WO2006075501A1 - Degradation detection device and degradation detection method for hydrogen occlusion material in hydrogen storage tank, and hydrogen storage and supply system - Google Patents

Degradation detection device and degradation detection method for hydrogen occlusion material in hydrogen storage tank, and hydrogen storage and supply system Download PDF

Info

Publication number
WO2006075501A1
WO2006075501A1 PCT/JP2005/023606 JP2005023606W WO2006075501A1 WO 2006075501 A1 WO2006075501 A1 WO 2006075501A1 JP 2005023606 W JP2005023606 W JP 2005023606W WO 2006075501 A1 WO2006075501 A1 WO 2006075501A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
hydrogen
storage tank
filling
heat
Prior art date
Application number
PCT/JP2005/023606
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyoshi Fujita
Daigoro Mori
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha filed Critical Kabushiki Kaisha Toyota Jidoshokki
Publication of WO2006075501A1 publication Critical patent/WO2006075501A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a hydrogen storage material deterioration detection device, deterioration detection method, and hydrogen storage supply system in a hydrogen storage tank.
  • a hydrogen vehicle is generally equipped with a hydrogen storage tank filled with hydrogen as a hydrogen supply source.
  • the hydrogen storage tank is filled with hydrogen in a facility called a hydrogen station corresponding to a gas station or LP gas station. Therefore, it is necessary to fill with hydrogen before the remaining amount of hydrogen in the hydrogen storage tank becomes so small that it interferes with the supply to the fuel cell and the hydrogen engine. Need to be identified.
  • the relationship between the pressure and temperature in the hydrogen S storage tank and the hydrogen storage amount is obtained by preliminary experimentation, and the pressure and temperature in the hydrogen storage tank are measured and calculated. It is common to calculate the amount of hydrogen using a mathematical formula.
  • the hydrogen storage alloy deterioration detection means the temperature of the hydrogen storage alloy detected by the temperature detection means at the time of the previous hydrogen filling is stored, and the temperature at the time of the current hydrogen filling is stored in the previous time. It has been proposed that when the temperature of the hydrogen storage alloy is higher than that of the hydrogen storage alloy, it is judged that the hydrogen storage alloy is deteriorated (see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-266915
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-228098
  • the device of Patent Document 1 detects the deterioration of the hydrogen storage alloy stored in the hydrogen shell storage tank filled with hydrogen generated by reforming alcohol, gasoline, or the like with a reformer. To do.
  • the main cause of deterioration of the equipment is CO, CO, o contained in reformed gas.
  • the reference data for obtaining a specific flow rate change when storing hydrogen varies depending on the pressure in the hydrogen storage tank at the start of hydrogen filling. Therefore, in order to cope with the case where the pressure in the hydrogen storage tank at the start of hydrogen filling is filled from an arbitrary state, it takes time to create a map of reference data indicating the relationship between the hydrogen filling amount and the pressure. And the map becomes complicated.
  • the temperature detection accuracy of the hydrogen storage alloy has a great influence on the deterioration determination.
  • the temperature of the hydrogen storage alloy varies depending on the location, and in order to increase the accuracy of temperature measurement, it is necessary to measure at many locations, which complicates the structure.
  • the present invention has been made in view of the above problems, and an object of the present invention is to detect deterioration of the hydrogen storage material accommodated in the hydrogen storage tank with a simpler configuration than the prior art and with high accuracy. It is an object of the present invention to provide a deterioration detection device and deterioration detection method for a hydrogen storage material in a hydrogen storage tank that can be discharged. Another object of the present invention is to provide a hydrogen storage and supply system provided with a deterioration detection device for the hydrogen storage material.
  • a hydrogen storage material deterioration detection device in a hydrogen storage tank that houses a hydrogen storage material and incorporates a heat exchanger.
  • the deterioration detector includes a pressure detection means for detecting a pressure in the hydrogen storage tank, a first temperature detection means for detecting a temperature in the hydrogen storage tank, and the heat exchanger for the heat medium flowing through the heat exchanger.
  • Second temperature detecting means for detecting the temperature at the inlet and the outlet. Further, based on the temperature of the heat medium at the inlet and the outlet detected by the second temperature detecting means and the flow rate of the heat medium, it was used for cooling when filling the hydrogen storage tank with hydrogen.
  • a second amount of hydrogen stored in the hydrogen storage material at the start of hydrogen filling is obtained.
  • the deterioration detection device is configured so that the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage material or the plateau region based on the PCT curve at the temperature in the hydrogen storage tank.
  • Degradation determining means for determining whether or not the hydrogen storage material has deteriorated based on the amount of cooling heat required to fill hydrogen to a predetermined pressure.
  • the “PCT curve of the hydrogen storage material” means a curve showing the relationship between the pressure, the amount of hydrogen stored and the temperature of the hydrogen storage material.
  • the amount of heat used for cooling the hydrogen storage material (cooling heat amount) is calculated by the first calculation means when the hydrogen storage tank is filled with hydrogen.
  • the amount of cooling heat is calculated based on the temperature of the heat medium flowing through the heat exchanger built in the hydrogen storage tank at the inlet and outlet of the heat exchanger and the flow rate of the heat medium.
  • the deterioration determination means determines whether the hydrogen storage material has deteriorated based on the reference cooling heat amount necessary for filling the hydrogen storage tank with hydrogen from an empty state to a predetermined pressure set in advance, and the cooling heat amount. Judgment is made.
  • the deterioration judging means judges the deterioration when the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage material or the plateau region. Therefore, the deterioration of the hydrogen storage material accommodated in the hydrogen storage tank can be detected with a simpler configuration and with higher accuracy than in the prior art.
  • the predetermined pressure is determined when the hydrogen filling amount in the hydrogen storage tank reaches 100%.
  • the pressure is desirable.
  • the predetermined pressure when calculating the heat of cooling used to determine the deterioration of the hydrogen storage material is compared with the pressure at the time when hydrogen is stored in the hydrogen storage material by an amount less than 100%. Accuracy.
  • the deterioration determining means determines whether or not the deterioration has occurred when hydrogen filling is started when the pressure in the hydrogen storage tank is lower than the plateau region of the hydrogen storage material.
  • the accuracy in the low pressure region is higher than that in the plateau region. The accuracy of.
  • the predetermined state after the start of hydrogen filling is preferably a state in which the pressure and temperature in the hydrogen storage tank have reached preset values.
  • the hydrogen storage tank can be used as a hydrogen source for a hydrogen-fueled vehicle using hydrogen as fuel.
  • a method for detecting deterioration of a hydrogen storage material in a hydrogen storage tank that contains a hydrogen storage material and incorporates a heat exchanger based on the PCT curve of the hydrogen storage material, when the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region or lower than the plateau region of the hydrogen storage material, The amount of cooling heat required to fill the predetermined pressure with hydrogen at the start of hydrogen filling or after the start of hydrogen filling, and the hydrogen storage tank are charged with hydrogen from an empty state to a predetermined pressure set in advance. Degradation of the hydrogen storage material based on the required amount of cooling heat in the non-degraded state of the hydrogen storage material determined corresponding to the hydrogen filling amount that required the cooling heat amount from the reference cooling heat amount required for filling Determine the presence or absence.
  • the hydrogen storage material deterioration detection device of the hydrogen storage tank according to the first aspect, the hydrogen storage tank containing the hydrogen storage material and incorporating the heat exchanger,
  • a hydrogen storage and supply system comprising a supply means for supplying a heat medium for heating or cooling the hydrogen storage material to the heat exchanger.
  • This hydrogen storage and supply system can accurately detect the deterioration of the hydrogen storage material.
  • FIG. 1 is a configuration diagram of a fuel cell system.
  • FIG. 2 is a flowchart showing a procedure for judging deterioration of a hydrogen storage alloy.
  • FIG. 3 is a diagram showing a PCT curve of a hydrogen storage alloy.
  • FIG. 4 (a) is a diagram showing the relationship between the filling time at 100% hydrogen filling and the amount of cooling heat, and (b) is a diagram showing the relationship between the filling time at hydrogen filling and the amount of cooling heat.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system.
  • the fuel cell system includes a fuel cell 11, a hydrogen storage tank 12, a compressor 13, and a radiator 14.
  • the hydrogen storage tank 12, the fuel cell 11 and the radiator 14 are connected through a heat medium flow path 15.
  • the fuel cell 11 is composed of, for example, a polymer electrolyte fuel cell.
  • the fuel cell 11 reacts with hydrogen supplied from the hydrogen storage tank 12 and oxygen in the air supplied from the compressor 13 to generate direct current electric energy ( DC power).
  • DC power direct current electric energy
  • a part of the heat medium flow path 15 is arranged in the fuel cell 11 as a heat exchanging portion 15a.
  • the hydrogen storage tank 12 includes a tank body 16, a hydrogen storage unit 17 containing a hydrogen storage alloy MH as a hydrogen storage material therein, and a support body that supports the hydrogen storage unit 17 in the tank body 16. 18 and.
  • a heat exchanger 19 for exchanging heat with the hydrogen storage alloy MH is provided in the hydrogen storage tank 12.
  • the heat exchanger 19 forms a part of the hydrogen storage unit 17 and includes a large number of fins 20 for increasing the efficiency of heat exchange with the hydrogen storage alloy MH.
  • the flow path of the heat exchanger 19 forms part of the heat medium flow path 15.
  • LLC Long Life Coolant
  • a known material can be used as the hydrogen storage alloy MH.
  • the hydrogen storage tank 12 is connected to a hydrogen supply port (not shown) of the fuel cell 11 via a conduit 21 and supplies hydrogen to the fuel cell 11.
  • the hydrogen storage tank 12 stores hydrogen in the tank body 16 at a pressure higher than the pressure in the plateau region of the hydrogen storage alloy MH, for example, about 35 MPa, and reduces the pressure with a valve (not shown) to the fuel cell 11. Supply at a constant pressure (for example, about 0.3 MPa).
  • the plateau region is a region where the pressure in the tank main body 16 hardly increases even if the amount of occluded hydrogen increases, and is kept almost constant.
  • the hydrogen storage tank 12 is connected to a pipe line 22 having a hydrogen filling port 22a, and the hydrogen storage tank 12 can be filled with hydrogen gas from the pipe line 22.
  • the hydrogen storage tank 12 is provided with a pressure sensor 23a as a pressure detection means for detecting the pressure in the tank body 16 and a temperature sensor 23b as a first temperature detection means for detecting the temperature in the tank body 16. ing
  • the compressor 13 is connected to an oxygen supply port (not shown) of the fuel cell 11 via a pipe line 24, and supplies compressed air to the fuel cell 11.
  • the compressor 13 compresses the air from which dust and the like have been removed by an air cleaner (not shown) and discharges the compressed air to the conduit 24.
  • the radiator 14 includes a fan 25a that is rotated by a motor 25 so that heat is efficiently radiated from the radiator 14.
  • the heat medium flow path 15 is provided with a pump 26 located on the inlet side of the radiator 14.
  • the pump 26 is provided to send the heat medium in the heat medium flow path 15 to the inlet of the radiator 14.
  • the heat medium flow path 15 is branched at a branch portion provided between the inlet of the heat exchanging portion 15a and the outlet of the radiator 14, and has a bypass portion 15b connected to the inlet of the radiator 14, and the branch portion includes An electromagnetic three-way valve 27 is provided.
  • the outlet side of the heat exchange part 15a is connected to the bypass part 15b.
  • the electromagnetic three-way valve 27 is configured to be switchable between a state in which the heat medium is supplied to the inlet side of the heat exchange part 15a of the fuel cell 11 and a state in which the heat medium flows through the bypass part 15b without being supplied to the heat exchange part 15a. ing.
  • the inlet 19a of the heat exchanger 19 of the hydrogen storage tank 12 is connected to the bypass portion 15b via an electromagnetic three-way valve 28.
  • the outlet 19b of the heat exchanger 19 is connected to the downstream side of the electromagnetic three-way valve 28 of the bypass portion 15b.
  • the electromagnetic three-way valve 28 has a first state in which the heat medium flowing through the bypass portion 15b can pass only to the inlet 19a of the heat exchanger 19, and the bypass portion 15b.
  • the flowing heat medium is configured to be switchable to a second state in which the flowing heat medium can pass only to the downstream side of the bypass portion 15b instead of the inlet 19a of the heat exchanger 19.
  • a temperature sensor T1 for detecting the temperature of the heat medium is provided at the inlet 19a of the heat exchanger 19, and a temperature sensor T2 for detecting the temperature of the heat medium is provided at the outlet 19b of the heat exchanger 19, respectively.
  • Both temperature sensors Tl and T2 constitute second temperature detecting means for detecting temperatures at the inlet 19a and outlet 19b of the heat exchanger 19 of the heat medium.
  • a flow meter 29 for measuring the flow rate of the heat medium is provided between the inlet 19a and the electromagnetic three-way valve 28.
  • the control device 30 housed in the hydrogen storage tank 12 includes a microcomputer 31 as a means for calculating a cooling heat amount, a means for calculating a hydrogen storage amount at the start of filling, and a deterioration determining means.
  • the microcomputer 31 includes a memory (ROM and RAM) 32.
  • Pressure sensor 23a, temperature sensor 23b, temperature sensors Tl and T2, flow meter 29, and temperature sensor (not shown) for detecting the temperature of fuel cell 11 are connected to the input side (input interface) of control device 30. Each is electrically connected.
  • the compressor 13, the motor 25, the pump 26, and the electromagnetic three-way valves 27 and 28 are electrically connected to the output side (output interface) of the control device 30, respectively.
  • the compressor 13, the motor 25, the pump 26, and the electromagnetic three-way valves 27 and 28 are operated or switched by commands from the control device 30.
  • the pump 26 is driven, stopped and the flow rate is changed based on the command signal from the control device 30.
  • the memory 32 stores a PCT curve of a hydrogen storage alloy as shown in FIG. 3 as a map.
  • the memory 32 stores a reference cooling heat quantity Q0 necessary for filling the hydrogen storage tank 12 with hydrogen from an empty state to a predetermined pressure set in advance.
  • the pressure and heat quantity when the hydrogen storage tank 12 is filled with 100% hydrogen are set as the reference cooling heat quantity Q0 at a predetermined pressure.
  • the reference cooling heat quantity Q0 is stored as a map indicating the relationship between the cooling heat quantity and the filling time.
  • the microcomputer 31 includes the temperature T (° C) of the heat medium at the inlet 19a of the heat exchanger 19 detected by the temperature sensors Tl and ⁇ 2, and the temperature T (° C) of the heat medium at the outlet 19b.
  • the cooling heat quantity W (kW) used for cooling is calculated by the following equation (1).
  • the microcomputer 31 functions as a first calculation means.
  • C is the specific heat of the heat medium (kjZ (kg- ° C)) and p is the specific gravity of the heat medium (kgZm 3 ).
  • Z60 in the equation (1) is used to make the output value of the flow meter in “minute” units correspond to the sampling process in “one second unit”.
  • the microcomputer 31 calculates the PCT curve of the hydrogen storage alloy from the pressure in the hydrogen storage tank 12 and the temperature in the hydrogen storage tank 12 based on the amount of hydrogen stored in the hydrogen storage alloy MH at the start of hydrogen filling. Use to calculate. At this time, the microcomputer 31 functions as first calculation means for obtaining the amount of hydrogen stored in the hydrogen storage alloy MH stored in the hydrogen storage tank 12 at the start of hydrogen filling.
  • the microcomputer 31 When the pressure in the hydrogen storage tank 12 at the start of hydrogen filling is the state of the plateau region of the hydrogen storage alloy MH or lower than the plateau region, the microcomputer 31 starts to store the reference cooling heat Q0 and the hydrogen storage. Whether or not the hydrogen storage alloy MH has deteriorated is determined based on the amount of cooling heat W required from the time until the predetermined pressure is filled with hydrogen. At this time, the microcomputer 31 functions as a deterioration determining means for determining whether or not the hydrogen storage alloy MH has deteriorated.
  • the heat exchange part 15a of the fuel cell 11 and the radiator 14 constitutes a supply means for supplying a heat medium for heating or cooling the hydrogen storage alloy MH built in the hydrogen storage tank 12.
  • the hydrogen storage tank 12, the radiator 14, the heat exchange part 15a of the fuel cell 11, and the hydrogen storage material deterioration detector configured as described above constitute a hydrogen storage and supply system. .
  • the fuel cell 11 is normally operated when the environmental temperature is equal to or higher than a preset temperature (set temperature) at which the fuel cell 11 can generate power. Based on a detection signal of a temperature sensor (not shown) that measures the environmental temperature, the control device 30 performs normal operation from the start if the environmental temperature is equal to or higher than the set temperature, and the environmental temperature is less than the set temperature. In some cases, after warming up, the system shifts to normal operation.
  • hydrogen is supplied from the hydrogen storage tank 12 to the anode electrode side of the fuel cell 11. Further, the compressor 13 is driven, and the air is pressurized to a predetermined pressure and supplied to the power sword electrode side of the fuel cell 11.
  • solid polymer fuel cells generate power efficiently at about 80 ° C, but the chemical reaction between hydrogen and oxygen is an exothermic reaction.
  • the heat medium cooled by the radiator 14 circulates in the heat medium flow path 15.
  • the release of hydrogen from the hydrogen storage alloy MH is an endothermic reaction, it is necessary to heat the hydrogen storage alloy MH in order to make the reaction proceed smoothly. Used for heating alloy MH.
  • the control device 30 holds the electromagnetic three-way valve 27 in a state where the heat medium is supplied to the inlet of the heat exchange unit 15a, and detects the pressure in the hydrogen storage tank 12. Based on the detection signal of the pressure sensor 23a, the electromagnetic three-way valve 28 is switched and controlled.
  • the control device 30 is in a state where the heat medium heats the hydrogen storage tank 12, that is, the heat medium flows through the heat exchanger 19.
  • a command signal for switching the electromagnetic three-way valve 28 is output to the state.
  • the electromagnetic three-way valve is brought into a state where the heat medium does not flow through the heat exchanger 19, that is, does not flow through the hydrogen storage tank 12.
  • a command signal for switching 28 is output.
  • the control device 30 determines that hydrogen filling is necessary when the first set pressure is not reached even if heating with the heat medium continues for a preset time. Then, the notification means (for example, a display unit such as a lamp) is driven.
  • the control device 30 sends a command signal for switching to a state in which the heat medium flows through the bypass portion 15b without being supplied to the heat exchange portion 15a of the fuel cell 11. Is output to the electromagnetic three-way valve 27, and a command signal for switching the state in which the heat medium is supplied to the heat exchanger 19 of the hydrogen storage tank 12 is output to the electromagnetic three-way valve 28. Accordingly, the heat medium cooled by the radiator 14 is supplied to the heat exchanger 19 of the hydrogen storage tank 12 without passing through the heat exchange section 15a of the fuel cell 11.
  • a dispenser coupler of a hydrogen station (not shown) is filled with hydrogen.
  • the hydrogen storage tank 12 is filled with hydrogen gas by the pressure difference between the hydrogen curdle of the hydrogen station and the hydrogen storage tank 12 connected to the port 22a.
  • the hydrogen gas supplied from the hydrogen curdle into the hydrogen storage tank 12 reacts with the hydrogen storage alloy MH to become a hydride and is stored in the hydrogen storage alloy MH. Since the hydrogen occlusion is an exothermic reaction, the occlusion does not proceed smoothly unless the heat generated by the hydrogen occlusion is removed. Therefore, when filling with hydrogen, the heat medium flowing through the heat medium flow path 15 does not flow through the fuel cell 11, passes through the bypass portion 15b and the heat exchanger 19, and between the hydrogen storage tank 12 and the radiator 14.
  • the electromagnetic three-way valves 27 and 28 are switched so as to circulate at
  • the microcomputer 31 makes a deterioration determination when the pressure in the hydrogen storage tank 12 at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage alloy MH or lower than the plateau region.
  • the control device 30 outputs a command signal for switching to a state in which the heat medium flows through the bypass portion 15b without being supplied to the heat exchanging portion 15a of the fuel cell 11 to the electromagnetic three-way valve 27 at the time of hydrogen filling, and the electromagnetic three-way valve A command signal for switching to a state in which the heat medium is supplied to the heat exchanger 19 of the hydrogen storage tank 12 is output to 28.
  • the microcomputer 31 executes the process for determining the deterioration of the hydrogen storage alloy MH according to the procedure shown in the flowchart of FIG.
  • the microcomputer 31 first inputs detection signals from the pressure sensor 23a and the temperature sensor 23b in step S1. Next, in step S2, it is determined whether the pressure in the hydrogen storage tank 12 is in the state of the plateau region of the hydrogen storage alloy MH or whether it is lower than the plateau region. Then, if the pressure in the hydrogen storage tank 12 is not lower than the state of the plateau region of the hydrogen storage alloy MH or the plateau region in step S2, the deterioration determination process is terminated, and if the pressure is lower than the state of the plateau region or the plateau region, step is performed. Proceed to S3 and continue the deterioration judgment process.
  • the microcomputer 31 fills 100% of the amount of hydrogen stored in the hydrogen storage alloy MH at the start of hydrogen charging in step S3 based on the pressure and temperature in the hydrogen storage tank 12 and the PCT curve. Calculated as a percentage (%) with respect to time (fully filled).
  • microcode The computer 31 proceeds to step S4, inputs the output signals of the temperature sensors Tl and T2 and the flow meter 29 every second, calculates the cooling heat amount W by the above equation (1), and stores the value in the memory 32. To do.
  • step S5 the microcomputer 31 proceeds to step S5, and from the output signal of the pressure sensor 23a, it is determined whether or not the pressure in the hydrogen storage tank 12 has reached a predetermined pressure (pressure at 100% filling: for example, 35 MPa). to decide. If the predetermined pressure has not been reached, the process returns to step S4 to execute step S4.
  • the relationship between the cooling heat quantity W and the elapsed time from the start of filling is, for example, as shown in Fig. 4 (b).
  • Whether or not the predetermined pressure has been reached in step S5 is determined by whether or not the predetermined pressure is maintained even after a preset time has elapsed, and is maintained at the predetermined pressure even after a predetermined time has elapsed. It is determined that the predetermined pressure has been reached.
  • step S5 if the predetermined pressure has been reached in step S5, it is determined that the filling has ended, and the process proceeds to step S6.
  • the microcomputer 31 integrates the value of the cooling heat amount W stored in the memory 32 so far in step S6, and calculates the total cooling heat amount Wa used for cooling when filling with hydrogen. Then, the process proceeds to step S7, and the amount of cooling heat necessary for cooling at the time of hydrogen filling when the hydrogen storage alloy MH is not deteriorated from the reference cooling heat amount Q0 and the hydrogen storage amount of the hydrogen storage alloy MH at the start of filling. Find Qs.
  • step S8 the microcomputer 31 compares the cooling heat quantity Qs with the total cooling heat quantity Wa, and if the total cooling heat quantity Wa is less than the cooling heat quantity Qs, the microcomputer 31 proceeds to step S9 and proceeds to step S9. After determining that has deteriorated, the deterioration determination process is terminated. If the total cooling heat amount Wa is not less than the cooling heat amount Qs, the process proceeds to step S10, and it is determined that the hydrogen storage alloy MH has not deteriorated, and then the deterioration determination process ends.
  • the microcomputer 31 calculates the amount of hydrogen remaining in the hydrogen storage tank 12 based on the pressure and temperature in the hydrogen storage tank 12 and the PCT curve.
  • the amount of residual hydrogen For example, the difference between the total cooling heat Wa calculated in Steps S6 and S7 and the cooling heat Qs (Qs-Wa) is obtained, and the amount of hydrogen that is no longer stored in the hydrogen storage alloy MH due to the deterioration of the hydrogen storage alloy MH is estimated from that value. To do. Then, the remaining hydrogen amount is calculated to be smaller by the amount of hydrogen.
  • This embodiment has the following effects.
  • the microcomputer 31 determines that the hydrogen storage alloy MH deteriorates when the pressure in the hydrogen storage tank 12 at the start of hydrogen filling is in the state of the hydrogen storage alloy MH plateau region or lower than the plateau region. Determine the presence or absence. Whether the hydrogen storage alloy MH is in a non-deteriorated state or not is determined based on the reference cooling calorie QO required when the hydrogen storage tank 12 is filled with hydrogen from an empty state to a predetermined pressure, and the hydrogen storage alloy MH. This is based on the amount of cooling heat used for cooling (total cooling heat amount Wa). Therefore, it is possible to detect the deterioration of the hydrogen storage alloy MH accommodated in the hydrogen storage tank 12 with a simpler configuration than the prior art and with high accuracy.
  • the amount of heat generated by the hydrogen storage alloy MH when the hydrogen storage tank 12 is filled with hydrogen is the amount of heat given to the heat medium flowing through the heat exchanger 19, that is, the amount of heat used for cooling the hydrogen storage alloy MH.
  • the total cooling heat amount Wa is obtained by calculating every predetermined time based on the above and integrating the values. Therefore, the accuracy is higher than when the temperature of the hydrogen storage alloy MH is directly measured and the total calorific value of the hydrogen storage alloy MH is calculated.
  • the embodiment of the present invention is not limited to the above, and may be configured as follows, for example.
  • the hydrogen storage alloy MH stores in the tank body 16. It is also used to cool the hydrogen gas that is present. This is because when the hydrogen gas is filled in the hydrogen storage tank 12, the temperature of the hydrogen gas in the tank body 16 rises due to adiabatic compression, and is used to suppress the temperature rise.
  • the hydrogen storage alloy MH in order to determine the deterioration of the hydrogen storage alloy MH with higher accuracy, it is necessary to correct the reference cooling heat amount Q0 and the total cooling heat amount Wa only to the heat amount used for cooling the hydrogen storage alloy MH. In this case, from the reference cooling heat quantity Q0 and the total cooling heat quantity Wa, it is necessary to calculate the heat quantity used for cooling the hydrogen gas not filled in the hydrogen storage alloy MH but filled in the tank body 16. If the hydrogen storage alloy MH that has deteriorated and the hydrogen storage alloy MH that has not deteriorated have the same pressure and temperature at the start of filling and at the end of filling, the amount of heat is the same.
  • the heat quantity is calculated in advance for the hydrogen storage alloy MH that is not deteriorated, and the heat quantity is calculated in the calculation of the total cooling heat quantity Wa in step S6 and the reference cooling heat quantity Q0 in step S7 of the flowchart. You can deduct.
  • Deterioration determining means that is, the microcomputer 31 determines that the hydrogen storage alloy MH deteriorates only when hydrogen filling is started when the pressure in the hydrogen storage tank 12 is lower than the plateau region of the hydrogen storage alloy MH. It may be determined whether or not there is.
  • the pressure change in the hydrogen storage tank 12 with respect to the change in the amount of hydrogen at a constant temperature in the plateau region It may be difficult to accurately determine the small amount of hydrogen.
  • the pressure change in the hydrogen storage tank 12 with respect to the change in the hydrogen amount at a constant temperature is larger than the change in the plateau region, so hydrogen filling starts.
  • the amount of hydrogen at the time can be determined with high accuracy, and the accuracy of determining the deterioration of the hydrogen storage alloy MH is increased.
  • the processing after step S4 in the embodiment is immediately executed regardless of the pressure and temperature values in the hydrogen storage tank 12.
  • the processing after step S4 may be performed.
  • the pressure and temperature values in the hydrogen storage tank 12 are larger than the preset values at the start of hydrogen filling, the processing after step S4 is immediately performed.
  • the reference cooling heat quantity Q0 corresponding to the preset value is stored in the memory 32, so that the reference cooling heat quantity Q0 corresponds to the pressure and temperature in the hydrogen storage tank 12 at the start of hydrogen filling. You don't have to calculate every time.
  • the interval at which the output signals of the temperature sensors T1, T2 and the flow meter 29 are input is not limited to 1 second. Sampling may be performed at intervals longer than 1 second and at intervals (for example, at intervals of several seconds), or may be sampled at intervals shorter than 1 second. In that case, change the “Z60” part of equation (1) and use it to calculate the cooling heat quantity W.
  • the pressure is the pressure (35 MPa).
  • the pressure may be higher than 35 MPa or lower than 35 MPa.
  • the hydrogen storage tank 12 is not limited to a configuration in which hydrogen is stored at a pressure higher than the pressure in the plateau region of the hydrogen storage alloy MH, for example, at a high pressure of about 35 MPa. Hydrogen may be stored at the pressure in the region. In this case, the pressure resistance of the hydrogen storage tank 12 can be lowered.
  • the fuel cell system has a configuration in which the heat medium used for heating and cooling the hydrogen storage tank 12 is the same as the heat medium for cooling the fuel cell 11, the electromagnetic three-way valve 27 is omitted, and the heat medium is A configuration may be adopted in which the fuel cell 11 is always supplied to the heat exchanger 19 of the hydrogen storage tank 12 via the heat exchanger 15a and then returned to the radiator 14. In this case, only the heat medium that has passed through the heat exchanger 15a of the fuel cell 11 is supplied to the heat exchanger 19 of the hydrogen storage tank 12, but the hydrogen filling is performed in a state where the fuel cell 11 is not operated. Therefore, the hydrogen storage alloy MH has no problem in cooling. In this case, since the electromagnetic three-way valve 27 can be omitted, the configuration of the heat medium circulation system is simplified.
  • the fuel cell 11 is not limited to a polymer electrolyte fuel cell, but may be a fuel cell that uses a heat medium to cool the fuel cell, such as a phosphoric acid fuel cell or an alkaline fuel cell.
  • the fuel cell system is not limited to a configuration in which the fuel cell 11 and one hydrogen storage tank 12 are connected, but a system that supplies hydrogen from the plurality of hydrogen storage tanks 12 to the fuel cell 11. May be.
  • the fuel cell system is not limited to a vehicle.
  • the present invention may be applied to a fuel cell system for a moving body other than a vehicle, or may be applied to a home cogeneration system.
  • the heating medium used for heating or cooling the hydrogen storage alloy MH of the hydrogen storage tank 12 is not limited to the configuration shared with the cooling medium of the fuel cell 11, but in the fuel cell 11 and the hydrogen storage tank 12.
  • An independent heat medium circulation system may be provided.
  • the hydrogen storage and supply system is not limited to a configuration that is used as a hydrogen supply means to the fuel cell 11, but may be a configuration that is used as a hydrogen supply means to a device that uses other hydrogen.
  • a heat medium supplying means for supplying a heat medium for heating or cooling the hydrogen storage alloy MH incorporated in the hydrogen storage tank 12 is provided separately.
  • the heat medium is not limited to LLC, and may be, for example, simple water.
  • the hydrogen storage tank 12 is not limited to a fuel cell system, and may be used as a hydrogen source for a hydrogen engine vehicle equipped with a hydrogen engine.
  • the hydrogen storage tank 12 may contain a hydrogen storage material other than a hydrogen storage alloy, for example, an activated carbon fiber or a single-walled carbon nanotube.

Abstract

A hydrogen storage tank (12) incorporates a hydrogen occlusion alloy (MH) and a heat exchanger (19). Based on a PCT curve of the hydrogen occlusion alloy, a microcomputer (31) determines, when the pressure inside the hydrogen storage tank (12) at the time of the start of hydrogen charging is in a state in a plateau region of the hydrogen occlusion alloy or is lower than the pressure in the plateau region, whether or not the hydrogen occlusion alloy is degraded. The microcomputer (31) calculates the amount of heat for cooling, which amount is a heat amount used for cooling in the charging of hydrogen into the hydrogen storage tank (12), based on heat medium temperatures at the entrance and exit of the heat exchanger and on the flow rate of the heat medium. The microcomputer (31) determines whether or not the hydrogen occlusion alloy (MH) is degraded, and the determination is made based on a standard amount of heat for cooling and on the calculated heat amount for cooling, the standard amount of heat is a heat amount required when hydrogen is charged up to a predetermined pressure from an empty state of the tank.

Description

明 細 書  Specification
水素貯蔵タンクにおける水素吸蔵材の劣化検知装置及び劣化検知方法 並びに水素貯蔵供給システム  Deterioration detection device and deterioration detection method for hydrogen storage material in hydrogen storage tank, and hydrogen storage and supply system
技術分野  Technical field
[0001] 本発明は、水素貯蔵タンクにおける水素吸蔵材の劣化検知装置及び劣化検知方 法並びに水素貯蔵供給システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a hydrogen storage material deterioration detection device, deterioration detection method, and hydrogen storage supply system in a hydrogen storage tank.
背景技術  Background art
[0002] 近年、地球温暖化を抑制する意識が高まり、特に車両から排出される二酸化炭素 の低減を目的として、燃料電池によって駆動される電気自動車や水素エンジン自動 車等の水素を燃料とした水素自動車の開発が盛んである。水素自動車としては、水 素供給源として水素が充填された水素貯蔵タンクを搭載するものが一般的である。  [0002] In recent years, awareness of suppressing global warming has increased, and hydrogen with hydrogen as fuel in electric vehicles and hydrogen engine automobiles driven by fuel cells, particularly for the purpose of reducing carbon dioxide emitted from vehicles. Automobile development is thriving. A hydrogen vehicle is generally equipped with a hydrogen storage tank filled with hydrogen as a hydrogen supply source.
[0003] 水素の貯蔵及び輸送の方法として、所定の温度及び圧力の条件のもとで水素を吸 蔵して水素化物に変化し、必要時に別の温度及び圧力の条件のもとで水素を放出 する「水素吸蔵合金」といわれる金属が知られている。そして、水素吸蔵合金を使用 した水素貯蔵タンクでは、その容積を増やすことなく水素貯蔵量を増大させることが できるため、注目されている。  [0003] As a method for storing and transporting hydrogen, it absorbs hydrogen under the conditions of a predetermined temperature and pressure and converts it into a hydride. When necessary, the hydrogen is stored under conditions of another temperature and pressure. A metal called “hydrogen storage alloy” is known. A hydrogen storage tank using a hydrogen storage alloy is attracting attention because it can increase the amount of hydrogen stored without increasing its volume.
[0004] 水素貯蔵タンクへの水素の充填は、ガソリンスタンドや LPガススタンドに対応する水 素ステーションと呼ばれる設備で行われる。従って、水素貯蔵タンク内の水素の残量 が燃料電池や水素エンジンへの供給に支障を来す程、少なくなる前に、水素を充填 する必要があり、そのためには水素貯蔵タンク内の水素量を特定する必要がある。水 素量を特定するには、水素 S宁蔵タンク内の圧力及び温度と水素吸蔵量との関係を予 め実験で求めて数式化し、水素貯蔵タンク内の圧力及び温度を測定するとともにそ の数式を使用して水素量を演算するのが一般的である。  [0004] The hydrogen storage tank is filled with hydrogen in a facility called a hydrogen station corresponding to a gas station or LP gas station. Therefore, it is necessary to fill with hydrogen before the remaining amount of hydrogen in the hydrogen storage tank becomes so small that it interferes with the supply to the fuel cell and the hydrogen engine. Need to be identified. In order to determine the amount of hydrogen, the relationship between the pressure and temperature in the hydrogen S storage tank and the hydrogen storage amount is obtained by preliminary experimentation, and the pressure and temperature in the hydrogen storage tank are measured and calculated. It is common to calculate the amount of hydrogen using a mathematical formula.
[0005] しかし、水素吸蔵合金は、水素の吸蔵及び放出を何回も繰り返したり、あるいは被 毒したりすること等により劣化する。従って、水素吸蔵合金の劣化 (水素吸蔵量の低 下)を考慮せずに水素量を演算すると、誤差が大きくなる。  [0005] However, hydrogen storage alloys deteriorate due to repeated storage and release of hydrogen many times or poisoning. Therefore, if the hydrogen amount is calculated without taking into account the deterioration of the hydrogen storage alloy (decrease in the hydrogen storage amount), the error increases.
[0006] 従来、水素吸蔵合金が劣化すると、水素を吸蔵させる際に特有の流量変化が生じ るのを利用して、水素貯蔵タンク (水素貯蔵器)への供給水素流量を測定し、その値 から水素吸蔵合金の劣化を判断する装置が知られている(特許文献 1参照)。 [0006] Conventionally, when a hydrogen storage alloy deteriorates, a specific flow rate change occurs when hydrogen is stored. A device is known that measures the flow rate of hydrogen supplied to a hydrogen storage tank (hydrogen storage device) using this, and determines the deterioration of the hydrogen storage alloy from that value (see Patent Document 1).
[0007] また、水素吸蔵合金の劣化検知手段として、前回の水素充填時に、温度検知手段 により検知された水素吸蔵合金の温度を記憶しておき、今回の水素充填時の温度が 前回に記憶した水素吸蔵合金の温度より高いとき、水素吸蔵合金の劣化と判断する ものが提案されている(特許文献 2参照。)。 [0007] Further, as the hydrogen storage alloy deterioration detection means, the temperature of the hydrogen storage alloy detected by the temperature detection means at the time of the previous hydrogen filling is stored, and the temperature at the time of the current hydrogen filling is stored in the previous time. It has been proposed that when the temperature of the hydrogen storage alloy is higher than that of the hydrogen storage alloy, it is judged that the hydrogen storage alloy is deteriorated (see Patent Document 2).
特許文献 1 :特開 2001— 266915号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-266915
特許文献 2:特開 2002— 228098公報号  Patent Document 2: Japanese Patent Laid-Open No. 2002-228098
発明の開示  Disclosure of the invention
[0008] ところが、特許文献 1の装置は、アルコールやガソリン等を改質器で改質して生成さ れた水素が充填される水素貝宁蔵タンクに収容された水素吸蔵合金の劣化を検知する ものである。そして、その装置の劣化の主原因は、改質ガスに含まれる CO、 CO、 o  [0008] However, the device of Patent Document 1 detects the deterioration of the hydrogen storage alloy stored in the hydrogen shell storage tank filled with hydrogen generated by reforming alcohol, gasoline, or the like with a reformer. To do. The main cause of deterioration of the equipment is CO, CO, o contained in reformed gas.
2 等の不純物が水素吸蔵合金に付着することであり、水素吸蔵合金自体の劣化には 2 and other impurities adhere to the hydrogen storage alloy.
2 2
、そのまま適用し難い。また、水素を吸蔵させる際に特有の流量変化を求めるための 基準データは、水素充填開始時の水素貯蔵タンク内の圧力によって異なる。従って 、水素充填開始時の水素貯蔵タンク内の圧力が任意の状態から充填する場合に対 応するためには、水素充填量と圧力との関係を示す基準データのマップの作製に手 間がかかるとともにマップが複雑になる。  It is difficult to apply as it is. In addition, the reference data for obtaining a specific flow rate change when storing hydrogen varies depending on the pressure in the hydrogen storage tank at the start of hydrogen filling. Therefore, in order to cope with the case where the pressure in the hydrogen storage tank at the start of hydrogen filling is filled from an arbitrary state, it takes time to create a map of reference data indicating the relationship between the hydrogen filling amount and the pressure. And the map becomes complicated.
[0009] また、特許文献 2に記載の劣化検知手段では、水素吸蔵合金の温度の検出精度 が劣化判断に大きな影響を与える。水素吸蔵合金の温度は場所によって異なり、温 度測定の精度を高くするには、多数箇所で測定する必要があり、構造が複雑になる。  [0009] Further, in the deterioration detection means described in Patent Document 2, the temperature detection accuracy of the hydrogen storage alloy has a great influence on the deterioration determination. The temperature of the hydrogen storage alloy varies depending on the location, and in order to increase the accuracy of temperature measurement, it is necessary to measure at many locations, which complicates the structure.
[0010] 本発明は、前記の問題に鑑みてなされたものであって、その目的は、水素貯蔵タン クに収容された水素吸蔵材の劣化を従来技術より簡単な構成で、しかも精度良く検 出することができる水素貯蔵タンクにおける水素吸蔵材の劣化検知装置及び劣化検 知方法を提供することにある。また、他の目的は前記水素吸蔵材の劣化検知装置を 備えた水素貯蔵供給システムを提供することにある。  [0010] The present invention has been made in view of the above problems, and an object of the present invention is to detect deterioration of the hydrogen storage material accommodated in the hydrogen storage tank with a simpler configuration than the prior art and with high accuracy. It is an object of the present invention to provide a deterioration detection device and deterioration detection method for a hydrogen storage material in a hydrogen storage tank that can be discharged. Another object of the present invention is to provide a hydrogen storage and supply system provided with a deterioration detection device for the hydrogen storage material.
[0011] 前記の目的を達成するため、本発明の第 1の態様によれば、水素吸蔵材を収容す るとともに熱交換器を内蔵した水素貯蔵タンクにおける水素吸蔵材の劣化検知装置 が提供される。劣化検知装置は、前記水素貯蔵タンク内の圧力を検出する圧力検出 手段と、前記水素貯蔵タンク内の温度を検出する第 1温度検出手段と、前記熱交換 器を流れる熱媒体の前記熱交換器の入口及び出口における温度を検出する第 2温 度検出手段とを備えている。また、前記第 2温度検出手段で検出された前記入口及 び出口における前記熱媒体の温度と、前記熱媒体の流量とに基づいて、前記水素 貯蔵タンクへの水素充填時において冷却に使用された熱量を演算する第 1演算手 段と、前記水素貯蔵タンク内に収容された水素吸蔵材の PCT曲線に基づいて、水素 充填開始時の前記水素吸蔵材に吸蔵されている水素量を求める第 2演算手段とを 備えている。また、劣化検知装置は、前記水素貯蔵タンク内の温度における前記 PC T曲線に基づいて、水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材 のプラトー領域の状態又はプラトー領域より低圧であるときに、前記水素貯蔵タンクに 、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却 熱量と、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定 圧力まで水素を充填するのに要した冷却熱量とに基づいて、水素吸蔵材の劣化の 有無を判断する劣化判断手段とを備えている。 In order to achieve the above object, according to the first aspect of the present invention, a hydrogen storage material deterioration detection device in a hydrogen storage tank that houses a hydrogen storage material and incorporates a heat exchanger. Is provided. The deterioration detector includes a pressure detection means for detecting a pressure in the hydrogen storage tank, a first temperature detection means for detecting a temperature in the hydrogen storage tank, and the heat exchanger for the heat medium flowing through the heat exchanger. Second temperature detecting means for detecting the temperature at the inlet and the outlet. Further, based on the temperature of the heat medium at the inlet and the outlet detected by the second temperature detecting means and the flow rate of the heat medium, it was used for cooling when filling the hydrogen storage tank with hydrogen. Based on the first calculation means for calculating the amount of heat and the PCT curve of the hydrogen storage material accommodated in the hydrogen storage tank, a second amount of hydrogen stored in the hydrogen storage material at the start of hydrogen filling is obtained. Computing means. Further, the deterioration detection device is configured so that the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage material or the plateau region based on the PCT curve at the temperature in the hydrogen storage tank. When the hydrogen storage tank is filled with hydrogen from an empty state to a predetermined pressure set in advance, and from a predetermined state at the start of hydrogen filling or after the start of hydrogen filling, Degradation determining means for determining whether or not the hydrogen storage material has deteriorated based on the amount of cooling heat required to fill hydrogen to a predetermined pressure.
[0012] ここで、「水素吸蔵材の PCT曲線」とは、水素吸蔵材の圧力、吸蔵水素量及び温度 の関係を示す曲線を意味する。  Here, the “PCT curve of the hydrogen storage material” means a curve showing the relationship between the pressure, the amount of hydrogen stored and the temperature of the hydrogen storage material.
[0013] 第 1の態様では、水素貯蔵タンクへの水素充填時に、水素吸蔵材の冷却に使用さ れた熱量 (冷却熱量)を第 1演算手段により演算する。冷却熱量は、水素貯蔵タンク に内蔵された熱交換器を流れる熱媒体の前記熱交換器の入口及び出口における温 度と、熱媒体の流量とに基づいて演算される。そして、劣化判断手段は、水素貯蔵タ ンクに、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準 冷却熱量と、前記冷却熱量とに基づいて水素吸蔵材の劣化の有無を判断する。劣 化判断手段は、水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプ ラトー領域の状態又はプラトー領域より低圧であるときに劣化判断を行う。従って、水 素貯蔵タンクに収容された水素吸蔵材の劣化を従来技術より簡単な構成で、しかも 精度良く検出することができる。  In the first aspect, the amount of heat used for cooling the hydrogen storage material (cooling heat amount) is calculated by the first calculation means when the hydrogen storage tank is filled with hydrogen. The amount of cooling heat is calculated based on the temperature of the heat medium flowing through the heat exchanger built in the hydrogen storage tank at the inlet and outlet of the heat exchanger and the flow rate of the heat medium. Then, the deterioration determination means determines whether the hydrogen storage material has deteriorated based on the reference cooling heat amount necessary for filling the hydrogen storage tank with hydrogen from an empty state to a predetermined pressure set in advance, and the cooling heat amount. Judgment is made. The deterioration judging means judges the deterioration when the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage material or the plateau region. Therefore, the deterioration of the hydrogen storage material accommodated in the hydrogen storage tank can be detected with a simpler configuration and with higher accuracy than in the prior art.
[0014] 前記所定圧力は、前記水素貯蔵タンクへの水素充填量が 100%に達した時点の 圧力であることが望ましい。この場合、水素吸蔵材の劣化の判断に使用する冷却熱 量を演算する際の所定圧力を、水素が 100%より少ない量だけ水素吸蔵材に吸蔵さ れた時点の圧力とした場合に比較して、精度が高くなる。 [0014] The predetermined pressure is determined when the hydrogen filling amount in the hydrogen storage tank reaches 100%. The pressure is desirable. In this case, the predetermined pressure when calculating the heat of cooling used to determine the deterioration of the hydrogen storage material is compared with the pressure at the time when hydrogen is stored in the hydrogen storage material by an amount less than 100%. Accuracy.
[0015] 前記劣化判断手段は、前記水素貯蔵タンク内の圧力が前記水素吸蔵材のプラトー 領域より低圧であるときに水素充填が開始された際に、前記劣化の有無を判断する ことが望ましい。その場合、水素吸蔵材の PCT曲線から、水素充填開始時の水素吸 蔵量を求めるとき、プラトー領域に比較してプラトー領域より低圧領域の方が精度が 高くなるため、水素吸蔵材の劣化判断の精度が高くなる。  [0015] Preferably, the deterioration determining means determines whether or not the deterioration has occurred when hydrogen filling is started when the pressure in the hydrogen storage tank is lower than the plateau region of the hydrogen storage material. In this case, when determining the hydrogen storage amount at the start of hydrogen filling from the PCT curve of the hydrogen storage material, the accuracy in the low pressure region is higher than that in the plateau region. The accuracy of.
[0016] 前記水素充填開始後の所定状態とは、前記水素貯蔵タンク内の圧力及び温度が 予め設定された値に達した状態であることが望ましレ、。  [0016] The predetermined state after the start of hydrogen filling is preferably a state in which the pressure and temperature in the hydrogen storage tank have reached preset values.
[0017] 前記水素貯蔵タンクは水素を燃料とする水素燃料自動車の水素源として使用され ることが可能である。 [0017] The hydrogen storage tank can be used as a hydrogen source for a hydrogen-fueled vehicle using hydrogen as fuel.
[0018] 本発明の第 2の態様によれば、水素吸蔵材を収容するとともに熱交換器を内蔵した 水素貯蔵タンクにおける水素吸蔵材の劣化検知方法が提供される。その方法によれ ば、前記水素吸蔵材の PCT曲線に基づいて、水素充填開始時の前記水素貯蔵タン ク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるとき に、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定圧力 に水素が充填されるまでに要した冷却熱量と、前記水素貯蔵タンクに、空の状態から 予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量から前記冷 却熱量を必要とした水素充填量に対応して求められた水素吸蔵材の非劣化状態で の必要冷却熱量とに基づいて、水素吸蔵材の劣化の有無を判断する。  [0018] According to the second aspect of the present invention, there is provided a method for detecting deterioration of a hydrogen storage material in a hydrogen storage tank that contains a hydrogen storage material and incorporates a heat exchanger. According to the method, based on the PCT curve of the hydrogen storage material, when the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region or lower than the plateau region of the hydrogen storage material, The amount of cooling heat required to fill the predetermined pressure with hydrogen at the start of hydrogen filling or after the start of hydrogen filling, and the hydrogen storage tank are charged with hydrogen from an empty state to a predetermined pressure set in advance. Degradation of the hydrogen storage material based on the required amount of cooling heat in the non-degraded state of the hydrogen storage material determined corresponding to the hydrogen filling amount that required the cooling heat amount from the reference cooling heat amount required for filling Determine the presence or absence.
[0019] この方法では、水素吸蔵材の劣化を、従来技術より簡単に、精度良く検出すること ができる。  [0019] With this method, the deterioration of the hydrogen storage material can be detected more easily and accurately than in the prior art.
[0020] 本発明の第 3の態様によれば、第 1の態様における水素貯蔵タンクの水素吸蔵材 の劣化検知装置と、水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タ ンクと、前記水素吸蔵材を加熱あるいは冷却する熱媒体を前記熱交換器に供給する 供給手段とを備えた水素貯蔵供給システムが提供される。この水素貯蔵供給システ ムは、水素吸蔵材の劣化を精度良く検出することができる。 図面の簡単な説明 [0020] According to the third aspect of the present invention, the hydrogen storage material deterioration detection device of the hydrogen storage tank according to the first aspect, the hydrogen storage tank containing the hydrogen storage material and incorporating the heat exchanger, There is provided a hydrogen storage and supply system comprising a supply means for supplying a heat medium for heating or cooling the hydrogen storage material to the heat exchanger. This hydrogen storage and supply system can accurately detect the deterioration of the hydrogen storage material. Brief Description of Drawings
[0021] [図 1]燃料電池システムの構成図。  FIG. 1 is a configuration diagram of a fuel cell system.
[図 2]水素吸蔵合金劣化判断の手順を示すフローチャート。  FIG. 2 is a flowchart showing a procedure for judging deterioration of a hydrogen storage alloy.
[図 3]水素吸蔵合金の PCT曲線を示す図。  FIG. 3 is a diagram showing a PCT curve of a hydrogen storage alloy.
[図 4] (a)は 100%水素充填時の充填時間と冷却熱量との関係を示す図、(b)は水素 充填時の充填時間と冷却熱量との関係を示す図。  [FIG. 4] (a) is a diagram showing the relationship between the filling time at 100% hydrogen filling and the amount of cooling heat, and (b) is a diagram showing the relationship between the filling time at hydrogen filling and the amount of cooling heat.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] (第 1の実施形態) [0022] (First embodiment)
以下、燃料電池の水素源として使用するとともに、燃料電池の冷却用の熱媒体を 水素吸蔵材の加熱、冷却用の熱媒体として共通に使用する構成の燃料電池システ ムに、本発明を具体化した一実施形態を、図 1〜図 4にしたがって説明する。図 1は、 燃料電池システムの概略構成図である。  Hereinafter, the present invention is embodied in a fuel cell system configured to be used as a hydrogen source for a fuel cell and a heat medium for cooling the fuel cell as a heat medium for heating and cooling the hydrogen storage material. Such an embodiment will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a fuel cell system.
[0023] 燃料電池システムは、燃料電池 11、水素貯蔵タンク 12、コンプレッサ 13及びラジェ ータ 14を備えている。水素貯蔵タンク 12、燃料電池 11及びラジェータ 14は熱媒流 路 15を介して連結されてレ、る。 The fuel cell system includes a fuel cell 11, a hydrogen storage tank 12, a compressor 13, and a radiator 14. The hydrogen storage tank 12, the fuel cell 11 and the radiator 14 are connected through a heat medium flow path 15.
[0024] 燃料電池 11は、例えば固体高分子型の燃料電池からなり、水素貯蔵タンク 12から 供給される水素と、コンプレッサ 13から供給される空気中の酸素とを反応させて直流 の電気エネルギー(直流電力)を発生する。定常運転時に燃料電池 11を冷却可能 にするため、前記熱媒流路 15の一部が熱交換部 15aとして燃料電池 11内に配置さ れている。 [0024] The fuel cell 11 is composed of, for example, a polymer electrolyte fuel cell. The fuel cell 11 reacts with hydrogen supplied from the hydrogen storage tank 12 and oxygen in the air supplied from the compressor 13 to generate direct current electric energy ( DC power). In order to allow the fuel cell 11 to be cooled during the steady operation, a part of the heat medium flow path 15 is arranged in the fuel cell 11 as a heat exchanging portion 15a.
[0025] 水素貯蔵タンク 12は、タンク本体 16と、水素吸蔵材としての水素吸蔵合金 MHを 内部に収容した水素吸蔵用ユニット 17と、タンク本体 16内で水素吸蔵用ユニット 17 を支持する支持体 18とを備えている。また、水素貯蔵タンク 12内には、水素吸蔵合 金 MHとの間で熱交換を行う熱交換器 19が設けられている。熱交換器 19は水素吸 蔵用ユニット 17の一部を構成し、水素吸蔵合金 MHとの間の熱交換の効率を高める ための多数のフィン 20を備えている。また、熱交換器 19の流路は熱媒流路 15の一 部を構成してレ、る。この実施形態では熱媒体として LLC (ロングライフクーラント)が使 用されている。水素吸蔵合金 MHとしては公知のものを使用できる。 [0026] 水素貯蔵タンク 12は、燃料電池 11の水素供給ポート(図示せず)に管路 21を介し て連結され、燃料電池 11に水素を供給する。水素貯蔵タンク 12は、タンク本体 16内 に水素吸蔵合金 MHのプラトー領域の圧力より高い圧力、例えば、約 35MPaの高 圧で水素を貯蔵し、図示しないバルブで圧力を減圧して燃料電池 11に一定の圧力( 例えば、 0. 3MPa程度)で供給する。プラトー領域とは、水素の吸蔵量が増加しても 、タンク本体 16内の圧力が殆ど増加しないで、ほぼ一定に保たれる領域を言う。 The hydrogen storage tank 12 includes a tank body 16, a hydrogen storage unit 17 containing a hydrogen storage alloy MH as a hydrogen storage material therein, and a support body that supports the hydrogen storage unit 17 in the tank body 16. 18 and. In the hydrogen storage tank 12, a heat exchanger 19 for exchanging heat with the hydrogen storage alloy MH is provided. The heat exchanger 19 forms a part of the hydrogen storage unit 17 and includes a large number of fins 20 for increasing the efficiency of heat exchange with the hydrogen storage alloy MH. The flow path of the heat exchanger 19 forms part of the heat medium flow path 15. In this embodiment, LLC (Long Life Coolant) is used as the heat medium. A known material can be used as the hydrogen storage alloy MH. The hydrogen storage tank 12 is connected to a hydrogen supply port (not shown) of the fuel cell 11 via a conduit 21 and supplies hydrogen to the fuel cell 11. The hydrogen storage tank 12 stores hydrogen in the tank body 16 at a pressure higher than the pressure in the plateau region of the hydrogen storage alloy MH, for example, about 35 MPa, and reduces the pressure with a valve (not shown) to the fuel cell 11. Supply at a constant pressure (for example, about 0.3 MPa). The plateau region is a region where the pressure in the tank main body 16 hardly increases even if the amount of occluded hydrogen increases, and is kept almost constant.
[0027] 水素貯蔵タンク 12は、水素充填口 22aを備えた管路 22に連結され、管路 22から水 素貯蔵タンク 12に水素ガスの充填が可能になっている。水素貯蔵タンク 12にはタン ク本体 16内の圧力を検出する圧力検出手段としての圧力センサ 23aと、タンク本体 1 6内の温度を検出する第 1温度検出手段としての温度センサ 23bとが設けられている  [0027] The hydrogen storage tank 12 is connected to a pipe line 22 having a hydrogen filling port 22a, and the hydrogen storage tank 12 can be filled with hydrogen gas from the pipe line 22. The hydrogen storage tank 12 is provided with a pressure sensor 23a as a pressure detection means for detecting the pressure in the tank body 16 and a temperature sensor 23b as a first temperature detection means for detecting the temperature in the tank body 16. ing
[0028] コンプレッサ 13は、燃料電池 11の酸素供給ポート(図示せず)に管路 24を介して 連結され、燃料電池 11に圧縮空気を供給する。コンプレッサ 13は図示しないエアク リーナでゴミ等が除去された空気を圧縮して管路 24に吐出するようになっている。 [0028] The compressor 13 is connected to an oxygen supply port (not shown) of the fuel cell 11 via a pipe line 24, and supplies compressed air to the fuel cell 11. The compressor 13 compresses the air from which dust and the like have been removed by an air cleaner (not shown) and discharges the compressed air to the conduit 24.
[0029] ラジェータ 14は、モータ 25により回転されるファン 25aを備え、ラジェータ 14からの 放熱が効率よく行われるようになつている。  [0029] The radiator 14 includes a fan 25a that is rotated by a motor 25 so that heat is efficiently radiated from the radiator 14.
[0030] 熱媒流路 15には、ラジェータ 14の入口側に位置するポンプ 26が設けられている。  [0030] The heat medium flow path 15 is provided with a pump 26 located on the inlet side of the radiator 14.
ポンプ 26は、熱媒流路 15内の熱媒体をラジェータ 14の入口へ送るように設けられて いる。熱媒流路 15は、熱交換部 15aの入口及びラジェータ 14の出口の中間に設け られた分岐部で分岐されて、ラジェータ 14の入口に連結される迂回部分 15bを有し 、分岐部には電磁三方弁 27が設けられている。熱交換部 15aの出口側は迂回部分 15bに連結されている。電磁三方弁 27は、熱媒体が燃料電池 11の熱交換部 15aの 入口側に供給される状態と、熱交換部 15aに供給されずに迂回部分 15bを流れる状 態とに切り換え可能に構成されている。  The pump 26 is provided to send the heat medium in the heat medium flow path 15 to the inlet of the radiator 14. The heat medium flow path 15 is branched at a branch portion provided between the inlet of the heat exchanging portion 15a and the outlet of the radiator 14, and has a bypass portion 15b connected to the inlet of the radiator 14, and the branch portion includes An electromagnetic three-way valve 27 is provided. The outlet side of the heat exchange part 15a is connected to the bypass part 15b. The electromagnetic three-way valve 27 is configured to be switchable between a state in which the heat medium is supplied to the inlet side of the heat exchange part 15a of the fuel cell 11 and a state in which the heat medium flows through the bypass part 15b without being supplied to the heat exchange part 15a. ing.
[0031] 水素貯蔵タンク 12の熱交換器 19の入口 19aは、迂回部分 15bに電磁三方弁 28を 介して連結されている。また、熱交換器 19の出口 19bは、迂回部分 15bの前記電磁 三方弁 28より下流側に連結されている。電磁三方弁 28は、迂回部分 15bを流れる 熱媒体を熱交換器 19の入口 19aへのみ通過可能な第 1の状態と、迂回部分 15bを 流れる熱媒体を熱交換器 19の入口 19aではなく迂回部分 15bの下流側へのみ通過 可能な第 2の状態とに切換可能に構成されている。 [0031] The inlet 19a of the heat exchanger 19 of the hydrogen storage tank 12 is connected to the bypass portion 15b via an electromagnetic three-way valve 28. The outlet 19b of the heat exchanger 19 is connected to the downstream side of the electromagnetic three-way valve 28 of the bypass portion 15b. The electromagnetic three-way valve 28 has a first state in which the heat medium flowing through the bypass portion 15b can pass only to the inlet 19a of the heat exchanger 19, and the bypass portion 15b. The flowing heat medium is configured to be switchable to a second state in which the flowing heat medium can pass only to the downstream side of the bypass portion 15b instead of the inlet 19a of the heat exchanger 19.
[0032] 熱交換器 19の入口 19aには熱媒体の温度を検出する温度センサ T1が、熱交換器 19の出口 19bには熱媒体の温度を検出する温度センサ T2がそれぞれ設けられてい る。両温度センサ Tl , T2が、熱媒体の熱交換器 19の入口 19a及び出口 19bにおけ る温度を検出する第 2温度検出手段を構成する。また、入口 19aと電磁三方弁 28と の間には熱媒体の流量を測定する流量計 29が設けられている。  [0032] A temperature sensor T1 for detecting the temperature of the heat medium is provided at the inlet 19a of the heat exchanger 19, and a temperature sensor T2 for detecting the temperature of the heat medium is provided at the outlet 19b of the heat exchanger 19, respectively. Both temperature sensors Tl and T2 constitute second temperature detecting means for detecting temperatures at the inlet 19a and outlet 19b of the heat exchanger 19 of the heat medium. Further, a flow meter 29 for measuring the flow rate of the heat medium is provided between the inlet 19a and the electromagnetic three-way valve 28.
[0033] 水素貯蔵タンク 12に収容された制御装置 30は、冷却熱量の演算手段、充填開始 時の水素吸蔵量の演算手段及び劣化判断手段としてのマイクロコンピュータ 31を内 蔵する。マイクロコンピュータ 31はメモリ(ROMおよび RAM) 32を備える。圧力セン サ 23a、温度センサ 23b、温度センサ Tl , T2、流量計 29及び燃料電池 11の温度を 検出する温度センサ(図示せず)は、制御装置 30の入力側(入力インタフェイス)にそ れぞれ電気的に接続されている。コンプレッサ 13、モータ 25、ポンプ 26、電磁三方 弁 27, 28は、制御装置 30の出力側(出力インタフェイス)にそれぞれ電気的に接続 されている。コンプレッサ 13、モータ 25、ポンプ 26、電磁三方弁 27, 28は、制御装 置 30からの指令によって運転あるいは切換え制御されるようになっている。ポンプ 26 は制御装置 30からの指令信号に基づいて駆動、停止され、かつ、流量を変更される [0033] The control device 30 housed in the hydrogen storage tank 12 includes a microcomputer 31 as a means for calculating a cooling heat amount, a means for calculating a hydrogen storage amount at the start of filling, and a deterioration determining means. The microcomputer 31 includes a memory (ROM and RAM) 32. Pressure sensor 23a, temperature sensor 23b, temperature sensors Tl and T2, flow meter 29, and temperature sensor (not shown) for detecting the temperature of fuel cell 11 are connected to the input side (input interface) of control device 30. Each is electrically connected. The compressor 13, the motor 25, the pump 26, and the electromagnetic three-way valves 27 and 28 are electrically connected to the output side (output interface) of the control device 30, respectively. The compressor 13, the motor 25, the pump 26, and the electromagnetic three-way valves 27 and 28 are operated or switched by commands from the control device 30. The pump 26 is driven, stopped and the flow rate is changed based on the command signal from the control device 30.
[0034] メモリ 32には、図 3に示すような水素吸蔵合金の PCT曲線がマップとして記憶され ている。また、メモリ 32には、水素貯蔵タンク 12に、空の状態から予め設定された所 定圧力まで水素を充填する際に必要な基準冷却熱量 Q0が記憶されている。この実 施形態では、水素貯蔵タンク 12に 100%の水素が充填された時点の圧力及び熱量 が、所定圧力時の基準冷却熱量 Q0として設定されている。また、基準冷却熱量 Q0 は、図 4 (a)に示すように、冷却熱量と充填時間の関係とを示すマップとして記憶され ている。 [0034] The memory 32 stores a PCT curve of a hydrogen storage alloy as shown in FIG. 3 as a map. The memory 32 stores a reference cooling heat quantity Q0 necessary for filling the hydrogen storage tank 12 with hydrogen from an empty state to a predetermined pressure set in advance. In this embodiment, the pressure and heat quantity when the hydrogen storage tank 12 is filled with 100% hydrogen are set as the reference cooling heat quantity Q0 at a predetermined pressure. Further, as shown in FIG. 4 (a), the reference cooling heat quantity Q0 is stored as a map indicating the relationship between the cooling heat quantity and the filling time.
[0035] マイクロコンピュータ 31は、温度センサ Tl, Τ2で検出された熱交換器 19の入口 19 aにおける熱媒体の温度 T (°C)と、出口 19bにおける熱媒体の温度 T (°C)と、熱  [0035] The microcomputer 31 includes the temperature T (° C) of the heat medium at the inlet 19a of the heat exchanger 19 detected by the temperature sensors Tl and Τ2, and the temperature T (° C) of the heat medium at the outlet 19b. The heat
in out  in out
媒体の流量 Q (L/min)とに基づいて水素貯蔵タンク 12への水素充填時において 冷却に使用された冷却熱量 W (kW)を次式(1)により演算する。このときマイクロコン ピュータ 31は第 1演算手段として機能する。 When the hydrogen storage tank 12 is filled with hydrogen based on the flow rate Q (L / min) of the medium The cooling heat quantity W (kW) used for cooling is calculated by the following equation (1). At this time, the microcomputer 31 functions as a first calculation means.
[0036] W= (T -T ) p - Q/1000/60 - - - (1) [0036] W = (T -T) p-Q / 1000/60---(1)
out in  out in
但し、 Cは熱媒体の比熱 (kjZ (kg-°C) )、 pは熱媒体の比重(kgZm3)である。ま た、(1)式中「Z60」は、流量計の出力値が「分」単位であるのを「1秒単位」のサンプ リング処理に対応させるためのものである。 Where C is the specific heat of the heat medium (kjZ (kg- ° C)) and p is the specific gravity of the heat medium (kgZm 3 ). In addition, “Z60” in the equation (1) is used to make the output value of the flow meter in “minute” units correspond to the sampling process in “one second unit”.
[0037] マイクロコンピュータ 31は、水素充填開始時に水素吸蔵合金 MHに吸蔵されてい る水素量を、水素貯蔵タンク 12内の圧力と、水素貯蔵タンク 12内の温度とから水素 吸蔵合金の PCT曲線を用いて演算する。このときマイクロコンピュータ 31は、水素貯 蔵タンク 12内に収容された水素充填開始時の水素吸蔵合金 MHに吸蔵されている 水素量を求める第 1演算手段として機能する。  [0037] The microcomputer 31 calculates the PCT curve of the hydrogen storage alloy from the pressure in the hydrogen storage tank 12 and the temperature in the hydrogen storage tank 12 based on the amount of hydrogen stored in the hydrogen storage alloy MH at the start of hydrogen filling. Use to calculate. At this time, the microcomputer 31 functions as first calculation means for obtaining the amount of hydrogen stored in the hydrogen storage alloy MH stored in the hydrogen storage tank 12 at the start of hydrogen filling.
[0038] マイクロコンピュータ 31は、水素充填開始時の水素貯蔵タンク 12内の圧力が水素 吸蔵合金 MHのプラトー領域の状態又はプラトー領域より低圧であるときに、基準冷 却熱量 Q0と、水素吸蔵開始時から前記所定圧力に水素が充填されるまでに要した 冷却熱量 Wとに基づいて水素吸蔵合金 MHの劣化の有無を判断する。このときマイ クロコンピュータ 31は、水素吸蔵合金 MHの劣化の有無を判断する劣化判断手段と して機能する。  [0038] When the pressure in the hydrogen storage tank 12 at the start of hydrogen filling is the state of the plateau region of the hydrogen storage alloy MH or lower than the plateau region, the microcomputer 31 starts to store the reference cooling heat Q0 and the hydrogen storage. Whether or not the hydrogen storage alloy MH has deteriorated is determined based on the amount of cooling heat W required from the time until the predetermined pressure is filled with hydrogen. At this time, the microcomputer 31 functions as a deterioration determining means for determining whether or not the hydrogen storage alloy MH has deteriorated.
[0039] この実施形態では、燃料電池 11及びラジェータ 14の熱交換部 15aが、水素貯蔵タ ンク 12に内蔵された水素吸蔵合金 MHを加熱あるいは冷却する熱媒体を供給する 供給手段を構成する。そして、水素貯蔵タンク 12と、ラジェータ 14と、燃料電池 11の 熱交換部 15aと、前記のように構成された水素吸蔵材の劣化検知装置とによって水 素貯蔵供給システムが構成されてレ、る。  [0039] In this embodiment, the heat exchange part 15a of the fuel cell 11 and the radiator 14 constitutes a supply means for supplying a heat medium for heating or cooling the hydrogen storage alloy MH built in the hydrogen storage tank 12. The hydrogen storage tank 12, the radiator 14, the heat exchange part 15a of the fuel cell 11, and the hydrogen storage material deterioration detector configured as described above constitute a hydrogen storage and supply system. .
[0040] 次に前記のように構成された装置の作用を説明する。  Next, the operation of the apparatus configured as described above will be described.
[0041] 燃料電池 11は、環境温度が燃料電池 11の発電が可能な予め設定された温度(設 定温度)以上の場合に通常に運転される。制御装置 30は環境温度を計測する温度 センサ(図示せず)の検出信号に基づいて、環境温度が前記設定温度以上であれば 始動時から通常運転を行レ、、環境温度が設定温度未満の場合には暖機を行った後 、通常運転に移行する。 [0042] 通常運転時には、水素貯蔵タンク 12から水素が燃料電池 11のアノード電極側に 供給される。また、コンプレッサ 13が駆動されて、空気が所定の圧力に加圧され、燃 料電池 11の力ソード電極側に供給される。 The fuel cell 11 is normally operated when the environmental temperature is equal to or higher than a preset temperature (set temperature) at which the fuel cell 11 can generate power. Based on a detection signal of a temperature sensor (not shown) that measures the environmental temperature, the control device 30 performs normal operation from the start if the environmental temperature is equal to or higher than the set temperature, and the environmental temperature is less than the set temperature. In some cases, after warming up, the system shifts to normal operation. During normal operation, hydrogen is supplied from the hydrogen storage tank 12 to the anode electrode side of the fuel cell 11. Further, the compressor 13 is driven, and the air is pressurized to a predetermined pressure and supplied to the power sword electrode side of the fuel cell 11.
[0043] また、固体高分子型燃料電池は、 80°C程度で効率よく発電されるが、水素と酸素と の化学反応は発熱反応のため、発電を継続すると、反応熱のため燃料電池 11の温 度が 80°C程度の適正温度より上昇する。この温度上昇を防止するため、ラジェータ 1 4で冷却された熱媒体が熱媒流路 15内を循環する。また、水素吸蔵合金 MHからの 水素の放出は吸熱反応のため、反応を円滑に進めるためには水素吸蔵合金 MHを 加熱する必要があり、燃料電池 11の冷却後の温まった熱媒体が水素吸蔵合金 MH の加熱に使用される。  [0043] In addition, solid polymer fuel cells generate power efficiently at about 80 ° C, but the chemical reaction between hydrogen and oxygen is an exothermic reaction. The temperature rises above an appropriate temperature of about 80 ° C. In order to prevent this temperature rise, the heat medium cooled by the radiator 14 circulates in the heat medium flow path 15. In addition, since the release of hydrogen from the hydrogen storage alloy MH is an endothermic reaction, it is necessary to heat the hydrogen storage alloy MH in order to make the reaction proceed smoothly. Used for heating alloy MH.
[0044] 制御装置 30は、燃料電池 11の運転時には、電磁三方弁 27を熱媒体が熱交換部 15aの入口に供給される状態に保持するとともに、水素貯蔵タンク 12内の圧力を検 出する圧力センサ 23aの検出信号に基づいて、電磁三方弁 28を切換制御する。制 御装置 30は、水素貯蔵タンク 12内の圧力が予め設定された第 1の設定圧力以下に なると、熱媒体が水素貯蔵タンク 12を加熱する状態、即ち熱媒体が熱交換器 19を流 れる状態に、電磁三方弁 28を切り換える指令信号を出力する。また、水素貯蔵タンク 12内の圧力が予め設定された第 2の設定圧力以上になると、熱媒体が熱交換器 19 を流れない状態、即ち水素貯蔵タンク 12内を流れない状態に、電磁三方弁 28を切り 換える指令信号を出力する。制御装置 30は、熱媒体による加熱を予め設定された所 定時間継続しても第 1の設定圧力に達しない状態になった時点で水素の充填が必 要と判断する。そして、報知手段 (例えばランプ等の表示部)を駆動させる。  [0044] During operation of the fuel cell 11, the control device 30 holds the electromagnetic three-way valve 27 in a state where the heat medium is supplied to the inlet of the heat exchange unit 15a, and detects the pressure in the hydrogen storage tank 12. Based on the detection signal of the pressure sensor 23a, the electromagnetic three-way valve 28 is switched and controlled. When the pressure in the hydrogen storage tank 12 becomes equal to or lower than a first preset pressure, the control device 30 is in a state where the heat medium heats the hydrogen storage tank 12, that is, the heat medium flows through the heat exchanger 19. A command signal for switching the electromagnetic three-way valve 28 is output to the state. Further, when the pressure in the hydrogen storage tank 12 becomes equal to or higher than a second preset pressure set in advance, the electromagnetic three-way valve is brought into a state where the heat medium does not flow through the heat exchanger 19, that is, does not flow through the hydrogen storage tank 12. A command signal for switching 28 is output. The control device 30 determines that hydrogen filling is necessary when the first set pressure is not reached even if heating with the heat medium continues for a preset time. Then, the notification means (for example, a display unit such as a lamp) is driven.
[0045] 水素貯蔵タンク 12に水素ガスを充填すなわち貯蔵する際、制御装置 30は、熱媒体 が燃料電池 11の熱交換部 15aに供給されずに迂回部分 15bを流れる状態に切り換 える指令信号を電磁三方弁 27へ出力し、電磁三方弁 28には熱媒体を水素貯蔵タン ク 12の熱交換器 19へ供給する状態に切り換える指令信号を出力する。従って、ラジ エータ 14で冷却された熱媒体は燃料電池 11の熱交換部 15aを経ずに水素貯蔵タン ク 12の熱交換器 19に供給される状態となる。  [0045] When the hydrogen storage tank 12 is filled with hydrogen gas, that is, stored, the control device 30 sends a command signal for switching to a state in which the heat medium flows through the bypass portion 15b without being supplied to the heat exchange portion 15a of the fuel cell 11. Is output to the electromagnetic three-way valve 27, and a command signal for switching the state in which the heat medium is supplied to the heat exchanger 19 of the hydrogen storage tank 12 is output to the electromagnetic three-way valve 28. Accordingly, the heat medium cooled by the radiator 14 is supplied to the heat exchanger 19 of the hydrogen storage tank 12 without passing through the heat exchange section 15a of the fuel cell 11.
[0046] そして、例えば、図示しない水素ステーションのデイスペンサのカップラが水素充填 口 22aに連結されて、水素ステーションの水素カードルと水素貯蔵タンク 12の圧力差 により、水素貯蔵タンク 12に水素ガスが充填される。 [0046] And, for example, a dispenser coupler of a hydrogen station (not shown) is filled with hydrogen. The hydrogen storage tank 12 is filled with hydrogen gas by the pressure difference between the hydrogen curdle of the hydrogen station and the hydrogen storage tank 12 connected to the port 22a.
[0047] 水素カードルから水素貯蔵タンク 12内に供給された水素ガスは、水素吸蔵合金 M Hと反応して水素化物となって水素吸蔵合金 MHに吸蔵される。水素の吸蔵反応は 発熱反応であるので、水素の吸蔵反応で発生した熱を除去しないと吸蔵反応が円滑 に進行しない。そこで、水素を充填する際は、熱媒流路 15を流れる熱媒体が、燃料 電池 11を流れず、迂回部分 15b、熱交換器 19を通って水素貯蔵タンク 12とラジェ ータ 14との間で循環する状態となるように、電磁三方弁 27, 28が切り換えられる。  [0047] The hydrogen gas supplied from the hydrogen curdle into the hydrogen storage tank 12 reacts with the hydrogen storage alloy MH to become a hydride and is stored in the hydrogen storage alloy MH. Since the hydrogen occlusion is an exothermic reaction, the occlusion does not proceed smoothly unless the heat generated by the hydrogen occlusion is removed. Therefore, when filling with hydrogen, the heat medium flowing through the heat medium flow path 15 does not flow through the fuel cell 11, passes through the bypass portion 15b and the heat exchanger 19, and between the hydrogen storage tank 12 and the radiator 14. The electromagnetic three-way valves 27 and 28 are switched so as to circulate at
[0048] マイクロコンピュータ 31は、水素充填開始時の水素貯蔵タンク 12内の圧力が水素 吸蔵合金 MHのプラトー領域の状態又はプラトー領域より低圧であるときに劣化判断 を行う。  [0048] The microcomputer 31 makes a deterioration determination when the pressure in the hydrogen storage tank 12 at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage alloy MH or lower than the plateau region.
[0049] 次に図 2のフローチャートに基づいて水素吸蔵合金 MHの劣化判断の手順を説明 する。  Next, a procedure for determining the deterioration of the hydrogen storage alloy MH will be described based on the flowchart of FIG.
[0050] 制御装置 30は、水素充填時に電磁三方弁 27に熱媒体が燃料電池 11の熱交換部 15aに供給されずに迂回部分 15bを流れる状態に切り換える指令信号を出力し、電 磁三方弁 28に熱媒体を水素貯蔵タンク 12の熱交換器 19へ供給する状態に切り換 える指令信号を出力する。その後、マイクロコンピュータ 31は、水素吸蔵合金 MHの 劣化判断処理を図 2のフローチャートに示すような手順で実行する。  [0050] The control device 30 outputs a command signal for switching to a state in which the heat medium flows through the bypass portion 15b without being supplied to the heat exchanging portion 15a of the fuel cell 11 to the electromagnetic three-way valve 27 at the time of hydrogen filling, and the electromagnetic three-way valve A command signal for switching to a state in which the heat medium is supplied to the heat exchanger 19 of the hydrogen storage tank 12 is output to 28. Thereafter, the microcomputer 31 executes the process for determining the deterioration of the hydrogen storage alloy MH according to the procedure shown in the flowchart of FIG.
[0051] マイクロコンピュータ 31は、先ずステップ S1で圧力センサ 23a及び温度センサ 23b の検出信号を入力する。次にステップ S2で水素貯蔵タンク 12内の圧力が水素吸蔵 合金 MHのプラトー領域の状態又はプラトー領域より低圧であるか否かの判断を行う 。そして、ステップ S2で水素貯蔵タンク 12内の圧力が水素吸蔵合金 MHのプラトー 領域の状態又はプラトー領域より低圧でなければ劣化判断処理を終了し、プラトー 領域の状態又はプラトー領域より低圧であればステップ S3に進み、劣化判断処理を 継続する。  The microcomputer 31 first inputs detection signals from the pressure sensor 23a and the temperature sensor 23b in step S1. Next, in step S2, it is determined whether the pressure in the hydrogen storage tank 12 is in the state of the plateau region of the hydrogen storage alloy MH or whether it is lower than the plateau region. Then, if the pressure in the hydrogen storage tank 12 is not lower than the state of the plateau region of the hydrogen storage alloy MH or the plateau region in step S2, the deterioration determination process is terminated, and if the pressure is lower than the state of the plateau region or the plateau region, step is performed. Proceed to S3 and continue the deterioration judgment process.
[0052] マイクロコンピュータ 31は、ステップ S3で水素充填開始時の水素吸蔵合金 MHに 吸蔵されている水素量を、水素貯蔵タンク 12内の圧力及び温度と、 PCT曲線とに基 づいて 100%充填時 (満充填時)に対する割合(%)として演算する。次にマイクロコ ンピュータ 31はステップ S4に進み、 1秒毎に温度センサ Tl , T2及び流量計 29の出 力信号を入力して前記の(1)式により冷却熱量 Wを演算し、その値をメモリ 32に記憶 する。 [0052] The microcomputer 31 fills 100% of the amount of hydrogen stored in the hydrogen storage alloy MH at the start of hydrogen charging in step S3 based on the pressure and temperature in the hydrogen storage tank 12 and the PCT curve. Calculated as a percentage (%) with respect to time (fully filled). Next, microcode The computer 31 proceeds to step S4, inputs the output signals of the temperature sensors Tl and T2 and the flow meter 29 every second, calculates the cooling heat amount W by the above equation (1), and stores the value in the memory 32. To do.
[0053] 次にマイクロコンピュータ 31はステップ S5に進み、圧力センサ 23aの出力信号から 水素貯蔵タンク 12内の圧力が所定圧力(100%充填時の圧力:例えば、 35MPa)に 達したか否かを判断する。そして、所定圧力に達していなければステップ S4に戻りス テツプ S4を実行する。冷却熱量 Wと充填開始からの経過時間との関係は、例えば、 図 4 (b)に示すようになる。ステップ S 5で所定圧力に達したか否かは、予め設定され た時間経過しても所定圧力に保持されているか否かで行い、予め設定された時間経 過しても所定圧力に保持されてレ、るときに所定圧力に達したと判断する。  [0053] Next, the microcomputer 31 proceeds to step S5, and from the output signal of the pressure sensor 23a, it is determined whether or not the pressure in the hydrogen storage tank 12 has reached a predetermined pressure (pressure at 100% filling: for example, 35 MPa). to decide. If the predetermined pressure has not been reached, the process returns to step S4 to execute step S4. The relationship between the cooling heat quantity W and the elapsed time from the start of filling is, for example, as shown in Fig. 4 (b). Whether or not the predetermined pressure has been reached in step S5 is determined by whether or not the predetermined pressure is maintained even after a preset time has elapsed, and is maintained at the predetermined pressure even after a predetermined time has elapsed. It is determined that the predetermined pressure has been reached.
[0054] 一方、ステップ S5で所定圧力に達していれば、充填終了と判断してステップ S6に 進む。マイクロコンピュータ 31は、ステップ S6でそれまでにメモリ 32に記憶した冷却 熱量 Wの値を積算して、水素充填時にぉレ、て冷却に使用された合計冷却熱量 Waを 演算する。そして、ステップ S7に進み、前記基準冷却熱量 Q0と充填開始時の水素 吸蔵合金 MHの水素吸蔵量とから水素吸蔵合金 MHが劣化していない状態での、 水素充填時において冷却に必要な冷却熱量 Qsを求める。具体的には、充填開始時 の水素吸蔵合金 MHの水素吸蔵量の割合(%)を 100%から差し引いた値を基準冷 却熱量 Q0に掛けて冷却熱量 Qsを演算する。例えば、ステップ S3において水素充填 開始時の水素吸蔵合金 MHに吸蔵されてレ、る水素量が 30%であれば、冷却熱量 Q sは、 100%から 30%を差し引いた値の 70%を基準冷却熱量 Q0に掛けた値(Qs = 0. 7 X Q0)として演算される。  [0054] On the other hand, if the predetermined pressure has been reached in step S5, it is determined that the filling has ended, and the process proceeds to step S6. The microcomputer 31 integrates the value of the cooling heat amount W stored in the memory 32 so far in step S6, and calculates the total cooling heat amount Wa used for cooling when filling with hydrogen. Then, the process proceeds to step S7, and the amount of cooling heat necessary for cooling at the time of hydrogen filling when the hydrogen storage alloy MH is not deteriorated from the reference cooling heat amount Q0 and the hydrogen storage amount of the hydrogen storage alloy MH at the start of filling. Find Qs. Specifically, the cooling heat quantity Qs is calculated by multiplying the reference cooling heat quantity Q0 by subtracting the percentage (%) of the hydrogen storage quantity of the hydrogen storage alloy MH at the start of filling from 100%. For example, if the amount of hydrogen stored in the hydrogen storage alloy MH at the start of hydrogen filling in step S3 is 30%, the cooling heat quantity Q s is based on 70% of 100% minus 30%. Calculated as the value multiplied by the cooling heat quantity Q0 (Qs = 0.7 X Q0).
[0055] 次にステップ S8において、マイクロコンピュータ 31は前記冷却熱量 Qsと合計冷却 熱量 Waとを比較し、合計冷却熱量 Waが冷却熱量 Qs未満であれば、ステップ S 9に 進んで水素吸蔵合金 MHが劣化していると判断した後、劣化判断処理を終了する。 また、合計冷却熱量 Waが冷却熱量 Qs未満でなければ、ステップ S10に進んで水素 吸蔵合金 MHが劣化していないと判断した後、劣化判断処理を終了する。  [0055] Next, in step S8, the microcomputer 31 compares the cooling heat quantity Qs with the total cooling heat quantity Wa, and if the total cooling heat quantity Wa is less than the cooling heat quantity Qs, the microcomputer 31 proceeds to step S9 and proceeds to step S9. After determining that has deteriorated, the deterioration determination process is terminated. If the total cooling heat amount Wa is not less than the cooling heat amount Qs, the process proceeds to step S10, and it is determined that the hydrogen storage alloy MH has not deteriorated, and then the deterioration determination process ends.
[0056] 従って、マイクロコンピュータ 31が水素貯蔵タンク 12内の残存水素量を、水素貯蔵 タンク 12内の圧力及び温度と、 PCT曲線とに基づいて演算する場合、水素吸蔵合 金 MHの劣化の有無を考慮して演算することにより、残存水素量を精度良く演算する こと力 Sできる。例えば、ステップ S6, 7で演算した合計冷却熱量 Wa及び冷却熱量 Qs の差 (Qs— Wa)を求め、その値から水素吸蔵合金 MHの劣化により水素吸蔵合金 MHに吸蔵されなくなった水素量を推定する。そして、その水素量の分、残存水素量 を少なく演算する。 Therefore, when the microcomputer 31 calculates the amount of hydrogen remaining in the hydrogen storage tank 12 based on the pressure and temperature in the hydrogen storage tank 12 and the PCT curve, By calculating the presence or absence of gold MH degradation, it is possible to accurately calculate the amount of residual hydrogen. For example, the difference between the total cooling heat Wa calculated in Steps S6 and S7 and the cooling heat Qs (Qs-Wa) is obtained, and the amount of hydrogen that is no longer stored in the hydrogen storage alloy MH due to the deterioration of the hydrogen storage alloy MH is estimated from that value. To do. Then, the remaining hydrogen amount is calculated to be smaller by the amount of hydrogen.
[0057] この実施形態では以下の効果を有する。 This embodiment has the following effects.
[0058] (1)マイクロコンピュータ 31は、水素充填開始時の水素貯蔵タンク 12内の圧力が水 素吸蔵合金 MHのプラトー領域の状態又はプラトー領域より低圧であるときに、水素 吸蔵合金 MHの劣化の有無を判断する。劣化の有無判断は、非劣化状態の水素吸 蔵合金 MHに水素貯蔵タンク 12が空の状態から予め設定された所定圧力まで水素 を充填する際に必要な基準冷却熱量 QOと、水素吸蔵合金 MHの冷却に使用された 冷却熱量 (合計冷却熱量 Wa)とに基づいて行われる。従って、水素貯蔵タンク 12に 収容された水素吸蔵合金 MHの劣化を従来技術より簡単な構成で、しかも精度良く 検出すること力 Sできる。  [0058] (1) The microcomputer 31 determines that the hydrogen storage alloy MH deteriorates when the pressure in the hydrogen storage tank 12 at the start of hydrogen filling is in the state of the hydrogen storage alloy MH plateau region or lower than the plateau region. Determine the presence or absence. Whether the hydrogen storage alloy MH is in a non-deteriorated state or not is determined based on the reference cooling calorie QO required when the hydrogen storage tank 12 is filled with hydrogen from an empty state to a predetermined pressure, and the hydrogen storage alloy MH. This is based on the amount of cooling heat used for cooling (total cooling heat amount Wa). Therefore, it is possible to detect the deterioration of the hydrogen storage alloy MH accommodated in the hydrogen storage tank 12 with a simpler configuration than the prior art and with high accuracy.
[0059] (2)水素吸蔵合金 MHの劣化判断に使用する基準冷却熱量 QOとして、水素貯蔵 タンク 12への水素の充填量が 100%に達するまでに必要な冷却熱量の値が用いら れているため、水素がそれより少ない量充填されるまでの値を用いたときに比較して 、劣化判断の精度が高くなる。  [0059] (2) The amount of cooling heat necessary for the hydrogen storage tank 12 to reach 100% is used as the reference cooling heat quantity QO used to determine the deterioration of the hydrogen storage alloy MH. Therefore, the accuracy of deterioration determination is higher than when using a value until hydrogen is charged to a smaller amount.
[0060] (3)水素貯蔵タンク 12への水素充填時に、水素吸蔵合金 MHが発する熱量を、熱 交換器 19に流れる熱媒体に与えられる熱量、即ち水素吸蔵合金 MHの冷却に使わ れた熱量を基に所定時間毎に演算するとともにその値を積算して合計冷却熱量 Wa を求めている。従って、水素吸蔵合金 MHの温度を直接測定して水素吸蔵合金 MH の合計発熱量を演算するより精度が高くなる。  [0060] (3) The amount of heat generated by the hydrogen storage alloy MH when the hydrogen storage tank 12 is filled with hydrogen is the amount of heat given to the heat medium flowing through the heat exchanger 19, that is, the amount of heat used for cooling the hydrogen storage alloy MH. The total cooling heat amount Wa is obtained by calculating every predetermined time based on the above and integrating the values. Therefore, the accuracy is higher than when the temperature of the hydrogen storage alloy MH is directly measured and the total calorific value of the hydrogen storage alloy MH is calculated.
[0061] 本発明の実施形態は前記に限定されるものではなぐ例えば次のように構成しても よい。  The embodiment of the present invention is not limited to the above, and may be configured as follows, for example.
[0062] 前記実施形態では水素充填時に熱交換器 19で水素吸蔵合金 MH側から持ち出 す熱量が全て水素吸蔵合金 MHの冷却に使用されるとして、水素吸蔵合金 MHの 劣化判断を行った力 正確にはタンク本体 16内において水素吸蔵合金 MHに吸蔵 されずに存在する水素ガスの冷却にも使用される。なぜならば、水素貯蔵タンク 12内 に水素ガスが充填される際、断熱圧縮によりタンク本体 16内の水素ガスの温度が上 昇するため、その温度上昇を抑制するために使用される。従って、より精度良く水素 吸蔵合金 MHの劣化判断を行うには、前記基準冷却熱量 Q0及び合計冷却熱量 Wa を水素吸蔵合金 MHの冷却に使用された熱量のみに補正する必要がある。この場合 、前記基準冷却熱量 Q0及び合計冷却熱量 Waから、水素吸蔵合金 MHに吸蔵され ずにタンク本体 16内に充填された水素ガスの冷却に使用された熱量を差し弓 Iく必要 がある。劣化した水素吸蔵合金 MHと劣化していない水素吸蔵合金 MHとにおいて 、充填開始時及び充填終了時の圧力及び温度がそれぞれ同じであれば、前記熱量 は同じになる。従って、劣化していない水素吸蔵合金 MHに関して前記熱量を予め 計算しておき、前記フローチャートのステップ S6での合計冷却熱量 Waの演算及びス テツプ S7での基準冷却熱量 Q0の演算の際に前記熱量を差し引けばよい。 [0062] In the above embodiment, assuming that the amount of heat taken out from the hydrogen storage alloy MH side by the heat exchanger 19 at the time of hydrogen filling is all used for cooling the hydrogen storage alloy MH, the power for determining the deterioration of the hydrogen storage alloy MH To be precise, the hydrogen storage alloy MH stores in the tank body 16. It is also used to cool the hydrogen gas that is present. This is because when the hydrogen gas is filled in the hydrogen storage tank 12, the temperature of the hydrogen gas in the tank body 16 rises due to adiabatic compression, and is used to suppress the temperature rise. Therefore, in order to determine the deterioration of the hydrogen storage alloy MH with higher accuracy, it is necessary to correct the reference cooling heat amount Q0 and the total cooling heat amount Wa only to the heat amount used for cooling the hydrogen storage alloy MH. In this case, from the reference cooling heat quantity Q0 and the total cooling heat quantity Wa, it is necessary to calculate the heat quantity used for cooling the hydrogen gas not filled in the hydrogen storage alloy MH but filled in the tank body 16. If the hydrogen storage alloy MH that has deteriorated and the hydrogen storage alloy MH that has not deteriorated have the same pressure and temperature at the start of filling and at the end of filling, the amount of heat is the same. Therefore, the heat quantity is calculated in advance for the hydrogen storage alloy MH that is not deteriorated, and the heat quantity is calculated in the calculation of the total cooling heat quantity Wa in step S6 and the reference cooling heat quantity Q0 in step S7 of the flowchart. You can deduct.
[0063] 劣化判断手段、即ちマイクロコンピュータ 31は、水素貯蔵タンク 12内の圧力が水素 吸蔵合金 MHのプラトー領域より低圧であるときに水素充填が開始された際にのみ、 水素吸蔵合金 MHの劣化の有無を判断するようにしてもよい。水素吸蔵合金 MHの PCT曲線から、水素充填開始時に水素吸蔵合金 MHに吸蔵されている水素量を求 めるとき、プラトー領域では一定温度における水素量の変化に対する水素貯蔵タンク 12内の圧力変化が小さぐ水素量を正確に求めるのが難しい場合がある。しかし、 P CT曲線のプラトー領域より低圧の領域では、一定温度における水素量の変化に対 する水素貯蔵タンク 12内の圧力変化が、プラトー領域での変化に比較して大きいた め、水素充填開始時の前記水素量を精度良く求めることができ、水素吸蔵合金 MH の劣化判断の精度が高くなる。  [0063] Deterioration determining means, that is, the microcomputer 31 determines that the hydrogen storage alloy MH deteriorates only when hydrogen filling is started when the pressure in the hydrogen storage tank 12 is lower than the plateau region of the hydrogen storage alloy MH. It may be determined whether or not there is. When calculating the amount of hydrogen stored in the hydrogen storage alloy MH at the start of hydrogen filling from the PCT curve of the hydrogen storage alloy MH, the pressure change in the hydrogen storage tank 12 with respect to the change in the amount of hydrogen at a constant temperature in the plateau region It may be difficult to accurately determine the small amount of hydrogen. However, in the region where the pressure is lower than the plateau region of the PCT curve, the pressure change in the hydrogen storage tank 12 with respect to the change in the hydrogen amount at a constant temperature is larger than the change in the plateau region, so hydrogen filling starts. The amount of hydrogen at the time can be determined with high accuracy, and the accuracy of determining the deterioration of the hydrogen storage alloy MH is increased.
[0064] 水素吸蔵合金 MHの劣化の有無判断を行う条件を満たしているとき、水素貯蔵タン ク 12内の圧力及び温度の値に拘わらず直ちに、前記実施形態におけるステップ S4 以降の処理を実行するのではなぐ水素の充填開始後、水素貝宁蔵タンク 12内の圧力 及び温度が予め設定された値に達した後、ステップ S4以降の処理を行うようにしても よい。但し、水素充填開始時に水素貯蔵タンク 12内の圧力及び温度の値が前記予 め設定された値より大きな場合は、直ちにステップ S4以降の処理を行うようにする。こ の場合、前記予め設定された値に対応した基準冷却熱量 Q0をメモリ 32に記憶して おくことにより、基準冷却熱量 Q0を水素充填開始時の水素貯蔵タンク 12内の圧力 及び温度に対応していちいち演算しなくて済む。 [0064] When the conditions for determining the presence or absence of deterioration of the hydrogen storage alloy MH are satisfied, the processing after step S4 in the embodiment is immediately executed regardless of the pressure and temperature values in the hydrogen storage tank 12. However, after the start of filling with hydrogen, after the pressure and temperature in the hydrogen shell storage tank 12 reach preset values, the processing after step S4 may be performed. However, if the pressure and temperature values in the hydrogen storage tank 12 are larger than the preset values at the start of hydrogen filling, the processing after step S4 is immediately performed. This In this case, the reference cooling heat quantity Q0 corresponding to the preset value is stored in the memory 32, so that the reference cooling heat quantity Q0 corresponds to the pressure and temperature in the hydrogen storage tank 12 at the start of hydrogen filling. You don't have to calculate every time.
[0065] 水素吸蔵合金 MHの劣化判断の際に冷却熱量 Wを演算する場合、温度センサ T1 , T2及び流量計 29の出力信号を入力(サンプリング)する間隔は 1秒に限らなレ、。 1 秒より長レ、間隔 (例えば、数秒間隔)でサンプリングしたり、 1秒より短レ、間隔でサンプ リングしてもよい。その場合、(1)式の「Z60」の部分を変更して、冷却熱量 Wの演算 に使用する。 [0065] When calculating the amount of cooling heat W when determining the deterioration of the hydrogen storage alloy MH, the interval at which the output signals of the temperature sensors T1, T2 and the flow meter 29 are input (sampled) is not limited to 1 second. Sampling may be performed at intervals longer than 1 second and at intervals (for example, at intervals of several seconds), or may be sampled at intervals shorter than 1 second. In that case, change the “Z60” part of equation (1) and use it to calculate the cooling heat quantity W.
[0066] 水素貯蔵タンク 12に、水素の満充填時の圧力が水素吸蔵合金 MHのプラトー領域 の圧力より高い圧力となるように水素が充填される場合、その圧力は前記の圧力(35 MPa)に限らず、例えば、 35MPaより高くても、 35MPaより低くてもよい。  [0066] When the hydrogen storage tank 12 is filled with hydrogen so that the pressure at the time of full filling of hydrogen is higher than the pressure in the plateau region of the hydrogen storage alloy MH, the pressure is the pressure (35 MPa). For example, it may be higher than 35 MPa or lower than 35 MPa.
[0067] 水素貯蔵タンク 12は、水素の満充填時の圧力が水素吸蔵合金 MHのプラトー領域 の圧力より高い圧力、例えば、約 35MPaの高圧で水素を貝宁蔵する構成に限らず、プ ラトー領域の圧力で水素を貯蔵するようにしてもよい。この場合、水素貯蔵タンク 12 の耐圧性を低くできる。  [0067] The hydrogen storage tank 12 is not limited to a configuration in which hydrogen is stored at a pressure higher than the pressure in the plateau region of the hydrogen storage alloy MH, for example, at a high pressure of about 35 MPa. Hydrogen may be stored at the pressure in the region. In this case, the pressure resistance of the hydrogen storage tank 12 can be lowered.
[0068] 燃料電池システムは、水素貯蔵タンク 12の加熱や冷却に使用する熱媒体を、燃料 電池 11を冷却する熱媒体と共通にする構成において、電磁三方弁 27を省略すると ともに、熱媒体が常に燃料電池 11内の熱交換部 15aを経て水素貯蔵タンク 12の熱 交換器 19に供給された後、ラジェータ 14に戻る構成としてもよい。この場合、燃料電 池 11の熱交換部 15aを通った熱媒体のみが水素貯蔵タンク 12の熱交換器 19に供 給されるが、水素充填は燃料電池 11が運転されていない状態で行われるため、水素 吸蔵合金 MHの冷却には支障はなレ、。この場合、電磁三方弁 27を省略できるため、 熱媒体の循環系の構成が簡単になる。  [0068] The fuel cell system has a configuration in which the heat medium used for heating and cooling the hydrogen storage tank 12 is the same as the heat medium for cooling the fuel cell 11, the electromagnetic three-way valve 27 is omitted, and the heat medium is A configuration may be adopted in which the fuel cell 11 is always supplied to the heat exchanger 19 of the hydrogen storage tank 12 via the heat exchanger 15a and then returned to the radiator 14. In this case, only the heat medium that has passed through the heat exchanger 15a of the fuel cell 11 is supplied to the heat exchanger 19 of the hydrogen storage tank 12, but the hydrogen filling is performed in a state where the fuel cell 11 is not operated. Therefore, the hydrogen storage alloy MH has no problem in cooling. In this case, since the electromagnetic three-way valve 27 can be omitted, the configuration of the heat medium circulation system is simplified.
[0069] 燃料電池 11は固体高分子型の燃料電池に限らず、リン酸型燃料電池やアルカリ 型燃料電池等、燃料電池を冷却するのに熱媒体を使用する燃料電池であればょレヽ  [0069] The fuel cell 11 is not limited to a polymer electrolyte fuel cell, but may be a fuel cell that uses a heat medium to cool the fuel cell, such as a phosphoric acid fuel cell or an alkaline fuel cell.
[0070] 燃料電池システムは、燃料電池 11と 1つの水素貯蔵タンク 12とが連結された構成 に限らず、燃料電池 11に複数の水素貯蔵タンク 12から水素を供給するシステムとし てもよい。 [0070] The fuel cell system is not limited to a configuration in which the fuel cell 11 and one hydrogen storage tank 12 are connected, but a system that supplies hydrogen from the plurality of hydrogen storage tanks 12 to the fuel cell 11. May be.
[0071] 燃料電池システムは車両用に限らない。例えば、車両以外の移動体用の燃料電池 システムに適用したり、家庭用のコジェネレーションシステムに適用したりしてもよい。 この場合も、水素吸蔵合金 MHの劣化を考慮して水素貯蔵タンク 12内の残存水素 量を精度良く検出することが可能になり、水素貯蔵タンク 12への水素充填時期が遅 れることによる不都合を抑制できる。  [0071] The fuel cell system is not limited to a vehicle. For example, the present invention may be applied to a fuel cell system for a moving body other than a vehicle, or may be applied to a home cogeneration system. In this case as well, it becomes possible to accurately detect the amount of hydrogen remaining in the hydrogen storage tank 12 in consideration of the deterioration of the hydrogen storage alloy MH, and the inconvenience due to the delay of the hydrogen filling timing in the hydrogen storage tank 12 is achieved. Can be suppressed.
[0072] 水素貯蔵タンク 12の水素吸蔵合金 MHの加熱あるいは冷却に使用する熱媒体は 、燃料電池 11の冷却用の熱媒体と共用とする構成に限らず、燃料電池 11及び水素 貯蔵タンク 12で独立した熱媒体の循環系を設けてもよい。  [0072] The heating medium used for heating or cooling the hydrogen storage alloy MH of the hydrogen storage tank 12 is not limited to the configuration shared with the cooling medium of the fuel cell 11, but in the fuel cell 11 and the hydrogen storage tank 12. An independent heat medium circulation system may be provided.
[0073] 水素貯蔵供給システムは、燃料電池 11への水素供給手段として使用される構成に 限らず、他の水素を使用する装置への水素供給手段として使用される構成としてもよ レ、。その場合、水素貯蔵タンク 12に内蔵された水素吸蔵合金 MHを加熱あるいは冷 却する熱媒体を供給する熱媒体供給手段は別に設けられる。  [0073] The hydrogen storage and supply system is not limited to a configuration that is used as a hydrogen supply means to the fuel cell 11, but may be a configuration that is used as a hydrogen supply means to a device that uses other hydrogen. In that case, a heat medium supplying means for supplying a heat medium for heating or cooling the hydrogen storage alloy MH incorporated in the hydrogen storage tank 12 is provided separately.
[0074] 熱媒体は LLCに限らず、例えば、単なる水であってもよい。  [0074] The heat medium is not limited to LLC, and may be, for example, simple water.
[0075] 水素貯蔵タンク 12は燃料電池システムに限らず、水素エンジンを搭載した水素ェ ンジン車の水素源として使用してもよい。  [0075] The hydrogen storage tank 12 is not limited to a fuel cell system, and may be used as a hydrogen source for a hydrogen engine vehicle equipped with a hydrogen engine.
[0076] 水素貯蔵タンク 12は水素吸蔵合金以外の水素吸蔵材、例えば、活性炭素繊維 (ac tivated carbon fiber)や単層カーボンナノチューブを収容した構成としてもよレ、。 [0076] The hydrogen storage tank 12 may contain a hydrogen storage material other than a hydrogen storage alloy, for example, an activated carbon fiber or a single-walled carbon nanotube.

Claims

請求の範囲 The scope of the claims
[1] 水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクにおける水素 吸蔵材の劣化検知装置であって、  [1] A device for detecting deterioration of a hydrogen storage material in a hydrogen storage tank containing a hydrogen storage material and incorporating a heat exchanger,
前記水素貯蔵タンク内の圧力を検出する圧力検出手段と、  Pressure detecting means for detecting the pressure in the hydrogen storage tank;
前記水素貯蔵タンク内の温度を検出する第 1温度検出手段と、  First temperature detecting means for detecting the temperature in the hydrogen storage tank;
前記熱交換器を流れる熱媒体の前記熱交換器の入口及び出口における温度を検 出する第 2温度検出手段と、  Second temperature detecting means for detecting the temperature of the heat medium flowing through the heat exchanger at the inlet and outlet of the heat exchanger;
前記第 2温度検出手段で検出された前記入口及び出口における前記熱媒体の温 度と、前記熱媒体の流量とに基づいて、前記水素貯蔵タンクへの水素充填時におい て冷却に使用された熱量を演算する第 1演算手段と、  The amount of heat used for cooling when filling the hydrogen storage tank with hydrogen based on the temperature of the heat medium at the inlet and outlet detected by the second temperature detecting means and the flow rate of the heat medium. A first computing means for computing
前記水素貯蔵タンク内に収容された水素吸蔵材の PCT曲線に基づいて、水素充 填開始時の前記水素吸蔵材に吸蔵されている水素量を求める第 2演算手段と、 前記水素貯蔵タンク内の温度における前記 PCT曲線に基づいて、水素充填開始 時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー 領域より低圧であるときに、前記水素貯蔵タンクに、空の状態から予め設定された所 定圧力まで水素を充填する際に必要な基準冷却熱量と、前記水素充填開始時又は 前記水素充填開始後の所定状態から前記所定圧力まで水素が充填されるまでに要 した冷却熱量とに基づいて、水素吸蔵材の劣化の有無を判断する劣化判断手段と を備えた水素貯蔵タンクにおける水素吸蔵材の劣化検知装置。  Second computing means for determining the amount of hydrogen stored in the hydrogen storage material at the start of hydrogen filling based on the PCT curve of the hydrogen storage material stored in the hydrogen storage tank; and Based on the PCT curve at temperature, when the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage material or lower than the plateau region, the hydrogen storage tank is The reference cooling heat amount necessary for filling hydrogen to a predetermined pressure set in advance and the cooling required for filling hydrogen from the predetermined state after the start of hydrogen filling or after the start of hydrogen filling to the predetermined pressure. A deterioration detection device for a hydrogen storage material in a hydrogen storage tank, comprising: deterioration determination means for determining whether or not the hydrogen storage material has deteriorated based on the amount of heat.
[2] 前記所定圧力は、前記水素貯蔵タンクへの水素充填量が 100%に達した時点の 圧力である請求項 1に記載の水素貯蔵タンクにおける水素吸蔵材の劣化検知装置。  2. The deterioration detection device for a hydrogen storage material in a hydrogen storage tank according to claim 1, wherein the predetermined pressure is a pressure at the time when the hydrogen filling amount in the hydrogen storage tank reaches 100%.
[3] 前記劣化判断手段は、前記水素貯蔵タンク内の圧力が前記水素吸蔵材のプラトー 領域より低圧であるときに水素の充填が開始された際に、前記劣化の有無を判断す る請求項 1に記載の水素貯蔵タンクにおける水素吸蔵材の劣化検知装置。  [3] The deterioration judging means judges the presence or absence of the deterioration when the filling of hydrogen is started when the pressure in the hydrogen storage tank is lower than the plateau region of the hydrogen storage material. The hydrogen storage material deterioration detection device in the hydrogen storage tank according to 1.
[4] 請求項 1に記載の水素貯蔵タンクにおける水素吸蔵材の劣化検知装置において、 前記水素充填開始後の所定状態とは、前記水素貯蔵タンク内の圧力及び温度が予 め設定された値に達した状態である水素貯蔵タンクにおける水素吸蔵材の劣化検知 装置。 [4] In the hydrogen storage material deterioration detection device in the hydrogen storage tank according to claim 1, the predetermined state after the start of the hydrogen filling is a value in which the pressure and temperature in the hydrogen storage tank are set in advance. Deterioration detection device for hydrogen storage material in the hydrogen storage tank in the reached state.
[5] 請求項 1〜請求項 4のいずれか一項に記載の水素貯蔵タンクにおける水素吸蔵材 の劣化検知装置において、前記水素貯蔵タンクは水素を燃料とする水素燃料自動 車の水素源として使用される水素貯蔵タンクにおける水素吸蔵材の劣化検知装置。 [5] In the hydrogen storage material deterioration detection device for a hydrogen storage tank according to any one of claims 1 to 4, the hydrogen storage tank is used as a hydrogen source for a hydrogen fueled automobile using hydrogen as fuel. For detecting deterioration of hydrogen storage material in a hydrogen storage tank.
[6] 水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクの水素吸蔵材 劣化検知方法であって、  [6] A method for detecting deterioration of a hydrogen storage material in a hydrogen storage tank containing a hydrogen storage material and incorporating a heat exchanger,
前記水素吸蔵材の PCT曲線に基づいて、水素充填開始時の前記水素貯蔵タンク 内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるときに 、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定圧力ま で水素を充填する際に要した冷却熱量と、前記水素貯蔵タンクに、空の状態から予 め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量と、前記冷却 熱量を必要とする水素充填量に対応して前記基準冷却熱量から求められた水素吸 蔵材の非劣化状態での必要冷却熱量とに基づいて、劣化の有無を判断する水素貯 蔵タンクにおける水素吸蔵材の劣化検知方法。  Based on the PCT curve of the hydrogen storage material, when the pressure in the hydrogen storage tank at the start of hydrogen filling is lower than the state of the plateau region of the hydrogen storage material or lower than the plateau region, The amount of cooling heat required for filling hydrogen from a predetermined state after the start of filling to the predetermined pressure, and necessary for filling the hydrogen storage tank from the empty state to a predetermined pressure set in advance. Based on the reference cooling heat amount and the required cooling heat amount in the non-deteriorated state of the hydrogen storage material determined from the reference cooling heat amount corresponding to the hydrogen filling amount that requires the cooling heat amount, the presence or absence of deterioration is determined. To detect deterioration of hydrogen storage material in the hydrogen storage tank.
[7] 水素貯蔵供給システムにおいて、  [7] In the hydrogen storage and supply system,
水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクと、 前記水素吸蔵材を加熱あるいは冷却する熱媒体を前記熱交換器に供給する熱媒 体供給手段と、  A hydrogen storage tank containing a hydrogen storage material and incorporating a heat exchanger; and a heat medium supply means for supplying a heat medium for heating or cooling the hydrogen storage material to the heat exchanger;
請求項 1〜請求項 5のいずれか一項に記載の水素貯蔵タンクにおける水素吸蔵材 の劣化検知装置とを備えた水素貯蔵供給システム。  A hydrogen storage and supply system comprising: the hydrogen storage material deterioration detection device in the hydrogen storage tank according to any one of claims 1 to 5.
PCT/JP2005/023606 2004-12-24 2005-12-22 Degradation detection device and degradation detection method for hydrogen occlusion material in hydrogen storage tank, and hydrogen storage and supply system WO2006075501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-374354 2004-12-24
JP2004374354A JP4575140B2 (en) 2004-12-24 2004-12-24 Hydrogen storage material deterioration detection device for hydrogen storage tank, hydrogen storage material deterioration detection method for hydrogen storage tank, and hydrogen storage supply system

Publications (1)

Publication Number Publication Date
WO2006075501A1 true WO2006075501A1 (en) 2006-07-20

Family

ID=36677531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023606 WO2006075501A1 (en) 2004-12-24 2005-12-22 Degradation detection device and degradation detection method for hydrogen occlusion material in hydrogen storage tank, and hydrogen storage and supply system

Country Status (2)

Country Link
JP (1) JP4575140B2 (en)
WO (1) WO2006075501A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033069A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Gas filling system and gas filling apparatus
WO2013190024A2 (en) * 2012-06-20 2013-12-27 Centre National De La Recherche Scientifique (C.N.R.S) System for the reversible storage of hydrogen in a material in the form of a metal hydride comprising a plurality of heat pipes in thermal contact with the material
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
CN105784769A (en) * 2016-04-29 2016-07-20 广东省特种设备检测研究院 Vehicular hydrogen-storage system fire disaster simulation testing device and testing safety distance determination method
CN105911244A (en) * 2016-06-22 2016-08-31 珠海格力节能环保制冷技术研究中心有限公司 Testing method, device and system for performance curve of hydrogen storage alloy
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039108A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Hydrogen storage device
JP2008045650A (en) * 2006-08-14 2008-02-28 Toyota Motor Corp Hydrogen storage device
JP2008298217A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Hydrogen storage system
CN103852275A (en) * 2012-11-29 2014-06-11 浙江海得新能源有限公司 Heat exchange efficiency test platform and test method of air-water heat exchanger
CN104155425B (en) * 2014-08-27 2016-03-02 辽宁永动力能源材料有限公司 A kind of method of high precision PCT tester and test alloy material storing hydrogen PCT
JP6731070B2 (en) * 2016-12-14 2020-07-29 株式会社東芝 Hydrogen energy system, hydrogen energy system control method, and program
JP7195519B2 (en) * 2018-04-02 2022-12-26 清水建設株式会社 Hydrogen storage rate estimation system and hydrogen storage rate estimation method
JP7211205B2 (en) * 2019-03-28 2023-01-24 株式会社豊田中央研究所 Device for detecting deterioration of hydrogen storage alloy, method for detecting deterioration thereof, and hydrogen absorption and desorption system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198346A (en) * 1989-01-27 1990-08-06 Suzuki Motor Co Ltd Method for measuring amount of occluded hydrogen in hydrogen occluding tank
JPH0785883A (en) * 1993-09-10 1995-03-31 Toyota Motor Corp Abnormality detecting device and control device for abnormal time
JPH10245663A (en) * 1997-03-04 1998-09-14 Toyota Motor Corp Production of hydrogen storage alloy
JP2002228098A (en) * 2001-01-29 2002-08-14 Honda Motor Co Ltd Hydrogen occlusion device for hydrogen occlusion alloy, and device for detecting degradation of hydrogen occlusion alloy utilizing the device
JP2004281243A (en) * 2003-03-17 2004-10-07 Toyota Motor Corp Fuel cell system and hydrogen storage method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700161B2 (en) * 2000-03-17 2011-06-15 本田技研工業株式会社 Hydrogen storage alloy regeneration system for fuel cell operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198346A (en) * 1989-01-27 1990-08-06 Suzuki Motor Co Ltd Method for measuring amount of occluded hydrogen in hydrogen occluding tank
JPH0785883A (en) * 1993-09-10 1995-03-31 Toyota Motor Corp Abnormality detecting device and control device for abnormal time
JPH10245663A (en) * 1997-03-04 1998-09-14 Toyota Motor Corp Production of hydrogen storage alloy
JP2002228098A (en) * 2001-01-29 2002-08-14 Honda Motor Co Ltd Hydrogen occlusion device for hydrogen occlusion alloy, and device for detecting degradation of hydrogen occlusion alloy utilizing the device
JP2004281243A (en) * 2003-03-17 2004-10-07 Toyota Motor Corp Fuel cell system and hydrogen storage method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
JP2011033069A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Gas filling system and gas filling apparatus
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US10215338B2 (en) 2010-02-24 2019-02-26 Hydrexia Pty Ltd. Hydrogen release system
WO2013190024A2 (en) * 2012-06-20 2013-12-27 Centre National De La Recherche Scientifique (C.N.R.S) System for the reversible storage of hydrogen in a material in the form of a metal hydride comprising a plurality of heat pipes in thermal contact with the material
FR2992400A1 (en) * 2012-06-20 2013-12-27 Centre Nat Rech Scient REVERSIBLE HYDROGEN STORAGE SYSTEM IN A METAL HYDRIDE MATERIAL COMPRISING A PLURALITY OF HEAT CONTACT IN THERMAL CONTACT WITH THE MATERIAL
WO2013190024A3 (en) * 2012-06-20 2014-03-20 Centre National De La Recherche Scientifique (C.N.R.S) System for the reversible storage of hydrogen in a material in the form of a metal hydride comprising a plurality of heat pipes in thermal contact with the material
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage
CN105784769A (en) * 2016-04-29 2016-07-20 广东省特种设备检测研究院 Vehicular hydrogen-storage system fire disaster simulation testing device and testing safety distance determination method
CN105911244A (en) * 2016-06-22 2016-08-31 珠海格力节能环保制冷技术研究中心有限公司 Testing method, device and system for performance curve of hydrogen storage alloy
CN105911244B (en) * 2016-06-22 2018-11-13 珠海格力节能环保制冷技术研究中心有限公司 A kind of test method of the performance curve of hydrogen bearing alloy, apparatus and system

Also Published As

Publication number Publication date
JP2006177535A (en) 2006-07-06
JP4575140B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
WO2006075501A1 (en) Degradation detection device and degradation detection method for hydrogen occlusion material in hydrogen storage tank, and hydrogen storage and supply system
US8757223B2 (en) Hydrogen filling apparatus and hydrogen filling method
US8752596B2 (en) Hydrogen filling system and hydrogen filling method
US6651701B2 (en) Hydrogen storage apparatus and charging method therefor
US8534327B2 (en) Gas charging apparatus and gas charging method
US7651807B2 (en) Fuel cell system
US20090297896A1 (en) Method of using hydrogen storage tank and hydrogen storage tank
US20080044704A1 (en) Fuel Cell System
US8142937B2 (en) Fuel cell system
CN102472432A (en) Gas filling system and gas filling apparatus
JP5424096B2 (en) Fuel cell system and control method thereof
TWI296328B (en)
JP4930822B2 (en) Fuel cell system
US6899855B2 (en) Hydrogen-occlusion alloy regenerating apparatus
JP5554611B2 (en) Fuel cell system
US20110159385A1 (en) Hydrogen generator and fuel cell system including the same
US7674541B2 (en) Hydrogen gas supply device and fuel cell apparatus
JP7351607B2 (en) Fuel cell system and fuel gas quality determination method
JP2002333100A (en) Hydrogen remaining amount detecting device and hydrogen supply method for hydrogen storage tank
JP2002228098A (en) Hydrogen occlusion device for hydrogen occlusion alloy, and device for detecting degradation of hydrogen occlusion alloy utilizing the device
EP1804324A1 (en) Direct Methanol Fuel cell system and operating method for shutdown
JP3352907B2 (en) Hydrogen fueled vehicles
JP2008298217A (en) Hydrogen storage system
JP2017180858A (en) Cooling system, air residual quantity measuring device, cooling device and refrigerant filling method
JP2004324862A (en) Gas storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05819932

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5819932

Country of ref document: EP