opposed to each other to form a void therebetween, and are electrically connected to each other at least at a part of the opposed surface. A pair of separators, and an impurity remover provided in a space between the pair of separators and removing impurities from the fluid.
望ましくは、 不純物トラップモジュールが、 燃料電池スタックの流体供給側端部に 設けられている。 Preferably, an impurity trap module is provided at the end of the fuel cell stack on the fluid supply side.
あるいは、 不純物トラップモジュールが、 燃料電池スタックの流体供給側端部と反 対側端部に設けられている。 Alternatively, an impurity trap module is provided at the fluid supply side end and the opposite end of the fuel cell stack.
あるいは、 不純物トラップモジュールが、 燃料電池スタックの流体供給側端部と、 燃料電池スタツクの流体供給側端部と反対側端部に設けられている。 Alternatively, the impurity trap module is provided at the fluid supply side end of the fuel cell stack and the end opposite to the fluid supply side end of the fuel cell stack.
不純物除去体は、 イオン交換樹脂であってもよい。
不純物除去体は、 不純物を捕捉し捕捉した不純物を保持するものであってもよい。 不純物除去体は、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物を保持するも のとを含んでもよい。 The impurity removing body may be an ion exchange resin. The impurity removal body may capture impurities and hold the captured impurities. The impurity remover may include an ion exchange resin and one that traps impurities and retains the trapped impurities.
不純物除去体が、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物を保持するも のとを含み、 イオン交換樹脂から構成された不純物除去体を有する不純物トラップモ ジュ一ルが燃料電池スタックの流体供給側端部に設けられ、 不純物を捕捉し捕捉した 不純物を保持するものから構成された不純物除去体を有する不純物トラップモジュ一 ルが燃料電池スタックの流体供給側端部と反対側の端部に設けられてもよい。 The impurity removing module includes an ion exchange resin and a substance that traps impurities and retains the trapped impurities, and the impurity trap module having the impurity removing body composed of the ion exchange resin supplies fluid to the fuel cell stack. An impurity trap module is provided at the end opposite to the fluid supply side end of the fuel cell stack, which is provided at the side end and has an impurity remover composed of an element that captures and retains the trapped impurity. May be.
望ましくは、 不純物トラップモジュールは、 前記セルモジュールとほぼ同じ圧損を もつ。 本発明の燃料電池スタックによれば、 スタックが不純物トラップモジュールを有し 、 不純物トラップモジュールが流体から不純物を除去する不純物除去体を有するので 、 従来のダミーセルのように流体流路に不純物を蓄積、 沈殿させるものに比べて、 よ り積極的に流体から不純物を、 吸着または捕捉して、 除去できる。 また、 不純物除去 体に、 不純物を保持できるものを用いることにより、 いったん吸着または捕捉した不 純物が再び流れに流出して燃料電池に流れることを防止できる。 Preferably, the impurity trap module has substantially the same pressure loss as the cell module. According to the fuel cell stack of the present invention, the stack has an impurity trap module, and the impurity trap module has an impurity remover that removes impurities from the fluid, so that impurities are accumulated in the fluid flow path like a conventional dummy cell, Impurities can be adsorbed or trapped in fluids more aggressively than those that precipitate. Further, by using an impurity removal body that can retain impurities, it is possible to prevent impurities once adsorbed or trapped from flowing back into the flow and flowing into the fuel cell.
不純物トラップモジュールがガス供給マ二ホールドとガスお出マ二ホールドとを連 通させる場合は、 発電停止中 (ガス供給停止中) に不純物トラップモジュールの連通 部分に凝縮水が溜まっても凝縮水から不純物を低減でき、 発電停止中にセルが劣化す るのを抑制できる。 When the impurity trap module connects the gas supply manifold and gas output manifold hold, even if condensed water accumulates in the communication part of the impurity trap module when power generation is stopped (when gas supply is stopped), Impurities can be reduced, and deterioration of the cell during power outage can be suppressed.
不純物トラップモジュールが燃料電池ス夕ックの流体供給側端部に設けられている 場合は、 不純物トラップモジュールは、 イオンを選択的にかつ効率よく除去できる。 イオンは、 スタックの流体供給側端のセルか流体供給側端から 2〜3個のセルを、 選 択的に劣化させる傾向にあるが (ガス流中に含まれる水分はマ二ホールドを通過する 端部のセルか端部から 2〜 3個のセルを通過する間にセル面内流路に落下するため、 水分に混入しているイオンも、 端部のセルか端部から 2〜 3個のセルのセル面内ガス
流路に流入し、 そのセルを劣化させるため) 、 スタックの流体供給側端部に不純物卜 ラップモジュールを配置したことにより、 イオンを選択的にかつ効率よく除去できる 不純物トラップモジュールが燃料電池スタツクの流体供給側端部と反対側端部に設 けられている場合は、 不純物トラップモジュールは、 流体中の異物を選択的にかつ効 率よく除去できる。 異物は、 流体供給側端部と反対側端部のセルか流体供給側端部と 反対側端から 2〜 3個のセルを、 選択的に劣化させる傾向にあるが (ガス流中に含ま れる異物はマ二ホールド中を流体供給側端部と反対側端まで流れ、 流体供給側端部と 反対側端のセルか該端部から 2〜 3個のセルのセル面内ガス流路に流入し、 そのセル を劣化させるため) 、 燃料電池スタックの流体供給側端部と反対側端部に不純物トラ ップモジュールを配置したことにより、 異物を選択的にかつ効率よく除去できる。 不純物トラップモジュールが、 燃料電池スタックの流体供給側端部と、 燃料電池ス タックの流体供給側端部と反対側端部に設けられている場合は、 燃料電池スタックの 流体供給側端部の不純物トラップモジュールがガス流中の水分に混入しているイオン を選択的にかつ効率よく除去し、 燃料電池ス夕ックの流体供給側端部と反対側端部の 不純物トラップモジュールがガス流中の異物を選択的にかつ効率よく除去する。 これ によって、 イオンと異物の両方を除去できる。 When the impurity trap module is provided at the fluid supply side end of the fuel cell stack, the impurity trap module can selectively and efficiently remove ions. Ions tend to selectively degrade the cells at the fluid supply end of the stack or a few cells from the fluid supply end (moisture contained in the gas stream passes through the manifold) Since it falls into the flow channel in the cell plane while passing 2 to 3 cells from the end cell, 2 to 3 ions from the end cell or end In-cell gas of the cell The impurity trap module can be removed selectively and efficiently by arranging the impurity trap module at the fluid supply side end of the stack (to flow into the flow path and degrade the cell). When installed at the end opposite to the fluid supply side end, the impurity trap module can selectively and efficiently remove foreign substances in the fluid. Foreign matter tends to selectively deteriorate the cells at the end opposite to the fluid supply side or two to three cells from the end opposite to the fluid supply end (included in the gas flow) Foreign matter flows through the manifold to the end opposite to the end on the fluid supply side, and flows into the cell on the side opposite to the end on the fluid supply side or into the in-cell gas flow path of two to three cells from the end. In order to degrade the cell), the impurity trap module is disposed at the end opposite to the fluid supply side of the fuel cell stack, so that foreign matters can be selectively and efficiently removed. If the impurity trap module is provided at the fluid supply side end of the fuel cell stack and the end opposite to the fluid supply side of the fuel cell stack, the impurities at the fluid supply side end of the fuel cell stack The trap module selectively and efficiently removes ions mixed in the moisture in the gas stream, and the impurity trap module at the end opposite to the fluid supply side of the fuel cell stack Remove foreign matter selectively and efficiently. This removes both ions and foreign matter.
不純物除去体がイオン交換樹脂である場合は、 ガス流中の水分に含まれるイオンが イオン交換によりイオン交換樹脂に積極的に吸着されかつ保持される。 保持も行われ るので、 いったん吸着されたイオンが再び流れだしてセルに循環することが抑制され る。 その結果、 純度の高い反応ガスの供給が可能となる。 イオンを吸着、 保持して吸 着能が低下した不純物除去体は新しいイオン交換樹脂に交換される。 When the impurity removing body is an ion exchange resin, ions contained in moisture in the gas stream are positively adsorbed and held on the ion exchange resin by ion exchange. Since holding is also performed, ions once adsorbed are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies that have absorbed and retained ions and have reduced adsorption capacity are replaced with new ion exchange resins.
不純物除去体が、 不純物を捕捉し捕捉した不純物を保持するもの (たとえば、 不織 布や通気性べ一パ) である場合は、 ガス流中の異物が積極的に捕捉されかつ保持され る。 保持も行われるので、 いったん捕捉されたイオンが再び流れだしてセルに循環す ることが抑制される。 その結果、 純度の高い反応ガスの供給が可能となる。 異物を捕 捉、 保持して捕捉能が低下した不純物除去体は新しい不純物除去体に交換される。
不純物除去体が、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物を保持するも のとを含む場合は、 ガス流中の水分に混入しているイオンはイオン交換樹脂によって 吸着、 保持され、 ガス流中に含まれている異物は、 不純物を捕捉し捕捉した不純物を 保持するものによって、 捕捉、 保持される。 その結果、 イオンも異物もほとんど含ま ない、 純度の高い反応ガスの供給が可能となる。 If the impurity remover is one that captures impurities and retains the trapped impurities (for example, non-woven cloth or breathable vapor), foreign substances in the gas flow are actively captured and retained. Since holding is also performed, ions once trapped are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies whose trapping ability has been reduced by capturing and holding foreign substances are replaced with new impurity-removed bodies. When the impurity remover includes an ion exchange resin and a substance that traps impurities and retains the trapped impurities, the ions mixed in the moisture in the gas stream are adsorbed and retained by the ion exchange resin. Foreign matter contained in the flow is captured and retained by the one that captures and retains the captured impurities. As a result, it is possible to supply a high-purity reaction gas that contains almost no ions or foreign substances.
イオン交換樹脂から構成された不純物除去体を有する不純物トラップモジュールが 燃料電池スタックの流体供給側端部に設けられ、 不純物を捕捉し捕捉した不純物を保 持するものから構成された不純物除去体を有する不純物トラップモジュールが燃料電 池スタックの流体供給側端部と反対側の端部に設けられている場合は、 スタックの流 体供給側端部のトラップモジュールを流れやすいイオンをイオン交換樹脂によって効 果的に除去でき、 スタックの流体供給側端部と反対側端のトラップモジュールを流れ やすい異物を不純物を捕捉し捕捉した不純物を保持するものによって効果的に除去で きる。 An impurity trap module having an impurity remover composed of an ion exchange resin is provided at the fluid supply side end of the fuel cell stack, and has an impurity remover composed of one that captures impurities and holds the captured impurities When the impurity trap module is installed at the end of the fuel cell stack opposite to the fluid supply side, the ions that are likely to flow through the trap module at the end of the stack on the fluid supply side The foreign matter that easily flows through the trap module on the opposite end of the stack to the fluid supply side can be effectively removed by trapping impurities and holding the trapped impurities.
不純物トラップモジュールが、 セルモジュールとほぼ同じ圧損をもつ場合は、 セル モジュ一ルと並列配置されたトラップモジュールに流れる流量を各セルモジユールを 流れる流量とほぼ同じにすることができる。 その結果、 トラップモジュールに流れ過 ぎてセルモジュールの流量が減少して発電性能が低下することを防止できるとともに 、 トラップモジュールの流れが少な過ぎて不純物除去性能が低下することを防止でき る。 図面の簡単な説明 When the impurity trap module has almost the same pressure loss as the cell module, the flow rate flowing through the trap module arranged in parallel with the cell module can be made substantially the same as the flow rate through each cell module. As a result, it is possible to prevent the flow rate of the cell module from flowing through the trap module and reducing the power generation performance, and to prevent the impurity removal performance from being deteriorated due to the flow of the trap module being too small. Brief Description of Drawings
本発明の目的、 特徴は、 以下の図面を参照した説明によって、 より一層理解される であろう。 The objects and features of the present invention will be further understood from the following description with reference to the drawings.
図 1は、 本発明の、 セル積層体端部に配置された不純物トラップモジュールを含む 、 燃料電池スタックの側面図である。 FIG. 1 is a side view of a fuel cell stack including an impurity trap module disposed at an end of a cell stack according to the present invention.
図 2は、 図 1の燃料電池スタックの、 不純物トラップモジュールでの、 断面図であ る。
図 3は、 図 2で不純物除去体が、 多孔容器に入れられた粒状イオン交換樹脂からな る場合の、 燃料電池スタックの、 不純物トラップモジュールでの、 断面図である。 図 4は、 図 1の燃料電池スタックの、 不純物トラップモジュールでの、 正面図であ る。 Fig. 2 is a cross-sectional view of the fuel cell stack of Fig. 1 at the impurity trap module. FIG. 3 is a cross-sectional view of the impurity trap module of the fuel cell stack in the case where the impurity removing body in FIG. 2 is made of a granular ion exchange resin placed in a porous container. Fig. 4 is a front view of the fuel cell stack of Fig. 1 in the impurity trap module.
図 5は、 図 2で、 通電部位を示す、 燃料電池スタックの、 不純物トラップモジュ一 ルでの、 断面図である。 FIG. 5 is a sectional view of the impurity trap module of the fuel cell stack, showing the energization site in FIG.
図 6は、 本発明の、 セル積層体端部とセル積層方向中間部に配置された不純物トラ ップモジュールを含む、 燃料電池スタックの側面図である。 FIG. 6 is a side view of a fuel cell stack including an impurity trap module disposed at an end of a cell stack and an intermediate portion in the cell stacking direction according to the present invention.
図 7は、 図 1、 図 6の燃料電池スタックのセルモジュール部位での一部の、 拡大断 面図である。 FIG. 7 is an enlarged cross-sectional view of a part of the cell module portion of the fuel cell stack of FIGS.
図 8は、 図 1、 図 6の燃料電池スタックの、 セルモジュール部位での、 正面図であ る。 発明を実施するための最良の形態 FIG. 8 is a front view of the cell module portion of the fuel cell stack of FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の燃料電池スタックを、 図 1〜図 8を参照して、 説明する。 Hereinafter, the fuel cell stack of the present invention will be described with reference to FIGS.
本発明の燃料電池スタックに適用される燃料電池は、 たとえば固体高分子電解質型 燃料電池 1 0である。 燃料電池 (セル) 1 0は、 たとえば燃料電池自動車に搭載され る。 ただし、 自動車以外に用いられてもよい。 The fuel cell applied to the fuel cell stack of the present invention is, for example, a solid polymer electrolyte fuel cell 10. The fuel cell (cell) 10 is mounted on, for example, a fuel cell vehicle. However, it may be used for other than automobiles.
固体高分子電解質型燃料電池 1 0は、 図 1、 図 7、 図 8に示すように、 膜—電極ァ ッセンプリ (ME A: Membrane-Electrode Assembly ) とセパレー夕 1 8との積層体 からなる。 ME Aは、 イオン交換膜からなる電解質膜 1 1と電解質膜 1 1の一面に配 置された触媒層からなる電極 1 4 (アノード、 燃料極) および電解質膜 1 1の他面に 配置された触媒層からなる電極 1 7 (力ソード、 空気極) とからなる。 セパレ一夕 1 8には、 電極 1 4、 1 7に燃料ガス (水素) および酸化ガス (酸素、 通常は空気) を 供給するためのガス流路 2 7、 2 8 (燃料ガス流路 2 7、 酸化ガス流路 2 8 ) および 燃料電池冷却用の冷却水が流れる冷却水流路 2 6が形成されている。 M E Aとセパレ 一夕 1 8との間には、 アノード側に拡散層 1 3が、 力ソード側に拡散層 1 6が設けら
れる。 ME Aとセパレー夕 1 8を重ねてセルを形成し、 該セルを少なくとも 1層積層 してセルモジュール 1 9を構成し、 セルモジュール 1 9を積層してセル積層体 (モジ ユール積層体といってもよい) とし、 セル積層体のセル積層方向適宜の部位に (たと えば、 流体供給側端、 流体供給側端と反対側端、 セル積層体の中間の部位、 の少なく とも 1つの部位に) 、 後述する、 発電に寄与しない不純物トラップモジュール 5 0を 配置する。 そして、 不純物トラップモジュール 5 0を含めたセル積層体のセル積層方 向両端に、 ターミナル 2 0、 インシユレ一夕 2 1、 エンドプレート 2 2を配置し、 両 端のェンドブレート 2 2をセル積層体の外側でセル積層方向に延びる締結部材 2 4 ( たとえば、 テンションプレート、 テンションポルトなど) にポルト 2 5 ·ナットで締 結し、 セル積層体にモジュール積層方向に締め付け荷重を付与して (たとえば、 一端 のェンドプレートとその内側のィンシユレ一夕との間にプレツシャプレートを設け、 一端のェンドブレートとプレツシャプレー卜との間にばねを配置し、 ばね力を調整し てセル積層体にモジュール積層方向に締め付け荷重を付与する) 、 燃料電池スタック 2 3を構成する。 As shown in FIGS. 1, 7, and 8, the solid polymer electrolyte fuel cell 10 is composed of a laminate of a membrane-electrode assembly (MEA) and a separator 18. ME A was placed on the electrolyte membrane 1 1 made of ion exchange membrane and electrode 1 4 (anode, fuel electrode) made of catalyst layer placed on one side of electrolyte membrane 1 1 and on the other side of electrolyte membrane 1 1 It consists of an electrode 17 consisting of a catalyst layer (force sword, air electrode). In the separate evening 18, gas flow paths 2 7, 2 8 (fuel gas flow path 2 7 for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the electrodes 14, 1 7 In addition, an oxidizing gas channel 2 8) and a cooling water channel 26 through which cooling water for cooling the fuel cell flow are formed. Between MEA and Separation 1 8 there is a diffusion layer 13 on the anode side and a diffusion layer 16 on the force sword side. It is. ME A and separator plate 18 are stacked to form a cell, and the cell module 19 is formed by stacking at least one layer of the cell, and the cell module 19 is stacked to form a cell stack (referred to as a module stack). And at an appropriate location in the cell stacking direction of the cell stack (for example, at least one of the fluid supply side end, the fluid supply side end opposite to the end of the cell stack, and the intermediate portion of the cell stack) An impurity trap module 50 that does not contribute to power generation, which will be described later, is disposed. Then, the terminal 20, the insulative evening 21, and the end plate 2 2 are arranged at both ends of the cell stack including the impurity trap module 50 in the cell stack direction, and the end plate 22 at both ends is connected to the cell stack. Tighten to the fastening member 24 (ex. Tension plate, tension port, etc.) that extends in the cell stacking direction with a port 25 nut, and apply a tightening load to the cell stack in the module stacking direction (for example, one end A pressure plate is installed between the end plate and the inner side of the plate, a spring is placed between the end plate and the pressure plate plate at one end, and the spring force is adjusted to adjust the module stacking direction to the cell stack. The tightening load is applied to the fuel cell stack 2 3.
セル 1 0において、 電解質膜 1 1は固体高分子膜のイオン交換膜からなり、 湿潤状 態で水素イオン (プロトン) が膜中を移動する。 電解質膜 1 1は非導電性膜である。 触媒層 1 2、 1 5は白金 (P t;) 、 カーボン (C) 、 電解質からなる。 拡散層 1 3 、 1 6はガス透過性を有し力一ボン (C) からなる。 In the cell 10, the electrolyte membrane 11 is made of a solid polymer membrane ion exchange membrane, and hydrogen ions (protons) move through the membrane in a wet state. The electrolyte membrane 11 is a non-conductive membrane. The catalyst layers 12 and 15 are made of platinum (Pt), carbon (C), and an electrolyte. The diffusion layers 1 3 and 16 have gas permeability and are made of a single bond (C).
セパレー夕 1 8は、 燃料ガスと酸化ガス、 燃料ガスと冷却水、 酸化ガスと冷却水、 の何れかを隔てるとともに、 隣り合うセル間では、 隣り合うセルのアノードからカソ ードに電子が流れる電気の通路を形成している。 Separator evening 18 separates either fuel gas and oxidizing gas, fuel gas and cooling water, or oxidizing gas and cooling water, and between adjacent cells, electrons flow from the anode of the adjacent cell to the cathode. An electric passage is formed.
セパレ一夕 1 8は、 ガス、 水不透過性で、 導電性を有する。 セパレータ 1 8は、 通 常は、 力一ボン (黒鉛である場合を含む) 、 または金属 (メタル) 、 または導電性樹 脂、 の何れかからなる。 Separetsu 18 is impervious to gas and water and has electrical conductivity. Separator 18 is usually made of either one of force (including the case of graphite), metal (metal), or conductive resin.
M E Aの一側のセパレー夕に燃料ガス流路 2 7が形成されており、 M E Aの他側の セパレー夕に酸化ガス流路 2 8が形成されている。 冷却水流路 2 6はセル毎に、 また は複数のセル毎に、 設けられる。 図 7の例では、 1セル 1 0で 1モジュール 1 9を構
成しており、 冷却水流路 2 6が、 モジュール間に設けられている。 また、 セル 1 0の うち、 M E Aがありその両側に燃料ガス、 酸化ガスが供給される部位は、 燃料電池の 発電部 3 4を構成している。 A fuel gas flow path 27 is formed in the separation side on one side of the MEA, and an oxidizing gas flow path 28 is formed in the separation side on the other side of the MEA. The cooling water channel 26 is provided for each cell or for each of a plurality of cells. In the example of Fig. 7, 1 module 1 9 is configured with 1 cell 1 0. The cooling water channel 26 is provided between the modules. In addition, the portion of the cell 10 where the MEA is provided and the fuel gas and the oxidizing gas are supplied to both sides thereof constitutes a power generation unit 34 of the fuel cell.
セパレ一夕 1 8は、 通常、 四角形状か、 ほぼ四角形状を有する。 ただし、 セパレ一 夕 1 8の形状は四角形に限るものではない。 The Separeto 18 usually has a square shape or a substantially square shape. However, the shape of Separation 18 is not limited to a square.
ガス流路 2 7、 2 8 (燃料ガス流路 2 7、 酸化ガス流路 2 8 ) は、 複数の流路溝が 並行する流路群、 または溝状流路の幅内に複数の突起をもつ流路からなる。 ガス流路 は、 仕切壁により、 セパレ一タ面内方向に蛇行するように形成された流路、 いわゆる サーペンタイン流路に形成されていてもよい。 The gas flow paths 27, 28 (fuel gas flow path 27, oxidant gas flow path 28) have a plurality of protrusions within the width of the groove group or the flow path group in which a plurality of flow grooves are parallel. It consists of a flow path. The gas flow path may be formed in a so-called serpentine flow path formed so as to meander in the in-plane direction of the separator by the partition wall.
セパレ一夕 1 8には、 発電部 3 4を挟んで対向する端部に、 冷却水マ二ホールド 2 9、 燃料ガスマニホ一ルド 3 0、 酸化ガスマニホ一ルド 3 1が形成されている。 これ らのマニホ一ルド 2 9、 3 0、 3 1まわりは異種流体が混じり合わないように、 互い にシールされている。 ME Aの両側のセパレー夕間は、 通常、 接着剤 3 3でシールさ れ、 隣り合うセル間は、 通常、 ガスケット 3 2でシールされる。 図 1において、 マ二 ホールド 2 9、 3 0、 3 1には、 冷却水、 燃料ガス、 酸化ガスを供排する配管 3 6、 3 7、 3 8がそれぞれ接続されている。 図 1に示すように、 冷却水、 燃料ガス、 酸化 ガスは、 燃料電池スタック 2 3のセル積層方向一端のエンドプレート 2 2の孔から給 排されている。 すなわち、 流体供給側のスタック端と、 流体排出側のスタック端とは 、 同じスタック端にある。 流体 (反応ガス、 冷却水) は、 スタック一端からスタック に流入し、 各セル 1 0とトラップモジュール 5 0で Uターンし、 流入側と同じスタツ ク端から流出する。 各セル 1 0とトラップモジュール 5 0とは、 流路的には、 互いに 並列である。 In the separate night 18, a cooling water manifold 29, a fuel gas manifold 30, and an oxidant gas manifold 31 are formed at opposite ends across the power generation unit 34. These manifolds 29, 30 and 31 are sealed together so that different fluids do not mix. Separate separators on both sides of ME A are usually sealed with adhesive 33, and adjacent cells are usually sealed with gasket 32. In FIG. 1, pipes 3 6, 3 7 and 3 8 for supplying and discharging cooling water, fuel gas and oxidizing gas are connected to manifolds 29, 30 and 31, respectively. As shown in FIG. 1, the cooling water, the fuel gas, and the oxidizing gas are discharged from the hole of the end plate 22 at one end of the fuel cell stack 23 in the cell stacking direction. That is, the stack end on the fluid supply side and the stack end on the fluid discharge side are at the same stack end. Fluid (reactive gas, cooling water) flows into the stack from one end of the stack, makes a U-turn at each cell 10 and trap module 50, and flows out from the same stack end as the inflow side. Each cell 10 and the trap module 50 are parallel to each other in terms of flow path.
配管 3 6、 3 7、 3 8は、 ステンレス配管からなり、 途中にバルブ、 循環ポンプを 有するので、 鎗 (電解質から酸 (フッ酸、 硫酸) が微量溶けだすのでガス中の水分が 酸性を帯びやすくステンレスであっても微量鯖びる) や、 軸受けゃコ一ティング (樹 脂の場合、 フッ素を含むことが多い) の磨耗粉などが混入し、 ガス中の水分 (加湿ガ スのため、 また、 水素系は一部が循環されるため生成水が循環するため、 水分がある
) や冷却水に混入して、 イオン (たとえば、 鉄イオンや、 フッ素イオン) となってい るとともに、 異物となっている場合がある。 セル 1 0は、 イオンや異物からなる不純 物を嫌う。 Piping 3 6, 3 7 and 3 8 are made of stainless steel piping, and have a valve and a circulation pump on the way. 鎗 (A small amount of acid (hydrofluoric acid, sulfuric acid) dissolves from the electrolyte, so the moisture in the gas becomes acidic. Easy to wear even in the case of stainless steel) and bearings such as coating powder (which often contains fluorine in the case of resin) are mixed in, and moisture in the gas (due to humidification gas) The hydrogen system is partially circulated, so the generated water circulates, so there is moisture ) And cooling water, they become ions (for example, iron ions and fluorine ions) and may be foreign matter. Cell 10 hates impurities made up of ions and foreign matter.
発明者の試験において、 不純物によるセルの被毒 (発電性能低下) は、 特定の部位 にあるセル 1 0に集中して起こることが発見されている。 In the inventors' tests, it has been discovered that the poisoning of cells by impurities (decreased power generation performance) is concentrated in the cells 10 at specific sites.
イオンの場合は、 スタック 2 3のガス入り側の端部のセル 1 0またはガス入り側の 端部から 2〜 3のセル 1 0が被毒しやすい。 これはイオンを含む水分がマ二ホールド を通過中に始めの 1〜 3セルでセル流路に落下 (またはガス流で流入) するからであ ると推察される。 In the case of ions, the cells 10 on the gas-filled end of the stack 23 are likely to be poisoned or the cells 10 to 2 to 3 from the gas-filled end. This is presumably because water containing ions falls into the cell flow path (or flows in by gas flow) in the first 1 to 3 cells while passing through the manifold.
また、 イオンとなっていない異物の場合は、 質量もイオンを含むミストに比べて大 のため、 慣性でマ二ホールド中をガス入り側の端部と反対側端のマ二ホールド終端ま で流れ、 ガス入り側の端部と反対側端のセルかそのセルに近い 2〜 3のセルのガス流 路を通って Uターンするので、 ガス入り側の端部と反対側端のセルかそのセルに近い 2〜 3のセルが集中的に被毒される。 図 1〜図 6に示すように、 スタック 2 3のセル 1 0の不純物による性能低下を防止 または抑制するために、 本発明の燃料電池スタック 2 3は、 ガス流路を有するセルモ ジュール 1 0と、 ガス流路と連通する空所 5 2を内部に有し、 流体から不純物を除去 する不純物除去体 5 1が空所 5 2内に設けられた不純物トラップモジュール 5 0とを 具備する。 In the case of foreign substances that are not ions, the mass is larger than that of mist containing ions, so the inertia flows through the manifold until it reaches the end of the manifold on the opposite side of the gas inlet. Since the U-turn is made through the gas flow path of a cell on the opposite side of the gas-filled end or a few cells close to that cell, the cell on the opposite side of the gas-filled end or its cell A few cells close to are poisoned intensively. As shown in FIGS. 1 to 6, in order to prevent or suppress performance degradation due to impurities in the cells 10 of the stack 23, the fuel cell stack 23 of the present invention includes a cell module 10 having a gas flow path and An impurity trap module 50 having an empty space 52 communicating with the gas flow path and having an impurity removing body 51 for removing impurities from the fluid provided in the empty space 52 is provided.
本発明の燃料電池スタツク 2 3は、 セルモジュール 1 0と、 少なくとも 1つの不純 物トラップモジュール 5 0と、 を有している。 不純物トラップモジュ一ル 5 0はセル モジュール 1 0と並列流路を形成するように設けられる。 The fuel cell stack 23 of the present invention has a cell module 10 and at least one impurity trap module 50. The impurity trap module 50 is provided so as to form a parallel flow path with the cell module 10.
燃料電池スタツク 2 3は燃料ガスマ二ホールド 3 0、 酸化ガスマ二ホールド 3 1を 有する。 ガスマニホ一ルド 3 0、 3 1は燃料電池スタック 2 3の全セル 1 0および不 純物トラップモジュ一ル 5 0および燃料電池スタツク 2 3のセル積層方向一端の、 夕 一ミナル 2 0、 インシユレ一夕 2 1、 エンドプレート 2 2を、 セル積層方向に貫通し
て延びている。 ガスマ二ホールド 3 0、 3 1は配管 3 7、 3 8に接続している。 燃料ガスマ二ホールド 3 0、 酸化ガスマ二ホールド 3 1は、 各セル 1 0にも不純物 トラップモジュール 5 0にも形成されている。 各セル 1 0と不純物トラップモジュ一 ル 5 0の燃料ガスマ二ホールド 3 0、 酸化ガスマ二ホールド 3 1は、 それぞれ、 ガス 供給マ二ホールドとガス排出マ二ホールドを含む。 セル 1 0のガス流路 2 7、 2 8は セルに形成されたガス供給マ二ホールドとガス排出マ二ホールドを連通させる。 また 、 不純物トラップモジュール 5 0に形成された空所 (隙間といってもよい) 5 2はガ ス供給マ二ホールドとガス排出マ二ホールドを連通させる。 不純物トラップモジュ一 ル 5 0は、 不純物トラップモジュール 5 0に形成されたガス供給マ二ホールドとガス 排出マ二ホールドを連通させる層である。 不純物卜ラップモジュール 5 0の空所 (隙 間) 5 2に、 不純物除去体 (不純物除去体を不純物除去体材といってもよい) 5 1が 配置される。 The fuel cell stack 23 has a fuel gas manifold 30 and an oxidizing gas manifold 31. Gas manifolds 30 and 31 are fuel cell stacks 2 3. All cells 10 and impurity trap module 50 and fuel cell stack 23. Evening 2 1 and end plate 2 2 are penetrated in the cell stacking direction. It extends. Gas manifolds 3 0 and 3 1 are connected to pipes 3 7 and 3 8. The fuel gas manifold 30 and the oxidizing gas manifold 31 are formed in each cell 10 and also in the impurity trap module 50. The fuel gas manifold 30 and the oxidizing gas manifold 31 of each cell 10 and the impurity trap module 50 include a gas supply manifold and a gas exhaust manifold, respectively. The gas flow paths 2 7 and 2 8 of the cell 10 communicate the gas supply manifold and the gas discharge manifold formed in the cell. Further, a void (also referred to as a gap) 52 formed in the impurity trap module 50 communicates the gas supply manifold and the gas exhaust manifold. The impurity trap module 50 is a layer that connects the gas supply manifold and the gas discharge manifold formed in the impurity trap module 50. Impurity removal body (impurity removal body may be referred to as impurity removal body material) 5 1 is arranged in void (gap) 5 2 of impurity trap module 50.
不純物トラップモジュール 5 0は、 互いに対向し、 間に (一対のセパレータ間に) 不純物除去体を配置する空所 (隙間) 5 2を形成し、 対向面の少なくとも一部で互い に電気的に導通している (5 3が導通部を示す、 導通部 5 3には電気絶緣材である接 着剤が塗布されておらず一対のセパレー夕が直接または導電材を介して面接触してい る) 一対のセパレー夕 1 8と、 一対のセパレー夕 1 8の間の空所 (隙間) 5 2に設け られ、 流体 (水分を含むガス、 冷却水) から不純物 (イオンや、 イオンとなっていな い異物) を除去する不純物除去体 (不純物除去体を不純物除去体材といってもよい) 5 1と、 を含む。 セルモジュール 1 9は M E Aを挟む一対のセパレー夕 1 8は電解質 膜 1 1と接着剤 3 3とで電気的に遮断されるが、 不純物トラップモジュール 5 0は、 一対のセパレー夕 1 8は導通部 5 3で互いに導通している。 この導通部 5 3がないと 、 スタツク端部に設けられた不純物トラップモジュール 5 0はその両側のセルモジュ ール 1 9とターミナル 2 0とを電気的に遮断し燃料電池スタックが成立しなくなる。 不純物除去体 5 1の両側のセパレ一夕 1 8には流体流路 2 6、 2 7、 2 8 (セル 1 0の流体流路 2 6、 2 7、 2 8と同じ流体が流れる流路) が形成されており、 不純物 トラップモジュール 5 0の流体流路 2 6、 2 7、 2 8を流れる間に、 流体は不純物除
去体 5 1と十分に接触して、 流体中の不純物が不純物除去体 5 1に積極的に吸着また は捕捉され、 かつ保持されて、 除去される。 不純物トラップモジュール 5 0の流体流 路 2 6、 2 7、 2 8は、 スタック 2 3の流体マ二ホールド 2 9、 3 0、 3 1に、 それ ぞれ、 連通している。 Impurity trap module 50 is opposed to each other, and a space (gap) 52 is provided between the separators (between a pair of separators), and is electrically connected to at least part of the opposing surface. (53 indicates a conductive part. The conductive part 53 is not coated with an electrical insulating material, and a pair of separators are in direct contact with each other or through a conductive material.) Provided in a space (gap) 5 2 between a pair of separate evenings 18 and a pair of separate evenings 18, impurities (ions or ions) from fluid (gas containing moisture, cooling water) Impurity removal body for removing (foreign matter) (impurity removal body may be referred to as impurity removal body material) 5 1. The cell module 19 is electrically isolated by the electrolyte membrane 11 and the adhesive 33, while the impurity trap module 50 is a pair of conducting parts. 5 3 are connected to each other. Without this conducting portion 53, the impurity trap module 50 provided at the stack end portion electrically cuts off the cell module 19 and the terminal 20 on both sides, and the fuel cell stack is not established. Impurity removal body 5 1 Separation on both sides of 1 18 Fluid flow path 2 6, 2 7, 2 8 (Flow path through which fluid same as fluid flow path 2 6, 2 7, 2 8 of cell 10) The impurity is removed while the fluid flows through the fluid flow paths 2 6, 2 7 and 2 8 of the impurity trap module 50. The impurities in the fluid are positively adsorbed or trapped on the impurity removing body 51 and retained and removed by making sufficient contact with the dead body 51. The fluid flow paths 2 6, 2 7 and 2 8 of the impurity trap module 50 communicate with the fluid manifolds 2 9, 3 0 and 3 1 of the stack 2 3, respectively.
図 2、 図 4、 図 5に示すように、 スタック 2 3の一端に 1つの不純物トラップモジ ユール 5 0を設けられる場合は、 1つの不純物トラップモジュール 5 0に、 燃料ガス の不純物を除去する不純物除去体 5 1と、 酸化ガスの不純物を除去する不純物除去体 5 1とが、 同じセル面内で、 配置部位を異ならせて設けられる。 ただし、 不純物トラ ップモジュール 5 0を 2つ設け、 1つのトラップモジュール 5 0のセル面に燃料ガス の不純物を除去する不純物除去体 5 1のみを設け、 もう一つのトラップモジュール 5 0のセル面に燃料ガスの不純物を除去する不純物除去体 5 1のみを設けるようにして ちょい。 As shown in Fig. 2, Fig. 4, and Fig. 5, when one impurity trap module 50 is provided at one end of the stack 23, the impurity removal for removing impurities in the fuel gas is performed in one impurity trap module 50. The body 51 and the impurity removing body 51 for removing the impurities of the oxidizing gas are provided in different locations in the same cell plane. However, two impurity trap modules 50 are provided, and only one impurity remover 51 for removing fuel gas impurities is provided on the cell surface of one trap module 50, and fuel is provided on the cell surface of the other trap module 50. It is advisable to provide only an impurity remover 51 that removes gas impurities.
図 1、 図 6に示すように、 不純物トラップモジュール 5 0は、 少なくとも、 燃料電 池スタック 2 3の流体供給側端部に設けられている。 As shown in FIGS. 1 and 6, the impurity trap module 50 is provided at least at the fluid supply side end of the fuel cell stack 23.
また、 不純物トラップモジュール 5 0は、 燃料電池スタツク 2 3の流体供給側端部 と反対側端部にも、 設けられることが望ましい。 Further, it is desirable that the impurity trap module 50 is also provided at the end of the fuel cell stack 23 opposite to the end of the fluid supply side.
図 1、 図 6に示すように、 不純物卜ラップモジュール 5 0は、 燃料電池スタック 2 3の流体供給側端部と、 燃料電池スタックの流体供給側端部と反対側端部との、 両端 に設けられることが望ましい。 As shown in FIG. 1 and FIG. 6, the impurity trap module 50 is attached to both ends of the fluid supply side end of the fuel cell stack 23 and the end opposite to the fluid supply side of the fuel cell stack. It is desirable to be provided.
図 6の例では、 不純物トラップモジュール 5 0が、 燃料電池スタック 2 3のセル積 層方向の中間部位にも、 少なくとも 1個 (スタック中間部位に不純物トラップモジュ ール 5 0が複数個設けられてもよい) 、 設けられている。 In the example of FIG. 6, at least one impurity trap module 50 is also provided in the middle part of the fuel cell stack 23 in the cell stack direction (a plurality of impurity trap modules 50 are provided in the middle part of the stack). May also be provided).
不純物除去体 5 1は、 イオンからなる不純物を吸着、 保持するイオン交換樹脂であ つてもよい。 不純物除去体 5 1がイオン交換樹脂からなる場合、 イオン交換樹脂は、 図 2に示すように、 シート状、 板状に形成されて剥き出しで空所 (隙間) 5 2に装着 されてもよいし、 あるいは、 図 3に示すように、 複数の粒状に形成されて多孔質の容 器 5 4に入れられて空所 (隙間) 5 2に装着されてもよい。
不純物除去体 5 1は、 イオンとなっていない異物からなる不純物を捕捉し捕捉した 不純物を保持するもの (たとえば、 不織布やべーパ) であってもよい。 The impurity remover 51 may be an ion exchange resin that adsorbs and holds impurities made of ions. When the impurity-removing body 51 is made of an ion exchange resin, the ion exchange resin may be formed into a sheet shape or a plate shape as shown in FIG. Alternatively, as shown in FIG. 3, it may be formed into a plurality of particles, placed in a porous container 54, and mounted in a space (gap) 52. The impurity-removed body 51 may be one that captures impurities made of foreign substances that are not ions and retains the captured impurities (for example, a nonwoven fabric or a vapor).
不純物除去体 5 1がスタック 2 3の複数箇所に設けられる場合は、 ある箇所に設け られる不純物除去体 5 1はイオンからなる不純物を吸着、 保持するイオン交換樹脂で あってもよいし、 その他の箇所に設けられる不純物除去体 5 1はイオンとなっていな い異物からなる不純物を捕捉し、 捕捉した不純物を保持するもの (たとえば、 不織布 ゃぺ一パ) であってもよい。 When the impurity remover 51 is provided at a plurality of locations of the stack 23, the impurity remover 51 provided at a certain location may be an ion exchange resin that adsorbs and retains impurities made of ions. The impurity removing body 51 provided at the location may be one that captures impurities composed of foreign matters that are not ions and retains the captured impurities (for example, a nonwoven fabric).
不純物除去体 5 1が、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物を保持す るもの (たとえば、 不織布やべ一パ) とを含む場合は、 イオン交換樹脂から構成され た不純物除去体 5 1を有する不純物トラップモジュール 5 0は、 (流体供給側端部に あるセルがイオンにより劣化するため) 、 望ましくは、 燃料電池スタック 2 3の流体 '供給側端部に設けられ、 不純物を捕捉し捕捉した不純物を保持するもの (たとえば、 不織布やべーパ) から構成された不純物除去体 5 1を有する不純物トラップモジュ一 ル 5 0は、 (流体供給側端部と反対側端にあるセルが異物により劣化するため) 、 望 ましくは、 燃料電池スタックの流体供給側端部と反対側の端部に設けられる。 When the impurity remover 51 includes an ion exchange resin and a substance that captures and traps impurities (for example, a nonwoven fabric or a vapor), the impurity remover 5 made of an ion exchange resin 5 The impurity trap module 50 having 1 is preferably provided at the fluid supply side end of the fuel cell stack 23 (because the cell at the fluid supply side end is deteriorated by ions) and traps impurities. An impurity trap module 50 having an impurity removal body 51 made of a material that holds trapped impurities (for example, a nonwoven fabric or a vapor) has a cell on the opposite end to the fluid supply side end. Preferably, it is provided at the end of the fuel cell stack opposite to the end of the fluid supply side.
不純物トラップモジュール 5 0は、 セルモジュール 1 0とほぼ同じ圧損をもつ。 し たがって、 不純物トラップモジュール 5 0をスタック 2 3に揷入しても、 各セル 1 0 を流れる流体流量はほとんど変ィ匕しない。 つぎに、 本発明の燃料電池スタック 2 3の作用 ·効果を説明する。 The impurity trap module 50 has almost the same pressure loss as the cell module 10. Therefore, even if the impurity trap module 50 is inserted into the stack 23, the flow rate of the fluid flowing through each cell 10 is hardly changed. Next, functions and effects of the fuel cell stack 23 of the present invention will be described.
本発明の燃料電池スタックでは、 燃料電池スタツク 2 3が不純物トラップモジュ一 ル 5 0を有し、 不純物トラップモジュール 5 0が流体 (燃料ガス、 酸化ガス、 冷却水 ) から不純物を除去する不純物除去体 5 1を有するので、 従来 (特開 2 0 0 3 - 3 3 8 3 0 5号公報) のダミーセルのように流体流路に不純物を単に蓄積、 沈殿させるも のに比べて、 より積極的に流体から不純物を、 吸着または捕捉して、 除去することが できる。 In the fuel cell stack of the present invention, the fuel cell stack 23 has an impurity trap module 50, and the impurity trap module 50 removes impurities from a fluid (fuel gas, oxidizing gas, cooling water). Since it has 5 1, it is more active than the conventional dummy cell (Japanese Patent Laid-Open No. 2 0 3-3 3 8 3 0 5) in which impurities are simply accumulated and precipitated in the fluid flow path. Impurities from the fluid can be removed by adsorption or trapping.
また、 不純物除去体 5 1に、 不純物を保持できるものを用いることにより、 いった
ん吸着または捕捉した不純物が再び流れに流出して燃料電池 1 0に流れることを防止 または抑制することができる。 In addition, by using an impurity remover 51 that can hold impurities, It is possible to prevent or suppress impurities adsorbed or trapped from flowing out into the flow again and flowing into the fuel cell 10.
不純物トラップモジュール 5 0がガス供給マ二ホールドとガス排出マ二ホールドと を不純物除去体 5 1を介して連通させる。 不純物トラップモジュール 5 0がセル積層 方向のうちガス導入方向手前側の端部に位置する場合にはガス配管 3 7、 3 8の内壁 面を伝ってきた凝縮水の多くが不純物トラップモジュール 5 0に流れ込み、 発電セル The impurity trap module 50 makes the gas supply manifold and the gas discharge manifold communicate with each other through the impurity removing body 51. When the impurity trap module 50 is located at the end on the front side of the gas introduction direction in the cell stacking direction, most of the condensed water that has traveled along the inner wall surface of the gas pipes 37, 38 is transferred to the impurity trap module 50. Inflow, power generation cell
1 0に流れ込むことなく、 そのままセル積層体からガス出口マ二ホールドを介して排 出される。 つまり、 不純物トラップモジュール 5 0は、 ガスと共にガス酉己管 3 7、 3Without flowing into 10, it is directly discharged from the cell stack through the gas outlet manifold. In other words, the impurity trap module 50 has gas self-pipe 3 7 and 3
8から供給される凝縮水をパスカットさせる役割を果たす。 逆に、 不純物トラップモ ジュール 5 0がセル積層体のうちガス導入方向奥側の端部に位置する場合には、 ガス 供給マ二ホールドの内壁面を伝う凝縮水が、 奥側の発電セルに供給されるのを抑制で さる。 It plays the role of cutting the condensate supplied from 8. Conversely, when the impurity trap module 50 is located at the end of the cell stack on the back side in the gas introduction direction, the condensed water that travels along the inner wall surface of the gas supply manifold is supplied to the power generation cell on the back side. It can be suppressed.
不純物トラップモジュール 5 0の連通部分には、 発電停止中 (ガス供給停止中) に 凝縮水が溜まる可能性があるが、 本発明では、 発電停止中に溜まる凝縮水から不純物 を低減でき、 発電停止中に発電セルが劣化するのを抑制できる。 発電セル 1 0に供給 されるガスは、 たとえばオフガスに含まれる水分にて加湿されたガスであり、 凝縮水 が生じやすいので、 本発明が特に有効である。 Condensed water may accumulate in the communication part of the impurity trap module 50 when power generation is stopped (when gas supply is stopped). However, according to the present invention, impurities can be reduced from the condensed water that is stored during power generation stop. It is possible to suppress the deterioration of the power generation cell. The gas supplied to the power generation cell 10 is, for example, a gas humidified with moisture contained in the off-gas, and condensed water is likely to be generated. Therefore, the present invention is particularly effective.
また、 不純物トラップモジュール 5 0が、 (ィオン交換樹脂からなる不純物除去体 5 1を含み、 ) 燃料電池スタック 2 3の流体供給側端部に設けられている場合は、 不 純物トラップモジュール 5 0は、 流体中に含まれているイオン (たとえば、 ガス中の 水分に溶けていることがある、 鉄イオンやフッ素イオン) を選択的にかつ効率よく除 去できる。 イオンは、 スタック 2 3の流体供給側端のセル 1 0力 流体供給側端から 2〜3個のセル 1 0を、 選択的に劣化させる傾向にあるが (ガス流中に含まれる水分 はマ二ホールドを通過する端部のセルか端部から 2〜 3個のセルを通過する間にセル 面内流路に落下するため、 水分に混入しているイオンも、 端部のセルか端部から 2〜 3個のセルのセル面内ガス流路に流入し、 そのセルを劣化させるため) 、 スタック 2 3の流体供給側端部に不純物トラップモジュール 5 0を配置したことにより、 イオン
を選択的に、 かつ、 効率よく除去できる。 If the impurity trap module 50 is provided at the fluid supply side end of the fuel cell stack 23 (including the impurity remover 51 made of ion exchange resin), the impurity trap module 50 Can selectively and efficiently remove ions contained in the fluid (for example, iron ions and fluorine ions that may be dissolved in moisture in the gas). The ions tend to selectively degrade 2 to 3 cells 10 from the fluid supply side end of the stack 2 3 at the fluid supply side end (the moisture contained in the gas flow is The cell that is passing through the second hold or drops from the end to the in-cell flow path while passing 2 to 3 cells from the end. 2 to 3 cells flow into the in-cell gas flow path and deteriorate the cell) by placing the impurity trap module 50 at the fluid supply side end of the stack 23 Can be removed selectively and efficiently.
不純物トラップモジュール 5 0が、 (異物除去用不純物除去体 5 1を含み、 ) 燃料 電池スタツクの流体供給側端部と反対側端部に設けられている場合は、 不純物トラッ プモジユーゾレ 5 0は、 流体中の異物 (イオン化していない、 比較的質量の大きな異物 ) を選択的にかつ効率よく除去できる。 異物は、 流体供給側端部と反対側端部のセル 1 0か流体供給側端部と反対側端から 2〜 3個のセル 1 0を、 選択的に劣化させる傾 向にあるが (ガス流中に含まれる異物はマ二ホールド中を流体供給側端部と反対側端 まで流れ、 流体供給側端部と反対側端のセルか該端部から 2〜 3個のセルのセル面内 ガス流路に流入し、 そのセルを劣化させるため) 、 燃料電池スタック 2 3の流体供給 側端部と反対側端部に不純物トラップモジュール 5 0を配置したことにより、 異物を 選択的に、 かつ効率よく除去できる。 When the impurity trap module 50 is provided at the end opposite to the fluid supply side end of the fuel cell stack (including the impurity removing body 51 for removing foreign matter), the impurity trap module 50 It is possible to selectively and efficiently remove foreign matter (non-ionized, relatively large foreign matter) inside. The foreign matter tends to selectively deteriorate the cell 10 at the end opposite to the fluid supply end or two to three cells 10 from the end opposite to the fluid supply end (gas Foreign matter contained in the flow flows through the manifold to the end opposite to the end on the fluid supply side, or within the cell plane of 2 to 3 cells from the end opposite to the end on the fluid supply side. The impurity trap module 50 is arranged at the end opposite to the fluid supply side of the fuel cell stack 2 3 so that the foreign matter is selectively and It can be removed efficiently.
不純物トラップモジュール 5 0が、 燃料電池スタック 2 3の流体供給側端部と、 燃 料電池スタック 2 3の流体供給側端部と反対側端部に設けられている場合は、 燃料電 池スタックの流体供給側端部の不純物トラップモジュール 5 0 (このトラップモジュ ールの不純物除去体はイオン交換樹脂からなることが望ましい) がガス流中の水分に 混入しているイオンを選択的にかつ効率よく除去し、 燃料電池スタック 2 3の流体供 給側端部と反対側端部の不純物トラップモジュール 5 0 (このトラップモジュールの 不純物除去体は異物除去方であることが望ましい) がガス流中の異物を選択的にかつ 効率よく除去する。 これによつて、 イオンと異物の両方を除去できる。 If the impurity trap module 50 is installed at the fluid supply side end of the fuel cell stack 23 and at the end opposite to the fluid supply side end of the fuel cell stack 23, the fuel cell stack Impurity trap module 50 at the end of fluid supply (impurity removal body of this trap module is preferably made of ion exchange resin) selectively and efficiently removes ions mixed in moisture in gas flow Remove the impurity trap module 50 at the end opposite to the fluid supply side of the fuel cell stack 23 (the impurity removal body of this trap module is preferably a foreign matter removal method). Are removed selectively and efficiently. As a result, both ions and foreign substances can be removed.
不純物除去体 5 1がイオン交換樹脂である場合は、 ガス流中の水分に含まれるィォ ンがイオン交換によりイオン交換樹脂に積極的に吸着されかつ保持される。 保持も行 われるので、 いったん吸着されたイオンが再び流れだしてセルに循環することが抑制 される。 その結果、 純度の高い反応ガスの供給が可能となる。 イオンを吸着、 保持し て吸着能が低下した不純物除去体は新しいィォン交換樹脂に交換される。 When the impurity removing body 51 is an ion exchange resin, ions contained in moisture in the gas flow are positively adsorbed and held on the ion exchange resin by ion exchange. Since retention is also performed, ions once adsorbed are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies that have reduced adsorption capacity due to adsorption and retention of ions are replaced with new ion exchange resins.
不純物除去体 5 1が、 不純物を捕捉し捕捉した不純物を保持するもの (たとえば、 不織布や通気性べ一パ) である場合は、 ガス流中の異物が不織布などの表面に触れて (不織布を透過する場合はより一層) 積極的に捕捉されかつ保持される。 保持も行わ
れるので、 いったん捕捉されたイオンが再び流れだしてセルに循環することが抑制さ れる。 その結果、 純度の高い反応ガスの供給が可能となる。 異物を捕捉、 保持して捕 捉能が低下した不純物除去体は新しい不純物除去体に交換される。 If the impurity remover 51 is one that captures impurities and retains the trapped impurities (for example, non-woven fabric or breathable vapor), foreign matter in the gas flow touches the surface of the non-woven fabric ( It is even more actively captured and retained. Also hold Therefore, the ions once trapped are prevented from flowing again and circulating to the cell. As a result, it is possible to supply a reaction gas with high purity. Impurity-removed bodies whose trapping ability has been reduced by capturing and holding foreign substances are replaced with new impurity-removed bodies.
不純物除去体 5 1が、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物を保持す るもの (たとえば、 不織布や通気性べ一パ) とを含む場合は、 ガス流中の水分に混入 しているイオンはイオン交換樹脂によって吸着、 保持され、 ガス流中に含まれている 異物は、 不純物を捕捉し捕捉した不純物を保持するもの (たとえば、 不織布や通気性 ぺ一パ) によって、 捕捉、 保持される。 その結果、 イオンも異物もほとんど含まない 、 純度の高い反応ガスの供給が可能となる。 If the impurity remover 51 contains an ion exchange resin and something that captures and retains impurities (for example, non-woven fabric or breathable vapor), it will be mixed with moisture in the gas stream. Ions are adsorbed and retained by the ion exchange resin, and foreign substances contained in the gas flow are captured and retained by those that capture the impurities and retain the captured impurities (for example, nonwoven fabric or breathable paper). Is done. As a result, it is possible to supply a highly pure reaction gas containing almost no ions or foreign substances.
イオン交換樹脂から構成された不純物除去体 5 1を有する不純物トラップモジュ一 ル 5 0が燃料電池スタック 2 3の流体供給側端部に設けられ、 不純物を捕捉し捕捉し た不純物を保持するもの (たとえば、 不織布や通気性べーパ) から構成された不純物 除去体 5 1を有する不純物トラップモジュール 5 0が燃料電池ス夕ック 2 3の流体供 給側端部と反対側の端部に設けられている場合は、 スタック 2 3の流体供給側端部の トラップモジュール 5 0を流れる傾向にあるイオンをイオン交換樹脂によって効果的 に除去でき、 スタック 2 3の流体供給側端部と反対側端のトラップモジュール 5 0を 流れる傾向にある異物 (イオン化していない、 イオンに比べて質量の大きい異物) を 不純物を捕捉し捕捉した不純物を保持するもの (たとえば、 不織布や通気性べーパ) によつて効果的に除去できる。 Impurity trap module 50 having impurity remover 51 made of ion exchange resin is provided at the fluid supply side end of fuel cell stack 23 to capture and retain the trapped impurity ( For example, an impurity trap module 50 having an impurity removing body 51 made of a nonwoven fabric or a breathable vapor is provided at the end opposite to the fluid supply side end of the fuel cell stack 23. In this case, ions that tend to flow through the trap module 50 at the end of the fluid supply side of the stack 23 can be effectively removed by the ion exchange resin, and the end opposite to the end of the fluid supply side of the stack 23 That traps impurities and retains them (for example, non-woven fabric) By the over-Pas) base breathable go-between can be effectively removed.
不純物トラップモジュール 5 0は、 セルモジュ一ル 1 0と並列経路を構成し、 かつ 各セルモジュール 1 0とほぼ同じ圧損をもつので、 セルモジュール 1 0と並列配置さ れたトラップモジュール 5 0に流れる流量を各セルモジュール 1 0を流れる流量とほ ぼ同じにすることができる。 その結果、 トラップモジュール 5 0に流れ過ぎてセルモ ジュール 1 0の流量が減少してセルモジュールでの発電性能が低下することを防止で きるとともに、 トラップモジュール 5 0の流れが少な過ぎて不純物除去性能が低下す ることを防止できる。
The impurity trap module 50 forms a parallel path with the cell module 10 and has almost the same pressure loss as each cell module 10, so the flow rate of the trap module 50 placed in parallel with the cell module 10 Can be made substantially the same as the flow rate flowing through each cell module 10. As a result, it is possible to prevent the flow rate of the cell module 10 from decreasing due to excessive flow to the trap module 50 and reducing the power generation performance of the cell module, and the flow of the trap module 50 is too small to remove impurities. Can be prevented from decreasing.
Claims
1 . ガス流路を有するセルモジュールと、 1. a cell module having a gas flow path;
前記ガス流路と連通する空所を内部に有し、 流体から不純物を除去する不純物除去 体が前記空所内に設けられた不純物トラップモジュールと、 An impurity trap module having a void communicating with the gas flow passage inside, and an impurity removing body for removing impurities from the fluid provided in the void;
を具備する燃料電池スタック。 A fuel cell stack comprising:
2 . 前記燃料電池スタックはガスマ二ホールドを有し、 該ガスマ二ホールドはガス 供給マ二ホールドとガス排出マ二ホールドを含み、 前記不純物トラップモジュールは 前記燃料電池スタックの前記ガス供給マ二ホールドと前記ガス排出マ二ホールドとを 連通させる層である請求の範囲第 1項記載の燃料電池スタック。 2. The fuel cell stack includes a gas manifold, the gas manifold includes a gas supply manifold and a gas discharge manifold, and the impurity trap module includes the gas supply manifold of the fuel cell stack. 2. The fuel cell stack according to claim 1, wherein the fuel cell stack is a layer communicating with the gas exhaust manifold.
3 . セルモジュールと、 3. With cell module,
不純物トラップモジュールと、 An impurity trap module;
を有し、 Have
前記不純物トラップモジュールが、 The impurity trap module is
互いに対向して間に空所を形成し、 対向面の少なくとも一部で互いに導通している 一対のセパレ一夕と、 A pair of separate evenings that form a void in opposition to each other and that are electrically connected to each other on at least a part of the opposing surface;
前記一対のセパレー夕の間の前記空所に設けられ、 流体から不純物を除去する不純 物除去体と、 An impurity removing body provided in the space between the pair of separators for removing impurities from the fluid;
を含む燃料電池スタック。 Including fuel cell stack.
4. 前記不純物トラップモジュールが、 燃料電池スタックの流体供給側端部に設け られている請求の範囲第 1項または第 3項記載の燃料電池ス夕ック。 4. The fuel cell stack according to claim 1, wherein the impurity trap module is provided at a fluid supply side end of the fuel cell stack.
5 . 前記不純物トラップモジュールが、 燃料電池ス夕ックの流体供給側端部と反対 側端部に設けられている請求の範囲第 1項または第 3項記載の燃料電池スタック。
5. The fuel cell stack according to claim 1 or 3, wherein the impurity trap module is provided at an end opposite to the fluid supply side of the fuel cell stack.
6 . 前記不純物トラップモジュールが、 燃料電池スタックの流体供給側端部と、 燃 料電池スタツクの流体供給側端部と反対側端部に設けられている請求の範囲第 1項ま たは第 3項記載の燃料電池スタック。 6. The impurity trap module is provided at a fluid supply side end of the fuel cell stack and a fluid supply side end opposite to the fluid supply side end of the fuel cell stack. The fuel cell stack according to item.
7 . 前記不純物除去体が、 イオン交換樹脂である請求の範囲第 1項または第 3項記 載の燃料電池スタック。 7. The fuel cell stack according to claim 1 or 3, wherein the impurity removing body is an ion exchange resin.
8 . 前記不純物除去体が、 不純物を捕捉し捕捉した不純物を保持するものである請 求の範囲第 1項または第 3項記載の燃料電池スタック。 8. The fuel cell stack according to claim 1 or 3, wherein the impurity removing body captures impurities and holds the captured impurities.
9 . 前記不純物除去体が、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物を保 持するものとを含む請求の範囲第 1項または第 3項記載の燃料電池スタック。 9. The fuel cell stack according to claim 1 or 3, wherein the impurity removing body includes an ion exchange resin and a substance that traps impurities and retains the trapped impurities.
1 0 . 前記不純物除去体が、 イオン交換樹脂と、 不純物を捕捉し捕捉した不純物 を保持するものとを含み、 イオン交換樹脂から構成された不純物除去体を有する不純 物トラップモジュールが燃料電池スタックの流体供給側端部に設けられ、 不純物を捕 捉し捕捉した不純物を保持するものから構成された不純物除去体を有する不純物トラ ップモジュールが燃料電池スタックの流体供給側端部と反対側の端部に設けられてい る請求の範囲第 1項または第 3項記載の燃料電池スタック。 10. The impurity remover includes an ion exchange resin and an impurity trapping and retaining the trapped impurity, and an impurity trap module having an impurity remover composed of the ion exchange resin is provided in the fuel cell stack. An impurity trap module having an impurity remover, which is provided at the end of the fluid supply side and has an impurity remover configured to capture impurities and hold the trapped impurities, is located at the end of the fuel cell stack opposite to the end of the fluid supply side. The fuel cell stack according to claim 1 or 3, wherein the fuel cell stack is provided.
1 1 . 前記不純物トラップモジュールは、 前記セルモジュールとほぼ同じ圧損を もつ請求の範囲第 1項または第 3項記載の燃料電池スタツク。
11. The fuel cell stack according to claim 1, wherein the impurity trap module has substantially the same pressure loss as the cell module.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005025432A JP2008135188A (en) | 2005-02-01 | 2005-02-01 | Fuel cell stack |
JP2005-025432 | 2005-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006082911A1 true WO2006082911A1 (en) | 2006-08-10 |
Family
ID=36777293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/301813 WO2006082911A1 (en) | 2005-02-01 | 2006-01-27 | Fuel cell stack |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008135188A (en) |
WO (1) | WO2006082911A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058054A1 (en) * | 2005-11-16 | 2007-05-24 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7484763B2 (en) | 2021-02-18 | 2024-05-16 | トヨタ自動車株式会社 | Fuel Cell Module |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09312166A (en) * | 1996-05-23 | 1997-12-02 | Aqueous Res:Kk | Fuel cell power generator |
JP2001023662A (en) * | 1999-07-09 | 2001-01-26 | Fuji Electric Co Ltd | Humidifier member, solid polymer electrolyte fuel cell with this humidifier member, and fuel cell system |
JP2002056861A (en) * | 2000-08-11 | 2002-02-22 | Sanyo Electric Co Ltd | Fuel cell |
WO2003085768A1 (en) * | 2002-04-05 | 2003-10-16 | Bridgestone Corporation | Fluid cleaner and fuel cell power generator facility |
US20030215693A1 (en) * | 2002-05-20 | 2003-11-20 | Yasuyuki Asai | Fuel cell stack structure |
JP2005166304A (en) * | 2003-11-28 | 2005-06-23 | Toyota Motor Corp | Fuel cell stack |
-
2005
- 2005-02-01 JP JP2005025432A patent/JP2008135188A/en active Pending
-
2006
- 2006-01-27 WO PCT/JP2006/301813 patent/WO2006082911A1/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09312166A (en) * | 1996-05-23 | 1997-12-02 | Aqueous Res:Kk | Fuel cell power generator |
JP2001023662A (en) * | 1999-07-09 | 2001-01-26 | Fuji Electric Co Ltd | Humidifier member, solid polymer electrolyte fuel cell with this humidifier member, and fuel cell system |
JP2002056861A (en) * | 2000-08-11 | 2002-02-22 | Sanyo Electric Co Ltd | Fuel cell |
WO2003085768A1 (en) * | 2002-04-05 | 2003-10-16 | Bridgestone Corporation | Fluid cleaner and fuel cell power generator facility |
US20030215693A1 (en) * | 2002-05-20 | 2003-11-20 | Yasuyuki Asai | Fuel cell stack structure |
JP2005166304A (en) * | 2003-11-28 | 2005-06-23 | Toyota Motor Corp | Fuel cell stack |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058054A1 (en) * | 2005-11-16 | 2007-05-24 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
US8076041B2 (en) | 2005-11-16 | 2011-12-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2008135188A (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7566511B2 (en) | Solid polymer cell assembly | |
US7132189B2 (en) | Fuel cell stack with bypass | |
US8323415B2 (en) | Fast recycling process for ruthenium, gold and titanium coatings from hydrophilic PEM fuel cell bipolar plates | |
US20110195324A1 (en) | Methods and processes to recover voltage loss of pem fuel cell stack | |
US8076041B2 (en) | Fuel cell | |
JP3606514B2 (en) | Stacked fuel cell system | |
JP2007265824A (en) | Separator for fuel cell and fuel cell | |
WO2005109556A1 (en) | Fuel cell and separator thereof | |
US7163760B2 (en) | Fuel cell stack having a bypass flow passage | |
WO2004075326A1 (en) | Polyelectrolyte type fuel cell and operating method for polyelectrolyte type fuel cell | |
US7867660B2 (en) | Fuel cell and method of producing the same | |
JP4643128B2 (en) | Fuel cell system | |
US20070281197A1 (en) | Polymer electrolyte fuel cell system | |
JP2001216986A (en) | Humidifying system for fuel cell | |
WO2006082911A1 (en) | Fuel cell stack | |
JP2007234314A (en) | Fuel cell system | |
JP2006228507A (en) | Fuel cell | |
JP5011749B2 (en) | Fuel cell device | |
JP4886128B2 (en) | Fuel cell stack | |
JP4970007B2 (en) | Water management of PEM fuel cell stacks using surfactants | |
US8197986B2 (en) | Fuel cell device | |
JP2007115620A (en) | Separator for polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell | |
JP2005251604A (en) | Fuel cell stack | |
JP4397603B2 (en) | Polymer electrolyte fuel cell | |
US20100047642A1 (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06712956 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6712956 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |