WO2006082708A1 - Secondary cell positive electrode, manufacturing method thereof, and secondary cell - Google Patents

Secondary cell positive electrode, manufacturing method thereof, and secondary cell Download PDF

Info

Publication number
WO2006082708A1
WO2006082708A1 PCT/JP2006/300695 JP2006300695W WO2006082708A1 WO 2006082708 A1 WO2006082708 A1 WO 2006082708A1 JP 2006300695 W JP2006300695 W JP 2006300695W WO 2006082708 A1 WO2006082708 A1 WO 2006082708A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
carbon fiber
active material
material layer
Prior art date
Application number
PCT/JP2006/300695
Other languages
French (fr)
Japanese (ja)
Inventor
Jiro Iriyama
Kentaro Nakahara
Shigeyuki Iwasa
Masahiro Suguro
Masaharu Satoh
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007501525A priority Critical patent/JPWO2006082708A1/en
Publication of WO2006082708A1 publication Critical patent/WO2006082708A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery, a method for producing the same, and a secondary battery. More specifically, in a positive electrode for a secondary battery containing a radical compound, the electrical resistance of the positive electrode is reduced and the machine The present invention relates to a positive electrode for a secondary battery with improved mechanical strength, a method for producing the same, and a secondary battery.
  • Patent Document 1 As a secondary battery having a high energy density and a high capacity and excellent stability, a nitroxyl radical compound, an oxy radical compound, Lithium secondary batteries using radical compounds such as oxy radical compounds and polymer compounds having an aminotriazine structure have been proposed.
  • Patent Document 2 As a secondary battery that can be used at a large current with a high energy density, a -troxyl cation partial structure is formed in an acid state and a -troxyl radical portion is formed in a reduced state.
  • a lithium secondary battery has been proposed in which a structure-troxyl compound is contained in the active material layer of the positive electrode, and the electron transfer reaction between the acid state and the reduced state is used as the positive electrode reaction. .
  • Patent Document 3 as a secondary battery having a high energy density and a large capacity and stable, at least a positive electrode, a negative electrode, and an electrolyte are used as constituent elements, and at least an electrochemical oxidation reaction and a reduction reaction are performed.
  • a lithium secondary battery having particles containing an organic compound that generates a radical compound in one process as an active material, and in which the active material layer for the positive electrode is formed of a composite having at least two compositional regions. Secondary batteries have been proposed.
  • Patent Document 4 discloses a secondary battery that improves the conductivity and mechanical strength of an electrode.
  • As an active material layer containing a disulfide group the S—S bond of the disulfide group is cleaved by electrochemical reduction and regenerated by electrochemical oxidation.
  • the lithium secondary battery used has been proposed.
  • carbon nanotubes are dispersed in a conductive matrix.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-151084
  • Patent Document 2 JP-A-2002-304996
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-298850
  • Patent Document 4 Japanese Patent Laid-Open No. 11-329414
  • the lithium secondary batteries described in Patent Documents 1 to 3 have low mechanical strength, the current collector active material layer may fall off during storage without charge / discharge of the lithium secondary battery. Therefore, the charge / discharge capacity of the active material layer during storage (referred to as storage characteristics) may be reduced.
  • the lithium secondary battery described in Patent Document 4 since the regeneration efficiency of the cleaved S—S bond is small during the electrochemical reaction during charge and discharge, it is described in Patent Documents 1 to 3. Compared to a lithium secondary battery using an active material layer of the above radical compound, stability during charging and discharging is poor. For this reason, the lithium secondary battery described in Patent Document 4 has a problem that it is difficult to use as a large-capacity secondary battery capable of charging and discharging using a large current, and there is a need for a solution to the problem. It was.
  • the present invention has been made to solve the above-mentioned problems, and its first object is to The object is to provide a positive electrode for a secondary battery with low electrode resistance and high mechanical strength, and a method for producing the same.
  • a second object of the present invention is to provide a secondary battery having a large capacity and excellent storage characteristics that can be charged and discharged using a large current.
  • a positive electrode for a secondary battery according to the present invention for solving the above-described problems is a carbon fiber having an average value of a radical compound and an interlayer distance d of a graphite structure in a range of 0.335 nm or more and 0.340 nm or less.
  • an active material layer including at least a fiber.
  • the radical compound and the carbon fiber are included, it is considered that the interface resistance between the two is remarkably reduced, and the conductivity of the active material layer containing them can be increased. As a result, a positive electrode for a secondary battery having a low electric resistance can be configured. Also, the average value of the interlayer distance d of the graphite structure of the carbon fiber contained in the active material layer is 0.335 nm or more.
  • the carbon fiber within the range of 340 nm or less has high mechanical strength, the mechanical strength of the active material layer containing such carbon fiber can be increased. As a result, a positive electrode for a secondary battery having an active material layer with high conductivity that does not crack or fall off can be configured. Moreover, since the active material layer of the positive electrode for secondary battery of the present invention contains a radical compound, a secondary battery using the positive electrode for secondary battery can have a large capacity.
  • the tensile elastic modulus of the carbon fiber is in a range of 200 GPa to 800 GPa.
  • the average value of the interlayer distance d of the above-mentioned graphite structure is in the range of 0.335 nm or more and 0.340 nm or less.
  • the carbon fiber in the enclosure usually has a large value with a tensile elastic modulus in the range of 200 GPa to 800 GPa. According to the present invention, it is possible to increase the mechanical strength of the active material layer containing such carbon fibers and the positive electrode for a secondary battery including the active material layer.
  • the volume resistivity of the carbon fiber is in a range of 200 ⁇ ⁇ cm to 2000 ⁇ ′cm.
  • the volume resistivity of the carbon fibers contained in the active material layer is in the range of 200 ⁇ -cm to 2000 / ⁇ ⁇ ′cm, the active material layer containing such carbon fibers.
  • the conductivity becomes higher.
  • the electrode resistance of the positive electrode for a secondary battery provided with such an active material layer The resistance can be lowered.
  • the carbon fiber is preferably a vapor-grown carbon fiber.
  • the carbon fiber is a vapor-grown carbon fiber having excellent dispersibility
  • the dispersibility of the carbon fiber in the radical compound when producing the active material layer can be improved. wear.
  • an active material layer having uniform characteristics in each part and a secondary battery positive electrode including the active material layer can be easily obtained.
  • the carbon fiber is a graphitized carbon fiber having a mesophase pitch as a precursor.
  • Mesophase pitch is a polycyclic aromatic compound contained in coal tar or petroleum pitch that undergoes a polycondensation reaction by heating or the like and has uniform optical anisotropy.
  • carbon fibers having a mesophase pitch as a precursor By firing carbon fibers having a mesophase pitch as a precursor at a temperature of 2600 ° C to 3000 ° C, carbon fibers having an extremely high graphitization degree can be obtained. Since carbon fiber has such a high degree of graphite and excellent electrical conductivity and mechanical strength, when it is used for a positive electrode, a positive electrode for a secondary battery with low resistance and excellent mechanical strength can be obtained. Can be easily obtained.
  • the carbon fiber content in the active material layer is preferably in the range of 10 wt% to 50 wt%.
  • the mechanical strength of the active material layer can be increased.
  • the mechanical strength of the positive electrode for the secondary battery can be increased.
  • the content ratio of the carbon fiber in the active material layer is 50% by weight or less, the content ratio of the radical compound in the active material layer can be relatively increased, and as a result, the secondary content of the present invention can be increased.
  • a secondary battery using a positive electrode for a battery can have a large capacity.
  • the positive electrode for a secondary battery of the present invention preferably contains at least one of the radical compound power nitroxyl radical compound, oxy radical compound and nitrogen radical compound, in particular, Among the troxyl radical compounds, poly (4-methacryloyloxy 1, 2, 6, 6-tetramethylpiperidine 1-1-oxyl), poly (4-ataryloxyoxy 2, 2, 6, 6-tetramethylpiperidine) 1-oxyl) or poly (4-bi) -Luoxy-1,2,6,6-tetramethylpiperidine1-1-oxyl).
  • the method for producing a positive electrode for a secondary battery of the present invention for solving the above-mentioned problem is a method for producing a positive electrode for a secondary battery having an active material layer containing at least a radical compound and carbon fiber.
  • the average value of the interlayer distance d of the graphite structure is
  • It has a step of dispersing the carbon fiber in the range of not less than 0.335 nm and not more than 0.340 nm.
  • the carbon fiber in the active material layer it is preferable to disperse the carbon fiber in the active material layer so that the carbon fiber content is in the range of 10 wt% to 50 wt%. That's right.
  • the carbon fiber content in the active material layer is dispersed so as to be within the above range, an active material layer in which the electrical resistance and mechanical properties are uniform in each part can be formed. As a result, a positive electrode for a secondary battery having a low electrical resistance and a high mechanical strength can be produced.
  • the secondary battery of the present invention for solving the above problems is a secondary battery comprising at least a positive electrode, a negative electrode, and an electrolyte solution, wherein the positive electrode is the positive electrode for a secondary battery according to the present invention described above. It is characterized by being.
  • the positive electrode for a secondary battery including a radical compound and having an active material layer having a low electrode resistance and a large mechanical strength is provided, a large current V is charged and discharged.
  • a secondary battery having a large capacity and excellent storage characteristics can be obtained.
  • the positive electrode for a secondary battery of the present invention since the conductivity of the active material layer is increased and neither cracking nor dropping occurs, the electrical resistance is low and the mechanical strength is high.
  • a positive electrode for a secondary battery can be configured.
  • the active material layer of the positive electrode for secondary battery of the present invention contains a radical compound, a secondary battery using the positive electrode for secondary battery can have a large capacity.
  • an active material layer having uniform electric resistance and mechanical characteristics in each part can be formed, so that the electric resistance is low and the mechanical strength is large.
  • a positive electrode for a secondary battery can be manufactured.
  • the secondary battery of the present invention since the positive electrode for a secondary battery having high mechanical strength is provided, the electrode resistance is increased due to cracks in the active material layer, or the active material layer is dropped off. It is possible to suppress deterioration of storage characteristics.
  • the secondary battery of the present invention includes a positive electrode for a secondary battery that includes a radical compound and has an active material layer that has low, electrode resistance, and high mechanical strength, charging and discharging using a large current is possible. A secondary battery having a large capacity and excellent storage characteristics can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of a secondary battery of the present invention.
  • the positive electrode for secondary battery of the present invention is an average of the radical compound and the interlayer distance d of the graphite structure
  • the 002 has an active material layer containing at least carbon fibers within a range of 0.335 nm or more and 0.340 nm or less. Such an active material layer is usually formed on a current collector and forms a part of a positive electrode for a secondary battery.
  • the current collector is preferably a general material and shape that is not particularly limited. Examples of the current collector material include various materials such as aluminum, nickel, aluminum alloy, nickel alloy, and carbon. Examples of the shape thereof include foil, flat plate, and mesh. The one that also has shape power can be mentioned.
  • a radical compound is a compound which comprises an active material layer as an active material.
  • the radical compound, free radical having an unpaired electron i.e., radical
  • the radical compound, free radical having an unpaired electron is a compound having, Rajikarui ⁇ composing this onset Ming, spin concentration force S l0 21 radical density in the high instrument equilibrium A state where spinZg or higher continues for 1 second or longer.
  • the charged state of the radical compound constituting the present invention is preferably electrically neutral from the viewpoint of easy charge / discharge reaction.
  • the radical density (density of unpaired electrons) is equal to the spin concentration.
  • the spin concentration is a value obtained by, for example, the following method from the absorption area intensity of an electron spin resonance spectrum (hereinafter referred to as ESR spectrum).
  • ESR spectrum an electron spin resonance spectrum
  • the ESR ⁇ vector can be measured using, for example, the EOL-JES-FR30 ESR ⁇ spectrometer.
  • the spin concentration can be calculated by integrating the obtained ESR signal twice and comparing it with the calibration curve. In the present invention, any measuring instrument and measurement condition are applicable as long as the spin concentration can be measured correctly.
  • radical compound examples include polymer-troxyl radical compound, polymer oxydica Examples thereof include a Louis compound and a polymer hydrazyl radical compound.
  • radical compound examples include polymer-troxyl radical compound, polymer oxydica Examples thereof include a Louis compound and a polymer hydrazyl radical compound.
  • At least one or two or more of these radical compounds can be used.
  • a polymer-troxyl radical compound that is, a polymer having -toxyl is most preferably used.
  • Nitroxyl is particularly preferable as an active material because of its extremely high stability due to nonlocality of radicals.
  • Typical examples of the polymer-troxyl radical compound include A-1 to A-8 of the following chemical structural formulas.
  • each radical is further stabilized by steric hindrance due to a bulky substituent in the vicinity and a resonance structure.
  • the polymer main chain includes poly (meth) acrylic acid, polyalkyl (meth) acrylates, polybutyl ethers, poly (meth) acrylamides, polymer strength, high oxidation resistance and reduction resistance, and electrochemical properties. Is particularly preferable.
  • R to R are poly (meth) acrylic acid, polyalkyl (meth) acrylates, polybutyl ethers, poly (meth) acrylamides, polymer strength, high oxidation resistance and reduction resistance, and electrochemical properties. Is particularly preferable.
  • R to R are examples of the formula, R to R are
  • the A-7 A-8 polymer oxyradical compound is a polymer having an oxyradical, and typical examples thereof include A-9 to A-11 of the following chemical structural formula.
  • the high molecular hydrazyl radical compound is a polymer having a hydrazyl radical, and examples thereof include A-12 and A-13 of the following chemical structural formula. In the formula, R to R are respectively
  • the carbon fiber of the present invention has a graphite structure interlayer distance d
  • the average value of 002 is 0.335 nm or more 0.34
  • the average value of the interlayer distance d of the carbon fiber graphite structure is, for example, an X-ray rotation
  • the graphite structure of carbon fiber it can be represented by the analysis result of the X-ray diffraction peak that appears as the average value of the inter-layer distance d.
  • the carbon fiber having an interlayer distance within the above range has a large mechanical strength (for example, tensile elastic modulus), the mechanical strength of the active material layer can be increased. The result is an active material layer that does not fall off if cracked, and has a highly conductive active material layer. Can be configured.
  • tensile elastic modulus for example, tensile elastic modulus
  • the mechanical strength of the active material layer containing carbon fibers may be insufficient due to a lack of mechanical strength (for example, tensile modulus).
  • 002 is 0.335 nm, and there is no carbon fiber with an interlayer distance less than 0.335 nm.
  • the tensile elastic modulus of the carbon fiber is preferably in the range of 200 GPa to 800 GPa.
  • the average value of the interlayer distance d of the above graphite structure is 0.335 nm or more and 0.340 nm or less.
  • Such an active material layer containing carbon fibers can increase the mechanical strength of the positive electrode for a secondary battery having a high mechanical strength. If the tensile modulus of the carbon fiber is less than 200 GPa, the mechanical strength of the active material layer containing the carbon fiber may be insufficient because the mechanical strength is insufficient.
  • the upper limit of the tensile modulus of carbon fiber was set to 800 GPa from the viewpoint of carbon fiber production cost.
  • the definition and measurement method of the tensile modulus of carbon fiber are based on JIS R7601-1986 (carbon fiber test method).
  • the active material layer containing carbon fiber described above has a feature that mechanical strength is increased.
  • the volume resistivity of the carbon fiber is 200 ⁇ 'cm or more and 2000 ⁇ 'cm or less. It is preferable to be within the range.
  • carbon fibers having a volume resistivity in such a range are included in the active material layer, the conductivity of the active material layer is increased. As a result, the electrode resistance of the positive electrode for secondary batteries provided with the active material layer can be lowered.
  • the lower limit of the volume resistivity of the carbon fiber was set to 200 ⁇ ′ cm from the viewpoint of the production cost of the carbon fiber.
  • the electrode resistance of the positive electrode may not be sufficiently lowered.
  • the definition and measurement method of the volume resistivity of carbon fiber are also in accordance with JIS R7601-1986 (carbon fiber test method), similar to the above-mentioned tensile elastic modulus.
  • the types of carbon fibers are classified according to the production method, but the carbon fibers applicable to the present invention are not particularly limited, and various types of carbon fibers that satisfy the above characteristics can be used.
  • PAN carbon fibers obtained by carbonizing polyacryl-tolyl (PolyAcryloNitrile: PAN) precursors, pitches obtained when refining petroleum and coal are used as precursors Pitch carbon fiber obtained by carbonizing and graphitizing this, and vapor grown carbon fiber (Vapor-) obtained by growing fiber on a substrate in a reaction furnace using hydrocarbon vapor.
  • Grown Carbon F3 ⁇ 4ers (VGCF), carbon nanotubes (CNT) obtained by an arc discharge method using an arc discharge between graphite electrodes, and the like can be used. These may be used alone or in combination of two or more.
  • VGCF vapor-grown carbon fibers
  • mesophase pitch carbon fiber obtained by carbonizing and graphitizing mesophase pitch having optical anisotropy among pitches obtained when refining petroleum or coal is used as a precursor.
  • mesophase pitch carbon fiber obtained by carbonizing and graphitizing mesophase pitch having optical anisotropy among pitches obtained when refining petroleum or coal is used as a precursor.
  • mesophase pitch carbon fiber obtained by carbonizing and graphitizing mesophase pitch having optical anisotropy among pitches obtained when refining petroleum or coal is used as a precursor.
  • boron in the range of 10 to 50 ppm is added to the mesophase pitch for easier progress of graphite.
  • the size of the carbon fiber is not particularly limited, but in the present invention, the average length is usually from 10 ⁇ m to 200 ⁇ m and the average diameter is from 0.4 ⁇ m to 4 ⁇ m.
  • a fibrous material is preferably used for the reason of good dispersibility.
  • the average length and the average diameter are the average length and the average diameter when 1000 or more carbon fibers are observed with an electron microscope or the like.
  • the active material layer is formed on the current collector to constitute the positive electrode for a secondary battery of the present invention, and includes at least the radical compound and the carbon fiber.
  • the active material layer contains carbon fiber in a proportion within the range of 10 wt% to 50 wt%.
  • carbon fiber in this ratio in the active material layer, the mechanical strength of the active material layer can be increased and the electrical resistance can be decreased. If the carbon fiber content in the active material layer is less than 10% by weight, the active material layer may be cracked or dropped, resulting in insufficient mechanical strength. On the other hand, if the carbon fiber content in the active material layer exceeds 50% by weight, the proportion of the radical compound that functions as the active material is relatively lowered. The capacity
  • Such a phenomenon is a remarkable effect obtained by a combination of a radical compound and carbon fiber, and the present inventor has used other conductors such as gold, silver, copper, etc. instead of carbon fiber. In some cases, it has been confirmed that the conductivity of the active material layer does not increase.
  • the active material layer described in Patent Document 4 (the active material layer in which carbon nanotubes are dispersed in a conductive matrix containing a disulfide group) has conductivity equivalent to that of carbon nanotubes.
  • the active material layer used in the present invention in that even when silver, gold, copper, etc. are dispersed instead of carbon nanotubes to form an active material layer, the conductivity of the active material layer is similarly increased? Differently.
  • the method for producing a positive electrode for a secondary battery of the present invention is a method for producing a positive electrode for a secondary battery having an active material layer containing at least a radical compound and carbon fiber, and more specifically, in a solvent containing a radical compound.
  • the average value of the interlaminar distance d of the black lead structure is not less than 0.335 nm and not more than 0.340 nm.
  • a solution in which the radical compound is dissolved in a solvent is prepared, the carbon fiber and a binder (also referred to as a binder) are mixed with the solution, and ultrasonic waves are radiated to the mixed solution. Then, a slurry is obtained by dispersing the carbon fibers in the mixed solution. Next, after applying this slurry on the current collector to a predetermined thickness, the solvent is evaporated, whereby a positive electrode for a secondary battery having an active material layer can be produced.
  • n-methylpyrrolidone (NMP), tetrahydrofuran (THF), toluene and the like can be used. These may be used alone or in combination of two or more.
  • NMP n-methylpyrrolidone
  • THF tetrahydrofuran
  • toluene and the like can be used. These may be used alone or in combination of two or more.
  • binder poly (vinylidene fluoride), bi-lidene fluoride monohexafluoropropylene copolymer, bi-lidene fluoride-tetrafluoroethylene copolymer, and the like can be used. These may be used alone or in combination of two or more.
  • the ratio of the binder contained in the active material layer is preferably in the range of 1% by weight to 10% by weight.
  • the ratio of the binder in the active material layer is less than 1% by weight, there is a risk of peeling due to poor adhesion between the formed active material layer and the current collector.
  • the proportion of the binder in the active material layer exceeds 10% by weight, the proportion of the radical compound or carbon fiber in the active material layer is relatively lowered, so that the positive electrode according to the present invention is used.
  • the capacity of the secondary battery may be reduced, and the mechanical strength of the active material layer may be insufficient.
  • the radical compound is dissolved in a solvent, the solution is impregnated in the carbon fiber-strength sheet, and the solvent is evaporated.
  • a positive electrode for a secondary battery having a material layer can be manufactured. In this case, since the function as the current collector is borne by the sheet in which the carbon fibers are intertwined, the binder as described above is not included.
  • the secondary battery of the present invention is composed of a positive electrode, a negative electrode and an electrolytic solution, and the positive electrode for a secondary battery is used as the positive electrode.
  • the positive electrode for a secondary battery according to the present invention described above since the positive electrode for a secondary battery according to the present invention described above is used, an increase in electrode resistance due to cracks in the active material layer and a deterioration in storage characteristics due to dropout of the active material layer. Can be suppressed.
  • the active material layer of the positive electrode contains a radical compound that functions as an active material and has low electrode resistance, so that the charge / discharge capacity at a large current can be increased. Therefore, this secondary battery can be charged and discharged using a large current, has a large capacity and excellent storage characteristics.
  • any laminated form is not particularly limited as to the laminated form of the positive electrode and the negative electrode.
  • it may be a multilayer laminate, a form in which the current collectors are laminated on both sides, or a form in which these are wound.
  • the shape of the secondary battery of the present invention is not particularly limited, and a conventionally known one can be used.
  • a coin type, a cylindrical type, a square type, a sheet type, or the like can be used. wear.
  • FIG. 1 is a schematic cross-sectional view of a coin-type secondary battery showing an example of the secondary battery of the present invention.
  • a coin-type secondary battery 10 shown in FIG. 1 has a positive electrode 11 composed of an active material layer 1 and a current collector 3, and a negative electrode 12 also composed of an active material layer 2 and a current collector 4.
  • the positive electrode 11 and the negative electrode A porous separator 13 is sandwiched between the two to prevent electrical connection between them.
  • the positive electrode 11, the negative electrode 12 and the separator 13 are immersed in the electrolyte solution 5, and these are configured to be sealed in the positive electrode outer can 6 and the negative electrode outer can 7 by the insulating packing portion 8!,
  • the positive electrode 11, the negative electrode 12 and the separator 13 are immersed in the electrolyte solution 5, and these are configured to be sealed in the positive electrode outer can 6 and the negative electrode outer can 7 by the insulating packing portion 8!,
  • the insulating packing portion 8! The
  • the negative electrode is obtained by forming an active material layer for a negative electrode on a current collector, and the active material layer includes an active material for the negative electrode.
  • the active material for the negative electrode is not particularly limited, and any conventionally known material can be used as long as the acid reduction potential is lower than that of the positive electrode.
  • carbon materials such as polyacrylonitrile-based carbon fiber, fullerene, and carbon nanotube can be used.
  • Li-based material such as _M N (where X is 0 ⁇ x ⁇ 1 and M is at least one element selected from Co, Ni, and Cu). These materials can be used alone or in combination of two or more.
  • the current collector one made of any material of copper, silver, copper alloy, silver alloy, and carbon can be used.
  • the shape of the current collector include foil, flat plate, and mesh.
  • Examples of a method for forming an active material layer including an active material for a negative electrode on a current collector include a method in which a mixture of a negative active material and a binder is applied to the current collector. be able to.
  • the binder is not particularly limited, and any conventionally known binder can be used.
  • any conventionally known binder can be used.
  • the current collector is also made of the same material, so that the entire negative electrode can be made of the same material.
  • electrolytic solution an electrolytic solution in which an electrolyte salt is dissolved is used.
  • the materials used for these are not particularly limited, and conventionally known materials can be used.
  • electrolyte salts examples include LiPF, LiAsF, LiAlCl, LiCIO, LiBF, LiSbF, LiCF S
  • lithium salts such as O, LiCF CO, Li (CF SO), LiN (CF SO), etc.
  • electrolyte salts include quaternary ammonium salts such as tetraammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, and tetraethylphosphonium tetrafluoroborate.
  • quaternary phosphonium salts imidazolium salts such as tetramethylborate tetramethylborate, and salts that are selected for isotropic force. These materials can be used alone or in combination of two or more.
  • the electrolyte solution solvent is capable of dissolving the above electrolyte salt, and is arbitrarily selected depending on the electrolyte salt used.
  • the electrolyte solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and beylene carbonate (VC), dimethyl carbonate (DMC), jetyl carbonate (DEC), A mixture of two or more chain carbonates such as ethino-retinoyl carbonate (EMC) and dipropyl carbonate (DPC) can be used.
  • the separator is not particularly limited, and a conventionally known separator can be used.
  • a material for the separator for example, polyolefin such as polypropylene and polyethylene, fluorine resin, and the like can be used.
  • a porous thin film is preferably used.
  • Poly (4-methacryloyloxy) which is a cyclic-toxyl structure-containing polymer represented by -2, 2, 6, 6-tetramethylpiperidine 1-oxyl) (PTME) was synthesized.
  • AIBN azobisisobutyric-tolyl
  • the polymer was precipitated in hexane, filtered, and dried under reduced pressure to obtain 18 g (yield 90%) of poly (2, 2, 6, 6-tetramethylpiperidine metatalylate).
  • 10 g of the obtained poly (2, 2, 6, 6-tetramethylpiperidine metatalylate) was dissolved in 100 ml of dry-treated dichloromethane.
  • 100 ml of a dichloromethane solution of 15.2 g (0. 088 mol) of m-chloroperbenzoic acid was added dropwise over 1 hour with stirring at room temperature.
  • a weight ratio of 4: 1: 5 was measured and mixed in n-methylpyrrolidone as a solvent to prepare a slurry.
  • This slurry was irradiated with 40 kilohertz ultrasonic waves for 30 minutes, and then applied onto a positive electrode current collector 20 / zm thick aluminum foil using a doctor blade and dried at 125 ° C.
  • a positive electrode was obtained by evaporating n-methylpyrrolidone.
  • the positive electrode active material layer thus obtained had a thickness of 150 m.
  • the active material layer after drying has Cracks and current collectors were not seen.
  • the volume resistivity of the above vapor-grown carbon fiber was 300 ⁇ ′cm, the average length was 10 ⁇ m, and the average diameter was 0.5 ⁇ m.
  • a negative electrode was produced.
  • artificial graphite manufactured by Osaka Gas: MCMB25-28
  • rubber binder manufactured by ZEON: BM-400B
  • a doctor blade it was applied onto a copper foil having a thickness of 10 m, dried at 80 ° C., and then compressed with a roller.
  • the negative electrode active material layer thus obtained had a thickness of 20 m. The active material layer after drying did not crack or fall off from the current collector.
  • electrolyte salt containing 0.9 molZl of LiPF is used as the electrolyte.
  • the salt was prepared by dissolving it in an electrolyte solvent consisting of ethylene carbonate Z jetyl carbonate mixed solution (volume mixing ratio 3: 7).
  • the positive electrode and the negative electrode produced as described above were cut into a circular shape having a size of 12 mm and overlapped with a 25- ⁇ m-thick porous polypropylene used as a separator.
  • Example 1 The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, the same vapor-grown carbon fiber as in Example 1, and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.). 4: 1: 3: 2 were weighed and mixed in n-methylpyrrolidone as a solvent to prepare a slurry. The slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone.
  • the positive electrode active material layer thus obtained had a thickness of 150 m.
  • the active material layer after drying did not crack or fall off from the current collector.
  • a coin-type secondary battery of Example 2 was fabricated in the same manner as in Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the cell router, and the like.
  • Example 2 The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, and benzene Vapor-grown carbon fibers obtained by pyrolyzing gas and firing carbon fibers grown on a substrate sprayed with iron fine particles at 3000 ° C (the average value of the interlayer distance d of the graphite structure is 0.335 ⁇ )
  • Example 2 the tensile modulus is 800 GPa
  • the same acetylene black as in Example 2 is weighed in a weight ratio of 4: 1: 1: 4 and mixed in n-methylpyrrolidone as a solvent to form a slurry.
  • the slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade and dried at 125 ° C.
  • a positive electrode was obtained by evaporating n-methylpyrrolidone.
  • the positive electrode active material layer thus obtained was 150 m thick.
  • the dried active material layer was strong enough to show no cracks or falling off the current collector.
  • the volume resistivity of the above vapor grown carbon fiber was 200 ⁇ ′cm, the average length was 10 ⁇ m, and the average diameter was 0.5 ⁇ m.
  • a coin-type secondary battery of Example 3 was produced in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
  • This slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C.
  • a positive electrode was obtained by evaporating n-methylpyrrolidone.
  • the positive electrode active material layer thus obtained had a thickness of 150 / zm.
  • the dried active material layer was strong enough to show no cracks or falling off the current collector.
  • the volume resistivity of the above vapor-grown carbon fiber was 800 ⁇ ′cm, the average length was 20 ⁇ m, and the average diameter was 0.5 ⁇ m.
  • a coin-type secondary battery of Example 4 was produced in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
  • Carbon fibers are weighed in a weight ratio of 4: 1: 5, and they are in the solvent n-methylpyrrolidone.
  • the positive electrode active material layer thus obtained had a thickness of 150 m. In the active material layer after drying, the cracks and current collector force did not fall off.
  • the volume resistivity of the above vapor-grown carbon fiber was 2000 ⁇ ′cm, the average length was 20 ⁇ m, and the average diameter was 0.5 ⁇ m.
  • a coin-type secondary battery of Example 5 was fabricated in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
  • Graphitized PTVE synthesized in the same manner as in Example 5, polyvinylidene fluoride as in Example 1, and carbon fiber with a mesophase pitch as a precursor (Petoriki Co., Ltd., interlayer distance d of graphite structure)
  • the average value is 0.333 nm
  • the tensile modulus is 550 GPa
  • the volume resistivity is 400 ⁇
  • Example 6 A coin-type secondary battery of Example 6 was fabricated in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
  • Example 1 The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, and the same acetylene black as in Example 2 are weighed in a weight ratio of 4: 1: 5 and used as a solvent.
  • a slurry was prepared by mixing with n-methylpyrrolidone. This slurry was irradiated with 40 kilohertz ultrasonic waves for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C.
  • a positive electrode was obtained by evaporating n-methylpyrrolidone.
  • the positive electrode active material layer thus obtained had a thickness of 150 m.
  • the active material layer after drying was cracked and dropped from the current collector.
  • Negative electrode other than positive electrode, electrolyte And the separator and the like were made in the same manner as in Example 1 to produce a coin-type secondary battery of Comparative Example 1.
  • Example 2 The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, and gold powder (average particle size 3 m) were weighed to a weight ratio of 4: 1: 5, and they were used as solvents.
  • a slurry was prepared by mixing with n-methylpyrrolidone. This slurry was irradiated with 40 kilohertz ultrasonic waves for 30 minutes, and then applied onto a 20 m thick aluminum foil, which is a positive electrode current collector, using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The active material layer of the positive electrode thus obtained was 150 m thick. The dried active material layer was cracked and detached from the current collector.
  • a coin-type secondary battery of Comparative Example 2 was produced in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
  • the coin-type secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were charged and discharged at a constant current in a voltage range of 2V force and 4V. Charging / discharging was performed in a thermostatic chamber set at 20 ° C. The charge current was 1C and the discharge current was 1C and 50C. The discharge capacity in each case was measured. The 1C current is a current value at which discharge is completed in one hour, and the 50C current is a current 50 times the 1C current. As a measure of the capacity characteristics of the secondary battery during large current discharge, the ratio of the discharge capacity at 50C current to the discharge capacity at 1C current was investigated.
  • the positive electrodes of Examples 1 to 6 did not crack or fall off, whereas the positive electrodes of Comparative Examples 1 and 2 were cracked or dropped.
  • the positive electrodes of Examples 1 to 6 were free from cracking or falling off because the active material layer contained carbon fibers having an average value of the interlayer distance d of the graphite structure in the range of 0.335 nm to 0.340 nm. This is because the mechanical strength of the active material layer of the positive electrode is improved.
  • the secondary batteries of Examples 1 to 6 were all stronger than the secondary battery of Comparative Example 1. This is because, in the secondary batteries of Examples 1 to 6, the active material layer of the positive electrode is not cracked, the conductivity of the active material layer is high, and the electrode resistance of the positive electrode is low. This shows an improvement over the comparative example.
  • the secondary battery of Comparative Example 2 has no capacity at 1C discharge, and the ratio of 50C to the 1C discharge capacity and the ratio of the discharge capacity after one week storage to the discharge capacity before storage should be obtained. I didn't do it. This is probably because the charge transfer resistance at the interface between the radical compound and the gold particles was significantly higher than that of carbon fiber, and the charge / discharge reaction did not proceed. Therefore, even if the same conductor is used, a positive electrode with low electrode resistance cannot be obtained when an active material layer containing gold is used instead of carbon fiber.

Abstract

It is possible to provide a secondary cell positive electrode having a small electric resistance and a large mechanical strength and a secondary cell capable of performing charge/discharge using a large current and having a large capacity and an excellent storage characteristic. The secondary cell positive electrode has an active material layer containing at least a radical compound and carbon fiber having an average value of inter-layer distance d002 of the graphite structure in a range from 0.335 nm to 0.340 nm. The carbon fiber having such an inter-layer distance has a tensile modulus in a range from 200 GPa to 800 GPa and preferably has a volume resistivity in a range from 200 μΩ•cm to 2000 μΩ•cm. The carbon fiber is preferably a vapor-epitaxial carbon fiber or a carbon fiber formed by meso-phase pitch as a precursor which has been graphitized.

Description

明 細 書  Specification
二次電池用正極及びその製造方法並びに二次電池  Positive electrode for secondary battery, method for producing the same, and secondary battery
技術分野  Technical field
[0001] 本発明は、二次電池用正極及びその製造方法並びに二次電池に関し、更に詳しく は、ラジカルィ匕合物を含有する二次電池用正極において、正極の電気抵抗を低下さ せると共に機械的強度を向上させた二次電池用正極及びその製造方法並びに二次 電池に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a positive electrode for a secondary battery, a method for producing the same, and a secondary battery. More specifically, in a positive electrode for a secondary battery containing a radical compound, the electrical resistance of the positive electrode is reduced and the machine The present invention relates to a positive electrode for a secondary battery with improved mechanical strength, a method for producing the same, and a secondary battery.
背景技術  Background art
[0002] ノート型パソコン、携帯電話、電気自動車等の急速な市場拡大に伴!、、これらに用 いられる蓄電デバイスには、高容量、高エネルギー密度及び高安定性が求められて いる。これらの要求を満たすため、各種の材料を用いた二次電池が蓄電デバイスとし て提案されている。  [0002] Along with the rapid market expansion of notebook computers, mobile phones, electric vehicles and the like !, storage devices used in these devices are required to have high capacity, high energy density, and high stability. In order to satisfy these requirements, secondary batteries using various materials have been proposed as power storage devices.
[0003] 例えば、下記特許文献 1には、エネルギー密度が高ぐ高容量で安定性に優れた 二次電池として、正極の活物質層に、ニトロキシルラジカルィ匕合物、ォキシラジカル 化合物、ァリールォキシラジカルィ匕合物並びにアミノトリアジン構造を有する高分子 化合物等のラジカルィ匕合物を用いたリチウム二次電池が提案されている。  [0003] For example, in Patent Document 1 below, as a secondary battery having a high energy density and a high capacity and excellent stability, a nitroxyl radical compound, an oxy radical compound, Lithium secondary batteries using radical compounds such as oxy radical compounds and polymer compounds having an aminotriazine structure have been proposed.
[0004] また、下記特許文献 2には、エネルギー密度が高ぐ大電流で使用可能な二次電 池として、酸ィヒ状態で-トロキシルカチオン部分構造をとり、還元状態で-トロキシル ラジカル部分構造をとる-トロキシルイ匕合物を正極の活物質層に含有させ、酸ィ匕状 態と還元状態との間の電子の授受反応を正極の電極反応として用いるリチウム二次 電池が提案されている。  [0004] Further, in Patent Document 2 below, as a secondary battery that can be used at a large current with a high energy density, a -troxyl cation partial structure is formed in an acid state and a -troxyl radical portion is formed in a reduced state. A lithium secondary battery has been proposed in which a structure-troxyl compound is contained in the active material layer of the positive electrode, and the electron transfer reaction between the acid state and the reduced state is used as the positive electrode reaction. .
[0005] また、下記特許文献 3には、エネルギー密度が高ぐ大容量で安定な二次電池とし て、少なくとも正極、負極及び電解質を構成要素とし、電気化学的酸化反応及び還 元反応の少なくとも一方の過程でラジカル化合物を生成する有機化合物を活物質と して含む粒子を有し、その粒子が少なくとも 2以上の組成の領域力 なる複合物で正 極用の活物質層を形成したリチウム二次電池が提案されている。  [0005] In Patent Document 3 below, as a secondary battery having a high energy density and a large capacity and stable, at least a positive electrode, a negative electrode, and an electrolyte are used as constituent elements, and at least an electrochemical oxidation reaction and a reduction reaction are performed. A lithium secondary battery having particles containing an organic compound that generates a radical compound in one process as an active material, and in which the active material layer for the positive electrode is formed of a composite having at least two compositional regions. Secondary batteries have been proposed.
[0006] また、下記特許文献 4には、電極の導電性及び機械的強度を向上させる二次電池 として、ジスルフイド基を含有する活物質層であって、そのジスルフイド基の S— S結 合が電気化学的還元によって開裂され、電気化学的酸化によって再生される導電性 マトリックスを正極の活物質層に用いたリチウム二次電池が提案されて 、る。このリチ ゥム二次電池では、導電性マトリックス中にカーボンナノチューブが分散されている。 特許文献 1 :特開平 2002— 151084号公報 [0006] Further, Patent Document 4 below discloses a secondary battery that improves the conductivity and mechanical strength of an electrode. As an active material layer containing a disulfide group, the S—S bond of the disulfide group is cleaved by electrochemical reduction and regenerated by electrochemical oxidation. The lithium secondary battery used has been proposed. In this lithium secondary battery, carbon nanotubes are dispersed in a conductive matrix. Patent Document 1: Japanese Patent Laid-Open No. 2002-151084
特許文献 2:特開平 2002— 304996号公報  Patent Document 2: JP-A-2002-304996
特許文献 3:特開平 2002— 298850号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-298850
特許文献 4:特開平 11― 329414号公報  Patent Document 4: Japanese Patent Laid-Open No. 11-329414
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上記特許文献 1〜3に記載のリチウム二次電池においては、活物質 層に含まれるラジカルィ匕合物はその導電性が小さいため、活物質層の電極抵抗が 高くなるという問題がある。また、そうした活物質層は機械的強度が比較的小さいの で、活物質層にひび割れが発生するおそれがあり、その結果として、活物質層の電 極抵抗が高くなるおそれがある。電気抵抗の高!、活物質層を有したリチウム二次電 池は、特に大電流による充放電時に、電池の容量が不充分であるといった問題が生 じ易いため、その解決が求められている。  [0007] However, in the lithium secondary batteries described in Patent Documents 1 to 3, the radical compound contained in the active material layer has low conductivity, and therefore the electrode resistance of the active material layer is high. There is a problem of becoming. In addition, since the active material layer has a relatively low mechanical strength, the active material layer may be cracked, and as a result, the electrode resistance of the active material layer may be increased. High electrical resistance! A lithium secondary battery having an active material layer is prone to a problem that the capacity of the battery is insufficient particularly when charging / discharging with a large current.
[0008] さらに、上記特許文献 1〜3に記載のリチウム二次電池は、機械的強度が低いため に、リチウム二次電池の充放電を行わない保存時に集電体力 活物質層が脱落する おそれがあり、保存時における活物質層の充放電容量 (保存特性という。)が低下す るというおそれがある。  [0008] Furthermore, since the lithium secondary batteries described in Patent Documents 1 to 3 have low mechanical strength, the current collector active material layer may fall off during storage without charge / discharge of the lithium secondary battery. Therefore, the charge / discharge capacity of the active material layer during storage (referred to as storage characteristics) may be reduced.
[0009] 一方、特許文献 4に記載のリチウム二次電池においては、充放電時の電気化学反 応の際に、開裂した S— S結合の再生効率が小さいため、特許文献 1〜3に記載のラ ジカル化合物を活物質層に用いたリチウム二次電池の場合と比べて、充放電時の安 定性が乏しい。このため、特許文献 4に記載のリチウム二次電池は、大電流を用いた 充放電を可能とする大容量の二次電池としての使用が困難であるという問題があり、 その解決が求められていた。  On the other hand, in the lithium secondary battery described in Patent Document 4, since the regeneration efficiency of the cleaved S—S bond is small during the electrochemical reaction during charge and discharge, it is described in Patent Documents 1 to 3. Compared to a lithium secondary battery using an active material layer of the above radical compound, stability during charging and discharging is poor. For this reason, the lithium secondary battery described in Patent Document 4 has a problem that it is difficult to use as a large-capacity secondary battery capable of charging and discharging using a large current, and there is a need for a solution to the problem. It was.
[0010] 本発明は、上記課題を解決するためになされたものであって、その第 1の目的は、 電極抵抗が低ぐ機械的強度が大きい二次電池用正極及びその製造方法を提供す ることにある。また、本発明の第 2の目的は、大電流を用いた充放電を可能とする、大 容量で保存特性に優れた二次電池を提供することにある。 [0010] The present invention has been made to solve the above-mentioned problems, and its first object is to The object is to provide a positive electrode for a secondary battery with low electrode resistance and high mechanical strength, and a method for producing the same. A second object of the present invention is to provide a secondary battery having a large capacity and excellent storage characteristics that can be charged and discharged using a large current.
課題を解決するための手段  Means for solving the problem
[0011] 上記課題を解決するための本発明の二次電池用正極は、ラジカル化合物と、黒鉛 構造の層間距離 d の平均値が 0. 335nm以上 0. 340nm以下の範囲内の炭素繊 A positive electrode for a secondary battery according to the present invention for solving the above-described problems is a carbon fiber having an average value of a radical compound and an interlayer distance d of a graphite structure in a range of 0.335 nm or more and 0.340 nm or less.
002  002
維とを少なくとも含む活物質層を有することを特徴とする。  And an active material layer including at least a fiber.
[0012] この発明によれば、ラジカルィ匕合物と炭素繊維とを含むので、両者の界面抵抗が 著しく低くなると考えられ、これらが含まれる活物質層の導電性を高くすることができ る。その結果、電気抵抗が低い二次電池用正極を構成することができる。また、活物 質層に含まれる炭素繊維の黒鉛構造の層間距離 d の平均値が 0. 335nm以上 0.  [0012] According to the present invention, since the radical compound and the carbon fiber are included, it is considered that the interface resistance between the two is remarkably reduced, and the conductivity of the active material layer containing them can be increased. As a result, a positive electrode for a secondary battery having a low electric resistance can be configured. Also, the average value of the interlayer distance d of the graphite structure of the carbon fiber contained in the active material layer is 0.335 nm or more.
002  002
340nm以下の範囲内であり、その範囲内の炭素繊維は機械的強度が大きいので、 そうした炭素繊維を含む活物質層の機械的強度を大きくすることができる。その結果 、ひび割れや脱落がなぐ導電性の高い活物質層を有した二次電池用正極を構成 することができる。また、本発明の二次電池用正極は、その活物質層がラジカル化合 物を含むので、この二次電池用正極を用いた二次電池を大容量とすることができる。  Since the carbon fiber within the range of 340 nm or less has high mechanical strength, the mechanical strength of the active material layer containing such carbon fiber can be increased. As a result, a positive electrode for a secondary battery having an active material layer with high conductivity that does not crack or fall off can be configured. Moreover, since the active material layer of the positive electrode for secondary battery of the present invention contains a radical compound, a secondary battery using the positive electrode for secondary battery can have a large capacity.
[0013] 本発明の二次電池用正極においては、前記炭素繊維の引張弾性率が、 200GPa 以上 800GPa以下の範囲内であることが好ましい。  In the positive electrode for a secondary battery of the present invention, it is preferable that the tensile elastic modulus of the carbon fiber is in a range of 200 GPa to 800 GPa.
[0014] 上述した黒鉛構造の層間距離 d の平均値が 0. 335nm以上 0. 340nm以下の範  [0014] The average value of the interlayer distance d of the above-mentioned graphite structure is in the range of 0.335 nm or more and 0.340 nm or less.
002  002
囲内の炭素繊維は、通常、その引張弾性率が 200GPa以上 800GPa以下の範囲内 と大きい値をもっている。この発明によれば、そうした炭素繊維が含まれる活物質層 及びその活物質層を備えた二次電池用正極の機械的強度を大きくすることができる  The carbon fiber in the enclosure usually has a large value with a tensile elastic modulus in the range of 200 GPa to 800 GPa. According to the present invention, it is possible to increase the mechanical strength of the active material layer containing such carbon fibers and the positive electrode for a secondary battery including the active material layer.
[0015] 本発明の二次電池用正極においては、前記炭素繊維の体積抵抗率が、 200 μ Ω •cm以上 2000 Ω ' cm以下の範囲内であることが好ましい。 In the positive electrode for a secondary battery of the present invention, it is preferable that the volume resistivity of the carbon fiber is in a range of 200 μΩ · cm to 2000 Ω′cm.
[0016] この発明によれば、活物質層に含まれる炭素繊維の体積抵抗率が 200 μ Ω - cm 以上 2000 /ζ Ω ' cm以下の範囲内であるので、こうした炭素繊維を含む活物質層の 導電性が高くなる。その結果、そうした活物質層を備えた二次電池用正極の電極抵 抗を低くすることができる。 According to the present invention, since the volume resistivity of the carbon fibers contained in the active material layer is in the range of 200 μΩ-cm to 2000 / ζ Ω′cm, the active material layer containing such carbon fibers. The conductivity becomes higher. As a result, the electrode resistance of the positive electrode for a secondary battery provided with such an active material layer. The resistance can be lowered.
[0017] 本発明の二次電池用正極においては、前記炭素繊維が、気相成長炭素繊維であ ることが好ましい。  [0017] In the positive electrode for a secondary battery of the present invention, the carbon fiber is preferably a vapor-grown carbon fiber.
[0018] この発明によれば、前記炭素繊維が分散性に優れる気相成長炭素繊維であるので 、活物質層を作製する際のラジカルィ匕合物中の炭素繊維の分散性を高めることがで きる。その結果、各部で均一な特性を有する活物質層及びその活物質層を備えた二 次電池用正極を容易に得ることができる。  [0018] According to this invention, since the carbon fiber is a vapor-grown carbon fiber having excellent dispersibility, the dispersibility of the carbon fiber in the radical compound when producing the active material layer can be improved. wear. As a result, an active material layer having uniform characteristics in each part and a secondary battery positive electrode including the active material layer can be easily obtained.
[0019] また本発明の二次電池用正極においては、前記炭素繊維が、メソフェーズピッチを 前駆体とする炭素繊維を黒鉛ィ匕したものであることが好ま 、。メソフェーズピッチと はコールタールや石油ピッチに含まれる多環芳香族化合物が、加熱等により重縮合 反応を起こして均一な光学的異方性を有したものである。メソフェーズピッチを前駆 体とする炭素繊維を 2600°Cから 3000°Cの温度で焼成することにより、極めて黒鉛 化度の高 、炭素繊維を得ることができる。このような黒鉛ィ匕度が高 、炭素繊維は電 気伝導性や機械的強度に優れているため、これを正極に用いると抵抗が小さぐ機 械的強度に優れた二次電池用正極を容易に得ることができる。  [0019] In the positive electrode for a secondary battery of the present invention, it is preferable that the carbon fiber is a graphitized carbon fiber having a mesophase pitch as a precursor. Mesophase pitch is a polycyclic aromatic compound contained in coal tar or petroleum pitch that undergoes a polycondensation reaction by heating or the like and has uniform optical anisotropy. By firing carbon fibers having a mesophase pitch as a precursor at a temperature of 2600 ° C to 3000 ° C, carbon fibers having an extremely high graphitization degree can be obtained. Since carbon fiber has such a high degree of graphite and excellent electrical conductivity and mechanical strength, when it is used for a positive electrode, a positive electrode for a secondary battery with low resistance and excellent mechanical strength can be obtained. Can be easily obtained.
[0020] 本発明の二次電池用正極においては、活物質層中の前記炭素繊維の含有割合が 、 10重量%以上 50重量%以下の範囲内であることが好ましい。  [0020] In the positive electrode for a secondary battery of the present invention, the carbon fiber content in the active material layer is preferably in the range of 10 wt% to 50 wt%.
[0021] この発明によれば、活物質層中の炭素繊維の含有割合が 10重量%以上であるの で、活物質層の機械的強度を高くすることができ、その結果、本発明の二次電池用 正極の機械的強度を大きくすることができる。また、活物質層中の炭素繊維の含有割 合が 50重量%以下であるので、活物質層中のラジカル化合物の含有割合を相対的 に多くすることができ、その結果、本発明の二次電池用正極を用いた二次電池を大 容量とすることができる。  [0021] According to this invention, since the carbon fiber content in the active material layer is 10% by weight or more, the mechanical strength of the active material layer can be increased. The mechanical strength of the positive electrode for the secondary battery can be increased. In addition, since the content ratio of the carbon fiber in the active material layer is 50% by weight or less, the content ratio of the radical compound in the active material layer can be relatively increased, and as a result, the secondary content of the present invention can be increased. A secondary battery using a positive electrode for a battery can have a large capacity.
[0022] 本発明の二次電池用正極においては、前記ラジカル化合物力 ニトロキシルラジカ ル化合物、ォキシラジカルィ匕合物及び窒素ラジカルィ匕合物のうち少なくとも一種を含 むことが好ましぐ特に、前記-トロキシルラジカルィ匕合物においては、ポリ(4ーメタク リロイルォキシ一 2, 2, 6, 6—テトラメチルピペリジン一 1—ォキシル)、ポリ(4—アタリ ロイルォキシ 2, 2, 6, 6—テトラメチルピペリジン 1ーォキシル)、又はポリ(4ービ -ルォキシ一 2, 2, 6, 6—テトラメチルピペリジン一 1—ォキシル)であることが好まし い。 [0022] The positive electrode for a secondary battery of the present invention preferably contains at least one of the radical compound power nitroxyl radical compound, oxy radical compound and nitrogen radical compound, in particular, Among the troxyl radical compounds, poly (4-methacryloyloxy 1, 2, 6, 6-tetramethylpiperidine 1-1-oxyl), poly (4-ataryloxyoxy 2, 2, 6, 6-tetramethylpiperidine) 1-oxyl) or poly (4-bi) -Luoxy-1,2,6,6-tetramethylpiperidine1-1-oxyl).
[0023] 上記課題を解決するための本発明の二次電池用正極の製造方法は、ラジカルィ匕 合物と炭素繊維とを少なくとも含む活物質層を有する二次電池用正極の製造方法で あって、前記ラジカル化合物を含む溶媒中で、黒鉛構造の層間距離 d の平均値が  [0023] The method for producing a positive electrode for a secondary battery of the present invention for solving the above-mentioned problem is a method for producing a positive electrode for a secondary battery having an active material layer containing at least a radical compound and carbon fiber. In the solvent containing the radical compound, the average value of the interlayer distance d of the graphite structure is
002  002
0. 335nm以上 0. 340nm以下の範囲内の前記炭素繊維を分散させる工程を有す ることを特徴とする。  It has a step of dispersing the carbon fiber in the range of not less than 0.335 nm and not more than 0.340 nm.
[0024] この発明によれば、電気抵抗が低ぐ機械的強度の大きい二次電池用正極を製造 することができる。  [0024] According to the present invention, it is possible to produce a positive electrode for a secondary battery with low electrical resistance and high mechanical strength.
[0025] 本発明の二次電池用正極の製造方法において、活物質層中の前記炭素繊維の含 有割合が、 10重量%以上 50重量%以下の範囲内となるように分散させることが好ま しい。  [0025] In the method for producing a positive electrode for a secondary battery of the present invention, it is preferable to disperse the carbon fiber in the active material layer so that the carbon fiber content is in the range of 10 wt% to 50 wt%. That's right.
[0026] この発明によれば、活物質層中の前記炭素繊維の含有割合が上記範囲内となるよ うに分散させるので、電気抵抗及び機械的特性が各部において均一となる活物質層 を形成でき、その結果、電気抵抗が低く機械的強度の大きい二次電池用正極を製造 することができる。  [0026] According to this invention, since the carbon fiber content in the active material layer is dispersed so as to be within the above range, an active material layer in which the electrical resistance and mechanical properties are uniform in each part can be formed. As a result, a positive electrode for a secondary battery having a low electrical resistance and a high mechanical strength can be produced.
[0027] 上記課題を解決するための本発明の二次電池は、少なくとも正極、負極及び電解 液から構成される二次電池において、前記正極が、上述した本発明に係る二次電池 用正極であることを特徴とする。  [0027] The secondary battery of the present invention for solving the above problems is a secondary battery comprising at least a positive electrode, a negative electrode, and an electrolyte solution, wherein the positive electrode is the positive electrode for a secondary battery according to the present invention described above. It is characterized by being.
[0028] この発明によれば、ラジカルィ匕合物を含み、低 ヽ電極抵抗及び大きな機械的強度 をもつ活物質層を有する二次電池用正極を備えるので、大電流を用 V、た充放電が 可能となり、大容量で保存特性に優れる二次電池を得ることができる。  [0028] According to this invention, since the positive electrode for a secondary battery including a radical compound and having an active material layer having a low electrode resistance and a large mechanical strength is provided, a large current V is charged and discharged. Thus, a secondary battery having a large capacity and excellent storage characteristics can be obtained.
発明の効果  The invention's effect
[0029] 以上説明したように、本発明の二次電池用正極によれば、活物質層の導電性が高 まると共にひび割れや脱落が起こらな ヽので、電気抵抗が低く機械的強度の高 ヽニ 次電池用正極を構成することができる。また、本発明の二次電池用正極は、その活 物質層がラジカルィヒ合物を含むので、この二次電池用正極を用いた二次電池を大 容量とすることができる。 [0030] また、本発明の二次電池用正極の製造方法によれば、電気抵抗及び機械的特性 が各部において均一となる活物質層を形成できるので、電気抵抗が低く機械的強度 の大き 、二次電池用正極を製造することができる。 [0029] As described above, according to the positive electrode for a secondary battery of the present invention, since the conductivity of the active material layer is increased and neither cracking nor dropping occurs, the electrical resistance is low and the mechanical strength is high. A positive electrode for a secondary battery can be configured. Moreover, since the active material layer of the positive electrode for secondary battery of the present invention contains a radical compound, a secondary battery using the positive electrode for secondary battery can have a large capacity. [0030] Further, according to the method for producing a positive electrode for a secondary battery of the present invention, an active material layer having uniform electric resistance and mechanical characteristics in each part can be formed, so that the electric resistance is low and the mechanical strength is large. A positive electrode for a secondary battery can be manufactured.
[0031] また、本発明の二次電池によれば、機械的強度が大きな二次電池用正極を備える ので、活物質層のひび割れに起因する電極抵抗の増大や、活物質層の脱落に起因 する保存特性の劣化を抑制することができる。また、本発明の二次電池は、ラジカル 化合物を含み、低 、電極抵抗及び大きな機械的強度をもつ活物質層を有する二次 電池用正極を備えるので、大電流を用いた充放電が可能となり、大容量で保存特性 に優れる二次電池を得ることができる。  [0031] Further, according to the secondary battery of the present invention, since the positive electrode for a secondary battery having high mechanical strength is provided, the electrode resistance is increased due to cracks in the active material layer, or the active material layer is dropped off. It is possible to suppress deterioration of storage characteristics. In addition, since the secondary battery of the present invention includes a positive electrode for a secondary battery that includes a radical compound and has an active material layer that has low, electrode resistance, and high mechanical strength, charging and discharging using a large current is possible. A secondary battery having a large capacity and excellent storage characteristics can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]本発明の二次電池の一例を示す模式断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a secondary battery of the present invention.
符号の説明  Explanation of symbols
[0033] 1 正極活物質層 [0033] 1 Positive electrode active material layer
2 負極活物質層  2 Negative electrode active material layer
3 正極集電体  3 Positive current collector
4 負極集電体  4 Negative electrode current collector
5 電解液  5 Electrolyte
6 正極外装缶  6 Positive electrode outer can
7 負極外装缶  7 Negative electrode outer can
8 絶縁パッキング部  8 Insulating packing
10 リチウム二次電池  10 Lithium secondary battery
11 正極  11 Positive electrode
12 負極  12 Negative electrode
13 セパレータ  13 Separator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下に、本発明の二次電池用正極及びその製造方法並びに二次電池について説 明する。 [0034] Hereinafter, the positive electrode for a secondary battery of the present invention, a method for producing the same, and the secondary battery will be described.
[0035] (二次電池用正極) 本発明の二次電池用正極は、ラジカル化合物と、黒鉛構造の層間距離 d の平均 [0035] (Positive electrode for secondary battery) The positive electrode for secondary battery of the present invention is an average of the radical compound and the interlayer distance d of the graphite structure
002 値が 0. 335nm以上 0. 340nm以下の範囲内の炭素繊維とを少なくとも含む活物質 層を有している。そうした活物質層は、通常、集電体上に形成されて二次電池用正 極の一部を構成している。なお、集電体は、特に限定されるものではなぐ一般的な 材料及び形状のものが好ましく用いられる。集電体材料としては、例えば、アルミ-ゥ ム、ニッケル、アルミニウム合金、ニッケル合金、炭素等の各種の材料を挙げることが でき、その形状としては、例えば、箔、平板状及びメッシュ状等の形状力もなるものを 挙げることができる。  002 has an active material layer containing at least carbon fibers within a range of 0.335 nm or more and 0.340 nm or less. Such an active material layer is usually formed on a current collector and forms a part of a positive electrode for a secondary battery. It should be noted that the current collector is preferably a general material and shape that is not particularly limited. Examples of the current collector material include various materials such as aluminum, nickel, aluminum alloy, nickel alloy, and carbon. Examples of the shape thereof include foil, flat plate, and mesh. The one that also has shape power can be mentioned.
[0036] (ラジカル化合物) [0036] (Radical compound)
ラジカル化合物は、活物質として活物質層を構成する化合物である。ラジカル化合 物とは、不対電子を有する遊離基 (すなわち、ラジカル)を有する化合物であり、本発 明を構成するラジカルィ匕合物は、ラジカル密度が高ぐ平衡状態におけるスピン濃度 力 S l021spinZg以上である状態が 1秒以上継続されるものである。また、本発明を構 成するラジカル化合物の荷電状態は、充放電反応の容易さの点から、電気的に中性 であることが好ましい。 A radical compound is a compound which comprises an active material layer as an active material. The radical compound, free radical having an unpaired electron (i.e., radical) is a compound having, Rajikarui匕合composing this onset Ming, spin concentration force S l0 21 radical density in the high instrument equilibrium A state where spinZg or higher continues for 1 second or longer. In addition, the charged state of the radical compound constituting the present invention is preferably electrically neutral from the viewpoint of easy charge / discharge reaction.
[0037] なお、ラジカルはスピン核運動量をもっため、ラジカル密度 (不対電子の密度)はス ピン濃度に等しくなる。ここで、スピン濃度とは、例えば電子スピン共鳴スペクトル (以 下、 ESRスペクトルという。)の吸収面積強度から以下の方法で求められる値である。 先ず、 ESR ^ベクトルの測定に供する試料を乳鉢等ですりつぶして粉砕する。この処 理により表皮効果 (マイクロ波が中まで通らな 、現象)が無視できる程度の大きさの粒 子に粉砕することができる。破砕した試料の一定量を内径 2mm以下、望ましくは 1〜 0. 5mmの石英ガラス製細管に充填し、 1. 33〜0. 67kPa (10〜5mmHg)以下に 脱気して封止し、 ESR ^ベクトルを測定する。 ESR ^ベクトルは、例え〖 EOL— JES — FR30型 ESR^ぺクトロメーター等を用いて測定することができる。スピン濃度は、 得られた ESRシグナルを 2回積分して検量線と比較して求めることができる。なお、 本発明では、スピン濃度が正しく測定できる方法であれば測定器や測定条件は問わ ない。  [0037] Since radicals have spin nuclear momentum, the radical density (density of unpaired electrons) is equal to the spin concentration. Here, the spin concentration is a value obtained by, for example, the following method from the absorption area intensity of an electron spin resonance spectrum (hereinafter referred to as ESR spectrum). First, the sample to be used for measuring the ESR ^ vector is ground and ground with a mortar. By this treatment, the skin effect (a phenomenon in which the microwave does not pass to the inside) can be pulverized into particles having a size that can be ignored. A certain amount of the crushed sample is filled into a quartz glass capillary with an inner diameter of 2 mm or less, preferably 1 to 0.5 mm, 1. Deaerated to 33 to 0.67 kPa (10 to 5 mmHg) or less, and sealed. ^ Measure the vector. The ESR ^ vector can be measured using, for example, the EOL-JES-FR30 ESR ^ spectrometer. The spin concentration can be calculated by integrating the obtained ESR signal twice and comparing it with the calibration curve. In the present invention, any measuring instrument and measurement condition are applicable as long as the spin concentration can be measured correctly.
[0038] ラジカルィ匕合物としては、高分子-トロキシルラジカルィ匕合物、高分子ォキシラジカ ルイ匕合物及び高分子ヒドラジルラジカルィ匕合物等を挙げることができる。本発明では[0038] Examples of the radical compound include polymer-troxyl radical compound, polymer oxydica Examples thereof include a Louis compound and a polymer hydrazyl radical compound. In the present invention
、活物質として、これらのラジカルィ匕合物を少なくとも 1種又は 2種以上を用いることが できる。 As the active material, at least one or two or more of these radical compounds can be used.
[0039] 上記のラジカル化合物の中で、高分子-トロキシルラジカル化合物、すなわち-ト 口キシルを有するポリマーが最も好ましく用いられる。ニトロキシルは、ラジカルの非局 在性により安定性が著しく高いため、特に活物質として好ましい。高分子-トロキシル ラジカルィ匕合物の代表的なものとして、下記化学構造式の A— 1から A— 8を挙げる ことができる。これらの高分子-トロキシルラジカルィ匕合物では、近傍の嵩高い置換 基による立体障害や、共鳴構造により、それぞれのラジカルがさらに安定ィ匕されてい る。また、ポリマー主鎖としては、ポリ (メタ)アクリル酸、ポリアルキル (メタ)アタリレート 類、ポリビュルエーテル類、ポリ (メタ)アクリルアミド類ポリマー力 耐酸化性及び耐還 元性が大きく電気化学的に安定であるため特に好ましい。なお、式中、 R〜Rは、そ  [0039] Among the above radical compounds, a polymer-troxyl radical compound, that is, a polymer having -toxyl is most preferably used. Nitroxyl is particularly preferable as an active material because of its extremely high stability due to nonlocality of radicals. Typical examples of the polymer-troxyl radical compound include A-1 to A-8 of the following chemical structural formulas. In these polymer-troxyl radical compounds, each radical is further stabilized by steric hindrance due to a bulky substituent in the vicinity and a resonance structure. In addition, the polymer main chain includes poly (meth) acrylic acid, polyalkyl (meth) acrylates, polybutyl ethers, poly (meth) acrylamides, polymer strength, high oxidation resistance and reduction resistance, and electrochemical properties. Is particularly preferable. In the formula, R to R are
1 5 れぞれ独立にアルキル基を表し、そのアルキル基としては、メチル基、ェチル基等が 用いられるが、特にメチル基が電気化学的安定性、及び容量の大きさから好ましく用 いられる。  15 Each independently represents an alkyl group, and as the alkyl group, a methyl group, an ethyl group, or the like is used. In particular, a methyl group is preferably used in view of electrochemical stability and capacity.
[0040] [化 1] [0040] [Chemical 1]
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0003
A- 7 A- 8 高分子ォキシラジカルィ匕合物は、ォキシラジカルを有するポリマーであり、その代表 的なものとして、下記化学構造式の A— 9から A— 11を挙げることができる。また、高 分子ヒドラジルラジカルィ匕合物は、ヒドラジルラジカルを有するポリマーであり、下記化 学構造式の A— 12及び A— 13を挙げることができる。なお、式中、 R〜Rはそれぞ  The A-7 A-8 polymer oxyradical compound is a polymer having an oxyradical, and typical examples thereof include A-9 to A-11 of the following chemical structural formula. The high molecular hydrazyl radical compound is a polymer having a hydrazyl radical, and examples thereof include A-12 and A-13 of the following chemical structural formula. In the formula, R to R are respectively
1 6 れ独立にアルキル基を表し、そのアルキル基としては、メチル基、ェチル基等が用い られる力 特にメチル基が電気化学的安定性、及び容量の大きさから好ましく用いら れる。 [0042] [化 2] 16 independently represents an alkyl group, and as the alkyl group, a methyl group, an ethyl group, or the like is used. Particularly, a methyl group is preferably used from the viewpoint of electrochemical stability and capacity. [0042] [Chemical 2]
Figure imgf000012_0001
Figure imgf000012_0001
A— 12 A— 1 3  A—12 A—1 3
[0043] (炭素繊維) [0043] (Carbon fiber)
本発明の炭素繊維は、黒鉛構造の層間距離 d  The carbon fiber of the present invention has a graphite structure interlayer distance d
002の平均値が 0. 335nm以上 0. 34 The average value of 002 is 0.335 nm or more 0.34
Onm以下の範囲内にあるものである。本発明においては、こうした炭素繊維が活物 質層に含まれるので、上述したラジカルィ匕合物との界面抵抗が著しく低くなると考え られ、これらが含まれる活物質層の導電性を高くすることができる。 It is within the range of Onm or less. In the present invention, since such carbon fibers are contained in the active material layer, it is considered that the interfacial resistance with the above-mentioned radical compound is remarkably lowered, and the conductivity of the active material layer containing these may be increased. it can.
[0044] 本発明において、炭素繊維の黒鉛構造の層間距離 d の平均値は、例えば X線回 In the present invention, the average value of the interlayer distance d of the carbon fiber graphite structure is, for example, an X-ray rotation
002  002
折から求めることができる。具体的には、炭素繊維の黒鉛構造において、個々の層 間距離 d の平均値として現れる X線回折ピークの解析結果により表すことができる。  It can be obtained from time to time. Specifically, in the graphite structure of carbon fiber, it can be represented by the analysis result of the X-ray diffraction peak that appears as the average value of the inter-layer distance d.
002  002
上記範囲内の層間距離を有する炭素繊維はその機械的強度 (例えば引張弾性率) が大きいので、活物質層の機械的強度を大きくすることができる。その結果、ひび割 れゃ脱落がない活物質層となり、導電性の高い活物質層を有した二次電池用正極 を構成することができる。 Since the carbon fiber having an interlayer distance within the above range has a large mechanical strength (for example, tensile elastic modulus), the mechanical strength of the active material layer can be increased. The result is an active material layer that does not fall off if cracked, and has a highly conductive active material layer. Can be configured.
[0045] 炭素繊維の黒鉛構造の層間距離 d の平均値が 0. 340nmより大きいと、その機械  [0045] When the average value of the interlayer distance d of the graphite structure of the carbon fiber is larger than 0.340 nm, the machine
002  002
的強度 (例えば引張弾性率)が不足するために、炭素繊維が含まれる活物質層の機 械的強度が不足することがある。一方、理想的な黒鉛構造の層間距離 d  The mechanical strength of the active material layer containing carbon fibers may be insufficient due to a lack of mechanical strength (for example, tensile modulus). On the other hand, the interlayer distance d of an ideal graphite structure
002は 0. 335 nmであり、 0. 335nm未満の層間距離を持つ炭素繊維は存在しない。  002 is 0.335 nm, and there is no carbon fiber with an interlayer distance less than 0.335 nm.
[0046] 炭素繊維の引張弾性率は、 200GPa以上 800GPa以下の範囲内であることが好ま しい。上述した黒鉛構造の層間距離 d の平均値が 0. 335nm以上 0. 340nm以下 [0046] The tensile elastic modulus of the carbon fiber is preferably in the range of 200 GPa to 800 GPa. The average value of the interlayer distance d of the above graphite structure is 0.335 nm or more and 0.340 nm or less.
002  002
の範囲内にある炭素繊維は、通常、その引張弾性率が 200GPa以上 800GPa以下 の範囲内と大きい値をもっている。こうした炭素繊維が含まれる活物質層は機械的強 度が大きぐ二次電池用正極の機械的強度を大きくすることができる。炭素繊維の引 張弾性率が 200GPa未満では、その機械的強度が不足するために、炭素繊維が含 まれる活物質層の機械的強度が不足することがある。一方、炭素繊維の引張弾性率 の上限は、炭素繊維の製造コストの観点から、 800GPaとした。なお、炭素繊維の引 張弾性率の定義及び測定方法は、 JIS R7601 - 1986 (炭素繊維試験方法)による  Carbon fibers in the range of usually have a large value of tensile elastic modulus in the range of 200 GPa to 800 GPa. Such an active material layer containing carbon fibers can increase the mechanical strength of the positive electrode for a secondary battery having a high mechanical strength. If the tensile modulus of the carbon fiber is less than 200 GPa, the mechanical strength of the active material layer containing the carbon fiber may be insufficient because the mechanical strength is insufficient. On the other hand, the upper limit of the tensile modulus of carbon fiber was set to 800 GPa from the viewpoint of carbon fiber production cost. The definition and measurement method of the tensile modulus of carbon fiber are based on JIS R7601-1986 (carbon fiber test method).
[0047] 上述した炭素繊維を含有する活物質層は、機械的強度が大きくなるという特徴を有 するが、本発明においては、炭素繊維の体積抵抗率が 200 Ω ' cm以上 2000 Ω ' cm以下の範囲内であることが好ましい。こうした範囲の体積抵抗率を有する炭素 繊維が活物質層中に含まれることにより、活物質層の導電性が高くなる。その結果、 活物質層を備えた二次電池用正極の電極抵抗を低くすることができる。炭素繊維の 体積抵抗率の下限は、炭素繊維の製造コストの観点から、 200 μ Ω ' cmとした。一方 、炭素繊維の体積抵抗率が 2000 Ω ' cmを超えると、正極の電極抵抗が充分に低 くならない場合がある。なお、炭素繊維の体積抵抗率の定義及び測定方法について も、上記の引張弾性率と同様、 JIS R7601— 1986 (炭素繊維試験方法)による。 [0047] The active material layer containing carbon fiber described above has a feature that mechanical strength is increased. In the present invention, the volume resistivity of the carbon fiber is 200 Ω'cm or more and 2000 Ω'cm or less. It is preferable to be within the range. When carbon fibers having a volume resistivity in such a range are included in the active material layer, the conductivity of the active material layer is increased. As a result, the electrode resistance of the positive electrode for secondary batteries provided with the active material layer can be lowered. The lower limit of the volume resistivity of the carbon fiber was set to 200 μΩ ′ cm from the viewpoint of the production cost of the carbon fiber. On the other hand, if the volume resistivity of the carbon fiber exceeds 2000 Ω ′ cm, the electrode resistance of the positive electrode may not be sufficiently lowered. The definition and measurement method of the volume resistivity of carbon fiber are also in accordance with JIS R7601-1986 (carbon fiber test method), similar to the above-mentioned tensile elastic modulus.
[0048] 炭素繊維の種類は作製方法によって分類されるが、本発明に適用できる炭素繊維 は特に限定されるものではなぐ上記の特性を満たす各種のものを用いることができ る。例えば、ポリアクリル-トリル(PolyAcryloNitrile: PAN)前駆体を炭化する方法に よって得られる PAN炭素繊維、石油や石炭を精製する際に得られるピッチを前駆体 として用い、これを炭化、黒鉛ィ匕する方法によって得られるピッチ炭素繊維、炭化水 素系の蒸気を用いて反応炉中で基板上に繊維を成長させて得られる気相成長炭素 繊維(Vapor- Grown Carbon F¾ers :VGCF)、黒鉛電極間のアーク放電を用いたァ ーク放電法によって得られるカーボンナノチューブ (CNT)、等を用いることができる 。これらは、単独で用いてもよいし 2種類以上を混合して用いてもよい。 [0048] The types of carbon fibers are classified according to the production method, but the carbon fibers applicable to the present invention are not particularly limited, and various types of carbon fibers that satisfy the above characteristics can be used. For example, PAN carbon fibers obtained by carbonizing polyacryl-tolyl (PolyAcryloNitrile: PAN) precursors, pitches obtained when refining petroleum and coal are used as precursors Pitch carbon fiber obtained by carbonizing and graphitizing this, and vapor grown carbon fiber (Vapor-) obtained by growing fiber on a substrate in a reaction furnace using hydrocarbon vapor. Grown Carbon F¾ers (VGCF), carbon nanotubes (CNT) obtained by an arc discharge method using an arc discharge between graphite electrodes, and the like can be used. These may be used alone or in combination of two or more.
[0049] こうした炭素繊維を用いて活物質層を形成する際には、溶媒中でラジカルィ匕合物 に炭素繊維を分散させる工程を経るが、特に気相成長炭素繊維 (VGCF)は、その 際の分散性に優れて 、るために最も好ましく用いられる。  [0049] When forming an active material layer using such carbon fibers, a process of dispersing carbon fibers in a radical compound in a solvent is performed. In particular, vapor-grown carbon fibers (VGCF) It is most preferably used for its excellent dispersibility.
[0050] また石油や石炭を精製する際に得られるピッチのなかで光学的異方性を持つメソフ エーズピッチを前駆体として用い、これを炭化、黒鉛化すること〖こよって得られるメソフ ーズピッチ炭素繊維は、電気伝導度、機械的強度に優れているため特に好ましい 。またメソフェーズピッチに 10〜50ppmの範囲のホウ素を添カ卩したものを前駆体に 用いると、より黒鉛ィ匕が進みやすく好ましい。  [0050] In addition, mesophase pitch carbon fiber obtained by carbonizing and graphitizing mesophase pitch having optical anisotropy among pitches obtained when refining petroleum or coal is used as a precursor. Is particularly preferred because of its excellent electrical conductivity and mechanical strength. In addition, it is preferable to use a precursor in which boron in the range of 10 to 50 ppm is added to the mesophase pitch for easier progress of graphite.
[0051] 炭素繊維の大きさは特に限定されないが、本発明においては、通常、平均長さが 1 0 μ m以上 200 μ m以下で、平均直径が 0. 4 μ m以上 4 μ m以下の繊維状のものが 、分散性が良い理由により好ましく用いられる。ここで、平均長さ及び平均直径とは、 電子顕微鏡等で観察したときの炭素繊維を 1000本以上測定したときの長さの平均 値及び直径の平均値である。  [0051] The size of the carbon fiber is not particularly limited, but in the present invention, the average length is usually from 10 µm to 200 µm and the average diameter is from 0.4 µm to 4 µm. A fibrous material is preferably used for the reason of good dispersibility. Here, the average length and the average diameter are the average length and the average diameter when 1000 or more carbon fibers are observed with an electron microscope or the like.
[0052] (活物質層)  [0052] (Active material layer)
活物質層は、集電体上に形成されて本発明の二次電池用正極を構成し、上記ラジ カル化合物と、上記炭素繊維とを少なくとも含んでいる。  The active material layer is formed on the current collector to constitute the positive electrode for a secondary battery of the present invention, and includes at least the radical compound and the carbon fiber.
[0053] 活物質層には、炭素繊維が 10重量%以上 50重量%以下の範囲内の割合で含ま れて 、ることが好ま U、。活物質層中に炭素繊維がこの割合で含まれて 、ることによ り、活物質層の機械的強度を大きくすることができると共に、電気抵抗を小さくするこ とができる。活物質層中の炭素繊維の含有割合が 10重量%未満では、活物質層に ひび割れや脱落が生じることがあり、機械的強度が不充分になることがある。一方、 活物質層中の炭素繊維の含有割合が 50重量%を超えると、活物質として機能するラ ジカルイ匕合物の割合が相対的に低下することになるので、この活物質層を有する正 極で構成した二次電池の容量が低下することになる。 [0053] It is preferable that the active material layer contains carbon fiber in a proportion within the range of 10 wt% to 50 wt%. By including carbon fiber in this ratio in the active material layer, the mechanical strength of the active material layer can be increased and the electrical resistance can be decreased. If the carbon fiber content in the active material layer is less than 10% by weight, the active material layer may be cracked or dropped, resulting in insufficient mechanical strength. On the other hand, if the carbon fiber content in the active material layer exceeds 50% by weight, the proportion of the radical compound that functions as the active material is relatively lowered. The capacity | capacitance of the secondary battery comprised with the pole will fall.
[0054] なお、本発明に係る二次電池用正極を構成する活物質層にお ヽて、その導電性は 、炭素繊維を含有する場合に顕著に高くなるという現象がある。その原因は、ラジカ ルイ匕合物と炭素繊維を構成する炭素との電荷移動の際のエネルギー障壁がほぼ同 じであるために、ラジカルィ匕合物と炭素繊維との界面抵抗が低くなるためであると考 えられる。  [0054] In the active material layer constituting the positive electrode for a secondary battery according to the present invention, there is a phenomenon that the conductivity is remarkably increased when the carbon fiber is contained. This is because the interface barrier between the radical compound and the carbon fiber is low because the energy barrier during charge transfer between the radical compound and the carbon constituting the carbon fiber is almost the same. It is believed that there is.
[0055] そうした現象はラジカルィ匕合物と炭素繊維との組み合わせで得られる顕著な効果 であり、本発明者は、他の導電体、例えば金、銀、銅等を炭素繊維の代わりに用いた 場合には、活物質層の導電性が高くならないことを確認している。  [0055] Such a phenomenon is a remarkable effect obtained by a combination of a radical compound and carbon fiber, and the present inventor has used other conductors such as gold, silver, copper, etc. instead of carbon fiber. In some cases, it has been confirmed that the conductivity of the active material layer does not increase.
[0056] なお、上記特許文献 4に記載の活物質層(ジスルフイド基を含有する導電性マトリク スにカーボンナノチューブを分散させた活物質層)においては、カーボンナノチュー ブと同等の導電性をもつ銀、金、銅等を、カーボンナノチューブの代わりに分散させ て活物質層を形成した場合でも、その活物質層の導電性は同様に高くなる点で本発 明で用いられる活物質層とは異なって 、る。  [0056] Note that the active material layer described in Patent Document 4 (the active material layer in which carbon nanotubes are dispersed in a conductive matrix containing a disulfide group) has conductivity equivalent to that of carbon nanotubes. What is the active material layer used in the present invention in that even when silver, gold, copper, etc. are dispersed instead of carbon nanotubes to form an active material layer, the conductivity of the active material layer is similarly increased? Differently.
[0057] (二次電池用正極の製造方法)  [0057] (Method for producing positive electrode for secondary battery)
次に、二次電池用正極の製造方法について説明する。本発明の二次電池用正極 の製造方法は、ラジカル化合物と炭素繊維とを少なくとも含む活物質層を有する二 次電池用正極を製造する方法であり、詳しくは、ラジカルィ匕合物を含む溶媒中で、黒 鉛構造の層間距離 d の平均値が 0. 335nm以上 0. 340nm以下の範囲内の前記  Next, the manufacturing method of the positive electrode for secondary batteries is demonstrated. The method for producing a positive electrode for a secondary battery of the present invention is a method for producing a positive electrode for a secondary battery having an active material layer containing at least a radical compound and carbon fiber, and more specifically, in a solvent containing a radical compound. The average value of the interlaminar distance d of the black lead structure is not less than 0.335 nm and not more than 0.340 nm.
002  002
炭素繊維を分散させる工程を有することを特徴とする。  It has the process of disperse | distributing carbon fiber, It is characterized by the above-mentioned.
[0058] 先ず、前記のラジカル化合物を溶媒に溶解した溶液を作製し、その溶液に前記の 炭素繊維と結着剤 (バインダーともいう。)とを混合し、その混合溶液に超音波を放射 して混合溶液中の炭素繊維を分散させることによりスラリーを得る。次いで、このスラリ 一を集電体上に所定の厚さに塗布した後に、溶媒を蒸発させることによって、活物質 層を有する二次電池用正極を製造することができる。  [0058] First, a solution in which the radical compound is dissolved in a solvent is prepared, the carbon fiber and a binder (also referred to as a binder) are mixed with the solution, and ultrasonic waves are radiated to the mixed solution. Then, a slurry is obtained by dispersing the carbon fibers in the mixed solution. Next, after applying this slurry on the current collector to a predetermined thickness, the solvent is evaporated, whereby a positive electrode for a secondary battery having an active material layer can be produced.
[0059] 溶媒としては、 n—メチルピロリドン(NMP)、テトラヒドロフラン (THF)、トルエン等を 用いることができる。これらは、単独で用いてもよいし 2種類以上を混合して用いても よい。 [0060] 結着剤としては、ポリフッ化ビ-リデン、ビ-リデンフルオライド一へキサフルォロプ ロピレン共重合体、ビ-リデンフルオライドーテトラフルォロエチレン共重合体等を用 いることができる。これらも、単独で用いてもよいし 2種類以上を混合して用いてもよい 。活物質層に含まれる結着剤の割合は、 1重量%以上 10重量%以下の範囲内であ ることが好ましい。活物質層中の結着剤の割合が 1重量%未満では、形成された活 物質層と集電体との密着性が悪ぐ剥離を生ずるおそれがある。一方、活物質層中 の結着剤の割合が 10重量%を超えると、活物質層中のラジカル化合物又は炭素繊 維の割合が相対的に低下するため、本発明に係る正極を用いた二次電池の容量が 低下したり、活物質層の機械的強度が不足することがある。 [0059] As the solvent, n-methylpyrrolidone (NMP), tetrahydrofuran (THF), toluene and the like can be used. These may be used alone or in combination of two or more. [0060] As the binder, poly (vinylidene fluoride), bi-lidene fluoride monohexafluoropropylene copolymer, bi-lidene fluoride-tetrafluoroethylene copolymer, and the like can be used. These may be used alone or in combination of two or more. The ratio of the binder contained in the active material layer is preferably in the range of 1% by weight to 10% by weight. If the ratio of the binder in the active material layer is less than 1% by weight, there is a risk of peeling due to poor adhesion between the formed active material layer and the current collector. On the other hand, when the proportion of the binder in the active material layer exceeds 10% by weight, the proportion of the radical compound or carbon fiber in the active material layer is relatively lowered, so that the positive electrode according to the present invention is used. The capacity of the secondary battery may be reduced, and the mechanical strength of the active material layer may be insufficient.
[0061] 二次電池用正極の他の製造方法として、前記のラジカル化合物を溶媒に溶解し、 その溶液を、前記の炭素繊維力 なるシートに含浸させた後、溶媒を蒸発させること によって、活物質層を有する二次電池用正極を製造することができる。なお、この場 合、集電体としての機能は、炭素繊維が絡み合つてなるシートが担いうので、上記の ような結着剤は含まれないことになる。  [0061] As another method for producing a positive electrode for a secondary battery, the radical compound is dissolved in a solvent, the solution is impregnated in the carbon fiber-strength sheet, and the solvent is evaporated. A positive electrode for a secondary battery having a material layer can be manufactured. In this case, since the function as the current collector is borne by the sheet in which the carbon fibers are intertwined, the binder as described above is not included.
[0062] (二次電池)  [0062] (Secondary battery)
次に、本発明の二次電池について説明する。本発明の二次電池は、正極、負極及 び電解液で構成され、その正極として前記の二次電池用正極が用いられる。この二 次電池においては、上述した本発明に係る二次電池用正極が用いられるので、活物 質層のひび割れに起因する電極抵抗の増大や、活物質層の脱落に起因する保存 特性の劣化を抑制することができる。また、この正極の活物質層は、活物質として機 能するラジカル化合物を含むと共に、電極抵抗が低いので、その大電流での充放電 容量を大きくすることができる。従って、この二次電池は、大電流を用いた充放電が 可能となり、大容量で保存特性に優れたものとなる。  Next, the secondary battery of the present invention will be described. The secondary battery of the present invention is composed of a positive electrode, a negative electrode and an electrolytic solution, and the positive electrode for a secondary battery is used as the positive electrode. In this secondary battery, since the positive electrode for a secondary battery according to the present invention described above is used, an increase in electrode resistance due to cracks in the active material layer and a deterioration in storage characteristics due to dropout of the active material layer. Can be suppressed. In addition, the active material layer of the positive electrode contains a radical compound that functions as an active material and has low electrode resistance, so that the charge / discharge capacity at a large current can be increased. Therefore, this secondary battery can be charged and discharged using a large current, has a large capacity and excellent storage characteristics.
[0063] 本発明では、正極と負極の積層形態について特に限定されるものではなぐ任意の 積層形態を採用することができる。例えば、多層積層体、集電体の両面に積層したも のを組み合わせた形態、さらにこれらを卷回した形態とすることができる。  [0063] In the present invention, any laminated form is not particularly limited as to the laminated form of the positive electrode and the negative electrode. For example, it may be a multilayer laminate, a form in which the current collectors are laminated on both sides, or a form in which these are wound.
[0064] 本発明の二次電池の形状についても特に限定されるものではなぐ従来より公知の ものを用いることができ、例えばコイン型、円筒型、角型、シート型等を用いることがで きる。 [0064] The shape of the secondary battery of the present invention is not particularly limited, and a conventionally known one can be used. For example, a coin type, a cylindrical type, a square type, a sheet type, or the like can be used. wear.
[0065] 図 1は、本発明の二次電池の一例を示すコイン型二次電池の模式断面図である。  FIG. 1 is a schematic cross-sectional view of a coin-type secondary battery showing an example of the secondary battery of the present invention.
図 1に示すコイン型二次電池 10は、活物質層 1及び集電体 3からなる正極 11と、活 物質層 2及び集電体 4力もなる負極 12とを有し、その正極 11と負極 12との間には両 者の電気的な接続を防ぐための多孔質のセパレータ 13が挟まれている。正極 11と 負極 12とセパレータ 13は、電解液 5に浸った状態であり、これらが正極外装缶 6及び 負極外装缶 7の中に、絶縁パッキング部 8により密閉された状態で構成されて!、る。  A coin-type secondary battery 10 shown in FIG. 1 has a positive electrode 11 composed of an active material layer 1 and a current collector 3, and a negative electrode 12 also composed of an active material layer 2 and a current collector 4. The positive electrode 11 and the negative electrode A porous separator 13 is sandwiched between the two to prevent electrical connection between them. The positive electrode 11, the negative electrode 12 and the separator 13 are immersed in the electrolyte solution 5, and these are configured to be sealed in the positive electrode outer can 6 and the negative electrode outer can 7 by the insulating packing portion 8!, The
[0066] 負極は、正極と同様、集電体上に負極用の活物質層が形成されたものであり、その 活物質層には、負極用の活物質が含まれる。負極用の活物質としては、特に限定さ れるものではなぐ前記の正極よりも酸ィヒ還元電位が卑なものであれば、従来より公 知のものを用いることができる。例えば、天然黒鉛、石油コータス、石炭コータス、ピッ チコ一タス、カーボンブラック、活性炭、榭脂焼成炭素、有機高分子焼成体、熱分解 気相成長炭素繊維、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、ポ リアクリロニトリル系炭素繊維、フラーレン、カーボンナノチューブ等の炭素材料等の いずれかを用いることができる。また、金属リチウム、リチウム合金、窒化リチウム、 Li  [0066] Like the positive electrode, the negative electrode is obtained by forming an active material layer for a negative electrode on a current collector, and the active material layer includes an active material for the negative electrode. The active material for the negative electrode is not particularly limited, and any conventionally known material can be used as long as the acid reduction potential is lower than that of the positive electrode. For example, natural graphite, petroleum coatas, coal coatas, pitch coatas, carbon black, activated carbon, fired carbonized resin, fired organic polymer, pyrolysis vapor grown carbon fiber, mesocarbon microbead, mesophase pitch carbon fiber Any of carbon materials such as polyacrylonitrile-based carbon fiber, fullerene, and carbon nanotube can be used. Also, lithium metal, lithium alloy, lithium nitride, Li
3 Three
_ M N (ここで、 Xは 0<x< 1であり、 Mは、 Co、 Ni及び Cuから選ばれる元素のうち の少なくとも 1種である)等の Li系材料を用いることもできる。これらの材料は、単独で 用いてもよ!、し 2種類以上を混合して用いてもょ 、。 It is also possible to use a Li-based material such as _M N (where X is 0 <x <1 and M is at least one element selected from Co, Ni, and Cu). These materials can be used alone or in combination of two or more.
[0067] 集電体としては、銅、銀、銅合金、銀合金、及び炭素のうちのいずれかの材料から なるものを用いることができる。集電体の形状としては、例えば、箔、平板状及びメッ シュ状の 、ずれかの形状を挙げることができる。負極の活物質材料を含む活物質層 を集電体上に形成する方法としては、負極用の活物質材料と結着剤とを混合したも のを集電体上に塗布等する方法を挙げることができる。  [0067] As the current collector, one made of any material of copper, silver, copper alloy, silver alloy, and carbon can be used. Examples of the shape of the current collector include foil, flat plate, and mesh. Examples of a method for forming an active material layer including an active material for a negative electrode on a current collector include a method in which a mixture of a negative active material and a binder is applied to the current collector. be able to.
[0068] 結着剤としては、特に限定されるものではなぐ従来より公知のものを用いることが でき、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド一へキサフルォロプロピ レン共重合体、ビ-リデンフルオライドーテトラフルォロエチレン共重合体を挙げるこ とができる。これらの材料は、単独で用いてもよいし 2種類以上を混合して用いてもよ い。また、特に金属リチウムやリチウム合金を負極の活物質材料として用いる場合に は、集電体も同じ材料とすることにより、負極全体を同一材料で形成することができる [0068] The binder is not particularly limited, and any conventionally known binder can be used. For example, polyvinylidene fluoride, vinylidene fluoride monohexafluoropropylene copolymer, Examples thereof include redene fluoride-tetrafluoroethylene copolymers. These materials may be used alone or in combination of two or more. Also, especially when metallic lithium or lithium alloy is used as the negative electrode active material. The current collector is also made of the same material, so that the entire negative electrode can be made of the same material.
[0069] 電解液としては、電解液溶媒に電解質塩を溶解させたものが用いられる。これらに 用いられる材料は特に限定されるものではなぐ従来より公知のものを採用することが できる。電解液は、 20°Cで 10— 5〜: LO— is/cmのイオン伝導性を有していることが望ま しい。 [0069] As the electrolytic solution, an electrolytic solution in which an electrolyte salt is dissolved is used. The materials used for these are not particularly limited, and conventionally known materials can be used. Electrolyte at 20 ° C 10- 5 ~: LO- is / cm arbitrariness desirable to have ionic conductivity.
[0070] 電解質塩としては、 LiPF、 LiAsF、 LiAlCl、 LiCIO、 LiBF、 LiSbF、 LiCF S  [0070] Examples of electrolyte salts include LiPF, LiAsF, LiAlCl, LiCIO, LiBF, LiSbF, LiCF S
6 6 4 4 4 6 3 6 6 4 4 4 6 3
O、 LiCF CO、 Li (CF SO ) 、 LiN (CF SO )、等のリチウム塩から選択して用いSelect from lithium salts such as O, LiCF CO, Li (CF SO), LiN (CF SO), etc.
3 3 2 3 2 2 3 2 2 3 3 2 3 2 2 3 2 2
ることができる。他の電解質塩としては、四フッ化ホウ酸テトラアンモ-ゥム、四フッ化 ホウ酸テトラェチルアンモ -ゥム等の第四級アンモ-ゥム塩、四フッ化ホウ酸テトラエ チルホスホ-ゥム等の第四級ホスホ-ゥム塩、四フッ化ホウ酸ェチルメチルイミダゾリ ゥム等のイミダゾリウム塩、等力も選ばれる塩を用いることができる。これらの材料は、 単独で用いてもよ!ヽし 2種類以上を混合して用いてもょ ヽ。  Can. Other electrolyte salts include quaternary ammonium salts such as tetraammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, and tetraethylphosphonium tetrafluoroborate. And quaternary phosphonium salts, imidazolium salts such as tetramethylborate tetramethylborate, and salts that are selected for isotropic force. These materials can be used alone or in combination of two or more.
[0071] 電解液溶媒は、上記の電解質塩を溶解することができるものであり、用いる電解質 塩に応じて任意に選択される。電解質溶媒としては、プロピレンカーボネート (PC)、 エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビ-レンカーボネート(VC )等の環状カーボネート類と、ジメチルカーボネート(DMC)、ジェチルカーボネート( DEC)、ェチノレメチノレカーボネート (EMC)、ジプロピルカーボネート(DPC)等の鎖 状カーボネート類とを 2種類以上を混合したものを用いることができる。  [0071] The electrolyte solution solvent is capable of dissolving the above electrolyte salt, and is arbitrarily selected depending on the electrolyte salt used. Examples of the electrolyte solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and beylene carbonate (VC), dimethyl carbonate (DMC), jetyl carbonate (DEC), A mixture of two or more chain carbonates such as ethino-retinoyl carbonate (EMC) and dipropyl carbonate (DPC) can be used.
[0072] セパレータは、特に限定されるものではなぐ従来より公知のものを用いることができ る。セパレータの材料としては、例えば、ポリプロピレン、ポリエチレン等のポリオレフィ ン、フッ素榭脂等を用いることができる。セパレータの形状としては、例えば、多孔性 の薄膜が好ましく用いられる。  [0072] The separator is not particularly limited, and a conventionally known separator can be used. As a material for the separator, for example, polyolefin such as polypropylene and polyethylene, fluorine resin, and the like can be used. As the shape of the separator, for example, a porous thin film is preferably used.
実施例  Example
[0073] 以下に実施例と比較例を挙げて本発明をさらに詳しく説明する。  [0073] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0074] (実施例 1) [Example 1]
先ず、正極を作製した。ラジカルィ匕合物として、化学式 A—l (R〜Rは全てメチル  First, a positive electrode was produced. As radical compounds, the chemical formula A-l (R to R are all methyl
1 5  1 5
基)で表される環状-トロキシル構造含有ポリマーであるポリ(4ーメタクリロイルォキシ - 2, 2, 6, 6—テトラメチルピペリジン一 1—ォキシル)(PTME)を合成した。 Poly (4-methacryloyloxy) which is a cyclic-toxyl structure-containing polymer represented by -2, 2, 6, 6-tetramethylpiperidine 1-oxyl) (PTME) was synthesized.
[0075] 環状-トロキシル構造含有ポリマーの合成例;還流管を付けた 100mlナスフラスコ 中に、 4ーメタクリロイルォキシ 2, 2, 6, 6—テトラメチルピペリジン 1ーォキシル モノマー 20g (0. O89mol)を入れ、乾燥テトラヒドロフラン 80mlに溶解させた。そこに 、ァゾビスイソブチ口-トリル (AIBN) O. 29g (0. 00187mol) (モノマー/ AIBN= 5 OZl)を加え、アルゴン雰囲気下 75〜80°Cで攪拌した。 6時間反応後、室温まで放 冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2, 2, 6, 6— テトラメチルピペリジンメタタリレート) 18g (収率 90%)を得た。次に、得られたポリ(2, 2, 6, 6—テトラメチルピペリジンメタタリレート) 10gを乾操ジクロロメタン 100mlに溶 解させた。ここに、 m—クロ口過安息香酸 15. 2g (0. 088mol)のジクロロメタン溶液 1 00mlを室温にて攪拌しながら 1時間かけて滴下した。さらに、 6時間攪拌した後、沈 殿した m—クロ口安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液及び水で洗 浄した後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジェチ ルカーボネート (DEC)で洗浄し、減圧下乾燥させて、化学式 A—1で表される環状 ニトロキシル構造含有ポリマーであるポリ(4ーメタクリロイルォキシ 2, 2, 6, 6—テト ラメチルピペリジン— 1—ォキシル) (PTME) 7. 2gを得た (収率 68. 2%、茶褐色粉 末)。得られた高分子の構造を IRで確認した。また、 GPCにより測定した結果、重量 平均分子量 Mw= 89000、分散度 MwZMn= 3. 30という値が得られた。 ESR^ ベクトルにより求めたスピン濃度は、 2. 48 X 1021spin/gであった。 [0075] Example of synthesis of cyclic-troxyl structure-containing polymer: In a 100 ml eggplant flask equipped with a reflux tube, 20 g (0. O89 mol) of 4-methacryloyloxy 2, 2, 6, 6-tetramethylpiperidine 1-oxyl monomer was added. And dissolved in 80 ml of dry tetrahydrofuran. Thereto was added azobisisobutyric-tolyl (AIBN) O. 29 g (0.00187 mol) (monomer / AIBN = 5 OZl), and the mixture was stirred at 75 to 80 ° C. under an argon atmosphere. After reacting for 6 hours, it was allowed to cool to room temperature. The polymer was precipitated in hexane, filtered, and dried under reduced pressure to obtain 18 g (yield 90%) of poly (2, 2, 6, 6-tetramethylpiperidine metatalylate). Next, 10 g of the obtained poly (2, 2, 6, 6-tetramethylpiperidine metatalylate) was dissolved in 100 ml of dry-treated dichloromethane. To this, 100 ml of a dichloromethane solution of 15.2 g (0. 088 mol) of m-chloroperbenzoic acid was added dropwise over 1 hour with stirring at room temperature. Further, after stirring for 6 hours, the precipitated m-chlorobenzoic acid was removed by filtration, and the filtrate was washed with an aqueous sodium carbonate solution and water, and then dichloromethane was distilled off. The remaining solid is pulverized, and the resulting powder is washed with diethyl carbonate (DEC), dried under reduced pressure, and poly (4-methacryloyloyl), which is a cyclic nitroxyl structure-containing polymer represented by the chemical formula A-1. Xy 2,2,6,6-tetramethylpiperidine-1-oxyl) (PTME) 7.2 g was obtained (yield 68.2%, brown powder). The structure of the polymer obtained was confirmed by IR. As a result of measurement by GPC, values of weight average molecular weight Mw = 89000 and dispersity MwZMn = 3.30 were obtained. The spin concentration obtained from the ESR ^ vector was 2.48 X 10 21 spin / g.
[0076] 上記の環状-トロキシル構造含有ポリマー力 なるラジカルィ匕合物と、結着剤であ るポリフッ化ビ-リデン (呉羽化学製)と、ベンゼンガスを熱分解し、鉄微粒子を噴霧し た基盤上に成長させた炭素繊維を 2800°Cで焼成させて得られた気相成長炭素繊 維 (黒鉛構造の層間距離 d の平均値は 0. 336nm、引張弾性率は 700GPa)とを、 [0076] The above-mentioned radical compound having a cyclic-toxyl structure-containing polymer force, polyvinylidene fluoride (manufactured by Kureha Chemical) as a binder, and benzene gas were thermally decomposed, and iron fine particles were sprayed. Vapor-grown carbon fiber obtained by firing carbon fiber grown on the substrate at 2800 ° C (average value of interlaminar distance d of graphite structure is 0.336 nm, tensile modulus is 700 GPa),
002  002
4 : 1 : 5の重量比となるように計量し、それらを溶媒である n—メチルピロリドン中で混 合してスラリーを作製した。このスラリーに 40キロへルツの超音波を 30分間照射した 後、ドクターブレードを用いて、正極の集電体である厚さ 20 /z mのアルミ箔上に塗布 し、 125°Cで乾燥して n—メチルピロリドンを蒸発させたものを正極とした。これにより 得られた正極の活物質層は、 150 mの厚さであった。乾燥後の活物質層には、ひ び割れや、集電体力もの脱落は見られな力つた。なお、上記の気相成長炭素繊維の 体積抵抗率は 300 μ Ω 'cmであり、その平均長さは 10 μ mで平均直径は 0. 5 ^ m であった。 A weight ratio of 4: 1: 5 was measured and mixed in n-methylpyrrolidone as a solvent to prepare a slurry. This slurry was irradiated with 40 kilohertz ultrasonic waves for 30 minutes, and then applied onto a positive electrode current collector 20 / zm thick aluminum foil using a doctor blade and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The positive electrode active material layer thus obtained had a thickness of 150 m. The active material layer after drying has Cracks and current collectors were not seen. The volume resistivity of the above vapor-grown carbon fiber was 300 μΩ′cm, the average length was 10 μm, and the average diameter was 0.5 ^ m.
[0077] 次に、負極を作製した。負極は、人造黒鉛 (大阪ガス製: MCMB25-28)とゴム系バ インダー(日本ゼオン製: BM-400B)とを 95: 5の重量比で水中に分散させてスラリー を作製し、そのスラリーをドクターブレードを用いて、厚さ 10 mの銅箔上に塗布し、 80°Cで乾燥した後にローラーで圧縮して作製した。こうして得られた負極の活物質 層は 20 mの厚さであった。乾燥後の活物質層には、ひび割れや、集電体からの脱 落は見られなかった。  Next, a negative electrode was produced. For the negative electrode, artificial graphite (manufactured by Osaka Gas: MCMB25-28) and rubber binder (manufactured by ZEON: BM-400B) were dispersed in water at a weight ratio of 95: 5 to prepare a slurry. Using a doctor blade, it was applied onto a copper foil having a thickness of 10 m, dried at 80 ° C., and then compressed with a roller. The negative electrode active material layer thus obtained had a thickness of 20 m. The active material layer after drying did not crack or fall off from the current collector.
[0078] 電解液は、電解質塩として 0. 9molZlの LiPFを含んだものを用い、その電解質  [0078] As the electrolyte, an electrolyte salt containing 0.9 molZl of LiPF is used.
6  6
塩を、エチレンカーボネート Zジェチルカーボネート混合溶液 (体積混合比 3: 7)か らなる電解質溶媒中に溶解して作製した。  The salt was prepared by dissolving it in an electrolyte solvent consisting of ethylene carbonate Z jetyl carbonate mixed solution (volume mixing ratio 3: 7).
[0079] 以上のようにして作製した正極と負極を、大きさ 12mm φの円形に切り出し、セパレ ータとして用いた厚さ 25 μ mの多孔性のポリプロピレンを介して重ね合わせてステン レス製の外装缶に収納し、電解液を注入した後に封止して、図 1に示す形態のコイン 型二次電池を作製した。 [0079] The positive electrode and the negative electrode produced as described above were cut into a circular shape having a size of 12 mm and overlapped with a 25-μm-thick porous polypropylene used as a separator. The coin-type secondary battery of the form shown in FIG.
[0080] (実施例 2) [0080] (Example 2)
実施例 1と同じラジカルィ匕合物と、実施例 1と同じポリフッ化ビ-リデンと、実施例 1と 同じ気相成長炭素繊維と、アセチレンブラック (電気化学工業株式会社製デンカブラ ック)とを、 4 : 1 : 3 : 2の重量比に計量し、それらを溶媒である n—メチルピロリドン中で 混合してスラリーを作製した。このスラリーに 40キロへルツの超音波を 30分間照射し た後、ドクターブレードを用いて、正極の集電体である厚さ 20 mのアルミ箔上に塗 布し、 125°Cで乾燥して n—メチルピロリドンを蒸発させたものを正極とした。これによ り得られた正極の活物質層は、 150 mの厚さであった。乾燥後の活物質層には、 ひび割れや、集電体からの脱落は見られなかった。正極以外の負極、電解液及びセ ノルータ等は実施例 1と同様にして、実施例 2のコイン型二次電池を作製した。  The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, the same vapor-grown carbon fiber as in Example 1, and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.). 4: 1: 3: 2 were weighed and mixed in n-methylpyrrolidone as a solvent to prepare a slurry. The slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The positive electrode active material layer thus obtained had a thickness of 150 m. The active material layer after drying did not crack or fall off from the current collector. A coin-type secondary battery of Example 2 was fabricated in the same manner as in Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the cell router, and the like.
[0081] (実施例 3) [Example 3]
実施例 1と同じラジカルィ匕合物と、実施例 1と同じポリフッ化ビ-リデンと、ベンゼン ガスを熱分解し、鉄微粒子を噴霧した基盤上に成長させた炭素繊維を 3000°Cで焼 成させて得られた気相成長炭素繊維 (黒鉛構造の層間距離 d の平均値は 0. 335η The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, and benzene Vapor-grown carbon fibers obtained by pyrolyzing gas and firing carbon fibers grown on a substrate sprayed with iron fine particles at 3000 ° C (the average value of the interlayer distance d of the graphite structure is 0.335η)
002  002
m、引張弾性率は 800GPa)と、実施例 2と同じアセチレンブラックとを、 4 : 1: 1 :4の 重量比に計量し、それらを溶媒である n メチルピロリドン中で混合してスラリーを作 製した。このスラリーに 40キロへルツの超音波を 30分間照射した後、ドクターブレー ドを用いて、正極の集電体である厚さ 20 mのアルミ箔上に塗布し、 125°Cで乾燥し て n—メチルピロリドンを蒸発させたものを正極とした。これにより得られた正極の活物 質層は、 150 mの厚さであった。乾燥後の活物質層には、ひび割れや、集電体か らの脱落は見られな力つた。なお、上記の気相成長炭素繊維の体積抵抗率は 200 μ Ω 'cmであり、その平均長さは 10 μ mで平均直径は 0. 5 μ mであった。正極以外 の負極、電解液及びセパレータ等は実施例 1と同様にして、実施例 3のコイン型二次 電池を作製した。  m, the tensile modulus is 800 GPa) and the same acetylene black as in Example 2 is weighed in a weight ratio of 4: 1: 1: 4 and mixed in n-methylpyrrolidone as a solvent to form a slurry. Made. The slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The positive electrode active material layer thus obtained was 150 m thick. The dried active material layer was strong enough to show no cracks or falling off the current collector. The volume resistivity of the above vapor grown carbon fiber was 200 μΩ′cm, the average length was 10 μm, and the average diameter was 0.5 μm. A coin-type secondary battery of Example 3 was produced in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
[0082] (実施例 4) [Example 4]
ラジカル化合物として、化学式 A— 2 (R〜Rは全てメチル基)で表される環状-トロ  As a radical compound, a cyclic-toro represented by the chemical formula A-2 (R to R are all methyl groups).
1 4  14
キシル構造含有ポリマーであるポリ(4—アタリロイルォキシ 2, 2, 6, 6—テトラメチ ルビペリジン 1ーォキシル)(PTAA)を合成した。  We synthesized poly (4-ataryloxy2,2,6,6-tetramethylbiperidine 1-oxyl) (PTAA), a xyl structure-containing polymer.
[0083] 環状-トロキシル構造含有ポリマーの合成例;還流管を付けた 100mlナスフラスコ 中に、 4—アタリロイルォキシ 2, 2, 6, 6—テトラメチルピペリジン 1ーォキシルモ ノマー 10gを入れ乾燥テトラヒドロフラン中で触媒として s ブチルリチウムを用い、 - 20°Cで 48時間重合させて、ポリ(4—アタリロイルォキシ— 2, 2, 6, 6—テトラメチル ピぺリジン— 1—ォキシル) 5. 8gを得た (収率 58%、オレンジ色の粉末)。得られた 高分子の構造を IRで確認した。また、 GPCにより測定した結果、重量平均分子量 M w=4300という値が得られた。 ESRスペクトルにより求めたスピン濃度は、 2. 66 X 1 02 spin, gでめった。 [0083] Example of synthesis of cyclic-troxyl structure-containing polymer: In a 100 ml eggplant flask equipped with a reflux tube, 10 g of 4-ataryloxy 2, 2, 6, 6-tetramethylpiperidine 1-oxyl monomer was added in dry tetrahydrofuran. S-Butyllithium as a catalyst and polymerized at -20 ° C for 48 hours to obtain poly (4-atallyloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) 5.8g (Yield 58%, orange powder). The structure of the polymer obtained was confirmed by IR. As a result of measurement by GPC, a value of weight average molecular weight Mw = 4300 was obtained. The spin concentration obtained from the ESR spectrum was found to be 2. 66 X 1 0 2 spin, g.
[0084] こうして得られた環状-トロキシル構造含有ポリマー力 なるラジカルィ匕合物と、実 施例 1と同じポリフッ化ビ-リデンと、ベンゼンガスを熱分解し、鉄微粒子を噴霧した 基盤上に成長させた炭素繊維を 2500°Cで焼成させて得られた気相成長炭素繊維( 黒鉛構造の層間距離 d の平均値は 0. 337nm、引張弾性率は 500GPa)を、 4 : 1: 5の重量比に計量し、それらを溶媒である n メチルピロリドン中で混合してスラリーを 作製した。このスラリーに 40キロへルツの超音波を 30分間照射した後、ドクターブレ ードを用いて、正極の集電体である厚さ 20 mのアルミ箔上に塗布し、 125°Cで乾 燥して n—メチルピロリドンを蒸発させたものを正極とした。これにより得られた正極の 活物質層は、 150 /z mの厚さであった。乾燥後の活物質層には、ひび割れや、集電 体からの脱落は見られな力つた。なお、上記の気相成長炭素繊維の体積抵抗率は 8 00 Ω 'cmであり、その平均長さは 20 μ mで平均直径は 0. 5 μ mであった。正極以 外の負極、電解液及びセパレータ等は実施例 1と同様にして、実施例 4のコイン型二 次電池を作製した。 [0084] The thus obtained radical compound having a cyclic-toxyl structure-containing polymer force, the same polyvinylidene fluoride as in Example 1, and benzene gas were thermally decomposed and grown on a substrate sprayed with iron fine particles. Vapor-grown carbon fiber obtained by calcining the carbon fiber that was fired at 2500 ° C (average value of the interlaminar distance d of the graphite structure is 0.337 nm, tensile modulus is 500 GPa), 4: 1: Weighed to a weight ratio of 5 and mixed them in the solvent n-methylpyrrolidone to make a slurry. This slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The positive electrode active material layer thus obtained had a thickness of 150 / zm. The dried active material layer was strong enough to show no cracks or falling off the current collector. The volume resistivity of the above vapor-grown carbon fiber was 800 Ω′cm, the average length was 20 μm, and the average diameter was 0.5 μm. A coin-type secondary battery of Example 4 was produced in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
[0085] (実施例 5) [0085] (Example 5)
ラジカル化合物として、化学式 A— 3 (R〜Rは全てメチル基)で表される環状-トロ  As a radical compound, a cyclic-toro represented by the chemical formula A-3 (R to R are all methyl groups).
1 4  14
キシル構造含有ポリマーであるポリ(4 ビュルォキシ 2, 2, 6, 6—テトラメチルピ ペリジン 1ーォキシル (PTVE)を合成した。  Poly (4 buroxy 2, 2, 6, 6-tetramethylpiperidine 1-oxyl (PTVE), a xyl structure-containing polymer, was synthesized.
[0086] 環状-トロキシル構造含有ポリマーの合成例;アルゴン雰囲気下、 200mL3口丸底 フラスコに、 2, 2, 6, 6—テトラメチルピペリジンー4ービニルー 1ーォキシル(モノマ 一) 10. 0g、ジクロロメタン lOOmLをカ卩え、 78°Cに冷却した。さらに、三フッ化ホウ 素ージェチルエーテル錯体 280mg (2mmol)をカ卩えて均一にした後、 20時間反応 させた。反応終了後、得られた固形物をメタノールで数回洗浄し、真空乾燥を行うこと で、赤色固体としてポリ(4 ビュルォキシ 2, 2, 6, 6—テトラメチルピペリジン 1 ーォキシル)(PTVE)を得た (収率 70%)。得られた高分子の構造は IRスペクトルで 確認した。また、 GPCより、 DMF可溶部の分子量を測定した結果、重量平均分子量 Mw= 89000、分散度 MwZMn= 2. 7という値が得られた。 ESRスペクトルにより 求めたスピン密度は、 3. 05 X 1021spin/gであった。 [0086] Synthesis Example of Cyclic-Troxyl Structure-Containing Polymer; 200 mL 3-neck round bottom flask under argon atmosphere, 2, 2, 6, 6-tetramethylpiperidine-4-vinyl-1-oxyl (monomer) 10.0 g, dichloromethane lOOmL And cooled to 78 ° C. Further, 280 mg (2 mmol) of boron trifluoride-jetyl ether complex was added and homogenized, and then reacted for 20 hours. After completion of the reaction, the solid obtained was washed several times with methanol and vacuum dried to obtain poly (4 buoxy 2, 2, 6, 6-tetramethylpiperidine 1-oxyl) (PTVE) as a red solid. (Yield 70%). The structure of the polymer obtained was confirmed by IR spectrum. Moreover, as a result of measuring the molecular weight of the DMF soluble part by GPC, the weight average molecular weight Mw = 89000 and the dispersity MwZMn = 2.7 were obtained. The spin density determined by ESR spectrum was 3.05 X 10 21 spin / g.
[0087] こうして得られた環状-トロキシル構造含有ポリマー力 なるラジカルィ匕合物と、実 施例 1と同じポリフッ化ビ-リデンと、ベンゼンガスを熱分解し、鉄微粒子を噴霧した 基盤上に成長させた炭素繊維を 2300°Cで焼成させて得られた気相成長炭素繊維( 黒鉛構造の層間距離 d の平均値は 0. 340nm、引張弾性率は 200GPa)気相成長  [0087] The thus obtained radical compound having a cyclic-toxyl structure-containing polymer force, the same polyvinylidene fluoride as in Example 1, and benzene gas were thermally decomposed and grown on a substrate sprayed with iron fine particles. Vapor-grown carbon fiber obtained by firing the baked carbon fiber at 2300 ° C (average of interlaminar distance d of graphite structure is 0.340 nm, tensile modulus is 200 GPa)
002  002
炭素繊維とを、 4 : 1 : 5の重量比に計量し、それらを溶媒である n—メチルピロリドン中 で混合してスラリーを作製した。このスラリーに 40キロへルツの超音波を 30分間照射 した後、ドクターブレードを用いて、正極の集電体である厚さ 20 mのアルミ箔上に 塗布し、 125°Cで乾燥して n—メチルピロリドンを蒸発させたものを正極とした。これに より得られた正極の活物質層は、 150 mの厚さであった。乾燥後の活物質層には、 ひび割れや、集電体力もの脱落は見られな力つた。なお、上記の気相成長炭素繊維 の体積抵抗率は 2000 μ Ω 'cmであり、その平均長さは 20 μ mで平均直径は 0. 5 μ mであった。正極以外の負極、電解液及びセパレータ等は実施例 1と同様にして、実 施例 5のコイン型二次電池を作製した。 Carbon fibers are weighed in a weight ratio of 4: 1: 5, and they are in the solvent n-methylpyrrolidone. To prepare a slurry. The slurry was irradiated with ultrasonic waves of 40 kilohertz for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, dried at 125 ° C and dried. —Evaporation of methylpyrrolidone was used as the positive electrode. The positive electrode active material layer thus obtained had a thickness of 150 m. In the active material layer after drying, the cracks and current collector force did not fall off. The volume resistivity of the above vapor-grown carbon fiber was 2000 μΩ′cm, the average length was 20 μm, and the average diameter was 0.5 μm. A coin-type secondary battery of Example 5 was fabricated in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
[0088] (実施例 6) [0088] (Example 6)
実施例 5と同様に合成した PTVEと、実施例 1と同じポリフッ化ビ-リデンと、メソフエ ーズピッチを前駆体とする炭素繊維を黒鉛化したもの (ぺト力社製、黒鉛構造の層間 距離 d の平均値は 0. 337nm、引張弾性率は 550GPa、体積抵抗率は 400 Ω · Graphitized PTVE synthesized in the same manner as in Example 5, polyvinylidene fluoride as in Example 1, and carbon fiber with a mesophase pitch as a precursor (Petoriki Co., Ltd., interlayer distance d of graphite structure) The average value is 0.333 nm, the tensile modulus is 550 GPa, and the volume resistivity is 400 Ω
002 002
cm、平均長さ 70 m、平均直径 0. 6 m)とを 4 : 1: 5の重量比に計量し、それらを 溶媒である n—メチルピロリドン中で混合してスラリーを作製した。このスラリーに 40キ 口へルツの超音波を 30分間照射した後、ドクターブレードを用いて、正極の集電体 である厚さ 20 μ mのアルミ箔上に塗布し、 125°Cで乾燥して n—メチルピロリドンを蒸 発させたものを正極とした。これにより得られた正極の活物質層は、 135 mの厚さ であった。乾燥後の活物質層には、ひび割れや、集電体力もの脱落は見られなかつ た。正極以外の負極、電解液及びセパレータ等は実施例 1と同様にして、実施例 6の コイン型二次電池を作製した。  cm, an average length of 70 m, and an average diameter of 0.6 m) were weighed at a weight ratio of 4: 1: 5, and mixed in a solvent n-methylpyrrolidone to prepare a slurry. This slurry was irradiated with 40-kilohertz ultrasonic waves for 30 minutes, and then applied onto a 20 μm-thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The positive electrode active material layer thus obtained had a thickness of 135 m. The active material layer after drying did not show any cracks or falling off of the current collector. A coin-type secondary battery of Example 6 was fabricated in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
[0089] (比較例 1) [0089] (Comparative Example 1)
実施例 1と同じラジカルィ匕合物と、実施例 1と同じポリフッ化ビ-リデンと、実施例 2と 同じアセチレンブラックとを、 4 : 1 : 5の重量比に計量し、それらを溶媒となる n—メチ ルピロリドンと混合してスラリーを作製した。このスラリーに 40キロへルツの超音波を 3 0分間照射した後、ドクターブレードを用いて、正極の集電体である厚さ 20 mのァ ルミ箔上に塗布し、 125°Cで乾燥して n—メチルピロリドンを蒸発させたものを正極と した。これにより得られた正極の活物質層は、 150 mの厚さであった。乾燥後の活 物質層には、ひび割れや、集電体からの脱落が見られた。正極以外の負極、電解液 及びセパレータ等は実施例 1と同様にして、比較例 1のコイン型二次電池を作製した The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, and the same acetylene black as in Example 2 are weighed in a weight ratio of 4: 1: 5 and used as a solvent. A slurry was prepared by mixing with n-methylpyrrolidone. This slurry was irradiated with 40 kilohertz ultrasonic waves for 30 minutes, and then applied onto a 20 m thick aluminum foil as a positive electrode current collector using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The positive electrode active material layer thus obtained had a thickness of 150 m. The active material layer after drying was cracked and dropped from the current collector. Negative electrode other than positive electrode, electrolyte And the separator and the like were made in the same manner as in Example 1 to produce a coin-type secondary battery of Comparative Example 1.
[0090] (比較例 2) [0090] (Comparative Example 2)
実施例 1と同じラジカルィ匕合物と、実施例 1と同じポリフッ化ビ-リデンと、金粉 (平 均粒径 3 m)とを、 4 : 1: 5の重量比に計量し、それらを溶媒となる n—メチルピロリド ンと混合してスラリーを作製した。このスラリーに 40キロへルツの超音波を 30分間照 射した後、ドクターブレードを用いて、正極の集電体である厚さ 20 mのアルミ箔上 に塗布し、 125°Cで乾燥して n—メチルピロリドンを蒸発させたものを正極とした。これ により得られた正極の活物質層は、 150 mの厚さであった。乾燥後の活物質層に は、ひび割れや、集電体からの脱落が見られた。正極以外の負極、電解液及びセパ レータ等は実施例 1と同様にして、比較例 2のコイン型二次電池を作製した。  The same radical compound as in Example 1, the same polyvinylidene fluoride as in Example 1, and gold powder (average particle size 3 m) were weighed to a weight ratio of 4: 1: 5, and they were used as solvents. A slurry was prepared by mixing with n-methylpyrrolidone. This slurry was irradiated with 40 kilohertz ultrasonic waves for 30 minutes, and then applied onto a 20 m thick aluminum foil, which is a positive electrode current collector, using a doctor blade, and dried at 125 ° C. A positive electrode was obtained by evaporating n-methylpyrrolidone. The active material layer of the positive electrode thus obtained was 150 m thick. The dried active material layer was cracked and detached from the current collector. A coin-type secondary battery of Comparative Example 2 was produced in the same manner as Example 1 except for the negative electrode other than the positive electrode, the electrolyte, the separator, and the like.
[0091] (電池特性評価)  [0091] (Evaluation of battery characteristics)
実施例 1〜6及び比較例 1、 2のコイン型二次電池に対して、 2V力 4Vの電圧範囲 で、定電流での充放電を行った。充放電は 20°Cに設定した恒温槽内で行った。充 電電流は 1C電流で行い、放電電流は 1C電流と 50C電流で行い、それぞれの場合 の放電容量を測定した。なお、 1C電流とは 1時間で放電が終わる電流値のことであり 、 50C電流とは 1C電流の 50倍の電流のことである。上記の二次電池の大電流放電 時の容量特性を示す量として、 1C電流のときの放電容量に対する 50C電流のときの 放電容量の比率を調べた。  The coin-type secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were charged and discharged at a constant current in a voltage range of 2V force and 4V. Charging / discharging was performed in a thermostatic chamber set at 20 ° C. The charge current was 1C and the discharge current was 1C and 50C. The discharge capacity in each case was measured. The 1C current is a current value at which discharge is completed in one hour, and the 50C current is a current 50 times the 1C current. As a measure of the capacity characteristics of the secondary battery during large current discharge, the ratio of the discharge capacity at 50C current to the discharge capacity at 1C current was investigated.
[0092] また、作製したコイン型二次電池を 1C電流で 4Vに充電した後、 20°Cに設定した恒 温槽内で 1週間保存した後、 1C電流で 2Vまで放電してその残存容量を測定した。 上記の二次電池の容量の保存特性を示す量として、保存前の放電容量に対する一 週間後の残存容量の比率を調べた。  [0092] Further, after charging the fabricated coin-type secondary battery to 4V with a 1C current, storing it in a thermostat set at 20 ° C for one week, and then discharging to 2V with a 1C current and its remaining capacity Was measured. As an amount indicating the storage characteristics of the secondary battery, the ratio of the remaining capacity after one week to the discharge capacity before storage was examined.
[0093] 実施例 1〜6及び比較例 1、 2の二次電池について、それぞれの正極の外観の状態 と、以上の特性を調べた結果を表 1に示す。  [0093] For the secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2, the state of appearance of each positive electrode and the results of examining the above characteristics are shown in Table 1.
[0094] [表 1] 炭素繊維 炭素繊維の 炭素繊維の 電極のひ 放電容量 週間後の放電容量 混合比 引張弾性率 体積抵抗率 び割れ脱 放電容量 保存前の放電容量 [0094] [Table 1] Carbon fiber Carbon fiber Carbon fiber electrode Firing capacity Discharge capacity Weekly discharge capacity Mixing ratio Tensile modulus Volume resistivity Cracking Discharge capacity Discharge capacity before storage
落の有無  Presence or absence of drop
実施例 無し  Example None
実施例 無し  Example None
実施例 無し  Example None
実施例 無し  Example None
実施例 無し  Example None
実施例 無し  Example None
比較例 有り  Comparison example Yes
比較例 有り  Comparison example Yes
[0095] 実施例 1〜6の正極には、ひび割れ及び脱落が無かったのに対して、比較例 1、 2 の正極には、ひび割れ又は脱落が生じた。実施例 1〜6の正極にひび割れや脱落が 無かったのは、黒鉛構造の層間距離 d の平均値が 0. 335nm以上 0. 340nm以下 の範囲内の炭素繊維が活物質層に含まれていて、正極の活物質層の機械的強度を 向上させているためである。 [0095] The positive electrodes of Examples 1 to 6 did not crack or fall off, whereas the positive electrodes of Comparative Examples 1 and 2 were cracked or dropped. The positive electrodes of Examples 1 to 6 were free from cracking or falling off because the active material layer contained carbon fibers having an average value of the interlayer distance d of the graphite structure in the range of 0.335 nm to 0.340 nm. This is because the mechanical strength of the active material layer of the positive electrode is improved.
[0096] 1C放電容量に対する 50C放電容量の比率については、実施例 1〜6の二次電池 は、いずれも比較例 1の二次電池よりも大き力つた。これは、実施例 1〜6の二次電池 においては、正極の活物質層のひび割れが無ぐかつ活物質層の導電性が高く正 極の電極抵抗が低いため、大電流時の放電容量が比較例よりも向上していることを 示している。 [0096] Regarding the ratio of the 50C discharge capacity to the 1C discharge capacity, the secondary batteries of Examples 1 to 6 were all stronger than the secondary battery of Comparative Example 1. This is because, in the secondary batteries of Examples 1 to 6, the active material layer of the positive electrode is not cracked, the conductivity of the active material layer is high, and the electrode resistance of the positive electrode is low. This shows an improvement over the comparative example.
[0097] 保存前の放電容量に対する一週間保存後の放電容量の比率については、実施例 1〜6の二次電池は、いずれも比較例 1の二次電池よりも大き力つた。これは、実施例 1〜6の二次電池においては、活物質層の脱落が無いため、比較例よりも容量の保 存特性が向上したことを示している。  [0097] Regarding the ratio of the discharge capacity after one week storage to the discharge capacity before storage, the secondary batteries of Examples 1 to 6 were all stronger than the secondary battery of Comparative Example 1. This indicates that in the secondary batteries of Examples 1 to 6, since the active material layer did not fall off, the capacity retention characteristics were improved as compared with the comparative example.
[0098] また、比較例 2の二次電池は、 1C放電において容量が全く得られず、 1C放電容量 に対する 50Cの割合、保存前の放電容量に対する 1週間保存後の放電容量の割合 を求めることができな力つた。これは、ラジカルィ匕合物と金粒子との界面における電荷 移動抵抗が、炭素繊維の場合と比較して著しく大きいため、充放電反応が進行しな 力 たためと考えられる。従って、同じ導電体であっても、炭素繊維の代わりに金を含 む活物質層を用いた場合には、電極抵抗の低 ヽ正極は得られな 、。  [0098] Further, the secondary battery of Comparative Example 2 has no capacity at 1C discharge, and the ratio of 50C to the 1C discharge capacity and the ratio of the discharge capacity after one week storage to the discharge capacity before storage should be obtained. I couldn't do it. This is probably because the charge transfer resistance at the interface between the radical compound and the gold particles was significantly higher than that of carbon fiber, and the charge / discharge reaction did not proceed. Therefore, even if the same conductor is used, a positive electrode with low electrode resistance cannot be obtained when an active material layer containing gold is used instead of carbon fiber.

Claims

請求の範囲 The scope of the claims
[1] ラジカル化合物と、黒鉛構造の層間距離 d の平均値が 0. 335nm以上 0. 340η  [1] The average value of the distance d between the radical compound and the graphite structure is 0.335 nm or more.
002  002
m以下の範囲内の炭素繊維とを少なくとも含む活物質層を有することを特徴とする二 次電池用正極。  A positive electrode for a secondary battery comprising an active material layer containing at least carbon fibers within a range of m or less.
[2] 前記炭素繊維の引張弾性率が、 200GPa以上 800GPa以下の範囲内であることを 特徴とする請求項 1に記載の二次電池用正極。  [2] The positive electrode for a secondary battery according to [1], wherein a tensile elastic modulus of the carbon fiber is in a range of 200 GPa to 800 GPa.
[3] 前記炭素繊維の体積抵抗率が、 200 μ Ω 'cm以上 2000 μ Ω 'cm以下の範囲内 であることを特徴とする請求項 1又は 2に記載の二次電池用正極。 [3] The positive electrode for a secondary battery according to claim 1 or 2, wherein the volume resistivity of the carbon fiber is in the range of 200 μΩ′cm to 2000 μΩ′cm.
[4] 前記炭素繊維が、気相成長炭素繊維であることを特徴とする請求項 1〜3のいずれ 力 1項に記載の二次電池用正極。 4. The secondary battery positive electrode according to any one of claims 1 to 3, wherein the carbon fiber is a vapor-grown carbon fiber.
[5] 前記炭素繊維がメソフェーズピッチを前駆体とする炭素繊維を黒鉛ィ匕したものであ ることを特徴とする請求項 1〜3のいずれか 1項に記載の二次電池用正極。 5. The positive electrode for a secondary battery according to any one of claims 1 to 3, wherein the carbon fiber is obtained by graphitizing a carbon fiber having a mesophase pitch as a precursor.
[6] 活物質層中の前記炭素繊維の含有割合が、 10重量%以上 50重量%以下の範囲 内であることを特徴とする請求項 1〜5のいずれか 1項に記載の二次電池用正極。 [6] The secondary battery according to any one of claims 1 to 5, wherein a content ratio of the carbon fiber in the active material layer is in a range of 10 wt% to 50 wt%. Positive electrode.
[7] 前記ラジカルィ匕合物が、高分子-トロキシルラジカルィ匕合物、高分子ォキシラジカ ルイ匕合物及び高分子ヒドラジルラジカルィ匕合物のうちの少なくとも一種を含むことを 特徴とする請求項 1〜6のいずれか 1項に記載の二次電池用正極。 [7] The radical compound includes at least one of a polymer-troxyl radical compound, a polymer oxyradical compound, and a polymer hydrazyl radical compound. The positive electrode for a secondary battery according to any one of claims 1 to 6.
[8] 前記高分子-トロキシルラジカルィ匕合物力 ポリ(4ーメタクリロイルォキシ 2, 2, 6[8] Polymer-troxyl radical compound strength Poly (4-methacryloyloxy 2, 2, 6
, 6—テトラメチルピペリジン一 1—ォキシル)、ポリ(4—アタリロイルォキシ一 2, 2, 6,, 6-Tetramethylpiperidine 1-oxyl), Poly (4-Atalyloxyl 2, 2, 6,
6—テトラメチルピペリジンー1ーォキシル)、又はポリ(4 ビニルォキシ 2, 2, 6, 6 ーテトラメチルピペリジン 1ーォキシル)であることを特徴とする請求項 7に記載の二 次電池用正極。 8. The positive electrode for a secondary battery according to claim 7, which is 6-tetramethylpiperidine-1-oxyl) or poly (4 vinyloxy 2,2,6,6-tetramethylpiperidine 1-oxyl).
[9] ラジカルィ匕合物と炭素繊維とを少なくとも含む活物質層を有する二次電池用正極 の製造方法であって、前記ラジカル化合物を含む溶媒中で、黒鉛構造の層間距離 d の平均値が 0. 335nm以上 0. 340nm以下の範囲内の前記炭素繊維を分散させ [9] A method for producing a positive electrode for a secondary battery having an active material layer containing at least a radical compound and carbon fiber, wherein an average value of the interlayer distance d of the graphite structure is determined in a solvent containing the radical compound. Disperse the carbon fiber in the range of 0.335 nm or more and 0.30 nm or less.
002 002
る工程を有することを特徴とする二次電池用正極の製造方法。  A process for producing a positive electrode for a secondary battery.
[10] 活物質層中の前記炭素繊維の含有割合が、 10重量%以上 50重量%以下の範囲 内となるように分散させることを特徴とする請求項 9に記載の二次電池用正極の製造 方法。 [10] The positive electrode for a secondary battery according to [9], wherein the carbon fiber content in the active material layer is dispersed so as to fall within a range of 10 wt% to 50 wt%. Manufacturing Method.
少なくとも正極、負極及び電解液力 構成される二次電池において、前記正極が、 請求項 1〜8のいずれか 1項に記載の二次電池用正極であることを特徴とする二次  A secondary battery comprising at least a positive electrode, a negative electrode, and an electrolyte solution, wherein the positive electrode is a positive electrode for a secondary battery according to any one of claims 1 to 8.
PCT/JP2006/300695 2005-02-04 2006-01-19 Secondary cell positive electrode, manufacturing method thereof, and secondary cell WO2006082708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007501525A JPWO2006082708A1 (en) 2005-02-04 2006-01-19 Positive electrode for secondary battery, method for producing the same, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-028377 2005-02-04
JP2005028377 2005-02-04

Publications (1)

Publication Number Publication Date
WO2006082708A1 true WO2006082708A1 (en) 2006-08-10

Family

ID=36777097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300695 WO2006082708A1 (en) 2005-02-04 2006-01-19 Secondary cell positive electrode, manufacturing method thereof, and secondary cell

Country Status (2)

Country Link
JP (1) JPWO2006082708A1 (en)
WO (1) WO2006082708A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257250A (en) * 2005-03-17 2006-09-28 Mitsubishi Gas Chem Co Inc Method for producing polymer compound having stable radical
FR2912554A1 (en) * 2007-02-12 2008-08-15 Arkema France Electrode, useful for electrochemical energy storage system, which is useful as battery backup unit of personal computer, information server or cell phone, comprises nitroxide and carbon nanotube
JP2009140647A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte secondary battery
WO2010002002A1 (en) * 2008-07-03 2010-01-07 Dic株式会社 Secondary battery and carbon ink for conductive auxiliary layer of the secondary battery
JP2010114042A (en) * 2008-11-10 2010-05-20 Nec Corp Secondary battery, and manufacturing method thereof
JP2011074317A (en) * 2009-10-01 2011-04-14 Waseda Univ Method of manufacturing polyradical compound
KR20170113250A (en) * 2016-03-24 2017-10-12 주식회사 엘지화학 Conductive material dispersed solution and secondary battery prepared by using the same
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2003282147A (en) * 2002-03-26 2003-10-03 Toshiba Battery Co Ltd Lithium ion secondary battery
JP2004003097A (en) * 1999-03-25 2004-01-08 Showa Denko Kk Carbon fiber, process for producing the same and electrode for electric batteries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179169A (en) * 2000-02-25 2004-06-24 Nec Corp Secondary battery
JP4524362B2 (en) * 2002-10-11 2010-08-18 株式会社Gsユアサ Electrode material, electrode manufacturing method, electrode and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JP2004003097A (en) * 1999-03-25 2004-01-08 Showa Denko Kk Carbon fiber, process for producing the same and electrode for electric batteries
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002304996A (en) * 2001-04-03 2002-10-18 Nec Corp Electric storage device
JP2003282147A (en) * 2002-03-26 2003-10-03 Toshiba Battery Co Ltd Lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257250A (en) * 2005-03-17 2006-09-28 Mitsubishi Gas Chem Co Inc Method for producing polymer compound having stable radical
FR2912554A1 (en) * 2007-02-12 2008-08-15 Arkema France Electrode, useful for electrochemical energy storage system, which is useful as battery backup unit of personal computer, information server or cell phone, comprises nitroxide and carbon nanotube
WO2008104683A1 (en) * 2007-02-12 2008-09-04 Arkema France Electrode containing at least one nitroxide and carbon nanotubes
JP2009140647A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP4637293B2 (en) * 2008-07-03 2011-02-23 Dic株式会社 Carbon ink for secondary battery and conductive auxiliary layer thereof
WO2010002002A1 (en) * 2008-07-03 2010-01-07 Dic株式会社 Secondary battery and carbon ink for conductive auxiliary layer of the secondary battery
JP2010114042A (en) * 2008-11-10 2010-05-20 Nec Corp Secondary battery, and manufacturing method thereof
JP2011074317A (en) * 2009-10-01 2011-04-14 Waseda Univ Method of manufacturing polyradical compound
KR20170113250A (en) * 2016-03-24 2017-10-12 주식회사 엘지화학 Conductive material dispersed solution and secondary battery prepared by using the same
JP2018533175A (en) * 2016-03-24 2018-11-08 エルジー・ケム・リミテッド Conductive material dispersion and secondary battery manufactured using the same
US11108050B2 (en) 2016-03-24 2021-08-31 Lg Chem, Ltd. Conductive material dispersed liquid and secondary battery manufactured using the same
KR102320010B1 (en) * 2016-03-24 2021-11-02 주식회사 엘지에너지솔루션 Conductive material dispersed solution and secondary battery prepared by using the same
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups

Also Published As

Publication number Publication date
JPWO2006082708A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
KR101361567B1 (en) Composite graphite particles and use of same
JP5563578B2 (en) Composite graphite particles and lithium secondary battery using the same
JP4186115B2 (en) Lithium ion secondary battery
JP6183362B2 (en) Negative electrode active material for secondary battery and production method thereof, negative electrode using the same, and lithium ion battery
EP2924783B1 (en) Method for producing negative electrode material for lithium ion batteries
US20080171265A1 (en) Positive Electrode For Secondary Battery, Manufacturing Method Thereof, and Secondary Battery
US20210242448A1 (en) Battery negative electrode material, method for manufacturing same, negative electrode for secondary battery, and secondary battery
WO2006082708A1 (en) Secondary cell positive electrode, manufacturing method thereof, and secondary cell
JP3711726B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
WO2004001880A1 (en) Electrode and cell comprising the same
US10388956B2 (en) Carbonaceous molded article for electrodes and method of manufacturing the same
JP2001102049A (en) Non-aqueous electrolyte secondary battery
JP5671110B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008288214A (en) Lithium-ion secondary battery
WO1993024967A1 (en) Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
WO2017213083A1 (en) Negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JPH10308236A (en) Nonaqueous electrolyte secondary battery
JP2001085016A (en) Non-aqueous electrolyte battery
JP2023546419A (en) Negative electrode and its manufacturing method
JPH10284081A (en) Lithium ion secondary battery
JP2002198053A (en) Negative electrode material for lithium ion battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
WO2023119857A1 (en) Negative electrode for solid-state battery and solid-state battery
JP2002093420A (en) Nonaqueous electrolyte secondary battery
JPH10270080A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007501525

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711941

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711941

Country of ref document: EP