WO2006073175A1 - Method of analyzing low-molecular weight rna - Google Patents

Method of analyzing low-molecular weight rna Download PDF

Info

Publication number
WO2006073175A1
WO2006073175A1 PCT/JP2006/300078 JP2006300078W WO2006073175A1 WO 2006073175 A1 WO2006073175 A1 WO 2006073175A1 JP 2006300078 W JP2006300078 W JP 2006300078W WO 2006073175 A1 WO2006073175 A1 WO 2006073175A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
thin plate
hydrophobic
electrophoresis
transparent film
Prior art date
Application number
PCT/JP2006/300078
Other languages
French (fr)
Japanese (ja)
Inventor
Chisato Ushida
Original Assignee
Hirosaki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University filed Critical Hirosaki University
Publication of WO2006073175A1 publication Critical patent/WO2006073175A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44739Collecting the separated zones, e.g. blotting to a membrane or punching of gel spots

Definitions

  • the present invention relates to a method for analyzing small RNA using two-dimensional electrophoresis.
  • RNA interference RNA interference
  • nt 22-26 nucleotide
  • ncRNAs non-coding RNAs
  • Non-Patent Document 1 One of the potential methods for analyzing small RNAs is the two-dimensional electrophoresis method.
  • This method has already been proposed in Non-Patent Document 1.
  • Non-Patent Document 1 it has been confirmed that a mixture of artificially synthesized les and a few small RNAs of 20 or more nucleotides can be separated by two-dimensional electrophoresis.
  • Non-Patent Document 1 the details of specific methods for performing two-dimensional electrophoresis are not disclosed.
  • a method proposed in Non-Patent Document 2 for example, as an RNA analysis method using two-dimensional electrophoresis.
  • the method proposed in Non-Patent Document 2 is applied to the analysis of small RNAs, the separation of individual RNAs is poor, and in order to ensure the reproducibility of the separation, Skilled technology is required and not everyone can do it easily.
  • Non-patent or 1 Two-dimensional rractionation or complex mixture of oligonucleotides in microRNA size range: Hideaki Shiraishi, 2004 Oxford University Press, Nucleic A cids Symposium Series No. 48, 293-294
  • Non-Patent Document 2 Purification of RNA Molecules by Gel techniques: Toshimichi Ikemura, Methods In Enzymology, Vol.180, ppl4-25 (1989)
  • an object of the present invention is to provide an analysis method using a two-dimensional electrophoresis method that can easily separate a low molecular weight RNA of 50 nt or less with high reproducibility.
  • the present inventor has performed the first-dimensional electrophoresis when analyzing a low-molecular-weight RNA of 50 nt or less using a two-dimensional electrophoresis method.
  • the second-dimensional gel is identified by identifying the gel to be used in the electrophoresis, and after the first-dimensional electrophoresis, by identifying the method for cutting out the gel containing the low-molecular-weight RNA in the electrophoresis lane. From the above, it has been found that the low molecular weight RNA can be easily and reproducibly separated.
  • a method for analyzing a low molecular weight RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention based on the above findings is a slab having an acrylamide concentration of 12.5% to 13.5% as described in claim 1.
  • Hydrophobic transparent located on the surface of the gel part to be cut out, either side of the thin plate-like member that is close to the shape of the gel part to be enclosed and cut out and has a hydrophobic surface on at least one side Abut the film, cut the gel along with the hydrophobic transparent film along the periphery of the thin plate member, and then place the thin plate member under the gel so that the hydrophobic surface is in contact with the bottom surface of the cut gel. Dive into The gel is taken out using the thin plate member as a support, and the gel cut out in this way is polymerized with the gel for performing the second-dimensional electrophoresis, and then the electrophoresis is performed. .
  • the analysis method according to claim 2 is the analysis method according to claim 1, wherein the hydrophobic surface of the thin plate member is brought into contact with the hydrophobic transparent film, and the gel is combined with the hydrophobic transparent film. It cuts along the peripheral part of a thin plate-shaped member, It is characterized by the above-mentioned.
  • the analysis method according to claim 3 compares the migration patterns of samples prepared using individuals or cells under at least two specific conditions in the analysis method according to claim 2 or 2. Thus, the expression characteristics of the low-molecular RNA are comparatively analyzed.
  • kits for performing the analysis method according to any one of claims 1 to 3 of the present invention, as described in claim 4, a gel plate and a gel-forming reagent for performing first-dimensional electrophoresis, Gel plate and gel forming reagent for performing second-dimensional electrophoresis, comb for forming sample injection groove in gel during first-dimensional electrophoresis, hydrophobic transparent film, on at least one surface It comprises at least a thin plate-like member having a hydrophobic surface.
  • an analysis method using a two-dimensional electrophoresis method capable of easily separating a low molecular weight RNA of 50 nt or less with high reproducibility.
  • FIG. 1 is a diagram showing a schematic procedure of a method for analyzing a small RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention in Examples.
  • FIG.2 Two-dimensional electrophoresis images of embryonic stage nematode small RNA and two-dimensional electrophoretic images of mixed stage nematode small RNA.
  • the method for analyzing low-molecular-weight RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention uses a slab-like polyacrylamide gel having an atalylamide concentration of 12.5% to 13.5% to perform the first-dimensional electrolysis of a sample After the electrophoresis, when the gel in the region containing the low molecular weight RNA in the electrophoresis lane is cut out in a strip shape, the entire gel plate is closely enclosed with a hydrophobic transparent film, and the shape of the gel part to be cut out is almost the same.
  • One of the thin plate-like members that has a shape and has a hydrophobic surface on at least one surface is brought into contact with a hydrophobic transparent film located on the surface of the gel part to be cut out, thereby making the gel hydrophobic and transparent. Cut along the peripheral edge of the thin plate member together with the film, and then sink the thin plate member under the gel so that the hydrophobic surface is in contact with the bottom surface of the cut gel, and use the thin plate member as a support. Take out the gel In this way The gel cut out in this manner is polymerized with the gel for performing the second-dimensional electrophoresis, and then electrophoresed.
  • the gel used for the first-dimensional electrophoresis of the sample is specified as a slab-like polyacrylamide gel having an acrylamide concentration of 12.5% to 13.5%.
  • the reason for identifying the gel type as polyacrylamide gel is that it has excellent resolution for a mixture of small RNAs of less than 50 nt to be analyzed.
  • the acrylamide concentration is specified as 12.5% to 13.5% because if the concentration falls below 12.5%, it becomes a condition that improves the resolution for a mixture of RNA larger than 50M, and conversely it is as low as 50 nt or less. This is because the resolution of the molecular RNA mixture decreases.
  • the entire gel plate is treated with a hydrophobic transparent film.
  • the surface of the gel part to be cut out is one surface of the thin plate-like member which is substantially the same shape as the part of the gel part to be tightly enclosed and cut and has a hydrophobic surface on at least one side.
  • the gel is cut along the peripheral edge of the thin plate member together with the hydrophobic transparent film, and then the thin plate member is cut so that the hydrophobic surface comes into contact with the bottom surface of the cut gel.
  • the gel is taken out using the thin plate member as a support.
  • the length of the cut is preferably shorter than the width of the gel used for the second-dimensional electrophoresis, and the cut width is preferably smaller than the width of the electrophoresis lane.
  • Examples of the hydrophobic transparent film used for tightly enclosing the entire gel plate include a transparent wrap film for food packaging made of polyvinylidene chloride. If a hydrophilic transparent film such as cellophane is used instead of the hydrophobic transparent film, the film softens and expands with moisture from the electrophoresis buffer remaining on the gel surface. As a result, it becomes difficult to tightly enclose the entire gel plate, resulting in a problem that the gel cannot be cut out accurately.
  • the thin plate-like member having a hydrophobic surface on at least one surface may be any member as long as it has a hydrophobic surface that is necessary when the cut gel is taken out later.
  • the surface of the thin plate-like member to be brought into contact with the hydrophobic transparent film used for tightly enclosing the entire gel plate has an affinity for the hydrophobic transparent film (polysalt as the hydrophobic transparent film).
  • the hydrophobic surface of the thin plate member has affinity with the hydrophobic transparent film).
  • the thin plate-like member is made to be a support by allowing the thin plate-like member to be submerged under the gel so that its hydrophobic surface is in contact with the bottom surface of the cut gel, and the thin plate-like member is used as a support to take out the gel.
  • the cut gel can be easily moved without breaking.
  • the thin plate-like member has a hydrophilic surface, and the same operation is performed using this hydrophilic surface to remove the gel, the water present on the gel surface interferes with the thin plate-like member. When it becomes difficult to accurately dive under the gel into which the gel is cut, it becomes difficult to set the gel on the gel plate used for the second-dimensional electrophoresis.
  • the gel used for the second-dimensional electrophoresis is preferably a slab-like polyacrylamide gel having an acrylamide concentration of 21.0% to 23.0% and a urea concentration of 6.0 ⁇ 4-8.0 ⁇ 4, for example. Les.
  • the reason why the gel type is polyacrylamide gel is that it is excellent in the resolution of a mixture of small RNAs of 50 nt or less to be analyzed. It is preferable to set the acrylamide concentration to 21.0% to 23.0%. If the concentration force is less than 3 ⁇ 41.0%, the difference from the acrylamide concentration of the gel used for the first dimensional electrophoresis is reduced.
  • the urea concentration is preferably 6.0M to 8.0M because of the difference in the secondary structure of small RNAs. This is because the influence on the second-dimensional electrophoresis can be eliminated.
  • RNA of 50 nt or less can be easily and reproducibly separated on the second-dimensional gel. Therefore, at least some small RNAs of less than 50 nt can be obtained as high-purity as each spot on the gel, thus facilitating their sequencing and thus new 50 nt or less Efficient search for small RNAs.
  • two-dimensional electrophoresis is performed on samples prepared using individuals or cells under at least two specific conditions, and the expression characteristics of small RNAs are compared and analyzed by comparing the migration patterns. Therefore, it is easy to clarify what kind of small RNAs are involved in higher life phenomena such as aging, behavior, neurogenesis, and embryogenesis in multicellular organisms.
  • the method for analyzing low molecular weight RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention comprises a gel plate and a gel-forming reagent for performing first-order electrophoresis, and a second-dimensional electrophoresis.
  • the gel plate for performing the first-dimensional electrophoresis and the gel plate for performing the second-dimensional electrophoresis are, for example, made of glass or resin approximately 50 cm long ⁇ 20 cm wide.
  • the gel forming reagent for performing the first-dimensional electrophoresis include an acrylamide solution prepared by mixing the components shown in Table 1 below to a total amount of 213 ml with sterile water. [0017] [Table 1]
  • Examples of the gel forming reagent for performing the second-dimensional electrophoresis include an acrylamide solution prepared by mixing the components shown in Table 2 below to a total volume of 240 ml with sterile water.
  • a comb for forming a sample injection groove in the gel when performing the first-dimensional electrophoresis for example, there are 10 teeth of 1 cm in length lcm x lcm in width at intervals of 0.2 cm, and the other in the other.
  • An example is a Teflon (registered trademark) board with no teeth and a thickness of 0.2 cm.
  • the hydrophobic transparent film include a transparent wrap film for food packaging made of polyvinyl chloride vinylidene.
  • the thin plate-like member having a hydrophobic surface on at least one surface include, for example, a plastic plate that is hydrophobic on both surfaces (both surfaces are subjected to hydrophobic treatment), and one surface used in Examples described later.
  • Nematode 10g was treated with TRIzol reagent (Invitrogen) 10ml to obtain 0.5mg of crude RNA extract . This was fractionated by the stepwise 2-propanol precipitation method to obtain 5 xg of a fraction containing RNA below lOOnt.
  • TRIzol reagent Invitrogen
  • the reaction was carried out at 4 ° C for 16 to 20 hours with sterilized water. Sterilize 5 ⁇ 1 of glycerol buffer for electrophoresis (containing 50% glycerol, 0.25% bromophenol blue, and 0.25% xylene cyanol) into 15 ⁇ 1 of the RNA fraction labeled at the 3 ′ end in this way. 5 ⁇ l of water was added to prepare an RNA sample for electrophoresis.
  • glycerol buffer for electrophoresis containing 50% glycerol, 0.25% bromophenol blue, and 0.25% xylene cyanol
  • a slab-like polyacrylamide gel having an acrylamide concentration of 13.1% was prepared as follows. That is, 40% acrylamide solution (Acrylic amide 380g and ⁇ , ⁇ '-methylenebisacrylamide 20g dissolved in water to 1000ml) 70ml, 10X TBE (Tris base 108g, boric acid 55g, 0.5M EDTA 40ml, pH 8.0) Add 6 ml and water 135 ml to a 300 ml beaker and mix with a stirrer to the extent that it does not foam, add TEMED230 ⁇ 1 and 2 ml of 10% ammonium persulfate to this, quickly mix, and set up the resulting solution Poured into a glass gel plate (length 47.5 cm x width 19.5 cm x gap 0.2 cm).
  • Electrophoresis was performed using 0.3 X TBE as the electrophoresis buffer and a heat sink attached to the gel plate. After pre-energization, place the RNA sample for electrophoresis into the gel sample injection groove (width lcm x depth lcm x thickness 0.2cm) and immediately before bromphenol blue contained in the sample flows out of the gel at a constant current of 10mA. Electrophoresis was performed for about 17 hours at room temperature (see FIG. 1 (1): In the figure, 1D represents the first-dimensional electrophoresis direction; the same applies hereinafter).
  • the gel plate is removed from the electrophoresis apparatus, and the entire gel plate is closely adhered with a transparent wrap film for food packaging made of polysalt vinylidene, which is a hydrophobic transparent film. Besieged. After applying the fluorescent tape mark on the wrap film, autoradiography was performed (using Fuji Photo Film's product name: FUJI X-ray film RA). Photosensitivity was carried out at -80 ° C for 16-24 hours using an Intensive Eyeing 'screen.
  • the thin plate member was submerged under the gel so that the hydrophobic surface was in contact with the bottom surface of the cut gel, and the gel was taken out using the thin plate member as a support (see Fig. 1 (2)).
  • the width of the cut out of the gel was made narrower than the width of the electrophoresis lane because the low-order 50 nt or less present in the first-dimensional gel cut into strips immediately after the second-dimensional electrophoretic movement performed later was started. This is because the low molecular weight RNA is finally separated on the second-dimensional gel with high reproducibility by moving the molecular RNA to the second-dimensional gel.
  • urea was completely dissolved over about 1 hour. After the urea is completely dissolved, the solution obtained is filtered and degassed, poured into a 300 ml beaker and mixed with a stirrer to the extent that it does not foam, and ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylethylene is added here. After adding jamine (TEMED) 230 ⁇ l and 10% ammonium persulfate lml and mixing rapidly, the resulting solution was set in a first-dimensional gel that was cut into strips using a thin plate. Prepared by gently pouring into a glass gel plate (vertical 47.5 cm X horizontal 19.5 cm X gap 0.2 cm) used for the second-dimensional electrophoresis so that no bubbles enter under the first-dimensional gel. .
  • TEMED jamine
  • the gel plate is set in the electrophoresis apparatus (at least by this stage, the gel is cut with the gel remaining on the surface of the first dimension gel.
  • the wrap film has been removed), and the buffer baths above and below the gel plate are 0.3 XT Filled with BE, mounted about 100 ⁇ of urea buffer (7M urea, 0.25% bromophenol blue, 0.25% xylene cyanol) for electrophoresis identification at the top of the gel, 10 mA constant current, room temperature conditions Electrophoresis was performed for about 24 hours until xylene cyanol contained in the urea buffer for electrophoresis migrated 30 cm below the -dimensional gel (see Fig.
  • 2D represents the second-dimensional electricity
  • the direction of electrophoresis is shown.
  • autoradiography was performed in the same manner as when the first dimensional electrophoresis was completed.
  • Fig. 1 (4) it was possible to separate many small RNAs on the second-dimensional gel.
  • the results are shown in Fig. 2 (1) and (2), respectively (in the figure, 1D indicates the first-dimensional electrophoresis direction and 2D indicates the second-dimensional electrophoresis direction). When both were compared, it was found that the electrophoretic images were different from each other, and that the expression state of small RNA in vivo was different at each stage.
  • the present invention is industrially applicable in that it can provide an analysis method using a two-dimensional electrophoresis method capable of easily and reproducibly separating low molecular weight RNA of 50 nt or less. Have potential.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[PROBLEMS] To provide an analysis method with the use of two dimensional electrophoresis whereby a low-molecular weight RNA of 50 nt or less can be conveniently separated at a high reproducibility. [MEANS FOR SOLVING PROBLEMS] An analysis method characterized by comprising: subjecting a sample to the first dimensional electrophoresis by using a slab polyacrylamide gel having an acrylamide concentration of from 12.5% to 13.5%; in cutting the gel in the region containing the low-molecular weight RNA in the electrophoretic lane into strips, tightly covering the whole gel plate with a hydrophobic transparent film, bringing some face of a thin plate member, which is roughly the same in shape as the shape of the gel part to be cut out and has a hydrophobic face as at least one face thereof, into contact with the hydrophobic transparent film located on the surface of the gel part to be cut out, cutting the gel together with the hydrophobic transparent film along the periphery of the thin plate member, sliding the thin plate member under the gel so that the hydrophobic face of the thin plate member comes into contact with the gel bottom, then cutting out the gel while using the thin plate member as a support; polymerizing the gel thus cut out with a gel for the second dimensional electrophoresis and then carrying out the electrophoresis.

Description

明 細 書  Specification
低分子 RNAの分析方法  Analysis method for small RNA
技術分野  Technical field
[0001] 本発明は、二次元電気泳動法を用いた低分子 RNAの分析方法に関する。  [0001] The present invention relates to a method for analyzing small RNA using two-dimensional electrophoresis.
背景技術  Background art
[0002] 近年、 RNA干渉(RNA interference, RNAi)の発見と、その作用機構に 22〜26ヌクレ ォチド(nt)の低分子 RNAが深く関与していることが明らかにされたことをきつかけに、 数多くの低分子 RNAあるいは非翻訳 RNA (non-coding RNA, ncRNA)が細胞に存在 すること、低分子 RNAの機能は非常に多岐にわたることが解明されつつある。生命の 全体像を把握するためには、ゲノム DNAや蛋白質と同様に、細胞に存在する低分子 RNAについても理解を深めることが必要であるところ、このような状況下において、低 分子 RNAの研究を精力的に進めていくためには、低分子 RNAを優れた再現性のもと に分離して分析することができる方法が不可欠となる。従って、研究の現場では、こ のような方法が待ち望まれている。低分子 RNAの分析方法としては、レ、くつかの方法 が考えられる力 その 1つに二次元電気泳動法を用いた方法がある。この方法につい ては既に非特許文献 1において提案がされている。し力しながら、非特許文献 1にお いては、人工的に合成したレ、くつかの 20数ヌクレオチドの低分子 RNAの混合物が、 二次元電気泳動法により分離されることを確認しているに過ぎず、天然に存在する低 分子 RNAの混合物を実際に分離して分析するまでには至っていない。また、非特許 文献 1におレ、ては、二次元電気泳動法を行うための具体的な手法の詳細につレ、ては 明らかにされていなレ、。二次元電気泳動法を用いた RNAの分析方法としては、非特 許文献 1において提案されている方法以外にも、例えば、非特許文献 2において提案 されている方法がある。し力しながら、非特許文献 2において提案されている方法は、 低分子 RNAの分析に適用した場合、個々の RNA同士の分離が悪ぐまた、分離の再 現性を確保するためには、熟練した技術が必要であり、誰もが簡便に行うことができ るものではない。  [0002] In recent years, the discovery of RNA interference (RNAi) and the fact that 22-26 nucleotide (nt) small RNAs have been found to be deeply involved in its mechanism of action have been revealed. The existence of a large number of small RNAs or non-coding RNAs (ncRNAs) in cells and the functions of small RNAs are elucidating. In order to grasp the whole picture of life, it is necessary to deepen understanding of small RNAs present in cells as well as genomic DNA and proteins. In order to proceed energetically, a method that can separate and analyze small RNAs with excellent reproducibility is indispensable. Therefore, such a method is awaited in the field of research. One of the potential methods for analyzing small RNAs is the two-dimensional electrophoresis method. This method has already been proposed in Non-Patent Document 1. However, in Non-Patent Document 1, it has been confirmed that a mixture of artificially synthesized les and a few small RNAs of 20 or more nucleotides can be separated by two-dimensional electrophoresis. However, it is not yet possible to actually isolate and analyze a mixture of naturally occurring small RNAs. Also, in Non-Patent Document 1, the details of specific methods for performing two-dimensional electrophoresis are not disclosed. In addition to the method proposed in Non-Patent Document 1, there is a method proposed in Non-Patent Document 2, for example, as an RNA analysis method using two-dimensional electrophoresis. However, when the method proposed in Non-Patent Document 2 is applied to the analysis of small RNAs, the separation of individual RNAs is poor, and in order to ensure the reproducibility of the separation, Skilled technology is required and not everyone can do it easily.
非特許又 1: Two-dimensional rractionation or complex mixture of oligonucleotides in microRNA size range: Hideaki Shiraishi, 2004 Oxford University Press, Nucleic A cids Symposium Series No.48, 293-294 Non-patent or 1: Two-dimensional rractionation or complex mixture of oligonucleotides in microRNA size range: Hideaki Shiraishi, 2004 Oxford University Press, Nucleic A cids Symposium Series No. 48, 293-294
非特許文献 2 : Purification of RNA Molecules by Gel techniques: Toshimichi Ikemura , Methods In Enzymology, Vol.180, ppl4- 25(1989)  Non-Patent Document 2: Purification of RNA Molecules by Gel techniques: Toshimichi Ikemura, Methods In Enzymology, Vol.180, ppl4-25 (1989)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] そこで本発明は、 50nt以下の低分子 RNAを簡便に再現性よく分離することができる 二次元電気泳動法を用いた、その分析方法を提供することを目的とする。 [0003] Therefore, an object of the present invention is to provide an analysis method using a two-dimensional electrophoresis method that can easily separate a low molecular weight RNA of 50 nt or less with high reproducibility.
課題を解決するための手段  Means for solving the problem
[0004] 本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、二次元電気泳動法を用 いて 50nt以下の低分子 RNAの分析を行う際、一次元目の電気泳動を行うために用い るゲルを特定し、かつ、一次元目の電気泳動を行った後に行う、泳動レーン中の前 記低分子 RNAを含む領域のゲルの切り出し方法を特定することで、二次元目のゲル 上で前記低分子 RNAを簡便に再現性よく分離することができることを見い出した。  [0004] As a result of intensive research in view of the above points, the present inventor has performed the first-dimensional electrophoresis when analyzing a low-molecular-weight RNA of 50 nt or less using a two-dimensional electrophoresis method. The second-dimensional gel is identified by identifying the gel to be used in the electrophoresis, and after the first-dimensional electrophoresis, by identifying the method for cutting out the gel containing the low-molecular-weight RNA in the electrophoresis lane. From the above, it has been found that the low molecular weight RNA can be easily and reproducibly separated.
[0005] 上記の知見に基づいてなされた本発明の二次元電気泳動法を用いた 50nt以下の 低分子 RNAの分析方法は、請求項 1記載の通り、アクリルアミド濃度が 12.5%〜13.5% のスラブ状ポリアクリルアミドゲルを用いて試料の一次元目の電気泳動を行った後、 泳動レーン中の前記低分子 RNAを含む領域のゲルをストリップ状に切り出す際、ゲ ル板全体を疎水性透明フィルムで密着包囲し、切り出すゲルの部分の形状と略同一 形状であって、少なくとも一方の面に疎水性面を有する薄板状部材のいずれかの面 を、切り出すゲルの部分の表面に位置する疎水性透明フィルムに当接させ、ゲルを 疎水性透明フィルムとともに薄板状部材の周縁部に沿って切り込み、次に、薄板状 部材を、切り込んだゲルの底面にその疎水性面が当接するようにゲルの下に潜り込 ませ、薄板状部材を支持体にしてゲルを取り出し、このようにして切り出したゲルを二 次元目の電気泳動を行うためのゲルと重合させた後、電気泳動を行うことを特徴とす る。  [0005] A method for analyzing a low molecular weight RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention based on the above findings is a slab having an acrylamide concentration of 12.5% to 13.5% as described in claim 1. After performing the first-dimensional electrophoresis of the sample using a glass polyacrylamide gel, when the gel of the region containing the low-molecular RNA in the electrophoresis lane is cut into a strip shape, the entire gel plate is covered with a hydrophobic transparent film. Hydrophobic transparent located on the surface of the gel part to be cut out, either side of the thin plate-like member that is close to the shape of the gel part to be enclosed and cut out and has a hydrophobic surface on at least one side Abut the film, cut the gel along with the hydrophobic transparent film along the periphery of the thin plate member, and then place the thin plate member under the gel so that the hydrophobic surface is in contact with the bottom surface of the cut gel. Dive into The gel is taken out using the thin plate member as a support, and the gel cut out in this way is polymerized with the gel for performing the second-dimensional electrophoresis, and then the electrophoresis is performed. .
また、請求項 2記載の分析方法は、請求項 1記載の分析方法において、薄板状部 材の疎水性面を疎水性透明フィルムに当接させ、ゲルを疎水性透明フィルムとともに 薄板状部材の周縁部に沿って切り込むことを特徴とする。 The analysis method according to claim 2 is the analysis method according to claim 1, wherein the hydrophobic surface of the thin plate member is brought into contact with the hydrophobic transparent film, and the gel is combined with the hydrophobic transparent film. It cuts along the peripheral part of a thin plate-shaped member, It is characterized by the above-mentioned.
また、請求項 3記載の分析方法は、請求項ほたは 2記載の分析方法において、少 なくとも 2種類の特定の条件下にある個体または細胞を用いて調製した試料の泳動 パターンを比較することで、前記低分子 RNAの発現特性を比較分析することを特徴と する。  The analysis method according to claim 3 compares the migration patterns of samples prepared using individuals or cells under at least two specific conditions in the analysis method according to claim 2 or 2. Thus, the expression characteristics of the low-molecular RNA are comparatively analyzed.
また、本発明の請求項 1乃至 3のいずれかに記載の分析方法を行うためのキットは、 請求項 4記載の通り、一次元目の電気泳動を行うためのゲル板とゲル形成用試薬、 二次元目の電気泳動を行うためのゲル板とゲル形成用試薬、一次元目の電気泳動 を行う際にゲルに試料注入溝を形成するための櫛、疎水性透明フィルム、少なくとも 一方の面に疎水性面を有する薄板状部材を少なくとも含んでなることを特徴とする。 発明の効果  Further, a kit for performing the analysis method according to any one of claims 1 to 3 of the present invention, as described in claim 4, a gel plate and a gel-forming reagent for performing first-dimensional electrophoresis, Gel plate and gel forming reagent for performing second-dimensional electrophoresis, comb for forming sample injection groove in gel during first-dimensional electrophoresis, hydrophobic transparent film, on at least one surface It comprises at least a thin plate-like member having a hydrophobic surface. The invention's effect
[0006] 本発明によれば、 50nt以下の低分子 RNAを簡便に再現性よく分離することができる 二次元電気泳動法を用いた、その分析方法が提供される。  [0006] According to the present invention, there is provided an analysis method using a two-dimensional electrophoresis method capable of easily separating a low molecular weight RNA of 50 nt or less with high reproducibility.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]実施例における本発明の二次元電気泳動法を用いた 50nt以下の低分子 RNA の分析方法の概略手順を示す図である。  [0007] FIG. 1 is a diagram showing a schematic procedure of a method for analyzing a small RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention in Examples.
[図 2]同、 embryonic stageの線虫の低分子 RNAの二次元電気泳動像と、 mixed stage の線虫の低分子 RNAの二次元電気泳動像である。  [Fig.2] Two-dimensional electrophoresis images of embryonic stage nematode small RNA and two-dimensional electrophoretic images of mixed stage nematode small RNA.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明の二次元電気泳動法を用いた 50nt以下の低分子 RNAの分析方法は、アタリ ルアミド濃度が 12.5%〜13.5%のスラブ状ポリアクリルアミドゲルを用いて試料の一次元 目の電気泳動を行った後、泳動レーン中の前記低分子 RNAを含む領域のゲルをスト リップ状に切り出す際、ゲル板全体を疎水性透明フィルムで密着包囲し、切り出すゲ ルの部分の形状と略同一形状であって、少なくとも一方の面に疎水性面を有する薄 板状部材のいずれかの面を、切り出すゲルの部分の表面に位置する疎水性透明フ イルムに当接させ、ゲルを疎水性透明フィルムとともに薄板状部材の周縁部に沿って 切り込み、次に、薄板状部材を、切り込んだゲルの底面にその疎水性面が当接する ようにゲルの下に潜り込ませ、薄板状部材を支持体にしてゲルを取り出し、このように して切り出したゲルを二次元目の電気泳動を行うためのゲルと重合させた後、電気泳 動を行うことを特徴とする。 [0008] The method for analyzing low-molecular-weight RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention uses a slab-like polyacrylamide gel having an atalylamide concentration of 12.5% to 13.5% to perform the first-dimensional electrolysis of a sample After the electrophoresis, when the gel in the region containing the low molecular weight RNA in the electrophoresis lane is cut out in a strip shape, the entire gel plate is closely enclosed with a hydrophobic transparent film, and the shape of the gel part to be cut out is almost the same. One of the thin plate-like members that has a shape and has a hydrophobic surface on at least one surface is brought into contact with a hydrophobic transparent film located on the surface of the gel part to be cut out, thereby making the gel hydrophobic and transparent. Cut along the peripheral edge of the thin plate member together with the film, and then sink the thin plate member under the gel so that the hydrophobic surface is in contact with the bottom surface of the cut gel, and use the thin plate member as a support. Take out the gel In this way The gel cut out in this manner is polymerized with the gel for performing the second-dimensional electrophoresis, and then electrophoresed.
[0009] 本発明では、試料の一次元目の電気泳動を行うために用いるゲルをアクリルアミド 濃度が 12.5%〜13.5%のスラブ状ポリアクリルアミドゲルと特定する。ゲルの種類をポリ アクリルアミドゲルと特定するのは、分析対象の 50nt以下の低分子 RNAの混合物に 対する分離能に優れるからである。アクリルアミド濃度を 12.5%〜13.5%と特定するのは 、濃度が 12.5%を下回ると、それは 50Mよりも大きい RNAの混合物に対する分離能を 向上させるような条件になってしまい、反対に 50nt以下の低分子 RNAの混合物に対 する分離能が低下するからである。一方、濃度が 13.5%を上回ると、後述するような条 件で二次元目の電気泳動を行う場合、二次元目の電気泳動に用いるゲルのアクリル アミド濃度との差が縮まってしまうことで、二次元目の電気泳動を行った後に得られる RNAスポットの分離能が悪くなり、個々のスポットの把握が困難になるからである。  [0009] In the present invention, the gel used for the first-dimensional electrophoresis of the sample is specified as a slab-like polyacrylamide gel having an acrylamide concentration of 12.5% to 13.5%. The reason for identifying the gel type as polyacrylamide gel is that it has excellent resolution for a mixture of small RNAs of less than 50 nt to be analyzed. The acrylamide concentration is specified as 12.5% to 13.5% because if the concentration falls below 12.5%, it becomes a condition that improves the resolution for a mixture of RNA larger than 50M, and conversely it is as low as 50 nt or less. This is because the resolution of the molecular RNA mixture decreases. On the other hand, when the concentration exceeds 13.5%, when performing second-dimensional electrophoresis under the conditions described later, the difference from the acrylamide concentration of the gel used for second-dimensional electrophoresis is reduced. This is because the resolution of RNA spots obtained after the second-dimensional electrophoresis deteriorates, making it difficult to identify individual spots.
[0010] 本発明では、試料の一次元目の電気泳動を行った後、泳動レーン中の前記低分 子 RNAを含む領域のゲルをストリップ状に切り出す際、ゲル板全体を疎水性透明フィ ルムで密着包囲し、切り出すゲルの部分の形状と略同一形状であって、少なくとも一 方の面に疎水性面を有する薄板状部材のいずれかの面を、切り出すゲルの部分の 表面に位置する疎水性透明フィルムに当接させ、ゲルを疎水性透明フィルムとともに 薄板状部材の周縁部に沿って切り込み、次に、薄板状部材を、切り込んだゲルの底 面にその疎水性面が当接するようにゲルの下に潜り込ませ、薄板状部材を支持体に してゲルを取り出す。ゲルをストリップ状に切り出す際、その切り出し長さは二次元目 の電気泳動に用いるゲルの横幅より短くするのが好まし 切り出し幅は泳動レーン の幅より狭くするのが好ましいが、ゲルの切り出しを上記のようにして行うことで、例え ば、切り出し長さが 10〜20cmで切り出し幅が 0.3〜0.7cmといったような極細のストリツ プ状のゲルを切り出す場合でも、簡便に精度よく切り出すことが可能となる。  [0010] In the present invention, after performing the first-dimensional electrophoresis of the sample, when the gel of the region containing the low-molecular RNA in the electrophoresis lane is cut into a strip shape, the entire gel plate is treated with a hydrophobic transparent film. The surface of the gel part to be cut out is one surface of the thin plate-like member which is substantially the same shape as the part of the gel part to be tightly enclosed and cut and has a hydrophobic surface on at least one side. The gel is cut along the peripheral edge of the thin plate member together with the hydrophobic transparent film, and then the thin plate member is cut so that the hydrophobic surface comes into contact with the bottom surface of the cut gel. Under the gel, the gel is taken out using the thin plate member as a support. When cutting the gel into strips, the length of the cut is preferably shorter than the width of the gel used for the second-dimensional electrophoresis, and the cut width is preferably smaller than the width of the electrophoresis lane. By performing as described above, it is possible to easily and accurately cut out a very thin strip-shaped gel with a cutting length of 10 to 20 cm and a cutting width of 0.3 to 0.7 cm. It becomes.
[0011] ゲル板全体を密着包囲するために用いる疎水性透明フィルムとしては、例えば、ポ リ塩化ビニリデン製の食品包装用透明ラップフィルムが挙げられる。仮に、疎水性透 明フィルムに代わりにセロハンのような親水性透明フィルムを用いた場合、当該フィル ムがゲルの表面に残存する電気泳動用バッファー由来の水分を含んで軟化膨張し たりしてゲル板全体を密着包囲することが困難となり、その結果、ゲルの切り出しを精 度よく行えないといった問題を招来する。 [0011] Examples of the hydrophobic transparent film used for tightly enclosing the entire gel plate include a transparent wrap film for food packaging made of polyvinylidene chloride. If a hydrophilic transparent film such as cellophane is used instead of the hydrophobic transparent film, the film softens and expands with moisture from the electrophoresis buffer remaining on the gel surface. As a result, it becomes difficult to tightly enclose the entire gel plate, resulting in a problem that the gel cannot be cut out accurately.
[0012] 少なくとも一方の面に疎水性面を有する薄板状部材は、後に行う、切り込んだゲル を取り出す際に必要となる疎水性面を有するものであればどのようなものであってもよ レ、が、ゲル板全体を密着包囲するために用いる疎水性透明フィルムに当接させる薄 板状部材の面は、疎水性透明フィルムと親和性を有することが好ましい(疎水性透明 フィルムとしてポリ塩ィ匕ビ二リデン製の食品包装用透明ラップフィルムを用いる場合、 薄板状部材の疎水性面は、疎水性透明フィルムと親和性を有する)。ゲルを疎水性 透明フィルムとともに薄板状部材の周縁部に沿つて切り込む際、疎水性透明フィルム と薄板状部材の間での滑りが抑えられ、直線状の切口を有するゲルを簡便に精度よ く切り出すことが可能となるからである。また、薄板状部材を、切り込んだゲルの底面 にその疎水性面が当接するようにゲルの下に潜り込ませ、薄板状部材を支持体にし てゲルを取り出すことで、薄板状部材を支持体にして、切り込んだゲルを崩すことなく 容易に移動させることができる。仮に、薄板状部材が親水性面を有し、この親水性面 を利用して同様の操作を行ってゲルを取り出そうとした場合、ゲル表面に存在する水 分が邪魔をして、薄板状部材を切り込んだゲルの下に正確に潜り込ませることが困難 になることで、ゲルを二次元目の電気泳動に用いるゲル板にセットすることが困難と なるといつた問題を招来する。  [0012] The thin plate-like member having a hydrophobic surface on at least one surface may be any member as long as it has a hydrophobic surface that is necessary when the cut gel is taken out later. However, it is preferable that the surface of the thin plate-like member to be brought into contact with the hydrophobic transparent film used for tightly enclosing the entire gel plate has an affinity for the hydrophobic transparent film (polysalt as the hydrophobic transparent film). When using a transparent wrap film for food packaging made of 匕 vinylidene, the hydrophobic surface of the thin plate member has affinity with the hydrophobic transparent film). When the gel is cut along with the hydrophobic transparent film along the peripheral edge of the thin plate-like member, slippage between the hydrophobic transparent film and the thin plate-like member is suppressed, and a gel having a straight cut is cut out easily and accurately. Because it becomes possible. Further, the thin plate-like member is made to be a support by allowing the thin plate-like member to be submerged under the gel so that its hydrophobic surface is in contact with the bottom surface of the cut gel, and the thin plate-like member is used as a support to take out the gel. Thus, the cut gel can be easily moved without breaking. If the thin plate-like member has a hydrophilic surface, and the same operation is performed using this hydrophilic surface to remove the gel, the water present on the gel surface interferes with the thin plate-like member. When it becomes difficult to accurately dive under the gel into which the gel is cut, it becomes difficult to set the gel on the gel plate used for the second-dimensional electrophoresis.
[0013] 二次元目の電気泳動を行うために用いるゲルは、例えば、アクリルアミド濃度が 21.0 %〜23.0%で尿素濃度が6.0\4〜8.0\4のスラブ状ポリァクリルァミドゲルが好ましレ、。ゲ ルの種類をポリアクリルアミドゲルとすることが好ましいのは、分析対象の 50nt以下の 低分子 RNAの混合物に対する分離能に優れるからである。アクリルアミド濃度を 21.0% 〜23.0%とすることが好ましいのは、濃度力 ¾1.0%を下回ると、一次元目の電気泳動に 用いるゲルのアクリルアミド濃度との差が縮まってしまうことで、二次元目の電気泳動 を行った後に得られる RNAスポットの分離能が悪くなり、個々のスポットの把握が困難 になるからである。一方、濃度が 23.0%を上回ると、 50nt付近の RNAの分離能が悪くな つたり、ゲルが壊れやすくなることで、その取り扱いが困難になったりするからである。 尿素濃度を 6.0M〜8.0Mとすることが好ましいのは、低分子 RNAの二次構造の違いに よる二次元目の電気泳動への影響をなくすことができるからである。一次元目の電気 泳動に用いるゲルに尿素を添加せず、二次元目の電気泳動に用いるゲルに濃度が 6.0M〜8.0Mの尿素を添加することで、同じ大きさの異なる低分子 RNAを二次構造の 違いにより分離することができる。 [0013] The gel used for the second-dimensional electrophoresis is preferably a slab-like polyacrylamide gel having an acrylamide concentration of 21.0% to 23.0% and a urea concentration of 6.0 \ 4-8.0 \ 4, for example. Les. The reason why the gel type is polyacrylamide gel is that it is excellent in the resolution of a mixture of small RNAs of 50 nt or less to be analyzed. It is preferable to set the acrylamide concentration to 21.0% to 23.0%. If the concentration force is less than ¾1.0%, the difference from the acrylamide concentration of the gel used for the first dimensional electrophoresis is reduced. This is because the resolution of RNA spots obtained after eye electrophoresis deteriorates, making it difficult to identify individual spots. On the other hand, if the concentration exceeds 23.0%, the resolution of RNA near 50 nt will be poor, and the gel will be easily broken, making it difficult to handle. The urea concentration is preferably 6.0M to 8.0M because of the difference in the secondary structure of small RNAs. This is because the influence on the second-dimensional electrophoresis can be eliminated. By adding urea with a concentration of 6.0M-8.0M to the gel used for the second dimension electrophoresis without adding urea to the gel used for the first dimension electrophoresis, small RNAs of the same size can be obtained. It can be separated by the difference in secondary structure.
[0014] なお、 50nt以下の低分子 RNAを含む試料やゲルの調製方法、電気泳動の操作方 法は自体公知の方法で行えばょレ、(必要であれば" Polyacrylamide Gel Electrophore sis m Molecularし lomng, a laboratory manual, second edition: J. Sambrook, E. F. F itsch and T. Maniatis (1989), pp. 6.36-6.48, Cold Spring Harbor Laboratory Press, New York.を参照のこと)。  [0014] It should be noted that a method for preparing a sample or gel containing a low molecular weight RNA of 50 nt or less and a method for electrophoresis are carried out by a method known per se (if necessary, "Polyacrylamide Gel Electrophoresis Molecular"). lomng, a laboratory manual, second edition: J. Sambrook, EF F itsch and T. Maniatis (1989), pp. 6.36-6.48, Cold Spring Harbor Laboratory Press, New York.
[0015] 本発明によれば、二次元目のゲル上で、 50nt以下(おおよそ 15nt〜50nt)の低分子 RNAを簡便に再現性よく分離することができる。従って、少なくともいくつかの 50nt以 下の低分子 RNAについては、それらをゲル上の各スポットとして高い精製度の下に 取得することができることから、その配列決定を容易にし、よって、新規な 50nt以下の 低分子 RNAの効率的な探索が可能となる。また、少なくとも 2種類の特定の条件下に ある個体または細胞を用いて調製した試料の二次元電気泳動を行い、その泳動パタ ーンを比較することで、低分子 RNAの発現特性を比較分析することができることから、 多細胞生物における老化、行動、神経発生、胚発生などの高次生命現象にどのよう な低分子 RNAがどのように関わっているのかについての解明が容易となる。  [0015] According to the present invention, low molecular weight RNA of 50 nt or less (approximately 15 nt to 50 nt) can be easily and reproducibly separated on the second-dimensional gel. Therefore, at least some small RNAs of less than 50 nt can be obtained as high-purity as each spot on the gel, thus facilitating their sequencing and thus new 50 nt or less Efficient search for small RNAs. In addition, two-dimensional electrophoresis is performed on samples prepared using individuals or cells under at least two specific conditions, and the expression characteristics of small RNAs are compared and analyzed by comparing the migration patterns. Therefore, it is easy to clarify what kind of small RNAs are involved in higher life phenomena such as aging, behavior, neurogenesis, and embryogenesis in multicellular organisms.
[0016] 本発明の二次元電気泳動法を用いた 50nt以下の低分子 RNAの分析方法は、一次 元目の電気泳動を行うためのゲル板とゲル形成用試薬、二次元目の電気泳動を行う ためのゲル板とゲル形成用試薬、一次元目の電気泳動を行う際にゲルに試料注入 溝を形成するための櫛、疎水性透明フィルム、少なくとも一方の面に疎水性面を有す る薄板状部材を少なくとも含んでなるキットを用いることで、誰もが簡便に再現性よく 行うことができる。ここで、一次元目の電気泳動を行うためのゲル板と、二次元目の電 気泳動を行うためのゲル板は、例えば、縦 50cm X横 20cm程度のガラス製または樹脂 製である。一次元目の電気泳動を行うためのゲル形成用試薬としては、例えば、下 記の表 1に示す成分を混合して滅菌水で総量 213mlに調製したアクリルアミド溶液が 挙げられる。 [0017] [表 1] [0016] The method for analyzing low molecular weight RNA of 50 nt or less using the two-dimensional electrophoresis method of the present invention comprises a gel plate and a gel-forming reagent for performing first-order electrophoresis, and a second-dimensional electrophoresis. Gel plate and gel forming reagent, comb for forming sample injection groove in gel when performing first-dimensional electrophoresis, hydrophobic transparent film, at least one surface has hydrophobic surface By using a kit comprising at least a thin plate-like member, anyone can easily perform with good reproducibility. Here, the gel plate for performing the first-dimensional electrophoresis and the gel plate for performing the second-dimensional electrophoresis are, for example, made of glass or resin approximately 50 cm long × 20 cm wide. Examples of the gel forming reagent for performing the first-dimensional electrophoresis include an acrylamide solution prepared by mixing the components shown in Table 1 below to a total amount of 213 ml with sterile water. [0017] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[0018] また、二次元目の電気泳動を行うためのゲル形成用試薬としては、例えば、下記の 表 2に示す成分を混合して滅菌水で総量 240mlに調製したアクリルアミド溶液が挙げ られる。  [0018] Examples of the gel forming reagent for performing the second-dimensional electrophoresis include an acrylamide solution prepared by mixing the components shown in Table 2 below to a total volume of 240 ml with sterile water.
[0019] [表 2]  [0019] [Table 2]
Figure imgf000009_0002
Figure imgf000009_0002
[0020] 一次元目の電気泳動を行う際にゲルに試料注入溝を形成するための櫛としては、 例えば、一方に縦 lcm X横 lcmの歯を 0.2cm間隔で 10本もち、他方には歯をもたない 、厚さ 0.2cmのテフロン (登録商標)製の板が挙げられる。疎水性透明フィルムとして は、例えば、ポリ塩ィ匕ビ二リデン製の食品包装用透明ラップフィルムが挙げられる。少 なくとも一方の面に疎水性面を有する薄板状部材としては、例えば、両面が疎水性 である(両面が疎水処理された)プラスチック板や、後述する実施例で用いた、一方 の面が疎水性面で他方の面が親水性面である Pharmacia Biotech社製の商品名: Gel Bond PAG filmが挙げられる。  [0020] As a comb for forming a sample injection groove in the gel when performing the first-dimensional electrophoresis, for example, there are 10 teeth of 1 cm in length lcm x lcm in width at intervals of 0.2 cm, and the other in the other. An example is a Teflon (registered trademark) board with no teeth and a thickness of 0.2 cm. Examples of the hydrophobic transparent film include a transparent wrap film for food packaging made of polyvinyl chloride vinylidene. Examples of the thin plate-like member having a hydrophobic surface on at least one surface include, for example, a plastic plate that is hydrophobic on both surfaces (both surfaces are subjected to hydrophobic treatment), and one surface used in Examples described later. The product name: Gel Bond PAG film manufactured by Pharmacia Biotech, which has a hydrophobic surface and the other surface is a hydrophilic surface.
実施例  Example
[0021] 以下、本発明を線虫(£. を用いた実施例によって詳細に説明するが、本 発明は、以下の記載に何ら限定して解釈されるものではない。  Hereinafter, the present invention will be described in detail by examples using nematodes (£.), But the present invention should not be construed as being limited to the following description.
[0022] 実験 1 : [0022] Experiment 1:
(泳動用 RNA試料の準備)  (Preparation of RNA sample for electrophoresis)
線虫 10gを TRIzol試薬(Invitrogen社製) 10mlで処理し、粗 RNA抽出物 0.5mgを得た 。これをステップワイズの 2-プロパノール沈殿法により分画し、 lOOnt以下の RNAを含 む画分 5 x gを得た。 RNAの 3'末端を放射性同位体で標識するために、この RNA画分 2.5 μ gに、 6.5 μ 1の32 P-pCp (l l lTBqAnmol)、 20unitの T4 RNA ligase (宝酒造社製) 、終濃度 50mMの Tris- HCl (pH7.5)、 lOmMの MgCl、 lOmMの DTT、 ImMの ATPを加 Nematode 10g was treated with TRIzol reagent (Invitrogen) 10ml to obtain 0.5mg of crude RNA extract . This was fractionated by the stepwise 2-propanol precipitation method to obtain 5 xg of a fraction containing RNA below lOOnt. To label the 3 'end of RNA with a radioisotope, 2.5 μg of this RNA fraction, 6.5 μl of 32 P-pCp (ll lTBqAnmol), 20 unit of T4 RNA ligase (Takara Shuzo), final concentration Add 50 mM Tris-HCl (pH 7.5), lOmM MgCl, lOmM DTT, ImM ATP
2  2
え、滅菌水で 15まにあわせて、 4°Cで 16時間〜 20時間反応させた。このようにして 3' 末端を標識した RNA画分 15 μ 1に、電気泳動用グリセロールバッファー(50%グリセ口 ールと 0.25%ブロモフエノールブルーと 0.25%キシレンシァノール含有)を 5 μ 1、滅菌水 を 5 μ 1加えて泳動用 RNA試料とした。  In addition, the reaction was carried out at 4 ° C for 16 to 20 hours with sterilized water. Sterilize 5 μ 1 of glycerol buffer for electrophoresis (containing 50% glycerol, 0.25% bromophenol blue, and 0.25% xylene cyanol) into 15 μ 1 of the RNA fraction labeled at the 3 ′ end in this way. 5 μl of water was added to prepare an RNA sample for electrophoresis.
[0023] (二次元電気泳動)  [0023] (two-dimensional electrophoresis)
一次元目の電気泳動を行うために、以下のようにしてアクリルアミド濃度が 13.1%の スラブ状ポリアクリルアミドゲルを作製した。即ち、 40%アクリルアミド溶液(アクリルアミ ド 380gと Ν,Ν'-メチレンビスアクリルアミド 20gを水に溶かして 1000mlにした溶液) 70ml、 10 X TBE (トリス塩基 108g,ホウ酸 55g, 0.5M EDTA 40ml, pH8.0) 6ml、水 135mlを 300 mlビーカーに加えて泡立てない程度にスターラーで混ぜ、ここに TEMED230 μ 1と 10% 過硫酸アンモニゥム 2mlを加えて素早く混ぜた後、得られた溶液をセットアップしたガ ラス製ゲル板(縦 47.5cm X横 19.5cm X隙間 0.2cm)に流し込んだ。アクリルアミドの重 合反応が終了してゲルが固まった後、ゲル板を泳動装置にセットして、 1000V (定電 圧)、 1時間の予備通電を行った。泳動バッファーには 0.3 X TBEを用レ、、ゲル板には 放熱板を付けて泳動を行った。予備通電終了後、泳動用 RNA試料をゲルの試料注 入溝(幅 lcm X深さ lcm X厚さ 0.2cm)に入れ、 10mA定電流で、試料に含まれるブロ モフエノールブルーがゲルから流れ出す寸前まで室温で約 17時間泳動を行った(図 1(1)参照:図中、 1Dは一次元目の電気泳動方向を示す。以下同じ)。  In order to perform the first-dimensional electrophoresis, a slab-like polyacrylamide gel having an acrylamide concentration of 13.1% was prepared as follows. That is, 40% acrylamide solution (Acrylic amide 380g and Ν, Ν'-methylenebisacrylamide 20g dissolved in water to 1000ml) 70ml, 10X TBE (Tris base 108g, boric acid 55g, 0.5M EDTA 40ml, pH 8.0) Add 6 ml and water 135 ml to a 300 ml beaker and mix with a stirrer to the extent that it does not foam, add TEMED230 μ 1 and 2 ml of 10% ammonium persulfate to this, quickly mix, and set up the resulting solution Poured into a glass gel plate (length 47.5 cm x width 19.5 cm x gap 0.2 cm). After the polymerization reaction of acrylamide was completed and the gel was solidified, the gel plate was set in the electrophoresis apparatus and pre-energized for 1 hour at 1000 V (constant voltage). Electrophoresis was performed using 0.3 X TBE as the electrophoresis buffer and a heat sink attached to the gel plate. After pre-energization, place the RNA sample for electrophoresis into the gel sample injection groove (width lcm x depth lcm x thickness 0.2cm) and immediately before bromphenol blue contained in the sample flows out of the gel at a constant current of 10mA. Electrophoresis was performed for about 17 hours at room temperature (see FIG. 1 (1): In the figure, 1D represents the first-dimensional electrophoresis direction; the same applies hereinafter).
[0024] 一次元目の電気泳動が終わった後、ゲル板を泳動装置から外し、ゲル板全体を、 疎水性透明フィルムであるポリ塩ィ匕ビ二リデン製の食品包装用透明ラップフィルムで 密着包囲した。蛍光テープの目印をラップフィルム上に付けてから、オートラジオダラ フィーを行った(富士写真フィルム社の商品名: FUJI X-ray film RAを使用)。感光は インテンシフアイイング'スクリーンを用いて- 80°Cで 16時間〜 24時間行った。ラップフ イルム上の蛍光テープの目印と、感光したオートラジオグラムに印された蛍光テープ 位置をあわせ、感光検出された 50nt以下の低分子 RNAを含む領域のゲルの部分 (泳 動レーンの幅は lcm)の表面に位置するラップフィルムに、薄板状部材として、縦 15.5 cm X横 0.5cmに切断した、一方の面が疎水性面で他方の面が親水性面である Pharm acia Biotech社製の商品名: Gel Bond PAG filmの疎水性面を当接させ、カッターナイ フを用いてゲルをラップフィルムとともに薄板状部材の周縁部に沿って切り込んだ。 次に、薄板状部材を、切り込んだゲルの底面にその疎水性面が当接するようにゲル の下に潜り込ませ、薄板状部材を支持体にしてゲルを取り出した(図 1(2)参照)。なお 、ゲルの切り出し幅を泳動レーンの幅より狭くしたのは、後に行う、二次元目の電気泳 動を始めてすぐに、ストリップ状に切り出した一次元目のゲル中に存在する 50nt以下 の低分子 RNAを、二次元目のゲルに移動させることで、最終的に二次元目のゲル上 で前記低分子 RNAを再現性よく分離させるためであった。 [0024] After the first-dimensional electrophoresis is completed, the gel plate is removed from the electrophoresis apparatus, and the entire gel plate is closely adhered with a transparent wrap film for food packaging made of polysalt vinylidene, which is a hydrophobic transparent film. Besieged. After applying the fluorescent tape mark on the wrap film, autoradiography was performed (using Fuji Photo Film's product name: FUJI X-ray film RA). Photosensitivity was carried out at -80 ° C for 16-24 hours using an Intensive Eyeing 'screen. Fluorescent tape mark on the wrapping film and fluorescent tape stamped on the exposed autoradiogram 15.5 cm x 0.5 in width as a thin plate on a lap film located on the surface of the gel part (swimming lane width is 1 cm) of the region containing a small RNA of 50 nt or less that is photodetected and aligned. Product name: Gel Bond PAG film made by Pharm acia Biotech, which is cut into cm, one side is hydrophobic and the other side is hydrophilic. The gel was cut along with the wrap film along the peripheral edge of the thin plate member. Next, the thin plate member was submerged under the gel so that the hydrophobic surface was in contact with the bottom surface of the cut gel, and the gel was taken out using the thin plate member as a support (see Fig. 1 (2)). . Note that the width of the cut out of the gel was made narrower than the width of the electrophoresis lane because the low-order 50 nt or less present in the first-dimensional gel cut into strips immediately after the second-dimensional electrophoretic movement performed later was started. This is because the low molecular weight RNA is finally separated on the second-dimensional gel with high reproducibility by moving the molecular RNA to the second-dimensional gel.
[0025] 一次元目の電気泳動が終了する 2時間前に、二次元目の電気泳動の準備を行つ た。なぜなら、ゲルは乾燥して壊れやすいものであるため、一次元目のゲルを切り出 した後は、すぐにこれを二次元目の電気泳動を行うためのゲルと重合させることがで きる態勢にしておくことが好ましいからであった。二次元目の電気泳動を行うためのゲ ルとして、アクリルアミド濃度力 22.0%で尿素濃度力 S7.0Mのスラブ状ポリアクリルアミド ゲルを用いることにした。このゲルは、 40%アクリルアミド溶液 132ml、 10 X TBE 7.2ml, 水 7ml、尿素 100gの組成で調製した。各成分を 300mlビーカーに入れ、約 1時間かけ て尿素を完全に溶解させた。尿素が完全に溶解した後、得られた溶液を濾過してか ら脱気し、 300mlビーカーに注いで泡立てない程度にスターラーで混ぜ、ここに Ν,Ν,Ν ',Ν'-テトラメチルエチレンジァミン(TEMED) 230 μ 1と 10%過硫酸アンモニゥム lmlを加 えて素早く混ぜた後、得られた溶液を、薄板状部材を用いてストリップ状に切り出した 一次元目のゲルをセットした、二次元目の電気泳動に用いるガラス製ゲル板(縦 47.5 cm X横 19.5cm X隙間 0.2cm)に、一次元目のゲルの下に気泡が入らないように静か に流し込んで重合させて調製した。  [0025] Two hours before the completion of the first-dimensional electrophoresis, preparation for the second-dimensional electrophoresis was made. Because the gel is dry and fragile, immediately after cutting out the first dimension gel, it is ready to polymerize with the gel for second dimension electrophoresis. This is because it is preferable to keep it. As a gel for the second-dimensional electrophoresis, a slab-like polyacrylamide gel with an acrylamide concentration of 22.0% and a urea concentration of S7.0M was used. This gel was prepared with a composition of 132 ml of 40% acrylamide solution, 7.2 ml of 10 X TBE, 7 ml of water and 100 g of urea. Each component was placed in a 300 ml beaker and urea was completely dissolved over about 1 hour. After the urea is completely dissolved, the solution obtained is filtered and degassed, poured into a 300 ml beaker and mixed with a stirrer to the extent that it does not foam, and に, Ν, Ν ', Ν'-tetramethylethylene is added here. After adding jamine (TEMED) 230 μl and 10% ammonium persulfate lml and mixing rapidly, the resulting solution was set in a first-dimensional gel that was cut into strips using a thin plate. Prepared by gently pouring into a glass gel plate (vertical 47.5 cm X horizontal 19.5 cm X gap 0.2 cm) used for the second-dimensional electrophoresis so that no bubbles enter under the first-dimensional gel. .
[0026] アクリルアミドの重合反応が終了してゲルが固まった後、ゲル板を泳動装置にセット して(少なくともこの段階に至るまでには一次元目のゲルの表面に残ったゲルとともに 切り込まれたラップフィルムは除去済みである)、ゲル板上下のバッファー槽を 0.3 X T BEで満たし、ゲルの最上部に泳動状況識別用電気泳動用尿素バッファー(7M尿素 , 0.25%ブロモフエノールブルー, 0.25%キシレンシァノール)を約 100 μ ΐマウントし、 10 mA定電流、室温条件下、電気泳動用尿素バッファーに含まれるキシレンシァノール がー次元目のゲルから 30cm下に移動するまで約 24時間泳動を行った(図 1(3)参照: 図中、 2Dは二次元目の電気泳動方向を示す。以下同じ)。二次元目の電気泳動が 終了した後、一次元目の電気泳動が終了した時と同様の手順でオートラジオグラフィ 一を行った。その結果、二次元目のゲル上で多数の低分子 RNAを分離することがで きた(図 1(4)参照)。 [0026] After the acrylamide polymerization reaction is completed and the gel is solidified, the gel plate is set in the electrophoresis apparatus (at least by this stage, the gel is cut with the gel remaining on the surface of the first dimension gel. The wrap film has been removed), and the buffer baths above and below the gel plate are 0.3 XT Filled with BE, mounted about 100 μΐ of urea buffer (7M urea, 0.25% bromophenol blue, 0.25% xylene cyanol) for electrophoresis identification at the top of the gel, 10 mA constant current, room temperature conditions Electrophoresis was performed for about 24 hours until xylene cyanol contained in the urea buffer for electrophoresis migrated 30 cm below the -dimensional gel (see Fig. 1 (3): In the figure, 2D represents the second-dimensional electricity The direction of electrophoresis is shown. After the completion of the second dimensional electrophoresis, autoradiography was performed in the same manner as when the first dimensional electrophoresis was completed. As a result, it was possible to separate many small RNAs on the second-dimensional gel (see Fig. 1 (4)).
[0027] 実験 2 : [0027] Experiment 2:
embryonic stageの線虫(孵化前の線虫)から調製した試料と、 mixed stageの線虫( 卵から成虫に至るまでの幼虫期 L1〜L4のいずれかの段階にある線虫が複数混在し ているもの)から調製した試料を、それぞれ実験 1と同様にして二次元電気泳動を行 レ、、 50nt以下の低分子 RNAを二次元目のゲル上で分離した。結果をそれぞれ図 2の ( 1)と (2)に示す(図中、 1Dは一次元目の電気泳動方向を示し、 2Dは二次元目の電気 泳動方向を示す)。両者を比較すると互いに泳動像が異なり、それぞれのステージに おいて生体内における低分子 RNAの発現状態が異なることがわかった。検出された スポットは、 embryonic stageに特異的なもの(例えば図 2(1)で矢視したもの)が 85個、 mixed stageに特異的なもの(例えば図 2(2)で矢視したもの)が 51個、共通に見られる もの(例えば円で囲んだもの)が 54個であった。こうして得られたスポットから、新規な 5 Ont以下の低分子 RNAの探索などを行うことができた。  Samples prepared from embryonic stage nematodes (pre-hatch nematodes) and mixed stage nematodes (larva stages from eggs to adults) Samples prepared from 2) were subjected to two-dimensional electrophoresis in the same manner as in Experiment 1, and low-molecular-weight RNA of 50 nt or less was separated on the second-dimensional gel. The results are shown in Fig. 2 (1) and (2), respectively (in the figure, 1D indicates the first-dimensional electrophoresis direction and 2D indicates the second-dimensional electrophoresis direction). When both were compared, it was found that the electrophoretic images were different from each other, and that the expression state of small RNA in vivo was different at each stage. There are 85 spots detected that are specific to the embryonic stage (for example, those shown by arrows in Fig. 2 (1)), and those that are specific to the mixed stage (for example, those shown by arrows in Fig. 2 (2)). There were 51, and 54 that were commonly seen (for example, circled). From the spots thus obtained, we were able to search for novel low molecular RNAs of 5 Ont or less.
産業上の利用可能性  Industrial applicability
[0028] 本発明は、 50nt以下の低分子 RNAを簡便に再現性よく分離することができる二次 元電気泳動法を用いた、その分析方法を提供することができる点において、産業上 の利用可能性を有する。 [0028] The present invention is industrially applicable in that it can provide an analysis method using a two-dimensional electrophoresis method capable of easily and reproducibly separating low molecular weight RNA of 50 nt or less. Have potential.

Claims

請求の範囲 The scope of the claims
[1] 二次元電気泳動法を用いた 50ヌクレオチド以下の低分子 RNAの分析方法であって 、アクリルアミド濃度が 12.5%〜13.5%のスラブ状ポリアクリルアミドゲルを用いて試料の 一次元目の電気泳動を行った後、泳動レーン中の前記低分子 RNAを含む領域のゲ ルをストリップ状に切り出す際、ゲル板全体を疎水性透明フィルムで密着包囲し、切り 出すゲルの部分の形状と略同一形状であって、少なくとも一方の面に疎水性面を有 する薄板状部材のいずれかの面を、切り出すゲルの部分の表面に位置する疎水性 透明フィルムに当接させ、ゲルを疎水性透明フィルムとともに薄板状部材の周縁部に 沿って切り込み、次に、薄板状部材を、切り込んだゲルの底面にその疎水性面が当 接するようにゲルの下に潜り込ませ、薄板状部材を支持体にしてゲルを取り出し、こ のようにして切り出したゲルを二次元目の電気泳動を行うためのゲルと重合させた後 、電気泳動を行うことを特徴とする分析方法。  [1] A method for analyzing small RNAs of 50 nucleotides or less using two-dimensional electrophoresis, and using a slab-like polyacrylamide gel with an acrylamide concentration of 12.5% to 13.5%, After cutting, when the gel in the region containing the low molecular weight RNA in the electrophoresis lane is cut out in a strip shape, the entire gel plate is tightly surrounded with a hydrophobic transparent film, and the shape of the gel portion to be cut out is approximately the same shape. Any one of the thin plate-like members having a hydrophobic surface on at least one surface is brought into contact with the hydrophobic transparent film located on the surface of the gel part to be cut out, and the gel is combined with the hydrophobic transparent film. Cut along the peripheral edge of the thin plate-like member, and then sink the thin plate-like member under the gel so that its hydrophobic surface is in contact with the bottom surface of the cut gel, and use the thin plate-like member as a support. Take An analysis method characterized by performing electrophoresis after polymerizing the gel cut out in this way and the gel for performing second-dimensional electrophoresis.
[2] 薄板状部材の疎水性面を疎水性透明フィルムに当接させ、ゲルを疎水性透明フィ ルムとともに薄板状部材の周縁部に沿って切り込むことを特徴とする請求項 1記載の 分析方法。  [2] The analysis method according to claim 1, wherein the hydrophobic surface of the thin plate member is brought into contact with the hydrophobic transparent film, and the gel is cut along the peripheral edge of the thin plate member together with the hydrophobic transparent film. .
[3] 少なくとも 2種類の特定の条件下にある個体または細胞を用いて調製した試料の泳 動パターンを比較することで、前記低分子 RNAの発現特性を比較分析することを特 徴とする請求項ほたは 2記載の分析方法。  [3] A feature of the present invention is to compare and analyze the expression characteristics of the small RNA by comparing the swimming patterns of samples prepared using individuals or cells under at least two specific conditions. Item analysis method according to 2.
[4] 請求項 1乃至 3のいずれかに記載の分析方法を行うためのキットであって、一次元 目の電気泳動を行うためのゲル板とゲル形成用試薬、二次元目の電気泳動を行うた めのゲル板とゲル形成用試薬、一次元目の電気泳動を行う際にゲルに試料注入溝 を形成するための櫛、疎水性透明フィルム、少なくとも一方の面に疎水性面を有する 薄板状部材を少なくとも含んでなることを特徴とするキット。  [4] A kit for performing the analysis method according to any one of claims 1 to 3, wherein the gel plate and the gel-forming reagent for performing the first-dimensional electrophoresis, and the second-dimensional electrophoresis are performed. Gel plate and gel forming reagent, comb for forming a sample injection groove in the gel during the first dimensional electrophoresis, hydrophobic transparent film, thin plate having a hydrophobic surface on at least one surface A kit comprising at least a shaped member.
PCT/JP2006/300078 2005-01-07 2006-01-06 Method of analyzing low-molecular weight rna WO2006073175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-002336 2005-01-07
JP2005002336A JP4599555B2 (en) 2005-01-07 2005-01-07 Method for analyzing small RNA

Publications (1)

Publication Number Publication Date
WO2006073175A1 true WO2006073175A1 (en) 2006-07-13

Family

ID=36647651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300078 WO2006073175A1 (en) 2005-01-07 2006-01-06 Method of analyzing low-molecular weight rna

Country Status (2)

Country Link
JP (1) JP4599555B2 (en)
WO (1) WO2006073175A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAJNSDORF E.: "An Electrophoretic Method for the Purification of RNA Regions Involved in Protein Crosslinking", ANALYTICAL BIOCHEMISTRY, vol. 185, 1990, pages 103 - 107, XP002995982 *
IKEMURA T.: "Purification of RNA Molecules by Gel Techniques", METHODS IN ENZYMOLOGY, vol. 180, 1989, pages 14 - 25, XP002995980 *
TABAK H.F. ET AL.: "Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis", NUCLEIC ACIDS RESEARCH, vol. 16, no. 14, 1988, pages 6597 - 6605, XP002995981 *

Also Published As

Publication number Publication date
JP4599555B2 (en) 2010-12-15
JP2006189359A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
Westermeier Electrophoresis in practice: a guide to methods and applications of DNA and protein separations
Righetti et al. Recent progress in DNA analysis by capillary electrophoresis
Slater et al. Recent developments in DNA electrophoretic separations
EP1979410B1 (en) Compositions and methods for improving resolution of biomolecules separated on polyacrylamide gels
KR20140027906A (en) Systems and methods for automated reusable parallel biological reactions
EP2184602A1 (en) Micro-channel chip for electrophoresis and method for electrophoresis
EP0979403A1 (en) Membrane loader for gel electrophoresis
Foret et al. Macrofluidic device for preparative concentration based on epitachophoresis
DE602005026412D1 (en) TWO-DIMENSIONAL STRUCTURE AND LENGTH-RELATED SEPARATION OF NUCLEIC ACID FRAGMENTS
AU2003216543B2 (en) Assembly for casting and use of an isoelectric focusing strip
WO2006073175A1 (en) Method of analyzing low-molecular weight rna
Stellwagen et al. The use of gel and capillary electrophoresis to investigate some of the fundamental physical properties of DNA
WO2000052458A1 (en) Two-dimensional separating method
ATE397658T1 (en) METHOD FOR THE TWO-DIMENSIONAL CONFORMATION-DEPENDENT SEPARATION OF NON-CIRCULAR NUCLEIC ACIDS
Westermeier et al. Gel electrophoresis
JPH0660887B2 (en) Electrophoresis method
US20100044228A1 (en) Multi-Dimensional Analysis
Chua et al. Lactate dehydrogenase (LDH) isozymes in muscle of freshwater fish by isoelectric focusing in thin-layer polyacrylamide gel
Kalidas et al. Gel Electrophoresis and its Applications to Biochemical Analysis
WO2019200265A1 (en) Dna bridge methods for capturing dna molecules
JP2013178140A (en) Isolation device of nucleic acid-protein complex
US5747600A (en) Reconstitutable polyacrylamide materials and methods for producing same
JP2004150854A (en) Electrophoretic method and its device by means of superposition system of thin film-like sliced gel
JP2010503869A (en) Compositions and devices for electrofiltration of molecules
WO2015025123A1 (en) Method and apparatus for performing electrophoresis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702088

Country of ref document: EP

Kind code of ref document: A1