WO2006080136A1 - Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna - Google Patents

Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna Download PDF

Info

Publication number
WO2006080136A1
WO2006080136A1 PCT/JP2005/021603 JP2005021603W WO2006080136A1 WO 2006080136 A1 WO2006080136 A1 WO 2006080136A1 JP 2005021603 W JP2005021603 W JP 2005021603W WO 2006080136 A1 WO2006080136 A1 WO 2006080136A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
probe
sequence
stranded
target gene
Prior art date
Application number
PCT/JP2005/021603
Other languages
French (fr)
Japanese (ja)
Inventor
Taira Enomoto
Original Assignee
Gene & Gene Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gene & Gene Technology Ltd. filed Critical Gene & Gene Technology Ltd.
Publication of WO2006080136A1 publication Critical patent/WO2006080136A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers

Definitions

  • the present invention relates to a method mainly for rapid extraction, separation and purification, detection, cloning, etc. of a target gene from a genomic gene library or cDNA library.
  • the hybridization method of the probe DNA bound to the solid particle and the target gene (Patent Document 1) or the probe bound to the solid particle
  • a method of extracting the target gene into a solid layer using a bridge nucleotide having a sequence complementary to both the DNA and the target gene (Patent Document 2), linking the biotin to one end of the oligonucleotide complementary to the target gene, and A method (Non-patent Document 1) for extracting a target gene from avidin-binding particles using a specific binding reaction between avidin and avidin has been developed and used.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-89294
  • Patent Document 2 International Publication WO2004-101785
  • Patent Document 3 US Patent No. 5500356
  • Non-patent document 1 “Biomagnetic Techniques in Molecular Biology”, Dynal, 1995
  • oligonucleotide probe method bound to a solid layer particle "avidin 'biotin probe method” and "bridge nucleotide probe method”
  • shape of the probe for extracting the target gene is specified.
  • the shape of the DNA to be extracted is not specified.
  • DNA libraries such as the extracted plasmid (plasmid) cDNA library, plasmid genome DNA, and cosmid (cosmid) genomic library are characterized by the nature of their DNA: 1) super coiled DNA, It exists in the form of 2) open circle DNA and 3) linear DNA.
  • the target gene is isolated and extracted using DNA that is a mixture of these three DNA shapes without specifying the physical and physical shape of the target DNA, the properties of the DNA hybridization In the above three DNA forms, almost only 2) and 3) open circular DNA, linear single-stranded DNA derived from linear DNA or single-stranded circular DNA is separated and extracted.
  • the linear single-stranded DNA or single-stranded circular DNA isolated and extracted in this way is suitable for verifying the presence of the target gene. It is impossible or much more labor and time to introduce into a cell and clone the gene of interest from here.
  • Patent Document 3 the “gene cloning method based on double-stranded circular synthesis from single-stranded circular DNA” (Patent Document 3) requires a complicated in vitro enzyme synthesis process after extraction, which is complicated, inaccurate, and expensive. Cost is also a problem.
  • the base point is 0 to 7 bases upstream in the upstream region adjacent to the base sequence in the target gene corresponding to the base sequence complementary to the target gene in the probe DNA-binding particle or bridge nucleotide. 50-base single-stranded DNA (upstream blocking sequence; upstream
  • Blocking sequence, Up-BS and 20-50 base sequence single-stranded DNA (downstream blocking sequence, Down-BS) starting from 0-7 base downstream downstream Hybridization force between the denatured DNA sample containing the target gene and the probe DNA is hindered by the rehybridization of the DNA in the sample, resulting in a drastic decrease in the recovery efficiency of the target gene DNA.
  • clover DNA rapidly undergoes self-pairing (association) and closes again in a closed circle before hybridization with the probe DNA, and cannot be captured by the probe DNA particle, resulting in the target gene cloning. Yield reduction ⁇ There is a problem that causes a drastic decrease.
  • the present invention relates to DNA cleavage (nick) of any of the samples containing the gene of interest in the cDNA plasmid 'library or the genomic' plasmid 'library or the cosmid' library in the three existing forms. Rapid extraction and purification of target genes using completely closed double-stranded DNA without a site as a sample target.
  • the target gene DNA sequence is obtained by hybridizing the closed circular double-stranded DNA to the probe DNA complex particle containing a DNA sequence (probe DNA sequence) complementary to at least a part of the base sequence and a solid particle.
  • the closed circular double-stranded DNA in which DNA is incorporated is collected into solid-layer particles in a form that can be directly transferred to the host cell, eluted with an elution solution, and introduced into a host cell such as Escherichia coli (transformed).
  • a host cell such as Escherichia coli
  • the present invention is a novel cycle of 5 cycles or more in the range of 50 ° C to 70 ° C.
  • Single-stranded bridge nucleotide probe for probes prepared by the hybridization method DNA binding particle Single-stranded DNA sequence that binds to the probe Single-stranded DNA sequence that includes the binding sequence Complementary probe DNA binding particle force Complementary DNA sequence that is complementary to at least a part of the base sequence of the target gene ( Probe DNA sequence) and a single-stranded bridge nucleotide for probes comprising a single-stranded bridge nucleotide complementary binding sequence for probes of the probe DNA-binding particle,
  • the bridge nucleotide complementary binding sequence has a complementarity of 80% or more and is firmly complementary, or a single-stranded chain bound to a solid particle.
  • Probe DNA binding particle force consisting of partial column force Complementary sequence (Tm value A) complementary to at least part of the base sequence of the target gene and complementary to at least part of single-stranded DNA sequence part of probe DNA binding particle A sequence (Tm value B), and the difference between the two Tm values is at least 8 ° C or more (Tm value B—Tm value A> 8 ° C).
  • One or a single-stranded bridge nucleotide probe for probe DNA sharing particle consisting of a single-stranded DNA sequence part of the probe DNA-binding particle, or at least a part of the base sequence of the target gene
  • a nucleotide containing a complementary DNA sequence is formed by direct covalent bonding, and as a result, a probe single-stranded bridge nucleotide is directly bonded to a solid particle. Used as composite particles By the method to solve the above problems.
  • the present invention also provides, among the single-stranded bridged nucleotide probe DNA-binding particles for probes, a sequence complementary to a part of the base sequence of the target gene (Tm value A) and one of the probe DNA-binding particles.
  • Tm value A a sequence complementary to a part of the base sequence of the target gene
  • Tm value B a sequence complementary to at least part of the base sequence of the double-stranded DNA sequence
  • the present invention also provides the single-stranded DNA of the probe DNA-binding particle having a partial force of the single-stranded DNA sequence bound to the solid layer particle, among the single-stranded bridged nucleotide probe DNA covalent bond particles for the probe.
  • a DNA synthesizing enzyme a nucleotide containing a sequence (probe DNA sequence) complementary to at least a part of the base sequence of the target gene of the single-stranded bridge nucleotide is bound to the probe DNA.
  • the present invention relates to a 20-50 base sequence single-stranded DNA based on 0 to 7 bases upstream of the upstream region adjacent to the base sequence of the target gene corresponding to the probe DNA sequence in the probe DNA complex particle.
  • BS method the extraction, purification, and cloning method of the target gene performed in the presence of at least 1000 times the ratio of the number of molecules to the number of target gene molecules.
  • a closed circular double-stranded DNA sample containing a target gene is denatured in a 0.1N to 0.4N alkali solution at a low temperature of 0 ° C to 10 ° C for 20 minutes to 1 hour.
  • the above problem was solved by the extraction, purification, and cloning methods of the target gene.
  • the present invention also provides that a closed circular double-stranded DNA sample containing the gene of interest is treated in the presence of the blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately at 0 ° C.
  • the above problems were solved by a method of extracting, purifying, and cloning the target gene, which was rapidly cooled to ⁇ 4 ° C. and denatured.
  • the present invention relates to a closed circular double-stranded DNA sample containing a target gene as a probe DNA complex.
  • the above problems have been solved by the above-described extraction, purification, and cloning methods that hybridize with body particles at a low salt concentration (50 to 350 mM).
  • the present invention also provides a closed circular double-stranded DNA contained in a recovered product from a host cell containing the target gene concentrated by the extraction, purification, and cloning method of the present invention as a target DNA molecule. Extraction, purification, and cloning by the above-described method of the present invention. By the multi-site cloning method, the conventional method is almost impossible or requires a great deal of time and labor. One millionth (0.0001%), 10 million It enabled rapid and reliable cloning of a very small amount of a target gene that exists only with a probability of 1 / (0.00001%).
  • “in a form that can be directly transformed into a host cell” means a DNA form that can be introduced into a host and rapidly cleave the target gene DNA in large quantities, that is, at least fixed to a solid particle. Means that the shape of the closed circular DNA is maintained up to the point of time.
  • the single-stranded bridge nucleotide complementary binding sequence for a probe consists of a partial force of a single-stranded sequence bound to a solid particle as a probe DNA complex particle for recovering a target gene.
  • Probe DNA binding particle force For probes containing a DNA sequence (probe sequence) complementary to at least a part of the base sequence of the target gene and a sequence complementary to a part of the single-stranded sequence part of the probe DNA binding particle.
  • the term “complementation rate” refers to a sequence that has achieved complementary binding to the corresponding single-stranded bridge nucleotide for probes in the single-stranded bridge nucleotide complementary binding sequence for probes. It means the ratio to the entire probe single-stranded bridge nucleotide complementary binding sequence.
  • the closed circular double-stranded DNA sample containing the target gene DNA used in the present invention desirably contains 60% or more, particularly preferably 80% or more of the closed circular double-stranded DNA.
  • Linear single-stranded or double-stranded DNA open circular double-stranded with at least one nick If the DNA content exceeds 40%, it will be difficult to extract and purify the target gene in a closed circular double strand.
  • the DNA sample may be derived from any of cDNA plasmid 'library, genomic DNA library, cDNA or genomic' cosmid 'library. Any method may be used for preparing a DNA sample containing 60% or more of closed circular double-stranded DNA.
  • CsCl method gel cutting method, DNA adsorption particle membrane (Takara Bio mimi-prep kit)
  • DNA adsorption particle membrane Tekjet mimi-prep kit
  • the ratio of the closed circular double-stranded DNA exceeds 80%, it can be used as a sample for cloning the target gene DNA even if it is contaminated with RNA.
  • the probe DNA complex particle used in the present invention is not limited as long as it contains a DNA sequence (probe DNA sequence) complementary to at least a part of the sequence of the target gene bound to the solid particle.
  • a DNA sequence probe DNA sequence
  • the following two types are exemplified.
  • One has a sequence complementary to a part of the base sequence of the target gene (Tm value A) and a sequence complementary to at least a part of the single-stranded DNA sequence part of the probe DNA binding particle (Tm value B).
  • Tm value A a sequence complementary to a part of the base sequence of the target gene
  • Tm value B the difference between the two Tm values is at least 8 ° C (Tm value B—Tm value A> 8 ° C).
  • Probe single nucleotide bridge nucleotide and probe DNA binding particle hybridized probe nucleotide probe Using a DNA synthesizing enzyme such as DNA binding particle ( Figure 6) and the other, Taleno 'fragment' DNA 'polymerase (Klenow fragment DNA polymerase), probe the single-stranded DNA sequence portion of the probe DNA binding particle.
  • This is a bridged nucleotide probe DNA covalent particle for probes capable of forming any arbitrary DNA sequence by enzymatically linking nucleotides containing the DNA sequence (Fig. 7).
  • the Tm value refers to the temperature at which half of a DNA molecule having a single-stranded complementary base sequence of about 1 to 50 base pairs is complementary and hybridized! / .
  • probe D The NA-bonded particles are probed for the target gene bridge nucleotide probe, and the probe is bound to the probe-DNA-bound particle so that it does not dissociate in the extraction process such as hybridization with the DNA-bound particle and subsequent washing.
  • the single-stranded bridge nucleotide complementary binding sequence for complementary binding to the DNA sequence portion of the probe single-stranded bridge nucleotide prepared to bind to the DNA sequence in a complementary manner with a complementation ratio of 80% or more. It is preferable.
  • the complementary binding of the single-stranded DNA sequence portion bound to the surface of the probe DNA-binding particle and the sequence portion complementary to the single-stranded DNA sequence portion of the single-stranded bridge nucleotide for probe (Tm Since value B) is a hydrogen bond that is vulnerable to heat, low salt concentration, and pH fluctuations as an individual chemical bond type, it is complementary to at least part of the base sequence of the target gene in the single-stranded bridge nucleotide. It must have a DNA sequence that forms a value that is at least 8 ° C greater than the Tm value A of the sequence (probe DNA sequence).
  • the probe DNA sequence portion located on the surface of the bridging nucleotide probe DNA-binding particle for the probe is capable of being infinitely long in sequence and length.
  • Hybridization with a single-stranded bridging nucleotide To increase the efficiency of the determination as much as possible, and to minimize the occurrence of non-specific hybridization between the target gene and the single-stranded DNA sequence located on the surface of the DNA binding particle.
  • the nucleotide sequence is 10 base sequences or more and 100 base sequences or less.
  • the single-stranded DNA sequence portion of the probe DNA-binding particle that is necessary to create the bridge nucleotide probe DNA-binding particle for the probe that sufficiently satisfies “Tm value B—Tm value A> 8 ° C” is complementary binding. It is most desirable that the sequence has more dG or dC base sequences with three hydrogen-bonding arms when formed. Ideally, the probe in the single-stranded bridge nucleotide for the probe.
  • the single-stranded bridge nucleotide for a probe used in the present invention has a sequence complementary to at least a part of a single-stranded DNA sequence portion bound to a solid particle on one side, and at least a part of the base sequence of the target gene. And the other sequence (probe DNA sequence).
  • These complementary sequences do not necessarily have to be located at the ends, but are desirably located near the ends to minimize steric hindrance during hybrid formation.
  • the probe bridging nucleotide probe DNA covalently bonded particle is obtained by neutralizing the single-stranded DNA sequence portion of the probe DNA-binding particle and the single-stranded bridge nucleotide for the probe, and then synthesizing DNA such as talenow, fragment, DNA, polymerase, etc.
  • a nucleotide containing a sequence (probe DNA sequence) that is complementary to at least part of the DNA sequence of the target gene at the 3 'end of the DNA of the single-stranded DNA sequence of the probe DNA-binding particle is chemically directly Enzymatic synthesis' created by covalent linkage.
  • the nucleotide containing the probe DNA sequence is covalently bound to the surface of the solid particle, so that any temperature below 100 ° C, any salt concentration, 1N It is extremely resistant to (alternative) alkali and acid solutions, and is an optimal probe for gene DNA extraction 'purification' crawling via hybridization.
  • Probe bridge nucleotide probe Probe in the DNA covalent bond particle Single-stranded DNA sequence of the DNA-bonded particle The base sequence of the DNA sequence is also complementary to at least part of the base sequence of the target gene in the probe single-stranded bridge nucleotide Any base sequence of the probe sequence is effective.
  • the bridge nucleotide probe for the probe Probe of the DNA covalently bonded particle The base sequence of the DNA sequence is free The length is 5 to several hundred bases An array is preferred.
  • the solid particle to which the probe DNA sequence is bound is an organic polymer such as a latex bead in both the bridge nucleotide probe DNA binding particle for probe and the bridge nucleotide probe DNA covalent bond particle for probe.
  • organic polymer such as a latex bead in both the bridge nucleotide probe DNA binding particle for probe and the bridge nucleotide probe DNA covalent bond particle for probe.
  • Molecular particles and organic Polymer sheets particles that have a magnetic material inside and can be separated magnetically, metal particles such as gold, glass particles and plates, and colored particles or fluorescent particles may be used.
  • Complementary binding of a single-stranded bridging nucleotide for a probe having a difference between two Tm values used in the present invention of at least 8 ° C or more to a probe DNA-binding particle through a hydrogen bond is a cycle hybridizer. Use the Chillon method.
  • a sequence complementary to at least a part of the base sequence of the target gene (probe DNA sequence) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA binding particle A single-stranded bridge nucleotide for a probe having a cycle of 5 cycles or more within a temperature range of 50 ° C to 70 ° C in a single-stranded DNA sequence portion of a probe DNA-binding particle. Examples of hybrids:
  • Probes in single-stranded bridge nucleotides for probes Can form stronger complementary hydrogen bonds between sequences complementary to at least part of the single-stranded DNA sequence portion of the DNA-binding particle.
  • the DNA sample used in the present invention is simply used for the purpose of extraction and purification or detection of the target gene.
  • the extracted and purified target gene DNA can be immediately introduced (transfected) into Escherichia coli in physicochemical form, i.e., at least until it is recovered into solid particles. It is necessary to maintain the form of the strand DNA.
  • Closed circular double-stranded DNA can also be nicked by high-temperature, long-term treatment (over 2 minutes) such as 70 ° C or higher, or alkaline treatment at room temperature or high temperature, resulting in open circular double-stranded DNA or linear
  • high-temperature, long-term treatment such as 70 ° C or higher
  • alkaline treatment at room temperature or high temperature
  • closed circular double-stranded DNA is denatured slowly and mildly at 0 ° C (ice water) in a 0.1 to 0.4 N alkaline solution to thereby open circular double-stranded DNA.
  • a closed circular double-stranded DNA sample containing the gene of interest is also treated in the presence of the blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately.
  • the DNA was rapidly cooled to 0 ° C to 4 ° C and denatured to achieve single-stranded DNA in a closed circular double-stranded DNA.
  • This method makes it possible to single-stranded closed circular double-stranded DNA without nicks even at high temperature treatment, and more rapid (time required for all steps including high temperature treatment and cooling; 1-2 minutes ) Closed circular double stranded DNA—allows it to be stranded.
  • the double-leaf clover-type single-stranded DNA derived from the high-temperature treatment of the closed circular double-stranded DNA obtained in the present invention in the presence of the low-temperature alkaline denaturation / blocking sequence is Rapidly self-associates and returns to the original closed circular double-stranded DNA.
  • Adjacent upper / downstream region 20-100 bases single stranded DNA (upstream, downstream blocking sequence, Up-BS, Down-BS)
  • the efficiency can be further increased by using the BS method described in this specification together.
  • the BS method single-stranded DNA of 20 to several hundred base sequences (upstream) from 0 to 7 bases upstream and downstream of the upstream and downstream regions adjacent to the target sequence of the target gene.
  • Downstream blocking sequence, Up-BS, Down-BS force Dependent on the salt concentration and temperature of the double-leaf clover-type single-stranded DNA derived from low-temperature alkaline denaturation of the closed circular double-stranded DNA obtained in the present invention It has a physicochemical property that slows the rate of self-association.
  • Closed circular double-stranded DNA two-leaf clover-type single-stranded DNA denatured at low temperature with the salt concentration and temperature of the hybridization solution is the original closed Utilizes the property of slowing the speed of returning to circular double-stranded DNA, resulting in increased binding between the target DNA and the probe DNA immobilized on the solid layer.
  • the length of the base sequence of 20 to several hundred base sequences of single-stranded DNA in the upstream and downstream regions is effective by about 20 to 100 base sequences, but if it is too long, it itself becomes nonspecific binding Therefore, it is desirable to have a 20-50 base sequence.
  • the concentration of 20-50 base sequence single-stranded DNA in the adjacent upstream and downstream regions should be at least 1000 times the ratio of the number of BS molecules to the number of target gene molecules, usually at least lOuM or more. A sufficiently large increase in cloning can be obtained.
  • the salt concentration of the hybridization solution used in the present invention is a force of 50 to 350 mM, preferably 100 to 250 mM, which is possible even at 400 to 600 mM commonly used in ordinary Sarzanno and hybridization. It is desirable to be between.
  • the closed circular double-stranded DNA contained in the recovered product from the host cell containing the target gene is concentrated by the extraction, purification and cloning method of the present invention.
  • the target gene DNA that exists only in a very small amount can be rapidly and reliably cloned.
  • FIG. 1 is a diagram showing three types of DNA generated in the process of extracting a DNA sample.
  • FIG. 2 is a diagram showing the positional relationship between a target gene sequence and Up-BS and Down-BS sequences.
  • the base position is the position of the target gene base sequence complementary to the probe DNA of the target gene DNA, and 0 to 7 bases upstream of the adjacent upstream region of the target gene sequence complementary to the probe DNA. 20 to several hundred base sequence single-stranded DNA (upstream blocking sequence, Up-BS) and 20 to several hundred base sequence single-stranded DNA (downstream blocking sequence, Dn- BS) position and probe Position of DNA binding particles.
  • FIG. 3 is a diagram showing the results of analysis of DNA samples (pCY and pGBM) purified by the SDS Al-CsCl method.
  • Sample 1 shows the analysis results of the plasmid pCY DNA sample obtained by the SDS-Al force method (contamination of open circular (op) DNA in addition to closed circular (sp) DNA).
  • Sample 2 shows the analysis results of the plasmid pGBM DNA sample obtained by the SDS-Al force method (in addition to closed circular (sp) DNA, open circular (op) DNA contamination is observed).
  • Sample 3 shows the analysis result of the DNA sample of plasmid pCY obtained by SDS / Al force / CsCl method (consisting only of 98% or more of closed circular (sp) DNA).
  • Sample 4 shows the analysis result of the DNA sample of plasmid pGBM obtained by SDS ⁇ Al force ⁇ CsCl method (more than 98% is composed of closed circular (sp) DNA only).
  • Sample pCY-R shows the analysis result of non-RNA-removed DNA sample of plasmid pCY obtained by SDS-Al force method (in addition to closed circular (sp) DNA and open circular (op) DNA contamination. The amount is less than 10%, and a large amount of total RNA is seen).
  • Sample pGBM-R shows the analysis result of non-RNA-removed DNA sample of plasmid pGBM obtained by SDS-Al force method (in addition to closed circular (sp) DNA and open circular (op) DNA contamination. The amount is less than 10%, and a large amount of total RNA is seen).
  • FIG. 4 A diagram showing the results of analysis of a DNA sample (mouse brain cDNA plasmid library) purified by the SDS Al force method and SDS Al force method CsCl method.
  • Sample 5 shows the analysis results of mouse brain cDNA plasmid library obtained by SDS-alkali method (the ratio of open circle (op) is higher than closed circle (sp)).
  • Sample 6 shows the analysis result of mouse brain cDNA plasmid library obtained by SDS-alkali method (the ratio of closed circle (sp) is higher than open circle (op)).
  • Sample 7 shows the analysis results of mouse brain cDNA plasmid library obtained by SDS-alkaline. CsCl method (closed circular (sp) is 95% or more and open circular (op) is very small).
  • Sample 8 is a mouse brain cDNA plus replacement kit (Rule 26) obtained with the Takarabio Mini A prepDNA extraction kit. The analysis results of the Mid 'library are shown (the ratio of closed ring (sp) (approximately 80%) is higher than open ring (op) (approximately 20%)).
  • FIG. 5 A diagram showing the results of detection of a cilitestin cDNA fragment (270 base pairs) by PCR.
  • FIG. 6 is a diagram showing the relationship between Tm value A and Tm value B in a probe single-stranded bridge nucleotide.
  • the figure shows examples of DNA of DNA particles (Tm value B) and single-stranded bridged nucleotide (BN-CY) DNA (Tm value A) for pCY probes.
  • Tm value B DNA sequence on the DNA particle side (30mer); SEQ ID NO: 3 4 BN-CY DNA sequence; SEQ ID NO: 3 5)
  • FIG. 7 is a diagram showing a method for producing a bridge nucleotide DNA covalent bond particle for a probe.
  • Single-stranded bridge nucleotides for probes Enzymatic synthesis of DNA particles to the 3 'end of DNA particles Covalent synthetic synthesis DNA probes (ridge nucleotides DNA covalently bonded particles)
  • ridge nucleotides DNA covalently bonded particles One example of preparation is a probe for pCY Single-stranded bridge nucleotides (BN -CY) Take DNA as an example. Talenou fragment Bridging nucleotide (BN-CY-2) by DNA synthesizing enzyme such as DNA polymerase After synthesizing bridge nucleotide complementary to DNA, DNA is denatured and washed with 0.2N NaOH to form hydrogen bond single strand The probe nucleotide is removed to obtain a bridge nucleotide DNA covalent bond particle for probe.
  • FIG. 8 is a diagram showing the results of cloning of actin gene cDNA plasmid clones according to the method of the present invention.
  • Lane 1 shows the electrophoresis marker (Eh / Hind ⁇ )
  • Lane 2 shows the sample obtained by cleaving the actin gene clone 1 DNA cloned by BS method with restriction enzymes EcoRl and Notl
  • Lane 3 shows A sample obtained by PCR of DNAO.lng of actin gene clone 1 with a lactin primer is shown.
  • Lane 4 is a replacement paper for the BS method (Rule 26).
  • a sample obtained by cleaving the DNA of the actin gene clone 2 with restriction enzymes EcoRl and Notl is shown.
  • Lane 5 shows a sample obtained by PCR of the actin gene clone 2 DNAO.lng with the actin primer.
  • the black arrow shows the actin gene cDNA of about 1.26k base pairs cloned by the BS method of the present invention
  • the white arrow shows the PCR of the actin gene cDNA clone cloned by the BS method.
  • the 730 base pair PCR product obtained is shown, and the asterisk indicates the plasmid vector 5.3 k base pair DNA of two actin gene cDNA plasmid clones cloned by BS method.
  • FIG. 9 is a diagram showing the results of cloning an HPRT gene cDNA plasmid clone according to the method of the present invention.
  • Lane 1 shows an electrophoresis marker ( ⁇ / Hind IE)
  • Lane 2 shows a sample obtained by cleaving HPRT gene clone 1 DNA cloned by BS method with restriction enzymes EcoRl and Notl
  • Lane 3 Shows a sample obtained by PCR of DNAO.lng of HPRT gene clone 1 with actin primer
  • lane 4 shows a sample obtained by cleaving the DNA of HPRT gene clone 2 cloned by BS method with restriction enzymes EcoRl and Notl
  • lane 5 Shows a sample obtained by PCR of HPRT gene clone 2 DNAO.lng with actin primer
  • lane 6 shows a sample obtained by PCR using a crude extract extracted by the BS method with HPRT primer.
  • the black arrow indicates the HPRT gene cDNA of about 1.2k base pairs cloned by the BS method of the present invention
  • the white arrow indicates the HPRT gene cloned by the BS method.
  • a PCR product of 944 base pairs obtained by PCR of the DNA clone is shown.
  • the asterisk indicates the plasmid vector of two HPRT gene clones cloned by BS method. Show
  • FIG. 10 shows the results of cloning of HPRT gene cDNA plasmid by the method of the present invention.
  • HPRT gene cDNA plasmid clone obtained by cloning a closed circular mouse brain cDNA plasmid sample by the method of the present invention using a probe nucleotide DNA covalent bond particle is shown.
  • Lane 1 shows the migration target (Hind IE)
  • Lane 2 shows a sample of the cloned HPRT gene clone 1 DNA cut with restriction enzymes EcoRl and Notl
  • Lane 3 shows the HPRT gene clone 1
  • a sample of DNAO.l ng of PCR with aactin primer is shown
  • lane 4 is the replacement paper 03 ⁇ 4-rule 26
  • the cloned HPRT gene clone 2 DNA was cleaved with restriction enzymes EcoRl and Notl.
  • Lane 5 shows the HPRT gene clone 2 DNAO.lng PCR sample with actin
  • lane 6 is the cloning.
  • Lane 7 shows a sample obtained by cleaving HPRT gene clone 3 DNA with restriction enzymes EcoRl and Notl.Lane 7 shows a sample obtained by PCR with DNAO.lng of HPRT gene clone 3 using actin primer.
  • Lane 9 shows a sample obtained by cleaving HPRT gene clone 4 DNA with restriction enzymes EcoRl and Notl.Lane 9 shows a sample obtained by PCR of DNAO.lng of HPRT gene clone 4 with actin primer, and lane 10 shows A sample of the cloned HPRT gene clone 5 was cleaved with restriction enzymes EcoRl and Notl.
  • Lane 11 shows the HPRT gene clone 5 DNAO.lng shows the sample PCR in ⁇ Kuching primer.
  • the black arrow indicates the HPRT gene cDNA of approximately 1.2k base pairs cloned by the BS method of the present invention
  • the white arrow is obtained by PCR of the HPRT gene cDNA clone cloned by the BS method.
  • the 944 base pair PCR product is shown, and the asterisk indicates the 5.3 k base pair DNA of the four HPRT gene cDNA plasmid clones cloned by BS method.
  • the present invention in one example
  • Tm value A A sequence complementary to at least a part of the base sequence of the target gene and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (Tm value A) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (Tm value A) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (Tm value A) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (Tm value A) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (Tm value A) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (Tm value A
  • ⁇ for difference (Rule 26) a single-stranded bridge nucleotide for a probe having a m value B) and a difference between both Tm values of at least 8 ° C (Tm value B—Tm value A> 8 ° C) with the probe DNA-binding particle.
  • a nucleotide containing a sequence (probe DNA sequence) complementary to at least a part of the base sequence of the target gene is enzymatically synthesized in the probe DNA-binding particle.
  • upstream blocking sequence Up-BS
  • D own-BS base sequence single-stranded DNA
  • This example was performed using a purified mixed DNA sample solution of plasmid pGBM (3035 base pairs) forming blue colonies and plasmid pCY (3768 base pairs) incorporating 734 base pair cDNAs forming white colonies. It was.
  • Plasmid pGBM carries the 13-galactosidase gene and forms blue colonies on agar in the presence of 13-gal (5-bromo-4-chloro-3-indolyl-13-D-galactoside) To do.
  • plasmid pCY the mouse testis expressed gene Shiritesuchin (C yrit es tin) C D NA730 bp DNA the plasmid pGBM j8 - a incorporated into Garatatoshidaze gene site recombinant plasmid, forming a white colony on agar. Because of this difference, the model system has the advantage that the efficiency of the extracted 'purified' clawing can be tested by the colony type force formed on the agar.
  • pCY is derived from the mouse testis cDNA library by amplifying 1044- 1777 between citristin cDNA (approximately 2650 base pairs in size) by PCR, extracting it, and inserting it into the ⁇ -galatatosidase gene of pGBM. Produced.
  • Solution B (20mg lysosome / solution A) 0.5ml was added and left on ice for 10 minutes.
  • Solution D 29.4 g K'acetate and 11.5 ml acetic acid in 100 ml pure water was added to 4 ml, stirred gently, and allowed to stand on ice for 10 minutes.
  • FIG. 3 shows pCY and pGBM purified by SDS-alkali method-CsCl ultracentrifugation.
  • the SDS-alkali method sometimes yields DNA samples containing 90% or more of closed circular DNA, but it is not stable. If purified by the SDS-alkali method-CsCl ultracentrifugation method, more than 95% of the closed circular DNA is obtained. A sample containing is obtained.
  • samples consisting of 90% or more of closed circular DNA (sample pCY_R, sample pGB M-R) can be stably obtained.
  • FIG 4 shows the SDS-alkali method (samples 5 and 6), SDS 'alkali method .CsCl method (sample 7), SDS' alkali method ', DNA adsorption membrane method, and Takara Bio Co., Ltd. mini-prep kit.
  • the closed circular DNA is 20% or less, and the open circular DNA is 80% or more, and the target circular DNA that is the target DNA molecule of the present invention is considerably small.
  • the closed circular DNA was about 60%, exceeding 50% of the total DNA.
  • Sample 7 is a sample 6 purified by SDS 'alkali method CsCl method and further purified by CsCl ultracentrifugation, and the closed circular DNA exceeds 95%.
  • Sample 8 was purified by the SDS “alkali method” DNA adsorption membrane method using a Takara Bio Co., Ltd. mini-prep kit, and contains 80% or more of the closed circular DNA which is the target DNA of the present invention.
  • the probe DNA sequence for pCY extraction, the blocking sequences (Up-BS and Down_BS) located above and downstream of the corresponding target gene DNA sequence, and the position and sequence of the base sequence for PCR are shown below. Show.
  • pCY Insertion A bridge oligonucleotide sequence (BN-CY) composed of 30 bases 1286-1315 of the cDNA fragment and poly C30 base was synthesized and used as probe DNA for pCY extraction.
  • Oligo (dG) latex 'beads purchased from JSR Corporation were used.
  • the BN-CY probe hybridizes with the latex 'bead oligo (dG) at the poly C portion and is fixed to the bead solid layer.
  • Up-BS upstream blocking sequence
  • [0050] 2) Mix lul lOOOuM Up-BS and lul lOOOuM Down-BS, 1 to 100, 1 to 10000 mixed pCY and pGBM 2ul, distilled water 5ul, 0.4N NaOH 9ul, about 0 After denaturation ( single-stranded) by treatment at ° C (on ice) for 40 minutes, an equivalent amount (9 ul) of 0.4NHC1 was added for neutralization.
  • the purified closed circular pCY is cleaved with the restriction enzyme Sacl, and the closed circular pCY and the Sacl cleaved pCY are mixed at a ratio of 10: 0, 9.0: 1, 7.5: 2.5, 5.0: 5.0 to obtain linear DNA. This was used as a pCY for pCY: pGBM mixed sample.
  • (a): 1), 6), 11), 13) and 15) are the results of the conventional method without BS. 2 to 5), 7 to 10), 12), 14) and 16) are the results of the method of the present invention with BS added.
  • (B): ll) to 14) show the results using SDS'alkali purified sample 1 (pCY) and sample 2 (pGBM) shown in FIG. (C): sp) of l) to 10) indicates sample 3 (closed-ring super-coiled pCY>) in Fig. 1, and Sacl-cut pCY is a sample obtained by cleaving pCY of sample 3 with the restriction enzyme Sacl. Chain pCY is indicated.
  • the pGBM from 1) to 10) was purified in Fig. 1.
  • the pGBM of Sample 4 is shown.
  • FIG. 5 shows the results of colony PCR for generating 270 base pair DNA fragments by randomly selecting seven white and blue colonies obtained in the experiment of Table 1.
  • a 270 base pair PCR product of mouse testis-derived cilitestin gene cDNA inserted in pCY was detected only in white colonies.
  • Example 2 A sequence having a sequence complementary to a part of the base sequence of the target gene, while being complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA binding particle Probes prepared by a method of hybridizing a single-stranded bridge nucleotide for a probe having a cycle of 5 cycles or more within a temperature range of 50 ° C and 70 ° C to the single-stranded DNA sequence of the probe DNA-binding particle. Bridge nucleotide probe Cloning efficiency of target gene using DNA binding particles
  • Example 3 A sequence complementary to a part of the base sequence of the target gene (Tm value A) and a single-stranded probe of the probe DNA binding particle Complementary to at least a part of the base sequence of the DNA binding particle
  • Tm value A A sequence complementary to a part of the base sequence of the target gene
  • Tm value B a unique sequence for probes that have a unique sequence
  • Tm value B the difference between the two Tm values is at least 8 ° C
  • Tm value A of the DNA sequence complementary to a part of the base sequence of the target gene of the single-stranded bridge nucleotide and the DNA sequence complementary to the single-stranded DNA sequence part of the probe DNA binding particle
  • Tm value B The effect of the difference in Tm value (Tm value B) on the cloning efficiency of the target gene (here pCY) was examined by changing the Tm value B.
  • a bridge nucleotide having various Tm values B was prepared, and cCY cloning was carried out from the pCY / pGBM mixed DNA sample.
  • FIG. 6 shows an example of probe DNA-binding particles and single-stranded bridge nucleotides for probes.
  • BN-2 is 1286-13 of the inserted cDNA fragment of pCY. Shows a complementary DNA sequence (Tm value A) to 15 30 bases (inside the rectangle in Table 1).
  • Table 3 shows the cloning efficiency of pCY when the difference between Tm values (TmB-TmA) is changed to 0.0, 4.1, 8.2, 12.3, 20.5. Until the Tm value difference is 8.2, the cloning efficiency is 85% or more, but below that, even if the Tm value difference is TmB-TmA> 0, the cloning efficiency is considerably lowered. Under these conditions (difference in Tm value TmB-TmA ⁇ 8.0), effective extraction and cloning of target genes that are present in only 1 in 1000 or 1 in 10000 is difficult.
  • Target gene Having a sequence complementary to at least a part of the base sequence of DNA,
  • probe single-stranded bridge nucleotides for probes that have a sequence complementary to at least part of the base sequence of the single-stranded DNA sequence part of the DNA-binding particle DNA binding Produced by enzymatic chemical synthetic covalent binding to the particle
  • the target gene is cloned by the covalently bonded DNA particles.
  • the bridge nucleotide DNA covalently bonded particle is composed of the hybridization DNA of the probe single-stranded bridging nucleotide to the single-stranded DNA sequence part of the probe DNA-binding particle and the Talenow 'fragment' complementary DNA It was prepared by denaturation of double-stranded DNA in an alkaline solution such as NaOH. Dissociation, dissociation, and washing and removal of single-stranded bridged nucleotide DNA.
  • the bridge nucleotide probe for the probe The probe used for the preparation of the DNA covalent bond particle
  • the single-stranded DNA sequence portion of the DNA-binding particle can be any sequence, and the length of the base sequence Furthermore, the strength of about 3 base pairs that can be hybridized can be up to several hundred bases.
  • a single-stranded bridge nucleotide having a sequence that is at least partially complementary to the single-stranded DNA sequence portion of the probe DNA-binding particle and having a partial base sequence of the base sequence of the target gene is also present.
  • the single-strand synthetic complementary bridge nucleotide for the probe including the probe DNA sequence synthesized enzymatically based on the single-strand bridge nucleotide itself is used. It is bound to solid-phase beads and has properties that do not degrade even under alkaline denaturation conditions of double-stranded DNA. Because of this property, it is possible to simultaneously denature a closed circular double-stranded DNA sample containing the gene of interest and probe DNA complex particles (which can have a solid layer of any material that is resistant to alkali!). It is possible to make the cloning of the target gene easier, quicker and more accurate, such as being hardly affected by salt concentration and temperature during washing. It is a thing.
  • Table 4 shows the results of extraction, purification, and cloning of pCY from the pCY ⁇ pGBM mixed DNA sample force using the bridge nucleotide probe DNA covalently bonded particles for probes prepared in Fig. 7.
  • the results are obtained using a single-stranded BS of length.
  • a large enrichment rate can be seen.
  • the system of the present invention can be repeated in a short period of time (multi-cycle cloning method).
  • the target gene can be extracted, purified, and cloned easily, quickly and accurately.
  • the extraction method was the same as in Example 1 for the second round of multi-cycle cloning in 8) and 10).
  • PCY and pGBM used in the experiment are the DNA samples of Samples 3 and 4 in FIG.
  • an extraction amplification effect was seen at a length of 15 mer or more.
  • the pCY: pGBM ratio is 1/10000 with a high concentration ratio exceeding 50% (amplification rate exceeds 5000 times), and even with a ratio of 1/100000, BS concentration is 30% with lOOuM (amplification rate 30000 times).
  • the concentration of BS added to the reaction solution is the final concentration (corresponding to 3 of the above extraction operation) luM or more, and the effect of increasing the extraction efficiency can be seen.
  • Table 7 shows the effect of BS base distance from the upstream (5 'upstream) and downstream (3' downstream) base points of the target gene sequence complementary to the probe DNA sequence.
  • Table 7 Up-BS and Down-BS enrichment effect on pCY extraction (upstream (5 'upstream), downstream (3' downstream) of target gene sequence complementary to BS probe DM sequence Influence of base distance from
  • Table 8 shows the results of temperature conditions during alkaline denaturation of the closed circular double-stranded DNA containing the target gene (here pCY). Except for the alkali denaturation temperature conditions of the DNA samples, the same experimental procedure as in Example 1 was performed.
  • Table 8 shows the results. Alkaline denaturation of DNA samples at 0 ° C (on ice) yielded very high cloning efficiencies, while significant reductions in cloning efficiency were seen at 25 ° C (room temperature) and 37 ° C. Table 8 shows that BS is indispensable also in this example. Alkaline denaturation of the DNA sample was performed with 0.2N NaOH (final concentration) for 40 minutes in the same manner as in Example 1. At 10 minutes or 20 minutes denaturation, the yield of the extracted plasmid itself decreased even at a temperature of 1, different.
  • Table 8 Temperature conditions for DNA sample denaturation for pCY extraction
  • DNA sample pCY / pGBM BS in reaction solution Number of colonies obtained White colony Concentration rate Density temperature molecular ratio concentration (uM) White blue ratio (%) (times)
  • Table 9 examines the effect of salt concentration of the solution during hybridization of the denatured sample DNA to the BN-CY oligo (dG) latex bead complex on the efficiency of the extracted 'purified' clawing of pCY. It is a result. [0084] [Table 9] Table 9: Effect of hyperpredation solution salinity on BN-CY-oligo (dG) latex bead complex of denatured DM sample on the efficiency of extraction and purification of pCY Concentration PCY / pGBM BS in reaction solution obtained White: 3D 2 Concentration rate
  • the salt concentration was shown as the sum of the values calculated by multiplying the NaCl concentration by the pH adjustment Tris HC1 concentration of 0.6.
  • the mouse brain cDNA plasmid library used for the experiment was purchased from Takara Bio Inc. This is transfected into Escherichia coli, cultured in large quantities, and closed with various ratios of linear DNA and open circular DNA by the SDS-al strength method, CsCl ultracentrifugation method and DNA adsorption membrane method shown in Example 1.
  • a circular cDNA plasmid library was prepared and used for experiments.
  • Oligo (dG) latex 'beads purchased from JSR Corporation were used.
  • the BN-actin probe hybridizes with this latex bead oligo (dG) at the poly C moiety and is immobilized on the bead solid layer.
  • Up-BS upstream blocking sequence
  • Primer 2 5'-TAGGAGCCAGAGCAGTAATC-3 '(1045-1026)
  • Table 10 Extraction, purification, and cloning of cDM plasmid clone from a mouse brain cDNA plasmid library according to the present invention (purification without cloning, comparison with conventional methods) Actin used -BS Number of colonies obtained Actin primer PCR positive
  • HPRT hypoxanthine'guanine from mouse brain cDNA plasmid library
  • the mouse brain cDNA plasmid library used for the experiment was purchased from Takara Bio Inc. This is transferred to Escherichia coli, cultured in large quantities, and subjected to SDS-alkaline and CsCl ultracentrifugation, and a closed circular cDNA plasmid library that contains almost no linear or open circular DNA (from 95% or more closed circular DNA). And used for the experiment.
  • a bridge oligonucleotide sequence consisting of 30 bases of 899-870 of the cDNA fragment of HPRT gene and poly C30 base was synthesized and used as probe DNA for extraction of HPRT gene cDNA plasmid clone.
  • Oligo (dG) latex 'beads purchased from JSR Corporation were used.
  • the BN-HPRT probe hybridizes with the latex 'bead oligo (dG) at the poly C moiety and is immobilized on the bead solid layer.
  • Up-BS upstream blocking sequence
  • Primer 2 5'-GAGAGCTTCAGACTCGTCTA-3 '(1097-1078)
  • Table 11 HPRT gene cDNA from a mouse brain cDNA plasmid library according to the present invention
  • Experiments 1) and 3) are the results of a method that contains 40% or more of open circular DNA and does not contain BS.
  • the HPRT gene cDNA fragment consisting of 30 bases of 899-870 and poly C30 base strength is composed of the following sequence for the bridge oligonucleotide (BN— HPRT)
  • the HPRT gene from the mouse brain cDNA plasmid library by the same extraction procedure as in Example 4 was used. Extraction of the child cDNA clones were performed by 'purification' cloning. The concentration of BS for HPRT and the primer for PCR were the same as in Example 9.
  • Table 1 2 Extraction, purification and cloning of HPRT gene cDM plasmid clones from mouse brain cDNA plasmid library according to the method of the present invention (comparison with conventional method without BS)
  • HPRT-BS Number of obtained colonies HPRT primer PCR positive colonies
  • Experiment 1 is the result of the method of the present invention
  • Experiment 2 is the result of the conventional method not including BS.
  • Example 11 A closed circular double-stranded DNA sample containing a gene of interest is treated in the presence of a blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately 0 Cloning of the target gene by rapid cooling to ° C to 4 ° C, denaturation, and partial single-strand cloning. Closed circular double-stranded DNA containing the target gene (pCY) is cloned in the presence of a blocking sequence.
  • Table 13 shows the results of cloning of the target gene when it was denatured by high-temperature treatment and rapid cooling. High-temperature denaturation of DNA samples ⁇ Except for conditions of rapid cooling in ice, the same experimental procedure as in Example 1 was performed.
  • a closed circular double-stranded DNA sample containing the gene of interest in a TE solution (10 mM Tris, ImM EDTA, pH 8.0) and BS are treated at a temperature range of 96 ° C to 98 ° C for 10 to 60 seconds, and immediately The DNA was denatured by quenching in ice water, partially unified, and hybridized with probe DNA complex particles. Although not shown in Table 13, this method also uses B s was essential.

Abstract

A method of quickly extracting, purifying and cloning a target gene by using, as a target, a sample containing a completely closed circular double-stranded DNA (a super coiled circular DNA) free from any DNA cleavage (nick) site from among samples containing the target gene such as a cDNA plasmid library which may occur in three states, which is characterized by comprising hybridizing a probe DNA complex particle having a probe DNA sequence and a solid layer particle with the closed circular double-stranded DNA, recovering the resulting closed circular double-stranded DNA having the DNA sequence of the target gene integrated thereinto, which is in the form allowing direct transfection into host cells, in the solid layer particle, eluting it with an eluting solution, transferring it into a host cell and thus quickly extracting, purifying and cloning the target gene.

Description

明 細 書  Specification
閉環状二本鎖 DNAを用いた、目的遺伝子の迅速な抽出 ·精製 ·クロー二 ング方法  Rapid extraction, purification, and cloning of target genes using closed circular double-stranded DNA
技術分野  Technical field
[0001] 本発明は、主にゲノム遺伝子ライブラリーや cDNAライブラリーからの目的遺伝子の 迅速な抽出、分離精製、検出、クローユング等のための方法に関するものである。 背景技術  [0001] The present invention relates to a method mainly for rapid extraction, separation and purification, detection, cloning, etc. of a target gene from a genomic gene library or cDNA library. Background art
[0002] 目的遺伝子を分離 '検出するために、固層粒子に結合されたプローブ DNAと目的 遺伝子とのハイブリダィゼーシヨン方法 (特許文献 1)や、固層粒子に結合されたプロ ーブ DNAと目的遺伝子の両方と相補的な配列を持つブリッジヌクレオチドを用いて 目的遺伝子を固層に抽出する方法 (特許文献 2)、目的遺伝子と相補的なオリゴヌタレ ォチドの一端にピオチンを結合させ、ピオチンとアビジンの特異的結合反応を利用し てアビジン結合粒子に目的遺伝子を抽出する方法 (非特許文献 1)が、以前から開発 および使用されてきた。しかし、これらの方法ではいずれもターゲットとなる DNA分子 の立体構造上の物理ィ匕学的性質の特定、即ち、検出しょうとする目的遺伝子が含ま れる DNA試料が 1本鎖ある!/ヽはニ本鎖の直鎖状 DNA(linearDNA)か、開環状二本鎖 DNA(open circleDNA)力 閉環状二本鎖 DNA(super  [0002] In order to isolate the target gene, the hybridization method of the probe DNA bound to the solid particle and the target gene (Patent Document 1) or the probe bound to the solid particle A method of extracting the target gene into a solid layer using a bridge nucleotide having a sequence complementary to both the DNA and the target gene (Patent Document 2), linking the biotin to one end of the oligonucleotide complementary to the target gene, and A method (Non-patent Document 1) for extracting a target gene from avidin-binding particles using a specific binding reaction between avidin and avidin has been developed and used. However, in both of these methods, there is a single-strand DNA sample that identifies the physical and physical properties of the target DNA molecule, that is, the target gene to be detected! Single-stranded linear DNA (open circle DNA) force closed circular double-stranded DNA (super
coiledないし closed circular DNA)であるかの特定がなされておらず、そのためにこれ らの方法では、抽出された目的遺伝子 DNAの形状がほとんど直鎖状 DNAである結果 、検出は可能だが大腸菌などの宿主に導入して、大量に迅速に目的遺伝子 DNAを クロー-ングできる DNA形態(閉環状 DNA)の形で抽出することはほとんど不可能なも のである。  coiled or closed circular DNA) is not specified, and as a result, the extracted target gene DNA is almost linear DNA as a result of these methods. It is almost impossible to extract DNA in the form of DNA (closed circular DNA) that can be introduced into a host and rapidly cloned in large quantities.
[0003] これらの欠点を「1本鎖環状 DNAのみを生成する性質を持つ大腸菌を用いて合成 させ、 1本鎖環状 DNAとして抽出し、目的遺伝子のプライマーを用いてもう一方の相 補的鎖を試験管内酵素合成し再二本鎖 DNAとすることで大腸菌に導入できる形態 にすること」で克服し、これを大腸菌に導入し大量精製'クローユング可能な方法が開 発され、商品化されている (特許文献 3)。しかし、この方法では 1本鎖環状 DNAを用い ているため、複雑な抽出過程と再二本鎖 DNAの酵素合成過程を含み、合成ミスを起 すなど迅速性、正確性などの点で欠点がある。 [0003] These shortcomings are expressed as follows: "Escherichia coli, which has the property of producing only single-stranded circular DNA, was synthesized and extracted as single-stranded circular DNA, and the other complementary strand using the target gene primer. `` To make a form that can be introduced into E. coli by synthesizing the enzyme in vitro and making it into double-stranded DNA, '' a method that can be introduced into E. coli and mass-purified and cloned can be developed and commercialized. (Patent Document 3). However, this method uses single-stranded circular DNA Therefore, it involves a complicated extraction process and enzymatic synthesis process of re-double-stranded DNA, and there are drawbacks in terms of speed and accuracy such as causing a synthesis error.
特許文献 1:特開平 8-89294号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-89294
特許文献 2:国際公開 WO2004-101785号  Patent Document 2: International Publication WO2004-101785
特許文献 3:米国特許第 5500356号公報  Patent Document 3: US Patent No. 5500356
非特許文献 1:「バイオマグネチック 'テクニクス'モレキュラ^ ~ ·バイオロジー (Biomagne tic Techniques in MolecularBiology)」、ダイナノレ (Dynal)社、 1995年  Non-patent document 1: “Biomagnetic Techniques in Molecular Biology”, Dynal, 1995
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上述した「固層粒子に結合されたオリゴヌクレオチドプローブ法」、「アビジン'ビォチ ンプローブ法」や「ブリッジヌクレオチドプローブ法」では、 目的の遺伝子を抽出する プローブの形状は特定されている力 抽出ターゲットとなる DNAの形状は特定されて いない。し力し、抽出されたプラスミド (plasmid)cDNAライブラリーやプラスミドゲノム DN A、コスミド (cosmid)ゲノムライブラリーのような DNAライブラリ一はその DNAの性質上、 1)閉環状 (super coiled)DNA、 2)開環状 (open circle)DNA、 3)鎖状 (linear)DNAの形態 で存在する。そのためターゲットとなる DNAの物理ィ匕学的形状を特定せずに、これら の 3つ DNA形状の混在した DNAを用いて目的遺伝子の分離'抽出を行うと、 DNAノヽ イブリダィゼーシヨンの性質上前記 3つの DNA形態の内、ほとんど 2)と 3)の開環状 DN A、鎖状 DNAに由来する直鎖の 1本鎖 DNAか 1本鎖の環状 DNAしか分離 '抽出され て来ない。しかし、このようにして分離 '抽出された直鎖の 1本鎖 DNAや 1本鎖の環状 DNAは、 目的遺伝子の存在を検証するには適している力 この形状の DNAを直ちに 大腸菌等の宿主細胞に導入して、ここから目的の遺伝子をクロー-ングすることは不 可能あるいは更に多大な労力と時間を必要とする。また「1本鎖環状 DNAからの二本 鎖環状合成法による遺伝子クローユング法」(特許文献 3)では、抽出後に複雑な試 験管内酵素合成過程を必要とし、煩雑で、不正確で、かつ高コストであることも問題 である。 [0004] In the above-mentioned "oligonucleotide probe method bound to a solid layer particle", "avidin 'biotin probe method" and "bridge nucleotide probe method", the shape of the probe for extracting the target gene is specified. The shape of the DNA to be extracted is not specified. However, DNA libraries such as the extracted plasmid (plasmid) cDNA library, plasmid genome DNA, and cosmid (cosmid) genomic library are characterized by the nature of their DNA: 1) super coiled DNA, It exists in the form of 2) open circle DNA and 3) linear DNA. Therefore, if the target gene is isolated and extracted using DNA that is a mixture of these three DNA shapes without specifying the physical and physical shape of the target DNA, the properties of the DNA hybridization In the above three DNA forms, almost only 2) and 3) open circular DNA, linear single-stranded DNA derived from linear DNA or single-stranded circular DNA is separated and extracted. However, the linear single-stranded DNA or single-stranded circular DNA isolated and extracted in this way is suitable for verifying the presence of the target gene. It is impossible or much more labor and time to introduce into a cell and clone the gene of interest from here. In addition, the “gene cloning method based on double-stranded circular synthesis from single-stranded circular DNA” (Patent Document 3) requires a complicated in vitro enzyme synthesis process after extraction, which is complicated, inaccurate, and expensive. Cost is also a problem.
[0005] また、従来のブリッジヌクレオチドプローブ法では、 2つの Tm値の差の必要性'有効 性が無視されているが、この Tm値差の大少は目的遺伝子の抽出'精製効率に多大 な影響を与えるため遺伝子抽出 ·精製'クローユングにおいて極めて重要な要素であ る。 [0005] In addition, in the conventional bridged nucleotide probe method, the necessity of “difference between two Tm values” is ignored, but this difference in Tm value greatly affects the extraction and purification efficiency of the target gene. This is a very important factor in gene extraction / purification 'cloning'.
加えて、これらの従来法では、プローブ DNA結合粒子やブリッジヌクレオチド内の 目的遺伝子と相補的な塩基配列に相当する目的遺伝子内塩基配列の隣接上流域 の 0〜7塩基上流を基点とする 20〜50塩基配列一本鎖 DNA (上流ブロッキング配列; u pstream  In addition, in these conventional methods, the base point is 0 to 7 bases upstream in the upstream region adjacent to the base sequence in the target gene corresponding to the base sequence complementary to the target gene in the probe DNA-binding particle or bridge nucleotide. 50-base single-stranded DNA (upstream blocking sequence; upstream
blocking sequence, Up-BS)及び隣接下流域 0〜7塩基下流を基点とする 20〜50塩基 配列一本鎖 DNA (下流ブロッキング配列; downstream blocking sequence, Down- BS) を一切用いておらず、そのために目的遺伝子を含む変性 DNA試料とプローブ DNAと のハイブリダィズ力 試料中の DNA同士の再ハイブリダィズによって妨げられ、結果 的に目的遺伝子 DNAの回収効率が激減する問題点がある。  Blocking sequence, Up-BS) and 20-50 base sequence single-stranded DNA (downstream blocking sequence, Down-BS) starting from 0-7 base downstream downstream Hybridization force between the denatured DNA sample containing the target gene and the probe DNA is hindered by the rehybridization of the DNA in the sample, resulting in a drastic decrease in the recovery efficiency of the target gene DNA.
[0006] さらに、これらの従来の方法では、そのターゲット DNAの物理ィ匕学的性質が特定さ れて ヽな 、ため、 DNAプローブとのハイブリダィズに先立つ二本鎖 DNAの変性の条 件がまったく無視されており、したがって大腸菌にクローニング可能な閉環状二本鎖 DNAとしての性質を保ったままの DNA変性が実現できていない。そのために、従来の 方法では、 目的遺伝子の一部の抽出 ·検出は可能だが、大腸菌に導入し、大量に精 製'クロー-ングすることはほとんど不可能である。 [0006] Furthermore, in these conventional methods, the physical and physical properties of the target DNA must be specified, and therefore, the conditions for denaturation of double-stranded DNA prior to hybridization with a DNA probe are completely eliminated. Therefore, DNA denaturation while maintaining the properties of a closed circular double-stranded DNA that can be cloned into E. coli has not been realized. Therefore, the conventional method can extract and detect a part of the target gene, but it is almost impossible to introduce it into E. coli and to purify and clone it in large quantities.
[0007] さらに、直鎖状 DNA同士のハイブリダィズによる目的遺伝子の検出 '抽出'精製で は、通常最適の塩濃度として 400〜600mMが用いられるが、この塩濃度では変性され 部分的に一本鎖化した閉環状 DNA (双葉のクローバ状 DNA;two_leaf  [0007] In addition, detection of target genes by hybridization between linear DNAs 'Extraction' purification usually uses 400-600 mM as the optimum salt concentration, but this salt concentration is denatured and partially single-stranded. Closed circular DNA (two-leaf clover-like DNA; two_leaf
clover DNA)は急速に自己対合 (会合)を起こし、プローブ DNAとハイプリする前に再 び閉環状に閉じてしまい、プローブ DNA粒子に捕捉することが出来ず、結果的に目 的遺伝子クローユングの収率の低下 ·激減を引き起こす問題がある。  clover DNA) rapidly undergoes self-pairing (association) and closes again in a closed circle before hybridization with the probe DNA, and cannot be captured by the probe DNA particle, resulting in the target gene cloning. Yield reduction · There is a problem that causes a drastic decrease.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、前記 3つの存在形態をとる cDNAプラスミド 'ライブラリーや、ゲノム 'ブラ スミド 'ライブラリーゃコスミド 'ライブラリーの目的遺伝子を含む試料のうち、一切の D NA切断 (ニック)部位を持たない完全な閉環状二本鎖 DNAを試料ターゲットとして用 いて目的遺伝子を迅速に抽出 ·精製 'クローユングする方法であって、 目的遺伝子の 塩基配列の少なくとも一部の配列に相補的な DNA配列 (プローブ DNA配列)と固層粒 子とを含むプローブ DNA複合体粒子に閉環状二本鎖 DNAをハイブリダィズさせるこ とにより、 目的遺伝子 DNA配列が組み込まれた閉環状二本鎖 DNAを、宿主細胞に直 接トランスフ クシヨン可能な形状で固層粒子に回収し、溶出溶液で溶出し、これを 大腸菌等の宿主細胞に導入 (トランスフ タト)して、 目的遺伝子を迅速に抽出'精製 'クローニングすることを特徴とする方法により、前記課題を解決した。 [0008] The present invention relates to DNA cleavage (nick) of any of the samples containing the gene of interest in the cDNA plasmid 'library or the genomic' plasmid 'library or the cosmid' library in the three existing forms. Rapid extraction and purification of target genes using completely closed double-stranded DNA without a site as a sample target. The target gene DNA sequence is obtained by hybridizing the closed circular double-stranded DNA to the probe DNA complex particle containing a DNA sequence (probe DNA sequence) complementary to at least a part of the base sequence and a solid particle. The closed circular double-stranded DNA in which DNA is incorporated is collected into solid-layer particles in a form that can be directly transferred to the host cell, eluted with an elution solution, and introduced into a host cell such as Escherichia coli (transformed). Thus, the above-mentioned problem has been solved by a method characterized in that a target gene is rapidly extracted and purified and cloned.
[0009] 本発明は、 50°C〜70°Cの範囲内で 5サイクル以上行う新規なサイクル.ハイブリダィ ゼーシヨン法により作成したプローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合 粒子 これは、固層粒子に結合した、プローブ用一本鎖ブリッジヌクレオチド相補的 結合用配列を含む一本鎖 DNA配列部分力 成るプローブ DNA結合粒子力 目的遺 伝子の塩基配列の少なくとも一部の配列に相補的な DNA配列 (プローブ DNA配列)と 、前記プローブ DNA結合粒子のプローブ用一本鎖ブリッジヌクレオチド相補的結合 用配列に相補的な DNA配列と、を含むプローブ用一本鎖ブリッジヌクレオチドに、前 記プローブ用一本鎖ブリッジヌクレオチド相補的結合用配列において相補率 80%以 上もの高さで堅固に相補的結合して成るもの、ないし固層粒子に結合した一本鎖配 列部分力 成るプローブ DNA結合粒子力 目的遺伝子の塩基配列の少なくとも一部 の配列と相補的な配列(Tm値 A)とプローブ DNA結合粒子の一本鎖 DNA配列部分の 少なくとも一部と相補的な配列 (Tm値 B)とを有し、両 Tm値の差が少なくとも 8°C以上( Tm値 B— Tm値 A>8°C)のプローブ用一本鎖ブリッジヌクレオチドに相補的に結合し て成るものである一、または、プローブ用一本鎖ブリッジヌクレオチドプローブ DNA共 有結合粒子 これは、プローブ DNA結合粒子の一本鎖 DNA配列部分に、 目的遺伝 子の塩基配列の少なくとも一部の配列に相補的な DNA配列 (プローブ DNA配列)を含 むヌクレオチドが直接共有結合して成り、その結果、プローブ用一本鎖ブリッジヌクレ ォチドが固層粒子に直接結合して成るものである を、プローブ DNA複合体粒子と して用いる前記方法により、前記課題を解決した。  [0009] The present invention is a novel cycle of 5 cycles or more in the range of 50 ° C to 70 ° C. Single-stranded bridge nucleotide probe for probes prepared by the hybridization method DNA binding particle Single-stranded DNA sequence that binds to the probe Single-stranded DNA sequence that includes the binding sequence Complementary probe DNA binding particle force Complementary DNA sequence that is complementary to at least a part of the base sequence of the target gene ( Probe DNA sequence) and a single-stranded bridge nucleotide for probes comprising a single-stranded bridge nucleotide complementary binding sequence for probes of the probe DNA-binding particle, The bridge nucleotide complementary binding sequence has a complementarity of 80% or more and is firmly complementary, or a single-stranded chain bound to a solid particle. Probe DNA binding particle force consisting of partial column force Complementary sequence (Tm value A) complementary to at least part of the base sequence of the target gene and complementary to at least part of single-stranded DNA sequence part of probe DNA binding particle A sequence (Tm value B), and the difference between the two Tm values is at least 8 ° C or more (Tm value B—Tm value A> 8 ° C). One or a single-stranded bridge nucleotide probe for probe DNA sharing particle consisting of a single-stranded DNA sequence part of the probe DNA-binding particle, or at least a part of the base sequence of the target gene A nucleotide containing a complementary DNA sequence (probe DNA sequence) is formed by direct covalent bonding, and as a result, a probe single-stranded bridge nucleotide is directly bonded to a solid particle. Used as composite particles By the method to solve the above problems.
[0010] 本発明はまた、前記プローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合粒子 のうち、特に、 目的遺伝子の塩基配列の一部と相補的な配列 (Tm値 A)及びプローブ DNA結合粒子の一本鎖 DNA配列部分の塩基配列の少なくとも一部と相補的な配列( Tm値 B)を有するプローブ用一本鎖ブリッジヌクレオチドを、プローブ DNA結合粒子の 一本鎖 DNA配列部分に、 50°Cから 70°Cの範囲内で 5サイクル以上サイクル 'ハイブリ ダイズさせることにより作成したものを、プローブ DNA複合体粒子として用いる前記方 法により、前記課題を解決した。 [0010] The present invention also provides, among the single-stranded bridged nucleotide probe DNA-binding particles for probes, a sequence complementary to a part of the base sequence of the target gene (Tm value A) and one of the probe DNA-binding particles. A sequence complementary to at least part of the base sequence of the double-stranded DNA sequence ( Created by hybridizing a single-stranded bridge nucleotide for probe having Tm value B) to the single-stranded DNA sequence part of the probe DNA-binding particle for 5 cycles or more within the range of 50 ° C to 70 ° C The above problem was solved by the above method using the obtained product as probe DNA complex particles.
[0011] 本発明はまた、前記プローブ用一本鎖ブリッジヌクレオチドプローブ DNA共有結合 粒子のうち、特に、固層粒子に結合した一本鎖 DNA配列部分力も成るプローブ DNA 結合粒子の当該一本鎖 DNA配列部分の少なくとも一部に相補的な配列と、 目的遺 伝子の塩基配列の少なくとも一部の配列と、を有する一本鎖ブリッジヌクレオチドを、 前記プローブ DNA結合粒子の一本鎖 DNA配列部分とハイブリダィズさせ、 DNA合成 酵素を用いて、前記一本鎖ブリッジヌクレオチドの当該目的遺伝子の塩基配列の少 なくとも一部の配列に相補的な配列 (プローブ DNA配列)を含むヌクレオチドを、前記 プローブ DNA結合粒子の前記一本鎖 DNA配列部分に酵素化学合成的に共有結合 させること、により作成したものを用いる前記方法により、前記課題を解決した。  [0011] The present invention also provides the single-stranded DNA of the probe DNA-binding particle having a partial force of the single-stranded DNA sequence bound to the solid layer particle, among the single-stranded bridged nucleotide probe DNA covalent bond particles for the probe. A single-stranded bridge nucleotide having a sequence complementary to at least a portion of the sequence portion and a sequence of at least a portion of the base sequence of the target gene, and a single-stranded DNA sequence portion of the probe DNA-binding particle; Using a DNA synthesizing enzyme, a nucleotide containing a sequence (probe DNA sequence) complementary to at least a part of the base sequence of the target gene of the single-stranded bridge nucleotide is bound to the probe DNA. The above-mentioned problem was solved by the above method using a product prepared by covalently binding to the single-stranded DNA sequence portion of the particle enzymatically and chemically.
[0012] さらに本発明は、プローブ DNA複合体粒子におけるプローブ DNA配列に対応する 当該目的遺伝子の塩基配列の隣接上流域の 0〜7塩基上流を基点とする 20〜50塩 基配列一本鎖 DNA (上流ブロッキング配列、 Up-BS)及び隣接下流域の 0〜7塩基下 流を基点とする 20〜50塩基配列一本鎖 DNA (下流ブロッキング配列、 Down-BS)の 高濃度(lOuM以上、 BS分子数と目的遺伝子分子数の比は少なくとも 1000倍以上)存 在下で行う、前記目的遺伝子の抽出、精製、クローユング方法 (BS法)により、前記課 題を解決した。  [0012] Further, the present invention relates to a 20-50 base sequence single-stranded DNA based on 0 to 7 bases upstream of the upstream region adjacent to the base sequence of the target gene corresponding to the probe DNA sequence in the probe DNA complex particle. (Upstream blocking sequence, Up-BS) and 20-50 base sequence single-stranded DNA (downstream blocking sequence, Down-BS) starting from 0-7 bases downstream of the adjacent downstream region (more than lOuM, BS The above problem was solved by the extraction, purification, and cloning method (BS method) of the target gene performed in the presence of at least 1000 times the ratio of the number of molecules to the number of target gene molecules.
[0013] さらに本発明は、 目的遺伝子を含む閉環状二本鎖 DNA試料を、 0.1N〜0.4Nのアル カリ溶液中で 0°C〜10°Cの低温で 20分〜 1時間変性させて行う、前記目的遺伝子の 抽出、精製、クローユング方法により、前記課題を解決した。  [0013] Further, in the present invention, a closed circular double-stranded DNA sample containing a target gene is denatured in a 0.1N to 0.4N alkali solution at a low temperature of 0 ° C to 10 ° C for 20 minutes to 1 hour. The above problem was solved by the extraction, purification, and cloning methods of the target gene.
本発明はまた、 目的遺伝子を含む閉環状二本鎖 DNA試料を、前記ブロッキング配列 の存在下で、 94°C〜98°Cの温度条件下、 10〜60秒間処理し、次いで直ちに 0°C〜4 °Cへと急冷し、変性させて行う、前記目的遺伝子の抽出、精製、クローユング方法に より、前記課題を解決した。  The present invention also provides that a closed circular double-stranded DNA sample containing the gene of interest is treated in the presence of the blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately at 0 ° C. The above problems were solved by a method of extracting, purifying, and cloning the target gene, which was rapidly cooled to ˜4 ° C. and denatured.
さらに本発明は、 目的遺伝子を含む閉環状二本鎖 DNA試料をプローブ DNA複合 体粒子と、低塩濃度 (50〜350mM)下でハイブリダィズさせる前記抽出、精製、クロー ニング方法により、前記課題を解決した。 Furthermore, the present invention relates to a closed circular double-stranded DNA sample containing a target gene as a probe DNA complex. The above problems have been solved by the above-described extraction, purification, and cloning methods that hybridize with body particles at a low salt concentration (50 to 350 mM).
[0014] 本発明はまた、前記本発明の抽出、精製、クローユング方法により目的遺伝子を濃 縮して含む宿主細胞からの回収物に含まれる閉環状二本鎖 DNAをターゲット DNA分 子として、再度前記本発明の方法により抽出、精製、クローユングを行う、マルチ'サ イタルクローニング方法により、従来法ではほとんど不可能ないし多大な時間と労力 を要した、百万分の 1 (0.0001%)、千万分の 1(0.00001%)程度の確率でしか存在しな いような極微量の目的遺伝子の、迅速かつ確実なクローニングを可能とした。 [0014] The present invention also provides a closed circular double-stranded DNA contained in a recovered product from a host cell containing the target gene concentrated by the extraction, purification, and cloning method of the present invention as a target DNA molecule. Extraction, purification, and cloning by the above-described method of the present invention. By the multi-site cloning method, the conventional method is almost impossible or requires a great deal of time and labor. One millionth (0.0001%), 10 million It enabled rapid and reliable cloning of a very small amount of a target gene that exists only with a probability of 1 / (0.00001%).
なお、本明細書中、「宿主細胞に直接トランスフエクシヨン可能な形状で」とは、宿主 に導入して、大量に迅速に目的遺伝子 DNAをクローユングできる DNA形態、即ち、 少なくとも固層粒子に固定される時点まで、閉環状 DNAの形状を維持していることを 意味する。  In this specification, “in a form that can be directly transformed into a host cell” means a DNA form that can be introduced into a host and rapidly cleave the target gene DNA in large quantities, that is, at least fixed to a solid particle. Means that the shape of the closed circular DNA is maintained up to the point of time.
[0015] 本明細書中、プローブ用一本鎖ブリッジヌクレオチド相補的結合用配列とは、 目的 遺伝子を回収するためのプローブ DNA複合体粒子として、固層粒子に結合した一本 鎖配列部分力 成るプローブ DNA結合粒子力 目的遺伝子の塩基配列の少なくとも 一部の配列に相補的な DNA配列 (プローブ配列)と、プローブ DNA結合粒子の一本 鎖配列部分の一部に相補的な配列を含むプローブ用一本鎖ブリッジヌクレオチドに 相補的結合して成るものを用いる場合に、プローブ DNA結合粒子の一本鎖配列部 分にお 、て、プローブ用一本鎖ブリッジヌクレオチドとの相補的結合達成のためにの み、人為的に作成した配列を意味する。  [0015] In this specification, the single-stranded bridge nucleotide complementary binding sequence for a probe consists of a partial force of a single-stranded sequence bound to a solid particle as a probe DNA complex particle for recovering a target gene. Probe DNA binding particle force For probes containing a DNA sequence (probe sequence) complementary to at least a part of the base sequence of the target gene and a sequence complementary to a part of the single-stranded sequence part of the probe DNA binding particle In order to achieve complementary binding to the single-stranded bridge nucleotide for the probe in the single-stranded sequence portion of the probe DNA-binding particle when using the one complementary to the single-stranded bridge nucleotide. Only an artificially created array is meant.
本明細書中、「相補率」とは、前記プローブ用一本鎖ブリッジヌクレオチド相補的結 合配列の中で、対応するプローブ用一本鎖ブリッジヌクレオチドとの相補的結合を達 成した配列の、プローブ用一本鎖ブリッジヌクレオチド相補的結合配列全体に対する 割合を意味する。  In the present specification, the term “complementation rate” refers to a sequence that has achieved complementary binding to the corresponding single-stranded bridge nucleotide for probes in the single-stranded bridge nucleotide complementary binding sequence for probes. It means the ratio to the entire probe single-stranded bridge nucleotide complementary binding sequence.
[0016] 閉環状二本鎖 DNA試料について  [0016] About closed circular double-stranded DNA samples
本発明で使用する目的遺伝子 DNAを含む閉環状二本鎖 DNA試料は、 60%以上、 特に好ましくは 80%以上の閉環状二本鎖 DNAを含むものであることが望ましい。直鎖 状 1本鎖あるいは二本鎖 DNA、少なくとも 1箇所以上にニックの入った開環状二本鎖 DNAの混在が 40%を越えると、閉環状二本鎖の目的遺伝子の抽出 '精製'クロー- ングは困難になる。前記の条件を満足する DNA試料であれば、それが cDNAプラスミ ド 'ライブラリー、ゲノム DNAライブラリー、 cDNAまたはゲノム'コスミド'ライブラリーの いずれに由来するものであってもよい。また、 60%以上の閉環状二本鎖 DNAを含む DNA試料の調製方法は、如何なる方法であってもよいが、例えば、 CsCl方法やゲル 切り出し方法、 DNA吸着粒子膜 (タカラバイオ mimi-prep kitなど)や粒子での DNA精 製方法によっては、比較的容易に 80%以上の閉環状二本鎖 DNAを含む試料を調製 することができる。また、閉環状二本鎖 DNAの割合が 80%を超えるような試料であれ は、 RNAの混入があっても、 目的遺伝子 DNAのクローユング用試料として使用可能 である。 The closed circular double-stranded DNA sample containing the target gene DNA used in the present invention desirably contains 60% or more, particularly preferably 80% or more of the closed circular double-stranded DNA. Linear single-stranded or double-stranded DNA, open circular double-stranded with at least one nick If the DNA content exceeds 40%, it will be difficult to extract and purify the target gene in a closed circular double strand. As long as the DNA sample satisfies the above conditions, it may be derived from any of cDNA plasmid 'library, genomic DNA library, cDNA or genomic' cosmid 'library. Any method may be used for preparing a DNA sample containing 60% or more of closed circular double-stranded DNA. For example, CsCl method, gel cutting method, DNA adsorption particle membrane (Takara Bio mimi-prep kit) Depending on the method of DNA purification using particles, it is relatively easy to prepare a sample containing more than 80% closed circular double-stranded DNA. In addition, if the ratio of the closed circular double-stranded DNA exceeds 80%, it can be used as a sample for cloning the target gene DNA even if it is contaminated with RNA.
[0017] プローブ DNA複合体粒子について  [0017] Probe DNA complex particles
本発明で使用するプローブ DNA複合体粒子は、固層粒子に結合した、 目的遺伝 子の少なくとも一部の配列に相補的な DNA配列 (プローブ DNA配列)を含むものであ れば、いかなるものであってもよいが、以下の 2種類が例示される。 1つは目的遺伝子 の塩基配列の一部と相補的な配列(Tm値 A)及びプローブ DNA結合粒子の一本鎖 D NA配列部分の少なくとも一部と相補的な配列 (Tm値 B)を有し、両 Tm値の差が少なく とも 8°C以上(Tm値 B— Tm値 A>8°C)のプローブ用一本鎖ブリッジヌクレオチドとプロ ーブ DNA結合粒子がハイブリダィズしたプローブ用ブリッジヌクレオチドプローブ DN A結合粒子 (図 6)と、もう 1つはタレノウ'フラグメント 'DNA'ポリメラーゼ (Klenow fragment DNA polymerase)などの DNA合成酵素を用いて、プローブ DNA結合粒子の 一本鎖 DNA配列部分に、プローブ DNA配列を含むヌクレオチドを酵素化学的に共 有結合させることによる、あらゆる任意の DNA配列が可能なプローブ用ブリッジヌクレ ォチドプローブ DNA共有結合粒子である (図 7)。なお、本明細書中、 Tm値とは、 1〜5 0塩基対程度の一本鎖相補的塩基配列を持つ DNA分子の半分が相補的にハイプリ ダイズして!/、る状態の温度を指す。  The probe DNA complex particle used in the present invention is not limited as long as it contains a DNA sequence (probe DNA sequence) complementary to at least a part of the sequence of the target gene bound to the solid particle. The following two types are exemplified. One has a sequence complementary to a part of the base sequence of the target gene (Tm value A) and a sequence complementary to at least a part of the single-stranded DNA sequence part of the probe DNA binding particle (Tm value B). However, the difference between the two Tm values is at least 8 ° C (Tm value B—Tm value A> 8 ° C). Probe single nucleotide bridge nucleotide and probe DNA binding particle hybridized probe nucleotide probe Using a DNA synthesizing enzyme such as DNA binding particle (Figure 6) and the other, Taleno 'fragment' DNA 'polymerase (Klenow fragment DNA polymerase), probe the single-stranded DNA sequence portion of the probe DNA binding particle. This is a bridged nucleotide probe DNA covalent particle for probes capable of forming any arbitrary DNA sequence by enzymatically linking nucleotides containing the DNA sequence (Fig. 7). In this specification, the Tm value refers to the temperature at which half of a DNA molecule having a single-stranded complementary base sequence of about 1 to 50 base pairs is complementary and hybridized! / .
[0018] 2つの Tm値の差が少なくとも 8°C以上のプローブ用ブリッジヌクレオチドプローブ DNA 結合粒子  [0018] Bridge nucleotide probe DNA-binding particle for probes in which difference between two Tm values is at least 8 ° C or more
前記プローブ用ブリッジヌクレオチドプローブ DNA結合粒子に関しては、プローブ D NA結合粒子が目的遺伝子のプローブ用ブリッジヌクレオチドプローブ DNA結合粒子 とのハイブリダィゼーシヨン、その後の洗浄等の抽出過程で解離してしまわな 、ように 、当該プローブ DNA結合粒子にぉ 、てプローブ用一本鎖ブリッジヌクレオチド相補 的結合用配列が、当該 DNA配列に相補的に結合すべく作成したプローブ用一本鎖 ブリッジヌクレオチドにおける DNA配列部分と、 80%以上の相補率にて相補的結合し ていることが好ましい。また別記としては、プローブ DNA結合粒子の表面に結合した 一本鎖 DNA配列部分とプローブ用一本鎖ブリッジヌクレオチドの前記一本鎖 DNA配 列部分に相補的な配列部分との相補的結合 (Tm値 B)は一個一個の化学的結合タイ プとしては熱や低塩濃度や pH変動に弱い水素結合であるから、一本鎖ブリッジヌク レオチド内の目的遺伝子の塩基配列の少なくとも一部と相補的な配列 (プローブ DNA 配列)が有する Tm値 Aより 8°C以上大きい値を形成する DNA配列を有するものである 必要がある。この条件を満たす限り、プローブ用ブリッジヌクレオチドプローブ DNA結 合粒子の表面に結合して位置するプローブ DNA配列部分の配列、長さは無限に可 能である力 一本鎖ブリッジヌクレオチドとのハイブリダィゼーシヨンの効率を出来るだ け高くすること、 目的遺伝子とプローブ DNA結合粒子表面に結合して位置する一本 鎖 DNA配列部分との非特異的ハイブリダィゼーシヨンの発生を出来るだけ抑えるた めには、 10塩基配列以上 100塩基配列以下であることが望ましい。したがって、「Tm 値 B— Tm値 A > 8°C」を十分満足させるプローブ用ブリッジヌクレオチドプローブ DNA 結合粒子を作成するのに必要なプローブ DNA結合粒子の一本鎖 DNA配列部分は、 相補的結合形成時に水素結合腕を 3つ持つ dGあるいは dC塩基配列をより沢山持つ 配列であることが最も望ま 、。理想的にはプローブ用一本鎖ブリッジヌクレオチドに おけるプローブ DNA結合粒子の一本鎖 DNA配列部分と相 For the probe bridge nucleotide probe DNA binding particle, probe D The NA-bonded particles are probed for the target gene bridge nucleotide probe, and the probe is bound to the probe-DNA-bound particle so that it does not dissociate in the extraction process such as hybridization with the DNA-bound particle and subsequent washing. The single-stranded bridge nucleotide complementary binding sequence for complementary binding to the DNA sequence portion of the probe single-stranded bridge nucleotide prepared to bind to the DNA sequence in a complementary manner with a complementation ratio of 80% or more. It is preferable. Alternatively, the complementary binding of the single-stranded DNA sequence portion bound to the surface of the probe DNA-binding particle and the sequence portion complementary to the single-stranded DNA sequence portion of the single-stranded bridge nucleotide for probe (Tm Since value B) is a hydrogen bond that is vulnerable to heat, low salt concentration, and pH fluctuations as an individual chemical bond type, it is complementary to at least part of the base sequence of the target gene in the single-stranded bridge nucleotide. It must have a DNA sequence that forms a value that is at least 8 ° C greater than the Tm value A of the sequence (probe DNA sequence). As long as this condition is met, the probe DNA sequence portion located on the surface of the bridging nucleotide probe DNA-binding particle for the probe is capable of being infinitely long in sequence and length. Hybridization with a single-stranded bridging nucleotide To increase the efficiency of the determination as much as possible, and to minimize the occurrence of non-specific hybridization between the target gene and the single-stranded DNA sequence located on the surface of the DNA binding particle. In this case, it is desirable that the nucleotide sequence is 10 base sequences or more and 100 base sequences or less. Therefore, the single-stranded DNA sequence portion of the probe DNA-binding particle that is necessary to create the bridge nucleotide probe DNA-binding particle for the probe that sufficiently satisfies “Tm value B—Tm value A> 8 ° C” is complementary binding. It is most desirable that the sequence has more dG or dC base sequences with three hydrogen-bonding arms when formed. Ideally, the probe in the single-stranded bridge nucleotide for the probe.
補的な配列は、 dGあるいは dCで構成される 20塩基力も 40塩基の長さを持ち、一方当 該プローブ用一本鎖ブリッジヌクレオチドの目的遺伝子の塩基配列の少なくとも一部 と相補的な配列部分の塩基構成はほとんどの遺伝子配列に見出される dGdC含量 = 50% (±20%)を持ち、 20〜50塩基力 なる配列力 構成されることが望ましい。しか し、 目的遺伝子 DNAの性質によっては、これらの制約に縛られるものではない。これ によって、 目的遺伝子に対する特異性の高い配列と「Tm値 B—Tm値 A>8°C」の 2つ の条件を十分に満足させることが可能である。本発明に利用するプローブ用一本鎖 ブリッジヌクレオチドは、固層粒子に結合した一本鎖 DNA配列部分の少なくとも一部 と相補的な配列を一方に有し、 目的遺伝子の塩基配列の少なくとも一部と相補的な 配列 (プローブ DNA配列)をもう一方に有する。これらの相補的な配列は必ずしも末端 に位置する必要はないが、ハイブリッド体形成時の立体障害を最小限にするために、 末端近傍に配置されることが望まし 、。 The complementary sequence has a length of 20 bases or 40 bases composed of dG or dC, while being complementary to at least part of the base sequence of the target gene of the single-stranded bridge nucleotide for the probe. It is desirable that the base structure of dGdC content = 50% (± 20%) found in most gene sequences is composed of 20-50 bases. However, depending on the nature of the target gene DNA, it is not bound by these constraints. As a result, two sequences with high specificity to the target gene and “Tm value B—Tm value A> 8 ° C” are obtained. It is possible to satisfy the above conditions sufficiently. The single-stranded bridge nucleotide for a probe used in the present invention has a sequence complementary to at least a part of a single-stranded DNA sequence portion bound to a solid particle on one side, and at least a part of the base sequence of the target gene. And the other sequence (probe DNA sequence). These complementary sequences do not necessarily have to be located at the ends, but are desirably located near the ends to minimize steric hindrance during hybrid formation.
[0019] 共有結合化方法により作成されたプローブ用ブリッジヌクレオチドプローブ DNA共有 結合粒子 [0019] Bridge nucleotide probe probe prepared by a covalent binding method DNA covalently bonded particles
前記プローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子は、プローブ DNA 結合粒子の一本鎖 DNA配列部分とプローブ用一本鎖ブリッジヌクレオチドをノヽイブリ ダイズさせた後に、タレノウ ·フラグメント · DNA ·ポリメラーゼなどの DNA合成酵素を用 いて、プローブ DNA結合粒子の一本鎖 DNA配列部分の DNAの 3'末端に目的遺伝子 の DNA配列の少なくとも一部と相補的な配列 (プローブ DNA配列)を含むヌクレオチド を化学的に直接酵素合成'共有結合させることにより作成される。このプローブ用プリ ッジヌクレオチドプローブ DNA共有結合粒子は、プローブ DNA配列を含むヌクレオチ ドが固層粒子表面に共有結合化されているので、 100°C以下のあらゆる温度、あらゆ る塩濃度、 1N (規定)程度のアルカリや酸溶液にも格段に耐性であり、ノ、イブリダィゼ ーシヨンを介する遺伝子 DNA抽出 '精製'クローユング用のプローブとしては、最適の プローブである。プローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子中のプ ローブ DNA結合粒子の一本鎖 DNA配列部分の塩基配列もプローブ用一本鎖ブリツ ジヌクレオチド内の目的遺伝子の塩基配列の少なくとも一部と相補的なプローブ配 列の塩基配列もあらゆる塩基配列が有効である。し力し酵素合成の効率、 DNAの非 特異的結合を避けるためには、プローブ用ブリッジヌクレオチドプローブ DNA共有結 合粒子のプローブ DNA配列の塩基配列は自由だ力 その長さは 5〜数百塩基配列 が望ましい。  The probe bridging nucleotide probe DNA covalently bonded particle is obtained by neutralizing the single-stranded DNA sequence portion of the probe DNA-binding particle and the single-stranded bridge nucleotide for the probe, and then synthesizing DNA such as talenow, fragment, DNA, polymerase, etc. Using an enzyme, a nucleotide containing a sequence (probe DNA sequence) that is complementary to at least part of the DNA sequence of the target gene at the 3 'end of the DNA of the single-stranded DNA sequence of the probe DNA-binding particle is chemically directly Enzymatic synthesis' created by covalent linkage. In this probe nucleotide probe DNA covalently bonded particle, the nucleotide containing the probe DNA sequence is covalently bound to the surface of the solid particle, so that any temperature below 100 ° C, any salt concentration, 1N It is extremely resistant to (alternative) alkali and acid solutions, and is an optimal probe for gene DNA extraction 'purification' crawling via hybridization. Probe bridge nucleotide probe Probe in the DNA covalent bond particle Single-stranded DNA sequence of the DNA-bonded particle The base sequence of the DNA sequence is also complementary to at least part of the base sequence of the target gene in the probe single-stranded bridge nucleotide Any base sequence of the probe sequence is effective. In order to avoid the non-specific binding of DNA and the efficiency of enzyme synthesis, the bridge nucleotide probe for the probe Probe of the DNA covalently bonded particle The base sequence of the DNA sequence is free The length is 5 to several hundred bases An array is preferred.
[0020] 前記プローブ DNA配列を結合させる固層粒子は、プローブ用ブリッジヌクレオチド プローブ DNA結合粒子とプローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子 のいずれにおいても、ラテックス 'ビーズ (latex bead)のような有機高分子粒子や有機 高分子シート、その内部に磁性体を持ち磁気分離可能な粒子、金などの金属粒子 やガラス粒子 ·板など、着色粒子や蛍光を発する粒子であって良!ヽ。 [0020] The solid particle to which the probe DNA sequence is bound is an organic polymer such as a latex bead in both the bridge nucleotide probe DNA binding particle for probe and the bridge nucleotide probe DNA covalent bond particle for probe. Molecular particles and organic Polymer sheets, particles that have a magnetic material inside and can be separated magnetically, metal particles such as gold, glass particles and plates, and colored particles or fluorescent particles may be used.
[0021] サイクル'ノヽィブリダィゼーシヨン方法 [0021] Cycle 'Noise hybridization method
本発明で使用する 2つの Tm値の差が少なくとも 8°C以上のプローブ用一本鎖ブリツ ジヌクレオチドのプローブ DNA結合粒子への水素結合を介した相補的結合は、サイ クル ·ハイブリダィゼーシヨン方法を用いて行う。具体的には、 目的遺伝子の塩基配 列の少なくとも一部と相補的な配列 (プローブ DNA配列)及びプローブ DNA結合粒子 の一本鎖 DNA配列部分の塩基配列の少なくとも一部と相補的な配列を有するプロ一 ブ用一本鎖ブリッジヌクレオチドを、プローブ DNA結合粒子の当該一本鎖 DNA配列 部分に、温度 50°Cから 70°Cの範囲内で 5サイクル以上サイクル ·ハイブリダィズ〔 1回 のサイクル ·ハイブリダィズの例:  Complementary binding of a single-stranded bridging nucleotide for a probe having a difference between two Tm values used in the present invention of at least 8 ° C or more to a probe DNA-binding particle through a hydrogen bond is a cycle hybridizer. Use the Chillon method. Specifically, a sequence complementary to at least a part of the base sequence of the target gene (probe DNA sequence) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA binding particle A single-stranded bridge nucleotide for a probe having a cycle of 5 cycles or more within a temperature range of 50 ° C to 70 ° C in a single-stranded DNA sequence portion of a probe DNA-binding particle. Examples of hybrids:
50°C (20秒以上) 55°C (20秒以上)→60°C (20秒以上)→65°C (20秒以上)→70°C (20 秒以上)→65°C (20秒以上)→60°C (20秒以上)→55°C (20秒以上)→50°C (20秒以 上)〕させることで、プローブ DNA結合粒子の一本鎖 DNA配列部分の塩基配列とプロ ーブ用一本鎖ブリッジヌクレオチド内のプローブ DNA結合粒子の一本鎖 DNA配列部 分の少なくとも一部に相補的な配列の間のより強固な相補的水素結合の形成を達成 することができる。もちろん、プローブ DNA結合粒子の一本鎖 DNA配列部分とプロ一 ブ用一本鎖ブリッジヌクレオチド内のプローブ DNA結合粒子の一本鎖 DNA配列の少 なくとも一部に相補的な塩基配列の間の相補的水素結合の形成は、反応温度を 50 。C、 60°C、 70°Cなどの一定温度に保つことでも達成される力 これらの温度に一定に 保つことで生成した分子結合体の中には理論的には最も強固な相補的結合体以下 の状態でハイプリしている分子結合体があり、これは目的遺伝子を含む閉環状二本 鎖 DNAとのハイプリの際やその後の厳しい温度 ·塩濃度条件下での非特異的結合分 子の洗浄除去の際には一緒に解離して失われる運命にあるので、このような不完全 な結合体の存在は目的遺伝子の分離 '抽出'クロー-ングの効率を相当程度低下さ せることになるので、避ける方が望まれる。  50 ° C (20 seconds or more) 55 ° C (20 seconds or more) → 60 ° C (20 seconds or more) → 65 ° C (20 seconds or more) → 70 ° C (20 seconds or more) → 65 ° C (20 seconds) ) → 60 ° C (20 seconds or longer) → 55 ° C (20 seconds or longer) → 50 ° C (20 seconds or longer)), and the nucleotide sequence of the single-stranded DNA sequence portion of the probe DNA binding particle Probes in single-stranded bridge nucleotides for probes Can form stronger complementary hydrogen bonds between sequences complementary to at least part of the single-stranded DNA sequence portion of the DNA-binding particle. . Of course, between the single-stranded DNA sequence portion of the probe DNA-binding particle and the base sequence complementary to at least part of the single-stranded DNA sequence of the probe DNA-binding particle in the single-stranded bridge nucleotide for the probe. Complementary hydrogen bond formation is a reaction temperature of 50. Force achieved even by keeping constant temperature such as C, 60 ° C, 70 ° C, etc. The theoretically strongest complementary conjugate among the molecular conjugates produced by keeping these temperatures constant There are molecular conjugates that are hyperpided in the following conditions. This is due to the non-specific binding molecules under the severe temperature and salt concentration conditions during hyperplasia with closed circular double-stranded DNA containing the target gene. The presence of such incomplete conjugates considerably reduces the efficiency of the 'extraction' cloning of the target gene, as it is destined to be dissociated and lost together during washing. So it is better to avoid it.
[0022] 閉環状二本鎖 DNAのアルカリ低温変性方法および高温短時間変性法 [0022] Alkaline low-temperature denaturation method and high-temperature short-time denaturation method of closed circular double-stranded DNA
本発明で使用する DNA試料は、単に目的遺伝子の抽出'精製や検出を目的にす るのみならず、抽出'精製された目的遺伝子 DNAが、即、大腸菌に導入 (トランスフエ タト)できるよう、物理化学的形態、すなわち、少なくとも固層粒子に回収する時点ま で、閉環状二本鎖 DNAの形態を維持して 、る必要がある。 The DNA sample used in the present invention is simply used for the purpose of extraction and purification or detection of the target gene. In addition, the extracted and purified target gene DNA can be immediately introduced (transfected) into Escherichia coli in physicochemical form, i.e., at least until it is recovered into solid particles. It is necessary to maintain the form of the strand DNA.
プローブ DNA複合体粒子と目的遺伝子 DNAを含む閉環状二本鎖 DNA試料とのハ イブリダィゼーシヨンに先立ち、 DNA試料を熱ないしアルカリで変性させ、一本鎖化さ せる必要がある力 DNA試料の抽出過程で生じた 3つの DNAタイプ [1)閉環状 DNA、 Prior to the hybridization between the probe DNA complex particle and the closed circular double-stranded DNA sample containing the target gene DNA, the DNA sample must be denatured with heat or alkali to become single-stranded DNA Three DNA types generated during the sample extraction process (1) closed circular DNA,
2)開環状 DNA、 3)鎖状 DNA]は、変性過程で図 1に示すように、閉環状 DNAは双葉の クローバーのような一部力 S2本の繋がったゴム輪ような形態をとるが完全にバラバラに なることはないのに対して、開環状 DNAと鎖状 DNAは、ー且変性すると元の相補的 分子は完全に離れ離れになり、一部に長い相補的配列を有する沢山の同様の分子 の存在下では二度と同じ相補的分子と再ハイプリ(再対合)することはない。したがつ て、変性された開環状 DNAや鎖状 DNAから抽出 ·回収された DNAからは、直接大腸 菌に導入して、目的の遺伝子 DNAを増幅'クローユングすることは不可能である。 又、閉環状二本鎖 DNAも 70°C以上などの高温長時間処理 (2分以上)、室温ないし 高温でのアルカリ処理では、 DNAにニックが入り、開環状二本鎖 DNAや直鎖状二本 鎖 DNAの運命と同じ過程を経て、バラバラに解離する。従って、閉環状二本鎖 DNA の変性においては、マイルドな変性条件が必須である。本発明においては、これを実 現するため閉環状二本鎖 DNAを 0°C (氷水中)でゆっくりマイルドに 0.1〜0.4Nアル力 リ溶液中で変性させることにより、開環状二本鎖 DNAの機械的 ·物理的 ·化学的切断 を無視できる程度以下に抑制しながらほぼ 100%の閉環状二本鎖 DNAの変性 ·双葉 のクローバー型一本鎖化を達成した。なお、実際は、 0°C〜10°Cの範囲なら、ほぼ同 様の変性結果が得られる。 2) Open circular DNA, 3) Stranded DNA], as shown in Fig. 1 in the process of denaturation, closed circular DNA takes the form of a partial force S like a two- leaf clover. Are not completely disjointed, but open circular DNA and strand DNA-and when denatured, the original complementary molecules are completely separated and have many long complementary sequences in part. In the presence of a similar molecule, it will never re-hypli (re-pair) with the same complementary molecule. Therefore, it is impossible to amplify and clone the target gene DNA from the DNA extracted and recovered from the denatured open circular DNA or strand DNA, and introduced directly into the colon. Closed circular double-stranded DNA can also be nicked by high-temperature, long-term treatment (over 2 minutes) such as 70 ° C or higher, or alkaline treatment at room temperature or high temperature, resulting in open circular double-stranded DNA or linear Through the same process as the fate of double-stranded DNA, it dissociates apart. Therefore, mild denaturation conditions are essential for denaturing closed circular double-stranded DNA. In the present invention, in order to realize this, closed circular double-stranded DNA is denatured slowly and mildly at 0 ° C (ice water) in a 0.1 to 0.4 N alkaline solution to thereby open circular double-stranded DNA. Almost 100% denaturation of closed circular double-stranded DNA was achieved while suppressing mechanical, physical, and chemical cleavage of DNA to a negligible level. Actually, almost the same denaturation results can be obtained in the range of 0 ° C to 10 ° C.
本発明においてはまた、目的遺伝子を含む閉環状二本鎖 DNA試料を、前記ブロッ キング配列の存在下で、 94°C〜98°Cの温度条件下、 10〜60秒間処理し、次いで直 ちに 0°C〜4°Cへと急冷し、変性させることにより、閉環状二本鎖 DNAの一本鎖化を達 成した。この方法は、高温処理でもニックのない閉環状二本鎖 DNAの一本鎖化を可 能としたものであり、より迅速な (高温処理'冷却を含む全工程に要する時間; 1〜2分 )閉環状二本鎖 DNA—本鎖化を可能とするものである。 本発明で得られる閉環状二本鎖 DNAの、前記低温アルカリ変性 ·ブロッキング配列 存在下での高温処理に由来する双葉のクローバー型一本鎖 DNAは、塩濃度と温度 に依存して、ゆっくりあるいは急速に自己会合し、元の閉環状二本鎖 DNAに戻る。 In the present invention, a closed circular double-stranded DNA sample containing the gene of interest is also treated in the presence of the blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately. The DNA was rapidly cooled to 0 ° C to 4 ° C and denatured to achieve single-stranded DNA in a closed circular double-stranded DNA. This method makes it possible to single-stranded closed circular double-stranded DNA without nicks even at high temperature treatment, and more rapid (time required for all steps including high temperature treatment and cooling; 1-2 minutes ) Closed circular double stranded DNA—allows it to be stranded. The double-leaf clover-type single-stranded DNA derived from the high-temperature treatment of the closed circular double-stranded DNA obtained in the present invention in the presence of the low-temperature alkaline denaturation / blocking sequence is Rapidly self-associates and returns to the original closed circular double-stranded DNA.
[0024] 隣接上 ·下流域の 20〜100塩基配列一本鎖 DNA (上流、下流ブロッキング配列、 Up- BS、 Down- BS) [0024] Adjacent upper / downstream region 20-100 bases single stranded DNA (upstream, downstream blocking sequence, Up-BS, Down-BS)
本発明における抽出、精製、クローユング方法においては、本明細書中に記載す る BS法を併用することで、いっそうその効率を増すことができる。即ち、 BS法に関して は、目的遺伝子のノ、イブリダィゼーシヨンターゲット配列に隣接する上'下流域の 0〜 7塩基上流及び下流を基点とする 20〜数百塩基配列一本鎖 DNA (上流、下流ブロッ キング配列、 Up-BS、 Down-BS)力 本発明で得られる閉環状二本鎖 DNAの低温ァ ルカリ変性に由来する双葉のクローバー型一本鎖 DNAの塩濃度および温度に依存 した自己会合速度を遅らせる物理化学的性質を有し、ハイブリダィゼーシヨン溶液の 塩濃度や温度とともに、低温アルカリ変性した閉環状二本鎖 DNA (双葉のクローバー 型一本鎖 DNA)が元の閉環状二本鎖 DNAに戻るスピードを遅らせ、その結果固層粒 子に固相化されたプローブ DNAと目的遺伝子 DNAとの結合を増加させる特性を利用 する。ここで、隣接する上.下流域の 20〜数百塩基配列一本鎖 DNAの塩基配列の長 さは、 20〜100塩基配列程度が効果を持つが、長すぎるとこれ自身が非特異的結合 の原因となるので、 20〜50塩基配列であることが望ましい。また、隣接する上 ·下流域 の 20〜50塩基配列一本鎖 DNAの濃度は、 BS分子数と目的遺伝子分子数の比は少 なくとも 1000倍以上あることが必要で、通常少なくとも lOuM以上あれば十分大きなク ローニング増加効果が得られる。  In the extraction, purification, and cloning methods in the present invention, the efficiency can be further increased by using the BS method described in this specification together. In other words, with respect to the BS method, single-stranded DNA of 20 to several hundred base sequences (upstream) from 0 to 7 bases upstream and downstream of the upstream and downstream regions adjacent to the target sequence of the target gene. , Downstream blocking sequence, Up-BS, Down-BS) force Dependent on the salt concentration and temperature of the double-leaf clover-type single-stranded DNA derived from low-temperature alkaline denaturation of the closed circular double-stranded DNA obtained in the present invention It has a physicochemical property that slows the rate of self-association. Closed circular double-stranded DNA (two-leaf clover-type single-stranded DNA) denatured at low temperature with the salt concentration and temperature of the hybridization solution is the original closed Utilizes the property of slowing the speed of returning to circular double-stranded DNA, resulting in increased binding between the target DNA and the probe DNA immobilized on the solid layer. Here, the length of the base sequence of 20 to several hundred base sequences of single-stranded DNA in the upstream and downstream regions is effective by about 20 to 100 base sequences, but if it is too long, it itself becomes nonspecific binding Therefore, it is desirable to have a 20-50 base sequence. In addition, the concentration of 20-50 base sequence single-stranded DNA in the adjacent upstream and downstream regions should be at least 1000 times the ratio of the number of BS molecules to the number of target gene molecules, usually at least lOuM or more. A sufficiently large increase in cloning can be obtained.
[0025] 図 2に示すように、プローブ DNAに対応する目的遺伝子配列の隣接上流域の 0〜7 塩基上流(プローブ DNAと BS間の塩基配列スペース)を基点とする 20〜数百塩基配 列一本鎖 DNA (上流ブロッキング配列、 Up-BS)及び隣接下流域の 0〜7塩基下流( プローブ DNAと BS間の塩基配列スペース)を基点とする 20〜数百塩基配列一本鎖 D NA (下流ブロッキング配列、 Down-BS)はそれぞれ 2種類可能で、試料への添力卩の組 み合わせは Up- BS- 1単独、 Up- BS- 2単独、 Down- BS- 1単独、 Down- BS- 2単独、 Up- BS- 1と Down- BS- 1の混合、 Up- BS- 1と Down- BS- 2の混合、 Up- BS- 2と Down- BS- 1の 混合、 Up-BS-2と Down- BS-2の混合の 8組が可能であり、そのいずれも目的遺伝子 や DNAの抽出 '精製'クローユングの効率増大に効果があり、 目的遺伝子の抽出'精 製'クロー-ングのターゲットとなる塩基配列によって、その組み合わせは選択可能で あるが、好まし 、組み合わせの例としては Up-BS-1と Down- BS-2の混合物が挙げら れる。 [0025] As shown in FIG. 2, 20 to several hundred base sequences based on 0 to 7 bases upstream (base sequence space between probe DNA and BS) upstream of the adjacent upstream region of the target gene sequence corresponding to the probe DNA Single-stranded DNA (upstream blocking sequence, Up-BS) and 0 to 7 bases downstream of the adjacent downstream region (base sequence space between probe DNA and BS) 20 to several hundred base sequences single-stranded DNA ( Two types of downstream blocking sequences (Down-BS) are possible, and combinations of the force applied to the sample are Up-BS-1 alone, Up-BS-2 alone, Down-BS-1 alone, Down-BS -2 alone, mixed Up-BS-1 and Down-BS-1, mixed Up-BS-1 and Down-BS-2, up-BS-2 and Down-BS-1 Eight combinations of mixed, Up-BS-2 and Down-BS-2 are possible, both of which are effective in increasing the efficiency of 'purification' clawing and extracting target genes and DNA. The combination can be selected depending on the base sequence that is the target of the cloning, but a preferred example is a mixture of Up-BS-1 and Down-BS-2.
[0026] 低塩濃度下でのハイブリダィゼーシヨン  [0026] Hybridization under low salt concentration
本発明にお 、て前記 BS法を併用する場合、ハイブリダィゼーシヨン溶液の塩濃度 を 300mM以上にすると、隣接する上.下流域の 20〜50塩基配列一本鎖 DNAによるク ローニング増加効果はかなり低下する。これに対して、ハイブリダィゼーシヨン溶液の 塩濃度を 100〜200mMの間に保つと、隣接する上'下流域の 20〜50塩基配列一本鎖 DNAによる高いクローユング効率増加効果が得られる。従って、本発明で使用される ハイブリダィゼーシヨン溶液の塩濃度は通常のサーザンノ、イブリダィゼーシヨンで汎 用される 400〜600mMでも可能である力 50〜350mM、好ましくは 100〜250mMの間 であることが望ましい。  In the present invention, when the BS method is used in combination, if the salt concentration of the hybridization solution is set to 300 mM or more, the effect of increasing cloning by 20-50 base sequence single-stranded DNA in the adjacent upstream and downstream regions Drops considerably. On the other hand, if the salt concentration of the hybridization solution is kept between 100 and 200 mM, the effect of increasing the cloning efficiency by 20 to 50 base sequence single-stranded DNA in the adjacent upstream and downstream regions can be obtained. Therefore, the salt concentration of the hybridization solution used in the present invention is a force of 50 to 350 mM, preferably 100 to 250 mM, which is possible even at 400 to 600 mM commonly used in ordinary Sarzanno and hybridization. It is desirable to be between.
[0027] マルチ.サイクルクローニング方法  [0027] Multi-cycle cloning method
本発明におけるマルチ ·サイクルクローユング方法は、前記本発明の抽出、精製、 クロー-ング方法により目的遺伝子を濃縮して含む宿主細胞からの回収物に含まれ る閉環状二本鎖 DNAをターゲット DNA分子として、本発明の抽出、精製、クローニン グシステムを短期間(2〜4日)に繰り返すことで、極微量でしか存在しない目的遺伝 子 DNAも迅速に、確実にクローニング可能としたものである。  In the multi-cycle cloning method of the present invention, the closed circular double-stranded DNA contained in the recovered product from the host cell containing the target gene is concentrated by the extraction, purification and cloning method of the present invention. By repeating the extraction, purification, and cloning system of the present invention as a molecule in a short period (2-4 days), the target gene DNA that exists only in a very small amount can be rapidly and reliably cloned.
発明の効果  The invention's effect
[0028] 前記本発明による分離、精製、クローニング方法により、 目的遺伝子を含むあらゆ る由来、サイズ、配列等の閉環状二本鎖 DNAを、迅速、正確、かつ効率よく分離、精 製、クロー-ングすることが可能となる。また、本発明の方法を用いることにより、従来 数日力も数週間必要としたクローユング操作を、わずか 1日(24時間以内)で完了する ことができる。  [0028] By the separation, purification, and cloning method of the present invention, closed circular double-stranded DNAs of all origins, sizes, sequences, etc. including the target gene can be separated, purified, and cloned quickly, accurately, and efficiently. -It becomes possible to In addition, by using the method of the present invention, it is possible to complete a clawing operation that conventionally required several days of power for several weeks in only one day (within 24 hours).
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]DNA試料の抽出過程で生じる 3タイプの DNAを示す図である。 [図 2 ]目的遺伝子配列と Up-BS、 Down-BS配列の位置関係を示す図である。 二本鎖 DNAを例として、 目的遺伝子 DNAのプローブ DNA と相補的な目的 遺伝子塩基配列の位置、 プローブ DNA と相補的な目的遣伝子配列の隣接上流 域の 0 〜 7 塩基上流を基点とする 20 〜数百塩基配列一本鎖 DNA (upstream blocking sequence, Up-BS)及び隣接下流域の 0〜 7塩基上流を基点とする 20〜 数百塩基配列一本鎖 DNA (downstream blocking sequence, Dn-BS)の位置、 及びプ ローブ DNA結合粒子の位置関係を示す。 [0029] FIG. 1 is a diagram showing three types of DNA generated in the process of extracting a DNA sample. FIG. 2 is a diagram showing the positional relationship between a target gene sequence and Up-BS and Down-BS sequences. Taking double-stranded DNA as an example, the base position is the position of the target gene base sequence complementary to the probe DNA of the target gene DNA, and 0 to 7 bases upstream of the adjacent upstream region of the target gene sequence complementary to the probe DNA. 20 to several hundred base sequence single-stranded DNA (upstream blocking sequence, Up-BS) and 20 to several hundred base sequence single-stranded DNA (downstream blocking sequence, Dn- BS) position and probe Position of DNA binding particles.
[図 3 ] SDSアル力リ CsCl法で精製した DNA試料 (pCYおよび pGBM)の分析結 果を示す図である。  FIG. 3 is a diagram showing the results of analysis of DNA samples (pCY and pGBM) purified by the SDS Al-CsCl method.
試料 1は、 SDS ·アル力リ法で得られたプラスミ ド pCYの DNA試料の分析 結果を示す(閉環状(sp) DNA に加え、 開環状(op)の DNA、の混入が見られる)。 試料 2は、 SDS ·アル力リ法で得られたプラスミ ド pGBM の DNA試料の分析 結果を示す(閉環状(sp) DNA に加え、 開環状 (op)の DNA の混入が見られる)。 試料 3は、 SDS ·アル力リ · CsCl法で得られたプラスミ ド pCYの DNA試料の 分析結果を示す(98%以上の閉環状(sp) DNA のみからなる)。 試料 4は、 SDS · アル力リ · CsCl法で得られたプラスミ ド pGBMの DNA試料の分析結果を示す (98%以上閉環状(sp) DNAのみからなる)。 試料 pCY-Rは、 SDS · アル力リ法で 得られたプラスミ ド pCYの非 RNA除去 DNA試料の分析結果を示す(閉環状(sp ) DNA に加え、 開環状(op)の DNA の混入が見られるが、 その量は 1 0 %以下 であり、 また、 大量の total RNAが見られる)。 試料 pGBM-Rは、 SDS ·アル力 リ法で得られたプラスミ ド pGBMの非 RNA除去 DNA試料の分析結果を示す( 閉環状(sp) DNA に加え、 開環状 (op)の DNA の混入が見られるが、 その量は 1 0 %以下であり、 また、 大量の total RNAが見られる)。  Sample 1 shows the analysis results of the plasmid pCY DNA sample obtained by the SDS-Al force method (contamination of open circular (op) DNA in addition to closed circular (sp) DNA). Sample 2 shows the analysis results of the plasmid pGBM DNA sample obtained by the SDS-Al force method (in addition to closed circular (sp) DNA, open circular (op) DNA contamination is observed). Sample 3 shows the analysis result of the DNA sample of plasmid pCY obtained by SDS / Al force / CsCl method (consisting only of 98% or more of closed circular (sp) DNA). Sample 4 shows the analysis result of the DNA sample of plasmid pGBM obtained by SDS · Al force · CsCl method (more than 98% is composed of closed circular (sp) DNA only). Sample pCY-R shows the analysis result of non-RNA-removed DNA sample of plasmid pCY obtained by SDS-Al force method (in addition to closed circular (sp) DNA and open circular (op) DNA contamination. The amount is less than 10%, and a large amount of total RNA is seen). Sample pGBM-R shows the analysis result of non-RNA-removed DNA sample of plasmid pGBM obtained by SDS-Al force method (in addition to closed circular (sp) DNA and open circular (op) DNA contamination. The amount is less than 10%, and a large amount of total RNA is seen).
[図 4 ] SDSアル力リ法および SDSアル力リ CsCl法で精製した DNA試料(マゥ ス脳 cDNAプラスミ ドライブラリー)の分析結果を示す図である。  [FIG. 4] A diagram showing the results of analysis of a DNA sample (mouse brain cDNA plasmid library) purified by the SDS Al force method and SDS Al force method CsCl method.
試料 5は、 SDS ·アルカリ法で得られたマウス脳 cDNA プラスミ ド ' ライブ ラリーの分析結果を示す (閉環状 (sp)より開環状 (op)の割合が多い) 。 試料 6 は、, SDS ·アルカリ法で得られたマウス脳 cDNA プラスミ ド ' ライブラリーの 分析結果を示す (閉環状(sp)の割合が開環状 (op)より多い) 。 試料 7は、 SDS -アルカリ . CsCl法で得られたマウス脳 cDNAプラスミ ド ' ライブラリーの分 析結果を示す (閉環状 (sp)が 95%以上で開環状 (op)が非常に少ない) 。 試料 8 は、 タカラバイォ MiniAprepDNA抽出キットで得られたマゥス脳 cDNAプラス 差替 え用鉞 (規則 26) ミ ド 'ライブラリーの分析結果を示す (閉環状 (sp)の割合 (約 80%) が開環状 (op) (約 20%)より多い) 。 Sample 5 shows the analysis results of mouse brain cDNA plasmid library obtained by SDS-alkali method (the ratio of open circle (op) is higher than closed circle (sp)). Sample 6 shows the analysis result of mouse brain cDNA plasmid library obtained by SDS-alkali method (the ratio of closed circle (sp) is higher than open circle (op)). Sample 7 shows the analysis results of mouse brain cDNA plasmid library obtained by SDS-alkaline. CsCl method (closed circular (sp) is 95% or more and open circular (op) is very small). Sample 8 is a mouse brain cDNA plus replacement kit (Rule 26) obtained with the Takarabio Mini A prepDNA extraction kit. The analysis results of the Mid 'library are shown (the ratio of closed ring (sp) (approximately 80%) is higher than open ring (op) (approximately 20%)).
[図 5 ] PCRによる、 シリテスチン cDNA断片(270塩基対)の検出結果を示す図で ある。 [FIG. 5] A diagram showing the results of detection of a cilitestin cDNA fragment (270 base pairs) by PCR.
上は、 白色コロニーの PCR結果を、 下は青色コロニーの PCR結果を示す。 [ ( シリテスチン 'プライマ一 1 ; 5'-ACCCAGATAGGCAGTGTACAGA- 3' (1508-1529 ) ( 配 列 番 号 3 2 ) /シ リ テ ス チ ン ' プ ラ イ マ ー 2 ;  The top shows the PCR results for white colonies and the bottom shows the PCR results for blue colonies. [(Ciriestine 'Primer 1; 5'-ACCCAGATAGGCAGTGTACAGA-3' (1508-1529) (Sequence No. 3 2) / Ciritestine 'Primer 2;
5'-TGTCATCTCTAGTCCCAGTCTG-3' ( 1777- 1756) (配列番号 3 3 ) ] 5'-TGTCATCTCTAGTCCCAGTCTG-3 '(1777-1756) (SEQ ID NO: 3 3)]
[図 6 ]プローブ用一本鎖ブリッジヌクレオチドにおける Tm値 A と Tm値 B と の関係を示す図である。 FIG. 6 is a diagram showing the relationship between Tm value A and Tm value B in a probe single-stranded bridge nucleotide.
図は、 DNA粒子の DNA (Tm値 B)と pCYプローブ用 1本鎖ブリッジヌクレオ チド(BN-CY) DNA (Tm値 A)の例を示す。 (DNA粒子側の DNA配列(30mer) ;配 列番号 3 4 BN-CY DNA配列;配列番号 3 5 )  The figure shows examples of DNA of DNA particles (Tm value B) and single-stranded bridged nucleotide (BN-CY) DNA (Tm value A) for pCY probes. (DNA sequence on the DNA particle side (30mer); SEQ ID NO: 3 4 BN-CY DNA sequence; SEQ ID NO: 3 5)
[図 7 ]プローブ用ブリッジヌクレオチド DNA共有結合粒子の作成方法を示す図 である。  FIG. 7 is a diagram showing a method for producing a bridge nucleotide DNA covalent bond particle for a probe.
プローブ用 1本鎖ブリッジヌクレオチドの DNA粒子の DNA3'末端への酵素化 学合成的共有結合化 DNAプローブ(プリッジヌクレオチド DNA共有結合粒子) 作製の 1例を、 pCY用プローブ 1本鎖ブリッジヌクレオチド(BN-CY) DNA を例 にとつて示す。 タレノウフラグメント DNAポリメラーゼ等の DNA合成酵素に よるブリツジヌクレオチド(BN-CY-2) DNA と相補的なブリッジヌクレオチドの 合成後、 0.2N NaOHによる DNAの変性および洗浄操作により、 水素結合 1本鎖 プリッジヌクレオチドを除去して、 プローブ用ブリッジヌクレオチド DNA共有 結合粒子を得る。 (配列上から一 DNA粒子側の DNA配列(30mer) ;配列番号 3 6 /BN-CY-2 DNA;配列番号 3 7 /酵素合成されたビーズ結合型 1本鎖合成相補的 ブリッジヌクレオチド;配列番号 3 8 /BN-CY-2 DNA;配列番号 3 9 /酵素合成さ れたビーズ共有結合型ブリッジヌクレオチド DNA;配列番号 4 0 )  Single-stranded bridge nucleotides for probes Enzymatic synthesis of DNA particles to the 3 'end of DNA particles Covalent synthetic synthesis DNA probes (ridge nucleotides DNA covalently bonded particles) One example of preparation is a probe for pCY Single-stranded bridge nucleotides (BN -CY) Take DNA as an example. Talenou fragment Bridging nucleotide (BN-CY-2) by DNA synthesizing enzyme such as DNA polymerase After synthesizing bridge nucleotide complementary to DNA, DNA is denatured and washed with 0.2N NaOH to form hydrogen bond single strand The probe nucleotide is removed to obtain a bridge nucleotide DNA covalent bond particle for probe. (DNA sequence (30 mer) on the DNA particle side from the top of the sequence; SEQ ID NO: 3 6 / BN-CY-2 DNA; SEQ ID NO: 3 7 / Enzymatically synthesized bead-bound single-stranded synthetic complementary bridge nucleotide; SEQ ID NO: 3 8 / BN-CY-2 DNA; SEQ ID NO: 39 / Enzymatically synthesized bead covalently linked bridged nucleotide DNA; SEQ ID NO: 40)
[図 8 ]本発明の方法によるァクチン遺伝子 cDNA プラスミ ドクローンのクロー ニング結果を示す図である。 FIG. 8 is a diagram showing the results of cloning of actin gene cDNA plasmid clones according to the method of the present invention.
レーン 1は、 泳動マ一カー (え/ Hind ΠΙ) を示し、 レーン 2は、 BS法でクロー ニングしたァクチン遺伝子クローン 1 DNAを制限酵素 EcoRl と Notl で切断し たサンプルを示し、 レーン 3は、 ァクチン遺伝子クローン 1の DNAO.lngをァク チンプライマーで PCRしたサンプルを示し、 レーン 4は、 BS法でクロー-ング 替 え用 紙(規則 26) したァクチン遺伝子クローン 2の DNAを制限酵素 EcoRl と Notl で切断したサ ンプルを示し、 レーン 5は、 ァクチン遺伝子クローン 2 DNAO.lngをァクチンプ ライマーで PCR したサンプルを示し、 レーン 6は、 BS法で抽出した粗抽出液を ァクチンプライマーで PCR したサンプルを示す。 図中、 黒い矢印は本発明の BS 法でクロ一ユングされた約 1.26k塩基対のァクチン遺伝子 cDNAを示し、 白い矢 印は BS法でクローニングされたァクチン遺伝子 c DNAク口一ンを PCRして得 られた 730塩基対の PCR産物を示し、 星印は、 BS法でクロ一ニングされた 2つ のァクチン遺伝子 c DNAプラスミ ドクローンのプラスミ ドベクター 5.3k塩基対 DNAを示す。 Lane 1 shows the electrophoresis marker (Eh / Hind ΠΙ), Lane 2 shows the sample obtained by cleaving the actin gene clone 1 DNA cloned by BS method with restriction enzymes EcoRl and Notl, and Lane 3 shows A sample obtained by PCR of DNAO.lng of actin gene clone 1 with a lactin primer is shown. Lane 4 is a replacement paper for the BS method (Rule 26). A sample obtained by cleaving the DNA of the actin gene clone 2 with restriction enzymes EcoRl and Notl is shown.Lane 5 shows a sample obtained by PCR of the actin gene clone 2 DNAO.lng with the actin primer. Shown below is a sample of the crude extract obtained by PCR with actin primers. In the figure, the black arrow shows the actin gene cDNA of about 1.26k base pairs cloned by the BS method of the present invention, and the white arrow shows the PCR of the actin gene cDNA clone cloned by the BS method. The 730 base pair PCR product obtained is shown, and the asterisk indicates the plasmid vector 5.3 k base pair DNA of two actin gene cDNA plasmid clones cloned by BS method.
[図 9 ]本発明の方法による HPRT遺伝子 cDNA プラスミ ドクローンのクロー二 ング結果を示す図である。  FIG. 9 is a diagram showing the results of cloning an HPRT gene cDNA plasmid clone according to the method of the present invention.
レーン 1は、 泳動マ一カー(λ /Hind IE)を示し、 レーン 2は、 BS法でクロ一二 ングした HPRT遺伝子クローン 1 DNAを制限酵素 EcoRl と Notl で切断したサ ンプルを示し、 レーン 3は、 HPRT遺伝子クローン 1の DNAO.lngをァクチンプ ライマーで PCR したサンプルを示し、 レーン 4は、 BS 法でクローニングした HPRT遺伝子クローン 2の DNAを制限酵素 EcoRl と Notl で切断したサンプル を示し、 レーン 5は、 HPRT遺伝子クローン 2 DNAO.lngをァクチンプライマ一 で PCRしたサンプルを示し、 レーン 6は、 BS法で抽出した粗抽出液を HPRTプ ライマ一で PCR したサンプルを示す。 図中、 黒い矢印は本発明の BS 法でクロ 一ユングされた約 1.2k 塩基対の HPRT遺伝子 cDNAを示し、 白い矢印は BS法 でクローニングされた HPRT遺伝子。 DNA クローンを PCR して得られた 944 塩基対の PCR産物を示し、 星印は、 BS法でクロ一ニングされた 2つの HPRT遺 伝子 c DNAプラスミ ドクローンのプラスミ ドベクター 5.3k塩基対 DNAを示す  Lane 1 shows an electrophoresis marker (λ / Hind IE), Lane 2 shows a sample obtained by cleaving HPRT gene clone 1 DNA cloned by BS method with restriction enzymes EcoRl and Notl, Lane 3 Shows a sample obtained by PCR of DNAO.lng of HPRT gene clone 1 with actin primer, lane 4 shows a sample obtained by cleaving the DNA of HPRT gene clone 2 cloned by BS method with restriction enzymes EcoRl and Notl, lane 5 Shows a sample obtained by PCR of HPRT gene clone 2 DNAO.lng with actin primer, and lane 6 shows a sample obtained by PCR using a crude extract extracted by the BS method with HPRT primer. In the figure, the black arrow indicates the HPRT gene cDNA of about 1.2k base pairs cloned by the BS method of the present invention, and the white arrow indicates the HPRT gene cloned by the BS method. A PCR product of 944 base pairs obtained by PCR of the DNA clone is shown. The asterisk indicates the plasmid vector of two HPRT gene clones cloned by BS method. Show
[図 1 0 ]本発明の方法による HPRT遺伝子 cDNA プラスミ ドク口一ンのクロ一 ニング結果を示す図である。 FIG. 10 shows the results of cloning of HPRT gene cDNA plasmid by the method of the present invention.
閉環状マウス脳 cDNA プラスミ ド試料を、 プローブ用プリッジヌクレオチド DNA共有結合粒子を使って、 本発明の方法によりクローニングした HPRT遺伝 子 cDNAプラスミ ドクローンを示す。 レーン 1は泳動マ一力一( Hind IE)を示 し、 レーン 2は、 クローニングした HPRT遺伝子クローン 1 DNA を制限酵素 EcoRl と Notl で切断したサンプルを示し、 レーン 3は、 HPRT遺伝子クロ一ン 1の DNAO.l ng をァクチンプライマ一で PCR したサンプルを示し、 レーン 4は 差替え用紙 0¾則 26) 、 クローニングした HPRT遺伝子クローン 2の DNAを制限酵素 EcoRl と Notl で切断したサンプルを示し、 レーン 5は、 HPRT遺伝子クローン 2の DNAO.lng をァクチンで PCR したサンプルを示し、 レーン 6は、 クロ一ニングした HPRT 遺伝子クローン 3 の DNAを制限酵素 EcoRl と Notlで切断したサンプルを示し 、 レーン 7は、 HPRT遺伝子クローン 3 の DNAO.lng をァクチンプライマ一で PCR したサンプルを示し、 レーン 8は、 クロ一ニングした HPRT遺伝子クロー ン 4の DNAを制限酵素 EcoRl と Notl で切断したサンプルを示し、 レーン 9は 、 HPRT遺伝子クローン 4の DNAO.lngをァクチンプライマーで PCR したサン プルを示し、 レーン 10は、 クロ一ニングした HPRT遺伝子クローン 5 の DNA を制限酵素 EcoRl と Notlで切断したサンプルを示し、 レーン 11は、 HPRT遺伝 子クローン 5の DNAO.lngをァクチンプライマーで PCR したサンプルを示す。 図中、 黒い矢印は本発明の BS法でクロ一ユングされた約 1.2k 塩基対の HPRT 遺伝子 cDNA を示し、 白い矢印は BS 法でクロ一ニングされた HPRT遺伝子 c DNAクローンを PCRして得られた 944 塩基対の PCR産物を示し、 星印は、 BS 法でクローニングされた 4つの HPRT遺伝子 c DNAプラスミ ドクローンのプラ スミ ドベクタ一 5.3k塩基対 DNAを示す。 An HPRT gene cDNA plasmid clone obtained by cloning a closed circular mouse brain cDNA plasmid sample by the method of the present invention using a probe nucleotide DNA covalent bond particle is shown. Lane 1 shows the migration target (Hind IE), Lane 2 shows a sample of the cloned HPRT gene clone 1 DNA cut with restriction enzymes EcoRl and Notl, and Lane 3 shows the HPRT gene clone 1 A sample of DNAO.l ng of PCR with aactin primer is shown, lane 4 is the replacement paper 0¾-rule 26) The cloned HPRT gene clone 2 DNA was cleaved with restriction enzymes EcoRl and Notl.Lane 5 shows the HPRT gene clone 2 DNAO.lng PCR sample with actin, and lane 6 is the cloning. Lane 7 shows a sample obtained by cleaving HPRT gene clone 3 DNA with restriction enzymes EcoRl and Notl.Lane 7 shows a sample obtained by PCR with DNAO.lng of HPRT gene clone 3 using actin primer. Lane 9 shows a sample obtained by cleaving HPRT gene clone 4 DNA with restriction enzymes EcoRl and Notl.Lane 9 shows a sample obtained by PCR of DNAO.lng of HPRT gene clone 4 with actin primer, and lane 10 shows A sample of the cloned HPRT gene clone 5 was cleaved with restriction enzymes EcoRl and Notl. Lane 11 shows the HPRT gene clone 5 DNAO.lng shows the sample PCR in § Kuching primer. In the figure, the black arrow indicates the HPRT gene cDNA of approximately 1.2k base pairs cloned by the BS method of the present invention, and the white arrow is obtained by PCR of the HPRT gene cDNA clone cloned by the BS method. The 944 base pair PCR product is shown, and the asterisk indicates the 5.3 k base pair DNA of the four HPRT gene cDNA plasmid clones cloned by BS method.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明は 1例において、 The present invention in one example
1 )目的遺伝子を含む 80%以上の閉環状二本鎖 DNA試料の作成、  1) Preparation of more than 80% closed circular double-stranded DNA sample containing the target gene,
2 )目的遺伝子の塩基配列の少なくとも一部の配列に対応するプローブ DNA あ るいはプローブ複合体粒子の作成;  2) Preparation of probe DNA or probe complex particles corresponding to at least a part of the base sequence of the target gene;
A)目的遺伝子の塩基配列の少なくとも一部と相補的な配列 (Tm値 A) 及びプロ ーブ DNA結合粒子の一本鎖 DNA配列部分の塩基配列の少なくとも一部と相補 的な配列 (T  A) A sequence complementary to at least a part of the base sequence of the target gene (Tm value A) and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle (T
差簪 ぇ 用 弒 (規則 26) m値 B)を有し、両 Tm値の差が少なくとも 8°C以上(Tm値 B— Tm値 A>8°C)のプロ一 ブ用一本鎖ブリッジヌクレオチドの、プローブ DNA結合粒子とのハイブリダィゼーショ ンによるプローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合粒子の作製; B)オリゴ (dG)ラテックス ·ビーズ (oligo(dG)latex bead)などのプローブ DNA結合粒子の 一本鎖 DNA配列部分に、これと少なくとも一部に相補的な配列を有し、かつ、もう一 方に目的遺伝子の塩基配列の少なくとも一部の配列を持つ一本鎖ブリッジヌクレオ チドをハイブリダィズさせ、タレノウ ·フラグメント · DNAポリメラーゼなどの DNA合成酵 素を用いて、 目的遺伝子の塩基配列の少なくとも一部の配列に相補的な配列 (プロ ーブ DNA配列)を含むヌクレオチドを、プローブ DNA結合粒子に酵素化学合成的に 共有結合させることにより、プローブ DNA配列力 一本鎖 DNA配列部分を介して固層 粒子に直接結合したプローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子の 作製、 用 for difference (Rule 26) a single-stranded bridge nucleotide for a probe having a m value B) and a difference between both Tm values of at least 8 ° C (Tm value B—Tm value A> 8 ° C) with the probe DNA-binding particle. Preparation of single-stranded bridged nucleotide probe DNA-binding particles for probes by hybridization; B) Single-stranded DNA sequences of probe DNA-binding particles such as oligo (dG) latex beads (oligo (dG) latex bead) Hybridize a single-stranded bridge nucleotide that has at least a part of the sequence complementary to this part and at least a part of the base sequence of the target gene. Using a DNA-synthesizing enzyme such as DNA polymerase, a nucleotide containing a sequence (probe DNA sequence) complementary to at least a part of the base sequence of the target gene is enzymatically synthesized in the probe DNA-binding particle. Both By binding, making the direct bonded bridge nucleotide probe DNA covalently bonded particles probe to the solid layer particles through the probe DNA sequence power single-stranded DNA sequence portion,
[0031] 3)目的遺伝子を含む試料と、プローブ DNA配列に対応する目的遺伝子配列の隣接 上流域の 0〜7塩基上流(プローブ DNAと BS間のスペース塩基配列)を基点とする 20 〜数百塩基配列一本鎖 DNA (上流ブロッキング配列、 Up-BS)及び隣接下流域の 0 〜7塩基下流を基点とする 20〜数百塩基配列一本鎖 DNA (下流ブロッキング配列、 D own-BS)との混合液の作製、  [0031] 3) 20 to several hundreds based on 0 to 7 bases upstream (space base sequence between probe DNA and BS) upstream of the sample containing the target gene and the target gene sequence corresponding to the probe DNA sequence Single-stranded DNA (upstream blocking sequence, Up-BS) and 20 to several hundred base sequence single-stranded DNA (downstream blocking sequence, D own-BS) starting from 0 to 7 bases downstream of the adjacent downstream region A mixture of
4)目的遺伝子を含む試料と Up-BS、 Down— BS混合溶液の低温アルカリ変性及び中 和処理、  4) Low-temperature alkali denaturation and neutralization of samples containing the target gene and Up-BS and Down-BS mixed solutions,
5)変性'中和された目的遺伝子、 Up-BS, Down— BSを含む試料混合溶液とプロ一 ブ DNA複合体粒子の低塩濃度条件下でのハイブリダィゼーシヨン、  5) Hybridization of the sample mixture solution containing the denatured and neutralized target gene, Up-BS, Down-BS and the probe DNA complex particles under low salt concentration conditions,
6)洗浄'遠心操作による、 目的遺伝子を結合したプローブ DNA複合体粒子の回収、 6) Recovery of probe DNA complex particles bound to the target gene by washing and centrifugation
7)溶出溶液による目的遺伝子の溶出 '抽出'回収、 7) Elution of target gene with elution solution 'Extraction' recovery,
8)大腸菌へのトランスフエクシヨン (transfection)等による目的遺伝子のクローユング、 8) Cloning of the target gene by transfection into E. coli, etc.
9) PCRや制限酵素切断による目的遺伝子クローユングの検証、 9) Verification of target gene cloning by PCR or restriction enzyme digestion,
の各過程から構成される。  It consists of each process.
[0032] 前記本発明の目的遺伝子 DNAの抽出 ·精製 'クローユング方法は、わずか 1日(24 時間以内)で完了する。 以下に、それぞれのステップについて実施例とその結果を示す。 [0032] Extraction and purification of the target gene DNA of the present invention The 'cloning method' can be completed in only one day (within 24 hours). Below, an Example and its result are shown about each step.
[実施例]  [Example]
以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定され るものではない。  Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
[実施例 1] 目的遺伝子を含む試料中の閉環状二本鎖 DNAの割合と目的遺伝子のク ローニング効率の関係  [Example 1] Relationship between the ratio of closed circular double-stranded DNA in a sample containing a target gene and the cloning efficiency of the target gene
本実施例は、精製された、青色コロニーを形成するプラスミド pGBM(3035塩基対)と 白色コロニーを形成する 734塩基対 cDNAを組み込んだプラスミド pCY(3768塩基対) の混合 DNA試料溶液を用いて行った。  This example was performed using a purified mixed DNA sample solution of plasmid pGBM (3035 base pairs) forming blue colonies and plasmid pCY (3768 base pairs) incorporating 734 base pair cDNAs forming white colonies. It was.
プラスミド pGBMは、 13 -ガラタトシダーゼ( β - galactosidase)遺伝子を持ち、 13 - gal(5 -ブロモ- 4-クロ口- 3-インドリル- 13 -D-ガラクトシド)の存在下の寒天上で青コロニーを 形成する。一方、プラスミド pCYは、マウス精巣発現遺伝子シリテスチン (Cyritestin)CD NA730塩基対 DNAをプラスミド pGBMの j8 -ガラタトシダーゼ遺伝子部位に組み込ん だ組み換え体プラスミドであり、寒天上で白コロニーを形成する。この違いから、抽出 '精製'クローユングの効率を寒天上で形成されるコロニータイプ力も検定できる利点 をもつモデルシステムである。 Plasmid pGBM carries the 13-galactosidase gene and forms blue colonies on agar in the presence of 13-gal (5-bromo-4-chloro-3-indolyl-13-D-galactoside) To do. On the other hand, plasmid pCY the mouse testis expressed gene Shiritesuchin (C yrit es tin) C D NA730 bp DNA the plasmid pGBM j8 - a incorporated into Garatatoshidaze gene site recombinant plasmid, forming a white colony on agar. Because of this difference, the model system has the advantage that the efficiency of the extracted 'purified' clawing can be tested by the colony type force formed on the agar.
[0033] pCYは、マウス精巣の cDNAライブラリーよりシリテスチン cDNA (約 2650塩基対サイズ )の 1044- 1777間を PCR法で増幅し、抽出し、 pGBMの β -ガラタトシダーゼ遺伝子内 に挿入することで、作製した。 [0033] pCY is derived from the mouse testis cDNA library by amplifying 1044- 1777 between citristin cDNA (approximately 2650 base pairs in size) by PCR, extracting it, and inserting it into the β-galatatosidase gene of pGBM. Produced.
以下に、 目的遺伝子を含む DNA試料中からの目的遺伝子の抽出 '精製'クロー- ングの方法と結果を示す力 80%以上の閉環状 DNAを含む DNA試料(目的の遺伝子 DNAを含む)の調製は、 SDS-アルカリ法、 SDS-アルカリ法- CsCl超遠心法、 DNA試 料のゲル切り出し法、 DNA吸着粒子膜ないし粒子による DNA精製法など、いずれで の方法でも良いが、ここでは SDS-アルカリ法- CsCl超遠心法、 SDS-アルカリ法— DN A吸着粒子膜法を用いた例を示す。  Extraction of the target gene from the DNA sample containing the target gene The method of 'purification' cloning and the power to indicate the result Preparation of a DNA sample containing the closed circular DNA of 80% or more (including the target gene DNA) The SDS-alkali method, SDS-alkali method-CsCl ultracentrifugation method, DNA sample gel cutting method, DNA adsorption method using DNA adsorbed particle membrane or particle, etc. can be used. Methods-Examples using CsCl ultracentrifugation, SDS-alkali method-DNA adsorption particle membrane method.
[0034] 1)80%以上の閉環状 DNAを含む pCY、 pGBMおよびマウスの脳 cDNAプラスミドライブ ラリーの精製方法 [0034] 1) Method for purifying pCY, pGBM and mouse brain cDNA plasmid library containing more than 80% closed circular DNA
く SDS-アルカリ法、 SDS-アルカリ法- CsCl超遠心法、 SDS-アルカリ法- DNA吸着膜 法 > SDS-alkali method, SDS-alkali method, CsCl ultracentrifugation method, SDS-alkali method, DNA adsorption membrane Law>
< SDS-アルカリ法 >  <SDS-alkali method>
(1) pCY及び pGBMおよびマウスの脳 cDNAプラスミドライブラリーを大腸菌にトランス フエクシヨンし、得られたそれぞれのプラスミドコロニー 1個を大量培養した。  (1) The pCY and pGBM and mouse brain cDNA plasmid libraries were transfected into E. coli, and each of the resulting plasmid colonies was cultured in large quantities.
(2) 5000rpm'4°C ' 15分遠心し、菌体を集め、 0°Cに冷却したソリューション A(25mMトリ ス ·Η。1〈ρΗ=8.0〉、 10mM EDTA、 50mMグルコース) 2mlに溶解した。  (2) Centrifugation at 5000rpm'4 ° C 'for 15 minutes, collect the cells, and dissolve in 2ml of Solution A (25mM Tris · Η. 1 〈ρΗ = 8.0〉, 10mM EDTA, 50mM glucose) cooled to 0 ° C did.
(3)ソリューション B(20mgリソゾーム/ソリューション A) 0.5mlをカ卩え、氷上で 10分静置 した。  (3) Solution B (20mg lysosome / solution A) 0.5ml was added and left on ice for 10 minutes.
[0035] (4)ソリューション C(1%SDS,0.2N  [0035] (4) Solution C (1% SDS, 0.2N
NaOH) 5mlをカ卩え、静かに攪拌し、氷上で 7分静置した。  NaOH) 5 ml was added, stirred gently and allowed to stand on ice for 7 minutes.
(5)ソリューション D (純水 100ml中に 29.4gK'アセテート、 11.5ml酢酸を含む) 4mlをカロ え、静かに攪拌し、氷上で 10分静置した。  (5) Solution D (29.4 g K'acetate and 11.5 ml acetic acid in 100 ml pure water) was added to 4 ml, stirred gently, and allowed to stand on ice for 10 minutes.
(6) lOOOOrpm以上 '4°C '90分以上遠心し、上清を 1〜2枚のキムワイプを敷いたロート を通して回収した。  (6) Centrifugation at lOOOOrpm or more '4 ° C' for 90 minutes or more, and the supernatant was collected through a funnel with 1 to 2 Kimwipes.
(7)上清に 2倍量の- 20°Cに冷やしたエタノールをカ卩え、 10000rpM以上 '4°C '20分遠 心し、沈殿を回収した。  (7) Two times the amount of ethanol cooled to -20 ° C was added to the supernatant, and centrifuged at 10000rpM for '4 ° C' for 20 minutes to collect the precipitate.
(8)試料 DNAを含む沈殿を TE (10mMトリスく pH=8.0〉、 ImM EDTA) 4mlに溶解した。  (8) The precipitate containing the sample DNA was dissolved in 4 ml of TE (10 mM Tris pH = 8.0>, ImM EDTA).
[0036] < CsCl超遠心法 > [0036] <CsCl ultracentrifugation>
(9)試料 DNA溶液 4mlに CsCl 4.2gと 10mg/mlェチジュムブロマイド(EtBr)溶液 80 ulを 加え、十分攪拌し、 CsCl超遠心用チューブに入れ、チューブ専用の蓋をした。  (9) 4.2 ml of CsCl and 80 ul of 10 mg / ml ethidium bromide (EtBr) solution were added to 4 ml of the sample DNA solution, stirred well, placed in a tube for CsCl ultracentrifugation, and the tube was capped.
(10)ベックマン超遠心機用バーチカルローターに試料を入れた遠心チューブをセッ トし、 20°C '55000rpmで 18時間遠心した。  (10) A centrifuge tube with a sample placed in a vertical rotor for a Beckman ultracentrifuge was set and centrifuged at 20 ° C.'55000 rpm for 18 hours.
(11)形成された 2つの DNAバンド(アツパ一'バンド、ロウァ一'バンド)の内、主に閉 環状 DNAを含むロウァ一'バンドを 18〜21ゲージの注射針を用いて回収し、 TEを飽 和させた 1-ブタノール(SS-1-ブタノール)で EtBrを除!、た。  (11) Of the two DNA bands formed (Azpa 'band and Lower' band), the lower band containing mainly closed circular DNA was recovered using an 18-21 gauge needle, and TE EtBr was removed with 1-butanol saturated with SS-1-butanol.
(12) EtBrを除去した DNA試料に 2倍〜 2.5倍量の 20°Cに冷やしたエタノールをカロ え、 lOOOOrpm以上,4°C, 20分遠心し、沈殿を回収した。  (12) A 2- to 2.5-fold volume of ethanol cooled to 20 ° C was placed on the DNA sample from which EtBr had been removed, and centrifuged at 4 ° C for 20 minutes or more at lOOOOrpm to collect the precipitate.
(13)回収した沈殿に適当量の TE溶液を加え、閉環状 DNAを含む DNA試料とした。 [0037] < SDS-アルカリ法 'DNA吸着膜法 > (13) An appropriate amount of TE solution was added to the collected precipitate to prepare a DNA sample containing closed circular DNA. [0037] <SDS-Alkaline method 'DNA adsorption membrane method>
(A) SDS-アルカリ法で抽出した DNA試料を適当量とり、タカラバイオ社の Miniprep る。  (A) Take an appropriate amount of DNA sample extracted by SDS-alkaline method and prepare Miniprep from Takara Bio.
(B)シリカメンブレンカラムに洗浄液を入れ、遠心する。  (B) Put the washing solution into the silica membrane column and centrifuge.
(C)再度、シリカメンブレンカラムに洗浄液を入れ、遠心する。  (C) Add the washing solution to the silica membrane column again and centrifuge.
(D)シリカメンブレンカラムに ImMトリス ' lmMEDTA(pH8.0)液を lOOul加え、 1.5mlチ ユーブにセットし、遠心する。  (D) Add lOOul of ImM Tris lmMEDTA (pH 8.0) solution to the silica membrane column, set in a 1.5 ml tube, and centrifuge.
(E) 1.5mlチューブに溶出された DNA試料を以後の本発明の DNA試料とした。  (E) The DNA sample eluted in the 1.5 ml tube was used as the DNA sample of the present invention hereinafter.
[0038] 図 3は、 SDS-アルカリ法- CsCl超遠心法で精製した pCY及び pGBMを示す。 SDS-ァ ルカリ法では時に 90%以上の閉環状 DNAを含む DNA試料が得られることがあるが安 定せず、 SDS-アルカリ法- CsCl超遠心法で精製すれば 95%以上もの閉環状 DNAを含 む試料が得られる。また、 SDS-アルカリ法での抽出後 RNAを除去していない試料で は、、 DNAについては 90%以上の閉環状 DNAからなる試料(試料 pCY_R、試料 pGB M-R)が安定して得られる。 FIG. 3 shows pCY and pGBM purified by SDS-alkali method-CsCl ultracentrifugation. The SDS-alkali method sometimes yields DNA samples containing 90% or more of closed circular DNA, but it is not stable. If purified by the SDS-alkali method-CsCl ultracentrifugation method, more than 95% of the closed circular DNA is obtained. A sample containing is obtained. In addition, for samples in which RNA has not been removed after extraction by the SDS-alkali method, samples consisting of 90% or more of closed circular DNA (sample pCY_R, sample pGB M-R) can be stably obtained.
[0039] 図 4は、 SDS'アルカリ法(試料 5と 6)、 SDS 'アルカリ法 .CsCl法(試料 7)、 SDS 'アル カリ法 'DNA吸着膜法くタカラバイオ株式会社の mini-prepキットを使用 > (試料 8)で 精製したマウス脳 cDNAプラスミドライブラリーの泳動結果である。 SDS ·アルカリ法によ る試料 5では閉環状 DNAは 20%以下であり開環状 DNA80%以上力 構成され、本発 明のターゲット DNA分子である閉環状 DNAはかなり少ない。一方、同じ SDS'アルカリ 法による別の試料 5では閉環状 DNAは約 60%であり全体の DNAの 50%を超えている 。試料 7は、 SDS'アルカリ法 CsCl法で精製した試料 6を更に CsCl超遠心で精製した もので、閉環状 DNAは 95%を超えている。試料 8は、 SDS'アルカリ法 'DNA吸着膜法 くタカラバイオ株式会社の mini-prepキットを使用 >で精製したもので、本発明のター ゲット DNAである閉環状 DNAを 80%以上含む。  [0039] Figure 4 shows the SDS-alkali method (samples 5 and 6), SDS 'alkali method .CsCl method (sample 7), SDS' alkali method ', DNA adsorption membrane method, and Takara Bio Co., Ltd. mini-prep kit. > Migration result of mouse brain cDNA plasmid library purified in (Sample 8). In the sample 5 by SDS-alkali method, the closed circular DNA is 20% or less, and the open circular DNA is 80% or more, and the target circular DNA that is the target DNA molecule of the present invention is considerably small. On the other hand, in another sample 5 by the same SDS 'alkali method, the closed circular DNA was about 60%, exceeding 50% of the total DNA. Sample 7 is a sample 6 purified by SDS 'alkali method CsCl method and further purified by CsCl ultracentrifugation, and the closed circular DNA exceeds 95%. Sample 8 was purified by the SDS “alkali method” DNA adsorption membrane method using a Takara Bio Co., Ltd. mini-prep kit, and contains 80% or more of the closed circular DNA which is the target DNA of the present invention.
[0040] 目的遺伝子の抽出 '精製'クローユングに用いる「pCY用プローブ用 1本鎖ブリッジ ヌクレオチド (bridging nucleotide, BN- CY)」、「ブリッジヌクレオチド BN-CYのポリじと ハイブリダィズするオリゴ (dG)ラテックス ·ビーズ」、「プローブ塩基配列と相補的な (プ ローブ DNA配列部分に対応する)目的遺伝子 DNA配列の上流及び下流のブロッキン グ配列 (Woking sequence)(BS)jと、それぞれの調製法 [0040] Extraction of target gene “Single-stranded bridge nucleotides for probes for pCY (BN-CY)” used for “purification” cloning, “oligo (dG) latex that hybridizes with polynucleotide of bridge nucleotide BN-CY” `` Bead '', `` Probe The target gene (corresponding to the DNA sequence part of the lobe) Blocking sequence upstream and downstream of the DNA sequence (BS) j and the respective preparation methods
[0041] 以下に、 pCY抽出用のプローブ DNA配列、それに対応する目的遺伝子 DNA配列 の上及び下流域に位置するブロッキング配列 (Up-BSと Down_BS)、 PCR用の塩基配 列の位置と配列を示す。 [0041] The probe DNA sequence for pCY extraction, the blocking sequences (Up-BS and Down_BS) located above and downstream of the corresponding target gene DNA sequence, and the position and sequence of the base sequence for PCR are shown below. Show.
<プローブ用 1本鎖ブリッジヌクレオチド  <Single-stranded bridge nucleotide for probe
(BN- CY)の調製 >  Preparation of (BN-CY)>
[0042] [化 1] [0042] [Chemical 1]
5 ' -GTACTCTGATTGATGCTGCGCAGTGTGGTACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3 ' (配列番号 1) 5 '-GTACTCTGATTGATGCTGCGCAGTGTGGTACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3' (SEQ ID NO: 1)
[0043] pCYの挿入 cDNA断片の 1286-1315の 30塩基とポリ C30塩基から構成されるブリッジ オリゴヌクレオチド用配列(BN— CY)を合成し、 pCY抽出用プローブ DNAとして用い た。  [0043] pCY Insertion A bridge oligonucleotide sequence (BN-CY) composed of 30 bases 1286-1315 of the cDNA fragment and poly C30 base was synthesized and used as probe DNA for pCY extraction.
<ブリッジヌクレオチド BN-CYのポリ Cとハイブリダィズするオリゴ (dG)ラテックス ·ビー ズ>  <Oligo (dG) latex beads that hybridize with poly (C) of bridge nucleotide BN-CY>
オリゴ (dG)ラテックス 'ビーズは、 JSR株式会社より購入したものを用いた。 BN- CYプ ローブは、ポリ C部分でこのラテックス 'ビーズのオリゴ (dG)とハイブリザィズし、ビーズ 固層に固定される。  Oligo (dG) latex 'beads purchased from JSR Corporation were used. The BN-CY probe hybridizes with the latex 'bead oligo (dG) at the poly C portion and is fixed to the bead solid layer.
[0044] <プローブ塩基配列部分に対応する目的遺伝子の DNA配列の上流及び下流のブ ロッキング配列 (BS)>  [0044] <Blocking sequence (BS) upstream and downstream of the DNA sequence of the target gene corresponding to the probe base sequence portion>
1本鎖 Up-BS (上流ブロッキング配列)  Single-stranded Up-BS (upstream blocking sequence)
[0045] [化 2] [0045] [Chemical 2]
5' -ACTCATAAAAAATGCTGTAACCCTAAAGAC-3 * (配列番号 2) 5 '-ACTCATAAAAAATGCTGTAACCCTAAAGAC-3 * (SEQ ID NO: 2)
[0046] pCYの挿入 cDNA断片の 1255- 1384の 30塩基を合成し、用いた。  [0046] Insertion of pCY 30 bases from 1255-1384 of the cDNA fragment were synthesized and used.
1本鎖 Down- BS (下流ブロッキング配列) [0047] [化 3] Single-stranded Down-BS (downstream blocking sequence) [0047] [Chemical 3]
5 ' "CTACATGTTCTTTTATCACAGCATGGCCCT-3 ' 5 '"CTACATGTTCTTTTATCACAGCATGGCCCT-3'
(配列番号 3) (SEQ ID NO: 3)
pCYの挿入 cDNA断片の 1346-1317(マイナス鎖)の 30塩基を合成し、用いた。  30 bases of 1346-1317 (minus strand) of the inserted cDNA fragment of pCY were synthesized and used.
< PCR用テストに用いたプライマーの塩基配列 >  <Base sequence of primers used for PCR test>
[0048] [化 4] シリテスチン 'プライマ一 1 : 5' -ACCCAGATAGGCAGTGTACAGA-3' (1508-1529) [0048] [Chemical 4] Siritestin 'Primer 1: 5' -ACCCAGATAGGCAGTGTACAGA-3 '(1508-1529)
シリテスチン 'プライマー 2 : 5' -TGTCATCTCTAGTCCCAGTCTG-3' (1777-1756)  Siritestin 'Primer 2: 5' -TGTCATCTCTAGTCCCAGTCTG-3 '(1777-1756)
(上;配列番号 4/下;配列番号 5) (Top; SEQ ID NO: 4 / Bottom; SEQ ID NO: 5)
[0049] <目的遺伝子プラスミド pCYの抽出 >  [0049] <Extraction of target gene plasmid pCY>
1) lOOuMのプローブ用 1本鎖ブリッジヌクレオチド (BN- CY)2ulを lOOmMの NaClを含む 20ulのオリゴ (dG30merラテックス.ビーズと混合し、温度 50°Cから 70°Cの範囲内で 5サ イタル以上サイクル ·ハイブリダィズさせる方法〔 1回のサイクル ·ハイブリダィズの例: 5 0°C (20秒以上)→55°C (20秒以上)→60°C (20秒以上)→65°C (20秒以上)→70°C (2 0秒以上)→65°C (20秒以上)→60°C (20秒以上)→55°C (20秒以上)→50°C (20秒以 上)〕で、両者をノヽイブリダィゼーシヨンさせた後、 45°Cに暖めた lOOmMNaClを含む洗 浄液で 5回洗浄し、 BN- CYとオリゴ (dG)ラテックス 'ビーズの複合体を得た。これに 23ul の 200mM NaClを含むハイブリダィゼーシヨン溶液をカ卩え、 50°Cの水浴に静置した。  1) lOOuM probe single-stranded bridge nucleotide (BN-CY) 2ul, lOOmM NaCl-containing 20ul oligo (dG30mer latex, mixed with beads, temperature 5 to 70 ° C Cycles and hybridizing method [One cycle · Hybridization example: 50 ° C (20 seconds or more) → 55 ° C (20 seconds or more) → 60 ° C (20 seconds or more) → 65 ° C (20 seconds ) → 70 ° C (20 seconds or longer) → 65 ° C (20 seconds or longer) → 60 ° C (20 seconds or longer) → 55 ° C (20 seconds or longer) → 50 ° C (20 seconds or longer)) Then, both were neutralized and then washed 5 times with a washing solution containing lOOmMNaCl warmed to 45 ° C to obtain a complex of BN-CY and oligo (dG) latex beads. To this, a hybridization solution containing 23 ul of 200 mM NaCl was added and placed in a 50 ° C. water bath.
[0050] 2) lulの lOOOuM Up- BSと lulの lOOOuM Down- BS、 1対 100、 1対 10000に混合した pCY と pGBM 2ul、蒸留水 5ul、 0.4Nの NaOH 9 ulを混合し、約 0°C (氷上)で 40分処理し DN Aを変性 (= 1本鎖化)させた後、当量 (9 ul)の 0.4NHC1を加えて、中和した。また、精製 した閉環状 pCYを制限酵素 Saclで切断し、閉環状 pCYと Sacl切断 pCYを 10:0、 9.0:1. 0、 7.5:2.5、 5.0:5.0の比に混合し、直鎖状 DNAの混入サンプルとして、 pCY:pGBM混 合試料用の pCYとして用 ヽた。  [0050] 2) Mix lul lOOOuM Up-BS and lul lOOOuM Down-BS, 1 to 100, 1 to 10000 mixed pCY and pGBM 2ul, distilled water 5ul, 0.4N NaOH 9ul, about 0 After denaturation (= single-stranded) by treatment at ° C (on ice) for 40 minutes, an equivalent amount (9 ul) of 0.4NHC1 was added for neutralization. The purified closed circular pCY is cleaved with the restriction enzyme Sacl, and the closed circular pCY and the Sacl cleaved pCY are mixed at a ratio of 10: 0, 9.0: 1, 7.5: 2.5, 5.0: 5.0 to obtain linear DNA. This was used as a pCY for pCY: pGBM mixed sample.
[0051] 3)変性'中和した pCY'pGBMと BS混合液を、 1)で調整した BN- CYとオリゴ (dG)ラテツ タス 'ビーズの複合体溶液にカ卩え、 50°Cで 1時間 30分インキュベートした後、 50°Cに暖 めたそれぞれ 100mM、 50mM、 25mMの NaClを含む洗浄液でそれぞれ 4回、 2回、 1回 洗浄した。 [0051] 3) Add the denatured 'neutralized pCY' pGBM and BS mixed solution to the BN-CY and oligo (dG) latus status' bead complex solution prepared in 1). Incubate for 30 minutes, then wash 4 times, 2 times and 1 time with washing solution containing 100 mM, 50 mM and 25 mM NaCl, respectively, warmed to 50 ° C. Washed.
4)得られたオリゴ (dG)ラテックス ·ビーズ- BN- pCY複合体に 10mMトリス- ImM EDTA 溶液 50 ulをカ卩え、 70°Cで 10分間加熱し、氷冷した。遠心して上澄を回収した。  4) 50 ul of 10 mM Tris-ImM EDTA solution was added to the resulting oligo (dG) latex-bead-BN-pCY complex, heated at 70 ° C. for 10 minutes, and ice-cooled. The supernatant was collected by centrifugation.
[0052] <抽出された pCYの検出 >  [0052] <Detection of extracted pCY>
前記分離精製された pCY溶液 5 ulをコンビテント (competent)大腸菌 100 ulに加え、 氷上 20分、 42°C50秒、再び氷上 2分間の処理をして、 SOC培地 lmlをカ卩えて、 37°C1 時間培養し、 lOOug/mlのアンピシリン、 j8 - galを含む寒天培地に撒いて、 37°C孵卵器 で 16時間培養した。 pGBMを持つ青色コロニーと pCYを持つ白色コロニーをカウントし 、そのコロニー数と比率を求めた。また、それぞれのコロニーを 7個取り、コロニー PCR 法にて pCYに挿入された 730塩基対の DNA配列を検定した。 PCRは、 94°Cで 3分、 94 °Cで 30秒、 56°Cで 30秒、 72°Cで 30秒で 30周期行った。  Add 5 ul of the separated and purified pCY solution to 100 ul of competent E. coli, treat on ice for 20 minutes, 42 ° C for 50 seconds, and again on ice for 2 minutes. The cells were cultured for C1 hours, spread on an agar medium containing lOOug / ml ampicillin and j8-gal, and cultured for 16 hours in a 37 ° C incubator. A blue colony having pGBM and a white colony having pCY were counted, and the number and ratio of the colonies were determined. Seven colonies were picked and the 730 base pair DNA sequence inserted into pCY was tested by colony PCR. PCR was performed at 94 ° C. for 3 minutes, 94 ° C. for 30 seconds, 56 ° C. for 30 seconds, and 72 ° C. for 30 seconds for 30 cycles.
[0053] 表 1より、 90%以上の閉環状二本鎖 DNAを含む試料では、上流ブロッキング配列 (Up -BS)及び下流ブロッキング配列 (Down-BS)の存在下で、非常に高!、効率で目的遺 伝子 (pCY)のクローユングが実現できる。しかし目的遺伝子を含む試料 DNA中の閉 環状二本鎖 DNAの割合が減少する(直鎖状あるいは開環状の割合が増加する)と、 目的遺伝子のクローユング効率が大きく減少する、ことが認められる。また、ブロッキ ング配列不在下でも、 90%以上の閉環状二本鎖 DNAを含む試料では、同じ条件下で の直鎖状あるいは開環状の割合の高い試料と比較して、目的遺伝子のクローニング 効率が高いことが認められる。また、閉環状二本鎖 DNAを多く含む試料であれば、 RNAを含んでいる試料(試料 pCY_R、 pGBM- R)ても、表 1に見られるように BS存在 下で高いクローユング効率が認められる。  [0053] From Table 1, samples containing 90% or more of closed circular double-stranded DNA are very high in the presence of upstream blocking sequence (Up-BS) and downstream blocking sequence (Down-BS)! With this, the target gene (pCY) can be crawled. However, it can be seen that when the ratio of closed circular double-stranded DNA in the sample DNA containing the target gene decreases (the linear or open circular ratio increases), the cloning efficiency of the target gene is greatly decreased. Even in the absence of a blocking sequence, the sample containing 90% or more of the closed circular double-stranded DNA is more efficient in cloning the target gene than the sample with a high linear or open circular rate under the same conditions. Is found to be high. In addition, as long as the sample contains a lot of closed circular double-stranded DNA, high cloning efficiency is observed in the presence of BS as shown in Table 1 even for samples containing RNA (samples pCY_R, pGBM-R). .
[0054] [表 1] 表 1 [0054] [Table 1] table 1
閉環状 DMを用いた pCYの抽出に対する直鎖状、 開環状 DMの効果 (従来法との比較) pCY/pGBMの分子比 反応液中の 得られたコロニー数 白コ πニー - 濃縮率 Effect of linear and open ring DM on pCY extraction using closed ring DM (compared to conventional method) Molecular ratio of pCY / pGBM Number of colonies obtained in the reaction mixture White co π knee-Concentration rate
(pCY/pGBMの重量比) BSの濃度 (UM) 白 青 の割合 (倍)(weight ratio of pCY / pGBM) BS concentration (UM) White Blue Ratio (times)
(sp_pCY: Sad-cutpCY/pGBM) Up-BS Down- BS (pCY) (pGBM) (%) (sp_pCY: Sad-cutpCY / pGBM) Up-BS Down- BS (pCY) (pGBM) (%)
1) 1/100 0 0 72 912 7. 3 % 7. 3  1) 1/100 0 0 72 912 7. 3% 7. 3
(10ng:0ng/840ng)  (10ng: 0ng / 840ng)
2) 1/100 20 20 942 71 93. 0 ¾ 93. 0  2) 1/100 20 20 942 71 93. 0 ¾ 93. 0
(10ng:0ng/840ng)  (10ng: 0ng / 840ng)
3) 1/100 20 20 737 102 88. 0 % 88. 0  3) 1/100 20 20 737 102 88. 0% 88. 0
(9ng: lng/840ng)  (9ng: lng / 840ng)
4) 1/100 20 20 775 443 63. 6 % 63. 6  4) 1/100 20 20 775 443 63. 6% 63. 6
(7. 5ng: 2. 5ng/840ng)  (7.5 ng: 2.5 ng / 840 ng)
5) 1/100 20 20 1072 1764 37. 8 ¾ 37. 8  5) 1/100 20 20 1072 1764 37. 8 ¾ 37. 8
(5ng: 5ng/840ng)  (5ng: 5ng / 840ng)
0 0 1 152 0. 6 % 65. 3 0 0 1 152 0. 6% 65. 3
(0. lng:0ng/840ng> (0. lng: 0ng / 840ng>
7) 1/10000 20 20 101 78 56. 4 % 5640. 0 7) 1/10000 20 20 101 78 56. 4% 5640. 0
(0. lng:0ng/840ng) (0. lng: 0ng / 840ng)
8) 1/10000 20 20 121 154 44. 0 % 4400. 0 8) 1/10000 20 20 121 154 44. 0% 4400. 0
(0. 09ng:0. 01ng/840ng) (0.09ng: 0.01ng / 840ng)
20 20 74 376 16. 4 % 1640. 0 20 20 74 376 16.4% 1640. 0
(0. 075ng0. 025/840ng) (0.075ng0.025 / 840ng)
10) 1/10000 20 20 38 1067 3. 4 % 340. 0 10) 1/10000 20 20 38 1067 3. 4% 340. 0
(0. 05 ng:0. 05ng/840ng) (0. 05 ng: 0. 05ng / 840ng)
11) 1/100 0 0 98 13903 0. 7 % 0. 7  11) 1/100 0 0 98 13903 0. 7% 0.7
(試料 1の pCYlttag/弒料 2の pGBM840ng>  (Sample 1 pCYlttag / material 2 pGBM840ng>
12) 1/100 20 20 1173 883 57. 0 % 57. 0 12) 1/100 20 20 1173 883 57. 0% 57. 0
(試料 1の pCYlOng/弒料 2の pGBM840ng) (Sample 1 pCYlOng / Sample 2 pGBM840 ng)
13) 1/10000 0 0 23 19875 0. 11 % 11. 0 13) 1/10000 0 0 23 19875 0. 11% 11. 0
(試料 1の pCYO. lng/試料 2の pGBM840ng) (Sample 1 pCYO.lng / Sample 2 pGBM840ng)
14) 1/10000 20 20 82 791 9. 4 ¾ 940. 0 14) 1/10000 20 20 82 791 9. 4 ¾ 940. 0
(轼料 1の pCYO. lng/試料 2の pGBM840ng> (PCYO.lng of sample 1 / pGBM840ng of sample 2>
15) 1/100 0 0 54 777 6. 5 % 6. 5 15) 1/100 0 0 54 777 6.5% 6.5
(試料 pCY-Rの pCYlOngに相当する量/試料 GBM-Rの pGBM840ngに相当する量) (Amount equivalent to pCYlOng of sample pCY-R / Amount equivalent to pGBM840ng of sample GBM-R)
16) 1/100 20 20 826 133 86. 1 % 86. 1 16) 1/100 20 20 826 133 86. 1% 86. 1
(試料 CY-Rの pCYlOngに相当する量/試料 pGBM-Rの pGBM840ngに相当する » (Amount equivalent to pCYlOng of sample CY-R / equivalent to pGBM840ng of sample pGBM-R »
(a): 1), 6), 11), 13), 15)は BSを用いない従来法の結果である。 2ト 5)、 7ト 10)、 12)、 1 4)、 16)は BSを加えた本発明法の結果である。(b):ll)〜14)は、図 1で示した SDS'アル カリ精製試料 1 (pCY)と試料 2(pGBM)を用いた結果を示す。(c):l)〜10)の sp- pCYは 図 1の試料 3 (閉環状く super- coiled pCY〉)を示し、 Sacl-cut pCYは、試料 3の pCYを 制限酵素 Saclで切断した直鎖状 pCYを示す。また、 1)〜10)の pGBMは、図 1で精製 した試料 4の pGBMを示す。(d): 15)、 16)では、試料 pCY-Rと試料 pGBM- Rを用いて 行った。 (a): 1), 6), 11), 13) and 15) are the results of the conventional method without BS. 2 to 5), 7 to 10), 12), 14) and 16) are the results of the method of the present invention with BS added. (B): ll) to 14) show the results using SDS'alkali purified sample 1 (pCY) and sample 2 (pGBM) shown in FIG. (C): sp) of l) to 10) indicates sample 3 (closed-ring super-coiled pCY>) in Fig. 1, and Sacl-cut pCY is a sample obtained by cleaving pCY of sample 3 with the restriction enzyme Sacl. Chain pCY is indicated. The pGBM from 1) to 10) was purified in Fig. 1. The pGBM of Sample 4 is shown. (D): In 15) and 16), it was performed using sample pCY-R and sample pGBM-R.
[0056] 図 5は、表 1の実験で得られた白色コロニー、青色コロニーを無作為に 7つ選んで、 270塩基対の DNA断片を生成するコロニー PCRを行った結果である。白色コロニーで のみ pCYに挿入されているマウス精巣由来シリテスチン遺伝子 cDNAの 270塩基対 PC R産物が検出された。  [0056] FIG. 5 shows the results of colony PCR for generating 270 base pair DNA fragments by randomly selecting seven white and blue colonies obtained in the experiment of Table 1. A 270 base pair PCR product of mouse testis-derived cilitestin gene cDNA inserted in pCY was detected only in white colonies.
[0057] [実施例 2] 目的遺伝子の塩基配列の一部と相補的な配列を持ち、一方でプローブ D NA結合粒子の一本鎖 DNA配列部分の塩基配列の少なくとも一部と相補的な配列を 有するプローブ用一本鎖ブリッジヌクレオチドを、プローブ DNA結合粒子の一本鎖 D NA配列部分に、温度 50°C力 70°Cの範囲内で 5サイクル以上サイクル 'ハイブリダィ ズさせる方法により作製したプローブ用ブリッジヌクレオチドプローブ DNA結合粒子を 用いた目的遺伝子のクローユング効率  [Example 2] A sequence having a sequence complementary to a part of the base sequence of the target gene, while being complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA binding particle Probes prepared by a method of hybridizing a single-stranded bridge nucleotide for a probe having a cycle of 5 cycles or more within a temperature range of 50 ° C and 70 ° C to the single-stranded DNA sequence of the probe DNA-binding particle. Bridge nucleotide probe Cloning efficiency of target gene using DNA binding particles
[0058] 目的遺伝子 pCYの一部の塩基配列 30merと相補的な配列を持ち、一方でプローブ DNA結合粒子オリゴ (dG30mer)ラテックス ·ビーズの一本鎖 DNA配列部分の DNA30m erの塩基配列と相補的な配列を有するプローブ用一本鎖ブリッジヌクレオチド「pCY 用プローブ用 1本鎖ブリッジヌクレオチド (BN- CY)」をオリゴ (dG30mer)ラテックス ·ビー ズにハイプリさせる条件を、 60°C、 70°Cでの定温ハイブリダィゼーシヨン、温度 50°Cか ら 70°Cの範囲内でサイクル ·ハイブリダィズさせる方法〔 1回のサイクル ·ハイブリダィズ の例: (50°C (20秒以上)→55°C (20秒以上)→60°C (20秒以上)→65°C (20秒以上)→ 70°C (20秒以上)→65°C (20秒以上)→60°C (20秒以上)→55°C (20秒以上)→50°C ( 20秒以上))の、 目的遺伝子 pCYのクローユング効率への影響を検討した。  [0058] Part of the target gene pCY, which has a complementary sequence to the 30mer base sequence, while complementary to the DNA30mer base sequence of the single-stranded DNA sequence part of the probe DNA-binding particle oligo (dG30mer) latex beads At 60 ° C and 70 ° C under conditions for high-sensitivity single-stranded bridge nucleotides for probes (single-stranded bridge nucleotides for probe for pCY (BN-CY)) to oligo (dG30mer) latex beads Constant temperature hybridization, cycle within the range of 50 ° C to 70 ° C · Hybridization method [One cycle · Hybridization example: (50 ° C (20 seconds or more) → 55 ° C ( 20 seconds or more) → 60 ° C (20 seconds or more) → 65 ° C (20 seconds or more) → 70 ° C (20 seconds or more) → 65 ° C (20 seconds or more) → 60 ° C (20 seconds or more) → The effect of the target gene pCY at 55 ° C (20 seconds or longer → 50 ° C (20 seconds or longer)) on the cloning efficiency was examined.
[0059] pCY抽出用プローブ用ブリッジヌクレオチドをオリゴ (dG30mer)ラテックス ·ビーズとハ イブリダィゼーシヨンさせる以外は、実施例 1と同様な実験操作で行った。  [0059] The experiment was performed in the same manner as in Example 1, except that the bridge nucleotide for the probe for pCY extraction was hybridized with oligo (dG30mer) latex beads.
表 2に示すように、 Up- BS、 Down- BSの存在下、 3、 5、 20、 50回、 60。C、 70。Cいずれ でも高い目的遺伝子の濃縮率が得られる力 しかし得られる目的遺伝子コロニーの 総数が、サイクル 'ハイブリダィゼーシヨン 5回以下や 60°C定温、 70°C定温ハイプリで は 1/5から 1/10に激減する。また、同じ 20サイクルのサイクル 'ハイブリダィゼーシヨン でも、 Up-BS、 Down-BSを加えない従来方法では、濃縮率は 10倍以下と極端に低く なることが、認められた。 As shown in Table 2, 3, 5, 20, 50, 60 in the presence of Up-BS and Down-BS. C, 70. C The ability to obtain a high concentration ratio of the target gene in any case However, the total number of target gene colonies obtained is less than 1/5 in the cycle 'hybridization 5 times or less, 60 ° C constant temperature, 70 ° C constant temperature high pre. Decrease to 1/10. In addition, even with the same 20 cycle cycle 'hybridization', the concentration rate is extremely low at 10 times or less in the conventional method without adding Up-BS or Down-BS. It was recognized that
[0060] [表 2]  [0060] [Table 2]
2: 閉環状 DNA pCYの抽出に対する pCY抽出用プローブプリッジヌクレオチド とオリゴ (dG)のハイプリダイゼーション条件の検討 (従来法との比較) 八イブリ pCY/pGBM 反応液中の BS 得られた 白コ ニー 濃縮率 ダイゼーシヨン の分子比 の濃度 (uM) 一の数 の割合 (%) (倍) の回数 (PCY/PGBMの重量比) Up-BS Down-BS 白 青 (PCY) (PGBM)2: Examination of hybridization conditions for pCY extraction probe nucleotide and oligo (dG) for extraction of closed circular DNA pCY (Comparison with conventional method) BS in the eight-ibli pCY / pGBM reaction solution obtained white cone Concentration ratio Concentration of molecular ratio of concentration (uM) Number of percentages (%) (times) Number of times (weight ratio of PCY / PGBM) Up-BS Down-BS White Blue (PCY) (PGBM)
1) 3回 1/100 20 20 137 34 81. 0 % 81. 0 1) 3 times 1/100 20 20 137 34 81.0% 81.0
(10ng/840ng)  (10ng / 840ng)
2) 5回 1/100 20 20 1055 102 91. 0 % 91. 0  2) 5 times 1/100 20 20 1055 102 91.0% 91.0
(10ng/840ng)  (10ng / 840ng)
3) 20回 1/100 20 20 1042 71 93. 6 % 93. 6  3) 20 times 1/100 20 20 1042 71 93. 6% 93.6
(10ng/840ng)  (10ng / 840ng)
4) 50回 1/100 20 20 899 65 93. 2 % 93. 2  4) 50 times 1/100 20 20 899 65 93.2% 93.2
(10g/840ng)  (10g / 840ng)
5) 60 2時間 1/100 20 20 196 53 79. 0 % 79. 0  5) 60 2 hours 1/100 20 20 196 53 79. 0% 79. 0
(10ng/840ng)  (10ng / 840ng)
6) 70*C2時間 1/100 20 20 107 32 77. 0 % 77. 0  6) 70 * C2 hours 1/100 20 20 107 32 77.0% 77.0
(10ng 840ng)  (10ng 840ng)
7) 20回 1/100 0 0 68 805 7. 8 % 7. 8  7) 20 times 1/100 0 0 68 805 7. 8% 7.8
(10ng/840ng)  (10ng / 840ng)
[0061] [実施例 3] 目的遺伝子の塩基配列の一部と相補的な配列 (Tm値 A)及びプローブ D NA結合粒子の一本鎖プローブ DNA結合粒子の塩基配列の少なくとも一部と相補的 な配列(Tm値 B)を有し、両 Tm値の差が少なくとも 8°C以上(Tm値 B— Tm値 A>8°C) のプローブ用一本鎖ブリッジヌクレオチドによる、 目的遺伝子のプローブ用一本鎖ブ リッジヌクレオチドプローブ DNA結合粒子固層への回収'クローニング [Example 3] A sequence complementary to a part of the base sequence of the target gene (Tm value A) and a single-stranded probe of the probe DNA binding particle Complementary to at least a part of the base sequence of the DNA binding particle For probes of the target gene using single-stranded bridge nucleotides for probes that have a unique sequence (Tm value B) and the difference between the two Tm values is at least 8 ° C Single-stranded bridge nucleotide probe Recovery to DNA-bound particle solid layer 'cloning'
[0062] 一本鎖ブリッジヌクレオチドの目的遺伝子の塩基配列の一部と相補的な DNA配列 の有する Tm値 (Tm値 A)とプローブ DNA結合粒子の一本鎖 DNA配列部分と相補的 な DNA配列の有する Tm値(Tm値 B)の差の、 目的遺伝子(ここでは pCY)のクロー- ング効率に対する影響を、 Tm値 Bを変化させて、検討した。プローブ用一本鎖ブリツ ジヌクレオチドとして pCY用プローブ用 1本鎖ブリッジヌクレオチド (BN- CY)を用い、 Vヽ ろ!、ろな Tm値 Bを持つブリッジヌクレオチドを作製し、これを使って pCY/pGBM混合 D NA試料から pCYのクローユングを行った。 [0062] The Tm value (Tm value A) of the DNA sequence complementary to a part of the base sequence of the target gene of the single-stranded bridge nucleotide and the DNA sequence complementary to the single-stranded DNA sequence part of the probe DNA binding particle The effect of the difference in Tm value (Tm value B) on the cloning efficiency of the target gene (here pCY) was examined by changing the Tm value B. Use single-stranded bridge nucleotides (BN-CY) for probes for pCY as single-stranded bridge dinucleotides for probes. A bridge nucleotide having various Tm values B was prepared, and cCY cloning was carried out from the pCY / pGBM mixed DNA sample.
pC Yの抽出実験操作 ·手順は、 pC Y/pGBM分子比 = 1/100(10ng/840ng)の試料の みを用いたこと以外は、実施例 1と同様に行った。 [0063] 図 6に、プローブ DNA結合粒子とプローブ用一本鎖ブリッジヌクレオチドの 1例を示 す。 BN-1はここではプローブ DNA結合粒子の一本鎖 DNA配列部分の DNA=オリゴ( dG30mer)と相補的な配列(Tm値 B)を示し、 BN- 2は pCYの挿入 cDNA断片の 1286-13 15の 30塩基 (表 1の長方形内)と相補的な DNA配列 (Tm値 A)を示す。 pC Y extraction experiment procedure The procedure was the same as in Example 1 except that only samples with a pC Y / pGBM molecular ratio = 1/100 (10 ng / 840 ng) were used. [0063] FIG. 6 shows an example of probe DNA-binding particles and single-stranded bridge nucleotides for probes. Here, BN-1 indicates the sequence (Tm value B) complementary to DNA = oligo (dG30mer) in the single-stranded DNA sequence part of the probe DNA-binding particle, and BN-2 is 1286-13 of the inserted cDNA fragment of pCY. Shows a complementary DNA sequence (Tm value A) to 15 30 bases (inside the rectangle in Table 1).
表 3は、両 Tm値の差 (TmB— TmA)を 0.0、 4.1、 8.2、 12.3、 20.5に変えた時の pCYの クロー-ング効率を示している。 Tm値の差が 8.2までは、 85%以上のクローユング効率 を示すが、それ以下では例え Tm値の差 TmB— TmA>0であってもクローユング効率 がかなり低下する。このような条件(Tm値の差 TmB— TmA< 8.0)下では、 1000個に 1 個や 10000個に 1個以下でしか存在しない目的遺伝子の有効な抽出'クローユングは 困難である。  Table 3 shows the cloning efficiency of pCY when the difference between Tm values (TmB-TmA) is changed to 0.0, 4.1, 8.2, 12.3, 20.5. Until the Tm value difference is 8.2, the cloning efficiency is 85% or more, but below that, even if the Tm value difference is TmB-TmA> 0, the cloning efficiency is considerably lowered. Under these conditions (difference in Tm value TmB-TmA <8.0), effective extraction and cloning of target genes that are present in only 1 in 1000 or 1 in 10000 is difficult.
[0064] [表 3] 表 3:目的遗伝子の抽出'クロ一ニング効率に対するブリッジヌクレオチド (BN)の Tm値差 (Tm値 B— Tm値 A) の効果  [0064] [Table 3] Table 3: Effect of bridge nucleotide (BN) Tm value difference (Tm value B—Tm value A) on target gene extraction 'cloning efficiency'
Figure imgf000030_0001
Figure imgf000030_0001
ただし、 塩濃度は 150mM (0. 15M)で計算した。 Up- BS、 Down-BSは、 1〜 5の全ての実施例で実 施例 1と同じ量を加えて、 実験した。  However, the salt concentration was calculated at 150 mM (0.15 M). Up-BS and Down-BS were experimented by adding the same amount as Example 1 in all Examples 1-5.
(第 1欄左から;配列番号 6、配列番号 7、配列番号 8/第 2欄左から;配列番号 9、配列 番号 10、配列番号 11/第 3欄左から;配列番号 12、配列番号 13、配列番号 14/第 4 欄左から;配列番号 15、配列番号 16、配列番号 17/第 5欄左から;配列番号 18、配 列番号 19、配列番号 20) (From left of column 1; SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 / From column 2, left; SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 / From column 3, left; SEQ ID NO: 12, SEQ ID NO: 13 (SEQ ID NO: 14 / from column 4 left; SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17 / from column 5 left; SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20)
[0065] [実施例 4] 目的遺伝子 DNAの塩基配列の少なくとも一部と相補的な配列を持ち、一 方でプローブ DNA結合粒子の一本鎖 DNA配列部分の塩基配列の少なくとも一部と 相補的な配列を有するプローブ用一本鎖ブリッジヌクレオチドのプローブ DNA結合 粒子への酵素化学合成的共有結合化により作製したプローブ DNA共有結合粒子に よる、 目的遺伝子のクロー-ング [Example 4] Target gene Having a sequence complementary to at least a part of the base sequence of DNA, On the other hand, probe single-stranded bridge nucleotides for probes that have a sequence complementary to at least part of the base sequence of the single-stranded DNA sequence part of the DNA-binding particle DNA binding Produced by enzymatic chemical synthetic covalent binding to the particle The target gene is cloned by the covalently bonded DNA particles.
ブリッジヌクレオチド DNA共有結合粒子は、図 7に示すように、プローブ用一本鎖ブ リッジヌクレオチドのプローブ DNA結合粒子の一本鎖 DNA配列部分へのハイブリダィ ゼーシヨンとタレノウ'フラグメント 'DNAポリメラーゼによる相補的 DNAの伸長、 NaOH のようなアルカリ溶液中での二本鎖 DNAの変性.解離、解離一本鎖ブリッジヌクレオ チド DNAの洗浄除去により作製した。  As shown in Fig. 7, the bridge nucleotide DNA covalently bonded particle is composed of the hybridization DNA of the probe single-stranded bridging nucleotide to the single-stranded DNA sequence part of the probe DNA-binding particle and the Talenow 'fragment' complementary DNA It was prepared by denaturation of double-stranded DNA in an alkaline solution such as NaOH. Dissociation, dissociation, and washing and removal of single-stranded bridged nucleotide DNA.
[0066] 具体的には、オリゴ (dT30mer)ラテックス ·ビーズ 20 ul(20mgビーズ /2ul)、 lOOuMの p CY用プローブ 1本鎖ブリッジヌクレオチド(BN-CY-2)DNA 10ulを 20 ulの 100〜500m M NaCl、 2%アルブミンを含むハイブリダィゼーシヨン溶液と混合しタレノウ 'フラグメント •DNAポリメラーゼ (タカラバイオより購入) 5ulを加えて、 37°C ' l時間インキュベーショ ンした後、 0.2N NaOH溶液で 0°C〜10°C '40分変性し、更に TEで 3回洗浄し、 TE溶液 をカロえて、ブリッジヌクレオチド DNA共有結合粒子使用液とした。  [0066] Specifically, oligo (dT30mer) latex beads 20 ul (20 mg beads / 2 ul), lOOuM probe for p CY single-stranded bridged nucleotide (BN-CY-2) DNA 10 ul 20 ul Mix with a hybridization solution containing 500 mM NaCl, 2% albumin and add Talenow 'fragment Fragment DNA polymerase (purchased from Takara Bio Inc.) Denatured at 0 ° C to 10 ° C for 40 minutes, and further washed with TE three times. The TE solution was collected and used as a solution for use of bridged nucleotide DNA covalently bonded particles.
[0067] 図 7から解るように、プローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子作 製に使用するプローブ DNA結合粒子の一本鎖 DNA配列部分の配列は任意の配列 で良ぐまたその塩基配列の長さもハイブリダィゼーシヨン可能な 3塩基対程度力も数 百塩基まで可能である。同様にプローブ DNA結合粒子の一本鎖 DNA配列部分と少 なくとも一部相補的な配列を持ち、他方に目的遺伝子の塩基配列の一部の塩基配 列をもつ 1本鎖ブリッジヌクレオチドも、この条件を満たす限り、任意の塩基配列と長さ を持つものが使用でき、し力も前記一本鎖ブリッジヌクレオチドに基づき酵素合成し たプローブ DNA配列を含むプローブ用 1本鎖合成相補的ブリッジヌクレオチド自体が 固層ビーズに結合しており、二本鎖 DNAのアルカリ変性条件下でも分解しな 、性質 を有する。この性質により、 目的遺伝子を含む閉環状二本鎖 DNA試料とプローブ DN A複合体粒子 (アルカリに耐性ならどんな材質の固層を有してもよ!ヽ)を一緒に同時 に変性させることが可能となり、また洗浄時の塩濃度や温度に極めて影響されにくい など、 目的遺伝子のクローユング作業の簡便性、迅速性、正確性などを飛躍的に高 めるものである。 [0067] As can be seen from FIG. 7, the bridge nucleotide probe for the probe The probe used for the preparation of the DNA covalent bond particle The single-stranded DNA sequence portion of the DNA-binding particle can be any sequence, and the length of the base sequence Furthermore, the strength of about 3 base pairs that can be hybridized can be up to several hundred bases. Similarly, a single-stranded bridge nucleotide having a sequence that is at least partially complementary to the single-stranded DNA sequence portion of the probe DNA-binding particle and having a partial base sequence of the base sequence of the target gene is also present. As long as the conditions are satisfied, those having an arbitrary base sequence and length can be used, and the single-strand synthetic complementary bridge nucleotide for the probe including the probe DNA sequence synthesized enzymatically based on the single-strand bridge nucleotide itself is used. It is bound to solid-phase beads and has properties that do not degrade even under alkaline denaturation conditions of double-stranded DNA. Because of this property, it is possible to simultaneously denature a closed circular double-stranded DNA sample containing the gene of interest and probe DNA complex particles (which can have a solid layer of any material that is resistant to alkali!). It is possible to make the cloning of the target gene easier, quicker and more accurate, such as being hardly affected by salt concentration and temperature during washing. It is a thing.
[0068] <プローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子による pCYの抽出'精 製.クローニング>  [0068] <Bridge nucleotide probe for probe> Extraction of pCY with DNA covalently bonded particles' purification. Cloning>
次に、図 7で作製したプローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子を 使って pCY · pGBM混合 DNA試料力ら pCYを抽出 ·精製 ·クローユングした結果を、表 4に示す。  Next, Table 4 shows the results of extraction, purification, and cloning of pCY from the pCY · pGBM mixed DNA sample force using the bridge nucleotide probe DNA covalently bonded particles for probes prepared in Fig. 7.
pCYの抽出操作は、  The pCY extraction operation is
[0069] 1) 20 ulの pCY用プローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子を 0.5ml チューブに取り、 12000rpmで 10分遠心し、上清を捨て、プローブ用ブリッジヌクレオ チドプローブ DNA共有結合粒子を回収した。  [0069] 1) Take 20 ul of the bridging nucleotide probe DNA covalent bond particle for pCY probe in a 0.5 ml tube, centrifuge at 12000 rpm for 10 minutes, discard the supernatant, and collect the probe bridging nucleotide probe DNA covalent bond particle. .
2)これに lulの lOOOuM Up-BSと lulの lOOOuM Down-BS、 1対 100に混合した図 1試料 3と 4の pCY 1 ulと pGBM lulの DNA試料、蒸留水 5ul、 0.4Nの NaOH 9 ulを一緒に加 え混合し、約 0°C (氷上)で 40分処理し DNAを変性 =一本鎖化させた後、当量 (9 ul)の 0.4Nの HC1をカ卩えて、氷上で中和した。  2) lul lOOOuM Up-BS and lul lOOOuM Down-BS, mixed 1 to 100 Figure 1 Samples 3 and 4 pCY 1 ul and pGBM lul DNA sample, distilled water 5ul, 0.4N NaOH 9 Add ul together and treat at about 0 ° C (on ice) for 40 min to denature the DNA = single strand, then add an equivalent (9 ul) of 0.4N HC1 and mix on ice. Neutralized.
[0070] 3)変性'中和したプローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子、 pCY' pGBM、 BSの混合液に、 23ulの 150mM NaClを含むハイブリダィゼーシヨン溶液をカロ え、 50°Cで 1時間 30分インキュベートした後、 55°Cに暖めたそれぞれ 100mM、 50mM の NaClを含む洗浄液でそれぞれ 4回、 2回洗浄し、さらに室温の 25mMの NaClを含む 洗浄液で 2回洗浄した。 [0070] 3) Bridge nucleotide probe for denatured 'neutralized probe DNA covalently bonded particles, pCY' pGBM, BS mixed solution containing 23ul of 150mM NaCl and mixed at 50 ° C After incubating for 1 hour and 30 minutes, the plate was washed twice and twice with a washing solution containing 100 mM and 50 mM NaCl each warmed to 55 ° C., and further washed twice with a washing solution containing 25 mM NaCl at room temperature.
4)得られたブリッジヌクレオチドプローブ DNA共有結合粒子- pCY複合体に 10mMトリ ス -ImM EDTA溶液 50 ulをカ卩え、 70°Cで 10分間加熱し、氷冷した。遠心して上澄を 回収した。  4) 50 ul of 10 mM Tris-ImM EDTA solution was added to the obtained bridged nucleotide probe DNA covalent bond particle-pCY complex, heated at 70 ° C. for 10 minutes, and cooled on ice. The supernatant was collected by centrifugation.
く抽出された pCYの検出〉  Detection of extracted pCY>
抽出された pCYの検出は、実施例 1と同様に行った。その結果を表 4に示す。  The extracted pCY was detected in the same manner as in Example 1. The results are shown in Table 4.
[0071] [表 4] 表 4:プローブ用プリッジヌクレオチド DNA共有結合粒子による閉環状 DNA O C[0071] [Table 4] Table 4: Probe nucleotides for probes Closed circular DNA OC by DNA covalently bonded particles
PCYを含む DNA試料からの pCYの抽出 ·ク口 Extraction of pCY from DNA samples containing PCY
pCY/pGBMの分子比 反応液中の 得られた 白コロニ一 濃縮率 Molecular ratio of pCY / pGBM White colony obtained in reaction solution Concentration rate
(pCY/pGBMの重量比) BSの濃度 (uM) コ CI二 —数 の割合 (%) ) (weight ratio of pCY / pGBM) BS concentration (uM)
(sp-pCY/sP-pGBM) Up-BS Down-BS 白 青 (pCY) (pGBM)  (sp-pCY / sP-pGBM) Up-BS Down-BS White Blue (pCY) (pGBM)
1 ) 1/100 0 0 10 210 14. 1 % 14. 0 1) 1/100 0 0 10 210 14.1% 14. 0
(10ng/840ng) (10ng / 840ng)
2 ) 1/100 20 20 452 11 98. 0 % 98. 0 2) 1/100 20 20 452 11 98. 0% 98. 0
(10ng/840ng) (10ng / 840ng)
20 20 289 20 93. 5 % 935. 0 20 20 289 20 93.5% 935. 0
(lng/840ng) (lng / 840ng)
4) 1/10000 20 20 151 21 87. 8 % 8780. 0  4) 1/10000 20 20 151 21 87. 8% 8780. 0
(0. lng/840ng)  (0. lng / 840ng)
5 ) 1/100000 20 20 95 48 66. 4 % 66400. 0  5) 1/100000 20 20 95 48 66.4% 66400. 0
(0. 01ng 840ng)  (0. 01ng 840ng)
[0072] 表 4に示すように、プローブ用ブリッジヌクレオチドプローブ DNA共有結合粒子によ る目的遺伝子の抽出'クローユング方法は、実施例 1〜3で示したプローブ用ブリッジ ヌクレオチドプローブ DNA結合粒子を使った場合より明らかに優れた抽出'クロー- ング効率の増加を示した。 [0072] As shown in Table 4, the extraction of the target gene using the bridge nucleotide probe DNA covalent bond particles for probes' cloning method was performed using the bridge nucleotide probe DNA probes for probes shown in Examples 1 to 3. The extraction showed significantly better extraction 'cloning efficiency'.
[0073] [実施例 5]プローブ DNAに対応する目的遺伝子塩基配列の隣接上流域と相補的な 1本鎖 DNA (上流ブロッキング配列、 Up-BS)及び下流域の塩基配列と相補的な 1本 鎖 DNA (下流ブロッキング配列、 Down-BS)の添カ卩による目的遺伝子の(検出)抽出- 精製'クローユング  [Example 5] Single-stranded DNA complementary to the adjacent upstream region of the target gene base sequence corresponding to the probe DNA (upstream blocking sequence, Up-BS) and one complementary to the downstream base sequence (Detection) extraction of target gene by adding strand DNA (downstream blocking sequence, Down-BS)-purification 'cloning'
表 5は、 pCY用のプローブ DNAと相補的な目的遺伝子の塩基配列の 1塩基上流、 1 塩基下流(プローブ DNAと BS間のスペース塩基配列 = 1塩基)を基点とする 30mer(30 塩基)の長さの 1本鎖 BSを用いた場合の結果である。 BSをカ卩えな 、従来法 (表 2のデ ータ 1、 3、 5)と比較し、大きな濃縮率が見られる。また、百万分の 1や千万分の 1でし か存在しない極微量な目的遺伝子 DNAの場合も、本発明のシステムを短期間に繰 り返すこと (マルチ ·サイクルクローユング方法)で、容易に、迅速に、正確に目的遺伝 子の抽出、精製、クローユングが可能である。  Table 5 shows 30 mer (30 bases) of base sequence 1 base upstream and 1 base downstream (space base sequence between probe DNA and BS = 1 base) of the base sequence of the target gene complementary to the probe DNA for pCY. The results are obtained using a single-stranded BS of length. Compared with the conventional method (data 1, 3, and 5 in Table 2) without BS, a large enrichment rate can be seen. In addition, in the case of a very small amount of target gene DNA that exists only in parts per million or parts per million, the system of the present invention can be repeated in a short period of time (multi-cycle cloning method). The target gene can be extracted, purified, and cloned easily, quickly and accurately.
[0074] [表 5] 表 5 :pCYの抽出に対する Up-BS、 Down-BSの濃縮増大効果 (従来法との比較)[0074] [Table 5] Table 5: Up-BS and Down-BS enrichment effect on pCY extraction (compared with conventional method)
CY/pGBMの分子比 反応液中の 得られたコロニー数 白 ロ二-一 濃縮率Molecular ratio of CY / pGBM Number of colonies obtained in the reaction solution
(pCY/pGBMの重量比) BSの濃度 (uM) 白 青 の割合 (倍) (weight ratio of pCY / pGBM) BS concentration (uM) White blue ratio (times)
Up-BS Down-BS (pCY) (pGBM) (%)  Up-BS Down-BS (pCY) (pGBM) (%)
1) 1/100 0 0 80 780 . 9.3 ¾ 9.3 1) 1/100 0 0 80 780 .9.3 ¾ 9.3
(10ng/840ng) (10ng / 840ng)
2) 1/100 20 20 3110 180 94.5 % 94.5 2) 1/100 20 20 3110 180 94.5% 94.5
(10ng/840ng) (10ng / 840ng)
3) 1/1000 0 0 4 537 0.7 % 7.4 3) 1/1000 0 0 4 537 0.7% 7.4
(lng/840ng) (lng / 840ng)
4) 1/1000 20 20 1003 147 87.2 % 872.0 4) 1/1000 20 20 1003 147 87.2% 872.0
(lng/840ng) (lng / 840ng)
5) 1/10000 0 0 1 152 0.6 % 65.3 5) 1/10000 0 0 1 152 0.6% 65.3
(0. lng/840ng) (0. lng / 840ng)
6) 1/10000 20 20 98 73 57.4 % 5740.0 6) 1/10000 20 20 98 73 57.4% 5740.0
(0. lng/840ng) (0. lng / 840ng)
7) 1/1000000 50 50 86 2536 3.3 % 33000.0 7) 1/1000000 50 50 86 2536 3.3% 33000.0
(0.03ng/25.2ug) (0.03ng / 25.2ug)
8) lOngの 50 50 42 0 100.0 % 1000000.0 上記 7) の全コロニーから 1回抽出混合 DNA試料  8) lOng 50 50 42 0 100.0% 1000000.0 Extracted once from all colonies in 7) above Mixed DNA sample
9) 1/10000000 50 50 8 3792 0.21 ¾ 21000.0 9) 1/10000000 50 50 8 3792 0.21 ¾ 21000.0
(0.003ng/25.2ug) (0.003ng / 25.2ug)
10) lO ngの 50 50 25 12 67.5 % 6750000.0 上記 9) の全コロニーから 1回抽出混合 DNA試料  10) lO ng 50 50 25 12 67.5% 6750000.0 Extracted once from all colonies of 9) above Mixed DNA sample
1)、 3)、 5) は BSを用いない従来法の結果である。  1), 3) and 5) are the results of the conventional method without BS.
2)、 4)、 6) 7)、 8)、 9)、 10) は BSを加えた本発明法の結果である。  2), 4), 6) 7), 8), 9) and 10) are the results of the method of the present invention with BS added.
8)、 10) のマルチ'サイクルクローニングの 2回目も抽出方法は実施例 1と同様 に行った。  The extraction method was the same as in Example 1 for the second round of multi-cycle cloning in 8) and 10).
実験に用いた pCY, pGBMは、 実施例 1の図 1の試料 3と 4の DNA試料である。  PCY and pGBM used in the experiment are the DNA samples of Samples 3 and 4 in FIG.
[0075] 表 6は、 pCY用プローブ DNA塩基配列の 1塩基上流、 1塩基下流(プローブ DNAと B S間のスペース塩基配列 =1塩基)を基点とする種々の長さの 1本鎖 BSを用いた、クロ 一-ング効率に与える BS塩基配列の長さの影響を試験した結果である。 [0075] Table 6 uses single-stranded BSs of various lengths starting from one base upstream and one base downstream of the pCY probe DNA base sequence (space base sequence between probe DNA and BS = 1 base). This is a result of testing the influence of the length of the BS base sequence on the cloning efficiency.
[0076] [表 6] [0076] [Table 6]
表 6 : pCYの抽出に対する Up-BS、 Down-BSの濃縮増大効果 Table 6: Up-BS and Down-BS enrichment effects on pCY extraction
(BSの 基配列の長さの影春)  (The shadow of the base sequence length of BS)
BSの長さ pCY/pGBM 反応液中の 得られた 白: 3ロニ一 濃縮率  BS length pCY / pGBM Resulting white in reaction: 3 Roni Concentration rate
(塩綠: mer) の分子比 BSの濃度 (uM) 一数 の割合 (%) (倍)  (Salt salmon: mer) Molecular ratio BS concentration (uM) Percentage (%) (times)
(pCY/pGBMの重量比) Up-BS Down- BS 白 青  (weight ratio of pCY / pGBM) Up-BS Down- BS White Blue
(PCY) (pGBM)  (PCY) (pGBM)
1) BSなし 1/10000 0 0 1 152 0. 60 % 65. 3  1) No BS 1/10000 0 0 1 152 0. 60% 65. 3
(0. lng/840ng)  (0. lng / 840ng)
2) 10 mer 1/10000 20 20 9 712 1. 20 % 120. 0  2) 10 mer 1/10000 20 20 9 712 1. 20% 120. 0
(0. lng/840ng)  (0. lng / 840ng)
3) 15 mer 1/10000 20 20 38 727 5. 20 % 520. 0  3) 15 mer 1/10000 20 20 38 727 5. 20% 520. 0
(0. lng 840ng)  (0. lng 840ng)
4) 20 mer 1/10000 20 20 51 668 7. 63 % 763. 0  4) 20 mer 1/10000 20 20 51 668 7. 63% 763. 0
, (0. lng/840ng)  , (0.lng / 840ng)
5) 25 mer 1/10000 20 20 67 547 11. 00 % 1100. 0  5) 25 mer 1/10000 20 20 67 547 11. 00% 1100. 0
(0. lng/840ng)  (0. lng / 840ng)
1/10000 20 20 490 364 57. 37 % 5737. 0 1/10000 20 20 490 364 57. 37% 5737. 0
(0. lng/840ng) (0. lng / 840ng)
7) 40 mer 1/10000 20 20 645 937 40. 80 % 4080. 0  7) 40 mer 1/10000 20 20 645 937 40. 80% 4080. 0
(0. lng 840ng)  (0. lng 840ng)
8) 50 mer 1/10000 20 20 253 446 36. 20 % 3620. 0  8) 50 mer 1/10000 20 20 253 446 36. 20% 3620. 0
(0. lng/840ng)  (0. lng / 840ng)
9) 100 mer 1/10000 20 20 72 331 17. 86 % 1786. 0  9) 100 mer 1/10000 20 20 72 331 17. 86% 1786. 0
(0. lng/840ng)  (0. lng / 840ng)
10) 30 mer 1/100000 100 100 106 208 33. 76 % 33700. 0  10) 30 mer 1/100000 100 100 106 208 33.76% 33700. 0
(0. 01ng/840ng)  (0. 01ng / 840ng)
[0077] 表 6に示すようにプローブ DNA塩基配列の 1塩基上流、 1塩基下流(プローブ DNAと BS間のスペース塩基配列 = 1塩基)を基点として、 BSの塩基配列の長さを多様に変 えた同様の実験では、 15mer以上の長さで抽出増幅効果が見られた。特に、 30merで は、 pCY:pGBM比が 1/10000では 50% (増幅率 5000倍を超える)を超える高い濃縮率、 1/100000の比でも、 BS濃度を lOOuMで 30% (増幅率 30000倍を超える)を超える高い 濃縮率が見られる。 [0077] As shown in Table 6, the length of the base sequence of BS can be varied in various ways, starting from one base upstream and one base downstream of the probe DNA base sequence (space base sequence between probe DNA and BS = 1 base). In the same experiment, an extraction amplification effect was seen at a length of 15 mer or more. In particular, with 30mer, the pCY: pGBM ratio is 1/10000 with a high concentration ratio exceeding 50% (amplification rate exceeds 5000 times), and even with a ratio of 1/100000, BS concentration is 30% with lOOuM (amplification rate 30000 times). A high concentration ratio exceeding
[0078] BSの塩基配列の長さを 30merに固定して、プローブ DNA塩基配列の端からのスぺ ース塩基距離を種々変化させた Up- BS、 Down- BSを用いた実験では、 7merまで高い 抽出増幅効果が見られた。  [0078] In experiments using Up-BS and Down-BS, the length of the base sequence of BS was fixed at 30 mer, and the space base distance from the end of the probe DNA base sequence was varied. A high extraction amplification effect was observed.
また、反応液に加える BSの濃度は、最終濃度 (前記抽出操作の 3に相当) luM以上 で抽出効率増大効果が見られるが、 lOuMから ImMの範囲が最も良い効果が得られ 表 7に、プローブ (probe) DNA配列と相補的なターゲット遺伝子配列の上流(5'上流 )、下流 (3'下流)基点からの、 BSの塩基距離の影響を示す。 In addition, the concentration of BS added to the reaction solution is the final concentration (corresponding to 3 of the above extraction operation) luM or more, and the effect of increasing the extraction efficiency can be seen. Table 7 shows the effect of BS base distance from the upstream (5 'upstream) and downstream (3' downstream) base points of the target gene sequence complementary to the probe DNA sequence.
[表 7] 表 7: pCYの抽出に対する Up-BS、 Down-BSの濃縮増大効果 (BSのプローブ DM 配列と相補的なターゲット遺伝子配列の上流 (5 '上流)、 下流 ( 3 ' 下流) 基点からの塩基距離の影響)  [Table 7] Table 7: Up-BS and Down-BS enrichment effect on pCY extraction (upstream (5 'upstream), downstream (3' downstream) of target gene sequence complementary to BS probe DM sequence Influence of base distance from
30merBSの基点 pCY/pGBM 反応液中の 得られた 白コロニ一 濃縮率 からの距離 の分子比 BSの濃度 (uM) —数 の割合 (%) (倍) Base point of 30merBS pCY / pGBM Obtained white colony in reaction solution Molecular ratio of distance from concentration rate BS concentration (uM) —number ratio (%) (times)
0®基数: ier) (PCY/pGBMの重量 :比) Up- BS Down-BS 白 青 0® base: ier) (weight of PCY / pGBM: ratio) Up- BS Down-BS White Blue
(pCY) (pGBM)  (pCY) (pGBM)
1) BSなし 1/100 0 0 7 53 11. 7 % 11. 7  1) No BS 1/100 0 0 7 53 11. 7% 11. 7
(10ng/840ng)  (10ng / 840ng)
2) 0 mer 1/100 20 20 301 56 84. 3 % 84. 3  2) 0 mer 1/100 20 20 301 56 84. 3% 84. 3
(10ng/840ng)  (10ng / 840ng)
3) 1 mer 1/100 20 20 409 26 94. 0 % 94. 0  3) 1 mer 1/100 20 20 409 26 94. 0% 94. 0
(10ng/840ng)  (10ng / 840ng)
3) 3 mer 1/100 20 20 338 45 88. 2 % 88. 2  3) 3 mer 1/100 20 20 338 45 88. 2% 88.2
(10ng/840ng)  (10ng / 840ng)
4) 5 mer 1/100 20 20 124 42 75. 6 % 75. 6  4) 5 mer 1/100 20 20 124 42 75. 6% 75. 6
(10ng/840ng)  (10ng / 840ng)
5) 7 mer 1/100 20 20 64 48 57. 1 % 57. 1  5) 7 mer 1/100 20 20 64 48 57. 1% 57.1
(10ng/840ng)  (10ng / 840ng)
6) 10 mer 1/100 20 20 17 33 34. 0 % 34. 0  6) 10 mer 1/100 20 20 17 33 34. 0% 34. 0
(10ng/840ng)  (10ng / 840ng)
7) 30 mer 1/100 20 20 9 39 18. 8 % 18. 8  7) 30 mer 1/100 20 20 9 39 18. 8% 18. 8
(10ng/840ng)  (10ng / 840ng)
8) 60 mer 1/100 20 20 11 67 14. 1 % 14. 1  8) 60 mer 1/100 20 20 11 67 14. 1% 14. 1
(10ng/840ng)  (10ng / 840ng)
[0080] BSの塩基配列の長さを 30merに固定して、プローブ DNA塩基配列の両端からのス ペース塩基距離を変更しつつ離して行くと、 7merまで 50%を超える高い抽出増幅効果 が見られる力 それより距離が離れると SBの効果は急激に失われていく。また、 up-B Sと Down- BS単独でもある程度の効果(Up- BS単独では pCY:pGBM比 = 1/100で 65〜 45倍濃縮率、 Down- BS単独では 35〜25倍濃縮率)が得られるが、 Up- BS、 Down-BS 並存の効果よりかなり低い。 [0080] When the base sequence length of the BS is fixed at 30 mer and the space base distance from both ends of the probe DNA base sequence is changed and separated, a high extraction amplification effect exceeding 50% is seen up to 7 mer. Force to be used The effect of SB is lost rapidly when the distance is longer. In addition, up-B S and Down-BS alone have some effect (up-BS alone has a pCY: pGBM ratio = 1/100, 65-45 times enrichment, and Down-BS alone has 35-25 times enrichment) Although it is obtained, it is much lower than the effects of Up-BS and Down-BS coexisting.
[0081] [実施例 6] 目的遺伝子を含む閉環状二本鎖 DNAを 0.1N〜0.4N (規定)のアルカリ(Na OHや KOHなど)溶液中で低温 (0°C〜10°C)変性させ、部分一本鎖化させる方法に よる、 目的遺伝子のクローニング [0081] [Example 6] Closed circular double-stranded DNA containing the target gene is denatured at a low temperature (0 ° C to 10 ° C) in an alkali (NaOH, KOH, etc.) solution of 0.1N to 0.4N (normative). To a method of partially single-stranded According to the target gene cloning
目的遺伝子 (ここでは pCY)を含む閉環状二本鎖 DNAのアルカリ変性時の温度条 件の結果を、表 8に示す。 DNA試料のアルカリ変性温度条件以外は、実施例 1と同 様の実験操作で行った。  Table 8 shows the results of temperature conditions during alkaline denaturation of the closed circular double-stranded DNA containing the target gene (here pCY). Except for the alkali denaturation temperature conditions of the DNA samples, the same experimental procedure as in Example 1 was performed.
表 8にその結果を示す。 0°C (氷上)での DNA試料のアルカリ変性では、非常に高い クローニング効率が得られるに対し、 25°C (室温)や 37°Cではかなりのクローニング効 率の低下が見られた。表 8からこの実施例でも BSは必須であることがわかる。 DNA試 料のアルカリ変性は、実施例 1と同様に 0.2N Na〇H (最終濃度)で 40分間行った。 10 分や 20分の変性では、 1、ずれの温度でも抽出プラスミド自体の収量が減少した。  Table 8 shows the results. Alkaline denaturation of DNA samples at 0 ° C (on ice) yielded very high cloning efficiencies, while significant reductions in cloning efficiency were seen at 25 ° C (room temperature) and 37 ° C. Table 8 shows that BS is indispensable also in this example. Alkaline denaturation of the DNA sample was performed with 0.2N NaOH (final concentration) for 40 minutes in the same manner as in Example 1. At 10 minutes or 20 minutes denaturation, the yield of the extracted plasmid itself decreased even at a temperature of 1, different.
[表 8] 表 8: pCYの抽出に対する DNA試料アル力リ変性の温度条件 [Table 8] Table 8: Temperature conditions for DNA sample denaturation for pCY extraction
DNA試料 pCY/pGBM 反応液中の BS 得られたコロニー数 白コロニー 濃縮率 変性温度 の分子比 の濃度 (uM) 白 青 の割合 (%) (倍)  DNA sample pCY / pGBM BS in reaction solution Number of colonies obtained White colony Concentration rate Density temperature molecular ratio concentration (uM) White blue ratio (%) (times)
(PCY/PGBMの重量比) Up- BS Down-BS (pCY) (pGBM)  (Weight ratio of PCY / PGBM) Up- BS Down-BS (pCY) (pGBM)
1) (TC 1/100 0 0 84 881 8. 7 % 8. 7  1) (TC 1/100 0 0 84 881 8. 7% 8.7
(10ng/840ng)  (10ng / 840ng)
2) (TC 1/100 20 20 6180 180 97. 2 % 97. 2  2) (TC 1/100 20 20 6 180 180 97. 2% 97.2
(10ng/840ng)  (10ng / 840ng)
3) 25で 1/100 0 0 91 854 9. 6 % 9. 6  3) 1/100 at 25 0 0 91 854 9.6% 9. 6
(10ng/840ng)  (10ng / 840ng)
4) 25"C 1/100 20 20 4310 2250 65. 7 % 65. 7  4) 25 "C 1/100 20 20 4310 2250 65.7% 65.7
(10ng/840ng)  (10ng / 840ng)
5) 37で 1/100 0 0 101 1881 5. 0 % 5. 0  5) At 37 1/100 0 0 101 1881 5. 0% 5. 0
(10ng/840ng)  (10ng / 840ng)
6) 37で 1/100 20 20 1520 3020 33. 5 33. 5  6) At 37 1/100 20 20 1520 3020 33. 5 33.5
(10ng/840ng)  (10ng / 840ng)
1 )、 3 )、 5 ) は BSを用いない従来法の結果。 2 )、 4 )、 6 ) は BSを加えた本発明法の 結果である。  1), 3), 5) are the results of the conventional method without BS. 2), 4) and 6) are the results of the method of the present invention with BS added.
[実施例 7]閉環状二本鎖目的遺伝子 DNAを含む試料とプローブ DNA結合粒子との 低塩濃度(100〜200mM)下でのハイブリダィゼーシヨンによる、 目的遺伝子の固層粒 子への抽出 ·回収 ·クロー-ング [Example 7] Closed circular double-stranded target gene DNA sample and probe DNA binding particles are hybridized under low salt concentration (100 to 200 mM) to target gene to solid particles. Extraction · Recovery · Cloning
表 9は、 pCYの抽出 '精製'クローユングの効率に対する変性試料 DNAの BN- CYォ リゴ (dG)ラテックス ·ビーズ複合体へのハイブリダィゼーシヨン時の溶液の塩濃度の影 響を試験した結果である。 [0084] [表 9] 表 9 : pCYの抽出 '精製'クローニングの効率に対する、 変性 DM試料の BN- CY - オリゴ (dG)ラテックスビーズ複合体へのハイプリダイゼーション溶液の塩澳度の影響 塩濃度 PCY/pGBM 反応液中の BS 得られた 白: 3 D二一 濃縮率 Table 9 examines the effect of salt concentration of the solution during hybridization of the denatured sample DNA to the BN-CY oligo (dG) latex bead complex on the efficiency of the extracted 'purified' clawing of pCY. It is a result. [0084] [Table 9] Table 9: Effect of hyperpredation solution salinity on BN-CY-oligo (dG) latex bead complex of denatured DM sample on the efficiency of extraction and purification of pCY Concentration PCY / pGBM BS in reaction solution obtained White: 3D 2 Concentration rate
( nM ) の分子比 の濃度 (uM) コロニー数 の割合 (倍) (nM) Molecular ratio concentration (uM) Number of colonies (times)
(pCY/pGBMの重量比) Up-BS Down-BS 白 青 (%) (weight ratio of pCY / pGBM) Up-BS Down-BS White Blue (%)
(PCY) (pGBM)  (PCY) (pGBM)
1) 110. 4 1/100 20 20 1095 93 92. 1 % 92. 1  1) 110. 4 1/100 20 20 1095 93 92. 1% 92. 1
(10ng/840ng)  (10ng / 840ng)
2) 156. 4 1/100 20 20 781 90 89. 7 % 89. 7  2) 156. 4 1/100 20 20 781 90 89.7% 89. 7
(10ng/840ng)  (10ng / 840ng)
3) 202. 4 1/100 20 20 534 131 81. 2 % 81. 2  3) 202. 4 1/100 20 20 534 131 81.2% 81.2
(10ng/840ng)  (10ng / 840ng)
4) 248. 4 1/100 20 20 173 60 74. 0 % 74. 0  4) 248. 4 1/100 20 20 173 60 74. 0% 74. 0
(10g/840ng)  (10g / 840ng)
5) 317. 4 1/100 20 20 194 108 64. 2 % 64. 2  5) 317. 4 1/100 20 20 194 108 64. 2% 64. 2
(10ng/840ng)  (10ng / 840ng)
6) 363. 4 1/100 20 20 122 77 61. 3 % 61. 3  6) 363. 4 1/100 20 20 122 77 61. 3% 61. 3
(10ng/840ng)  (10ng / 840ng)
7) 409. 4 1/100 20 20 105 104 50. 2 % 50. 2  7) 409. 4 1/100 20 20 105 104 50. 2% 50. 2
(10ng/840ng)  (10ng / 840ng)
8) 547. 4 1/100 20 20 100 99 50. 2 % 50. 2  8) 547. 4 1/100 20 20 100 99 50. 2% 50. 2
(10ng/840ng)  (10ng / 840ng)
塩濃度は、 NaClの濃度と pH調整用トリス HC1の濃度の 0. 6を掛けて算出した値の 合計で示した。  The salt concentration was shown as the sum of the values calculated by multiplying the NaCl concentration by the pH adjustment Tris HC1 concentration of 0.6.
[0085] およそ lOOmMから 200mMまでの塩濃度では、 80%を越すクロー-ング効率が得られ る力 250mM以上では 70%を切る低いクローユング効率であり、特にノーザンハイブリ ダイゼーシヨン等で使用する 500mM前後の塩濃度ではクローユング効率は 50%程度 まで減少する。 pCY/pGBM比を 1/1000、 1/10000とより厳しい条件下で目的遺伝子 p CYのクロー-ングをこれらの塩濃度で行うと、 5%以下まで更に低下する。 [0085] At a salt concentration from approximately lOOmM to 200mM, a cloning efficiency exceeding 80% can be obtained. At 250mM or more, it has a low cloning efficiency of less than 70%, especially around 500mM used in Northern hybridization. At salt concentration, the cloning efficiency decreases to about 50%. When the cloning of the target gene pCY is carried out at these salt concentrations under the severe conditions of pCY / pGBM 1/1000 and 1/10000, it is further reduced to 5% or less.
[0086] [実施例 8]マウス脳 cDNAプラスミドライブラリーからのァクチン (actin)遺伝子 cDNAク ローンの抽出'精製 ·クローユング  [0086] [Example 8] Extraction of actin gene cDNA clone from mouse brain cDNA plasmid library
実験に使用したマウス脳 cDNAプラスミドライブラリ一は、タカラバイオ株式会社から 購入した。これを大腸菌に transfectして、大量培養し、実施例 1で示した SDS-アル力 リ法と CsCl超遠心法および DNA吸着膜法で直鎖状 DNAや開環状 DNAを種々の割合 で含む閉環状 cDNAプラスミドライブラリーを作製し、実験に使用した。  The mouse brain cDNA plasmid library used for the experiment was purchased from Takara Bio Inc. This is transfected into Escherichia coli, cultured in large quantities, and closed with various ratios of linear DNA and open circular DNA by the SDS-al strength method, CsCl ultracentrifugation method and DNA adsorption membrane method shown in Example 1. A circular cDNA plasmid library was prepared and used for experiments.
下記のァクチン遺伝子抽出用の 1本鎖プローブ DNA、 1本鎖 Up-BS (最終濃度 = 10 0uM)、 1本鎖 Down-BS (最終濃度 = 100uM)、 PCR用プライマー以外は、前記の [実 施例 1]と同様の操作で抽出 '精製'クロー-ングを行つた。 Single-stranded probe DNA for extraction of the following actin gene, single-stranded Up-BS (final concentration = 10 Extraction 'purification' cloning was performed in the same manner as in [Example 1] except for 0 uM), single-stranded Down-BS (final concentration = 100 uM) and PCR primers.
<ァクチンプローブ用 1本鎖ブリッジヌクレオチド(BN-ァクチン)の調製 >  <Preparation of single-stranded bridge nucleotide (BN-actin) for actin probe>
[0087] [化 5] [0087] [Chemical 5]
5 ' -GGAGAnACTGCTCTGGCTCCTAGCACCATCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3 ' (配列番号 21) 5 '-GGAGAnACTGCTCTGGCTCCTAGCACCATCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3' (SEQ ID NO: 21)
[0088] ァクチン遺伝子の cDNA断片の 1023-1052の 30塩基とポリ C30塩基から構成される 1 本鎖ブリッジオリゴヌクレオチド用配列(BN—ァクチン)を合成し、ァクチン遺伝子 cDN Aプラスミドクローン抽出用プローブ DNAとして用いた。  [0088] A single-stranded bridge oligonucleotide sequence (BN-actin) composed of 30 bases of 1023-1052 of the cDNA fragment of the actin gene and poly C30 base (BN-actin) was synthesized and probe DNA for extracting the actin gene cDNA plasmid clone Used as.
<ブリッジヌクレオチド BN-ァクチンのポリ Cとハイブリダィズするオリゴ (dG)ラテックス · ビーズ >  <Bridge nucleotide BN-actin oligo (dG) latex beads hybridizing with poly C>
オリゴ (dG)ラテックス 'ビーズは、 JSR株式会社より購入したものを用いた。 BN-ァクチ ンプローブは、ポリ C部分でこのラテックス 'ビーズのオリゴ (dG)とハイブリザィズし、ビ ーズ固層に固定される。  Oligo (dG) latex 'beads purchased from JSR Corporation were used. The BN-actin probe hybridizes with this latex bead oligo (dG) at the poly C moiety and is immobilized on the bead solid layer.
<ァクチンプローブ DNA塩基配列の上流及び下流のブロッキング配列(  <Actin probe Blocking sequence upstream and downstream of DNA sequence (
BS)>  BS)>
1本鎖 Up-BS (上流ブロッキング配列)  Single-stranded Up-BS (upstream blocking sequence)
[0089] [化 6] [0089] [Chemical 6]
5' -TGTACCCAGGCATTGCTGACAGGATGCAGA -3' (配列番号 22) 5'-TGTACCCAGGCATTGCTGACAGGATGCAGA -3 '(SEQ ID NO: 22)
ァクチン遺伝子の cDNA断片の 992-1021の 30塩基を合成し、用いた。  30 bases of 992-1021 of the cDNA fragment of the actin gene were synthesized and used.
1本鎖 Down- BS (下流ブロッキング配列)  Single-stranded Down-BS (downstream blocking sequence)
[0090] [化 7] [0090] [Chemical 7]
5' -GCGCTCAGaGGAGCAATGATCTTGATCTT -3' (配列番号 23) ァクチン遺伝子の cDNA断片の 1083-1054(マイナス鎖)の 30塩基を合成し、用いた。 < PCR用ァクチンプライマー > 5'-GCGCTCAGaGGAGCAATGATCTTGATCTT -3 '(SEQ ID NO: 23) 30 bases of 1083-1054 (minus strand) of the cDNA fragment of the actin gene were synthesized and used. <Actin primer for PCR>
[0091] [化 8] プライマ一 1 : 5' -GACGACATGGAGAAGATCTG-3' (316-335) [0091] [Chemical 8] Prime 1: 5 '-GACGACATGGAGAAGATCTG-3' (316-335)
プライマー 2 : 5' -TAGGAGCCAGAGCAGTAATC-3' (1045-1026)  Primer 2: 5'-TAGGAGCCAGAGCAGTAATC-3 '(1045-1026)
(上;配列番号 24/下;配列番号 25)  (Top; SEQ ID NO: 24 / Bottom; SEQ ID NO: 25)
[0092] 表 10に示すように、 BSを用いな 、従来法ではァクチン遺伝子 cDNAクローンを含む マウス脳 cDNAプラスミドライブラリー lugから、試料 5で 0個 (0%)、試料 6で 6個 (0.56%)、 試料 7で 24個 (4.07%)、試料 8で 4個 (1.21)のァクチン陽性プラスミドコロニーが得られ た。一方 BSを用いた本発明では、試料 5で 2個 (0.23%),試料 6で 16個 (3,20%)、試料 7で[0092] As shown in Table 10, in the conventional method without BS, from mouse mouse cDNA plasmid library lug containing actin gene cDNA clone, 0 in sample 5 (0%), 6 in sample 6 (0.56 %), 24 (4.07%) in sample 7 and 4 (1.21) actin-positive plasmid colonies in sample 8. On the other hand, in the present invention using BS, two samples (0.23%) were obtained in sample 5, 16 samples (3,20%) in sample 6, and
101個(43.72%)、試料 8でも 28個 (22.22%)のァクチン陽性プラスミドコロニーが得られ た。 BSを加えない従来法でも、本発明法のターゲット分子である閉環状 DNAが豊富 な試料で約 4% (100個に 4個)の確率でクローユング可能であり、これに本発明法で ある BSをカ卩えると更に約 44% (100個に 44個)と非常に高い確率で実際の遺伝子クロ 一ンがクローニングできる。 101 (43.72%), 28 samples (22.22%) of actin-positive plasmid colonies were obtained. Even with the conventional method that does not add BS, it can be clonable with a probability of about 4% (4 out of 100) with a sample rich in closed circular DNA, which is the target molecule of the present invention. The actual gene clone can be cloned with a very high probability of about 44% (44 out of 100).
[0093] [表 10] 表 1 0 :本発明によるマウス脳 cDNAプラスミドライブラリ一からのァクチン遗伝子 cDMプラスミドクローンの抽出 ·精製 ·クローニング (BSを含まな Ι 従来法との比較) 用いた ァクチン- BS 得られたコロニー数 ァクチンプライマー PCR陽性 [0093] [Table 10] Table 10: Extraction, purification, and cloning of cDM plasmid clone from a mouse brain cDNA plasmid library according to the present invention (purification without cloning, comparison with conventional methods) Actin used -BS Number of colonies obtained Actin primer PCR positive
DNA試料 Up - BS Down- BS (全抽出液当りの数) による PCR陽性 コ ο二一 DNA sample Up-BS Down- BS (number per total extract) PCR positive
(uM) (uM) コロニー数 の割合 ( % (uM) (uM) Percentage of colonies (%
1) .試料 5 0 0 腦個 0個 0. 00 %1) .Sample 5 0 0 腦 0 0 0.00%
2) 試料 5 100 100 887個 2個 0. 23 %2) Sample 5 100 100 887 2 pieces 0.23%
3) 試料 6 0 0 1072個 6個 0. 56 %3) Sample 6 0 0 1072 6 pieces 0.55%
4) 試料 6 100 100 497個 16個 3. 20 %4) Sample 6 100 100 497 16 pieces 3. 20%
5) 試料 7 0 0 589個 24個 4. 07 %5) Sample 7 0 0 589 24 24 4. 07%
6) 試料 7 100 100 231個 101個 43. 72 %6) Sample 7 100 100 231 101 101 43. 72%
7) 試料 8 0 0 330個 4個 1. 21 %7) Sample 8 0 0 330 pieces 4 pieces 1. 21%
8) 試料 8 100 100 126個 28個 22. 22 % 実験 1)、 3)は開環状 DNAが 4 0 %以上混入しかつ BSを含まない従来法の結果。実験 2)、 4)、 5)、 6) , 7)、 8)は 「本発明法」 での結果である。 8) Sample 8 100 100 126 28 22. 22.% Experiments 1) and 3) are results of the conventional method in which 40% or more of open circular DNA is mixed and BS is not included. Experiments 2), 4), 5), 6), 7), and 8) are the results of the “method of the present invention”.
表 10の実験 6)力も得られたァクチン陽性コロニーの内、 2クローンの大腸菌を更に 液体培養して、プラスミドを抽出'精製し、インサート DNAの切り出し用制限酵素 EcoR 1と Notlで切断し、また精製した DNAで PCRを行った結果を図 8に示す。ほぼ完全長 のァクチン cDNA(l .26k塩基対)を含むクローンが得られて ヽることが明らかである。 Experiment 10 in Table 10) Among the actin-positive colonies that were also obtained, 2 clones of Escherichia coli were further cultured in liquid, and the plasmid was extracted and purified, and the restriction enzyme EcoR for excising insert DNA was purified. Figure 8 shows the results of PCR using DNA that had been cleaved with 1 and Notl and purified. Clearly, clones containing almost full-length actin cDNA (1.26 k base pairs) were obtained.
[0095] [実施例 9]マウス脳 cDNAプラスミドライブラリーからの HPRT (ヒポキサンチン 'グァニン [0095] [Example 9] HPRT (hypoxanthine'guanine from mouse brain cDNA plasmid library
'ホス リボンノレ'トフンスフエフ1 ~~ゼ (Hypoxanthine guanine phosphoribosyl transferase^)遺伝子 cDNAクローンの抽出'精製 ·クロー-ング 'Host Ribon'nore' Tofunsufuefu 1 ~ ~ zero (Hypoxanthine guanine phosphoribosyl transferase ^) gene cDNA clone of extraction 'refining and claw - ing
実験に使用したマウス脳 cDNAプラスミドライブラリ一は、タカラバイオ株式会社から 購入した。これを大腸菌にトランスフエタトして、大量培養し、 SDS-アルカリ法と CsCl 超遠心法で直鎖状 DNAや開環状 DNAをほとんど含まない閉環状 cDNAプラスミドライ ブラリー (95%以上閉環状 DNAからなる)を作製し、実験に使用した。  The mouse brain cDNA plasmid library used for the experiment was purchased from Takara Bio Inc. This is transferred to Escherichia coli, cultured in large quantities, and subjected to SDS-alkaline and CsCl ultracentrifugation, and a closed circular cDNA plasmid library that contains almost no linear or open circular DNA (from 95% or more closed circular DNA). And used for the experiment.
以下に示す HPRT遺伝子抽出用の 1本鎖プローブ DNA、 1本鎖 Up-BS (最終濃度 = 100uM)、 1本鎖 Down-BS (最終濃度 = 100uM)、 PCR用プライマー以外は、前記の [ 実施例 1]と同様の操作で抽出 '精製'クロー-ングを行つた。  Except for the following single-stranded probe DNA for HPRT gene extraction, single-stranded Up-BS (final concentration = 100 uM), single-stranded Down-BS (final concentration = 100 uM), and PCR primers Extraction 'purification' cloning was performed in the same manner as in Example 1.
< HPRTプローブ用 1本鎖ブリッジヌクレオチド(BN- HPRT)の調製 >  <Preparation of single-stranded bridge nucleotide (BN-HPRT) for HPRT probe>
[0096] [化 9] [0096] [Chemical 9]
5 ' -GGGTAGGCTGGCCTATAGGCTCATAGTGCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3, 5 '-GGGTAGGCTGGCCTATAGGCTCATAGTGCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3,
(配列番号 26) (SEQ ID NO: 26)
HPRT遺伝子の cDNA断片の 899-870の 30塩基とポリ C30塩基から構成されるブリツ ジオリゴヌクレオチド用配列(BN— HPRT)を合成し、 HPRT遺伝子 cDNAプラスミドクロ ーン抽出用プローブ DNAとして用いた。  A bridge oligonucleotide sequence (BN—HPRT) consisting of 30 bases of 899-870 of the cDNA fragment of HPRT gene and poly C30 base was synthesized and used as probe DNA for extraction of HPRT gene cDNA plasmid clone.
<ブリッジヌクレオチド BN- HPRTのポリ Cとハイブリダィズするオリゴ (dG)ラテックス ·ビ 一ズ>  <Bridge nucleotide BN-HPRT oligo (dG) latex hybridized with poly C>
オリゴ (dG)ラテックス 'ビーズは、 JSR株式会社より購入したものを用いた。 BN-HPRT プローブは、ポリ C部分でこのラテックス 'ビーズのオリゴ (dG)とハイブリザィズし、ビー ズ固層に固定される。  Oligo (dG) latex 'beads purchased from JSR Corporation were used. The BN-HPRT probe hybridizes with the latex 'bead oligo (dG) at the poly C moiety and is immobilized on the bead solid layer.
< HPRTプローブ DNA塩基配列の上流及び下流のブロッキング配列(BS) >  <HPRT probe DNA upstream and downstream blocking sequences (BS)>
1本鎖 Up-BS (上流ブロッキング配列)  Single-stranded Up-BS (upstream blocking sequence)
[0097] [化 10] 5' -TTTCTTACAAGATAAGCGACAATCTACCAG -3, [0097] [Chemical 10] 5 '-TTTCTTACAAGATAAGCGACAATCTACCAG -3,
(配列番号 27) (SEQ ID NO: 27)
HPRT遺伝子の cDNA断片の 930-90 マイナス鎖)の 30塩基を合成し、用いた。 1本鎖 Down- BS (下流ブロッキング配列)  30 bases of HPRT gene cDNA fragment (930-90 minus strand) were synthesized and used. Single-stranded Down-BS (downstream blocking sequence)
[0098] [化 11] [0098] [Chemical 11]
5' -TGTCAGTTGCTGCGTCCCCAGACTTTTGAT - 3' 5 '-TGTCAGTTGCTGCGTCCCCAGACTTTTGAT-3'
(配列番号 28) (SEQ ID NO: 28)
HPRT遺伝子の cDNA断片の 839-868の 30塩基を合成し、用いた。  30 bases of 839-868 of HPRT gene cDNA fragment were synthesized and used.
< PCR用 HPRTプライマー >  <HPRT primer for PCR>
[0099] [化 12] プライマ一 1 : 5' -GGACTGATTATGGACAGGAC-3' (154-173) [0099] [Chemical 12] Prime 1: 5 '-GGACTGATTATGGACAGGAC-3' (154-173)
プライマー 2 : 5' -GAGAGCTTCAGACTCGTCTA-3' (1097-1078)  Primer 2: 5'-GAGAGCTTCAGACTCGTCTA-3 '(1097-1078)
(上;配列番号 29/下;配列番号 30)  (Top; SEQ ID NO: 29 / Bottom; SEQ ID NO: 30)
[0100] 表 11に示すように、 BSを用いない従来法では HPRT遺伝子 cDNAクローンを含むマ ウス脳 cDNAプラスミドライブラリー lugから、試料 5で 0個 (0%)、試料 6で 1個 (0.59%)、試 料 7で 6個(1.35%)、試料 8で 1個 (1.02)の HPRT陽性プラスミドコロニーが得られた。一 方 BSを用いた本発明では、試料 5で 1個 (0.16%),試料 6で 8個 (4.06%),試料 7で 47個(3 7.90%)、試料 8でも 11個 (16.41%)のァクチン陽性プラスミドコロニーが得られた。 BSを 加えない従来法でも、本発明法のターゲット分子である閉環状 DNAが豊富な試料で 1.35% (100個に 1.35個)の確率でクローニング可能であり、これに本発明法である BS をカロえると更に約 37.90% (100個に約 38個)と非常に高い確率で実際の遺伝子クロ 一ンがクローニングできる。 [0100] As shown in Table 11, in the conventional method without BS, 0 (0%) in sample 5 and 1 in sample 6 (0.59) from the mouse brain cDNA plasmid library lug containing the HPRT gene cDNA clone. %), 6 (1.35%) in sample 7 and 1 (1.02) HPRT positive plasmid colony in sample 8. On the other hand, in the present invention using BS, 1 sample (0.16%) for sample 5, 8 samples (4.06%) for sample 6, 47 (3 7.90%) for sample 7, and 11 (16.41%) for sample 8 Actin-positive plasmid colonies were obtained. Even with the conventional method without adding BS, cloning is possible with a probability of 1.35% (1.35 per 100) in samples rich in closed circular DNA, which is the target molecule of the present invention. The actual gene clone can be cloned with a very high probability of about 37.90% (about 38 out of 100).
[0101] [表 11] 表 1 1 :本発明によるマウス脳 cDNAプラスミドライブラリ一からの HPRT遗伝子 cDNA [0101] [Table 11] Table 11: HPRT gene cDNA from a mouse brain cDNA plasmid library according to the present invention
プラスミドクローンの抽出 ·精製 ·クローニング (BSを含まない従来法との比較)  Extraction, purification, and cloning of plasmid clones (Comparison with conventional methods that do not contain BS)
用いた ァクチン- BS 得られた ァクチンプライマー PCR陽性コロニ  Actin-BS used Actin primer obtained PCR positive colony
DM試料 Up-BS Down-BS α二一数 による PCR陽性 の割合  Percentage of positive PCR by DM sample Up-BS Down-BS α
(uM) (uM) (全抽出液当りの抝 コロニー数 ( )  (uM) (uM) (Number of 抝 colonies per total extract ()
1) 試料 5 0 0 984個 0個 0. 00 %  1) Sample 5 0 0 984 0 0 0.00%
2) 試料 5 100 100 601個 , 1個 0. 16 ¾  2) Sample 5 100 100 601 pieces, 1 piece 0.16 ¾
3) 試料 6 0 0 509個 3個 0. 59 %  3) Sample 6 0 0 509 3 pieces 0.59%
4) 試料 6 100 100 197個 8個 4. 06 ¾  4) Sample 6 100 100 197 8 8 4. 06 ¾
5) 試料 7 0 0 444個 6個 1. 35 %  5) Sample 7 0 0 444 6 6 1.35%
6) 試料 7 100 100 124個 47個 37. 90 %  6) Sample 7 100 100 124 47 37. 90%
7) 試料 8 0 0 98個 1個 1. 02 %  7) Sample 8 0 0 98 1 pc 1.02%
8) 試料 8 100 100 67個 11個 16. 41 %  8) Sample 8 100 100 67 11 16 16. 41%
実験 1)、 3)は開環状 DNAが 4 0 %以上混入しかつ BSを含まない 法の結果である。 実験 2)、 4)、 5) , 6)、  Experiments 1) and 3) are the results of a method that contains 40% or more of open circular DNA and does not contain BS. Experiment 2), 4), 5), 6),
7) , 8)は 「本発明法」 での結果である。  7) and 8) are the results of the “method of the present invention”.
[0102] 表 11の実験 6)力 得られた HPRT陽性コロニーの内、 2クローンの大腸菌を更に液 体培養して、プラスミドを抽出'精製し、インサート DNAの切り出し用制限酵素 EcoRlと Notlで切断し、また精製した DNAで PCRを行った結果を図 9に示す。ほぼ完全長の H PRT cDNA(l .2k塩基対)を含むクローンが得られた。  [0102] Experiments in Table 11 6) Strength Among the obtained HPRT-positive colonies, 2 clones of E. coli were further cultured in liquid, the plasmid was extracted and purified, and digested with restriction enzymes EcoRl and Notl for excision of insert DNA. Figure 9 shows the results of PCR using purified DNA. A clone was obtained containing almost the full length HPRT cDNA (l.2k base pairs).
[0103] [実施例 10] HPRT遺伝子プローブ用ブリッジヌクレオチド DNA共有結合粒子による マウス脳 cDNAプラスミドライブラリーからの HPRT遺伝子 cDNAクローンの抽出'精製 'クローニング  [Example 10] Extraction of HPRT gene cDNA clones from mouse brain cDNA plasmid library using bridge nucleotide DNA covalently bonded particles for HPRT gene probe 'Purification' Cloning
< HPRTプローブ用 1本鎖ブリッジヌクレオチド DNA共有結合粒子の調製 >  <Preparation of single-stranded bridge nucleotide DNA covalent particles for HPRT probe>
実施例 4のブリッジヌクレオチド DNA共有結合粒子作製法に従 ヽ、 HPRT遺伝子の c DNA断片の 899-870の 30塩基とポリ C30塩基力 構成される以下の式のブリッジオリ ゴヌクレオチド用配列(BN— HPRT)  In accordance with the method for preparing covalent nucleotides of bridged nucleotide DNA in Example 4, the HPRT gene cDNA fragment consisting of 30 bases of 899-870 and poly C30 base strength is composed of the following sequence for the bridge oligonucleotide (BN— HPRT)
[0104] [化 13] [0104] [Chemical 13]
5 ' -GGGTAGGCTGGCCTATAGGCTCATAGTGCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3 ' 5 '-GGGTAGGCTGGCCTATAGGCTCATAGTGCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-3'
(配列番号 31) (SEQ ID NO: 31)
を合成し、ポリ C部分でラテックス 'ビーズのオリゴ (dG)とハイブリザィズさせた後、タレ ノウ ·フラグメント · DNA'ポリメラーゼで HPRTプローブ用 1本鎖ブリッジヌクレオチド DN A共有結合粒子を作製した。  After synthesizing and hybridizing latex polybead oligo (dG) at the poly C moiety, single-stranded bridged nucleotide DNA covalent binding particles for HPRT probe were prepared with talen fragment DNA.
この HPRTプローブ用 1本鎖ブリッジヌクレオチド DNA共有結合粒子を用いて、実施 例 4と同様の抽出操作方法でマウス脳 cDNAプラスミドライブラリ一力ゝらの HPRT遺伝 子 cDNAクローンの抽出 '精製'クローユングを行った。 HPRT用の BSの濃度、 PCR用 プライマーは実施例 9と同じ濃度を用いて行った。 Using this single-stranded bridged nucleotide DNA covalent bond particle for HPRT probe, the HPRT gene from the mouse brain cDNA plasmid library by the same extraction procedure as in Example 4 was used. Extraction of the child cDNA clones were performed by 'purification' cloning. The concentration of BS for HPRT and the primer for PCR were the same as in Example 9.
HPRT遺伝子 cDNAクローンを含むマウス脳 cDNAプラスミドライブラリー lugから、 64 個のプラスミドコロニーが得られた。コロニー PCRの結果、表 12に示すように、そのう ち 57個 (89%)が HPRT陽性コロニーという驚異的クローユング結果が得られた。 一方 、 BSを含まない従来法では得られたコロニーの全てが陰性のコロニーであった。  From the mouse brain cDNA plasmid library lug containing the HPRT gene cDNA clone, 64 plasmid colonies were obtained. As a result of colony PCR, as shown in Table 12, it was found that 57 (89%) of them were HPRT positive colonies. On the other hand, all the colonies obtained by the conventional method not containing BS were negative colonies.
[0106] [表 12] 表 1 2 :本発明法によるマウス脳 cDNAプラスミドライブラリーからの HPRT遗伝子 cDMプラスミドクローンの抽出 ·精製 ·クローニング (BSを含まない従来法との比較)[0106] [Table 12] Table 1 2: Extraction, purification and cloning of HPRT gene cDM plasmid clones from mouse brain cDNA plasmid library according to the method of the present invention (comparison with conventional method without BS)
HPRT-BS 得られたコロニー数 HPRTプライマー PCR陽性コロニー HPRT-BS Number of obtained colonies HPRT primer PCR positive colonies
Up-BS Down- BS (全抽出液当りの数) による PCR陽性 の割合 Percentage of PCR positive by Up-BS Down-BS (number per total extract)
(uM) (uM) コロニー数 ( % )(uM) (uM) Number of colonies (%)
1) 100 100 64個 57個 89 % 1) 100 100 64 57 89%
2) 0 0 31個 0個 0 % 2) 0 0 31 0 0 0
実験 1 ) は本発明法での結果、 実験 2 ) は BSを含まない従来法の結果である。  Experiment 1) is the result of the method of the present invention, and Experiment 2) is the result of the conventional method not including BS.
[0107] 得られた HPRT陽性コロニーの内、 5クローンの大腸菌を更に液体培養して、プラス ミドを抽出 '精製し、インサート DNAの切り出し用制限酵素 EcoRlと Notlで切断し、ま た精製した DNAで PCRを行った結果を図 10に示す。ほぼ完全長の HPRT cDNA(1.2 k塩基対)を含むクローンが得られた。  [0107] Among the HPRT-positive colonies obtained, 5 clones of E. coli were further cultured in liquid, and the plasmid was extracted and purified, cut with restriction enzymes EcoRl and Notl for excision of the insert DNA, and purified DNA Figure 10 shows the results of PCR using A clone was obtained containing almost the full length HPRT cDNA (1.2 k base pairs).
[0108] [実施例 11] 目的遺伝子を含む閉環状二本鎖 DNA試料を、ブロッキング配列の存 在下で、 94°C〜98°Cの温度条件下、 10〜60秒間処理し、次いで直ちに 0°C〜4°Cへ と急冷し、変性させ、部分一本鎖化させる方法による、 目的遺伝子のクローニング 目的遺伝子 (pCY)を含む閉環状二本鎖 DNAを、ブロッキング配列の存在下での短 時間高温処理'急冷による変性処理した場合の、 目的遺伝子のクローユングの結果 を表 13に示す。 DNA試料の高温変性 ·氷中急冷処理条件以外は、実施例 1と同様 の実験操作で行った。 TE溶液 (10mM Tris、 ImM EDTA、 pH 8.0)中の目的遺伝子を 含む閉環状二本鎖 DNA試料と BSを、 96°C〜98°Cの温度範囲で 10〜60秒処理し、直 ちに氷水中で急冷して DNAを変性させ、部分一本化させ、プローブ DNA複合体粒子 とのハイブリダィゼーシヨンを行った。表 13には示していないが、この方法の場合も B sは必須であった。 [Example 11] A closed circular double-stranded DNA sample containing a gene of interest is treated in the presence of a blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately 0 Cloning of the target gene by rapid cooling to ° C to 4 ° C, denaturation, and partial single-strand cloning. Closed circular double-stranded DNA containing the target gene (pCY) is cloned in the presence of a blocking sequence. Table 13 shows the results of cloning of the target gene when it was denatured by high-temperature treatment and rapid cooling. High-temperature denaturation of DNA samples · Except for conditions of rapid cooling in ice, the same experimental procedure as in Example 1 was performed. A closed circular double-stranded DNA sample containing the gene of interest in a TE solution (10 mM Tris, ImM EDTA, pH 8.0) and BS are treated at a temperature range of 96 ° C to 98 ° C for 10 to 60 seconds, and immediately The DNA was denatured by quenching in ice water, partially unified, and hybridized with probe DNA complex particles. Although not shown in Table 13, this method also uses B s was essential.
[0109] [表 13] 表 1 3: PCYの抽出 · ク —ユングに対する DNA試料熱変性の温度条件 [0109] [Table 13] Table 1 3: Extraction of PCY · Temperature conditions for heat denaturation of DNA samples against Kung Jung
DM試料 pCY/pGBMの分了-比 反応液中の BSの濃度(uM) 得られた 口ニーの数 白コロニー 濃縮宇- 変性温度 比) , [' -一-一 ^色 割合 (%) (倍) ο ο ο ο ο ο (pCY) (pGB )  DM sample pCY / pGBM termination-ratio BS concentration in reaction solution (uM) number of mouth knees obtained white colony concentration concentration-denaturation temperature ratio), ['-one-one ^ color ratio (%) ( (Times) ο ο ο ο ο (pCY) (pGB)
1) 4yC 20 20 1599 1201 57.丄 % 57. 1 秒間 1) 4 y C 20 20 1599 1201 57. 丄% 57. 1 second
2) 94°C 1/100 20 20 4812 1635 74. 6 % 74. 6 抄^  2) 94 ° C 1/100 20 20 4812 1635 74. 6% 74. 6 Paper ^
3) 94yC 20 20 5104 1011 84. 7 % 84. 7 秒間 3) 94 y C 20 20 5104 1011 84. 7% 84. 7 seconds
4) 96yC 20 20 1608 989 62. 0 % 62. 0 秒間 4) 96 y C 20 20 1608 989 62.0% 62.0 seconds
5) 96°C 1/100 20 20 4905 1107 81. 6 % 81. 6 抄^  5) 96 ° C 1/100 20 20 4905 1107 81. 6% 81. 6 Paper ^
6) 96yC 20 20 6780 427 94. 0 % 94. 0 秒間 6) 96 y C 20 20 6780 427 94. 0% 94.0 seconds
5) 9SyC 20 20 2715 706 79. 4 % 79. 4 秒間 5) 9S y C 20 20 2715 706 79.4% 79. 4 seconds
6) 98°C 1/100 20 20 3924 215 94. 8 % 94. 8 抄^  6) 98 ° C 1/100 20 20 3924 215 94. 8% 94. 8
2) 9SyC 20 20 3057 160 95. 0 % 95. 0 秒間 2) 9S y C 20 20 3057 160 95. 0% 95.0 seconds
BS 存在卜'では、 いずれの温度処理でもクローニング効率は 10%以卜'であった。 産業上の利用可能性  In the presence of BS, the cloning efficiency was 10% or higher for all temperature treatments. Industrial applicability
[0110] 前記本発明による分離、精製、クローニング方法により、目的遺伝子を含むあらゆ る由来、サイズ、配列等の閉環状二本鎖 DNAを、迅速 (24時間以内)、正確、かつ効 率よく分離、精製、クローユングすることが可能となる。製薬分野を始めとして、遺伝 子を用いるあらゆる産業分野で利用可能である。  [0110] By the separation, purification, and cloning method according to the present invention, closed circular double-stranded DNA of any origin, size, sequence, etc. including the target gene can be rapidly (within 24 hours) accurately, efficiently and efficiently. Separation, purification, and cloning are possible. It can be used in all industrial fields that use genes, including the pharmaceutical field.

Claims

請求の範囲 The scope of the claims
[1] 閉環状二本鎖 DNAをターゲット DNA分子として用いる、 目的遺伝子の抽出、精製、ク ローニング方法であって、  [1] A method for extracting, purifying, and cloning a target gene using a closed circular double-stranded DNA as a target DNA molecule,
目的遺伝子の塩基配列の少なくとも一部の配列に相補的な DNA配列と、固層粒子 と、を含むプローブ DNA複合体粒子に、閉環状二本鎖 DNAをハイブリダィズさせるこ とにより、 目的遺伝子の塩基配列が組み込まれた閉環状二本鎖 DNAを前記固層粒 子に回収し、溶出溶液で溶出し、これを宿主細胞に導入し、 目的遺伝子を迅速に抽 出 '精製'クローニングすることを特徴とする方法。  By hybridizing the closed circular double-stranded DNA to the probe DNA complex particle containing a DNA sequence complementary to at least a part of the base sequence of the target gene and a solid particle, the base of the target gene is obtained. The closed circular double-stranded DNA in which the sequence is incorporated is collected in the solid layer particles, eluted with the elution solution, introduced into the host cell, and the target gene is rapidly extracted and purified. And how to.
[2] 前記プローブ DNA複合体粒子が、 [2] The probe DNA complex particle is
前記固層粒子に結合した、プローブ用一本鎖ブリッジヌクレオチド相補的結合用配 列を含む一本鎖 DNA配列部分カゝら成るプローブ DNA結合粒子が、  A probe DNA-binding particle comprising a single-stranded DNA sequence portion comprising a single-stranded bridge nucleotide complementary binding sequence for probes bound to the solid particle,
目的遺伝子の塩基配列の少なくとも一部の配列に相補的な DNA配列と、前記プロ ーブ DNA結合粒子のプローブ用一本鎖ブリッジヌクレオチド相補的結合用配列に相 補的な DNA配列と、を含むプローブ用一本鎖ブリッジヌクレオチドに、  A DNA sequence complementary to at least a part of the base sequence of the target gene, and a DNA sequence complementary to the probe single-stranded bridge nucleotide complementary binding sequence for the probe DNA-binding particle. For single-stranded bridge nucleotides for probes,
前記プローブ用一本鎖ブリッジヌクレオチド相補的結合用配列にぉ 、て、 80%以上 の相補率にて相補的結合して成る、  The single-stranded bridge nucleotide complementary binding sequence for probes is formed by complementary binding at a complementation rate of 80% or more.
プローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合粒子である、請求項 1記 載の抽出、精製、クロー-ング方法。  The extraction, purification, and cloning method according to claim 1, wherein the method is a single-stranded bridge nucleotide probe DNA probe particle for probe.
[3] 前記プローブ DNA複合体粒子が、 [3] The probe DNA complex particle is
前記固層粒子に結合した一本鎖配列部分力 成るプローブ DNA結合粒子が、 目的遺伝子の塩基配列の少なくとも一部の配列に相補的な DNA配列 (Tm値 A)と、 前記プローブ DNA結合粒子の一本鎖 DNA配列部分の少なくとも一部に相補的な DN A配列部分 (Tm値 B)と、を含むプローブ用一本鎖ブリッジヌクレオチドであって、 Tm値 Aと Tm値 Bの差が少なくとも 8°C以上(Tm値 B— Tm値 A>8°C)のプローブ用一本鎖ブ リッジヌクレオチドに、  A probe DNA-binding particle having a single-strand sequence partial force bound to the solid particle has a DNA sequence (Tm value A) complementary to at least a part of the base sequence of the target gene, and the probe DNA-binding particle. A single-stranded bridge nucleotide for a probe comprising a DNA sequence portion complementary to at least a portion of the single-stranded DNA sequence portion (Tm value B), wherein the difference between Tm value A and Tm value B is at least 8 For single-stranded bridge nucleotides for probes with a temperature of ° C or higher (Tm value B—Tm value A> 8 ° C)
相補的結合して成るプローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合粒子 である、請求項 1記載の抽出、精製、クロー-ング方法。  2. The extraction, purification and cloning method according to claim 1, wherein the method is a single-stranded bridge nucleotide probe DNA-binding particle for probes formed by complementary binding.
[4] 前記プローブ DNA複合体粒子力 前記プローブ DNA結合粒子の一本鎖 DNA配列 部分に、 目的遺伝子の塩基配列の少なくとも一部の配列に相補的な DNA配列を含 むヌクレオチドが共有結合して成るプローブ用一本鎖ブリッジヌクレオチドプローブ D NA共有結合粒子である、請求項 1記載の抽出、精製、クロー-ング方法。 [4] Particle force of the probe DNA complex Single-stranded DNA sequence of the probe DNA-binding particle 2. The single-stranded bridge nucleotide probe for DNA probe, wherein the nucleotide comprises a nucleotide sequence containing a DNA sequence complementary to at least a part of the base sequence of the target gene. Extraction, purification and cloning methods.
[5] 前記プローブ DNA複合体粒子における目的遺伝子の塩基配列の少なくとも一部と相 補的な配列に対応する当該目的遺伝子の塩基配列の隣接上流域の 0〜7塩基上流 を基点とする 20〜50塩基配列一本鎖 DNA (上流ブロッキング配列、 Up-BS)及び隣接 下流域の 0〜7塩基下流を基点とする 20〜50塩基配列一本鎖 DNA (下流ブロッキン グ配列、 Down-BS):濃度 lOuM以上、 BS分子数と目的遺伝子分子数の比は少なくと も 1000倍以上;の存在下で、 目的遺伝子を含む閉環状二本鎖 DNA試料を、プローブ DNA複合体粒子とハイブリダィズさせることを特徴とする、請求項 1〜4の ヽずれかに 記載の抽出、精製、クロー-ング方法。  [5] From 0 to 7 bases upstream in the upstream region adjacent to the base sequence of the target gene corresponding to a sequence complementary to at least a part of the base sequence of the target gene in the probe DNA complex particle 20 to 50-base single-stranded DNA (upstream blocking sequence, Up-BS) and 20-50 base-sequence single-stranded DNA (downstream blocking sequence, Down-BS) starting from 0-7 bases downstream in the adjacent downstream region: In the presence of a concentration of lOuM or more, and the ratio of the number of BS molecules to the number of target gene molecules is at least 1000 times; a closed circular double-stranded DNA sample containing the target gene is hybridized with the probe DNA complex particle. The extraction, purification, and cloning method according to any one of claims 1 to 4, wherein
[6] 目的遺伝子を含む閉環状二本鎖 DNA試料を、 0.1N〜0.4Nのアルカリ溶液中で 0°C 〜10°Cの温度条件下、 20分〜 1時間、変性させて行うことを特徴とする、請求項 1〜5 のいずれかに記載の抽出、精製、クロー-ング方法。  [6] Performing denaturation of a closed circular double-stranded DNA sample containing the gene of interest in a 0.1N to 0.4N alkaline solution at a temperature of 0 ° C to 10 ° C for 20 minutes to 1 hour. The extraction, purification, and cloning method according to any one of claims 1 to 5,
[7] 目的遺伝子を含む閉環状二本鎖 DNA試料を、前記ブロッキング配列の存在下で、 9 4°C〜98°Cの温度条件下、 10〜60秒間処理し、次いで直ちに 0°C〜4°Cへと急冷し、 変性させて行うことを特徴とする、請求項 1〜5のいずれか〖こ記載の抽出、精製、クロ 一ユング方法。  [7] A closed circular double-stranded DNA sample containing the gene of interest is treated in the presence of the blocking sequence for 10 to 60 seconds under a temperature condition of 94 ° C to 98 ° C, and then immediately from 0 ° C to 6. The extraction, purification, and cloning method according to any one of claims 1 to 5, wherein the extraction, purification, and cloning are performed by rapid cooling to 4 ° C and denaturation.
[8] 目的遺伝子を含む閉環状二本鎖 DNA試料をプローブ DNA複合体粒子と、 50〜350 mMの塩濃度下でノヽイブリダィズさせることを特徴とする、請求項 1〜7のいずれかに 記載の抽出、精製、クロー-ング方法。  [8] The closed circular double-stranded DNA sample containing the target gene is subjected to noble hybridization with the probe DNA complex particles at a salt concentration of 50 to 350 mM, according to any one of claims 1 to 7. Extraction, purification and cloning methods.
[9] 請求項 2記載のプローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合粒子。 [9] The single-stranded bridged nucleotide probe DNA probe-binding DNA according to claim 2.
[10] 目的遺伝子の塩基配列の一部と相補的な配列と、プローブ DNA結合粒子の一本鎖 DNA配列部分の塩基配列の少なくとも一部と相補的な配列と、を有するプローブ用 一本鎖ブリッジヌクレオチドを、プローブ DNA結合粒子の一本鎖 DNA配列部分に、 5 0°C〜70°Cの範囲内で 5サイクル以上サイクル'ノヽィブリダィズさせること、 [10] A single strand for a probe having a sequence complementary to a part of the base sequence of the target gene and a sequence complementary to at least a part of the base sequence of the single-stranded DNA sequence part of the probe DNA binding particle The bridge nucleotide is nominated in the single-stranded DNA sequence portion of the probe DNA-binding particle for 5 cycles or more within a range of 50 ° C. to 70 ° C.,
により作成される、請求項 9記載のプローブ用一本鎖ブリッジヌクレオチドプローブ DNA結合粒子。 The single-stranded bridge nucleotide probe probe according to claim 9, which is prepared by:
[11] 請求項 4記載のプローブ用一本鎖ブリッジヌクレオチドプローブ DNA共有結合粒子。 [11] The single-stranded bridged nucleotide probe probe according to claim 4, wherein the DNA is covalently bonded.
[12] 固層粒子に結合した一本鎖 DNA配列部分力 成るプローブ DNA結合粒子の当該一 本鎖 DNA配列部分の少なくとも一部に相補的な配列と、 目的遺伝子の塩基配列の 少なくとも一部の配列と、を有する一本鎖ブリッジヌクレオチドを、前記プローブ DNA 結合粒子の一本鎖 DNA配列部分とハイブリダィズさせ、 DNA合成酵素を用いて、前 記一本鎖ブリッジヌクレオチドの当該目的遺伝子の塩基配列の少なくとも一部の配 列に相補的な配列を含むヌクレオチドを、前記プローブ DNA結合粒子の前記一本鎖 DNA配列部分に酵素化学合成的に共有結合させること、 [12] A probe consisting of a single-stranded DNA sequence that binds to a solid particle A sequence that is complementary to at least a part of the single-stranded DNA sequence of the DNA-binding particle and at least a part of the base sequence of the target gene The single-stranded bridge nucleotide having the sequence is hybridized with the single-stranded DNA sequence portion of the probe DNA-binding particle, and the base sequence of the target gene of the single-stranded bridge nucleotide is synthesized using a DNA synthase. Nucleotides containing a sequence complementary to at least a part of the sequence are covalently bound enzymatically and chemically to the single-stranded DNA sequence portion of the probe DNA-binding particle;
により作成される、請求項 11記載のプローブ用一本鎖ブリッジヌクレオチドプローブ DNA共有結合粒子。  The single-stranded bridge nucleotide probe probe according to claim 11, which is prepared by:
[13] 請求項 1〜8記載の方法により目的遺伝子を濃縮して含む宿主細胞からの回収物に 含まれる閉環状二本鎖 DNAをターゲット DNA分子として用いる、請求項 1〜8記載の クローニング方法。  [13] The cloning method according to any one of claims 1 to 8, wherein a closed circular double-stranded DNA contained in a recovered product from a host cell containing the target gene after being concentrated by the method according to any one of claims 1 to 8 is used as a target DNA molecule. .
PCT/JP2005/021603 2005-01-31 2005-11-24 Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna WO2006080136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005023270A JP2008099556A (en) 2005-01-31 2005-01-31 Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna
JP2005-023270 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006080136A1 true WO2006080136A1 (en) 2006-08-03

Family

ID=36740170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021603 WO2006080136A1 (en) 2005-01-31 2005-11-24 Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna

Country Status (2)

Country Link
JP (1) JP2008099556A (en)
WO (1) WO2006080136A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051182A (en) * 2008-08-26 2010-03-11 National Agriculture & Food Research Organization Cyclic double strand dna and method for amplifying dna therewith
GB2621159A (en) * 2022-08-04 2024-02-07 Wobble Genomics Ltd Methods of preparing processed nucleic acid samples and detecting nucleic acids and devices therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911179B (en) * 2015-06-25 2017-09-19 深圳承启生物科技有限公司 A kind of extraction DNA method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101785A1 (en) * 2003-05-13 2004-11-25 Jsr Corporation Method of extracting target gene and particle having probe dna bound thereto
JP2004357701A (en) * 2003-05-13 2004-12-24 Jsr Corp Method for extracting target gene and particle having probe dna bound thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101785A1 (en) * 2003-05-13 2004-11-25 Jsr Corporation Method of extracting target gene and particle having probe dna bound thereto
JP2004357701A (en) * 2003-05-13 2004-12-24 Jsr Corp Method for extracting target gene and particle having probe dna bound thereto

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051182A (en) * 2008-08-26 2010-03-11 National Agriculture & Food Research Organization Cyclic double strand dna and method for amplifying dna therewith
GB2621159A (en) * 2022-08-04 2024-02-07 Wobble Genomics Ltd Methods of preparing processed nucleic acid samples and detecting nucleic acids and devices therefor

Also Published As

Publication number Publication date
JP2008099556A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP6324962B2 (en) Methods and kits for preparing target RNA depleted compositions
US20060134638A1 (en) Error reduction in automated gene synthesis
Bertrand et al. The attenuator of the tryptophan operon of Escherichia coli: Heterogeneous 3′-OH termini in vivo and deletion mapping of functions
JP2009508495A (en) cDNA library preparation
JP2013521776A5 (en)
EP1871897A2 (en) Methods for production of oligonucleotides
JP2000516104A (en) Methods for subtractive hybridization and difference analysis
WO2019030306A1 (en) In vitro isolation and enrichment of nucleic acids using site-specific nucleases
US5591841A (en) Rapid purification of circular DNA by triplex-mediated affinity capture
JP2021523704A (en) Method
JP2004504829A (en) Methods for isolating one strand of a double-stranded nucleic acid
JP2002507128A (en) Additives for use in cycling probe reactions
AU782529C (en) Sequence based screening
US20030032028A1 (en) In vitro capture of nucleic acids via modified oligonucleotides and magnetic beads
JP2013524841A (en) Method for producing a double-stranded nucleic acid having a single-stranded overhang
WO2006080136A1 (en) Method of quickly extracting, purifying and cloning target gene by using closed circular double-stranded dna
JP6482467B2 (en) In vitro production of DNA minicircles containing less than 250 base pairs
JP5126877B2 (en) Method for detecting single nucleotide variants
US20220403368A1 (en) Methods and systems for preparing a nucleic acid construct for single molecule characterisation
WO1998049275A2 (en) Archaebacterium intein of the thermococcus fumicolans species
JP5120838B2 (en) Method for detecting single nucleotide variants
US20020031771A1 (en) Sequence based screening
WO2024013241A1 (en) Variant allele enrichment by unidirectional dual probe primer extension
JP5300335B2 (en) Highly efficient method for preparing mismatched base pair-containing nucleic acid fragments
JP2002525076A (en) Method for isolating primer extension products using modular oligonucleotides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809709

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5809709

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP