WO2006075580A1 - Antibacterial substances injuring bacterial cell membarane and methods of using the same - Google Patents

Antibacterial substances injuring bacterial cell membarane and methods of using the same Download PDF

Info

Publication number
WO2006075580A1
WO2006075580A1 PCT/JP2006/300156 JP2006300156W WO2006075580A1 WO 2006075580 A1 WO2006075580 A1 WO 2006075580A1 JP 2006300156 W JP2006300156 W JP 2006300156W WO 2006075580 A1 WO2006075580 A1 WO 2006075580A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell membrane
antibacterial
damaging
monomer
injury
Prior art date
Application number
PCT/JP2006/300156
Other languages
French (fr)
Japanese (ja)
Inventor
Hatsuo Yamamura
Masao Kawai
Takashi Katsu
Original Assignee
National University Corporation Nagoya Institute Of Technology
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya Institute Of Technology, National University Corporation Okayama University filed Critical National University Corporation Nagoya Institute Of Technology
Priority to JP2006552912A priority Critical patent/JP5098015B2/en
Publication of WO2006075580A1 publication Critical patent/WO2006075580A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/724Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a microbial cell membrane damaging / antibacterial substance and a method for using the same. More specifically, the present invention relates to a monomeric substance (monomer) that exhibits bacteriostatic cell membrane damage, which causes damage to the cell membrane while retaining a certain growth ability in the bacteria, an oligomer thereof, and bacteria. Against
  • the present invention relates to a monomeric substance having both microbial cell membrane damage and strong antibacterial properties, an oligomer thereof, and use thereof.
  • the present invention is expected to have medical applications, hygiene applications, industrial applications, and the like.
  • Chemotherapeutic agents have been continuously developed since the discovery of penicillin. However, recently, as represented by the emergence of new pathogens and mesitillin-resistant Staphylococcus aureus (MRSA), resistant bacteria to existing chemotherapeutic agents have emerged, which is a major problem. Therefore, there is a strong demand for the development of antibacterial substances that are novel chemotherapeutic agents that are particularly resistant to drug resistance.
  • MRSA mesitillin-resistant Staphylococcus aureus
  • antibacterial substances that exhibit antibacterial properties by membrane-operated mechanisms such as polymyxin B are known as antibacterial substances that do not easily cause drug resistance.
  • these substances are natural products having a complex structure, and artificial mass production is not always easy.
  • a complicated synthesis process is required, and there is a cost problem.
  • the degree of damage to the cell membrane is not destructive, and it is bacteriostatic to the extent that a certain growth ability remains in bacteria. In this case, it can be effectively used as a means for introducing an arbitrary target substance into the bacterium, which is completely different from the antibacterial action.
  • Reference 1 Japanese Patent Application Laid-Open No. Sho 5 2-1 3 8 5 80 describes penta- (6-amino-6-deoxy) -one cyclodextrin and hexa- (6-amino-6-deoxy) — ⁇ -It discloses that cyclodextrin has strong antibacterial activity.
  • Japanese Patent Application Laid-Open No. 2000-300-2 is a film mainly composed of a polysaccharide derivative, and an amino group is attached to a carbon atom of an anhydrous monosaccharide unit constituting the polysaccharide.
  • an alkylamino group is bonded.
  • the amino group or the like imparts antibacterial properties to the membrane.
  • the present invention relates to a substance exhibiting cell membrane damage, in particular, a substance exhibiting bacteriostatic cell membrane damage that damages the cell membrane while allowing bacteria to proliferate, and its effectiveness.
  • the purpose is to provide useful usage.
  • an object of the present invention is to provide a substance that exhibits both excellent cell membrane damage and strong antibacterial properties, and an effective method for using the same.
  • the first invention of the present application has a carbocyclic structure or a carbon Z oxygen heterocyclic structure capable of multimerization, and is amino for two or more carbon atoms not participating in multimerization bonds on one side of the ring plane
  • a bacteriostatic cell that binds a functional group and exhibits affinity for phospholipids on the other side of the ring plane, and damages the cell membrane while allowing the bacteria to grow. It is a cell membrane damaging monomer showing membrane damaging properties.
  • the “carbocyclic structure” is a ring structure formed only by carbon atoms and capable of multimerization, and does not participate in multimerization bonds. This refers to those capable of binding an amino functional group. In order to be able to bond an amino functional group, it is necessary to have a substituent or bondable group such as a hydroxyl group on one side of the ring plane.
  • a carbocyclic structure capable of bonding two or more amino functional groups cyclohexanol or the like has 4 or more carbon atoms constituting the ring and does not participate in multimerization bonding.
  • An aliphatic ring structure in which an atom has a hydroxyl group can be exemplified, but is not limited thereto.
  • Carbon Z oxygen heterocycle structure '' is a ring structure formed by carbon atoms and oxygen atoms that can be multimerized, and is composed of two or more carbon atoms that do not participate in multimerization bonds. This refers to those capable of binding an amino functional group. Examples thereof include, but are not limited to, pentose or hexose sugar structures having a miacetal bond in the molecule.
  • “showing phospholipid affinity” means that, on one side of the ring plane, hydrogen is mainly bonded to carbon constituting the ring structure. Say to show.
  • Bacterial cell A of the first invention In Nomaichi, amino functional groups are intensively bonded to one side of the ring plane, so that it interacts with the negatively charged portion of the phospholipid of the cell membrane based on the brass charge of the amino functional group, It exhibits a certain degree of antibacterial action. At the same time, since no amino group is bonded to the other side of the ring plane, this one side shows lipophilicity, that is, phospholipid affinity.
  • the cell membrane damaging monomer of the first invention is similar to the cell membrane damaging oligomer, and is attacked on the cell membrane by analogy with the action and effect of the cell membrane damaging oligomer described below. It is thought that it exhibits certain antibacterial properties. In the compound of the ring structure, such an effect when the amino functional group is localized on one side surface is not suggested at all from various known literatures including the literature 1 and literature 2 described above. (Second invention)
  • the amino functional group according to the first invention is a primary, secondary or tertiary amino group.
  • amino functional group There is no limitation on the type of amino functional group, and primary, secondary or tertiary amino groups can be used arbitrarily. As described later in the 16th invention, it is known that the antibacterial property is particularly enhanced when a specific type of amino functional group is introduced.
  • the carbon-oxygen heterocyclic structure according to the first invention or the second invention is a sugar structure (monosaccharide) having a miacetal bond in the molecule.
  • a sugar structure that has a ring structure formed by a miacetal bond into the molecule has a large number of hydroxyl groups bonded to the carbon atoms that constitute the ring structure, and these hydroxyl groups are attached to the ring plane on one side (6
  • the ring plane on the other OH group side is a lipophilic ring plane mainly composed of carbon-hydrogen bonds. Therefore, if an amino functional group is introduced at two or more positions of the above-mentioned hydroxyl bonding site, a bacterial cell typically having the characteristics of the first invention can be prepared easily. (Fourth invention)
  • the sugar structure according to the third invention is a bilanose structure or a furanose structure.
  • a biranose structure or a furanose structure can be preferably exemplified.
  • the bilanose structure according to the fourth invention is dalcose.
  • Examples of the bilanose structure which is a sugar structure constituting the ring structure of the cell membrane damaging monomer, include glucose, fructose, galactose, and the like. Preferred examples include glucose.
  • two or more units of the cell membrane-damaging monomer according to any of the first to fifth inventions are bonded, and the ring planes to which the amino functional groups in each monomer are bonded have the same direction.
  • It is a suitable compound, and is a cell membrane-damaging oligomer that exhibits bacteriostatic cell membrane damage that damages the cell membrane while allowing bacteria to proliferate.
  • the cell membrane damaging oligomer of the sixth invention is a cell membrane damaging monomer in which a plurality of the cell membrane damaging monomers are bonded by, for example, a hydroxyl group condensation reaction or the like, and the skeleton portion of the ring structure is glucose, fructose, galactose.
  • Monosaccharide dimers (disaccharides), trimers (trisaccharides), monosaccharide multimers (oligosac power rides), dimers of hexanol, etc. Can be constructed.
  • the cell membrane damaging oligomer exhibits a cell membrane damaging effect and a certain antibacterial effect.
  • the mechanism is thought to be as follows.
  • the amino functional group bonded to the microbial cell II damaging oligomer is a positive ion. This interacts with the negatively charged part of the phospholipid in the bacterial cell membrane. At the same time, one side of the phospholipid affinity in the cell membrane damaging oligomer attacks the cell membrane of the bacteria and damages the cell membrane. Moreover, the damage to the cell membrane is not destructive (bactericidal), but is a partial (bacteriostatic) cell membrane injury that increases membrane permeability. Along with these cell membrane damaging effects, a certain antibacterial property is exhibited by one side surface of the cell membrane damaging oligomer to which an amino functional group is bonded. In a compound having a ring structure, such an effect in the case where an amino functional group is localized on one side of the compound is not suggested at all from various known documents including Document 1 and Document 2 described above.
  • the cell membrane damaging effect and certain antibacterial effect of the cell membrane damaging oligomer are relatively stronger than the cell membrane damaging monomer.
  • the ring plane to which the amino functional group is bonded is directed in the same direction.
  • the cell membrane-damaging oligomer according to the sixth invention is a cell membrane-damaging monomer in which 6 to 8 units are linked in a chain.
  • the number of monomers bonded to the cell membrane-damaging oligomer is not particularly limited, but more preferably 6 to 8 units of monomers linked in a chain.
  • the chain-like conjugate of the cell membrane-damaging monomer according to the seventh invention is a cyclic linkage.
  • the monomer constituting the cell membrane damaging oligomer forms a cyclic linkage, and the ring plane to which the amino functional group is bonded in each monomer faces the same direction, one ring plane side of the oligomer Since the concentration density of amino functional groups is high, the interaction with the negatively charged portion of the cell membrane phospholipid due to the positive charge of these amino functional groups is strengthened, and the antibacterial effect is relatively enhanced. Ori Due to the high lipophilicity (phospholipid affinity) of the other ring plane side of sesame, the cell membrane damage is relatively enhanced. Furthermore, when each monomer constituting the oligomer forms a cyclic chain bond, the structural condition that “the ring plane to which the amino functional group in each monomer is bonded is directed in the same direction” is stable. Maintained.
  • the cyclic chain conjugate according to the eighth invention is a cyclodextrin which is a cyclic chain conjugate of glucose units.
  • cyclodextrin is a chain conjugate (see Fig. 1) in which a number of D-dalcobilanose groups are cyclized in a crown shape by glycosidic linkages. Cyclodextrins consisting of 8 glucose units are particularly preferred.
  • the tenth invention of the present application is selected from the cell membrane-damaging monomer according to any of the first to fifth inventions and the cell membrane-damaging oligomer according to any of the sixth to ninth inventions 1
  • This is an antibacterial cell membrane injury method that uses antibacterial membrane injury agents containing two or more species as active ingredients against Gram-positive bacteria to obtain an antibacterial effect.
  • the cell membrane of gram-negative bacteria such as E. coli consists of the outer membrane, cell wall, and inner membrane (cytoplasmic membrane) and is relatively less susceptible to antibacterial action.
  • the cell membrane of gram-positive bacteria such as Staphylococcus aureus and MR SA Because it consists of cell walls and inner membrane and does not have outer membrane, it is relatively susceptible to cell membrane damage. It has been confirmed that the cell membrane damaging monomer and the cell membrane damaging oligomer according to the present invention result in an effective bactericidal effect on Gram-positive bacteria through the cell membrane damaging action. Yes.
  • the cell membrane damaging monomer as an active ingredient and And Z or fungus membrane-damaging oligomers can be used as they are, or can be used as salts or derivatives within the range where the effect is maintained and pharmaceutically acceptable. It may also contain bulking agents, preservatives, pH stabilizers and the like.
  • the dosage form of the cell membrane injury agent is not limited. For example, it can be administered in a dosage form such as a powder, a tablet, a capsule, a liquid, an emulsion, or a suspension.
  • the active ingredient in the cell membrane damaging agent of the invention of the tenth invention exhibits antibacterial properties through a membrane-actuated mechanism, so that it is difficult to cause drug resistance and such as polymyxin B which is a known antibacterial substance of this kind. Since it is not a natural product having a complicated structure, artificial mass production is easy, and artificial structural modification for improving the effect is technically and cost-effective.
  • the 11th invention of the present application provides any purpose for the cell membrane-damaging monomer according to any one of the 1st to 5th inventions or the cell membrane-damaging oligomer according to any of the 6th to 9th inventions.
  • a bacteriostatic cell membrane injury method in which a substance is bound and used against bacteria, and the target substance is introduced into the cell body by damaging the cell membrane while retaining the growth ability of the bacteria. is there.
  • the first invention can be conceived for the first time based on the novel knowledge of the present inventor that the cell membrane-damaging monomer or cell membrane-damaging oligomer exhibits bacteriostatic cell membrane toxicity. It is an invention that has become possible.
  • these cell membrane-damaging substances damage the cell membrane while allowing the bacteria to survive. That is, the damage of the cell membrane is not destructive, but is a partial cell membrane damage that increases the membrane permeability. Therefore, when any target substance is bound to these cell membrane damaging substances, the cell membrane damaging substances can be used as vectors to easily realize DDS (drug delivery system) for the cells. it can.
  • the type of target substance can be arbitrarily selected and is not limited. Examples of preferred target substances include genes, proteins (antibodies, enzymes, etc.), inorganic compounds, and organic compounds that contribute to bacterial transformation can do
  • the first and second inventions of the present application are selected from the cell membrane-damaging monomers according to any one of the first to fifth inventions and the cell membrane-damaging oligomers according to any of the sixth to ninth inventions 1 It is a cell membrane injury / antibacterial agent comprising as an active ingredient a species or two or more species and one or more of any antibacterial or antibiotics.
  • the 12th invention is an invention that can be conceived for the first time on the basis of the novel knowledge of the present inventor that a cell membrane-damaging monomer or cell membrane-damaging oligomer exhibits cell membrane toxicity. It is.
  • these cell membrane damaging substances do not necessarily show destructive cell membrane damaging action by themselves, but damage the bacterial cell membrane and increase the membrane permeability.
  • any antibacterial substances or antibiotics are used in combination, the antibacterial effects of these substances are exhibited without hindrance.
  • the cell membrane injury substance, the antibacterial agent or the antibiotic which is the active ingredient may be used as it is, or the salt is maintained within the range where the effect is maintained and pharmaceutically acceptable. Alternatively, it can be used as a derivative. In addition, a bulking agent, a preservative, or a pH stabilizer may be included.
  • the dosage form of the cell membrane injury agent is not limited. For example, it can be administered in dosage forms such as powders, tablets, capsules, solutions, emulsions, suspensions and the like.
  • the antibacterial substance or antibiotic according to the first and second inventions is a cell membrane impermeable substance.
  • Bacterial membrane injury / antibacterial agent according to the above-mentioned first and second inventions, There are no restrictions on the type of antibacterial or antibiotic used in combination, but the combination with an antibacterial or antibiotic that is impermeable to the bacterial membrane is particularly effective.
  • the antibacterial substance impermeable to the cell membrane according to the 13th invention wherein the antibiotic is erythromycin or novopyocin.
  • Erythromycin Novopiocin has excellent antibacterial activity, but its cell membrane impermeability, so its usefulness is limited. Therefore, it is very preferable to use these in combination with the cell membrane damaging substance according to the present invention.
  • the 15th invention of the present application is an antibacterial method for obtaining an antibacterial effect by using the antibacterial membrane damage / antibacterial agent according to any of the 12th invention to the 14th invention against a gram positive bacterium or a gram negative bacterium. is there.
  • the cell membrane damaging substance (cell membrane damaging monomer and cell membrane damaging oligomer) according to the present invention is not necessarily effective against Gram-negative bacteria in its antibacterial effect, Is effective against Gram-positive or Gram-negative bacteria. Therefore, an antibacterial agent that damages the cell membrane using this substance in combination with an antibacterial substance or an antibiotic can effectively exert an antibacterial action against either gram-positive bacteria or gram-negative bacteria.
  • the membrane is damaged by a cell membrane-damaging substance (a cell membrane-damaging monomer or cell membrane-damaging oligomer).
  • a cell membrane-damaging substance a cell membrane-damaging monomer or cell membrane-damaging oligomer.
  • the 16th invention of the present application relates to a carbocyclic structure or carbon / oxygen heterocyclic structure capable of multimerization.
  • an amino functional group containing an aromatic ring is bonded to two or more carbon atoms that do not participate in multimerization bonding on one side of the ring plane, and phosphorus is bonded on the other side of the ring plane.
  • It is a compound showing lipophilicity, and is a cell membrane damage / antibacterial monomer that has both cell membrane damage and strong antibacterial properties.
  • a compound having a carbocyclic structure or a carbon-oxygen heterocyclic structure and having two or more amino functional groups containing an aromatic ring bonded to one side of the ring plane has not been known as an antibacterial substance.
  • the 16th invention provides a novel and powerful cell membrane damage / antibacterial substance.
  • the amino functional group containing an aromatic ring according to the sixteenth invention is a benzylamino group.
  • the kind of an amino functional group containing an aromatic ring is not limited, but a benzylamino group is particularly preferred.
  • the benzylamino group includes a benzylamino group derivative in which any functional group is bonded to an aromatic ring as long as the effect of the invention is not inhibited.
  • the 18th invention of the present application is an amino official who contains two or more units of the cell membrane damage / antibacterial monomer according to the 16th invention or the 17th invention and contains an aromatic ring in each monomer. It is a compound in which the ring plane to which the functional group is bonded is oriented in the same direction, and is a cell membrane injury / antibacterial oligomer that has both cell membrane damage and strong antibacterial properties.
  • the cell membrane injury / antibacterial oligomer according to the eighteenth aspect of the invention is a combination of a plurality of the cell membrane injury / antibacterial monomers by, for example, a hydroxyl group condensation reaction. Dimers (disaccharides), trimers (trisaccharides), monosaccharides (oligosaccharides), or cyclohexanols of monosaccharides consisting of one or more of glucose, fructose, galactose, etc. It may be composed of a dimer or the like. .
  • Bacterial membrane damage and antibacterial effects of bacterial membrane damage oligomers are even stronger than those of cell membrane damage and antibacterial monomers.
  • ring planes to which an amino functional group containing an aromatic ring is bonded face the same direction.
  • the bacterial membrane injury / antibacterial oligomer according to the eighteenth invention is a combination of 6-8 units of bacterial membrane injury / antibacterial monomers linked in a chain.
  • the number of monomer bonds in the antibacterial oligomer is not particularly limited, but it is preferably one in which about 6 to 8 units of monomers are linked in a chain.
  • the cell membrane injury / antibacterial oligomer according to the 19th invention is a cyclic chain conjugate of the cell membrane injury / antibacterial monomer.
  • Bacterial membrane damage ⁇ Monomers constituting antibacterial oligomers form a cyclic linkage, and the ring plane in which each monomer is bonded to an amino functional group containing an aromatic ring faces the same direction. And the antibacterial effect is particularly enhanced due to the high concentration density of the amino functional group containing an aromatic ring on one ring plane side of the oligomer. At the same time, the lipophilicity (phospholipid affinity on the other ring plane side of the oligomer) Cell) due to its high Membrane damage is particularly enhanced. Furthermore, when each monomer constituting the oligomer forms a cyclic linkage, “the ring planes to which amino functional groups containing aromatic rings in each monomer are bonded face the same direction.” The structural condition is maintained stably.
  • the cyclic chain conjugate in the membrane damage / antibacterial oligomer according to the 20th invention is a cyclodextrin.
  • the cyclodextrin is as described above, but as the cell membrane damage / antibacterial oligomer, those in which the cyclic chain conjugate is cyclodextrin are particularly preferable.
  • the 22nd invention of the present application is the fungus body according to the 16th invention or the 17th invention)] injuries ⁇ antibacterial monomers and cell membrane damage / antibacterial according to any of the 18th invention to the 21st invention
  • a cell membrane injury / antibacterial agent comprising one or more selected from sex oligomers as an active ingredient.
  • the 22nd invention provides a novel antibacterial agent for cell membrane injury that has both excellent cell membrane injury and strong antibacterial properties.
  • the active ingredient cell membrane damage, antibacterial monomer and / or cell membrane injury, antibacterial oligomer can be used as they are, and the effect is maintained and pharmaceutically acceptable.
  • it can also be used as a salt or a derivative.
  • it may contain a bulking agent, a preservative, or a pH stabilizer.
  • the dosage form of the cell membrane damaging agent is not limited, and for example, it can be administered in dosage forms such as powders, tablets, capsules, liquids, emulsions, suspensions and the like.
  • the active ingredient in the cell membrane damaging agent of the second aspect of the invention exhibits antibacterial properties through a membrane-actuated mechanism, and thus is difficult to cause drug resistance. Since it is not a natural product having such a complicated structure, artificial mass production is easy, and artificial structural modification for improving the effect is technically and cost-effective.
  • the second invention of the present application is the fungus membrane injury / antibacterial monomer according to the 16th invention or the 17th invention, and the fungus membrane injury according to any of the 18th invention to the 21st invention.
  • a cell membrane injury / antibacterial agent comprising one or more selected from sesame and one or more of any antibacterial or antibiotics as active ingredients.
  • the 23rd invention is based on the novel knowledge of the present inventor that cell membrane injury, antibacterial monomer or cell membrane injury, and antibacterial oligomer exhibit excellent cell membrane damage as well as strong antibacterial properties. This is the first invention that can be conceived.
  • Antibacterial substances are membrane-acting, so pathogens are difficult to cope with.
  • Bacterial membrane injury ⁇ Bacteria resistant to antibiotics or antibiotics used in combination with antibacterial substances There is an advantage that it is difficult to do.
  • the antimicrobial agent may be used as it is, or the antibacterial substance, antibacterial substance or antibiotic may be used as it is, and the effect is maintained and pharmaceutically acceptable. It can also be used as a salt or derivative in the range. It may also contain bulking agents, preservatives, pH stabilizers and the like.
  • the dosage form of the cell membrane damaging agent is not limited. For example, powders, tablets, capsules, liquids, emulsions, suspensions, etc. It can be administered in dosage form. (24th invention)
  • the antibacterial substance or the antibiotic according to the 23rd invention is a cell membrane impermeable substance.
  • the type of antibacterial substance or antibiotic used in combination with the cell membrane injury / antibacterial agent is not limited, but the cell membrane membrane has non-permeability antibacterial properties Combination with substances or antibiotics is particularly effective.
  • the antibacterial substance or antibiotic that is impermeable to cell membranes according to the 24th invention is erythromycin or novobiocin.
  • Erythromycin Novopiocin has excellent antibacterial activity, but its cell membrane impermeability, so its usefulness is limited. Therefore, it is extremely preferable to use these in combination with the cell membrane injury / antibacterial substance according to the present invention.
  • the 26th invention of the present application is an antibacterial method for obtaining an antibacterial effect by using an antibacterial agent against Gram-positive bacteria or Gram-negative bacteria according to any one of the 22nd to 25th inventions. is there.
  • the cell membrane injury / antibacterial substance (cell membrane injury / antibacterial monomer and cell membrane injury 'antibacterial oligomer) according to the present invention is not only effective against gram positive bacteria but also gram negative In some cases, antibacterial action is also effective against bacteria.
  • FIG. 1 shows a simplified structure of cyclodextrin.
  • FIG. 2 is a list showing the effects of the embodiment.
  • FIG. 3 is a list showing the effects of the embodiment.
  • This example relates to the synthesis of octakis (6-benzenoreamino) 1 ⁇ -cyclodextrin.
  • Escherichia coli K12 and W3110 were cultured in a minimal salt medium containing 1% polypeptone at 37 ° C under aerobic conditions.
  • Staphylococcus aureus 209P strain, 0 - 5% meat extract, 1.5% Po Ripeputon were cultured in liquids medium containing 0.5% sodium chloride and 0.5% dipotassium hydrogen phosphate.
  • the bacteria were diluted with physiological saline and used for measurement. The MIC was measured by a method based on micro liquid dilution. At this time, the drug was prepared in a 2-fold dilution series with purified water. A thing was used.
  • Bacteria diluted to 1 ⁇ 10 4 (“C” means the number of bacteria) were incubated in Mueller-Hinton medium (Difco) at 37 ° C. for 20 hours. The MIC was determined at the lowest drug concentration at which the bacteria could not grow.
  • the minimum growth inhibitory concentration (MIC) for E. coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria) of the former three was 128 g / ml or more.
  • the minimum growth inhibitory concentrations of the latter three are 64, 64, 32 g / ml for Escherichia coli (Gram-negative bacteria) and 4, 4, 8 for Staphylococcus aureus (Gram-positive bacteria), respectively.
  • the antibacterial activity was remarkable against gram positive bacteria at g / ml.
  • This example shows octakis (6-amino) 1 ⁇ -cyclodextrin, heptakis (6-amino) 1] 3-cyclodextrin, and hexakis (6-amino) _ ⁇ -cyclodextrin for bacterial cell membrane permeability. This is related to the increase effect.
  • Escherichia coli K12 and W3110 strains were used, and for Staphylococcus aureus, 209 strains were used.
  • Escherichia coli K12 and W3110 were cultured in a minimal salt medium containing 1% polypeptone at 37 ° C under aerobic conditions.
  • S. aureus strain 209P was cultured in a liquid medium containing 0.5 ° / 0 meat extract, 1.5% polybeptone, 0.5% sodium chloride, and 0.5% dibasic hydrogen phosphate.
  • Bacteria collected in the logarithmic growth phase were washed twice with a buffer solution (lOOmM choline chloride, 50 mM M0PS-TRIS (pH 7.2)) and then suspended in the same buffer solution to a protein concentration of 10 mg / ml. .
  • Escherichia coli and Staphylococcus aureus should be buffered (100 mM choline chloride, 10 m TRIS-lactic acid, 50 mM MOPS-TRIS (pH 7.2)) so that the final protein concentrations are 0.5 and 0.2 mg / ml, respectively. ).
  • Fig. 2 shows the results of potassium ion efflux rates (%) for E. coli and S. aureus.
  • Example 3 From the results of Example 3, it is clear that these compounds damage the cytoplasmic membrane of Escherichia coli and cause the release of force lithium ions. Therefore, we investigated the combined effects of novobiocin and erythromycin, which are antibiotics that cannot exhibit their original antibacterial properties due to their low outer membrane permeability. The results are shown in the table shown in Fig. 3.
  • the minimum growth inhibition concentrations (MIC) for E. coli with novobiocin and erythromycin are 128 / ⁇ 1 and 64 g / nil, respectively, and their effects are weak.
  • Ml C of the above antibiotics under the combined administration of the cyclodextrin derivative was remarkably reduced and showed a remarkable antibacterial activity. Based on the above results, these cyclodextrin derivatives have the effect of damaging the bacterial outer membrane and significantly increasing its permeability, resulting in the original antibacterial activity of non-transmembrane antibiotics. Their usefulness in combination with antibiotics has been revealed.
  • a compound that is easy to produce, and has a cell membrane damage property, particularly a bacteriostatic cell membrane damage property that damages the cell membrane while remaining proliferative ability in bacteria Provided are substances that exhibit both excellent cell membrane damage and strong antibacterial properties, and effective use thereof.

Abstract

A monomer injuring bacterial cell membrane which is a compound having a carbon cycle structure or a carbon/oxygen heterocycle structure, carrying two or more amino-type functional groups attached to one side of the cycle plane and showing an affinity for phospholipids in the other side of the cycle plane and exhibits a bacteriostatic effect of injuring bacterial cell wall, i.e., injuring bacterial cell wall while allowing the bacterium to sustain its proliferating ability; an oligomer injuring bacterial cell membrane which consists of two or more units of the above monomer bonded to each other; an antimicrobial monomer injuring bacterial cell membrane showing an activity of injuring bacterial cell membrane and an antimicrobial activity which belongs to the monomer injuring bacterial cell membrane as described above and in which an amino-type functional group has an aromatic ring; an antimicrobial oligomer injuring bacterial cell membrane which consists of two or more units of the above monomer bonded to each other; and various antimicrobial methods using these substances. Thus, it becomes possible to provide substances injuring bacterial cell membrane and antimicrobial substances injuring bacterial cell membrane which can be easily produced and methods of effectively utilizing the same.

Description

菌体膜傷害性 ·抗菌性物質とその利用方法  Bacterial membrane damage · Antibacterial substances and their use
〔技術分野〕 〔Technical field〕
本発明は菌体膜傷害性 ·抗菌性物質とその利用方法に関する。 更に詳しくは 本発明は、 細菌に一定の増殖能力を残存させつつその菌体膜を傷害すると言う静 菌的な菌体膜傷害性を示す単量体物質 (モノマ一) とそのオリゴマー、 細菌に対 明  The present invention relates to a microbial cell membrane damaging / antibacterial substance and a method for using the same. More specifically, the present invention relates to a monomeric substance (monomer) that exhibits bacteriostatic cell membrane damage, which causes damage to the cell membrane while retaining a certain growth ability in the bacteria, an oligomer thereof, and bacteria. Against
して菌体膜傷害性と強い抗菌性とを併せ持つ単量体物質とそのオリゴマー、 及び これらの利用に関する。 本発明は、 医療的応用、 衛生的応用、 工業的応用等が期 待される。 In addition, the present invention relates to a monomeric substance having both microbial cell membrane damage and strong antibacterial properties, an oligomer thereof, and use thereof. The present invention is expected to have medical applications, hygiene applications, industrial applications, and the like.
 book
〔背景技術〕 [Background Technology]
化学療法剤は、 ペニシリンの発見以来、 たゆまなく開発されてきた。 しかし 近時に到り、 新規な病原菌やメシチリン耐性黄色ブドウ球菌 (MR S A) の出現 に代表されるように、 既存の化学療法剤に対する耐性菌が出現し、 大きな問題と なっている。 従って、 新規な化学療法剤となる抗菌性物質であって特に薬剤耐性 を起こし難いものの開発が強く望まれている。  Chemotherapeutic agents have been continuously developed since the discovery of penicillin. However, recently, as represented by the emergence of new pathogens and mesitillin-resistant Staphylococcus aureus (MRSA), resistant bacteria to existing chemotherapeutic agents have emerged, which is a major problem. Therefore, there is a strong demand for the development of antibacterial substances that are novel chemotherapeutic agents that are particularly resistant to drug resistance.
従来、 薬剤耐性を起こし難い抗菌性物質として、 ポリミキシン B等の膜作動 型機構により抗菌性を示す物質が公知である。 しかしこれらの物質は複雑な構造 を有する天然物であり、 人工的な大量製造は必ずしも容易ではない。 叉、 これら の物質に人工的な構造改変を加えて更に効果的な抗菌性を発現させるには、 複雑 な合成プロセスが必要であり、 コスト面の問題がある。  Conventionally, substances that exhibit antibacterial properties by membrane-operated mechanisms such as polymyxin B are known as antibacterial substances that do not easily cause drug resistance. However, these substances are natural products having a complex structure, and artificial mass production is not always easy. In addition, in order to develop more effective antibacterial properties by applying artificial structural modifications to these substances, a complicated synthesis process is required, and there is a cost problem.
一方、 既存の抗菌性物質あるいは抗生物質の中には、 本来は優れた抗菌性を 持ちながら、 物理的障壁としての菌体膜を通過できないために抗菌性を発揮でき ないものも見られる。 薬剤耐性の獲得に代表されるように、 継代によって多様化 する病原菌に効果的に対抗するには、 抗菌性物質あるいは抗生物質における本来 の抗菌性を有効に発揮させることが重要であり、 そのような見地から、 菌体膜を 傷害できる物質、 とりわけ、 病原菌が対応し難い膜作動型の菌体膜傷害性物質の 提供が望まれる。 即ち、 エリスロマイシンゃノボピオシンのように、 優れた抗菌 作用を持ちながら菌体膜非透過性である抗生物質と、 上記の菌体膜傷害性物質と の併用が有効であると合理的に推定することができる。 On the other hand, some of the existing antibacterial substances or antibiotics are inherently excellent in antibacterial properties, but cannot exhibit antibacterial properties because they cannot pass through the cell membrane as a physical barrier. As represented by the acquisition of drug resistance, it is important to effectively exert the original antibacterial properties of antibacterial substances or antibiotics in order to effectively combat pathogenic bacteria diversified by passage. From such a point of view, It is desirable to provide substances that can be damaged, in particular, membrane-acting cell membrane-damaging substances that are difficult for pathogens to handle. That is, it should be reasonably estimated that the combined use of an antibacterial and non-permeable antibiotic such as erythromycin novopiocin and the above-mentioned cell membrane damaging substance is effective. Can do.
更に、 物理的障壁としての菌体膜に関連して、 若し、 菌体膜の傷害の程度が 破壊的なものでなく、 細菌に一定の増殖能力を残存させる程度の静菌的ものであ つた場合、 抗菌作用とは全く異なる、 菌体内に任意の目的物質を導入するための 手段として有効に利用し得る。  Furthermore, in relation to the cell membrane as a physical barrier, the degree of damage to the cell membrane is not destructive, and it is bacteriostatic to the extent that a certain growth ability remains in bacteria. In this case, it can be effectively used as a means for introducing an arbitrary target substance into the bacterium, which is completely different from the antibacterial action.
文献 1 :特開昭 5 2— 1 3 8 5 8 0号公報は、 ペンタ一 (6—ァミノ一 6— デォキシ) ―ひ一シクロデキストリン及びへキサ一 (6—ァミノ一 6—デォキシ) — β—シクロデキストリンが強い抗菌活性を持つことを開示している。  Reference 1: Japanese Patent Application Laid-Open No. Sho 5 2-1 3 8 5 80 describes penta- (6-amino-6-deoxy) -one cyclodextrin and hexa- (6-amino-6-deoxy) — β -It discloses that cyclodextrin has strong antibacterial activity.
文献 2 :特開 2 0 0 2— 3 0 2 5 6 9号公報は、 多糖類誘導体を主材料とす る膜であって、 この多糖類を構成する無水単糖ュニットの炭素原子にアミノ基又 はアルキルアミノ基が結合しているものを開示し、 この場合におけるアミノ基等 は膜に抗菌性を付与する旨を開示している。  Document 2: Japanese Patent Application Laid-Open No. 2000-300-2 is a film mainly composed of a polysaccharide derivative, and an amino group is attached to a carbon atom of an anhydrous monosaccharide unit constituting the polysaccharide. In addition, it discloses that an alkylamino group is bonded. In this case, it is disclosed that the amino group or the like imparts antibacterial properties to the membrane.
しかしながら、 上記の文献 1や文献 2では、 以下の (1 ) 〜 (4 ) のような 事項についての開示や示唆は見られない。  However, in the above-mentioned literature 1 and literature 2, there is no disclosure or suggestion about the following items (1) to (4).
( 1 ) 文献に開示された多糖構造体が菌体膜を傷害する可能性。  (1) The possibility that the polysaccharide structure disclosed in the literature damages the cell membrane.
( 2 ) 殺菌的な菌体膜傷害性と静菌的な菌体膜傷害性とを区別して、 これらの 菌体膜傷害性の有効な利用方法を検討すると言う技術的思想。  (2) The technical idea of distinguishing between bactericidal cell membrane damage and bacteriostatic cell membrane damage and investigating the effective use of these cell membrane damage.
( 3 ) 糖構造体におけるァミノ基の空間的局在化により、 抗菌性と菌体膜傷害 性を両立させると言う技術的思想。  (3) The technical idea of achieving both antibacterial properties and cell membrane damage by spatial localization of the amino groups in the sugar structure.
( 4 ) 糖構造体に対して芳香環を含有するァミノ系官能基、 とりわけベンジル ァミノ基を導入した際の抗菌性と菌体膜傷害性。  (4) Antibacterial properties and cell membrane damage when an amino functional group containing an aromatic ring, particularly a benzylamino group, is introduced into the sugar structure.
〔発明の開示〕 [Disclosure of the Invention]
本発明は、 菌体膜傷害性を示す物質、 とりわけ、 細菌に増殖能力を残存させ つつその菌体膜を傷害すると言う静菌的な菌体膜傷害性を示す物質と、 その有効 な利用方法とを提供することを目的とする。 叉、 本発明は、 優れた菌体膜傷害性 と強い抗菌性とを併せ示す物質と、 その有効な利用方法とを提供することを目的 とする。 The present invention relates to a substance exhibiting cell membrane damage, in particular, a substance exhibiting bacteriostatic cell membrane damage that damages the cell membrane while allowing bacteria to proliferate, and its effectiveness. The purpose is to provide useful usage. In addition, an object of the present invention is to provide a substance that exhibits both excellent cell membrane damage and strong antibacterial properties, and an effective method for using the same.
以下に、本願の第 1発明〜第 2 6発明を、それらの最良の実施形態及び作用 · 効果を含めて説明する。  The first invention to the 26th invention of the present application will be described below including the best embodiment and the functions and effects thereof.
(第 1発明) (First invention)
本願の第 1発明は、 多量体化が可能な炭素環構造又は炭素 Z酸素複素環構造 を有すると共に、 環平面の片側においては多量体化結合に関与しない 2個以上の 炭素原子に対してアミノ系官能基を結合し、 環平面の他の片側においてはリン脂 質親和性を示す化合物であって、 細菌に増殖能力を残存させつつその菌体膜を傷 害すると言う静菌的な菌体膜傷害性を示す菌体膜傷害性モノマーである。  The first invention of the present application has a carbocyclic structure or a carbon Z oxygen heterocyclic structure capable of multimerization, and is amino for two or more carbon atoms not participating in multimerization bonds on one side of the ring plane A bacteriostatic cell that binds a functional group and exhibits affinity for phospholipids on the other side of the ring plane, and damages the cell membrane while allowing the bacteria to grow. It is a cell membrane damaging monomer showing membrane damaging properties.
第 1発明において、 「炭素環構造」 とは、 炭素原子のみにより形成された、 多量体化が可能な環構造であって、 多量体化結合に関与しない 2個以上の炭素原 子に対してァミノ系官能基を結合し得るものを言う。 ァミノ系官能基を結合し得 るためには、 環平面の片側に例えば水酸基等の置換性又は結合性の基を備えてい る必要がある。 2個以上のアミノ系官能基を結合し得る炭素環構造としては、 シ クロへキサノール等の、 環を構成する炭素数が 4以上であり、 多量体化結合に関 与しない 2個以上の炭素原子が水酸基を備える脂肪族環構造を例示することがで きるが、 これに限定されない。 「炭素 Z酸素複素環構造」 とは炭素原子と酸素原 子により形成された、 多量体化が可能な環構造であって、 多量体化結合に関与し ない 2個以上の炭素原子に対してアミノ系官能基を結合し得るものを言う。 分子 内へミアセタール結合を持つ 5炭糖又は 6炭糖の糖構造体を例示することができ るが、 これらに限定されない。 叉、 「リン脂質親和性を示す」 とは、 環平面の当 該片側においては環構造を構成する炭素に対して主に水素が結合しているため、 この片側の環平面がリン脂質親和性を示すことを言う。  In the first invention, the “carbocyclic structure” is a ring structure formed only by carbon atoms and capable of multimerization, and does not participate in multimerization bonds. This refers to those capable of binding an amino functional group. In order to be able to bond an amino functional group, it is necessary to have a substituent or bondable group such as a hydroxyl group on one side of the ring plane. As a carbocyclic structure capable of bonding two or more amino functional groups, cyclohexanol or the like has 4 or more carbon atoms constituting the ring and does not participate in multimerization bonding. An aliphatic ring structure in which an atom has a hydroxyl group can be exemplified, but is not limited thereto. `` Carbon Z oxygen heterocycle structure '' is a ring structure formed by carbon atoms and oxygen atoms that can be multimerized, and is composed of two or more carbon atoms that do not participate in multimerization bonds. This refers to those capable of binding an amino functional group. Examples thereof include, but are not limited to, pentose or hexose sugar structures having a miacetal bond in the molecule. In addition, “showing phospholipid affinity” means that, on one side of the ring plane, hydrogen is mainly bonded to carbon constituting the ring structure. Say to show.
一般論として、 比較的高分子量で多数のァミノ基を結合させた化合物が静菌 的作用ないし抗菌的作用を示すことは知られている。 第 1発明の菌体 A莫傷害性モ ノマ一は、 環平面の片側にアミノ系官能基が集中的に結合しているので、 ァミノ 系官能基のブラス荷電に基づき菌体膜のリン脂質のマイナス荷電部に対して相互 作用すると共に、 一定の程度の抗菌作用を示す。 同時に、 環平面における他の片 側にはァミノ系官能基が結合していないため、 この片側面は、 親油性、 即ちリン 脂質親和性を示す。 In general, it is known that a compound having a relatively high molecular weight and a large number of amino groups bound thereto exhibits bacteriostatic or antibacterial activity. Bacterial cell A of the first invention In Nomaichi, amino functional groups are intensively bonded to one side of the ring plane, so that it interacts with the negatively charged portion of the phospholipid of the cell membrane based on the brass charge of the amino functional group, It exhibits a certain degree of antibacterial action. At the same time, since no amino group is bonded to the other side of the ring plane, this one side shows lipophilicity, that is, phospholipid affinity.
第 1発明の菌体膜傷害性モノマーは、 後述する菌体膜傷害性ォリゴマーの作 用 ·効果から類推して、 菌体膜傷害性オリゴマーと同様に、 菌体膜にァタックし て菌体膜を傷害し、 併せて一定の抗菌性を発揮すると考えられる。 環構造の化合 物において、 その片側面にアミノ系官能基を局在化させた場合のこのような効果 は、 前記の文献 1や文献 2を含む各種の公知文献からは全く示唆されない。 (第 2発明)  The cell membrane damaging monomer of the first invention is similar to the cell membrane damaging oligomer, and is attacked on the cell membrane by analogy with the action and effect of the cell membrane damaging oligomer described below. It is thought that it exhibits certain antibacterial properties. In the compound of the ring structure, such an effect when the amino functional group is localized on one side surface is not suggested at all from various known literatures including the literature 1 and literature 2 described above. (Second invention)
本願の第 2発明においては、 前記の第 1発明に係るアミノ系官能基が一級、 二級又は三級ァミノ基である。  In the second invention of the present application, the amino functional group according to the first invention is a primary, secondary or tertiary amino group.
ァミノ系官能基の種類には限定がなく、 一級、 二級又は三級ァミノ基を任意 に利用することができる。 第 1 6発明において後述するように、 特定の種類のァ ミノ系官能基を導入した場合、 特に抗菌性が強化されることが分かっている。  There is no limitation on the type of amino functional group, and primary, secondary or tertiary amino groups can be used arbitrarily. As described later in the 16th invention, it is known that the antibacterial property is particularly enhanced when a specific type of amino functional group is introduced.
(第 3発明) (Third invention)
本願の第 3発明においては、 前記の第 1発明又は第 2発明に係る炭素 酸素 複素環構造が、 分子内へミアセタール結合を持つ糖構造 (単糖体) である。  In the third invention of the present application, the carbon-oxygen heterocyclic structure according to the first invention or the second invention is a sugar structure (monosaccharide) having a miacetal bond in the molecule.
分子内へミアセタール結合によつて環構造となった糖構造体は、 一般的に、 環構造を構成する炭素原子に対する水酸基の結合数が多く、 しかもこれらの水酸 基が片側の環平面 (6位の O H基側の環平面) に突出し、 他の片側の環平面は炭 素一水素結合部を主とする親油性の環平面である。 従って、 上記の水酸基結合部 位の 2ケ所以上にァミノ系官能基を導入すれば、 第 1発明の特徴を典型的に備え た菌体)!莫傷害性モノマーを容易に準備することができる。 (第 4発明) In general, a sugar structure that has a ring structure formed by a miacetal bond into the molecule has a large number of hydroxyl groups bonded to the carbon atoms that constitute the ring structure, and these hydroxyl groups are attached to the ring plane on one side (6 The ring plane on the other OH group side is a lipophilic ring plane mainly composed of carbon-hydrogen bonds. Therefore, if an amino functional group is introduced at two or more positions of the above-mentioned hydroxyl bonding site, a bacterial cell typically having the characteristics of the first invention can be prepared easily. (Fourth invention)
本願の第 4発明においては、 前記の第 3発明に係る糖構造がビラノース構造 又はフラノース構造である。  In the fourth invention of the present application, the sugar structure according to the third invention is a bilanose structure or a furanose structure.
分子内へミアセタール結合を持つ糖構造 (単糖体) として、 ビラノース構造 又はフラノース構造を好ましく挙げることができる。  As the sugar structure (monosaccharide) having a miacetal bond in the molecule, a biranose structure or a furanose structure can be preferably exemplified.
(第 5発明) (Fifth invention)
本願の第 5発明においては、 前記の第 4発明に係るビラノース構造がダルコ ースである。  In the fifth invention of the present application, the bilanose structure according to the fourth invention is dalcose.
菌体膜傷害性モノマーの環構造を構成する糖構造たるビラノース構造として は、 グルコース、 フルクトース、 ガラクトース等の各種のものを例示できるが、 例えばグルコースを好ましく挙げることができる。  Examples of the bilanose structure, which is a sugar structure constituting the ring structure of the cell membrane damaging monomer, include glucose, fructose, galactose, and the like. Preferred examples include glucose.
(第 6発明) (Sixth invention)
本願の第 6発明は、 第 1発明〜第 5発明のいずれかに係る菌体膜傷害性モノ マーが 2単位以上結合し、 各モノマ一におけるアミノ系官能基を結合した環平面 が同じ方向を向いている化合物であって、 細菌に増殖能力を残存させつつその菌 体膜を傷害すると言う静菌的な菌体膜傷害性を示す菌体膜傷害性オリゴマーであ る。  According to a sixth invention of the present application, two or more units of the cell membrane-damaging monomer according to any of the first to fifth inventions are bonded, and the ring planes to which the amino functional groups in each monomer are bonded have the same direction. It is a suitable compound, and is a cell membrane-damaging oligomer that exhibits bacteriostatic cell membrane damage that damages the cell membrane while allowing bacteria to proliferate.
第 6発明の菌体膜傷害性オリゴマーは、 前記菌体膜傷害性モノマーが、 例え ば水酸基の縮合反応等により複数結合したものであり、その環構造の骨格部分は、 グルコース、 フルク トース、 ガラク トース等の 1種又は 2種以上からなる単糖類 の 2量体 (2糖類) 、 3量体 (3糖類) 、 単糖類の多量体 (オリゴサッ力ライド) あるいはシク口へキサノールの 2量体等から構成され得る。  The cell membrane damaging oligomer of the sixth invention is a cell membrane damaging monomer in which a plurality of the cell membrane damaging monomers are bonded by, for example, a hydroxyl group condensation reaction or the like, and the skeleton portion of the ring structure is glucose, fructose, galactose. Monosaccharide dimers (disaccharides), trimers (trisaccharides), monosaccharide multimers (oligosac power rides), dimers of hexanol, etc. Can be constructed.
本願発明者の研究により、 菌体膜傷害性オリゴマーは、 菌体膜傷害効果と、 一定の抗菌効果とを示すことが判明した。 そのメカニズムは次のようなものであ ると考えられる。  According to the research of the present inventor, it was found that the cell membrane damaging oligomer exhibits a cell membrane damaging effect and a certain antibacterial effect. The mechanism is thought to be as follows.
即ち、 菌体 II莫傷害性オリゴマーに結合したアミノ系官能基はプラスにイオン 化するので、 これが細菌の菌体膜におけるリン脂質のマイナス荷電部と相互作用 する。 併せて、 菌体膜傷害性オリゴマーにおけるリン脂質親和性の片側面が細菌 の菌体膜にアタックして菌体膜を傷害する。 しかも、 菌体膜の傷害は破壊的 (殺 菌的) なものではなく、 膜透過性を増大させる程度の部分的 (静菌的) な菌体膜 の傷害である。 これらの菌体膜傷害作用と並び、 菌体膜傷害性オリゴマーにおけ るァミノ系官能基の結合した片側面により一定の抗菌性が発揮される。 環構造の 化合物において、 その片側面にアミノ系官能基を局在化させた場合におけるこの ような効果は、 前記の文献 1や文献 2を含む各種の公知文献からは、 全く示唆さ れない。 In other words, the amino functional group bonded to the microbial cell II damaging oligomer is a positive ion. This interacts with the negatively charged part of the phospholipid in the bacterial cell membrane. At the same time, one side of the phospholipid affinity in the cell membrane damaging oligomer attacks the cell membrane of the bacteria and damages the cell membrane. Moreover, the damage to the cell membrane is not destructive (bactericidal), but is a partial (bacteriostatic) cell membrane injury that increases membrane permeability. Along with these cell membrane damaging effects, a certain antibacterial property is exhibited by one side surface of the cell membrane damaging oligomer to which an amino functional group is bonded. In a compound having a ring structure, such an effect in the case where an amino functional group is localized on one side of the compound is not suggested at all from various known documents including Document 1 and Document 2 described above.
菌体膜傷害性オリゴマーの菌体膜傷害効果や一定の抗菌効果は、 相対的に菌体 膜傷害性モノマーよりも強いものと推定される。 但し、 有効な効果を得るために は、 オリゴマーを構成する各モノマーにおいて、 アミノ系官能基を結合した環平 面が同じ方向を向いていることが好ましい。  It is presumed that the cell membrane damaging effect and certain antibacterial effect of the cell membrane damaging oligomer are relatively stronger than the cell membrane damaging monomer. However, in order to obtain an effective effect, in each monomer constituting the oligomer, it is preferable that the ring plane to which the amino functional group is bonded is directed in the same direction.
(第 7発明) (Seventh invention)
本願の第 7発明においては、 前記の第 6発明に係る菌体膜傷害性オリゴマー は、 菌体膜傷害性モノマーが連鎖状に 6〜 8単位結合したものである。  In the seventh invention of the present application, the cell membrane-damaging oligomer according to the sixth invention is a cell membrane-damaging monomer in which 6 to 8 units are linked in a chain.
菌体膜傷害性ォリゴマーにおけるモノマーの結合数は別段に限定されなレ、が、 6〜8単位程度のモノマーが連鎖状に結合したものが、 より好ましい。  The number of monomers bonded to the cell membrane-damaging oligomer is not particularly limited, but more preferably 6 to 8 units of monomers linked in a chain.
(第 8発明) (Eighth invention)
本願の第 8発明においては、 前記の第 7発明に係る菌体膜傷害性モノマーの 連鎖状結合体が環状の連鎖結合体である。  In the eighth invention of the present application, the chain-like conjugate of the cell membrane-damaging monomer according to the seventh invention is a cyclic linkage.
菌体膜傷害性オリゴマーを構成するモノマーが環状の連鎖結合体を構成し、 かつ、 各モノマーにおいてアミノ系官能基を結合した環平面が同じ方向を向いて いると、 オリゴマーの一方の環平面側におけるアミノ系官能基の集中密度が高い ために、 それらのアミノ系官能基のプラス荷電による菌体膜リン脂質のマイナス 荷電部との相互作用が強まると共に、 抗菌効果が相対的に強化され、 同時にオリ ゴマーの他方の環平面側の親油性 (リン脂質親和性) が高いために菌体膜傷害性 が相対的に強化される。 更に、 オリゴマーを構成する各モノマーが環状の連鎖結 合体を構成している場合は、 「各モノマーにおけるアミノ系官能基を結合した環 平面が同じ方向を向く」 と言う構造的条件が安定的に維持される。 When the monomer constituting the cell membrane damaging oligomer forms a cyclic linkage, and the ring plane to which the amino functional group is bonded in each monomer faces the same direction, one ring plane side of the oligomer Since the concentration density of amino functional groups is high, the interaction with the negatively charged portion of the cell membrane phospholipid due to the positive charge of these amino functional groups is strengthened, and the antibacterial effect is relatively enhanced. Ori Due to the high lipophilicity (phospholipid affinity) of the other ring plane side of sesame, the cell membrane damage is relatively enhanced. Furthermore, when each monomer constituting the oligomer forms a cyclic chain bond, the structural condition that “the ring plane to which the amino functional group in each monomer is bonded is directed in the same direction” is stable. Maintained.
(第 9発明) (9th invention)
本願の第 9発明においては、 前記の第 8発明に係る環状の連鎖結合体が、 グ ルコース単位の環状の連鎖結合体たるシクロデキストリンである。  In the ninth invention of the present application, the cyclic chain conjugate according to the eighth invention is a cyclodextrin which is a cyclic chain conjugate of glucose units.
周知のようにシクロデキストリンは多数の D—ダルコビラノース基がグリコ シド結合によって王冠状に環化した連鎖結合体 (第 1図参照) であり、 菌体膜傷 害性オリゴマーとしては、 6〜8個のグルコース単位からなるシクロデキストリ ンが、 特に好ましい。  As is well known, cyclodextrin is a chain conjugate (see Fig. 1) in which a number of D-dalcobilanose groups are cyclized in a crown shape by glycosidic linkages. Cyclodextrins consisting of 8 glucose units are particularly preferred.
シクロデキストリンにおいては、 各グルコース単位での 6位 O H基側の環平 面における水酸基をァミノ系官能基に置換する度合いが高い程、 抗菌性及び菌体 膜障害性が強化される。  In cyclodextrin, the higher the degree of substitution of the hydroxyl group on the ring plane on the 6-position OH group side of each glucose unit with an amino functional group, the stronger the antibacterial and cell membrane damage properties.
(第 1 0発明) (Invention 10)
本願の第 1 0発明は、 第 1発明〜第 5発明のいずれかに係る菌体膜傷害性モ ノマー及び第 6発明〜第 9発明のいずれかに係る菌体膜傷害性ォリゴマーから選 ばれる 1種又は 2種以上を有効成分とする菌体膜傷害剤をグラム陽性菌に対して 用い、 抗菌効果を得る抗菌的菌体膜傷害方法である。  The tenth invention of the present application is selected from the cell membrane-damaging monomer according to any of the first to fifth inventions and the cell membrane-damaging oligomer according to any of the sixth to ninth inventions 1 This is an antibacterial cell membrane injury method that uses antibacterial membrane injury agents containing two or more species as active ingredients against Gram-positive bacteria to obtain an antibacterial effect.
大腸菌等のグラム陰性菌の菌体膜は外膜、 細胞壁及び内膜 (細胞質膜) から なり比較的に抗菌作用を受け難いが、 黄色ブドウ球菌や MR S A等のグラム陽性 菌の菌体膜は細胞壁及び内膜からなり、 外膜を持たないため、 相対的に菌体膜傷 害作用を受け易い。 本発明に係る菌体膜傷害性モノマーや菌体膜傷害性オリゴマ —は、 グラム陽性菌に対しては、 菌体膜傷害作用を通じて、 結果的に有効な殺菌 効果に到ることが確認されている。  The cell membrane of gram-negative bacteria such as E. coli consists of the outer membrane, cell wall, and inner membrane (cytoplasmic membrane) and is relatively less susceptible to antibacterial action. However, the cell membrane of gram-positive bacteria such as Staphylococcus aureus and MR SA Because it consists of cell walls and inner membrane and does not have outer membrane, it is relatively susceptible to cell membrane damage. It has been confirmed that the cell membrane damaging monomer and the cell membrane damaging oligomer according to the present invention result in an effective bactericidal effect on Gram-positive bacteria through the cell membrane damaging action. Yes.
第 1 0発明の菌体膜傷害剤において、 有効成分たる菌体膜傷害性モノマー及 び Z又は菌体膜傷害性オリゴマーは、 そのまま用いても良いし、 効果が維持され 薬学的に許容できる範囲において塩又は誘導体として用いることもできる。 叉、 増量剤、 保存剤、 あるいは p H安定剤等を含み得る。 更に、 菌体膜傷害剤の投与 剤型は限定されず、 例えば散剤、 錠剤、 カプセル剤、 液剤、 乳剤、 懸濁剤等の剤 型で投与することができる。 In the cell membrane damaging agent of the tenth invention, the cell membrane damaging monomer as an active ingredient and And Z or fungus membrane-damaging oligomers can be used as they are, or can be used as salts or derivatives within the range where the effect is maintained and pharmaceutically acceptable. It may also contain bulking agents, preservatives, pH stabilizers and the like. Furthermore, the dosage form of the cell membrane injury agent is not limited. For example, it can be administered in a dosage form such as a powder, a tablet, a capsule, a liquid, an emulsion, or a suspension.
しかも、 第 1 0発明の菌体膜傷害剤における有効成分は膜作動型機構により 抗菌性を示すため薬剤耐性を起こし難く、 かつ、 この種の公知の抗菌性物質であ るポリミキシン B等のような複雑な構造を有する天然物ではないために、 人工的 な大量製造が容易であり、 効果改良のための人工的な構造改変も技術的、 コスト 的に容易である。  In addition, the active ingredient in the cell membrane damaging agent of the invention of the tenth invention exhibits antibacterial properties through a membrane-actuated mechanism, so that it is difficult to cause drug resistance and such as polymyxin B which is a known antibacterial substance of this kind. Since it is not a natural product having a complicated structure, artificial mass production is easy, and artificial structural modification for improving the effect is technically and cost-effective.
(第 1 1発明) (First invention)
本願の第 1 1発明は、 第 1発明〜第 5発明のいずれかに係る菌体膜傷害性モ ノマー又は第 6発明〜第 9発明のいずれかに係る菌体膜傷害性オリゴマーに任意 の目的物質を結合させたもとで、 これを細菌に対して用い、 細菌の増殖能力を残 存させつつ菌体膜を傷害することにより前記目的物質を菌体内に導入させる静菌 的菌体膜傷害方法である。  The 11th invention of the present application provides any purpose for the cell membrane-damaging monomer according to any one of the 1st to 5th inventions or the cell membrane-damaging oligomer according to any of the 6th to 9th inventions. In a bacteriostatic cell membrane injury method in which a substance is bound and used against bacteria, and the target substance is introduced into the cell body by damaging the cell membrane while retaining the growth ability of the bacteria. is there.
第 1 1発明は、 菌体膜傷害性モノマー又は菌体膜傷害性オリゴマーが静菌的 な菌体膜傷害性を示すと言う本願発明者の新規な知見に基づいて、 初めて着想す ることが可能になった発明である。  The first invention can be conceived for the first time based on the novel knowledge of the present inventor that the cell membrane-damaging monomer or cell membrane-damaging oligomer exhibits bacteriostatic cell membrane toxicity. It is an invention that has become possible.
前記のように、 これらの菌体膜傷害性物質 (菌体膜傷害性モノマー/オリゴ マー) は、 細菌に増殖能力を残存させつつその菌体膜を傷害する。 即ち、 菌体膜 の傷害が破壊的なものではなく、 膜透過性を増大させる程度の部分的な菌体膜の 傷害である。 従って、 これらの菌体膜傷害性物質に任意の目的物質を結合させる と、 菌体膜傷害性物質がベクターとなって、 菌体内に対する D D S (ドラッグ ' デリバリー .システム) を容易に実現することができる。 目的物質の種類は任意 に選択することができ、 限定されない。 好ましい目的物質として、 菌の形質転換 に資する、 遺伝子、 蛋白質 (抗体や酵素等) 、 無機化合物、 有機化合物等を例示 することができる As described above, these cell membrane-damaging substances (cell membrane-damaging monomers / oligomers) damage the cell membrane while allowing the bacteria to survive. That is, the damage of the cell membrane is not destructive, but is a partial cell membrane damage that increases the membrane permeability. Therefore, when any target substance is bound to these cell membrane damaging substances, the cell membrane damaging substances can be used as vectors to easily realize DDS (drug delivery system) for the cells. it can. The type of target substance can be arbitrarily selected and is not limited. Examples of preferred target substances include genes, proteins (antibodies, enzymes, etc.), inorganic compounds, and organic compounds that contribute to bacterial transformation can do
(第 1 2発明) (Invention 12)
本願の第 1 2発明は、 第 1発明〜第 5発明のいずれかに係る菌体膜傷害性モ ノマー及び第 6発明〜第 9発明のいずれかに係る菌体膜傷害性ォリゴマーから選 ばれる 1種又は 2種以上と、 任意の抗菌性物質あるいは抗生物質の 1種又は 2種 以上とを有効成分とする菌体膜傷害 ·抗菌剤である。  The first and second inventions of the present application are selected from the cell membrane-damaging monomers according to any one of the first to fifth inventions and the cell membrane-damaging oligomers according to any of the sixth to ninth inventions 1 It is a cell membrane injury / antibacterial agent comprising as an active ingredient a species or two or more species and one or more of any antibacterial or antibiotics.
第 1 2発明は、 菌体膜傷害性モノマー又は菌体膜傷害性オリゴマーが菌体膜 傷害性を示すと言う本願発明者の新規な知見に基づいて、 初めて着想することが 可能になった発明である。  The 12th invention is an invention that can be conceived for the first time on the basis of the novel knowledge of the present inventor that a cell membrane-damaging monomer or cell membrane-damaging oligomer exhibits cell membrane toxicity. It is.
即ち、 これらの菌体膜傷害性物質は、 それ自体として必ずしも破壊的な菌体 膜傷害作用は示さないが、 細菌の菌体膜を傷害して膜透過性を増大させる。 その 結果、 任意の抗菌性物質あるいは抗生物質を併用した場合、 これらの物質の抗菌 効果が障害なく発揮されるのである。  That is, these cell membrane damaging substances do not necessarily show destructive cell membrane damaging action by themselves, but damage the bacterial cell membrane and increase the membrane permeability. As a result, when any antibacterial substances or antibiotics are used in combination, the antibacterial effects of these substances are exhibited without hindrance.
しかも、 菌体膜傷害性物質が膜作動型であるため病原菌が対応し難く、 菌体 膜傷害性物質と併用される抗菌性物質あるいは抗生物質に対して耐性菌が出現し 難いと言う利点がある。  Moreover, since the cell membrane damaging substances are membrane-operated, pathogens are difficult to cope with, and it is difficult to produce resistant bacteria against antibacterial substances or antibiotics used in combination with cell membrane damaging substances. is there.
第 1 2発明の菌体膜傷害,抗菌剤において、 有効成分たる菌体膜傷害性物質 や抗菌性物質あるいは抗生物質はそのまま用いても良いし、 効果が維持され薬学 的に許容できる範囲において塩又は誘導体として用いることもできる。 叉、 増量 剤、 保存剤、 あるいは p H安定剤等を含み得る。 更に、 菌体膜傷害剤の投与剤型 は限定されず、 例えば散剤、 錠剤、 カプセル剤、 液剤、 乳剤、 懸濁剤等の剤型で 投与することができる。  In the cell membrane injury / antibacterial agent of the 12th invention, the cell membrane injury substance, the antibacterial agent or the antibiotic which is the active ingredient may be used as it is, or the salt is maintained within the range where the effect is maintained and pharmaceutically acceptable. Alternatively, it can be used as a derivative. In addition, a bulking agent, a preservative, or a pH stabilizer may be included. Furthermore, the dosage form of the cell membrane injury agent is not limited. For example, it can be administered in dosage forms such as powders, tablets, capsules, solutions, emulsions, suspensions and the like.
(第 1 3発明) (Invention 13)
本願の第 1 3発明においては、 前記の第 1 2発明に係る抗菌性物質あるいは 抗生物質が菌体膜非透過性のものである。  In the thirteenth invention of the present application, the antibacterial substance or antibiotic according to the first and second inventions is a cell membrane impermeable substance.
上記した第 1 2発明に係る菌体膜傷害 ·抗菌剤において、 菌体膜傷害性物質 と併用する抗菌性物質あるいは抗生物質の種類は限定されないが、 菌体膜非透過 性の抗菌性物質あるいは抗生物質との併用が、 特に効果的である。 Bacterial membrane injury / antibacterial agent according to the above-mentioned first and second inventions, There are no restrictions on the type of antibacterial or antibiotic used in combination, but the combination with an antibacterial or antibiotic that is impermeable to the bacterial membrane is particularly effective.
(第 1 4発明) (14th invention)
本願の第 1 4発明においては、 前記の第 1 3発明に係る菌体膜非透過性の抗 菌性物質あるレ、は抗生物質が、 エリスロマイシン又はノボピオシンである。  In the 14th invention of the present application, the antibacterial substance impermeable to the cell membrane according to the 13th invention, wherein the antibiotic is erythromycin or novopyocin.
エリスロマイシンゃノボピオシンは、 優れた抗菌作用を持ちながら、 菌体膜 非透過性であるために、 その有用性が制約されている。 従って、 これらを本発明 に係る菌体膜傷害性物質と併用することが、 極めて好ましい。  Erythromycin Novopiocin has excellent antibacterial activity, but its cell membrane impermeability, so its usefulness is limited. Therefore, it is very preferable to use these in combination with the cell membrane damaging substance according to the present invention.
(第 1 5発明) (15th invention)
本願の第 1 5発明は、 第 1 2発明〜第 1 4発明のいずれかに係る菌体膜傷 害 ·抗菌剤をグラム陽性菌又はグラム陰性菌に対して用い、 抗菌効果を得る抗菌 方法である。  The 15th invention of the present application is an antibacterial method for obtaining an antibacterial effect by using the antibacterial membrane damage / antibacterial agent according to any of the 12th invention to the 14th invention against a gram positive bacterium or a gram negative bacterium. is there.
本発明に係る菌体膜傷害性物質 (菌体膜傷害性モノマー及び菌体膜傷害性ォ リゴマー) は、 その抗菌効果においてグラム陰性菌に対しては必ずしも有効では ないが、 菌体膜傷害性に関してはグラム陽性菌又はグラム陰性菌に対して有効で ある。 従って、 この物質を抗菌性物質あるいは抗生物質と併用した菌体膜傷害 ' 抗菌剤は、 グラム陽性菌又はグラム陰性菌のいずれに対しても有効に抗菌作用を 発揮することができる。  The cell membrane damaging substance (cell membrane damaging monomer and cell membrane damaging oligomer) according to the present invention is not necessarily effective against Gram-negative bacteria in its antibacterial effect, Is effective against Gram-positive or Gram-negative bacteria. Therefore, an antibacterial agent that damages the cell membrane using this substance in combination with an antibacterial substance or an antibiotic can effectively exert an antibacterial action against either gram-positive bacteria or gram-negative bacteria.
とりわけ、 3層からなる丈夫な菌体膜を備えるグラム陰性菌に対しては、 菌体 膜傷害性物質 (菌体膜傷害性モノマー又は菌体膜傷害性オリゴマー) によって菌 体膜を傷害し膜透過性を高めたもとで、 菌体内に進入した抗菌性物質、 抗生物質 の抗菌作用が十分に発揮されると言う効果的な役割分担がなされるため、 第 1 5 発明の抗菌方法が特に有効である。  In particular, for gram-negative bacteria with a strong cell membrane consisting of three layers, the membrane is damaged by a cell membrane-damaging substance (a cell membrane-damaging monomer or cell membrane-damaging oligomer). The antibacterial method according to the 15th invention is particularly effective because the effective role sharing that the antibacterial action of the antibacterial substances and antibiotics that have entered the cells is fully exerted under the increased permeability is achieved. is there.
(第 1 6発明) (Invention 16)
本願の第 1 6発明は、 多量体化が可能な炭素環構造又は炭素/酸素複素環構 造を有すると共に、 環平面の片側においては多量体化結合に関与しない 2個以上 の炭素原子に対して芳香環を含有するァミノ系官能基を結合し、 環平面の他の片 側においてはリン脂質親和性を示す化合物であって、 菌体膜傷害性と強い抗菌性 とを併せ持つ菌体膜傷害 ·抗菌性モノマーである。 The 16th invention of the present application relates to a carbocyclic structure or carbon / oxygen heterocyclic structure capable of multimerization. In addition, an amino functional group containing an aromatic ring is bonded to two or more carbon atoms that do not participate in multimerization bonding on one side of the ring plane, and phosphorus is bonded on the other side of the ring plane. It is a compound showing lipophilicity, and is a cell membrane damage / antibacterial monomer that has both cell membrane damage and strong antibacterial properties.
第 1 6発明において、 「炭素環構造」 、 「炭素 Z酸素複素環構造」 、 「リン 脂質親和性を示す」 の意味は第 1発明の場合と同じである。  In the 16th invention, the meanings of “carbocyclic structure”, “carbon Z oxygen heterocyclic structure” and “showing phospholipid affinity” are the same as in the first invention.
本願発明者の研究により、 前記した菌体膜傷害性モノマーの内、 芳香環を含 有するァミノ系官能基を 2個以上結合したものは、前記した菌体膜傷害性と共に、 強い抗菌性を示すことが判明した。 炭素環構造又は炭素 酸素複素環構造を有す ると共に環平面の片側には芳香環を含有するアミノ系官能基を 2個以上結合した 化合物は、 抗菌性物質としては今まで知られていないので、 第 1 6発明によって 新規で強力な菌体膜傷害 ·抗菌性物質が提供される。  According to the research of the present inventor, among the above-mentioned cell membrane-damaging monomers, those having two or more amino functional groups containing an aromatic ring exhibit strong antibacterial properties along with the above-mentioned cell membrane membrane-damaging properties. It has been found. A compound having a carbocyclic structure or a carbon-oxygen heterocyclic structure and having two or more amino functional groups containing an aromatic ring bonded to one side of the ring plane has not been known as an antibacterial substance. The 16th invention provides a novel and powerful cell membrane damage / antibacterial substance.
第 1 6発明に係る菌体膜傷害 ·抗菌性モノマーが強い抗菌性を示す理由は、 研究中であって解明されていないが、 アミノ系官能基における芳香環が官能基に 疎水性をもたらすため、 菌体膜リン脂質の疎水部に強くアタックする結果、 著し く菌体膜を傷害して、 強い抗菌性を示すと考えられる。  Cell membrane damage according to the 16th invention · The reason why the antibacterial monomer exhibits strong antibacterial properties is under investigation and has not been elucidated, but the aromatic ring in the amino functional group brings hydrophobicity to the functional group. As a result of a strong attack on the hydrophobic part of the cell membrane phospholipid, it is considered that the cell membrane is severely damaged and exhibits strong antibacterial properties.
(第 1 7発明) (Invention 17)
本願の第 1 7発明においては、 前記の第 1 6発明に係る芳香環を含有するァ ミノ系官能基が、 ベンジルァミノ基である。  In the seventeenth invention of the present application, the amino functional group containing an aromatic ring according to the sixteenth invention is a benzylamino group.
上記した第 1 6発明において、 芳香環を含有するァミノ系官能基の種類は限 定されないが、 ベンジルァミノ基が特に好ましい。 このベンジルァミノ基には、 発明の効果を阻害しない範囲において、 芳香環に任意の官能基が結合したベンジ ルァミノ基誘導体も包含される。  In the above 16th invention, the kind of an amino functional group containing an aromatic ring is not limited, but a benzylamino group is particularly preferred. The benzylamino group includes a benzylamino group derivative in which any functional group is bonded to an aromatic ring as long as the effect of the invention is not inhibited.
(第 1 8発明) (Invention 18)
本願の第 1 8発明は、 第 1 6発明又は第 1 7発明に係る菌体膜傷害 ·抗菌性 モノマーが 2単位以上結合し、 各モノマーにおける芳香環を含有するァミノ系官 能基を結合した環平面が同じ方向を向いている化合物であって、 菌体膜傷害性と 強い抗菌性とを併せ持つ菌体膜傷害 ·抗菌性オリゴマ一である。 The 18th invention of the present application is an amino official who contains two or more units of the cell membrane damage / antibacterial monomer according to the 16th invention or the 17th invention and contains an aromatic ring in each monomer. It is a compound in which the ring plane to which the functional group is bonded is oriented in the same direction, and is a cell membrane injury / antibacterial oligomer that has both cell membrane damage and strong antibacterial properties.
第 1 8発明の菌体膜傷害 ·抗菌性オリゴマ一は、 前記菌体膜傷害 ·抗菌性モ ノマーが例えば水酸基の縮合反応等により複数結合したものであり、 その環構造 の骨格部分は、 例えば、 グルコース、 フルク トース、 ガラク トース等の 1種又は 2種以上からなる単糖類の 2量体 (2糖類) 、 3量体 (3糖類) 、 単糖類の多量 体 (オリゴサッカライド) あるいはシクロへキサノールの 2量体等から構成され 得る。 。  The cell membrane injury / antibacterial oligomer according to the eighteenth aspect of the invention is a combination of a plurality of the cell membrane injury / antibacterial monomers by, for example, a hydroxyl group condensation reaction. Dimers (disaccharides), trimers (trisaccharides), monosaccharides (oligosaccharides), or cyclohexanols of monosaccharides consisting of one or more of glucose, fructose, galactose, etc. It may be composed of a dimer or the like. .
菌体膜傷害性オリゴマーの菌体膜傷害効果や抗菌効果は、 菌体膜傷害■抗菌性 モノマーよりも更に強い。 但し、 有効な効果を得るためには、 オリゴマーを構成 する各モノマーにおいて、 芳香環を含有するァミノ系官能基を結合した環平面が 同じ方向を向いていることが好ましい。  Bacterial membrane damage and antibacterial effects of bacterial membrane damage oligomers are even stronger than those of cell membrane damage and antibacterial monomers. However, in order to obtain an effective effect, in each monomer constituting the oligomer, it is preferable that ring planes to which an amino functional group containing an aromatic ring is bonded face the same direction.
(第 1 9発明) (Invention 19)
本願の第 1 9発明においては、 前記の第 1 8発明に係る菌体膜傷害 '抗菌性 オリゴマーが、 菌体膜傷害 ·抗菌性モノマーが連鎖状に 6〜8単位結合したもの である。  In the nineteenth invention of the present application, the bacterial membrane injury / antibacterial oligomer according to the eighteenth invention is a combination of 6-8 units of bacterial membrane injury / antibacterial monomers linked in a chain.
菌体膜傷害 ·抗菌性オリゴマーにおけるモノマーの結合数は別段に限定され ないが、 6〜8単位程度のモノマーが連鎖状に結合したものが好ましい。  Bacterial membrane damage · The number of monomer bonds in the antibacterial oligomer is not particularly limited, but it is preferably one in which about 6 to 8 units of monomers are linked in a chain.
(第 2 0発明) (20th invention)
本願の第 2 0発明においては、 前記の第 1 9発明に係る菌体膜傷害 ·抗菌性 オリゴマーが、 菌体膜傷害 ·抗菌性モノマーの環状の連鎖結合体である。  In the 20th invention of the present application, the cell membrane injury / antibacterial oligomer according to the 19th invention is a cyclic chain conjugate of the cell membrane injury / antibacterial monomer.
菌体膜傷害 ·抗菌性オリゴマーを構成するモノマーが環状の連鎖結合体を構 成し、 力つ、 各モノマーにおいて芳香環を含有するァミノ系官能基を結合した環 平面が同じ方向を向いていると、 オリゴマーの一方の環平面側における芳香環を 含有するァミノ系官能基の集中密度が高いために抗菌効果が特に強化され、 同時 に、 オリゴマーの他方の環平面側の親油性 (リン脂質親和性) が高いために菌体 膜傷害性が特に強化される。 更に、 オリゴマーを構成する各モノマ一が環状の連 鎖結合体を構成していると、 「各モノマーにおける芳香環を含有するアミノ系官 能基を結合した環平面が同じ方向を向いている」 と言う構造的条件が安定的に維 持される。 Bacterial membrane damage · Monomers constituting antibacterial oligomers form a cyclic linkage, and the ring plane in which each monomer is bonded to an amino functional group containing an aromatic ring faces the same direction. And the antibacterial effect is particularly enhanced due to the high concentration density of the amino functional group containing an aromatic ring on one ring plane side of the oligomer. At the same time, the lipophilicity (phospholipid affinity on the other ring plane side of the oligomer) Cell) due to its high Membrane damage is particularly enhanced. Furthermore, when each monomer constituting the oligomer forms a cyclic linkage, “the ring planes to which amino functional groups containing aromatic rings in each monomer are bonded face the same direction.” The structural condition is maintained stably.
(第 2 1発明) (Second invention)
本願の第 2 1発明においては、 前記の第 2 0発明に係る菌体膜傷害■抗菌性 オリゴマーにおける環状の連鎖結合体がシクロデキストリンである。  In the 21st invention of the present application, the cyclic chain conjugate in the membrane damage / antibacterial oligomer according to the 20th invention is a cyclodextrin.
シクロデキストリンは前記した通りのものであるが、 菌体膜傷害 ·抗菌性ォ リゴマーとしては、 環状の連鎖結合体がシクロデキストリンであるものが、 特に 好ましい。  The cyclodextrin is as described above, but as the cell membrane damage / antibacterial oligomer, those in which the cyclic chain conjugate is cyclodextrin are particularly preferable.
シクロデキストリンを構成する各グルコースにおける 6位 O H基側の水酸基 の大部分ないし全部を前記のベンジルァミノ基で置換したものは、 非常に優れた 菌体膜傷害 ·抗菌性を示し、 グラム陽性菌に対してはもちろん有効であるが、 グ ラム陰性菌に対しても有効な抗菌性を示す場合がある。  Substituting most or all of the hydroxyl groups on the 6-position OH group side of each glucose constituting cyclodextrin with the above benzylamino group exhibits excellent cell membrane damage and antibacterial properties, and against gram-positive bacteria. Of course, it is effective, but it may show effective antibacterial properties against gram-negative bacteria.
(第 2 2発明) (Second invention)
本願の第 2 2発明は、 第 1 6発明又は第 1 7発明に係る菌体)]莫傷害■抗菌性 モノマー及び第 1 8発明〜第 2 1発明のいずれかに係る菌体膜傷害 ·抗菌性オリ ゴマーから選ばれる 1種又は 2種以上を有効成分とする菌体膜傷害 ·抗菌剤であ る。  The 22nd invention of the present application is the fungus body according to the 16th invention or the 17th invention)] injuries ■ antibacterial monomers and cell membrane damage / antibacterial according to any of the 18th invention to the 21st invention A cell membrane injury / antibacterial agent comprising one or more selected from sex oligomers as an active ingredient.
第 2 2発明によって、 優れた菌体膜傷害性と強い抗菌性を併せ持つ、 新規な 菌体膜傷害 '抗菌剤が提供される。 この菌体膜傷害 ·抗菌剤において、 有効成分 たる菌体膜傷害■抗菌性モノマー及び/又は菌体膜傷害■抗菌性オリゴマ一は、 そのまま用いても良いし、 効果が維持され薬学的に許容できる範囲において塩又 は誘導体として用いることもできる。 叉、 増量剤、 保存剤、 あるいは p H安定剤 等を含み得る。 更に、 菌体膜傷害剤の投与剤型は限定されず、 例えば散剤、 錠剤、 カプセル剤、 液剤、 乳剤、 懸濁剤等の剤型で投与することができる。 しかも、 第 2 2発明の菌体膜傷害剤における有効成分は膜作動型機構により 抗菌性を示すため薬剤耐性を起こし難く、 力つ、 この種の公知の抗菌性物質であ るポリ ミキシン B等のような複雑な構造を有する天然物ではないために、 人工的 な大量製造が容易であり、 効果改良のための人工的な構造改変も技術的、 コス ト 的に容易である。 The 22nd invention provides a novel antibacterial agent for cell membrane injury that has both excellent cell membrane injury and strong antibacterial properties. In this antibacterial agent / antibacterial agent, the active ingredient cell membrane damage, antibacterial monomer and / or cell membrane injury, antibacterial oligomer can be used as they are, and the effect is maintained and pharmaceutically acceptable. To the extent possible, it can also be used as a salt or a derivative. In addition, it may contain a bulking agent, a preservative, or a pH stabilizer. Furthermore, the dosage form of the cell membrane damaging agent is not limited, and for example, it can be administered in dosage forms such as powders, tablets, capsules, liquids, emulsions, suspensions and the like. In addition, the active ingredient in the cell membrane damaging agent of the second aspect of the invention exhibits antibacterial properties through a membrane-actuated mechanism, and thus is difficult to cause drug resistance. Since it is not a natural product having such a complicated structure, artificial mass production is easy, and artificial structural modification for improving the effect is technically and cost-effective.
(第 2 3発明) (Second invention)
本願の第 2 3発明は、 第 1 6発明又は第 1 7発明に係る菌体膜傷害 ·抗菌性 モノマー及び第 1 8発明〜第 2 1発明のいずれかに係る菌体膜傷害 .抗菌性オリ ゴマーから選ばれる 1種又は 2種以上と、 任意の抗菌性物質あるいは抗生物質の 1種又は 2種以上とを有効成分とする菌体膜傷害 ·抗菌剤である。  The second invention of the present application is the fungus membrane injury / antibacterial monomer according to the 16th invention or the 17th invention, and the fungus membrane injury according to any of the 18th invention to the 21st invention. A cell membrane injury / antibacterial agent comprising one or more selected from sesame and one or more of any antibacterial or antibiotics as active ingredients.
第 2 3発明は、 菌体膜傷害■抗菌性モノマー又は菌体膜傷害■抗菌性オリゴ マーが強い抗菌性と共に優れた菌体膜傷害性を示すと言う本願発明者の新規な知 見に基づいて、 初めて着想することが可能になった発明である。  The 23rd invention is based on the novel knowledge of the present inventor that cell membrane injury, antibacterial monomer or cell membrane injury, and antibacterial oligomer exhibit excellent cell membrane damage as well as strong antibacterial properties. This is the first invention that can be conceived.
即ち、 これらの菌体膜傷害■抗菌性物質 (菌体膜傷害,抗菌性モノマー及び Z又は菌体)]莫傷害 ·抗菌性オリゴマー) は、 それ自体として優れた抗菌作用を示 すと共に、 細菌の菌体膜を傷害して膜透過性を増大させる。 その結果、 任意の抗 菌性物質あるいは抗生物質を併用した場合、 これらの抗菌効果も有効に働くため、 両者の抗菌作用が相乗的に発揮され、 全体として極めて強力な抗菌作用を期待で きる。  In other words, these bacterial membrane damages ■ antibacterial substances (bacterial membrane injury, antibacterial monomer and Z or fungal body)] huge injury / antibacterial oligomer) itself show excellent antibacterial action and bacteria The membrane permeability is increased by damaging the cell membrane. As a result, when any antibacterial substance or antibiotic is used in combination, these antibacterial effects also work effectively, so that both antibacterial effects are exerted synergistically, and an extremely strong antibacterial action can be expected as a whole.
し力 も、 菌体膜傷害 ·抗菌性物質が膜作動型であるため病原菌が対応し難く、 菌体膜傷害 ·抗菌性物質と併用される抗菌性物質あるいは抗生物質に対して耐性 菌が出現し難いと言う利点がある。  Cell membrane damage · Antibacterial substances are membrane-acting, so pathogens are difficult to cope with. Bacterial membrane injury · Bacteria resistant to antibiotics or antibiotics used in combination with antibacterial substances There is an advantage that it is difficult to do.
第 2 3発明の菌体膜傷害 ·抗菌剤において、 有効成分たる菌体膜傷害 ·抗菌 性物質や抗菌性物質あるいは抗生物質はそのまま用いても良いし、 効果が維持さ れ薬学的に許容できる範囲において塩又は誘導体として用いることもできる。叉、 増量剤、 保存剤、 あるいは p H安定剤等を含み得る。 更に、 菌体膜傷害剤の投与 剤型は限定されず、 例えば散剤、 錠剤、 カプセル剤、 液剤、 乳剤、 懸濁剤等の 剤型で投与することができる。 (第 2 4発明) In the antibacterial agent of the second aspect of the invention, the antimicrobial agent may be used as it is, or the antibacterial substance, antibacterial substance or antibiotic may be used as it is, and the effect is maintained and pharmaceutically acceptable. It can also be used as a salt or derivative in the range. It may also contain bulking agents, preservatives, pH stabilizers and the like. Furthermore, the dosage form of the cell membrane damaging agent is not limited. For example, powders, tablets, capsules, liquids, emulsions, suspensions, etc. It can be administered in dosage form. (24th invention)
本願の第 2 4発明においては、 前記の第 2 3発明に係る抗菌性物質あるいは 抗生物質が菌体膜非透過性のものである。  In the 24th invention of the present application, the antibacterial substance or the antibiotic according to the 23rd invention is a cell membrane impermeable substance.
上記した第 2 3発明に係る菌体膜傷害 ·抗菌剤において、 菌体膜傷害 ·抗菌 性物質と併用する抗菌性物質あるいは抗生物質の種類は限定されないが、 菌体膜 非透過性の抗菌性物質あるいは抗生物質との併用が、 特に効果的である。  In the above-mentioned cell membrane injury / antibacterial agent according to the second aspect of the invention, the type of antibacterial substance or antibiotic used in combination with the cell membrane injury / antibacterial agent is not limited, but the cell membrane membrane has non-permeability antibacterial properties Combination with substances or antibiotics is particularly effective.
(第 2 5発明) (25th invention)
本願の第 2 5発明においては、 前記の第 2 4発明に係る菌体膜非透過性の抗 菌性物質あるいは抗生物質が、 エリスロマイシン又はノボビォシンである。  In the 25th invention of the present application, the antibacterial substance or antibiotic that is impermeable to cell membranes according to the 24th invention is erythromycin or novobiocin.
エリスロマイシンゃノボピオシンは、 優れた抗菌作用を持ちながら、 菌体膜 非透過性であるために、 その有用性が制約されている。 従って、 これらを本発明 に係る菌体膜傷害 ·抗菌性物質と併用することが、 極めて好ましい。  Erythromycin Novopiocin has excellent antibacterial activity, but its cell membrane impermeability, so its usefulness is limited. Therefore, it is extremely preferable to use these in combination with the cell membrane injury / antibacterial substance according to the present invention.
(第 2 6発明) (26th invention)
本願の第 2 6発明は、 第 2 2発明〜第 2 5発明のいずれかに係る菌体膜傷 害■抗菌剤をグラム陽性菌又はグラム陰性菌に対して用い、 抗菌効果を得る抗菌 方法である。  The 26th invention of the present application is an antibacterial method for obtaining an antibacterial effect by using an antibacterial agent against Gram-positive bacteria or Gram-negative bacteria according to any one of the 22nd to 25th inventions. is there.
本発明に係る菌体膜傷害 ·抗菌性物質 (菌体膜傷害 ·抗菌性モノマー及び菌 体膜傷害 '抗菌性オリゴマー) は、 グラム陽性菌に対して有効なことはもちろん であるが、 グラム陰性菌にも有効に抗菌作用を発揮する場合がある。  The cell membrane injury / antibacterial substance (cell membrane injury / antibacterial monomer and cell membrane injury 'antibacterial oligomer) according to the present invention is not only effective against gram positive bacteria but also gram negative In some cases, antibacterial action is also effective against bacteria.
叉、 この菌体膜傷害 '抗菌性物質に加えて、 グラム陽性菌及び/又はグラム 陰性菌に対して有効な任意の抗菌性物質あるいは抗生物質と併用すれば、 グラム 陽性菌又はグラム陰性菌に対して更に有利な抗菌効果を得ることができる。  In addition to this bacterial membrane damage 'antibacterial substance', in combination with any antibacterial substance or antibiotic effective against gram positive bacteria and / or gram negative bacteria, A more advantageous antibacterial effect can be obtained.
〔図面の簡単な説明〕 第 1図はシクロデキス トリンの立体構造を簡略化して示す。 第 2図は実施例 の効果を示す一覧表である。 第 3図は実施例の効果を示す一覧表である。 [Brief description of the drawings] Fig. 1 shows a simplified structure of cyclodextrin. FIG. 2 is a list showing the effects of the embodiment. FIG. 3 is a list showing the effects of the embodiment.
〔実施例〕 〔Example〕
(実施例 1 ) (Example 1)
本実施例は、 ォクタキス (6—ベンジノレアミノ) 一γ—シクロデキス トリン の合成に関するものである。  This example relates to the synthesis of octakis (6-benzenoreamino) 1γ-cyclodextrin.
ォクタキス (6— Ο—トシル) 一 γ—シクロデキストリン(150 mg, 5. 93 X I 0一5 mol) に減圧蒸留したベンジルァミン ( 24 ml) を加え、 9 0 ° Cにて 4 5時 間撹拌した。 その後、 反応溶液を減圧留去し、 生じた残渣に水 ( 1ml) を加えた。 これを lmol/1 塩酸水溶液にて中和後、 生じた沈殿をろ去して得られた溶液をゲ ルろ過クロマトグラフィー処理することにより、 ォクタキス (6—ベンジルアミ ノ) 一 γ—シクロデキストリンの白色固体 ( 11. 8 mg) を得た。 この構造は、 3 0 0 MHz プロ トン—核磁気共鳴スぺク トルにより決定した。 Okutakisu (6- o-tosyl) Single γ- cyclodextrin (150 mg, 5. 93 XI 0 one 5 mol) vacuum distilled Benjiruamin the (24 ml) was added, and stirred between 4:00 5 at 9 0 ° C . Thereafter, the reaction solution was distilled off under reduced pressure, and water (1 ml) was added to the resulting residue. After neutralizing this with lmol / 1 hydrochloric acid aqueous solution, the resulting precipitate was filtered off and the solution obtained by gel filtration chromatography was used to obtain white octakis (6-benzylamino) γ-cyclodextrin. A solid (11.8 mg) was obtained. This structure was determined by a 300 MHz proton-nuclear magnetic resonance spectrum.
(実施例 2 ) (Example 2)
本実施例は、 ォクタキス (6—ァミノ) 一γ—シクロデキス トリン、 ヘプタ キス (6—ァミノ) 一 |3—シクロデキストリン、 へキサキス (6—ァミノ) 一 α —シクロデキス トリン、 ォクタキス (6—ベンジルァミノ) 一 γ—シクロデキス トリン、 ヘプタキス (6—ベンジルァミノ) 一 /3—シクロデキストリン、 及び、 へキサキス (6—ベンジルァミノ) 一a—シクロデキストリンによる抗菌性に関 するものである。  In this example, octakis (6-amino) 1γ-cyclodextrin, heptakis (6-amino) 1 | 3-cyclodextrin, hexakis (6-amino) 1 α-cyclodextrin, octakis (6-benzylamino) 1 γ-cyclodextrin, heptakis (6-benzylamino) 1 / 3-cyclodextrin, and hexakis (6-benzylamino) 1 a-cyclodextrin.
大腸菌 K12, W3110株は 1 %ポリペプトンを含む最小塩培地中で 3 7 ° C、 好気的条件で培養した。 黄色ブドウ球菌 209P株は、 0· 5 %肉エキス、 1. 5 %ポ リペプトン、 0. 5 %塩化ナトリウムおよび 0. 5 %リン酸水素二カリウムを含む液 体培地で培養した。 菌は生理食塩水で希釈し測定に用いた。 MIC は微量液体希釈 による方法で測定した。 また、 このとき薬剤は精製水で 2倍希釈系列を作製した ものを用いた。 1 X 104 コ ( 「コ」 は、 菌の個数を意味する) に希釈した菌は、 Mueller-Hinton培地 (Difco ) で、 3 7度 C、 2 0時間インキュベーションした。 MIC は菌が増殖できなかった最も低い薬剤濃度で定めた。 Escherichia coli K12 and W3110 were cultured in a minimal salt medium containing 1% polypeptone at 37 ° C under aerobic conditions. Staphylococcus aureus 209P strain, 0 - 5% meat extract, 1.5% Po Ripeputon were cultured in liquids medium containing 0.5% sodium chloride and 0.5% dipotassium hydrogen phosphate. The bacteria were diluted with physiological saline and used for measurement. The MIC was measured by a method based on micro liquid dilution. At this time, the drug was prepared in a 2-fold dilution series with purified water. A thing was used. Bacteria diluted to 1 × 10 4 (“C” means the number of bacteria) were incubated in Mueller-Hinton medium (Difco) at 37 ° C. for 20 hours. The MIC was determined at the lowest drug concentration at which the bacteria could not grow.
その結果、 前の三者の大腸菌 (グラム陰性菌) 及び黄色ブドウ球菌 (グラム 陽性菌) に対する最小生育阻止濃度 (MIC ) は 128 g/ml以上であった。 これに 対し、 後三者の最小生育阻止濃度は順に、 大腸菌 (グラム陰性菌) に対して 64、 6 4、 32 g/ml, 黄色ブドウ球菌 (グラム陽性菌) に対して 4、 4、 8 g/mlと、 グ ラム陽性菌に対して顕著な抗菌性を示した。  As a result, the minimum growth inhibitory concentration (MIC) for E. coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria) of the former three was 128 g / ml or more. On the other hand, the minimum growth inhibitory concentrations of the latter three are 64, 64, 32 g / ml for Escherichia coli (Gram-negative bacteria) and 4, 4, 8 for Staphylococcus aureus (Gram-positive bacteria), respectively. The antibacterial activity was remarkable against gram positive bacteria at g / ml.
(実施例 3 ) (Example 3)
本実施例は、 ォクタキス (6—ァミノ) 一 γ—シクロデキストリン、 ヘプタ キス (6—ァミノ) 一 ]3—シクロデキストリン、 及びへキサキス (6—ァミノ) _ α—シクロデキストリンによる細菌の細胞膜透過性増大作用に関するものであ る。 This example shows octakis (6-amino) 1 γ-cyclodextrin, heptakis (6-amino) 1] 3-cyclodextrin, and hexakis (6-amino) _ α -cyclodextrin for bacterial cell membrane permeability. This is related to the increase effect.
大腸菌は K12, W3110株を、 黄色ブドウ球菌は 209Ρ株をそれぞれ用いた。 大腸菌 K12, W3110 株は 1 %ポリペプトンを含む最小塩培地中で 3 7 ° C、 好気 的条件で培養した。 黄色ブドウ球菌 209P株は、 0. 5 °/0肉エキス、 1. 5 %ポリべ プトン、 0. 5 %塩化ナトリゥムおよび 0. 5 %リン酸水素二力リゥムを含む液体培 地で培養した。 対数増殖期で集菌した菌は、 緩衝液 (lOOmM塩化コリン、 50mM M0PS-TRIS (pH7. 2) ) で二回洗浄後、 同じ緩衝液でタンパク濃度 10mg/mlとなる ように懸濁させた。 大腸菌及び黄色ブドウ球菌は、 最終タンパク濃度でそれぞれ 0. 5及び 0. 2 mg/mlになるように、 緩衝液 (100 mM塩化コリン、 10 m TRIS-乳酸、 50mM MOPS-TRIS (pH7. 2) ) に懸濁させた。 For Escherichia coli, K12 and W3110 strains were used, and for Staphylococcus aureus, 209 strains were used. Escherichia coli K12 and W3110 were cultured in a minimal salt medium containing 1% polypeptone at 37 ° C under aerobic conditions. S. aureus strain 209P was cultured in a liquid medium containing 0.5 ° / 0 meat extract, 1.5% polybeptone, 0.5% sodium chloride, and 0.5% dibasic hydrogen phosphate. Bacteria collected in the logarithmic growth phase were washed twice with a buffer solution (lOOmM choline chloride, 50 mM M0PS-TRIS (pH 7.2)) and then suspended in the same buffer solution to a protein concentration of 10 mg / ml. . Escherichia coli and Staphylococcus aureus should be buffered (100 mM choline chloride, 10 m TRIS-lactic acid, 50 mM MOPS-TRIS (pH 7.2)) so that the final protein concentrations are 0.5 and 0.2 mg / ml, respectively. ).
上記の化合物それぞれを細菌に投与し、 細菌からのカリゥムイオンの流出を イオン選択性電極を用いて調べた。 第 2図として示す表に、 大腸菌及び黄色ブド ゥ球菌に対するカリウムイオン流出率 (%表示) の結果を示す。  Each of the above compounds was administered to bacteria, and the efflux of potassium ions from the bacteria was examined using an ion selective electrode. The table shown in Fig. 2 shows the results of potassium ion efflux rates (%) for E. coli and S. aureus.
観察されたカリゥムイオンの流出から、 これらの化合物が細菌の外膜を侵し、 更には細胞質膜 (内膜) を攻撃し、 内膜の乱れ ·不安定化 ·破壊等を引き起こ して細胞内のカリウムイオンが細胞外に放出されたことが分かる。 特に、 ベンジ ルァミノ化誘導体の黄色ブドウ球菌に対する活性は顕著であり、 これがゆえに抗 菌活性を示したと結論した。 The observed outflow of potassium ions causes these compounds to invade the outer membrane of the bacteria, and further attacks the cytoplasmic membrane (inner membrane), causing turbulence, destabilization, and destruction of the inner membrane. Thus, it can be seen that intracellular potassium ions are released to the outside of the cell. In particular, it was concluded that the activity of benzylamineated derivatives against Staphylococcus aureus was prominent and thus showed antibacterial activity.
(実施例 4 ) (Example 4)
本実施例は、 ォクタキス (6—ァミノ) 一 γ—シクロデキストリン、 ヘプタ キス (6—ァミノ) 一 |3—シクロデキストリン、 及びへキサキス (6—ァミノ) —α—シクロデキストリンと、 他の抗生物質との併用における効果に関する。  In this example, octakis (6-amino) 1 γ-cyclodextrin, heptakis (6-amino) 1 | 3-cyclodextrin, and hexakis (6-amino) —α-cyclodextrin and other antibiotics It is related with the effect in combination with.
実施例 3の結果より、 これらの化合物は大腸菌の細胞質膜を障害して力リゥ ムイオン放出を引き起こしていることは明らかである。 そこで、 外膜透過性が低 いために本来の抗菌性が発揮できない抗生物質であるノボビォシン及びェリス口 マイシンとの併用効果を検討した。 第 3図として示す表にその結果を示す。  From the results of Example 3, it is clear that these compounds damage the cytoplasmic membrane of Escherichia coli and cause the release of force lithium ions. Therefore, we investigated the combined effects of novobiocin and erythromycin, which are antibiotics that cannot exhibit their original antibacterial properties due to their low outer membrane permeability. The results are shown in the table shown in Fig. 3.
ノボビォシン及びェリス口マイシン単独での大腸菌に対する最小生育阻止濃 度 ( MIC) は、 それぞれ 128 /^ 1及び 64 g/nilであり、 それらの作用は弱い。 これに対して、 当該シクロデキストリン誘導体併用投与下での上記抗生物質の Ml Cは著しく低下し、 顕著な抗菌活性を示した。 以上の結果より、 これらシクロデキ ストリン誘導体は細菌外膜を傷害して、 その透過性を著しく増大させる作用を持 ち、 その結果、 非膜貫通型抗生物質本来の抗菌活性を発現せしめると言う、 他の 抗生物質との併用での有用性が明らかとなつた。  The minimum growth inhibition concentrations (MIC) for E. coli with novobiocin and erythromycin are 128 / ^ 1 and 64 g / nil, respectively, and their effects are weak. On the other hand, Ml C of the above antibiotics under the combined administration of the cyclodextrin derivative was remarkably reduced and showed a remarkable antibacterial activity. Based on the above results, these cyclodextrin derivatives have the effect of damaging the bacterial outer membrane and significantly increasing its permeability, resulting in the original antibacterial activity of non-transmembrane antibiotics. Their usefulness in combination with antibiotics has been revealed.
〔産業上の利用分野〕 [Industrial application fields]
本発明によって、 製造が容易な化合物であって、 菌体膜傷害性、 とりわけ、 細菌に増殖能力を残存させつつその菌体膜を傷害すると言う静菌的な菌体膜傷害 性を示す物質と、 優れた菌体膜傷害性と強い抗菌性とを併せ示す物質と、 それら の有効な利用方法とが提供される。  According to the present invention, a compound that is easy to produce, and has a cell membrane damage property, particularly a bacteriostatic cell membrane damage property that damages the cell membrane while remaining proliferative ability in bacteria. Provided are substances that exhibit both excellent cell membrane damage and strong antibacterial properties, and effective use thereof.

Claims

1 . 多量体化が可能な炭素環構造又は炭素 酸素複素環構造を有すると共に、 環平面の片側においては多量体化結合に関与しない 2個以上の炭素原子に対して アミノ系官能基を結合し、 環平面の他の片側においてはリン脂質親和性を示す化 合物であって、 細菌に増殖能力を残存させつつその菌体膜を傷害すると言う静菌 的な菌体)!莫傷害性を示す菌体膜傷害性モノマー。 1. An amino functional group is bonded to two or more carbon atoms that have a carbocyclic structure or carbon-oxygen heterocyclic structure capable of multimerization and that do not participate in multimerization bonding on one side of the ring plane On the other side of the ring plane, it is a compound that exhibits affinity for phospholipids, and is a bacteriostatic cell that damages the cell membrane while allowing the bacterium to retain its growth ability)! Bacterial membrane-damaging monomer that exhibits enormous damage.
 Contract
2 . 前記ァミノ系官能基が一級、 二級又は三級ァミノ基である請求の範囲 1 項に記載の菌体膜傷害性モノマー。  2. The cell membrane-damaging monomer according to claim 1, wherein the amino functional group is a primary, secondary or tertiary amino group.
 of
3 . 前記炭素 酸素複素環構造が分子内へミアセタール結合を持つ糖構造で ある請求の範囲 1項又は 2項に記載の菌体膜傷害性モノマー。  3. The cell membrane-damaging monomer according to claim 1 or 2, wherein the carbon-oxygen heterocyclic structure is a sugar structure having a miacetal bond in the molecule.
4 . 前記糖構造がピラノース構造又はフラノース構造である請求の範囲 3項 に記載の菌体膜傷害性モノマー。  4. The cell membrane-damaging monomer according to claim 3, wherein the sugar structure is a pyranose structure or a furanose structure.
5 . 前記ビラノース構造がグルコースである請求の範囲 4項に記載の菌体膜 傷害性モノマー。  5. The cell membrane-damaging monomer according to claim 4, wherein the bilanose structure is glucose.
6 . 請求の範囲 1項〜 5項のいずれかに記載の菌体膜傷害性モノマーが 2単 位以上結合し、 各モノマーにおけるァミノ系官能基を結合した環平面が同じ方向 を向いている化合物であって、 細菌に増殖能力を残存させつつその菌体膜を傷害 すると言う静菌的な菌体膜傷害性を示す菌体膜傷害性ォリゴマー。  6. A compound in which two or more units of the cell membrane-damaging monomer according to any one of claims 1 to 5 are bonded, and ring planes to which an amino functional group is bonded in each monomer are directed in the same direction. A cell membrane-damaged oligomer that exhibits bacteriostatic cell membrane damage, which causes damage to the cell membrane while allowing bacteria to proliferate.
7 . 前記菌体膜傷害性モノマーが連鎖状に 6〜 8単位結合したものである請 求の範囲 6項に記載の菌体膜傷害性オリゴマー。  7. The cell membrane damaging oligomer according to claim 6, wherein the cell membrane damaging monomer is 6-8 units linked in a chain.
8 . 前記菌体膜傷害性モノマーの環状の連鎖結合体である請求の範囲 7項に 記載の菌体膜傷害性オリゴマー。  8. The cell membrane-damaging oligomer according to claim 7, which is a cyclic chain-bound product of the cell membrane-damaging monomer.
9 . 前記環状の連鎖結合体がシクロデキストリンである請求の範囲 8項に記 載の菌体膜傷害性オリゴマー。  9. The cell membrane-damaging oligomer according to claim 8, wherein the cyclic chain conjugate is cyclodextrin.
1 0 . 請求の範囲 1項〜 5項のいずれかに記載の菌体膜傷害性モノマー及び 請求の範囲 6項〜 9項のいずれかに記載の菌体膜傷害性オリゴマーから選ばれる 1種又は 2種以上を有効成分とする菌体膜傷害剤をグラム陽性菌に対して用い、 抗菌効果を得る抗菌的菌体膜傷害方法。 10. A cell membrane damaging monomer according to any one of claims 1 to 5 and a cell membrane damaging oligomer according to any one of claims 6 to 9, Using a cell membrane injury agent containing two or more active ingredients against Gram-positive bacteria, An antibacterial cell membrane injury method for obtaining an antibacterial effect.
1 1 . 請求の範囲 1項〜 5項のいずれかに記載の菌体膜傷害性モノマー又は 請求の範囲 6項〜 9項のいずれかに記載の菌体膜傷害性ォリゴマーに任意の目的 物質を結合させたもとで、 これを細菌に対して用い、 細菌の増殖能力を残存させ つつ菌体膜を傷害することにより前記目的物質を菌体内に導入させる静菌的菌体 膜傷害方法。  1 1. Any desired substance may be added to the cell membrane damaging monomer according to any one of claims 1 to 5 or the cell membrane damaging oligomer according to any one of claims 6 to 9. A bacteriostatic cell membrane injury method in which the target substance is introduced into the microbial cell by damaging the cell membrane while remaining microbial growth ability, using the same against bacteria.
1 2 . 請求の範囲 1項〜 5項のいずれかに記載の菌体膜傷害性モノマー及び 請求の範囲 6項〜 9項のいずれかに記載の菌体膜傷害性オリゴマーから選ばれる 1種又は 2種以上と、 任意の抗菌性物質あるいは抗生物質の 1種又は 2種以上と を有効成分とする菌体膜傷害 ·抗菌剤。  1 2. A cell membrane-damaging monomer according to any one of claims 1 to 5 and a cell membrane-damaging oligomer according to any one of claims 6 to 9, A cell membrane injury / antibacterial agent comprising two or more and one or more of any antibacterial substance or antibiotic as active ingredients.
1 3 . 前記抗菌性物質あるいは抗生物質が菌体膜非透過性のものである請求 の範囲 1 2項に記載の菌体膜傷害 ·抗菌剤。  13. The cell membrane injury / antibacterial agent according to claim 12, wherein the antibacterial substance or antibiotic is a cell membrane impermeable substance.
1 4 . 前記菌体膜非透過性の抗菌性物質あるいは抗生物質がエリスロマイシ ン又はノボビォシンである請求の範囲 1 3項に記載の菌体膜傷害 ·抗菌剤。  14. The cell membrane injury / antibacterial agent according to claim 13, wherein the cell membrane impermeable antibacterial substance or antibiotic is erythromycin or novobiocin.
1 5 . 請求の範囲 1 2項〜 1 4項のいずれかに記載の菌体膜傷害 ·抗菌剤を グラム陽性菌又はグラム陰性菌に対して用い、 抗菌効果を得る抗菌方法。  15. An antibacterial method for obtaining an antibacterial effect by using the antibacterial agent against gram-positive bacteria or gram-negative bacteria according to any one of claims 1 to 14.
1 6 . 多量体化が可能な炭素環構造又は炭素ノ酸素複素環構造を有すると共 に、 環平面の片側においては多量体化結合に関与しない 2個以上の炭素原子に対 して芳香環を含有するァミノ系官能基を結合し、 環平面の他の片側においてはリ ン脂質親和性を示す化合物であって、 菌体膜傷害性と強レ、抗菌性とを併せ持つ菌 体膜傷害 '抗菌性モノマー。  16 6. Having a carbocyclic structure or a carbon-oxygen heterocyclic structure capable of multimerization, and an aromatic ring for two or more carbon atoms that do not participate in multimerization bonds on one side of the ring plane. Is a compound that binds an amino functional group containing phosphatase and exhibits phospholipid affinity on the other side of the ring plane. Antibacterial monomer.
1 7 . 前記芳香環を含有するァミノ系官能基がベンジルァミノ基である請求 の範囲 1 6項に記載の菌体膜傷害 ·抗菌性モノマー。  17. The cell membrane damage / antibacterial monomer according to claim 16, wherein the amino functional group containing an aromatic ring is a benzylamino group.
1 8 . 請求の範囲 1 6項又は 1 7項に記載の菌体膜傷害 ·抗菌性モノマーが 2単位以上結合し、 各モノマーにおける芳香環を含有するァミノ系官能基を結合 した環平面が同じ方向を向いている化合物であって、 菌体膜傷害性と強い抗菌性 とを併せ持つ菌体膜傷害 ·抗菌性オリゴマー。  1 8. Claims 16 or 17 Cell membrane damage · Antibacterial monomers are bonded in 2 units or more, and the ring planes where the amino functional groups containing aromatic rings in each monomer are bonded are the same. It is a compound that is facing the direction, and is a cell membrane injury / antibacterial oligomer that has both cell membrane damage and strong antibacterial properties.
1 9 . 前記菌体膜傷害 ·抗菌性モノマーが連鎖状に 6〜 8単位結合したもの である請求の範囲 1 8項に記載の菌体膜傷害 ·抗菌性オリゴマー。 1 9. Cell membrane damage · Antibacterial monomer linked 6-8 units in a chain The cell membrane injury / antibacterial oligomer according to claim 18, which is
2 0 . 前記菌体膜傷害■抗菌性モノマーの環状の連鎖結合体である請求の範 囲 1 9項に記載の菌体膜傷害 ·抗菌性オリゴマー。  20. The cell membrane injury / antibacterial oligomer according to claim 19, wherein the cell membrane injury is a cyclic linkage of antibacterial monomers.
2 1 . 前記環状の連鎖結合体がシクロデキストリンである請求の範囲 2 0項 に記載の菡体膜傷害 ·抗菌性オリゴマー。  21. The rod membrane damage / antibacterial oligomer according to claim 20, wherein the cyclic chain conjugate is cyclodextrin.
2 2 . 請求の範囲 1 6項又は 1 7項に記載の菌体膜傷害■抗菌性モノマー及 び請求の範囲 1 8項〜 2 1項のいずれかに記載の菌体膜傷害■抗菌性オリゴマー から選ばれる 1種又は 2種以上を有効成分とする菌体膜傷害 ·抗菌剤。  2 2. Claims 16 or 17 Bacterial Membrane Damage ■ Antibacterial Monomer and Claims 18 to 21 Bacterial Membrane Damage ■ Antibacterial Oligomer Bacterial membrane injury / antibacterial agent comprising one or more selected from as active ingredients.
2 3 . 請求の範囲 1 6項又は 1 7項に記載の菌体膜傷害 ·抗菌性モノマー及 び請求の範囲 1 8項〜 2 1項のいずれかに記載の菌体膜傷害 ·抗菌性オリゴマー から選ばれる 1種又は 2種以上と、 任意の抗菌性物質あるいは抗生物質の 1種又 は 2種以上とを有効成分とする菌体膜傷害 ·抗菌剤。  2 3. Claims 16 or 17 Bacterial membrane injury / antibacterial monomer according to claim 18 and Claims 18 to 21 Bacterial membrane injury / antibacterial oligomer A cell membrane injury / antibacterial agent comprising as an active ingredient one or more selected from the group consisting of one or more of any antibacterial substance or antibiotic.
2 4 . 前記抗菌性物質あるいは抗生物質が菌体膜非透過性である請求の範囲 2 3項に記載の菌体膜傷害 ·抗菌剤。  24. The cell membrane injury / antibacterial agent according to claim 23, wherein the antibacterial substance or antibiotic is impermeable to the cell membrane.
2 5 . 前記菌体膜非透過性の抗菌性物質あるいは抗生物質がェリスロマイシ ン又はノボピオシンである請求の範囲 2 4項に記載の菌体膜傷害 ·抗菌剤。  25. The cell membrane injury / antibacterial agent according to claim 24, wherein the cell membrane impermeable antibacterial substance or antibiotic is erythromycin or novopyocin.
2 6 . 請求の範囲 2 2項〜 2 5項のいずれかに記載の菌体膜傷害 ·抗菌剤を グラム陽性菌又はグラム陰性菌に対して用い、 抗菌効果を得る抗菌方法。  26. An antibacterial method for obtaining an antibacterial effect by using the antibacterial agent against gram-positive or gram-negative bacteria according to any one of claims 2 to 25.
PCT/JP2006/300156 2005-01-13 2006-01-04 Antibacterial substances injuring bacterial cell membarane and methods of using the same WO2006075580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006552912A JP5098015B2 (en) 2005-01-13 2006-01-04 Bacterial membrane damage and antibacterial substances and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-006043 2005-01-13
JP2005006043 2005-01-13

Publications (1)

Publication Number Publication Date
WO2006075580A1 true WO2006075580A1 (en) 2006-07-20

Family

ID=36677605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300156 WO2006075580A1 (en) 2005-01-13 2006-01-04 Antibacterial substances injuring bacterial cell membarane and methods of using the same

Country Status (2)

Country Link
JP (1) JP5098015B2 (en)
WO (1) WO2006075580A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528761A (en) * 2005-01-28 2008-07-31 ピナクル ファーマシューティカルズ,インク. Β-cyclodextrin derivatives as antibacterial agents
US7851457B2 (en) 2004-01-29 2010-12-14 Innovative Biologics, Inc. β-Cyclodextrin derivatives
WO2018051903A1 (en) 2016-09-13 2018-03-22 国立大学法人名古屋工業大学 Sugar derivative or salt thereof, and antibacterial agent or antibacterial activity enhancer using same
US9963518B2 (en) 2011-08-22 2018-05-08 Oxford University Innovation Limited Cyclic oligosaccharides for use in the treatment and prevention of bacterial infection

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985014A (en) * 1972-12-23 1974-08-15
JPS4985015A (en) * 1972-12-23 1974-08-15
JPS51142088A (en) * 1975-05-29 1976-12-07 Tanabe Seiyaku Co Ltd Aminocyclodextrin derivatives and their prepapation.
JPS52138580A (en) * 1976-05-14 1977-11-18 Tanabe Seiyaku Co Ltd Cyclodextrin derivatives
JPS5319392A (en) * 1976-08-06 1978-02-22 Tanabe Seiyaku Co Ltd Polyamino cyclic polysaccharide compounds and their preparation
JPS61501919A (en) * 1984-04-21 1986-09-04 サンド・アクチエンゲゼルシヤフト 3-diamino-2,3-didesoxyhexose derivative, its production method and its use
JPH04227602A (en) * 1990-03-15 1992-08-17 Tanabe Seiyaku Co Ltd Polysulfide of amino-beta-cyclodextrin derivative and its production
WO1997049735A1 (en) * 1996-06-21 1997-12-31 Queen's University At Kingston Nerve process growth modulators
JP2002302569A (en) * 2001-04-05 2002-10-18 Toto Ltd Film and method for producing the same
JP2003183296A (en) * 2001-12-14 2003-07-03 Res Inst For Prod Dev Method for producing glucosamine or (and) chitosan oligomer composition
JP2004506645A (en) * 2000-08-15 2004-03-04 ブリガム ヤング ユニバーシティ Steroid-derived antibiotics
WO2005011710A1 (en) * 2003-07-28 2005-02-10 The Board Of Trustees Of The University Of Illinois Per-6-aminosubstituted-deoxy-cyclodextrins to treat alzheimer’s diseases

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1846006A4 (en) * 2005-01-28 2011-04-20 Pinnacle Pharmaceuticals Inc Beta-cyclodextrin derivatives as antibacterial agents

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985014A (en) * 1972-12-23 1974-08-15
JPS4985015A (en) * 1972-12-23 1974-08-15
JPS51142088A (en) * 1975-05-29 1976-12-07 Tanabe Seiyaku Co Ltd Aminocyclodextrin derivatives and their prepapation.
JPS52138580A (en) * 1976-05-14 1977-11-18 Tanabe Seiyaku Co Ltd Cyclodextrin derivatives
JPS5319392A (en) * 1976-08-06 1978-02-22 Tanabe Seiyaku Co Ltd Polyamino cyclic polysaccharide compounds and their preparation
JPS61501919A (en) * 1984-04-21 1986-09-04 サンド・アクチエンゲゼルシヤフト 3-diamino-2,3-didesoxyhexose derivative, its production method and its use
JPH04227602A (en) * 1990-03-15 1992-08-17 Tanabe Seiyaku Co Ltd Polysulfide of amino-beta-cyclodextrin derivative and its production
WO1997049735A1 (en) * 1996-06-21 1997-12-31 Queen's University At Kingston Nerve process growth modulators
JP2004506645A (en) * 2000-08-15 2004-03-04 ブリガム ヤング ユニバーシティ Steroid-derived antibiotics
JP2002302569A (en) * 2001-04-05 2002-10-18 Toto Ltd Film and method for producing the same
JP2003183296A (en) * 2001-12-14 2003-07-03 Res Inst For Prod Dev Method for producing glucosamine or (and) chitosan oligomer composition
WO2005011710A1 (en) * 2003-07-28 2005-02-10 The Board Of Trustees Of The University Of Illinois Per-6-aminosubstituted-deoxy-cyclodextrins to treat alzheimer’s diseases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SEBESTA R. ET AL.: "Synthesis of New Aminoderivatives of beta-Cyclodextrin", ENANTIOMER, vol. 4, 1999, pages 271 - 277, XP002997172 *
UMEZAWA S. ET AL.: "Studies of Aminosugars. XVIII. Synthesis of Amino Derivatives of Schardinger alpha-Dextrin and Raffinose", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 41, no. 2, 1968, pages 464 - 468, XP002998572 *
WANG Z. ET AL.: "Per-6-substituted-per-6-deoxy beta-cyclodextrins Inhibit the Formation of beta-Amyloid Peptide Derived Soluble Oligomers", J. MED. CHEM., vol. 47, no. 13, 17 June 2004 (2004-06-17), pages 3329 - 3333, XP002305930 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851457B2 (en) 2004-01-29 2010-12-14 Innovative Biologics, Inc. β-Cyclodextrin derivatives
JP2008528761A (en) * 2005-01-28 2008-07-31 ピナクル ファーマシューティカルズ,インク. Β-cyclodextrin derivatives as antibacterial agents
US7737132B2 (en) 2005-01-28 2010-06-15 Pinnacle Pharmaceuticals β-cyclodextrin derivatives as antibacterial agents
US9963518B2 (en) 2011-08-22 2018-05-08 Oxford University Innovation Limited Cyclic oligosaccharides for use in the treatment and prevention of bacterial infection
EP2747771B1 (en) * 2011-08-22 2020-04-01 Oxford University Innovation Limited Cyclic oligosaccharides for use in the treatment and prevention of bacterial infection
WO2018051903A1 (en) 2016-09-13 2018-03-22 国立大学法人名古屋工業大学 Sugar derivative or salt thereof, and antibacterial agent or antibacterial activity enhancer using same

Also Published As

Publication number Publication date
JPWO2006075580A1 (en) 2008-08-07
JP5098015B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
Su et al. Cationic peptidopolysaccharides synthesized by ‘click’chemistry with enhanced broad-spectrum antimicrobial activities
Vunain et al. Fundamentals of chitosan for biomedical applications
US10577247B2 (en) Hybrid nanomaterial of graphene oxide nanomaterial and cationic quaternized chitosan
Prashanth et al. Chitin/chitosan: modifications and their unlimited application potential—an overview
Fik et al. Impact of functional satellite groups on the antimicrobial activity and hemocompatibility of telechelic poly (2-methyloxazoline) s
CN110393725B (en) Phenylboronic acid with gram selectivity and gold nanoparticle modified by derivative of phenylboronic acid, and preparation method and application of phenylboronic acid and gold nanoparticle
Namasivayam et al. Anti biofilm effect of medicinal plant extracts against clinical isolate of biofilm of Escherichia coli
Luo et al. PEGylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism
Chandrasekaran et al. Antimicrobial activity of delaminated aminopropyl functionalized magnesium phyllosilicates
Qian et al. Dual functional β-peptide polymer-modified resin beads for bacterial killing and endotoxin adsorption
Jain et al. Dibutyrylchitin nanoparticles as novel drug carrier
Xie et al. Quaternized polysaccharide‐based cationic micelles as a macromolecular approach to eradicate multidrug‐resistant bacterial infections while mitigating antimicrobial resistance
WO2006075580A1 (en) Antibacterial substances injuring bacterial cell membarane and methods of using the same
Mohammed et al. Exploring the applications of hyaluronic acid‐based nanoparticles for diagnosis and treatment of bacterial infections
Bhuyan et al. Magnetotactic T-budbots to kill-n-clean biofilms
Kumar et al. Advances in nanotechnology for biofilm inhibition
Huang et al. Functional modification of polydimethylsiloxane nanocomposite with silver nanoparticles-based montmorillonite for antibacterial applications
Zhou et al. LED 209 conjugated chitosan as a selective antimicrobial and potential anti-adhesion material
Wang et al. One-pot quaternization of dual-responsive poly (vinyl alcohol) with AIEgens for pH-switchable imaging and killing of bacteria
Sajna et al. Microbial exopolysaccharides: An introduction
Wong et al. Cyclodextrins: a weapon in the fight against antimicrobial resistance
Elmehbad et al. Reinforcement of the antimicrobial activity and biofilm inhibition of novel chitosan-based hydrogels utilizing zinc oxide nanoparticles
Liau et al. Poly (methyl 6-acryloyl-β-d-glucosaminoside) as a cationic glycomimetic of chitosan
JPH03167102A (en) Antimicrobial agent
Dongre Marine polysaccharides in medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006552912

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06700520

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6700520

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)