WO2006072537A1 - Display method and device for reducing blurring effects - Google Patents
Display method and device for reducing blurring effects Download PDFInfo
- Publication number
- WO2006072537A1 WO2006072537A1 PCT/EP2005/056719 EP2005056719W WO2006072537A1 WO 2006072537 A1 WO2006072537 A1 WO 2006072537A1 EP 2005056719 W EP2005056719 W EP 2005056719W WO 2006072537 A1 WO2006072537 A1 WO 2006072537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contour
- pixels
- sequence
- gray level
- image
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000000694 effects Effects 0.000 title abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 26
- 230000007704 transition Effects 0.000 description 58
- 239000003990 capacitor Substances 0.000 description 15
- 239000004973 liquid crystal related substance Substances 0.000 description 9
- 230000000630 rising effect Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/21—Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0243—Details of the generation of driving signals
- G09G2310/0259—Details of the generation of driving signals with use of an analog or digital ramp generator in the column driver or in the pixel circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0261—Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2014—Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
Definitions
- the present invention relates to a display method and device for improving the luminous efficiency of a matrix display using a pulse-width modulation, or PWM, technique. It relates, in particular, to the matrix displays in which the electro-optical valve array is formed by a liquid crystal valve array, more particularly a valve array of the LCOS, for 'Liquid Crystal on Silicon', type or a valve array of the OLED, for Organic Light Emitting Diode or Display', type.
- a liquid crystal valve array more particularly a valve array of the LCOS, for 'Liquid Crystal on Silicon', type or a valve array of the OLED, for Organic Light Emitting Diode or Display', type.
- the invention will be more particularly described in relation to a color sequential display comprising a LCOS electro-optical valve array without this implying any limitation of the scope of the invention to this type of display.
- Liquid crystal displays, or LCDs, used in direct viewing or projection displays are based on a matrix layout with an active element within each pixel.
- Various addressing methods are used for generating the gray levels corresponding to the luminance to be displayed within each pixel selected.
- the most conventional method is an analog method according to which the active element is switched during a line period in order to transfer the analog value of the video onto the capacitance of the pixel.
- the liquid crystal material orients itself in a direction that depends on the value of the voltage stored in the capacitance of the pixel.
- the polarization of the entering light is then modified and analyzed by a polarizer so as to create the gray levels.
- One of the problems of this method comes from the response time of the liquid crystal which depends on the gray levels to be generated.
- This addressing method is particularly advantageous when it is used to control the electro-optical valve array of a matrix display with sequential display of the colors in which the electro-optical valve array is successively illuminated with red, green and blue colored filters disposed on a colored wheel whose rotation is synchronized to the video signal. Since ON or OFF mode is used, this method benefits from a faster response time which is constant whatever the gray level that needs to be generated.
- FIG. 1 shows the circuit diagram of a color sequential matrix display implementing this addressing method.
- This matrix display comprises an electro-optical valve array, more particularly a display of the LCOS type.
- an image dot, or pixel, 1 of the display screen is shown very schematically.
- This pixel 1 is symbolized by a capacitor Cpixel connected between the counter-electrode CE and the output of a voltage-time converter 2 allowing the pulse-width modulation, or PWM, to be implemented.
- the voltage-time converter 2 comprises an operational amplifier 20 whose negative input receives a signal Ramp having the form of a rising ramp with a period equal to T/3 (or T/6 or T/9 in order to reduce the effects of color break up, T being the image period) and whose other input receives a positive voltage corresponding to the charge of a capacitor 21.
- the charge of the capacitor 21 is controlled by a switching system, more particularly a transistor 22 mounted between one electrode of the capacitor and the input of the voltage-time converter. This switching device is formed by a transistor whose gate receives a pulse referenced Dxfer.
- the image dot, or pixel, 1 is connected to a row N and a column M of the matrix by means of a switching circuit such as a transistor 3. More specifically, the gate of the transistor 3 is connected to a row N of the matrix, which is itself connected to a row driver circuit 4. Furthermore, one of the electrodes of the transistor, for example the source, is connected to the input of the voltage-time converter 2, whereas the other electrode, for example the drain, is connected to one of the columns M of the matrix, this column being connected to a column driver circuit 5 which receives the video signal to be displayed.
- a capacitor Cs is mounted in parallel with the pixel capacitor at the input of the voltage-time converter in order to store the video signal value when said pixel is selected.
- the column driver circuit 5 and row driver circuit 4 are conventional circuits. The column driver circuit 5 receives the video signal to be displayed 'Video' and the row driver circuit 4 allows the rows to be addressed sequentially.
- the mode of operation of the display will be explained when it is used in a color sequential display, namely when, over a frame period T, a wheel carrying three color filters, green, blue and red, makes one complete rotation to produce a sequential illumination of the valve array.
- a pulse I is applied during each sub-frame of duration T/3 to the row N so as to turn on the switching transistor 3.
- the capacitor Cs charges up to a voltage corresponding to the video present on the column M. Namely, if a green colored filter is located in front of the display during the first sub- frame of duration T/3, the capacitor Cs charges up to a value referenced Vgr ee n in figure 2b.
- a new pulse I is applied to the row N allowing the capacitor Cs to charge up to a voltage referenced V b iu e corresponding to the blue color being located in front of the display at that time.
- a new pulse I is applied to the row N and the capacitor Cs charges up to a voltage referenced V red in figure 2b.
- the values Vgreen, V b ⁇ ue and V re d successively stored in the capacitor Cs are applied to the capacitor C P i Xe ⁇ by means of the voltage-time converter 2 which operates in the following manner.
- a pulse I' is applied within a sub-frame to the gate Dxfer of the switching transistor 22 so as to turn it on.
- the voltage stored in the capacitor Cs is then transferred onto the capacitor 21 mounted in parallel and connected to one of the input terminals of the operational amplifier 20.
- the signal Ramp is applied to the negative input of the operational amplifier 20. Consequently, at the output of the operational amplifier 20, a voltage pulse V pi ⁇ e i is obtained whose duration is proportional to the voltage V gree n stored on the capacitor 21 , as shown in figures 2d and 2e.
- the sub- frames corresponding to the passages of the blue and red colored filters in - A - the case where the display in figure 1 is used for a sequential display of the colors.
- this method has the advantage of improving the response time of the liquid crystal and of thus obtaining an optimal color saturation for the video content
- the luminous efficiency is however affected by a 'blurring effect' when images comprising moving objects are displayed. This blurring effect is present on the contours of objects in the displayed images. It is not visible in the static images or the images whose content changes with a much lower frequency than the screen refresh frequency.
- the ordinate axis represents the time axis and the abscissa axis the image pixels.
- the white/black transition is static, i.e. it does not move between the two displayed video frames, N and N+1.
- figure 3B it moves by 2 pixels toward the left between the two video frames
- figure 3C it moves by 2 pixels toward the right.
- the eye integrates the gray levels over time following the oblique arrows shown in the figures since it tends to follow the motion of the transition. The eye then perceives gray levels such as are shown in the lower part of the figures. It will thus be noted that, when the transition is moving between the two frames, the eye sees a blurred band, with a width of about 2 pixels in the present case, around this transition.
- FIG. 4A illustrates the case of a transition between a gray level of 192 and a gray level of 64.
- the transition is static; in figure 4B, it moves by 2 pixels toward the left between the two video frames and in figure 4C, it moves by 2 pixels toward the right.
- the width of the blurred band depends on the difference between the gray levels of the pixels adjacent to the transition and on the amplitude of the motion.
- a known solution is to double the frequency of the video frames.
- This solution is illustrated in figures 5A to 5C in the case of a white/black transition. It consists in generating, for each pair of images in the sequence to be displayed, an intermediate image which would be motion compensated and in displaying it between the two corresponding frames.
- the duration of the frames is divided by 2.
- the frame N is divided into a sub-frame N and a sub-frame N+1/2 of durations equal to half the duration of the frame N in figures 3A to 3C.
- the frame N+1 is divided into a sub-frame N+1 and a sub-frame N+3/2.
- the present invention provides a different solution for reducing this blurring effect, which does not require a doubling of the image frequency.
- the present invention relates to a method for displaying a video image sequence in a matrix display in which the display time of an image pixel is proportional to the gray level to be displayed, the method being characterized in that it comprises the following steps:
- the gray level of the pixels of a group of consecutive pixels encompassing the contour in question is modified and they are assigned an intermediate level in the range between the initial gray levels of the pixels adjacent to the contour.
- the intermediate level applied to the pixels of the group is calculated as a function of the initial gray levels of the pixels adjacent to the contour.
- the method also comprises a step for calculating the motion of each contour detected, the intermediate level then being calculated as a function of the amplitude of the motion detected for said contour.
- the number of pixels of the group of pixels is advantageously also determined as a function of the amplitude of the calculated motion for the contour in question.
- the images thus modified can then be displayed in several ways.
- the intermediate gray level of the modified pixels is displayed at the start or at the end of the image display frame depending on the motion detected for this contour and on the difference, positive or negative, between the initial gray levels of the pair of pixels adjacent to the contour.
- the display phase of the gray level of the image pixels is centered in the middle of the image display frame.
- the invention also relates to a device for displaying a sequence of video images comprising a matrix of illuminating cells designed to display the gray level of the image pixels of said sequence, means for controlling said matrix in order to illuminate each of the cells for a duration that is proportional to the gray level of the corresponding image pixel to be displayed, characterized in that it additionally comprises - first means for detecting the moving object contours within said sequence of video images,
- - figure 1 is a schematic representation of a matrix display controlled by an addressing method of the pulse-width modulation, or PWM, type;
- - figures 2a to 2e already described above, show the various control signals and the output signal of the display in figure 1 for the case of a color sequential display;
- FIG. 6A to 6C illustrate a first embodiment of the method of the invention in the case of a transition between two unsaturated gray levels
- FIG. 7 is a circuit diagram in the form of circuit blocks for the implementation of the method of the invention.
- FIG. 8A to 8C illustrate another embodiment of the method of the invention in the case of a white/black transition
- - figure 9 is a circuit diagram of a display device implementing the embodiment in figures 8A to 8C; - figures 10a to 10e show the various control signals and the output signal of the device in figure 9 for the case of a color sequential display;
- - figure 12 is a circuit diagram of a display device implementing the embodiment in figures 11A to 11 C, and - figures 13a to 13e show the various control signals and the output signal of the device in figure 12 in the case of a color sequential display.
- the object is to detect the contours of objects in motion within the sequence of images to be processed, to modify, for each image of said sequence and each contour detected, the gray level of at least one pixel adjacent to said contour by assigning to it an intermediate level in the range between its initial gray level and that of the other pixel adjacent to said contour and, lastly, to display the images thus modified in PWM mode.
- the gray levels of the pixels from a group of consecutive pixels encompassing the contour in question are modified and they are assigned an intermediate level in the range between the initial gray levels of the pixels adjacent to said contour.
- the intermediate levels assigned to the pixels of the group are calculated as a function of the initial gray levels of the pixels adjacent to the contour in question and, advantageously, as a function of the amplitude of the motion detected for the contour in question.
- the number of pixels in the group of pixels is advantageously also calculated as a function of the amplitude of the motion detected for the contour in question.
- the invention will be more particularly described by way of examples in which the video level of a single pixel adjacent to a contour is modified.
- the intermediate level assigned to this pixel is taken to be equal to the arithmetic mean of the initial gray levels of the pixels adjacent to the contour.
- Figures 6A to 6C illustrate a first example implementing the method of the invention. These figures relate to the case of a transition between a gray level of 192 (3 rd pixel starting from the left) and a gray level of 64 (4 th pixel starting from the left). These figures are to be compared with figures 4A to 4C showing the same transition.
- the gray level of one of the two pixels adjacent to the contour is modified and is brought to an intermediate value of 128, in the range between 64 and 192, representing the arithmetic mean of these two values.
- the blurring effect perceived by the eye is reduced in width as can be seen in the lower part of figures 6B and 6C.
- the intermediate level of the 3 rd pixel would also be in the range between 64 and 192 and would be taken to be greater than that of the 4 th pixel.
- the number of pixels whose video level is modified depends on the amplitude of the contour motion. The higher the amplitude of the motion, the greater the number of pixels whose video level is modified. Similarly, the amplitude of the contour motion is advantageously taken into account in the calculation of the intermediate level or levels relating to this contour.
- NG[P(x,y)] furthermore denotes the gray level of the pixel P(x,y).
- Vx and Vy respectively denote the motion vectors obtained locally in the horizontal direction and the vertical direction at the location of the transition.
- the images thus modified are subsequently displayed according to the pulse-width modulation technique previously described.
- width of the transition is not identical in the two cases (motion toward the left and motion toward the right) illustrated by figures 6B and 6C; it is however still reduced in both cases with respect to the prior art illustrated by figures 4A to 4C.
- the method of the invention can be readily implemented in a video processing circuit placed upstream of the column driver circuit 5 of the display in figure 1 , the video levels generated being subsequently delivered to the column driver circuit 5.
- a circuit, referenced 6, is illustrated by figure 7. It comprises a contour detection circuit 7, a motion estimation circuit 8 for estimating the motion of the contours detected and a circuit 9 for modifying the video level of the pixels adjacent to the contours detected by assigning to them an intermediate level calculated as previously described.
- the image thus modified can then be displayed by a device such as that shown in figure 1.
- variable pulse widths used to display the gray levels of the image are positioned differently within the frame depending on the direction of motion of the contours and depending on the gray levels on either side of the contours.
- the intermediate gray levels are calculated as previously described.
- the intermediate level of one of the pixels adjacent to the white/black transition is therefore taken to be equal to 128.
- the modified video signal can be generated by a circuit such as is described in figure 7.
- the display of the gray levels is however modified.
- the variable-width pulses are positioned differently within the frame or sub-frame (in the case of a color sequential display) depending on whether the transition is moving toward the left or toward the right and on whether the gray level increases or decreases in the course of this transition.
- variable-width pulses are positioned within the frame (or sub-frame in the case of a color sequential display) in the following manner:
- the pulses are positioned at the start of the frame; and - when the gray level decreases in the course of the transition from left to right and when the transition is moving toward the right, the pulses are positioned at the end of the frame.
- figure 8A shows a static white/black transition
- figure 8B shows the same transition moving toward the left
- figure 8C shows the same transition moving toward the right.
- the pulses are placed at the start of the frame when the transition is moving toward the left and at the end of the frame when it is moving toward the right. A reduced blurred bandwidth is thus obtained for any given situation.
- FIG. 9 shows a display comparable to the display in figure 1 equipped with a processing block 6.
- This display differs from that in figure 1 in that it additionally comprises a selection block 30 designed to select, depending on the direction of movement of the transition and on the type of transition (lighter/darker or vice versa), either a rising voltage ramp (as described with reference to figure 1 ) or a falling voltage ramp.
- the processing block 6 differs from that in figure 7 in that it comprises a second detection circuit 10 for detecting the type of the transitions (lighter/darker or darker/lighter) in the images.
- This selection block 30 comprises four inputs: a first signal input receiving a rising voltage ramp, a second signal input receiving a falling voltage ramp, a first control input receiving a first control signal representing the direction of motion of the transition and a second control input receiving a second control signal representing the type of the transition.
- the first control signal is delivered by the motion estimation circuit 8 and the second control signal is delivered by the detection circuit 10.
- the output of the selection block 30 is connected to the negative input of the operational amplifier 20.
- the direction, positive or negative, of the slope of the voltage ramp is selected depending on the detected motion of the contour in question and on the difference, positive or negative, between the gray levels either side of the contour.
- a positive slope denotes a rising voltage ramp and a negative slope denotes a falling voltage ramp.
- the block 30 delivers the rising voltage ramp at its output when the contour (the transition) is moving toward the left and when this transition is a lighter/darker transition or when the contour is moving toward the right and when this transition is a darker/lighter transition. It delivers a falling voltage ramp when the contour is moving toward the left and when this transition is a darker/lighter transition or when the contour is moving toward the right and when this transition is a lighter/darker transition.
- Figures 10a to 10e to be compared with figures 2a to 2e, illustrate the application of a falling voltage ramp to the negative input of the amplifier 20.
- the pulses at the output of the amplifier are generated at the end of the frame.
- a final embodiment corresponding to a preferred embodiment, is described with reference to figures 11A to 11C, 12 and 13.
- the PWM pulse employed for displaying the gray levels of the image pixels is positioned in the middle of the frame. This embodiment no longer requires that the type and direction of motion of the transition be detected.
- Figures 11A to 11C show the positioning of the PWM pulses in the middle of the frame in the case of a transition 192 - 64.
- the intermediate levels are calculated as previously described.
- a reduction in the width of the blurred band is obtained that is at least equivalent to that obtained with the methods described with reference to figures 6A to 6C or 8A to 8C.
- Figures 13a to 13e illustrate the application of a falling voltage ramp to the negative input of the amplifier 20.
- the pulses at the output of the amplifier are generated in the middle of the frame or close to it.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05826366.6A EP1834319B1 (en) | 2005-01-06 | 2005-12-13 | Display method and device for reducing blurring effects |
KR1020077013812A KR101137952B1 (en) | 2005-01-06 | 2005-12-13 | Display method and device for reducing blurring effects |
US11/794,859 US8031964B2 (en) | 2005-01-06 | 2005-12-13 | Display method and device for reducing blurring effects |
JP2007549843A JP4890471B2 (en) | 2005-01-06 | 2005-12-13 | Display method and apparatus for reducing blur effect |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0550040 | 2005-01-06 | ||
FR0550040A FR2880460A1 (en) | 2005-01-06 | 2005-01-06 | METHOD AND DISPLAY DEVICE FOR REDUCING THE EFFECTS OF FLOU |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006072537A1 true WO2006072537A1 (en) | 2006-07-13 |
Family
ID=34953908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/056719 WO2006072537A1 (en) | 2005-01-06 | 2005-12-13 | Display method and device for reducing blurring effects |
Country Status (7)
Country | Link |
---|---|
US (1) | US8031964B2 (en) |
EP (1) | EP1834319B1 (en) |
JP (1) | JP4890471B2 (en) |
KR (1) | KR101137952B1 (en) |
CN (1) | CN100561559C (en) |
FR (1) | FR2880460A1 (en) |
WO (1) | WO2006072537A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145329A1 (en) * | 2008-05-29 | 2009-12-03 | Sharp Kabushiki Kaisha | Methods and systems for reduced flickering and blur |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100804529B1 (en) * | 2006-09-18 | 2008-02-20 | 삼성에스디아이 주식회사 | Organic light emitting display apparatus and driving method thereof |
KR100943955B1 (en) * | 2008-06-18 | 2010-02-26 | 삼성모바일디스플레이주식회사 | Display device and the driving method thereof |
KR100953653B1 (en) * | 2008-10-14 | 2010-04-20 | 삼성모바일디스플레이주식회사 | Display device and the driving method thereof |
EP2454876B1 (en) | 2009-10-21 | 2013-12-04 | Ron Banner | Real-time video deblurring |
JP5381804B2 (en) * | 2010-02-25 | 2014-01-08 | セイコーエプソン株式会社 | Video processing circuit, video processing method, liquid crystal display device, and electronic apparatus |
CN103139524B (en) * | 2011-12-05 | 2016-07-06 | 联想(北京)有限公司 | Method for optimizing video and messaging device |
US8797340B2 (en) * | 2012-10-02 | 2014-08-05 | Nvidia Corporation | System, method, and computer program product for modifying a pixel value as a function of a display duration estimate |
US10614741B2 (en) * | 2018-04-19 | 2020-04-07 | Innolux Corporation | Display device driven with voltage to time converters |
CN109165628B (en) * | 2018-09-12 | 2022-06-28 | 首都师范大学 | Method and device for improving moving target detection precision, electronic equipment and storage medium |
JP7225013B2 (en) * | 2019-04-16 | 2023-02-20 | 株式会社ジャパンディスプレイ | liquid crystal display |
CN112764706B (en) * | 2021-01-27 | 2024-07-02 | 无锡唐古半导体有限公司 | Image processing method, device, system, equipment and medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1162571A1 (en) * | 2000-06-09 | 2001-12-12 | Deutsche Thomson-Brandt Gmbh | Method and apparatus for processing video pictures, especially for false contour effect compensation |
EP1406236A2 (en) * | 2002-10-02 | 2004-04-07 | Lg Electronics Inc. | Driving method and apparatus of plasma display panel |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4921334A (en) * | 1988-07-18 | 1990-05-01 | General Electric Company | Matrix liquid crystal display with extended gray scale |
US5056154A (en) * | 1988-11-07 | 1991-10-08 | Sharp Kabushiki Kaisha | Text image data compression system |
EP0609980B1 (en) * | 1993-01-11 | 1999-07-14 | Canon Kabushiki Kaisha | Motion detection method and apparatus |
US5774101A (en) * | 1994-12-16 | 1998-06-30 | Asahi Glass Company Ltd. | Multiple line simultaneous selection method for a simple matrix LCD which uses temporal and spatial modulation to produce gray scale with reduced crosstalk and flicker |
WO1998044479A1 (en) * | 1997-03-31 | 1998-10-08 | Matsushita Electric Industrial Co., Ltd. | Dynamic image display method and device therefor |
FR2803076A1 (en) * | 1999-12-22 | 2001-06-29 | Thomson Multimedia Sa | PLASMA DISPLAY PANEL ADDRESSING METHOD |
US6717622B2 (en) * | 2001-03-30 | 2004-04-06 | Koninklijke Philips Electronics N.V. | System and method for scalable resolution enhancement of a video image |
US7019764B2 (en) * | 2001-09-20 | 2006-03-28 | Genesis Microchip Corporation | Method and apparatus for auto-generation of horizontal synchronization of an analog signal to digital display |
JP4218249B2 (en) | 2002-03-07 | 2009-02-04 | 株式会社日立製作所 | Display device |
US7643019B2 (en) * | 2002-05-23 | 2010-01-05 | Koninklijke Philips Electronics N.V. | Edge dependent motion blur reduction |
US7764839B2 (en) * | 2003-08-14 | 2010-07-27 | Fujifilm Corporation | Edge detecting apparatus and method, and image size enlarging and reducing apparatus and method |
US20050057455A1 (en) * | 2003-09-02 | 2005-03-17 | Jen-Chun Peng | Driving device and method for display period control of organic light emitting diode |
US7376250B2 (en) * | 2004-01-05 | 2008-05-20 | Honda Motor Co., Ltd. | Apparatus, method and program for moving object detection |
-
2005
- 2005-01-06 FR FR0550040A patent/FR2880460A1/en active Pending
- 2005-12-13 EP EP05826366.6A patent/EP1834319B1/en not_active Ceased
- 2005-12-13 WO PCT/EP2005/056719 patent/WO2006072537A1/en active Application Filing
- 2005-12-13 KR KR1020077013812A patent/KR101137952B1/en active IP Right Grant
- 2005-12-13 US US11/794,859 patent/US8031964B2/en active Active
- 2005-12-13 JP JP2007549843A patent/JP4890471B2/en not_active Expired - Fee Related
- 2005-12-13 CN CNB2005800459736A patent/CN100561559C/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1162571A1 (en) * | 2000-06-09 | 2001-12-12 | Deutsche Thomson-Brandt Gmbh | Method and apparatus for processing video pictures, especially for false contour effect compensation |
EP1406236A2 (en) * | 2002-10-02 | 2004-04-07 | Lg Electronics Inc. | Driving method and apparatus of plasma display panel |
Non-Patent Citations (2)
Title |
---|
D. DOYEN ET AL., COMPENSATRON OF FALSE CONTOURS ON A PDP USING A PIXEL BASED MOTION ESTIMATOR COMBINED WITH AN EFFICIENT CODING TECHNIQUE, 20 May 2003 (2003-05-20) |
DOYEN D ET AL: "COMPENSATION OF FALSE CONTOURS ON A PDP USING A PIXEL BASED MOTION ESTIMATOR COMBINED WITH AN EFFICIENT CODING TECHNIQUE", 2003 SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS. BALTIMORE, MD, MAY 20 - 22, 2003, SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, SAN JOSE, CA : SID, US, vol. VOL. 34 / 2, 20 May 2003 (2003-05-20), pages 780 - 783, XP001174206 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145329A1 (en) * | 2008-05-29 | 2009-12-03 | Sharp Kabushiki Kaisha | Methods and systems for reduced flickering and blur |
JP2011514978A (en) * | 2008-05-29 | 2011-05-12 | シャープ株式会社 | Method and system for reducing flickering and blurring |
US8068087B2 (en) | 2008-05-29 | 2011-11-29 | Sharp Laboratories Of America, Inc. | Methods and systems for reduced flickering and blur |
Also Published As
Publication number | Publication date |
---|---|
CN101099190A (en) | 2008-01-02 |
KR20070100716A (en) | 2007-10-11 |
EP1834319A1 (en) | 2007-09-19 |
KR101137952B1 (en) | 2012-05-10 |
JP2008527434A (en) | 2008-07-24 |
CN100561559C (en) | 2009-11-18 |
JP4890471B2 (en) | 2012-03-07 |
US8031964B2 (en) | 2011-10-04 |
US20080131017A1 (en) | 2008-06-05 |
FR2880460A1 (en) | 2006-07-07 |
EP1834319B1 (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8031964B2 (en) | Display method and device for reducing blurring effects | |
KR100326689B1 (en) | Matrix Display System | |
US6624800B2 (en) | Controller circuit for liquid crystal matrix display devices | |
US7492348B2 (en) | Electrophoric display apparatus with gradation signal control | |
US9607559B2 (en) | Charge-sharing controlling method and display panel | |
US8232932B2 (en) | Display device | |
US8531370B2 (en) | Liquid crystal display device with pixel structure of multiple thin film transistors and operating method thereof | |
CN101415093B (en) | Image processing apparatus, image processing method and image display system | |
CN101551985A (en) | Driving circuit for a liquid crystal display | |
KR20080044104A (en) | Display apparatus and method of driving the same | |
KR20040064284A (en) | Method of improving the luminous efficiency of a sequential colour matrix display | |
JP2000330087A (en) | Picture display method in liquid crystal device | |
CN109785808B (en) | Display panel and control method, control device and control equipment thereof | |
GB2320790A (en) | Offset pixel arrangement | |
KR20170035387A (en) | Display apparatus and method of driving the same | |
CN113744698B (en) | Driving method of array substrate, array substrate and display panel | |
CN102169676A (en) | Image processing circuit, image processing method, liquid crystal display device and electronic device | |
US20140071105A1 (en) | Display device | |
JP2006330311A (en) | Liquid crystal display device | |
US20160335966A1 (en) | Liquid crystal display device | |
JP2000267635A5 (en) | ||
KR20070000122A (en) | Driving method for display panel | |
US10380932B2 (en) | Display device and method for expanding color space | |
EP1726002A1 (en) | Adaptive pre-write for colour sequential lcd driving | |
JP2003022053A (en) | Device and method for image display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 4631/DELNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077013812 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005826366 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007549843 Country of ref document: JP Ref document number: 200580045973.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005826366 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11794859 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 11794859 Country of ref document: US |