WO2006080417A1 - Somatic measurement device and method thereof - Google Patents

Somatic measurement device and method thereof Download PDF

Info

Publication number
WO2006080417A1
WO2006080417A1 PCT/JP2006/301278 JP2006301278W WO2006080417A1 WO 2006080417 A1 WO2006080417 A1 WO 2006080417A1 JP 2006301278 W JP2006301278 W JP 2006301278W WO 2006080417 A1 WO2006080417 A1 WO 2006080417A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
measurement
living body
different
biological
Prior art date
Application number
PCT/JP2006/301278
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Utsumi
Original Assignee
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation filed Critical Kyushu University, National University Corporation
Publication of WO2006080417A1 publication Critical patent/WO2006080417A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Definitions

  • the present invention relates to a living body measurement apparatus for obtaining a tissue image of a living body using various magnetic resonances such as electron spin resonance and nuclear magnetic resonance.
  • Oxidative stress is caused by the fact that the living body cannot sufficiently process the active oxygen generated by the endogenous or exogenous cause of the living body. Oxidative stress is known to be involved in many pathologies and aging such as cancer, lifestyle-related diseases, post-ischemic reperfusion injury, and inflammation.
  • Oxidative stress is thought to be involved in some form of almost all diseases. However, the basis is mostly indirect, and there is no clear evidence as to whether active oxygen production is the primary cause of the disease or whether it is secondarily related to the progression of the disorder. . What kind of reactive oxygen force in the living body When, where, how, what, and what reacts, it becomes possible to perform non-invasive image analysis in oxidative stress model animals. It can be useful information for elucidation of kinetics and development of anti-acidic drugs.
  • ESR imaging apparatus As an apparatus for detecting free radicals, there is an ESR imaging apparatus (ESRI). ESR (Electr on Spin Resonance) is an abbreviation for electron spin resonance, and the magnetic moment of the free radical's unpaired electron spin is observed by electromagnetic resonance absorption. Equipment. By using this ESR spectrometer, which is an improved ESR spectrometer for living organisms, radicals can be measured while alive in the entire experimental animal. It is possible to analyze the image of the cloth.
  • the inventors have been involved in the development of a drug with the mechanism of anti-acidic action, and at the development stage, the biometric ESR / spin probe method was used for anti-cerebral ischemia in reperfusion injury model rats. We have succeeded in clarifying the oxidative expression. It was also clarified that anti-ulcer drugs inhibit the formation of wrinkles in the gastric cavity in gastric ulcer model rats.
  • biomedical ESR's spin probe method such as Kampo medicine for gastric ulcers, is very useful as a method for evaluating the in vivo effects of antioxidant drugs.
  • Patent Document 1 Japanese Patent No. 3117847
  • a nuclear 'electron double resonance device is also effective in analyzing the dynamics of free radicals.
  • PEDRI shifts the electron spin of a living body by ESR irradiation and causes an energy transition to a nuclear spin.
  • the nuclear spin Boltzmann distribution can be enhanced by a maximum (theoretical value) of 330 times that of the normal nuclear spin Boltzmann distribution.
  • the sensitivity can be increased by 330 times (theoretical value) compared to normal MRI measurement.
  • an object of the present invention is to provide a composite that can dramatically improve the sensitivity and resolution of electron spin resonance and magnetic resonance compared to a conventional biological measurement apparatus without using the Field Cycle method. It is providing a type
  • a first magnetic field generating means for generating a magnetic field of a predetermined magnitude and a magnetic field larger than the magnetic field of the first magnetic resonance means are generated.
  • a living body measurement apparatus comprising: a measuring unit that measures a tissue image in a living body to be measured based on a detected signal.
  • the second magnetic resonance means is for generating a magnetic field of at least 1 Tesla and exciting nuclear magnetic resonance.
  • the first magnetic field generating means is for exciting electron spin resonance.
  • the measurement object moving means is not limited to a short time, but preferably within 1 second, the movement of the measurement object between the first and second magnetic field generation means. It is preferably configured to complete within 0.7 seconds.
  • the second external magnetic field generation means is used as an ESRI external magnetic field generation apparatus and a PEDRI electron spin excitation apparatus
  • the first external magnetic field generation means is used as an MRI and PEDRI It can be used as an external magnetic field generator. Therefore, the time-change image of radical amount can be obtained by PEDRI and the qualitative change image can be obtained by spectrum 'space 4D ESRIZMRI, and the magnetic field by the second external magnetic field generation means can be increased, so high sensitivity' high resolution You will get an image.
  • the electronic spin excitation device in PEDRI and the external magnetic field generator and resonator in ESRI can be shared, it is possible to obtain a highly effective device with a simple configuration through integration. Can do.
  • the measurement means applies a plurality of probes having different in-vivo localization in a measurement target living body, and separates microscopic voids separated through a cell membrane. The tissue image between them is separated and image analysis is performed simultaneously.
  • the plurality of probes having different in vivo localizations are -troxyl compounds labeled with different markers (preferably N 14 and N 15).
  • a first magnetic field generating means for generating a magnetic field of a predetermined magnitude, and a first magnetic field for generating a magnetic field larger than the magnetic field of the first magnetic resonance means.
  • Measurement object movement process to move the measurement target living body between the two magnetic field generation means in synchronization with the irradiation of the RF pulse and measurement based on the signal detected according to the RF pulse.
  • a measuring step for measuring a tissue image in the target living body.
  • a step of applying a plurality of -troxi probes with different in-vivo localizations labeled with N14 and N15 in a measurement target living body, and two magnetic fields having different sizes in the measurement target there is also provided a biological measurement method comprising the steps of: applying and simultaneously measuring different tissue images in the measurement target living body based on a signal detected based on the label.
  • FIG. 1 is a schematic configuration diagram showing a living body measuring apparatus 1 of the present invention
  • FIG. 2 is a perspective view of the living body measuring apparatus 1.
  • This apparatus basically includes a first external magnetic field generator 2 for low magnetic fields (for example, ESRIZPEDRI in this embodiment) and a second external magnetic field generator for high magnetic fields (for example, MRIZPEDRI in this embodiment).
  • the magnetic field generator 3 is connected.
  • the second external magnetic field generator 3 will be described from the second external magnetic field generator 3.
  • the second external magnetic field generator 3 is supported by the support base 4 and the support base 4 and has a large-diameter cylindrical shape.
  • a housing 5 having an outer shape and a cylindrical superconducting magnet 6 that is installed inside one end of the housing 5 and generates a static magnetic field in an inner diameter portion 8 of the housing 5 are provided.
  • a magnetic field gradient coil 7 is installed on the inner diameter surface of the housing 5, and a magnetic field gradient of a predetermined scale corresponding to a predetermined MR pulse case is generated in a predetermined number of times in the generated static magnetic field. It is supposed to be.
  • This second external magnetic field generator 3 provides an external static magnetic field for MRIZPEDR I.
  • the first external magnetic field generator 2 has an electromagnet 11, a magnetic field gradient coil 12, and a magnetic field sweep coil 13 disposed concentrically with the other end of the housing 5. To do.
  • This first external magnetic field generator 2 provides an external static magnetic field of ESR and an excitation magnetic field in PEDRI in the inner diameter portion 15 of the electromagnet 11.
  • the first and second external magnetic field generators 2 and 3 are arranged so that their central axes coincide with each other, and cylindrical inner first RF coils 16 (resonance) are provided in the inner diameter portions 8 and 15 thereof. And a second RF coil 17 are provided on the concentric axes.
  • the first and second RF coils 16 and 17 form a radio frequency (RF) high frequency (microwave) magnetic field in a direction perpendicular to the static magnetic field.
  • RF radio frequency
  • a linear moving device 19 is installed between the first and second external magnetic field generators 2 and 3 along the central axes of the first and second RF coils 16 and 17. Yes.
  • the linear moving device 19 includes a guide 20 installed on the central axis and a measurement target living body holding unit 21 slidably provided on the guide 20.
  • the linear moving device 19 is driven by, for example, a linear motor.
  • the stator 22 provided in the guide 20 and also having a permanent magnet force, and the support It comprises a mover 23 which is provided on the part side and also has an electromagnetic magnet force and also has an electromagnet force arranged in the longitudinal direction. By switching the polarity of the mover 23 at a predetermined cycle, it can be driven and stopped.
  • the first external magnetic field generation device 2 is connected to the control unit 27 via the first static magnetic field generation driver 25.
  • the first static magnetic field generation driver 25 is connected to a power source (not shown) for supplying power to the air core coil type electromagnet 11, the magnetic field gradient coil 12, and the magnetic field sweep coil 13, and the control unit 27
  • the air core coil type electromagnet 11, the magnetic field gradient coil 12, and the magnetic field sweep coil 13 are controlled by an instruction from.
  • the force is not limited to this.
  • the strength of the static magnetic field generated by the first external magnetic field generator 2 is 8 mT
  • the gap width is 15 cm
  • the three-dimensional gradient magnetic field is 100 mTZm
  • the magnetic field sweep coil The strength of 13 magnetic fields is 2mTZs.
  • the second external magnetic field generation device 3 is connected to the control unit 27 via a second static magnetic field generation driver 26.
  • the second static magnetic field generation driver 26 includes the superconducting magnet 6 and a magnetic field gradient.
  • a power supply (not shown) for supplying power to the distribution coil 7 is connected, and the superconducting magnet 6 and the magnetic field gradient coil 7 are driven by an instruction to the control unit 27.
  • the strength of the static magnetic field generated by the second external magnetic field generator 3 is 2T (tesla), the gap width is 20 cm, and the force is a three-dimensional gradient magnetic field lOmTZm. .
  • the strength of this static magnetic field is 70 times that of the current PEDRI, which can improve the sensitivity by about 100 times.
  • the first and second RF coils 16 and 17 are connected to the control unit 27 via an RF coil driver 28 and a detection signal receiving unit 29.
  • the RF coil driver 28 is connected to a power source (not shown) for supplying power to the RF coils 16 and 17, and drives the RF coils 16 and 17 in accordance with a sequence commanded by the control unit 27. .
  • a high frequency pulse is applied to the RF coils 16, 17, and a high frequency magnetic field is applied to the measurement target on the holding unit 21.
  • the electron spin resonance signal Z magnetic resonance signal received by the RF coils 16, 17 is received by the detection signal receiving unit 29 and passed to the control unit 27.
  • the spatial resolution and imaging time of ESRI measurement are the space within lmm in the spectral space 3D image and 4D image when FOV is lcm.
  • the resolution can be acquired within 1 minute in 3 dimensions and within 10 minutes in 4 dimensions.
  • the linear drive device 19 is connected to the control unit 27 via a linear drive device driver 30.
  • the linear drive device 19 moves the measurement object between the first external magnetic field generation device 2 and the second external magnetic field generation device 3, and follows the sequence commanded from the control unit 27 in accordance with the RF coil.
  • the measurement target is driven at a timing synchronized with the application of the high-frequency magnetic field by 16 and 17.
  • the drive time from the first external magnetic field generator 2 to the second external magnetic field generator 3 is preferably within 1 second, more preferably within 0.7 seconds, and in this embodiment it is 0. Set to 5 seconds.
  • control unit 27 includes a measurement sequence processing unit 31, a PEDRI measurement processing unit 32, and an ESRIZMRI measurement processing unit 33.
  • the measurement sequence processing unit 31 supplies power to the first and second external magnetic field generators 2 and 3 and the first and second RF coils 16 and 17. A sequence and a measurement sequence in the first and second RF coils 16 and 17 to control the apparatus.
  • the PEDRI measurement processing unit 32 and the ESRIZMRI measurement processing unit 33 perform image processing based on the electron spin resonance signal and the magnetic resonance signal obtained according to the measurement sequence, and display the result on the monitor 35.
  • this image processing is performed by synthesizing a plurality of -troxyl probes having different in-vivo localizations (for example, different membrane permeabilities), and combining them with N14 and N15, respectively. Labeling makes it possible to separate and analyze images of minute spaces via binding to cell membranes (thickness nanometers) or receptors.
  • control unit 27 actually has a computer system power
  • processing units 31 to 33 also have a computer software program power stored in a hard disk or the like.
  • These computer software programs are appropriately called and executed by the CPU to function as components of the present invention!
  • a small animal to be measured such as a mouse
  • a spatial image analysis is performed on a brain function in a redox metabolism abnormality due to an oxidative stress disease or schizophrenia in a measurement target.
  • a probe agent derivatized with -troxyl radical labeled with N14 or N15 is introduced into this mouse.
  • multiple probes with different biolocalizations eg, different membrane permeability
  • cell membranes thinness nanometers
  • receptors Enables separation and simultaneous image analysis of minute spaces.
  • a contrast agent with higher sensitivity / high selectivity in order to perform image analysis with a high-sensitivity / high-resolution apparatus as in this embodiment, it is essential to develop a contrast agent with higher sensitivity / high selectivity.
  • a method of narrowing the spectral line width of the contrast agent itself can be considered.
  • the line width of the contrast agent can be reduced by reducing the proton localization of the unpaired electron density of the contrast agent itself.
  • -troxyl probes having substituents having various properties were newly synthesized using a molecular design technique utilizing a computer. These include, but are not limited to: a) intravascular half-life of 20 minutes or longer, b) high retention probe with intracellular retention of 5 minutes or longer, c) cell membrane directional probe, d) blood brain Includes barrier-passing probes. Furthermore, in order to double the sensitivity, a probe agent synthesized so that the resonance absorption line width is within 0.5 gauss (commercially available nitroxyl probe is 1.0 gauss or more) was used.
  • the linear drive device 19 is driven, and the measurement object is positioned in the first RF coil 16 in the static magnetic field 8 by the first external magnetic field generation device 2.
  • high frequency is radiated from the first RF coil 16 and the sweep coil 13 is driven to sweep the magnetostatic field at high speed.
  • unpaired electrons in the measurement object absorb high frequency, and the electron spin is resonantly excited.
  • the ESR signal is received by the detection signal receiving unit 29 due to the reflection of the microwave.
  • the linear drive device 19 is driven, and within 0.7 seconds, in this example 0.5 seconds, the measurement target is set in the second external magnetic field. Move to generator 3.
  • the object to be measured is placed in a very strong static magnetic field of 1T or more, in this example 2T.
  • the resonantly excited electron spin causes a nuclear spin energy transition.
  • the detection signal receiving unit 29 receives a signal that can also obtain a measurement target force by high-frequency irradiation using the second RF coil 17.
  • the signal received by the detection signal receiving unit 29 in this way is received by the control unit 27 and processed by the measurement processing units 32 and 33.
  • the ESRIZMRI measurement processing unit 33 synthesizes an image obtained by superimposing an ERS image and an MRI image from the ERS signal obtained from the first RF coil 16 and the MRI signal obtained from the second RF coil 17.
  • the PEDRI measurement processing unit 32 synthesizes an image showing the nuclear spin distribution by processing the signal obtained from the second RF coil 17.
  • the inventors have conducted preliminary experiments that the relaxation time of biological water molecules after electron spin excitation is nearly 1 second, and it is necessary to perform electron spin excitation and MRI in the same external magnetic field. Based on this new knowledge, we have completed a device that separates the external magnetic field for MRI and the external magnetic field for ESR. Since the external magnetic field for MRI and the external magnetic field for ESR are independent, the external magnetic field for MRI can be made very large to obtain higher sensitivity and spatial resolution. In this embodiment, the magnitude of the magnetic field of the first external static magnetic field generator for MRI is 2 Tesla, and the measurement target is moved between ESR magnetic fields (8 millitesla) in about 0.5 seconds. . According to such a configuration and method, an ESRZMRI superimposed image with higher sensitivity and higher resolution can be obtained without using the Field Cycle method.
  • the second external magnetic field generator 3 is used as an MRI and PEDRI external magnetic field generator
  • the first external magnetic field generator 2 is used as an ESRI external magnetic field generator and PEDRI.
  • PEDRI can also be fused.
  • the external magnetic field of the MRI can be increased, so that a highly sensitive and high resolution PEDRI image can be obtained.
  • the time-change image of the radical amount can be obtained by PEDRI
  • the qualitative change image can be obtained by spectrum 'space 4D ESRI / MRI
  • the magnetic field by the second external magnetic field generator 3 can be increased.
  • High sensitivity and high resolution images can be obtained.
  • the electron spin excitation device in PEDRI and the external magnetic field generator and resonator in ESRI can be shared, a compact device with a very small installation area can be obtained by integration. be able to.
  • the PEDRI measurement processing unit 32 and the ESRIZMRI measurement processing unit 33 apply a plurality of probes having different in-vivo localizations within a measurement target.
  • a tissue image of a minute space separated through a cell membrane is separated and simultaneously analyzed. According to such a configuration, it is possible to simultaneously analyze the nanospace in the living body.
  • the electromagnet 11 of the first external magnetic field generator and the superconducting magnet 6 of the second external magnetic field generator are provided separately in the horizontal direction. It is not limited to. As shown in FIG. 4, a superconducting magnet 6 ′ for generating a high magnetic field is provided over the entire length of the housing 5, and the electromagnet 11 is used for demagnetization to reduce the magnetic field for the first external magnetic field device. You may comprise. That is, in this case, the low magnetic field generated by the first external magnetic field generator 2 is generated by the superconducting magnet 6 ′ and the electromagnet 11 ′.
  • the living body measurement apparatus is ESRIZMRIZPEDRI, but is not limited thereto.
  • the present invention can be applied to any apparatus that moves a sample between different external magnetic field generators.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing the same linear movement mechanism.
  • FIG. 4 is a schematic configuration diagram showing another embodiment.
  • Magnetic field gradient coil IB Magnetic field sweep coil

Abstract

[PROBLEMS] To provide a somatic measurement device and method for obtaining a somatic tissue image by utilizing various magnetic resonances such as an electronic spin resonance and a nuclear magnetic resonance. [MEANS FOR SOLVING PROBLEMS] A somatic measurement device includes first magnetic field generation means for generating a magnetic field of a predetermined size, second magnetic field generation means for generating a magnetic field greater than the magnetic field of the first magnetic field generation means, measurement object moving means for moving a somatic object to be measured between the first and the second magnetic field generation means in synchronization with irradiation of an RF pulse, and measurement means for measuring a tissue image in the somatic object to be measured according tot he signal detected according to the RF pulse.

Description

明 細 書  Specification
生体計測装置及びその方法  Biological measuring device and method
技術分野  Technical field
[0001] この発明は、電子スピン共鳴や核磁気共鳴など種々の磁気共鳴を利用して生体の 組織画像を得るための生体計測装置に関する。  The present invention relates to a living body measurement apparatus for obtaining a tissue image of a living body using various magnetic resonances such as electron spin resonance and nuclear magnetic resonance.
背景技術  Background art
[0002] 日本における酸化ストレスに関わる患者予備軍は、いまや数百万人にも上るといわ れ、国民健康保険を大きく圧迫するに至っている。ここで、酸化ストレスとは生体の内 因性あるいは外因性の原因により生じる活性酸素を生体が十分処理することができ なくなるために生じるものである。酸化ストレスはがん、生活習慣病、虚血後再還流障 害、炎症など、多くの病態や老化に関与することが知られている。  [0002] The number of patient reserves related to oxidative stress in Japan is now estimated to be in the millions. Here, the oxidative stress is caused by the fact that the living body cannot sufficiently process the active oxygen generated by the endogenous or exogenous cause of the living body. Oxidative stress is known to be involved in many pathologies and aging such as cancer, lifestyle-related diseases, post-ischemic reperfusion injury, and inflammation.
[0003] 近年、酸化ストレスと活性酸素や活性窒素種などのフリーラジカルとの関係が注目 されている。活性酸素'フリーラジカルの過剰な生成等が生じると、生体内において その生成と消去のノ ンスを崩し、酸化ストレスの状態となる。活性酸素'フリーラジカ ルは脂質や、核酸、たんぱく質、糖質などを傷害して各種疾患を誘発する。  In recent years, attention has been focused on the relationship between oxidative stress and free radicals such as active oxygen and active nitrogen species. If excessive generation of active oxygen 'free radicals occurs, the generation and elimination of the active oxygen in the living body will be lost, resulting in a state of oxidative stress. Reactive oxygen 'free radicals cause various diseases by damaging lipids, nucleic acids, proteins and carbohydrates.
[0004] 酸化ストレスは、ほぼすベての疾患に何らかの形でかかわっていると考えられてい る。しかし、その根拠は、間接的なものがほとんどで、活性酸素の産生が疾患の第一 成因であるか、あるいは二次的に障害の進展に関係するのか等に関して明ら力とな つていない。生体内で、どのような活性酸素力 何時、どこで、どのように産生し、何と 反応するカゝを酸化ストレスモデル動物で無侵襲画像解析することが可能となれば、 酸化ストレス疾患での活性酸素動態の解明と抗酸ィ匕性医薬品の開発に有力な情報 となりうる。  [0004] Oxidative stress is thought to be involved in some form of almost all diseases. However, the basis is mostly indirect, and there is no clear evidence as to whether active oxygen production is the primary cause of the disease or whether it is secondarily related to the progression of the disorder. . What kind of reactive oxygen force in the living body When, where, how, what, and what reacts, it becomes possible to perform non-invasive image analysis in oxidative stress model animals. It can be useful information for elucidation of kinetics and development of anti-acidic drugs.
[0005] フリーラジカルを検出する装置として、 ESR画像装置(ESRI)がある。 ESR(Electr on Spin Resonance)は、電子スピン共鳴の略称で、フリーラジカルの不対電子ス ピンの磁気モーメントを電磁波の共鳴吸収で観測することから、フリーラジカルのみを 検出する選択性の高 ヽ分析機器である。この ESR分光器を生体用に改良した生体 計測 ESRI装置を用いると、実験動物丸ごとで生きたままラジカルを計測し、その分 布を画像解析することが可能である。 [0005] As an apparatus for detecting free radicals, there is an ESR imaging apparatus (ESRI). ESR (Electr on Spin Resonance) is an abbreviation for electron spin resonance, and the magnetic moment of the free radical's unpaired electron spin is observed by electromagnetic resonance absorption. Equipment. By using this ESR spectrometer, which is an improved ESR spectrometer for living organisms, radicals can be measured while alive in the entire experimental animal. It is possible to analyze the image of the cloth.
[0006] 発明者らは抗酸ィ匕作用を機序とする医薬品の開発にかかわり、その開発段階で、 生体計測 ESR ·スピンプローブ法を用 、て脳虚血 再灌流障害モデルラットでの抗 酸化作用発現を明らかにすることに成功している。また、胃潰瘍モデルラットで抗潰 瘍薬が胃腔内での ·ΟΗ生成を抑制することも明らかとした。その他、漢方の胃潰瘍 治療薬など、生体計測 ESR'スピンプローブ法は抗酸化医薬品の生体内作用評価 法として非常に有用である。  [0006] The inventors have been involved in the development of a drug with the mechanism of anti-acidic action, and at the development stage, the biometric ESR / spin probe method was used for anti-cerebral ischemia in reperfusion injury model rats. We have succeeded in clarifying the oxidative expression. It was also clarified that anti-ulcer drugs inhibit the formation of wrinkles in the gastric cavity in gastric ulcer model rats. In addition, biomedical ESR's spin probe method, such as Kampo medicine for gastric ulcers, is very useful as a method for evaluating the in vivo effects of antioxidant drugs.
[0007] すなわち、このようなフリーラジカルを検出できる生体計測装置の開発は、国民の 健康福祉に直結するもので、きわめて社会的意義が大きい。また本研究は新規抗酸 化性医薬品の評価'創出を可能とするもので、その経済的波及効果は計り知れない ものである。  [0007] That is, the development of a living body measuring apparatus capable of detecting such free radicals is directly related to the health and welfare of the people, and has great social significance. In addition, this research makes it possible to evaluate and create new antioxidant drugs, and its economic ripple effects are immeasurable.
特許文献 1:特許第 3117847号公報  Patent Document 1: Japanese Patent No. 3117847
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] ところで、上述した従来の方法では、フリーラジカルしか見えな 、ため、活性酸素 · フリーラジカルの産生組織'部位が特定できない問題がある。この問題を解決するた め、活性酸素'フリーラジカルの画像 (ESRI)に臓器の MRI画像を重畳できる ESRI' MRI融合型磁気共鳴画像解析装置がある。この装置を用いると、種々のルートで投 与したプローブ剤の生体内挙動が画像ィ匕できる。  [0008] By the way, in the conventional method described above, only free radicals can be seen, and therefore there is a problem that the site for producing active oxygen / free radicals' tissue cannot be specified. To solve this problem, there is an ESRI 'MRI fusion type magnetic resonance imaging analyzer that can superimpose an MRI image of an organ on an active oxygen' free radical image (ESRI). When this device is used, the in vivo behavior of the probe applied by various routes can be imaged.
[0009] また、核'電子二重共鳴装置 (PEDRI)もフリーラジカルの動態の解析に有効であ る。 PEDRIは、 ESR照射により生体の電子スピンを遷移させ、核スピンへエネルギー 遷移が生じさせるものである。その後 MRI計測を行うことで、通常の核スピンのボルツ マン分布と比較し、最大 (理論値)で 330倍の核スピンボルツマン分布が増強すること ができる。すなわち通常の MRI計測に較べ、 330倍 (理論値)の高感度化を図ること ができる。潰瘍性大腸炎モデルに適用した結果、酸化ストレス性疾患のレドックス動 態の画像解析に非常に有用であることが明らかとなっている。  [0009] A nuclear 'electron double resonance device (PEDRI) is also effective in analyzing the dynamics of free radicals. PEDRI shifts the electron spin of a living body by ESR irradiation and causes an energy transition to a nuclear spin. Then, by performing MRI measurements, the nuclear spin Boltzmann distribution can be enhanced by a maximum (theoretical value) of 330 times that of the normal nuclear spin Boltzmann distribution. In other words, the sensitivity can be increased by 330 times (theoretical value) compared to normal MRI measurement. As a result of application to an ulcerative colitis model, it has been found that it is very useful for image analysis of redox behavior in oxidative stress diseases.
[0010] しかしながら、一般に、このような PEDRIや ERSIZMRIの複合計測装置において は、得られた画像の解像度が低いという問題がある。すなわち、米国で開発中の装 置はいずれも MRIの外部磁場が数十 mT (ミリテスラ)(Dr. Zweier;Ohio State U niversity, Dr. Halpern; University of し hicago, Dr. Krishna, NIH/NCI, Dr. Swartz ; Dartmouth Medical School)であり、 MRIの基本特許を取得して いる英国 Aberdeen大学の Dr. Lurieの提案において 500mT (ミリテスラ)(但し、試 料サイズは 10mm程度)である。これは、磁気共鳴の感度と解像度は外部磁場の大 きさに依存するのに対して、従来の装置はいずれも、 1つの磁場発生装置を用い、外 部磁場変換を Field Cycle法 (Dr丄 urieが米国特許取得済)で行っているため、 MR I装置の外部磁場を大きくすることができないことに起因するものである。 [0010] However, in general, such a PEDRI or ERSIZMRI combined measurement apparatus has a problem that the resolution of the obtained image is low. In other words, the equipment under development in the United States In each case, the external magnetic field of the MRI is several tens of mT (millitesla) (Dr. Zweier; Ohio State University, Dr. Halpern; According to Dr. Lurie's proposal from Aberdeen University, UK, which has obtained a basic MRI patent, it is 500 mT (millitesla) (however, the sample size is about 10 mm). This is because the sensitivity and resolution of magnetic resonance depend on the magnitude of the external magnetic field, while all conventional devices use a single magnetic field generator and convert the external magnetic field to the Field Cycle method (Dr 丄This is due to the fact that the external magnetic field of the MR I device cannot be increased because urie is conducting a US patent.
[0011] 発明者らも、この Field Cycle法を参考に数年間装置開発を行ってきた力 上述し た感度及び解像度の限界から、従来の装置を使用してさらに高精度の解析を行うこ とには限界があるとの結論に至った。  [0011] The inventors have also been developing equipment for several years with reference to this Field Cycle method. Due to the limitations of sensitivity and resolution described above, it is possible to perform more accurate analysis using conventional equipment. It came to the conclusion that there is a limit.
[0012] したがって、この発明の目的とするところは、 Field Cycle法を用いず従来の生体 計測装置と比較して、電子スピン共鳴及び磁気共鳴の感度及び解像度を飛躍的に 向上させることができる複合型生体計測装置を提供することである。  Therefore, an object of the present invention is to provide a composite that can dramatically improve the sensitivity and resolution of electron spin resonance and magnetic resonance compared to a conventional biological measurement apparatus without using the Field Cycle method. It is providing a type | mold biological measurement apparatus.
課題を解決するための手段  Means for solving the problem
[0013] 上述した課題を解決するため、この発明によれば、所定の大きさの磁場を発生させ る第 1の磁場発生手段と、前記第 1の磁気共鳴手段の磁場よりも大きい磁場を発生さ せる第 2の磁場発生手段と、計測対象生体を、 RFパルスの照射に同期させて前記 第 1、第 2の磁場発生装置の間で移動させる計測対象物移動手段と、前記 RFパルス 応じて検出される信号に基づいて計測対象生体中の組織像を計測する計測手段と を有することを特徴とする生体計測装置が提供される。  [0013] In order to solve the above-described problem, according to the present invention, a first magnetic field generating means for generating a magnetic field of a predetermined magnitude and a magnetic field larger than the magnetic field of the first magnetic resonance means are generated. A second magnetic field generating means to be moved, a measurement object moving means for moving the measurement target living body between the first and second magnetic field generating apparatuses in synchronization with the irradiation of the RF pulse, and the RF pulse according to There is provided a living body measurement apparatus comprising: a measuring unit that measures a tissue image in a living body to be measured based on a detected signal.
[0014] 1の実施形態によれば、前記第 2の磁気共鳴手段は、少なくとも 1テスラ以上の磁場 を発生させ、核磁気共鳴を励起するためのものである。また、前記第 1の磁場発生手 段は、電子スピン共鳴を励起するためのものである。  [0014] According to one embodiment, the second magnetic resonance means is for generating a magnetic field of at least 1 Tesla and exciting nuclear magnetic resonance. The first magnetic field generating means is for exciting electron spin resonance.
[0015] さらに、前記計測対象物移動手段は、前記計測対象の前記第 1、第 2の磁場発生 手段間の移動を短時間、これに限定するものではないが、好ましくは 1秒以内、より好 ましくは 0. 7秒以内で完了するように構成されて 、るものである。  [0015] Further, the measurement object moving means is not limited to a short time, but preferably within 1 second, the movement of the measurement object between the first and second magnetic field generation means. It is preferably configured to complete within 0.7 seconds.
[0016] このような構成によれば、 Field Cycle法を用いる従来の生体計測装置と比較して 、電子スピン共鳴及び磁気共鳴の感度及び解像度を飛躍的に向上させることができ る複合型生体計測装置を得ることができる。 [0016] According to such a configuration, compared to a conventional biological measurement apparatus using the Field Cycle method. In addition, it is possible to obtain a composite biological measuring apparatus capable of dramatically improving the sensitivity and resolution of electron spin resonance and magnetic resonance.
[0017] すなわち、発明者らが予備実験をした結果、電子スピン励起後の生体水分子の緩 和時間は 1秒近くあり、 ESRのための電子スピン励起と MRIを同一の外部磁場で行 う必要がないことが明ら力となった。この新たな知見に基づいて、 MRI用の外部磁場 と ESR用外部磁場とを独立させた装置の試作及び実験を行ったところ、 MRI用の外 部磁場を 1テスラ以上と大きくし、 ESR用磁場 (8ミリテスラ)の間を 1秒以内(例えば 0 . 5秒程度)で実験動物を移動することで、高感度 ·高解像度の画像が得られることが 示され、 Field Cycle法を用いない新たな手法として本発明を完成するに至った。  That is, as a result of preliminary experiments by the inventors, the relaxation time of biological water molecules after electron spin excitation is close to 1 second, and electron spin excitation and MRI for ESR are performed in the same external magnetic field. It became clear that there was no need. Based on this new knowledge, we made a prototype and experimented with an external MRI magnetic field and an ESR external magnetic field, and found that the MRI external magnetic field was increased to 1 Tesla or more, and the ESR magnetic field was increased. It has been shown that high-sensitivity and high-resolution images can be obtained by moving experimental animals within 1 second (for example, about 0.5 seconds) between (8 millitesla). The present invention has been completed as a technique.
[0018] このような構成によれば、第 2の外部磁場発生手段を ESRIの外部磁場発生装置お よび PEDRIの電子スピン励起装置として用い、第 1の外部磁場発生手段を MRIおよ び PEDRIの外部磁場発生装置として用いることができる。したがって、ラジカル量の 時間変化画像は PEDRI、質的変化画像はスペクトル '空間 4次元 ESRIZMRIで得 られることになり、かつ第 2の外部磁場発生手段による磁場を大きくできるから、高感 度'高分解の画像を得られることになる。さら〖こ、上述したように、 PEDRIでの電子ス ピン励起装置と、 ESRIの外部磁場発生装置および共振器とは共用できることから、 統合ィ匕により、簡単な構成で大きな効果の装置を得ることができる。  [0018] According to such a configuration, the second external magnetic field generation means is used as an ESRI external magnetic field generation apparatus and a PEDRI electron spin excitation apparatus, and the first external magnetic field generation means is used as an MRI and PEDRI It can be used as an external magnetic field generator. Therefore, the time-change image of radical amount can be obtained by PEDRI and the qualitative change image can be obtained by spectrum 'space 4D ESRIZMRI, and the magnetic field by the second external magnetic field generation means can be increased, so high sensitivity' high resolution You will get an image. Furthermore, as mentioned above, since the electronic spin excitation device in PEDRI and the external magnetic field generator and resonator in ESRI can be shared, it is possible to obtain a highly effective device with a simple configuration through integration. Can do.
[0019] また、本発明の更なる 1の実施形態によれば、前記計測手段は、計測対象生体内 に生体内局在性の異なる複数のプローブを適用し、細胞膜を介して分離した微小空 間の組織像を分離して同時に画像解析するものである。この場合、前記生体内局在 性の異なる複数のプローブは、異なるマーカー(好ましくは N 14及び N 15)で標識さ れた-トロキシル化合物である。  [0019] Further, according to a further embodiment of the present invention, the measurement means applies a plurality of probes having different in-vivo localization in a measurement target living body, and separates microscopic voids separated through a cell membrane. The tissue image between them is separated and image analysis is performed simultaneously. In this case, the plurality of probes having different in vivo localizations are -troxyl compounds labeled with different markers (preferably N 14 and N 15).
[0020] このような構成によれば、生体内のナノ空間を同時画像解析することが可能になる  [0020] According to such a configuration, it is possible to simultaneously analyze the nanospace in the living body.
[0021] 本発明の別の 1の実施形態によれば、所定の大きさの磁場を発生させる第 1の磁場 発生手段と、前記第 1の磁気共鳴手段の磁場よりも大きい磁場を発生させる第 2の磁 場発生手段との間で、計測対象生体を、 RFパルスの照射に同期させて移動させる 計測対象物移動工程と、前記 RFパルスに応じて検出される信号に基づいて、計測 対象生体内の組織像を計測する計測工程とを有することを特徴とする生体計測方法 が提供される。 [0021] According to another embodiment of the present invention, a first magnetic field generating means for generating a magnetic field of a predetermined magnitude, and a first magnetic field for generating a magnetic field larger than the magnetic field of the first magnetic resonance means. Measurement object movement process to move the measurement target living body between the two magnetic field generation means in synchronization with the irradiation of the RF pulse and measurement based on the signal detected according to the RF pulse. And a measuring step for measuring a tissue image in the target living body.
[0022] また、計測対象生体内に、 N14及び N15で標識された生体内局在性の異なる複 数の-トロキシプローブを適用する工程と、前記計測対象を大きさの異なる 2つの磁 場を適用する工程と、前記標識を基に検出される信号に基づいて、計測対象生体内 の異なる組織像を同時に計測する工程とを有することを特徴とする生体計測方法も 提供される。  [0022] In addition, a step of applying a plurality of -troxi probes with different in-vivo localizations labeled with N14 and N15 in a measurement target living body, and two magnetic fields having different sizes in the measurement target There is also provided a biological measurement method comprising the steps of: applying and simultaneously measuring different tissue images in the measurement target living body based on a signal detected based on the label.
[0023] このような構成によれば、種々の酸化ストレス病態モデルや統合失調症など脳機能 障害モデルに適用,最適化し、レドックス代謝を含む動態解析'脳機能評価を標準化 する方法を得ることができる。すなわち、酸化ストレス疾患での活性酸素動態の解明 と抗酸ィ匕性医薬品の開発に大きく貢献することが可能である。  [0023] According to such a configuration, it is possible to obtain a method for standardizing kinetic analysis including 'redox metabolism' and brain function evaluation by applying and optimizing to various oxidative stress state models and cerebral dysfunction models such as schizophrenia. it can. In other words, it is possible to greatly contribute to the elucidation of active oxygen dynamics in the development of oxidative stress diseases and the development of anti-acidic drugs.
[0024] この発明の上記しない他の特徴及び顕著な効果は、次に説明する最良の実施形 態の項から、当業者が明確に理解できる。  [0024] Other features and remarkable effects not described above of the present invention can be clearly understood by those skilled in the art from the section of the best mode described below.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、この発明の実施の形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026] 図 1は本発明の生体計測装置 1を示す概略構成図であり図 2は、生体計測装置 1 の斜視図である。 FIG. 1 is a schematic configuration diagram showing a living body measuring apparatus 1 of the present invention, and FIG. 2 is a perspective view of the living body measuring apparatus 1.
[0027] この装置は、基本的に、低磁場用(例えばこの実施形態では ESRIZPEDRI)の第 1の外部磁場発生装置 2と、高磁場用(例えばこの実施形態では MRIZPEDRI)用 の第 2の外部磁場発生装置 3とを連結してなるものである。  [0027] This apparatus basically includes a first external magnetic field generator 2 for low magnetic fields (for example, ESRIZPEDRI in this embodiment) and a second external magnetic field generator for high magnetic fields (for example, MRIZPEDRI in this embodiment). The magnetic field generator 3 is connected.
[0028] 説明の便宜のため、第 2の外部磁場発生装置 3から説明すると、この第 2の外部磁 場発生装置 3は、支持基部 4と、この支持基部 4によって支持され大径円筒形の外形 を有するハウジング 5と、このハウジング 5の一端側の内部に設置されこのハウジング 5の内径部内 8に静磁場を発生させるための円筒形の超伝導磁石 6を有する。また、 前記ハウジング 5の内径面には、磁場勾配コイル 7が設置されており、前記で発生さ れた静磁場に所定の MRパルスシーケースに応じた所定規模の磁場勾配を所定の 回数で生成するようになっている。この第 2の外部磁場発生装置 3は、 MRIZPEDR I用に外部静磁場を提供するものである。 [0029] 一方、第 1の外部磁場発生装置 2は、前記ハウジング 5の他端内に、このハウジング と同心上に配置された電磁石 11と、磁場勾配コイル 12と、磁場掃引コイル 13とを有 する。この第 1の外部磁場発生装置 2は、前記電磁石 11の内径部内 15に ESRの外 部静磁場及び PEDRIにおける励起磁場を提供するものである。 [0028] For convenience of description, the second external magnetic field generator 3 will be described from the second external magnetic field generator 3. The second external magnetic field generator 3 is supported by the support base 4 and the support base 4 and has a large-diameter cylindrical shape. A housing 5 having an outer shape and a cylindrical superconducting magnet 6 that is installed inside one end of the housing 5 and generates a static magnetic field in an inner diameter portion 8 of the housing 5 are provided. Further, a magnetic field gradient coil 7 is installed on the inner diameter surface of the housing 5, and a magnetic field gradient of a predetermined scale corresponding to a predetermined MR pulse case is generated in a predetermined number of times in the generated static magnetic field. It is supposed to be. This second external magnetic field generator 3 provides an external static magnetic field for MRIZPEDR I. On the other hand, the first external magnetic field generator 2 has an electromagnet 11, a magnetic field gradient coil 12, and a magnetic field sweep coil 13 disposed concentrically with the other end of the housing 5. To do. This first external magnetic field generator 2 provides an external static magnetic field of ESR and an excitation magnetic field in PEDRI in the inner diameter portion 15 of the electromagnet 11.
[0030] 前記第 1、第 2の外部磁場発生装置 2、 3はその中心軸を一致させて配置され、そ の内径部内 8、 15には、円筒形形状の第 1の RFコイル 16 (共振器)及び第 2の RFコ ィル 17がそれぞれ同心軸上に設けられている。この第 1、第 2の RFコイル 16, 17は 、静磁場に直行する方向にラジオ波 (RF)の高周波(マイクロ波)磁界を形成するもの である。  [0030] The first and second external magnetic field generators 2 and 3 are arranged so that their central axes coincide with each other, and cylindrical inner first RF coils 16 (resonance) are provided in the inner diameter portions 8 and 15 thereof. And a second RF coil 17 are provided on the concentric axes. The first and second RF coils 16 and 17 form a radio frequency (RF) high frequency (microwave) magnetic field in a direction perpendicular to the static magnetic field.
[0031] また、前記第 1、第 2の外部磁場発生装置 2、 3間には、第 1、第 2の RFコイル 16、 1 7の中心軸線に沿って、直線移動装置 19が設置されている。この直線移動装置 19 は、前記中心軸上に設置されたガイド 20と、このガイド 20上にスライド自在に設けら れた計測対象生体保持部 21とを有する。この直線移動装置 19は、たとえばリニアモ ータで駆動されるようになっており、この場合、図 3に示すように、前記ガイド 20に設 けられた永久磁石力もなる固定子 22と、前記支持部側に設けられ電磁磁石力も構成 され長手方向に並べられた電磁石力もなる可動子 23とからなる。この可動子 23の極 性を所定の周期で切り替えることによって駆動及び停止が行えるようになつている。  In addition, a linear moving device 19 is installed between the first and second external magnetic field generators 2 and 3 along the central axes of the first and second RF coils 16 and 17. Yes. The linear moving device 19 includes a guide 20 installed on the central axis and a measurement target living body holding unit 21 slidably provided on the guide 20. The linear moving device 19 is driven by, for example, a linear motor. In this case, as shown in FIG. 3, the stator 22 provided in the guide 20 and also having a permanent magnet force, and the support It comprises a mover 23 which is provided on the part side and also has an electromagnetic magnet force and also has an electromagnet force arranged in the longitudinal direction. By switching the polarity of the mover 23 at a predetermined cycle, it can be driven and stopped.
[0032] この装置の制御について説明すると、まず、第 1の外部磁場発生装置 2は、第 1の 静磁場発生ドライバ 25を介して制御部 27に接続されている。この第 1の静磁場発生 ドライバ 25には、前記空芯コイル型電磁石 11と、磁場勾配コイル 12と、磁場掃引コィ ル 13に給電するための図示しない電源が接続されており、前記制御部 27からの指 令によって前記空芯コイル型電磁石 11と、磁場勾配コイル 12と、磁場掃引コイル 13 を制御するようになっている。この実施形態によれば、これに限定されるものではない 力 例えば第 1の外部磁場発生装置 2による静磁場の強さは 8mT、ギャップ幅は 15c m、三次元傾斜磁場は 100mTZm、磁場掃引コイル 13の磁場の強さは 2mTZsで ある。  The control of this device will be described. First, the first external magnetic field generation device 2 is connected to the control unit 27 via the first static magnetic field generation driver 25. The first static magnetic field generation driver 25 is connected to a power source (not shown) for supplying power to the air core coil type electromagnet 11, the magnetic field gradient coil 12, and the magnetic field sweep coil 13, and the control unit 27 The air core coil type electromagnet 11, the magnetic field gradient coil 12, and the magnetic field sweep coil 13 are controlled by an instruction from. According to this embodiment, the force is not limited to this. For example, the strength of the static magnetic field generated by the first external magnetic field generator 2 is 8 mT, the gap width is 15 cm, the three-dimensional gradient magnetic field is 100 mTZm, and the magnetic field sweep coil. The strength of 13 magnetic fields is 2mTZs.
[0033] 第 2の外部磁場発生装置 3は、第 2の静磁場発生ドライバ 26を介して制御部 27に 接続されている。この第 2の静磁場発生ドライバ 26には、前記超伝導磁石 6、磁場勾 配コイル 7に給電するための図示しない電源が接続されており、前記制御部 27に指 令によって超伝導磁石 6及び磁場勾配コイル 7を駆動するようになっている。この実 施形態によれば、この第 2の外部磁場発生装置 3による静磁場の強さは 2T (テスラ) 、ギャップ幅 20cm、三次元傾斜磁場 lOmTZmである力 これに限定されるもので はない。なお、後で詳しく説明するがこの静磁場の強さは現在の PEDRIの 70倍であ り、これにより 100倍程度の感度 '分解能向上を図ることができる。 The second external magnetic field generation device 3 is connected to the control unit 27 via a second static magnetic field generation driver 26. The second static magnetic field generation driver 26 includes the superconducting magnet 6 and a magnetic field gradient. A power supply (not shown) for supplying power to the distribution coil 7 is connected, and the superconducting magnet 6 and the magnetic field gradient coil 7 are driven by an instruction to the control unit 27. According to this embodiment, the strength of the static magnetic field generated by the second external magnetic field generator 3 is 2T (tesla), the gap width is 20 cm, and the force is a three-dimensional gradient magnetic field lOmTZm. . As will be described in detail later, the strength of this static magnetic field is 70 times that of the current PEDRI, which can improve the sensitivity by about 100 times.
[0034] また、前記第 1、第 2の RFコイル 16、 17は、 RFコイルドライバ 28、検出信号受信部 29を介して前記制御部 27に接続されている。この RFコイルドライバ 28には、 RFコィ ル 16、 17に給電するための図示しない電源が接続されており、制御部 27から指令さ れるシーケンスに従って RFコイル 16、 17を駆動するようになっている。 RFコイル 16 、 17に高周波パルスが印加され、前記保持部 21上の計測対象に対して高周波磁場 が印加される。そして、 RFコイル 16、 17で受信された電子スピン共鳴信号 Z磁気共 鳴信号は、前記検出信号受信部 29で受け取られ、前記制御部 27に渡されるように なっている。 In addition, the first and second RF coils 16 and 17 are connected to the control unit 27 via an RF coil driver 28 and a detection signal receiving unit 29. The RF coil driver 28 is connected to a power source (not shown) for supplying power to the RF coils 16 and 17, and drives the RF coils 16 and 17 in accordance with a sequence commanded by the control unit 27. . A high frequency pulse is applied to the RF coils 16, 17, and a high frequency magnetic field is applied to the measurement target on the holding unit 21. The electron spin resonance signal Z magnetic resonance signal received by the RF coils 16, 17 is received by the detection signal receiving unit 29 and passed to the control unit 27.
[0035] なお、ここで、これに限定されるものではな 、が、 ESRI計測の空間解像度及び撮 像時間は FOVを lcmとしたときのスペクトル空間 3次元画像及び 4次元画像で lmm 以内の空間分解能を 3次元で 1分以内、 4次元で 10分以内に取得できるものとなつ ている。  [0035] Here, although not limited to this, the spatial resolution and imaging time of ESRI measurement are the space within lmm in the spectral space 3D image and 4D image when FOV is lcm. The resolution can be acquired within 1 minute in 3 dimensions and within 10 minutes in 4 dimensions.
[0036] 前記直線駆動装置 19は、直線駆動装置ドライバ 30を介して制御部 27に接続され ている。直線駆動装置 19は、計測対象を第 1の外部磁場発生装置 2と第 2の外部磁 場発生装置 3の間で移動させるものであり、制御部 27からの指令されるシーケンスに 従い、 RFコイル 16、 17による高周波磁場の印加に同期したタイミングで前記計測対 象を駆動する。第 1の外部磁場発生装置 2から第 2の外部磁場発生装置 3までの駆 動時間は 1秒以内であることが好ましぐさらに好ましくは 0. 7秒以内であり、この実施 形態では 0. 5秒に設定される。  The linear drive device 19 is connected to the control unit 27 via a linear drive device driver 30. The linear drive device 19 moves the measurement object between the first external magnetic field generation device 2 and the second external magnetic field generation device 3, and follows the sequence commanded from the control unit 27 in accordance with the RF coil. The measurement target is driven at a timing synchronized with the application of the high-frequency magnetic field by 16 and 17. The drive time from the first external magnetic field generator 2 to the second external magnetic field generator 3 is preferably within 1 second, more preferably within 0.7 seconds, and in this embodiment it is 0. Set to 5 seconds.
[0037] 一方、前記制御部 27には、計測シーケンス処理部 31と、 PEDRI計測処理部 32と 、 ESRIZMRI計測処理部 33とが設けられている。計測シーケンス処理部 31は、前 記第 1、第 2の外部磁場発生装置 2、 3、第 1、第 2の RFコイル 16、 17に対する給電 シーケンスと、前記第 1、第 2の RFコイル 16、 17における計測シーケンスとを有し、上 記装置を制御するものである。前記 PEDRI計測処理部 32及び ESRIZMRI計測処 理部 33は、前記計測シーケンスに従って得られた電子スピン共鳴信号及び磁気共 鳴信号に基づいて画像処理を行い、その結果をモニター 35上に表示する。 On the other hand, the control unit 27 includes a measurement sequence processing unit 31, a PEDRI measurement processing unit 32, and an ESRIZMRI measurement processing unit 33. The measurement sequence processing unit 31 supplies power to the first and second external magnetic field generators 2 and 3 and the first and second RF coils 16 and 17. A sequence and a measurement sequence in the first and second RF coils 16 and 17 to control the apparatus. The PEDRI measurement processing unit 32 and the ESRIZMRI measurement processing unit 33 perform image processing based on the electron spin resonance signal and the magnetic resonance signal obtained according to the measurement sequence, and display the result on the monitor 35.
[0038] また、この画像処理はこの実施形態では、生体内局在性の異なる(例えば、膜透過 性の異なる)複数の-トロキシルプローブを合成しておき、これをそれぞれ N14と N1 5で標識することで、細胞膜 (厚さナノメートル)あるいは受容体などとの結合を介した 微小空間を分離同時画像解析することができるようになつている。  [0038] Further, in this embodiment, this image processing is performed by synthesizing a plurality of -troxyl probes having different in-vivo localizations (for example, different membrane permeabilities), and combining them with N14 and N15, respectively. Labeling makes it possible to separate and analyze images of minute spaces via binding to cell membranes (thickness nanometers) or receptors.
[0039] なお、上述した制御部 27は、実際にはコンピュータシステム力 なり、各処理部 31 〜33は、ハードディスク等に格納されたコンピュータソフトウェアプログラム力もなる。 これらのコンピュータソフトウェアプログラムは CPUによって適宜呼び出され実行され ることで、本発明の構成要素として機能するようになって!/ヽる。  Note that the control unit 27 described above actually has a computer system power, and the processing units 31 to 33 also have a computer software program power stored in a hard disk or the like. These computer software programs are appropriately called and executed by the CPU to function as components of the present invention!
[0040] 次に、この装置の動作について説明する。  Next, the operation of this apparatus will be described.
[0041] まず、前記直線移動装置 19の保持部 21上に計測対象の小動物、例えばマウスを 設置する。この例では、計測対象における、酸化ストレス疾患でのレドックス代謝異常 、あるいは統合失調症等での脳機能を空間画像解析する。  First, a small animal to be measured, such as a mouse, is placed on the holding unit 21 of the linear moving device 19. In this example, a spatial image analysis is performed on a brain function in a redox metabolism abnormality due to an oxidative stress disease or schizophrenia in a measurement target.
[0042] また、このマウスには、 N14、 N15で標識した-トロキシルラジカルを誘導体化した プローブ剤を導入しておく。この例では、生体内局在性の異なる(例えば、膜透過性 の異なる)複数のプローブを N14と N15で標識することで、細胞膜 (厚さナノメートル) あるいは受容体などとの結合を介した微小空間を分離同時画像解析可能にする。  [0042] In addition, a probe agent derivatized with -troxyl radical labeled with N14 or N15 is introduced into this mouse. In this example, multiple probes with different biolocalizations (eg, different membrane permeability) are labeled with N14 and N15, via binding to cell membranes (thickness nanometers) or receptors. Enables separation and simultaneous image analysis of minute spaces.
[0043] すなわち、本実施例のような高感度 ·高分解能の装置で画像解析を行うには、より 高感度 ·高選択性をもつ造影剤の開発が必須となる。高感度画像を得る一つの要素 として、造影剤自身のスペクトル線幅を狭くする手法が考えられる。造影剤の線幅狭 小は、造影剤自身の不対電子密度のプロトン局在性を小さくすることで可能となる。 一方、生体内でのラジカル反応を追跡するには、それぞれのラジカル種の酸化還元 電位に見合った酸化還元電位を有する-トロキシルスピンプローブ造影剤を合成す る必要がある。そこで、製薬メーカーが繁用している理論計算科学的手法を駆使して 分子設計を行い、新規造影剤の不対電子密度'酸ィ匕還元電位を算出し、その分子 設計に基づいて有機化学的合成を行い、さらにその造影剤の生物化学的反応性を 検証することで、生体内フリーラジカル反応を追跡するに最も適した造影剤を開発し たものである。 That is, in order to perform image analysis with a high-sensitivity / high-resolution apparatus as in this embodiment, it is essential to develop a contrast agent with higher sensitivity / high selectivity. As one element for obtaining a high-sensitivity image, a method of narrowing the spectral line width of the contrast agent itself can be considered. The line width of the contrast agent can be reduced by reducing the proton localization of the unpaired electron density of the contrast agent itself. On the other hand, in order to trace the radical reaction in vivo, it is necessary to synthesize a -troxyl spin probe contrast agent having a redox potential corresponding to the redox potential of each radical species. Therefore, molecular design is performed using the theoretical calculation scientific methods frequently used by pharmaceutical manufacturers, and the unpaired electron density (acid-reduction potential) of the new contrast agent is calculated. By conducting organic chemical synthesis based on the design and verifying the biochemical reactivity of the contrast agent, we have developed the most suitable contrast agent for tracking in vivo free radical reactions.
[0044] この実施形態では、コンピュータを利用した分子設計手法を用いて、種々の特性を 有する置換基を賦した-トロキシルプローブを 10種程度新規合成した。これらには、 これに限定されるものではないが、 a)血管内半減期 20分以上、 b)細胞内滞留性 5分 以上の高残留性プローブ、 c)細胞膜指向性プローブ、 d)血液脳関門通過性プローブ が含まれる。さらに、感度を倍増させるために共鳴吸収線幅が 0.5ガウス以内(巿販 ニトロキシルプローブは 1.0ガウス以上)になるように合成されたプローブ剤を用いた  In this embodiment, about 10 types of -troxyl probes having substituents having various properties were newly synthesized using a molecular design technique utilizing a computer. These include, but are not limited to: a) intravascular half-life of 20 minutes or longer, b) high retention probe with intracellular retention of 5 minutes or longer, c) cell membrane directional probe, d) blood brain Includes barrier-passing probes. Furthermore, in order to double the sensitivity, a probe agent synthesized so that the resonance absorption line width is within 0.5 gauss (commercially available nitroxyl probe is 1.0 gauss or more) was used.
[0045] ついで、前記直線駆動装置 19を駆動し、前記計測対象を前記第 1の外部磁場発 生装置 2による静磁場 8内の第 1の RFコイル 16内に位置させる。ついで、第 1の RF コイル 16から高周波を照射すると共に、前記掃引コイル 13を駆動することで、静磁 場を高速掃引する。このことで、計測対象中の不対電子が高周波を吸収し、電子スピ ンが共鳴励起される。マイクロ波の反射により ESR信号は、前記検出信号受信部 29 で受信される。 Next, the linear drive device 19 is driven, and the measurement object is positioned in the first RF coil 16 in the static magnetic field 8 by the first external magnetic field generation device 2. Next, high frequency is radiated from the first RF coil 16 and the sweep coil 13 is driven to sweep the magnetostatic field at high speed. As a result, unpaired electrons in the measurement object absorb high frequency, and the electron spin is resonantly excited. The ESR signal is received by the detection signal receiving unit 29 due to the reflection of the microwave.
[0046] 第 1の外部磁場発生装置 2における ESR計測が終了すると、前記直線駆動装置 1 9を駆動し、 0. 7秒以内、この例では 0. 5秒で計測対象を第 2の外部磁場発生装置 3にまで移動する。このことで、計測対象は 1T以上,この実施例では 2Tという非常に 強い静磁場に置かれる。このことで、共鳴励起された電子スピンが核スピンへェネル ギー遷移が生じさせられることになる。ついで、前記第 2の RFコイル 17を用い、高周 波照射により計測対象力も得られる信号を前記検出信号受信部 29で受信する。  [0046] When the ESR measurement in the first external magnetic field generator 2 is completed, the linear drive device 19 is driven, and within 0.7 seconds, in this example 0.5 seconds, the measurement target is set in the second external magnetic field. Move to generator 3. As a result, the object to be measured is placed in a very strong static magnetic field of 1T or more, in this example 2T. As a result, the resonantly excited electron spin causes a nuclear spin energy transition. Next, the detection signal receiving unit 29 receives a signal that can also obtain a measurement target force by high-frequency irradiation using the second RF coil 17.
[0047] このようにして検出信号受信部 29で受信された信号は、前記制御部 27で受け取ら れ、計測処理部 32、 33で処理される。 ESRIZMRI計測処理部 33は、前記第 1の R Fコイル 16から得られた ERS信号と第 2の RFコイル 17から得られた MRI信号とから ERS画像と MRI画像とを重畳させてなる画像を合成する。また、 PEDRI計測処理部 32は、第 2の RFコイル 17から得られた信号を処理することで、核スピン分布を示す 画像を合成する。 [0048] このような構成によれば、非常に感度が高ぐかつ高分解能の生体計測装置を得る ことができる。 The signal received by the detection signal receiving unit 29 in this way is received by the control unit 27 and processed by the measurement processing units 32 and 33. The ESRIZMRI measurement processing unit 33 synthesizes an image obtained by superimposing an ERS image and an MRI image from the ERS signal obtained from the first RF coil 16 and the MRI signal obtained from the second RF coil 17. . In addition, the PEDRI measurement processing unit 32 synthesizes an image showing the nuclear spin distribution by processing the signal obtained from the second RF coil 17. [0048] According to such a configuration, it is possible to obtain a biological measurement apparatus with extremely high sensitivity and high resolution.
[0049] すなわち、前述したように、発明者らは、予備実験により、電子スピン励起後の生体 水分子の緩和時間は 1秒近くあり、電子スピン励起と MRIを同一の外部磁場で行う 必要がないという知見を得、この新たな知見に基づいて、 MRI用の外部磁場と ESR 用外部磁場とを独立させた装置を完成させたものである。 MRI用の外部磁場と ESR 用外部磁場とが独立しているので、 MRI用の外部磁場を非常に大きくしてより高い 感度及び空間分解能を得ることができる。この実施形態では、 MRI用の第 1の外部 静磁場発生装置の磁場の大きさを 2テスラとし、 ESR用磁場 (8ミリテスラ)の間を 0. 5 秒程度で計測対象を移動させるようにした。このような構成及び方法によれば、 Field Cycle法を用いることなぐより高感度 ·高解像度の ESRZMRI重畳画像が得られ る。  [0049] That is, as described above, the inventors have conducted preliminary experiments that the relaxation time of biological water molecules after electron spin excitation is nearly 1 second, and it is necessary to perform electron spin excitation and MRI in the same external magnetic field. Based on this new knowledge, we have completed a device that separates the external magnetic field for MRI and the external magnetic field for ESR. Since the external magnetic field for MRI and the external magnetic field for ESR are independent, the external magnetic field for MRI can be made very large to obtain higher sensitivity and spatial resolution. In this embodiment, the magnitude of the magnetic field of the first external static magnetic field generator for MRI is 2 Tesla, and the measurement target is moved between ESR magnetic fields (8 millitesla) in about 0.5 seconds. . According to such a configuration and method, an ESRZMRI superimposed image with higher sensitivity and higher resolution can be obtained without using the Field Cycle method.
[0050] また、このような構成によれば、第 2の外部磁場発生装置 3を MRIおよび PEDRIの 外部磁場発生装置として用い、第 1の外部磁場発生手段 2を ESRIの外部磁場発生 装置および PEDRIの電子スピン励起装置として用いることができるので、 PEDRIも 融合することができる。そして上述したように MRIの外部磁場を大きくすることができ るので、高感度 ·高分解能の PEDRI画像を得ることができる。  [0050] According to such a configuration, the second external magnetic field generator 3 is used as an MRI and PEDRI external magnetic field generator, and the first external magnetic field generator 2 is used as an ESRI external magnetic field generator and PEDRI. PEDRI can also be fused. As described above, the external magnetic field of the MRI can be increased, so that a highly sensitive and high resolution PEDRI image can be obtained.
[0051] 言い換えると、ラジカル量の時間変化画像は PEDRI、質的変化画像はスペクトル' 空間 4次元 ESRI/MRIで得られることになり、かつ第 2の外部磁場発生装置 3による 磁場を大きくできるから、高感度 ·高分解の画像を得られることになる。さらに、上述し たように、 PEDRIでの電子スピン励起装置と、 ESRIの外部磁場発生装置および共 振器とは共用できることから、統合ィ匕により、設置面積を非常に小さくしたコンパクトな 装置を得ることができる。  [0051] In other words, the time-change image of the radical amount can be obtained by PEDRI, the qualitative change image can be obtained by spectrum 'space 4D ESRI / MRI, and the magnetic field by the second external magnetic field generator 3 can be increased. High sensitivity and high resolution images can be obtained. Furthermore, as described above, since the electron spin excitation device in PEDRI and the external magnetic field generator and resonator in ESRI can be shared, a compact device with a very small installation area can be obtained by integration. be able to.
[0052] さらに、本発明の更なる 1の実施形態によれば、前記 PEDRI計測処理部 32及び E SRIZMRI計測処理部 33は、計測対象内に生体内局在性の異なる複数のプローブ を適用し、細胞膜を介して分離した微小空間の組織像を分離して同時に画像解析す るものである。このような構成によれば、生体内のナノ空間を同時画像解析することが 可會 になる。 [0053] なお、この発明は上記一実施形態に限定されるものではなぐ発明の要旨を変更し な!ヽ範囲で種々変形可能である。 [0052] Furthermore, according to a further embodiment of the present invention, the PEDRI measurement processing unit 32 and the ESRIZMRI measurement processing unit 33 apply a plurality of probes having different in-vivo localizations within a measurement target. In addition, a tissue image of a minute space separated through a cell membrane is separated and simultaneously analyzed. According to such a configuration, it is possible to simultaneously analyze the nanospace in the living body. [0053] It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
[0054] たとえば、上記一実施形態では、第 1の外部磁場発生装置の電磁石 11と、第 2の 外部磁場発生装置の超伝導磁石 6は、水平方向に離間して設けられていたが、これ に限定されるものではない。図 4に示すように、高磁場を発生させる超伝導磁石 6 'を 、ハウジング 5の全長に亘つて設け、電磁石 11,を減磁用のものとして第 1の外部磁 場装置用に磁場を小さくするように構成してもよい。すなわち、この場合、第 1の外部 磁場発生装置 2が発生する低磁場は、前記超伝導磁石 6'と、電磁石 11'とか生成さ れること〖こなる。  For example, in the above embodiment, the electromagnet 11 of the first external magnetic field generator and the superconducting magnet 6 of the second external magnetic field generator are provided separately in the horizontal direction. It is not limited to. As shown in FIG. 4, a superconducting magnet 6 ′ for generating a high magnetic field is provided over the entire length of the housing 5, and the electromagnet 11 is used for demagnetization to reduce the magnetic field for the first external magnetic field device. You may comprise. That is, in this case, the low magnetic field generated by the first external magnetic field generator 2 is generated by the superconducting magnet 6 ′ and the electromagnet 11 ′.
[0055] また、上記一実施形態では、上記生体計測装置は、 ESRIZMRIZPEDRIであつ たが、これに限定されるものではない。異なる外部磁場発生装置間で試料を移動さ せる装置であれば、いかなる装置にも適用可能である。  [0055] In the above embodiment, the living body measurement apparatus is ESRIZMRIZPEDRI, but is not limited thereto. The present invention can be applied to any apparatus that moves a sample between different external magnetic field generators.
図面の簡単な説明  Brief Description of Drawings
[0056] [図 1]この発明の実施形態を示す概略構成図。  FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
[図 2]同じぐ斜視図。  [Fig. 2] Same perspective view.
[図 3]同じぐ直線移動機構を示す縦断面図。  FIG. 3 is a longitudinal sectional view showing the same linear movement mechanism.
[図 4]他の実施形態を示す概略構成図。  FIG. 4 is a schematic configuration diagram showing another embodiment.
符号の説明  Explanation of symbols
1·· -生体計測装置  1 ·· -Biometric device
2·· '第 1の外部磁場発生手段  2 '' First external magnetic field generation means
3·· '第 1の外部磁場発生装置  3 '' First external magnetic field generator
4·· -支持基部  4 ... Support base
5·· -ノ、ウジング  5 ...-No, Uzing
6·· '超伝導磁石  6 ... 'Superconducting magnet
7·· -磁場勾配コイル  7. Magnetic field gradient coil
8·· -内径部内  8 ... Inside the inner diameter
11 …電磁石  11… Electromagnet
12 …磁場勾配コイル IB"磁場掃引コイル 12… Magnetic field gradient coil IB "magnetic field sweep coil
IS- ··内径部内  IS -... inside the inner diameter
16· "第 1の RFコイル  16 · “First RF coil
17· ■·第 2の RFコイル  17 ··· Second RF coil
19· 直線移動装置  19 · Linear movement device
20· "ガイド 20 · "Guide
1· ··保持部 1 ... Holding part
2· ··固定子 2 ... Stator
3· ··可動子 3 ... Mover
5·' '·第 1の静磁場発生ドライバ 6·' '·第 2の静磁場発生ドライバ 7··制御部 5 · '' · First static magnetic field generation driver 6 · '' · Second static magnetic field generation driver 7 ·· Control unit
8·· •RFコイルドライバ 8 ... RF coil driver
9·· •検出信号受信部 9 • Detection signal receiver
0·· -直線駆動装置ドライバ 1·· '計測シーケンス処理部 2·· •PEDRI計測処理部 3·· •MRI計測処理部 0-Linear drive driver 1 ... 'Measurement sequence processor 2 · PEDRI measurement processor 3 · MRI measurement processor
5·· 'モニター  5 ... 'Monitor

Claims

請求の範囲 The scope of the claims
[1] 所定の大きさの磁場を発生させる第 1の磁場発生手段と、  [1] first magnetic field generating means for generating a magnetic field of a predetermined magnitude;
前記第 1の磁場発生手段の磁場よりも大きい磁場を発生させる第 2の磁場発生手 段と、  A second magnetic field generating means for generating a magnetic field larger than the magnetic field of the first magnetic field generating means;
計測対象生体を、 RFパルスの照射に同期させて前記第 1、第 2の磁場発生手段の 間で移動させる計測対象物移動手段と、  A measurement object moving means for moving the measurement target living body between the first and second magnetic field generation means in synchronization with the irradiation of the RF pulse;
前記 RFパルスに応じて検出される信号に基づいて計測対象生体中の組織像を計 測する計測手段と  Measuring means for measuring a tissue image in a measurement target living body based on a signal detected according to the RF pulse;
を有することを特徴とする生体計測装置。  A living body measurement apparatus characterized by comprising:
[2] 請求項 1記載の生体計測装置において、 [2] In the biological measurement device according to claim 1,
前記第 2の磁場発生手段は、少なくとも 1テスラ以上の磁場を発生させ、核磁気共 鳴を励起するためのものであることを特徴とする生体計測装置。  The living body measuring apparatus, wherein the second magnetic field generating means is for generating a magnetic field of at least 1 Tesla and exciting nuclear magnetic resonance.
[3] 請求項 1記載の生体計測装置において、 [3] In the biological measurement device according to claim 1,
前記計測手段は、  The measuring means includes
計測対象生体内に生体内局在性の異なる複数のプローブを適用し、異なる生体組 織像を分離して同時に画像解析するものであることを特徴とする生体計測装置。  A living body measuring apparatus characterized by applying a plurality of probes having different in vivo localities in a measurement target living body, separating different living body tissue images, and simultaneously performing image analysis.
[4] 請求項 3記載の生体計測装置にお 、て、 [4] In the biological measurement device according to claim 3,
前記生体内局在性の異なる複数のプローブは、異なるマーカーで標識されたラベ ル化合物であることを特徴とする生体計測装置。  The biological measurement apparatus, wherein the plurality of probes having different in vivo localizations are label compounds labeled with different markers.
[5] 請求項 4記載の生体計測装置にお 、て、 [5] In the biological measurement device according to claim 4,
前記生体内局在性の異なる複数のプローブは、 N14及び N15で標識された-トロ キシル化合物であることを特徴とする生体計測装置。  The biological measurement apparatus, wherein the plurality of probes having different in vivo localizations are -troxyl compounds labeled with N14 and N15.
[6] 所定の大きさの磁場を発生させる第 1の磁場発生手段と、前記第 1の磁気共鳴手 段の磁場よりも大きい磁場を発生させる第 2の磁場発生手段との間で、計測対象生 体を、 RFパルスの照射に同期させて移動させる計測対象物移動工程と、 [6] An object to be measured between a first magnetic field generating means for generating a magnetic field of a predetermined magnitude and a second magnetic field generating means for generating a magnetic field larger than the magnetic field of the first magnetic resonance means. A measurement object moving process for moving the organism in synchronization with the irradiation of the RF pulse,
前記 RFパルスに応じて検出される信号に基づ ヽて、計測対象生体内の組織像を 計測する計測工程と  A measurement process for measuring a tissue image in a measurement target living body based on a signal detected according to the RF pulse;
を有することを特徴とする生体計測方法。 A biological measurement method characterized by comprising:
[7] 請求項 6記載の生体計測方法にお 、て、 [7] In the biological measurement method according to claim 6,
前記第 2の磁場発生手段は、少なくとも 1テスラ以上の磁場を発生させ、核磁気共 鳴を励起するためのものであることを特徴とする生体計測方法。  The biological measurement method, wherein the second magnetic field generating means is for generating a magnetic field of at least 1 Tesla and exciting nuclear magnetic resonance.
[8] 請求項 6記載の生体計測方法にお 、て、 [8] In the biological measurement method according to claim 6,
前記計測工程は、  The measurement step includes
計測対象生体内に生体内局在性の異なる複数のプローブを適用し、異なる生体組 織像を分離して同時に画像解析するものであることを特徴とする生体計測方法。  A living body measuring method characterized by applying a plurality of probes having different in vivo localization in a living body to be measured, separating different living body tissue images, and simultaneously performing image analysis.
[9] 請求項 8記載の生体計測方法にお 、て、 [9] In the biological measurement method according to claim 8,
前記生体内局在性の異なる複数のプローブは、異なるマーカーで標識されたラベ ル化合物であることを特徴とする生体計測方法。  The biological measurement method, wherein the plurality of probes having different in-vivo localizations are label compounds labeled with different markers.
[10] 請求項 9記載の生体計測方法にお 、て、 [10] In the biological measurement method according to claim 9,
前記生体内局在性の異なる複数のプローブは、 N14及び N15で標識された-トロ キシル化合物であることを特徴とする生体計測方法。  The biological measurement method, wherein the plurality of probes having different in vivo localizations are -troxyl compounds labeled with N14 and N15.
[11] 計測対象生体内に、 N14及び N15で標識された生体内局在性の異なる複数の- トロキシプローブを適用する工程と、 [11] A step of applying a plurality of -troxy probes labeled with N14 and N15 and having different in-vivo localizations in a measurement target body;
前記計測対象を大きさの異なる 2つの磁場を適用する工程と、  Applying two magnetic fields of different sizes to the measurement object;
前記標識を基に検出される信号に基づいて、計測対象生体内の異なる組織像を 同時に計測する工程と  A step of simultaneously measuring different tissue images in a living body to be measured based on a signal detected based on the label;
を有することを特徴とする生体計測方法。  A biological measurement method characterized by comprising:
[12] 請求項 11記載の生体計測方法にぉ 、て、 [12] The biological measurement method according to claim 11, wherein
前記大きさの異なる 2つの磁場を適用する工程は、さらに、前記計測対象を 2つの 磁場発生装置の間を移動させる計測対象物移動工程を含むことを特徴とする生体 計測方法。  The step of applying two magnetic fields having different sizes further includes a measurement object moving step of moving the measurement object between two magnetic field generators.
PCT/JP2006/301278 2005-01-28 2006-01-27 Somatic measurement device and method thereof WO2006080417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005020556A JP2006204551A (en) 2005-01-28 2005-01-28 Bioinstrumentation apparatus and its method
JP2005-020556 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006080417A1 true WO2006080417A1 (en) 2006-08-03

Family

ID=36740441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301278 WO2006080417A1 (en) 2005-01-28 2006-01-27 Somatic measurement device and method thereof

Country Status (2)

Country Link
JP (1) JP2006204551A (en)
WO (1) WO2006080417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296546A2 (en) * 2008-07-08 2011-03-23 Kyushu University Measurement device and measurement method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028798A1 (en) * 2005-08-11 2009-01-29 Government Of The Usa, Represented By The Secretary, Dept.Of Health And Human Services Method for determining redox status of a tissue
EP2088447A4 (en) 2006-11-30 2010-10-13 Japan Science & Tech Agency Nuclear magnetic resonance imaging device, and imaging system and imaging method using the same
JP5319121B2 (en) 2007-01-30 2013-10-16 株式会社東芝 Medical support system and medical support device
JP5252444B2 (en) 2009-03-26 2013-07-31 国立大学法人九州大学 Measuring device and measuring method
US9121918B2 (en) 2010-07-26 2015-09-01 National University Corporation Hokkaido University Image acquiring method and image acquiring apparatus
WO2012046241A1 (en) 2010-10-06 2012-04-12 Aspect Magnet Technologies Ltd. A method for providing high resolution, high contrast fused mri images
US9576712B2 (en) 2012-07-02 2017-02-21 Hitachi Metals, Ltd. Magnetic circuit for magnetic field generator
WO2014007124A1 (en) 2012-07-02 2014-01-09 国立大学法人九州大学 Magnetic field application device
WO2018158891A1 (en) 2017-03-01 2018-09-07 国立大学法人九州大学 Biometric method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344964A (en) * 1992-06-15 1993-12-27 Toshiba Corp Ct scanner
JPH1028682A (en) * 1996-03-28 1998-02-03 Siemens Ag Magnet device for magnetic resonance device for diagnosis
JPH10127598A (en) * 1996-10-31 1998-05-19 Jeol Ltd Esr imaging device
WO2003032836A2 (en) * 2001-10-19 2003-04-24 Koninklijke Philips Electronics N.V. Multimodality medical imaging system and method with separable detector devices
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344964A (en) * 1992-06-15 1993-12-27 Toshiba Corp Ct scanner
JPH1028682A (en) * 1996-03-28 1998-02-03 Siemens Ag Magnet device for magnetic resonance device for diagnosis
JPH10127598A (en) * 1996-10-31 1998-05-19 Jeol Ltd Esr imaging device
WO2003032836A2 (en) * 2001-10-19 2003-04-24 Koninklijke Philips Electronics N.V. Multimodality medical imaging system and method with separable detector devices
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUMOTO S. ET AL.: "ESR/NMR Jyujyo Gazo no Tameno Yugogata Kyoshinki no Kaihatsu", THE SOCIETY OF ELECTRON SPIN SCIENCE AND TECHNOLOGY NENKAI KOEN YOSHISHU, 2003, pages 68 - 69 *
UTSUMI H. ET AL.: "In vivo electron spin resonance-computed tomography/nitroxyl probe technique for non-invasive analysis of oxidative injuries", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 416, 2003, pages 1 - 8, XP004435233 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296546A2 (en) * 2008-07-08 2011-03-23 Kyushu University Measurement device and measurement method
EP2296546A4 (en) * 2008-07-08 2013-05-22 Univ Kyushu Measurement device and measurement method
US8532740B2 (en) 2008-07-08 2013-09-10 Kyushi University Measurement device and measurement method

Also Published As

Publication number Publication date
JP2006204551A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
WO2006080417A1 (en) Somatic measurement device and method thereof
Kruk et al. NMR techniques in metabolomic studies: A quick overview on examples of utilization
Hövener et al. Toward biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in situ spectroscopy and high-field imaging
US8532740B2 (en) Measurement device and measurement method
Cistola et al. Compact NMR relaxometry of human blood and blood components
Rovedo et al. Molecular MRI in the Earth’s magnetic field using continuous hyperpolarization of a biomolecule in water
JPH02198540A (en) Surgical instrument
US20190107593A1 (en) Magnetic resonance methodology for imaging of exchange-relayed intramolecular nuclear overhauser enhancement effects in mobile solutes
Zotev et al. Microtesla MRI with dynamic nuclear polarization
JPWO2002022012A1 (en) Magnetic resonance imaging system
WO2009090609A1 (en) Measurement method using nuclear magnetic resonance spectroscopy and light with orbital angular momentum
JP5252444B2 (en) Measuring device and measuring method
Marshall et al. Radio-frequency sweeps at microtesla fields for parahydrogen-induced polarization of biomolecules
JP2008212634A (en) Magnetic resonance imaging apparatus and image analysis method and image analysis program therefor
Zubkov et al. Ultrahigh field magnetic resonance imaging: new frontiers and possibilities in human imaging
WO2014196525A1 (en) Measurement apparatus and measurement method
JP5267978B2 (en) Nuclear magnetic resonance imaging system
JPH10277009A (en) Device and method for monitoring position of insertion instrument inserted inside testee body in magnetic resonance inspection device
CN113030144B (en) Method for realizing magnetic resonance imaging of target by utilizing nuclear spin singlet state and application
Elas et al. Electron paramagnetic resonance imaging-solo and orchestra
Ng Portable NMR-based sensors in medical diagnosis
EP4116728A1 (en) Nuclear magnetic resonance measurement method and nuclear magnetic resonance apparatus
US20080214924A1 (en) Magnetic Resonance Spectroscopy
JP2858818B2 (en) Inspection frame
Elas Martyna Elas, Martyna Krzykawska-Serda, Michał Gonet, Anna Kozińska, and Przemysław M. Płonka

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06712444

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712444

Country of ref document: EP