WO2006077005A2 - Dispositif d'annulation d'echo acoustique, procede et programme d'ordinateur correspondants - Google Patents

Dispositif d'annulation d'echo acoustique, procede et programme d'ordinateur correspondants Download PDF

Info

Publication number
WO2006077005A2
WO2006077005A2 PCT/EP2005/057220 EP2005057220W WO2006077005A2 WO 2006077005 A2 WO2006077005 A2 WO 2006077005A2 EP 2005057220 W EP2005057220 W EP 2005057220W WO 2006077005 A2 WO2006077005 A2 WO 2006077005A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
echo
filter
filtering
coefficients
Prior art date
Application number
PCT/EP2005/057220
Other languages
English (en)
Other versions
WO2006077005A3 (fr
Inventor
Claude Marro
Hela Daassi-Gnaba
Pascal Scalart
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Publication of WO2006077005A2 publication Critical patent/WO2006077005A2/fr
Publication of WO2006077005A3 publication Critical patent/WO2006077005A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers

Definitions

  • the field of the invention is that of digital communications, and in particular that of echo processing in a communication system.
  • the invention relates to an acoustic echo cancellation technique for attenuating, in a transmitted signal, echo components of a received signal.
  • the invention finds particular applications in the field of speech processing, for example in the context of teleconferences and videoconferences (especially in a dedicated room or from a multimedia computer), or in the context of telephony, with a processing at the terminal (conventional terminals, mobile terminals, for example) and / or within the telecommunication network.
  • the invention can also be used in hands-free terminals (for example office-type, mobile, mobile vehicle-embedded), in sound recording systems in public places (station, airport, ...), or still in systems of speech recognition with anticipation (also called "barge in” in English).
  • a first approach is based on the cancellation of the acoustic echo by direct identification of the echo path.
  • an estimate of the acoustic echo channel is made by identifying the impulse response of the acoustic loopback. Since this response varies over time, it is desirable to implement an adaptive filtering technique.
  • FIG. 1 An example in a telephony or teleconferencing application between one or more remote parties 18 and a local correspondent 19 is illustrated in FIG. 1.
  • a received signal 11 is broadcast on a loudspeaker 12. and an emitted signal 14, comprising echo components of the received signal 11 and a local speech signal, is returned by a microphone 13.
  • the echo path 15 then corresponds to the materialization of all the reflections undergone by the received signal 1 1 before reaching the microphone 13. It is therefore composed by the impulse response of the speaker / acoustic channel / microphone assembly.
  • the total cancellation of the acoustic echo by direct identification of the echo path thus requires the exact modeling of the echo path 15 by an adaptive filter 16 having a number of coefficients that can be very important.
  • acoustic echo canceller In practice, this first approach, hereafter called “acoustic echo canceller”, is not possible because of the numerical complexity of the treatment. Therefore, in order to limit the complexity, the echo path is never completely modeled, which leads to a limitation of the performances in term of echo reduction.
  • a second approach is to add a complementary processing, also called post-filter 17, whose role is to remove the audible part of the residual echo, still present after the echo cancellation.
  • the post-filter is a means to provide the additional echo reduction necessary to make this echo inaudible and faithfully reproduce without perceptible degradation of the local speech signal, while maintaining a reasonable arithmetic complexity.
  • Such a technique is based on the cascading of two transverse finite impulse response adaptive filters H ⁇ ⁇ ri) 21 and H 2 ( ⁇ ) 22 (also called FIR, in English "Finite Impulse Response ").
  • the filter H ] (n) 21 belongs to a conventional acoustic echo canceller (as presented above) of reduced length compared with that of the real impulse response It can thus only partially model the response of the acoustic channel, ie approximately the direct wave and the first reflections, generally corresponding to the most energetic part of the echo.
  • This filter H 1 (H) 21 can be adapted conventionally, for example by using an adaptive algorithm of standardized stochastic gradient (or NLMS, of the English "Normalized Least Mean Square”) type.
  • the filter H 1 (H) is applied to an intermediate emitted signal e s ( ⁇ ) 26, corresponding to the subtraction of a signal d estimated echo, obtained by filtering H x ( ⁇ ) 21 of a received signal x (n) 24, to a source emitted signal y ( ⁇ ) 25.
  • emitted source signal y ( ⁇ ) 25 also called microphonic signal , is either an echo alone, a local speech signal alone, or the superposition of an echo and a local speech signal.
  • the filter H 2 ( ⁇ ) 22 makes it possible to remove at least part of the audible part of the residual echo, by eliminating the frequency components of the intermediate emitted signal e ⁇ ( ⁇ ) 26 for which the residual echo is more energetic than the signal of local speech.
  • the coefficients of the filter H 2 (n) 28 are adapted by estimating the residual echo from a mixture between the source emitted signal y ( ⁇ ) and the intermediate emitted signal e ⁇ ( ⁇ ) 26, the contribution of each of these two signals in the mixture being dependent on the speech conditions.
  • the coefficients of the filter H 2 ( ⁇ ) 28 thus adapted are then copied into the postfilter H 2 ( ⁇ ).
  • the coefficients of the post-filter H 2 ( ⁇ ) 22 are therefore identical to the coefficients of the filter H 2 ( ⁇ ). 28.
  • this delay makes it possible to re-phase the intermediate emitted signal e ⁇ (n) 26 and the mixing signal g (ri) entering the filter H 2 (ri) 28).
  • This factor a (ri) makes it possible to weight the contribution of the microphonic signal y (n) (source transmitted signal) with respect to the intermediate emitted signal 26 in the signal g (n).
  • the mixing factor a (ri) is chosen so that the filter H 2 (ri) 28 (and consequently the filter H 2 (ri) 22) behaves like a filter " pass all ", that is to say not modifying the local speech signal y (n) 25.
  • the parameter a (ri) is chosen such that a (ri) - ⁇ , so that the filter H 1 (U) 28 (and consequently the filter H 2 (ri) 22) makes it possible to provide a maximum attenuation of the echo residue, equal to that obtained by the echo canceller.
  • the adaptation of the mixing factor a (ri) must implicitly depend on another factor measuring the speech activity of the local speaker and the remote speaker.
  • the rapid variations of the mixing factor a ⁇ ) according to a predefined operation then cause audible contrasts, due to distortions of the local speech during periods of transitions (transition from a single echo situation to a double speech situation). from a situation of double speech to an echo situation alone, from a situation of speech alone to a situation of double speech).
  • an objective of the invention is to propose an echo cancellation technique that improves the intelligibility and interactivity of a conversation.
  • an object of the invention is to provide such a technique that makes it possible to eliminate, or at least reduce, the audible portion of a residual echo, without causing perceptible degradation on a local speech signal.
  • the invention also aims to propose such a technique does not require the introduction of an additional processing time.
  • Another objective of the invention is to propose such a technique which is simple to implement, while presenting improved performances in terms of echo reduction compared to the techniques of the state of the art.
  • an acoustic echo cancellation device corresponding to a received signal present in a source transmitted signal, comprising first subtraction means said transmitted signal source of an estimated echo signal, obtained by filtering said received signal, delivering an intermediate emitted signal (echo canceller), and first filtering means of said intermediate emitted signal, whose filter coefficients are determined by coefficient calculation means.
  • said means for calculating such a device comprise means for raising, in said source transmitted signal, at least one spectral component representative of said echo, to provide an enhanced signal, and means for processing said signal. enhanced, delivering said filter coefficients.
  • the invention is based on a completely new and inventive approach to determining the coefficients of a post-filter, corresponding to the first means of filtering, to eliminate or at least reduce the audible part of a residual echo, without causing perceptible degradation on a local speech signal.
  • the invention proposes to reinforce the impact of a significant spectral component, in a so-called enhanced signal, so that the effect of this component is then more efficiently filtered, and thus the echo is then more efficiently filtered. , and therefore the corresponding echo is more effectively suppressed.
  • said raising means take account of at least one signal belonging to the group comprising: said source transmitted signal; said estimated echo signal; said intermediate transmitted signal.
  • the source transmitted signal can correspond either to an echo alone, to a local speech signal alone, or to an echo superimposed on a local speech signal
  • the intermediate transmitted signal can correspond either to a residual echo only, ie a residual echo superimposed on a local speech signal. Therefore, the three aforementioned signals actually carry echo information.
  • said raising means comprise at least one perceptual filter. Such a filter uses in particular perceptual properties of the human ear.
  • a perceptual filter is determined which assigns more importance to the energy frequency zones.
  • an autoregressive model AR is applied to each frame of the signal, or combination of signals, carrying information representative of the echo.
  • Such an AR modeling can in particular implement a linear prediction filter of order m.
  • This technique of prediction by linear regression notably takes into account in the calculation of the transfer function of the perceptual filter.
  • the perceptual filter makes it possible to give more importance to the significant frequency zones where the echo is present.
  • said perceptual filter is a linear phase filter.
  • said processing means comprise second filtering means, powered by said raised signal, and second means for subtraction, subtracting from the signal delivered by said second filtering means said intermediate transmitted signal, to which a delay has been applied, and delivering an error signal taken into account for the calculation of the filtering coefficients of said second filtering means.
  • the enhanced signal from the perceptual filter corresponding to the emitted source signal in which at least one spectral component representative of the echo is raised, supplies second filtering means.
  • the filtering coefficients of these second means are adapted by taking into account an error signal corresponding to the signal at the output of these second filtering means to which the delayed intermediate transmitted signal has been subtracted.
  • a pure delay corresponding to D samples is applied to the intermediate emitted signal, so that the error signal and the enhanced signal are in phase, with D an integer defined by the relation:
  • the filtering coefficients of said first filtering means take into account the filtering coefficients of said second filtering means, denoted H 2 (n), and an adaptive coefficient a ⁇ .
  • the adaptive coefficient 3 may take account of at least one element belonging to the group comprising: - the instantaneous power relative to said received signal; the instantaneous power relative to said source transmitted signal; the instantaneous power relative to said intermediate transmitted signal; the transfer function of the filtering means of the received signal.
  • the coefficient Adaptive 0: 3 can be updated continuously and regularly.
  • the coefficient ⁇ 3 (") tends to 0.
  • the coefficient a 3 (n) tends to 1.
  • a maximum attenuation of the echo is brought thanks to the presence of the perceptual filter in the closed loop.
  • the coefficient a 3 (n) takes values between 0 and 1 according to the weighting of the echo by relation to local speech.
  • the invention also relates to the method of canceling an acoustic echo implemented in a device as described above, as well as to a computer program comprising program code instructions for executing the steps of FIG. method of canceling an acoustic echo described above when said program is executed by a microprocessor.
  • FIG. 1 presents a conventional echo cancellation device comprising an adaptive filter, used for example in a telephony or teleconferencing application between one or more distant correspondent (s) and a local correspondent ;
  • FIG. 2 more precisely describes a system combining an adaptive acoustic echo canceller and a post-filter, according to the prior art;
  • FIG. 3 illustrates an acoustic echo cancellation device comprising means for filtering the echo spectral components and means for calculating the filter coefficients according to the invention;
  • FIG. 4 presents in more detail the operation of the calculation means of the filter coefficients of Figure 3 according to the invention.
  • the general principle of the invention is based on a new and original approach of calculating the coefficients of a post-filter in a system combining a conventional echo canceller and a post-filter. Such a technique makes it possible in particular to eliminate, or at least reduce, the echo components of a signal received in an emitted signal.
  • the calculation of the coefficients of the post-filter takes into account in particular an enhanced signal, obtained by raising at least one spectral component representative of the echo in the transmitted signal, so as to provide, during the filtering, a maximum attenuation of the echo .
  • the post-filter coefficients are determined by taking into account the perceptual properties of the human ear.
  • a preferred embodiment of the invention is presented in which at least one remote speaker 31 communicates with a local speaker 32, for example in a teleconference situation.
  • a received signal x (n) 33 corresponds to the speech transmitted by the remote speaker 31, and a source transmitted signal y ⁇ n) 34 corresponds to a local speech signal transmitted by the local speaker 32 to which may be superimposed echo components of the received signal x (n) 33.
  • the received signal x (n) 33 is filtered by means of a filter H ⁇ ( ⁇ ) 351, delivering an estimated echo signal z (n) 352.
  • the estimated echo signal ⁇ ⁇ n) 352 is then subtracted with first subtracting means 353 from the source emitted signal y ⁇ ) 34, delivering an intermediate emitted signal e x (n) 36.
  • This first part of the device corresponds to a conventional acoustic echo canceller as described in relation with the prior art.
  • the echo cancellation device also comprises first filtering means H 3 (n) 39 of the intermediate emitted signal e ⁇ (n) 36.
  • the filtering coefficients of the filter H 3 (V) 39 are in particular determined by means calculation of the coefficients, from a closed-loop structure.
  • These calculation means 38 take into account, in particular, a signal t (n) 37, corresponding to a signal or a combination of signals carrying information representative of the echo, for determining the filter coefficients of the first filtering means H 3 (n) 39.
  • this signal t ⁇ n) 37 can be chosen from among the various signals where the echo information is present, that is to say from the source transmitted signal y ⁇ n) 34, the signal of estimated echo z ⁇ n) 352, or the intermediate emitted signal e x ( ⁇ ) 36, or from a combination of these signals.
  • the calculation means 38 of the filtering coefficients of the filter H 3 (X) 39 comprise raising means 386 in the source emitted signal y (n) 34 of at least one spectral component representative of the echo, delivering an enhanced signal and processing means 387 of the enhanced signal, delivering the filter coefficients of the first filtering means H 3 (n) 39.
  • the raising means 386 comprise a perceptual filter W (z ) 382 taking into account the perceptual properties of the human ear.
  • a filter W (z) 382 makes it possible to enhance certain spectral components corresponding to the echo in the transmitted source signal y ( ⁇ ) 34, with the aim of further reducing these echo components during the filtering operations.
  • a linear prediction technique is implemented to determine the transfer function of the perceptual filter W (z) 382. This technique, described by B. Atal and M. Schroeder in the document "IEEE trans On Acoustics, Speech and Signal Processing, vol 27, pp. 247 - 254, Issue 3, June 1979" allows in particular to determine a perceptual filter attributing more of importance to energy frequency zones.
  • an autoregressive model is applied to each frame of the signal t ( ⁇ ) 37.
  • This filter A (z) 381 is used for calculating the transfer function of the perceptual filter W (z) 382:
  • the numerical values assigned to the perceptual factors y and y 2 make it possible, in particular, to modulate the weighting function, that is to say to give more or less importance to certain spectral components.
  • the emitted source signal y (ri) 34 is then filtered by the approximate perceptual filter W (ri), delivering an enhanced signal in which the spectral components corresponding to the most energetic frequency zones are raised.
  • this enhanced signal corresponds to the source emitted signal y (ri) 34 in which at least one spectral component representative of the echo is enhanced.
  • the raised signal thus supplied feeds second adaptive filtering means H 2 (ri) 383, the coefficients of which are adapted taking into account an error signal.
  • a delay 384 of D samples is applied to the intermediate emitted signal e x (ri) 36, then this delayed signal is subtracted from the signal delivered by the second adaptive filtering means H 2 (ri) 383. by means of second subtraction means 385 for outputting the error signal.
  • This pure delay of D samples applied to the intermediate emitted signal e, (") 36 makes it possible to phase the error signal and the enhanced signal.
  • the number D of samples is defined by the relation m if m is even m - 1 if m is odd
  • the invention thus proposes a sample-by-sample temporal update of the coefficients of the first and second filtering means.
  • the perceptual filter W (z) 382 only makes it possible to delay the transmitted signal source y ( ⁇ ) 34 of D samples.
  • a (n) 1. If, on the contrary, the difference between the two values y, and ⁇ 2 becomes more and more important, the filter W (z) 382 makes it possible to give more importance to the significant frequency zones where the echo is present, that is to say to the most energetic frequency zones.
  • the coefficients of the second adaptive filtering means H 2 (n) 383 are then taken into account in determining the coefficients of the first filtering means H 3 (H) 39.
  • the coefficients of the post filter H 3 (n) 39 are determined from the equation:
  • the adaptive coefficient a 3 (n) is updated in a continuous and regular manner.
  • This adaptive coefficient a 3 (n) is a function of the instantaneous powers P x (n), Py (n) and P e (n) relative to the received signal x (n) 33, to the transmitted source signal y (n) 34 and to intermediate transmitted signal e ⁇ (n) 36 respectively, and the transfer function of the filtering means H 1 (n) 351 of the received signal:
  • the definition of the coefficient a 3 ( ⁇ ) given above constitutes a simple example and that any method responding to the behavior described above can be used to calculate the adaptive coefficient a 3 (n).
  • the introduction of a perceptual filter W (z) 382 in a closed-loop structure makes it possible to enhance certain spectral components corresponding to the echo, thus enabling the second filtering means H 2 (n) 383 who exploit this enhancement to bring a maximum attenuation of this echo.
  • the coefficients of the first filtering means H 3 ( ⁇ ) 39 are then adapted as a function of the coefficients of the second filtering means H 2 ( ⁇ ) 383.
  • Such a device is particularly attractive and interesting for marketing, because of its low numerical complexity.
  • the continuous adaptation of the coefficient a 3 (n) makes it possible to avoid rapid variations of a mixing factor a (n), generated by distortions of the local speech during transition periods, causing level contrasts (and noise in noisy situations) on the speech signal.
  • the device according to the invention can be implemented locally in a communication terminal and / or in a centralized platform within communication networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephone Function (AREA)

Abstract

L'invention concerne un dispositif d'annulation d'un écho acoustique correspondant à un signal reçu (33), présent dans un signal émis source (34), comprenant des premiers moyens de soustraction (353) audit signal émis source (34) d'un signal d'écho estimé (352), obtenu par filtrage dudit signal reçu (33), délivrant un signal émis intermédiaire (36), et des premiers moyens de filtrage (39) dudit signal émis intermédiaire (36), dont les coefficients de filtrage sont déterminés par des moyens de calcul de coefficients. Selon l'invention, lesdits moyens de calcul comprennent des moyens de rehaussement, dans ledit signal émis source (34), d'au moins une composante spectrale représentative dudit écho, pour fournir un signal rehaussé, et des moyens de traitement dudit signal rehaussé, délivrant lesdits coefficients de filtrage.

Description

Dispositif d'annulation d'écho acoustique, procédé et programme d'ordinateur correspondants.
1. Domaine de l'invention
Le domaine de l'invention est celui des communications numériques, et notamment celui du traitement de l'écho dans un système de communication.
Plus précisément, l'invention concerne une technique d'annulation d'un écho acoustique permettant d'atténuer, dans un signal émis, des composantes d'écho d'un signal reçu.
L'invention trouve notamment des applications dans le domaine du traitement de la parole, par exemple dans le cadre de téléconférences et visioconférences (notamment en salle dédiée ou à partir d'ordinateur multimédia), ou dans le cadre de la téléphonie, avec un traitement au niveau du terminal (terminaux classiques, terminaux mobiles, par exemple) et/ou au sein du réseau de télécommunication.
L'invention peut également être utilisée dans des terminaux mains-libres (par exemple de type bureau, mobiles, mobiles embarqués en véhicule), dans des systèmes de prises de son dans les lieux publics (gare, aéroport, ...), ou encore dans des systèmes de reconnaissance de parole avec anticipation (encore appelés « barge in » en anglais).
2. Solutions de l'art antérieur et leurs inconvénients
On connaît déjà plusieurs méthodes permettant d'annuler au moins en partie un écho, correspondant à un signal reçu, présent dans un signal émis.
Une première approche repose ainsi sur l'annulation de l'écho acoustique par identification directe du chemin d'écho.
Selon cette technique, une estimation du canal acoustique de l'écho est réalisée en identifiant la réponse impulsionnelle du bouclage acoustique. Comme cette réponse varie au cours du temps, il est souhaitable de mettre en œuvre une technique de filtrage adaptatif.
Un exemple, dans une application de téléphonie ou de téléconférence entre un ou plusieurs correspondant(s) distant(s) 18 et un correspondant local 19, est illustré en figure 1. Un signal reçu 1 1 est diffusé sur un haut-parleur 12, et un signal émis 14, comprenant des composantes d'écho du signal reçu 11 et un signal de parole locale, est renvoyé par un microphone 13. Le chemin d'écho 15 correspond alors à la matérialisation de toutes les réflexions subies par le signal reçu 1 1 avant d'atteindre le microphone 13. Il est donc composé par la réponse impulsionnelle de l'ensemble haut- parleur/canal acoustique/microphone.
L'annulation totale de l'écho acoustique par identification directe du chemin d'écho nécessite donc la modélisation exacte du chemin d'écho 15 par un filtre adaptatif 16 ayant un nombre de coefficients qui peut être très important.
En pratique, cette première approche, appelée par la suite « annuleur d'écho acoustique », n'est pas envisageable en raison de la complexité numérique du traitement. Par conséquent, afin de limiter la complexité, le chemin d'écho n'est jamais complètement modélisé, ce qui entraîne une limitation des performances en terme de réduction d'écho.
Un écho résiduel, souvent audible, subsiste alors dans la majeure partie des applications. Ceci se traduit pour un correspondant distant par un phénomène d'écho gênant du fait du retard introduit par la chaîne de communication, et qui engendre la perte de l'interactivité de la conversation.
Une seconde approche consiste à ajouter un traitement complémentaire, encore appelé post-filtre 17, dont le rôle est de supprimer la partie audible de l'écho résiduel, encore présent après l'annulation d'écho.
Le post-filtre est un moyen permettant d'apporter la réduction d'écho supplémentaire nécessaire afin de rendre cet écho inaudible et de restituer fidèlement sans dégradation perceptible le signal de parole locale, tout en conservant une complexité arithmétique raisonnable.
Ainsi, un système combinant un annuleur d'écho acoustique adaptatif et un postfiltre a été proposé par R. Martin et J. Altenhoner dans "A coupled adaptive filters for acoustic écho control and noise réduction" (ICASSP 95, vol. 5, pp. 3043-3046, Mai 1995).
Une telle technique, présentée en relation avec la figure 2, repose sur la mise en cascade de deux filtres adaptatifs à réponse impulsionnelle finie transverses Hλ {ri) 21 et H2 (ή) 22 (encore appelés FIR, en anglais "Finite Impulse Response"). Le filtre H] (n) 21 appartient à un annuleur d'écho acoustique classique (tel que présenté ci-dessus) de longueur réduite devant celle de la réponse impulsionnelle réelle du canal acoustique 23. Il ne peut ainsi modéliser que partiellement Ia réponse du canal acoustique, soit approximativement l'onde directe et les premières réflexions, correspondant généralement à la partie la plus énergétique de l'écho.
Ce filtre H1 (H) 21 peut être adapté classiquement, par exemple en utilisant un algorithme adaptatif de type gradient stochastique normalisé (ou NLMS, de l'anglais "Normalized Least Mean Square").
Le filtre H1 (H) 22, encore appelé filtre de mise en forme (ou "écho shaping filter" en anglais), est appliqué sur un signal émis intermédiaire es (ή) 26, correspondant à la soustraction d'un signal d'écho estimé, obtenu par filtrage Hx (ή) 21 d'un signal reçu x(n) 24, à un signal émis source y(ή) 25. Un tel signal émis source y(ή) 25, encore appelé signal microphonique, correspond soit à un écho seul, soit à un signal de parole locale seul, soit à la superposition d'un écho et d'un signal de parole locale.
Le filtre H2 (ή) 22 permet d'enlever au moins en partie la partie audible de l'écho résiduel, en supprimant les composantes fréquentielles du signal émis intermédiaire eλ (ή) 26 pour lesquelles l'écho résiduel est plus énergétique que le signal de la parole locale.
Selon cette technique, les coefficients du filtre H2(n) 28 sont adaptés en estimant l'écho résiduel à partir d'un mélange entre le signal émis source y(ή) 25 et le signal émis intermédiaire e{ (ή) 26, la contribution de chacun de ces deux signaux dans le mélange étant dépendante des conditions de parole.
Les coefficients du filtre H2 (ή) 28 ainsi adaptés sont alors copiés dans le postfiltre H2 (ή) 22. Les coefficients du post-filtre H2(ή) 22 sont par conséquent identiques aux coefficients du filtre H2 (ή) 28.
Dans le document "A coupled adaptive filters for acoustic écho control and noise réduction" déjà cité, l'équation d'adaptation des coefficients du filtre H2 (ή) 28, adaptés selon l'algorithme NLMS de façon à minimiser l'erreur quadratique moyenne entre la sortie du filtre Hη (ή) 28, notée u(ή) 27, et le signal émis intermédiaire e, (#) 26 retardé, est donnée par :
»2(n + 1)-
Figure imgf000005_0001
avec α, un pas d'adaptation fixe, τ = _ le retard introduit pour assurer la causalité du
2 filtre H2 (n) approximé, et M un entier. Plus précisément, ce retard permet d'assurer la remise en phase du signal émis intermédiaire e\(n) 26 et du signal de mélange g(ri) entrant sur le filtre H2 (ri) 28).
Toujours selon ce document, le vecteur G(ri) représente le signal de mélange g(ri) = a(ri)y(ri) + (1 - a(rij)ex (ri) , calculé pour les M plus récents échantillons, pris comme entrée de référence pour le calcul des coefficients du filtre H2 (ri) 28, où a(ri) est un facteur de mélange adaptatif prenant des valeurs dans l'intervalle [0 1 1.
Ce facteur a(ri) permet de pondérer la contribution du signal microphonique y(n) 25 (signal émis source) par rapport au signal émis intermédiaire 26 dans le signal g(n) .
Plus précisément, en situation de parole locale seule, le facteur de mélange a(ri) est choisi de sorte que le filtre H2 (ri) 28 (et par conséquent le filtre H2 (ri) 22) se comporte comme un filtre « passe-tout », c'est-à-dire ne modifiant pas le signal de la parole locale y(n) 25. En situation d'écho seul, le paramètre a(ri) est choisi tel que a(ri) -\ , de sorte que le filtre H1 (U) 28 (et par conséquent le filtre H2 (ri) 22) permette d'apporter une atténuation maximale du résidu d'écho, égale à celle obtenue par l'annuleur d'écho.
En condition de double parole, une valeur plus faible est préférable afin d'éviter la distorsion du signal de parole locale. Selon la technique proposée dans ce document, l'adaptation du facteur de mélange a(ri) doit dépendre implicitement d'un autre facteur mesurant l'activité vocale du locuteur local et du locuteur distant.
Le meilleur choix de ce facteur correspond au pas d'adaptation variable aλ (ri) du filtre H1 (Yi) de l'annuleur d'écho, soit :
0,3 pour aι(n) < 0,0l a(ri) = 0,07α1(n)+ 0,3 pour 0,01 ≤ a{(n) ≤ 10
1 pour cq(n) > 10
Cette équation d'adaptation du facteur de mélange permet de distinguer trois situations : dans le cas où a\(n) < 0,01 , c'est-à-dire en l'absence de signal d'écho et en présence du signal de parole locale seul, une valeur faible a(ri) = 0,3 est affectée au facteur de mélange. Ainsi, quelque soit la valeur de a(ri) , le filtre H2 (n) 28 (et par conséquent le post-filtre H2 (n) 22) se comporte comme un passe-tout en présence de parole locale seule. dans le cas où 0,01 ≤ a\(n) ≤ 10, c'est-à-dire dans une situation de double parole (présence à la fois de la parole locale et du signal d'écho), le facteur de mélange a(ή) prend des valeurs entre 0,3 et 1 , en fonction de la pondération de l'écho par rapport à la parole locale. dans le cas où α, («) > 10 , c'est-à-dire dans une situation d'écho seul, le facteur de mélange a(n) prend la valeur 1 afin d'obtenir une atténuation maximale de l'écho. Bien que cette technique de l'art antérieur présente de meilleurs résultats que la première approche en terme de réduction d'écho, ceux-ci demeurent toutefois insuffisants.
En effet, il existe une forte dépendance d'efficacité entre l'annuleur d'écho et le post-filtre qui ne permet pas de rendre l'écho inaudible. Par conséquent, un inconvénient majeur de cette technique réside dans la dépendance entre l'annuleur d'écho et le post-filtre.
Les variations rapides du facteur de mélange a{ή) selon un fonctionnement prédéfini entraînent alors des contrastes audibles, dus à des distorsions de la parole locale lors des périodes de transitions (passage d'une situation d'écho seul à une situation de double parole, d'une situation de double parole à une situation d'écho seul, d'une situation de parole seule à une situation de double parole).
D'autres techniques proposant l'emploi de structure en boucle ouverte dans le domaine fréquentiel pour le calcul des coefficients du post-filtre H2 (n) 22 ont également été proposées. Cependant, ces techniques ne permettent pas de s'affranchir de la dépendance entre l'annuleur d'écho et le post-filtre, et introduisent généralement des distorsions en situation de double parole.
Un autre inconvénient de ces techniques dans des applications de communication est qu'elles introduisent un délai de traitement supplémentaire, lié à la nécessité de faire une analyse fréquentielle par blocs pour estimer la fonction de transfert du post-filtre. D'autres techniques classiques présentent également l'inconvénient d'altérer la qualité de la communication en provoquant la coupure des débuts et des fins de mots et en générant des contrastes entre les instants de fort et de faible gain.
3. Objectifs de l'invention L'invention a notamment pour objectif de pallier ces inconvénients de l'art antérieur.
Plus précisément, un objectif de l'invention est de proposer une technique d'annulation d'un écho permettant d'améliorer l'intelligibilité et l'interactivité d'une conversation. Ainsi, un objectif de l'invention est de fournir une telle technique qui permette de supprimer, ou à tout le moins de réduire, la partie audible d'un écho résiduel, sans engendrer de dégradations perceptibles sur un signal de parole locale.
L'invention a également pour objectif de proposer une telle technique ne nécessitant pas l'introduction d'un délai de traitement supplémentaire. Un autre objectif de l'invention est de proposer une telle technique qui soit simple à mettre en œuvre, tout en présentant des performances améliorées en terme de réduction d'écho par rapport aux techniques de l'état de l'art.
4. Résumé de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un dispositif d'annulation d'un écho acoustique correspondant à un signal reçu présent dans un signal émis source, comprenant des premiers moyens de soustraction audit signal émis source d'un signal d'écho estimé, obtenu par filtrage dudit signal reçu, délivrant un signal émis intermédiaire (annuleur d'écho), et des premiers moyens de filtrage dudit signal émis intermédiaire, dont les coefficients de filtrage sont déterminés par des moyens de calcul de coefficients.
Selon l'invention, lesdits moyens de calcul d'un tel dispositif comprennent des moyens de rehaussement, dans ledit signal émis source, d'au moins une composante spectrale représentative dudit écho, pour fournir un signal rehaussé, et des moyens de traitement dudit signal rehaussé, délivrant lesdits coefficients de filtrage. Ainsi, l'invention repose sur une approche tout à fait nouvelle et inventive de la détermination des coefficients d'un post-filtre, correspondant aux premiers moyens de filtrage, permettant d'éliminer ou à tout le moins de réduire la partie audible d'un écho résiduel, sans engendrer de dégradations perceptibles sur un signal de parole locale.
Plus précisément, l'invention propose de renforcer l'impact d'une composante spectrale importante, dans un signal dit rehaussé, pour que l'effet de cette composante soit ensuite plus efficacement filtré, et donc que l'écho soit ensuite plus efficacement filtré, et donc que l'écho correspondant soit plus efficacement supprimé.
Ainsi, le rehaussement de certaines composantes spectrales correspondant à l'écho permet de réduire davantage ces composantes lors de l'opération de post-filtrage. Avantageusement, lesdits moyens de rehaussement tiennent compte d'au moins un signal appartenant au groupe comprenant : ledit signal émis source ; ledit signal d'écho estimé ; ledit signal émis intermédiaire.
On peut en effet remarquer que le signal émis source peut correspondre soit à un écho seul, soit à un signal de parole locale seul, soit à un écho superposé à un signal de parole locale, et que le signal émis intermédiaire peut correspondre soit à un écho résiduel seul, soit à un écho résiduel superposé à un signal de parole locale. Par conséquent, les trois signaux précités portent effectivement une information relative à l'écho. De façon préférentielle, lesdits moyens de rehaussement comprennent au moins un filtre perceptuel. Un tel filtre utilise notamment des propriétés perceptuelles de l'oreille humaine.
Le signal ou la combinaison de signaux portant une information relative à l'écho sert notamment de référence pour estimer les coefficients du filtre perceptuel. Selon un mode de réalisation avantageux de l'invention, lesdits moyens de rehaussement comprennent également un filtre de prédiction linéaire d'ordre m de fonction de transfert : m A(Z) = I + ^a1Z-1 i≈\ avec m un entier ; z une variable associée à la transformée en z du filtre A ; α/ les coefficients dudit filtre de prédiction linéaire ; la fonction de transfert dudit filtre perceptuel étant définie par :
Figure imgf000010_0001
avec Y1 et γ2 des facteurs perceptuels, tels que 0 < y, < γ2 ≤ 1. Selon ce mode de réalisation avantageux, on détermine un filtre perceptuel qui attribue plus d'importance aux zones fréquentielles énergétiques.
Pour déterminer les coefficients de ce filtre perceptuel, un modèle autorégressif AR est appliqué à chaque trame du signal, ou de la combinaison de signaux, portant une information représentative de l'écho. Une telle modélisation AR peut notamment mettre en œuvre un filtre de prédiction linéaire d'ordre m.
Cette technique de prédiction par régression linéaire entre notamment en compte dans le calcul de la fonction de transfert du filtre perceptuel.
Le choix des valeurs numériques des facteurs perceptuels γx et γ2 permet notamment de moduler la fonction de pondération, c'est-à-dire d'accorder plus ou moins d'importance aux composantes spectrales représentatives de l'écho.
Si les deux valeurs sont presque égales et proches de l'unité, elles n'apportent aucune pondération spectrale.
En revanche, si la différence entre les deux valeurs devient de plus en plus importante, le filtre perceptuel permet d'accorder plus d'importance aux zones fréquentielles significatives où l'écho est présent.
Préférentiellement, ledit filtre perceptuel est un filtre à phase linéaire.
L'approximation du filtre perceptuel par un filtre à phase linéaire d'ordre m permet notamment de s'affranchir d'éventuels problèmes d'instabilité liés au modèle autorégressif, et notamment à l'application d'un modèle autorégressif à moyenne mobile.
De façon avantageuse, lesdits moyens de traitement comprennent des seconds moyens de filtrage, alimentés par ledit signal rehaussé, et des seconds moyens de soustraction, retranchant au signal délivré par lesdits seconds moyens de filtrage ledit signal émis intermédiaire, auquel on a appliqué un retard, et délivrant un signal d'erreur pris en compte pour le calcul des coefficients de filtrage desdits seconds moyens de filtrage. Ainsi, le signal rehaussé issu du filtre perceptuel, correspondant au signal émis source dans lequel au moins une composante spectrale représentative de l'écho est rehaussée, alimente des seconds moyens de filtrage.
Les coefficients de filtrage de ces seconds moyens sont adaptés en tenant compte d'un signal d'erreur correspondant au signal en sortie de ces seconds moyens de filtrage auquel on a retranché le signal émis intermédiaire retardé.
Plus précisément, un retard pur correspondant à D échantillons est appliqué au signal émis intermédiaire, afin que le signal d'erreur et le signal rehaussé soient en phase, avec D un entier défini par la relation :
air
Figure imgf000011_0001
où m est l'ordre du filtre perceptuel.
De manière préférentielle, les coefficients de filtrage desdits premiers moyens de filtrage, notés H3(n), tiennent compte des coefficients de filtrage desdits seconds moyens de filtrage, notés H2(n), et d'un coefficient adaptatif a^ .
Ainsi, les coefficients des premiers moyens de filtrage sont définis par l'équation :
H3(n) = a3(n)H2(n)+(l - Ct3(H))I avec / = [l 0 •• • 0]
Le coefficient adaptatif a3 peut notamment tenir compte d'au moins un élément appartenant au groupe comprenant : - la puissance instantanée relative audit signal reçu ; la puissance instantanée relative audit signal émis source ; la puissance instantanée relative audit signal émis intermédiaire ; la fonction de transfert des moyens de filtrage du signal reçu. Ainsi, selon un mode de réalisation particulier de l'invention, le coefficient adaptatif 0:3 peut être mis à jour de manière continue et régulière.
Notamment, en situation de parole locale seule, le coefficient α3 («) tend vers 0. Dans ce cas, les premiers moyens de filtrage du signal émis intermédiaire sont définis par HT1[U) == / = [l 0 •• • O]. Il s'agit donc d'un filtre passe-tout, qui ne distord pas la parole locale.
En situation d'écho seul, le coefficient a3 (n) tend vers 1. Dans ce cas, les coefficients des premiers moyens de filtrage sont identiques aux coefficients des seconds moyens de filtrage H3(n) = H2(n) . Une atténuation maximale de l'écho est apportée grâce à la présence du filtre perceptuel dans la boucle fermée. En situation de double parole, c'est-à-dire en présence d'un signal de parole locale et d'un écho, le coefficient a3(n) prend des valeurs entre 0 et 1 selon la pondération de l'écho par rapport à la parole locale.
L'invention concerne également le procédé d'annulation d'un écho acoustique mis en œuvre dans un dispositif tel que décrit ci-dessus, ainsi qu'un programme d'ordinateur comprenant des instructions de code de programme pour l'exécution des étapes du procédé d'annulation d'un écho acoustique décrit précédemment lorsque ledit programme est exécuté par un microprocesseur.
5. Liste des figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels : la figure 1, déjà commentée en relation avec l'art antérieur, présente un dispositif classique d'annulation d'écho comprenant un filtre adaptatif, utilisé par exemple dans une application de téléphonie ou de téléconférence entre un ou plusieurs correspondant distant(s) et un correspondant local ; la figure 2 décrit plus précisément un système combinant un annuleur d'écho acoustique adaptatif et un post-filtre, selon l'art antérieur ; la figure 3 illustre un dispositif d'annulation d'écho acoustique comprenant des moyens de filtrage des composantes spectrales d'écho et des moyens de calcul des coefficients de filtrage selon l'invention ; la figure 4 présente plus en détail le fonctionnement des moyens de calcul des coefficients de filtrage de la figure 3 selon l'invention.
6. Description d'un mode de réalisation de l'invention
Le principe général de l'invention repose sur une approche nouvelle et originale du calcul des coefficients d'un post-filtre dans un système combinant un annuleur d'écho classique et un post-filtre. Une telle technique permet notamment de supprimer, ou à tout le moins de réduire, des composantes d'écho d'un signal reçu dans un signal émis.
Le calcul des coefficients du post-filtre prend notamment en compte un signal rehaussé, obtenu en rehaussant au moins une composante spectrale représentative de l'écho dans le signal émis, de sorte à apporter, lors du filtrage, une atténuation maximale de l'écho.
Ainsi, les coefficients du post-filtre sont déterminés en tenant compte des propriétés perceptuelles de l'oreille humaine.
On présente, en relation avec la figure 3, un mode de réalisation préférentiel de l'invention dans lequel au moins un locuteur distant 31 communique avec un locuteur local 32, par exemple dans une situation de téléconférence.
Dans une telle situation, un signal reçu x(n) 33 correspond à la parole émise par le locuteur distant 31 , et un signal émis source y{n) 34 correspond à un signal de parole locale émis par le locuteur local 32 auquel peuvent être superposées des composantes d'écho du signal reçu x(n) 33.
Comme décrit précédemment en relation avec l'art antérieur, le signal reçu x(n) 33 est filtré au moyen d'un filtre Hλ(ή) 351, délivrant un signal d'écho estimé z(n) 352.
Le signal d'écho estimé ∑{n) 352 est ensuite soustrait à l'aide de premiers moyens de soustraction 353 au signal émis source y{ή) 34, délivrant un signal émis intermédiaire ex (n) 36.
Cette première partie du dispositif correspond à un annuleur d'écho acoustique classique tel que décrit en relation avec l'art antérieur.
Selon l'invention, le dispositif d'annulation de l'écho comprend également des premiers moyens de filtrage H3 (n) 39 du signal émis intermédiaire e{ (n) 36. Les coefficients de filtrage du filtre H3(V) 39 sont notamment déterminés par des moyens de calcul 38 des coefficients, à partir d'une structure en boucle fermée.
Ces moyens de calcul 38 prennent notamment en compte un signal t(n) 37, correspondant à un signal ou à une combinaison de signaux portant une information représentative de l'écho, pour la détermination des coefficients de filtrage des premiers moyens de filtrage H3 (n) 39.
Plus précisément, ce signal t{n) 37 peut être choisi parmi les différents signaux où l'information de l'écho est présente, c'est-à-dire parmi le signal émis source y{n) 34, le signal d'écho estimé z{n) 352, ou le signal émis intermédiaire ex (ή) 36, ou encore parmi une combinaison de ces signaux. Comme illustré en figure 4, les moyens de calcul 38 des coefficients de filtrage du filtre H3(X) 39 comprennent des moyens de rehaussement 386, dans le signal émis source y(n) 34, d'au moins une composante spectrale représentative de l'écho, délivrant un signal rehaussé et des moyens de traitement 387 du signal rehaussé, délivrant les coefficients de filtrage des premiers moyens de filtrage H3 (n) 39. Plus précisément, les moyens de rehaussement 386 comprennent un filtre perceptuel W(z) 382 tenant compte des propriétés perceptuelles de l'oreille humaine. Un tel filtre W(z) 382 permet de rehausser certaines composantes spectrales correspondant à l'écho dans le signal émis source y(ή) 34, dans le but de réduire davantage ces composantes d'écho lors des opérations de filtrage. Selon un mode de réalisation avantageux de l'invention, une technique de prédiction linéaire est mise en œuvre pour déterminer la fonction de transfert du filtre perceptuel W{z) 382. Cette technique, décrite par B. Atal et M. Schroeder dans le document "Prédictive coding of speech signais and subjective error criteria" (IEEE trans. On Acoustics, Speech, and Signal Processing, vol. 27, pp. 247 - 254, Issue. 3, Juin 1979) permet notamment de déterminer un filtre perceptuel attribuant plus d'importance aux zones fréquentielles énergétiques.
Ainsi, selon cette technique, un modèle autorégressif est appliqué à chaque trame du signal t(ή) 37. Ce modèle comprend notamment un filtre de prédiction linéaire 381 d'ordre m, défini par : A(z) = l + y_ a,z'
avec m un entier ; z une variable associée à la transformée en z du filtre A ; ai les coefficients dudit filtre de prédiction linéaire.
Ce filtre A(z) 381 est utilisé pour le calcul de la fonction de transfert du filtre perceptuel W(z) 382 :
Figure imgf000015_0001
avec γ{ et γ2 des facteurs perceptuels, tels que 0 < γx < γ2 ≤ 1.
Les valeurs numériques affectées aux facteurs perceptuels y, et γ2 permettent notamment de moduler la fonction de pondération, c'est-à-dire d'accorder plus ou moins d'importance à certaines composantes spectrales. Par ailleurs, afin de s'affranchir des éventuels problèmes d'instabilité liés au modèle autorégressif et à la structure autorégressive à moyenne mobile (ARMA) du filtre perceptuel W(z) 382, il est souhaitable, selon ce mode de réalisation avantageux, d'approcher le filtre perceptuel W(z) 382 par un filtre W (ri) à phase linéaire de m coefficients. Selon l'invention, le signal émis source y(ri) 34 est alors filtré par le filtre perceptuel approché W (ri) , délivrant un signal rehaussé dans lequel les composantes spectrales correspondant aux zones fréquentielles les plus énergétiques sont rehaussées.
Autrement dit, ce signal rehaussé correspond au signal émis source y(ri) 34 dans lequel au moins une composante spectrale représentative de l'écho est rehaussée. Le signal rehaussé ainsi délivré alimente des seconds moyens de filtrage adaptatifs H2 (ri) 383, dont les coefficients sont adaptés en tenant compte d'un signal d'erreur.
Plus précisément, selon l'invention, on applique un retard 384 de D échantillons au signal émis intermédiaire ex (ri) 36, puis on soustrait ce signal retardé au signal délivré par les seconds moyens de filtrage adaptatifs H2 (ri) 383, au moyen de seconds moyens de soustraction 385, pour délivrer le signal d'erreur.
Ce retard pur de D échantillons appliqué au signal émis intermédiaire e, («) 36 permet de mettre en phase le signal d'erreur et le signal rehaussé. Le nombre D d'échantillons est notamment défini par la relation m si m est pair m - 1 si m est impair
2
L'invention propose ainsi une mise à jour temporelle échantillon par échantillon des coefficients des premiers et seconds moyens de filtrage. Ainsi, si les deux valeurs y, et γ2 sont presque égales et proches de l'unité, elles n'apportent aucune pondération spectrale : dans ce cas, le filtre perceptuel W(z) 382 permet uniquement de retarder le signal émis source y(ή) 34 de D échantillons. On se trouve alors dans la situation présentée en relation avec l'art antérieur, pour un facteur de mélange a(n) = 1. Si au contraire la différence entre les deux valeurs y, et γ2 devient de plus en plus importante, le filtre W(z) 382 permet d'accorder plus d'importance aux zones fréquentielles significatives où l'écho est présent, c'est-à-dire aux zones fréquentielles les plus énergétiques.
Les coefficients des seconds moyens de filtrage adaptatifs H2 (n) 383 sont alors pris en compte dans la détermination des coefficients des premiers moyens de filtrage H3 (H) 39.
Plus précisément, les coefficients du post-filtre H3(n) 39 sont déterminés à partir de l'équation :
H3 (n) = a3(n)H2 (n) + (l - a3 (n))I avec / = [l 0 • - • 0] et a3 (n) est un coefficient adaptatif.
Selon ce mode de réalisation préférentiel de l'invention, le coefficient adaptatif a3 (n) est mis à jour d'une manière continue et régulière.
Ce coefficient adaptatif a3(n) est fonction des puissances instantanées Px(n), Py(n) et Pe (n) relatives au signal reçu x(n) 33, au signal émis source y(n) 34 et au signal émis intermédiaire e\(n) 36 respectivement, et de la fonction de transfert des moyens de filtrage H1 (n) 351 du signal reçu :
«3 in) - /[Px (n), Py (n), PS{ (n), Hx (n)] Plus précisément, ce coefficient a3 (n) obéit au comportement suivant :
CC3 (It) tend vers 0 dans une situation de parole locale seule : dans ce cas, les premiers moyens de filtrage H3(n) 39 se comportent comme un filtre passe- tout, ne distordant donc pas la parole locale, et ses coefficients sont donnés par H3(n) ≈ / = [l 0 •• • O] ; a3 (n) tend vers 1 dans une situation d'écho seul : dans ce cas, les premiers moyens de filtrage H3(n) 39 et les seconds moyens de filtrage H2(n) 383 sont identiques ( H3(n) = H2(n) ), et l'écho est atténué au maximum grâce à la présence du filtre perceptuel W (z) dans la boucle fermée ; a3 (n) est compris entre 0 et 1 dans une situation de double parole, c'est-à- dire d'écho superposé à la parole locale : la valeur du coefficient a3 (n) dépend de la pondération associée aux composantes spectrales représentatives de l'écho par rapport à la parole locale.
Il est bien entendu la définition du coefficient a3 (ή) donnée ci-dessus constitue un simple exemple et que toute méthode répondant au comportement décrit ci-dessus peut être utilisée pour calculer le coefficient adaptatif a3(n) . Ainsi, selon l'invention, l'introduction d'un filtre perceptuel W{z) 382 dans une structure à boucle fermée permet de rehausser certaines composantes spectrales correspondant à l'écho, permettant ainsi aux seconds moyens de filtrage H2(n) 383 qui exploitent ce rehaussement d'apporter une atténuation maximale de cet écho.
Les coefficients des premiers moyens de filtrage H3 (ή) 39 sont alors adaptés en fonction des coefficients des seconds moyens de filtrage H2 (ή) 383.
Un tel dispositif est particulièrement attractif et intéressant pour la commercialisation, du fait de sa faible complexité numérique.
De plus, contrairement aux techniques de l'art antérieur, l'adaptation continue du coefficient a3 (n) permet d'éviter les variations rapides d'un facteur de mélange a(n), engendrées par des distorsions de la parole locale lors des périodes de transition, entraînant des contrastes de niveau (et de bruit en situation bruitée) sur le signal de parole.
Par ailleurs, il est important de noter que le dispositif selon l'invention peut être implanté en local dans un terminal de communication et/ou dans une plate-forme centralisée au sein de réseaux de communications.

Claims

REVENDICATIONS
1. Dispositif d'annulation d'un écho acoustique correspondant à un signal reçu (33), présent dans un signal émis source (34), comprenant des premiers moyens de soustraction (353) audit signal émis source (34) d'un signal d'écho estimé (352), obtenu par filtrage dudit signal reçu (33), délivrant un signal émis intermédiaire (36), et des premiers moyens de filtrage (39) dudit signal émis intermédiaire (36), dont les coefficients de filtrage sont déterminés par des moyens de calcul de coefficients, caractérisé en ce que lesdits moyens de calcul comprennent des moyens de rehaussement, dans ledit signal émis source (34), d'au moins une composante spectrale représentative dudit écho, pour fournir un signal rehaussé, et des moyens de traitement dudit signal rehaussé, délivrant lesdits coefficients de filtrage.
2. Dispositif d'annulation d'un écho selon la revendication 1, caractérisé en ce que lesdits moyens de rehaussement tiennent compte d'au moins un signal appartenant au groupe comprenant : ledit signal émis source (34) ; ledit signal d'écho estimé (352) ; ledit signal émis intermédiaire (36). 3. Dispositif d'annulation d'un écho selon l'une quelconque des revendications 1 et 2, caractérisé en ce que lesdits moyens de rehaussement comprennent au moins un filtre perceptuel.
4. Dispositif d'annulation d'un écho la revendication 3, caractérisé en ce que lesdits moyens de rehaussement comprennent également un filtre de prédiction linéaire d'ordre m de fonction de transfert :
Figure imgf000018_0001
avec m un entier ; z une variable associée à la transformée en z dudit filtre de prédiction linéaire ; ai les coefficients dudit filtre de prédiction linéaire ; et en ce que la fonction de transfert dudit filtre perceptuel est définie par :
Figure imgf000019_0001
avec γx et γ2 des facteurs perceptuels, tels que 0 < γλ < γ7 ≤ 1 .
5. Dispositif d'annulation d'un écho selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits moyens de traitement comprennent des seconds moyens de filtrage (383), alimentés par ledit signal rehaussé, et des seconds moyens de soustraction (385), retranchant au signal délivré par lesdits seconds moyens de filtrage (383) ledit signal émis intermédiaire (36), auquel on a appliqué un retard, et délivrant un signal d'erreur pris en compte pour le calcul des coefficients de filtrage desdits seconds moyens de filtrage (383).
6. Dispositif d'annulation d'un écho selon la revendication 5, caractérisé en ce que les coefficients de filtrage desdits premiers moyens de filtrage (39) tiennent compte des coefficients de filtrage desdits seconds moyens de filtrage (383) et d'un coefficient adaptatif a3. 7. Dispositif d'annulation d'un écho selon la revendication 6, caractérisé en ce que les coefficients desdits premiers moyens de filtrage (39) sont définis par l'équation :
H3(n) = a3(n)H2(n) + (l - a3(n))I avec : H2(H) les coefficients desdits seconds moyens de filtrage (383) ;
/ = [1 0 ••- O]. 8. Dispositif d'annulation d'un écho selon l'une quelconque des revendications 6 et
7. caractérisé en ce que ledit coefficient adaptatif a3 tient compte d'au moins un élément appartenant au groupe comprenant : la puissance instantanée relative audit signal reçu ; la puissance instantanée relative audit signal émis source ; - la puissance instantanée relative audit signal émis intermédiaire ; la fonction de transfert des moyens de filtrage du signal reçu.
9. Procédé d'annulation d'un écho acoustique correspondant à un signal reçu (33), présent dans un signal émis source (34), comprenant : une étape de soustraction audit signal émis source (34) d'un signal d'écho estimé (352), obtenu par filtrage dudit signal reçu (33), délivrant un signal émis intermédiaire (36), une étape de filtrage dudit signal émis intermédiaire (36), mettant en œuvre des premiers moyens de filtrage (39), et une étape de calcul des coefficients des premiers moyens de filtrage (39), caractérisé en ce que ladite étape de calcul comprend : une sous-étape de rehaussement, dans ledit signal émis source (34), d'au moins une composante spectrale représentative dudit écho, délivrant un signal rehaussé, et - une sous-étape de traitement dudit signal rehaussé, délivrant lesdits coefficients de filtrage.
10. Programme d'ordinateur comprenant des instructions de code de programme pour l'exécution des étapes du procédé d'annulation d'un écho acoustique selon la revendication 9 lorsque ledit programme est exécuté par un ordinateur. 11. Produit programme d'ordinateur comprenant des instructions de code de programme enregistré sur un support utilisable dans ou par un ordinateur, ledit programme permettant l'annulation d'un écho acoustique correspondant à un signal reçu (33), présent dans un signal émis source (34), ledit produit programme d'ordinateur comprenant : - des moyens de programmation lisibles par ordinateur pour effectuer une étape de soustraction audit signal émis source (34) d'un signal d'écho estimé (352), obtenu par filtrage dudit signal reçu (33), délivrant un signal émis intermédiaire (36) ; des moyens de programmation lisibles par ordinateur pour effectuer une étape de filtrage dudit signal émis intermédiaire (36) ; des moyens de programmation lisibles par ordinateur pour effectuer une étape de calcul des coefficients de filtrage pris en compte lors de ladite étape de filtrage ; caractérisé en ce que ledit produit programme d'ordinateur comprend également des moyens de programmation lisibles par ordinateur pour effectuer, lors de ladite étape de calcul, une sous-étape de rehaussement, dans ledit signal émis source (34), d'au moins une composante spectrale représentative dudit écho, délivrant un signal rehaussé, et une sous-étape de traitement dudit signal rehaussé, délivrant lesdits coefficients de filtrage.
PCT/EP2005/057220 2005-01-19 2005-12-29 Dispositif d'annulation d'echo acoustique, procede et programme d'ordinateur correspondants WO2006077005A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500548 2005-01-19
FR0500548 2005-01-19

Publications (2)

Publication Number Publication Date
WO2006077005A2 true WO2006077005A2 (fr) 2006-07-27
WO2006077005A3 WO2006077005A3 (fr) 2006-11-02

Family

ID=34953672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/057220 WO2006077005A2 (fr) 2005-01-19 2005-12-29 Dispositif d'annulation d'echo acoustique, procede et programme d'ordinateur correspondants

Country Status (1)

Country Link
WO (1) WO2006077005A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108413A (en) * 1997-01-21 2000-08-22 Matra Communication Echo cancellation method and echo canceller implementing such a process
US6269161B1 (en) * 1999-05-20 2001-07-31 Signalworks, Inc. System and method for near-end talker detection by spectrum analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108413A (en) * 1997-01-21 2000-08-22 Matra Communication Echo cancellation method and echo canceller implementing such a process
US6269161B1 (en) * 1999-05-20 2001-07-31 Signalworks, Inc. System and method for near-end talker detection by spectrum analysis

Also Published As

Publication number Publication date
WO2006077005A3 (fr) 2006-11-02

Similar Documents

Publication Publication Date Title
EP2057835B1 (fr) Procédé de réduction de l&#39;écho acoustique résiduel après suppression d&#39;écho dans un dispositif &#34;mains libres&#34;
EP1830349B1 (fr) Procédé de débruitage d&#39;un signal audio
EP2494772A1 (fr) Procede et dispositif d&#39;annulation d&#39;echo acoustique par tatouage audio
EP0748555A1 (fr) Annuleur d&#39;echo acoustique avec filtrage en sous-bandes
EP1438870A1 (fr) Methode et systeme d&#39;elimination d&#39;interference pour antenne multicapteur
FR2770361A1 (fr) Processeur non lineaire pour suppresseur d&#39;echo acoustique
WO2008049981A1 (fr) Circuit de réduction de l&#39;écho acoustique pour un dispositif &#39;mains libres&#39; utilisable avec un téléphone portable
WO2004004298A1 (fr) Dispositifs de traitement d&#39;echo pour systemes de communication de type monovoie ou multivoies
FR2946486A1 (fr) Procede de detection d&#39;une situation de double parole pour dispositif telephonique &#34;mains libres&#34;
EP1039736B1 (fr) Procédé et disposiif d&#39;identification adaptive, et annuleur d&#39;écho adaptive mettant en oeuvre un tel procédé
EP1940139A2 (fr) Commande de filtres d&#39;annulation d&#39;écho
Zhang et al. Hybrid AHS: A hybrid of Kalman filter and deep learning for acoustic howling suppression
EP1103138B1 (fr) Dispositif de traitement numerique a filtrage frequentiel et a complexite de calcul reduite
EP2084893B1 (fr) Circuit de réduction de l&#39;écho acoustique pour un dispositif &#34;mains libres&#34; utilisable avec un téléphone portable
WO2006077005A2 (fr) Dispositif d&#39;annulation d&#39;echo acoustique, procede et programme d&#39;ordinateur correspondants
EP2515300A1 (fr) Procédé et système de réduction du bruit
WO2001043413A1 (fr) Annuleur d&#39;echo dans un systeme de communication au niveau d&#39;un terminal
FR3051959A1 (fr) Procede et dispositif pour estimer un signal dereverbere
FR2767941A1 (fr) Suppresseur d&#39;echo par transformation de sens et procede associe
WO2008037925A1 (fr) Reduction de bruit et de distorsion dans une structure de type forward
FR2790342A1 (fr) Procede et systeme de traitement d&#39;antenne
FR3115390A1 (fr) Procédé et dispositif pour une annulation d’écho à pas variable
WO2005091520A1 (fr) Dispositif de commande d’un limiteur d’echo residuel

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05850509

Country of ref document: EP

Kind code of ref document: A2

WWW Wipo information: withdrawn in national office

Ref document number: 5850509

Country of ref document: EP