WO2006070872A1 - Method of electrically measuring and device of electrical meauring at least one of chracteristic and condition of cell membrane - Google Patents

Method of electrically measuring and device of electrical meauring at least one of chracteristic and condition of cell membrane Download PDF

Info

Publication number
WO2006070872A1
WO2006070872A1 PCT/JP2005/024076 JP2005024076W WO2006070872A1 WO 2006070872 A1 WO2006070872 A1 WO 2006070872A1 JP 2005024076 W JP2005024076 W JP 2005024076W WO 2006070872 A1 WO2006070872 A1 WO 2006070872A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
cell
cell membrane
measuring
fluctuation
Prior art date
Application number
PCT/JP2005/024076
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Taketani
Hiroaki Oka
Norihiro Katayama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Tohoku University filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006070872A1 publication Critical patent/WO2006070872A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp

Definitions

  • the present invention relates to an electrical measurement method and an electrical measurement apparatus for at least one of characteristics and states of cell membranes.
  • Patent Document 1 WO00159447
  • Patent Document 2 US 6488829
  • Patent Document 3 US06315940
  • Patent Document 4 WO00125769
  • Non-patent literature 1 Neher E & Sakmann B (197 Rino Single cnannel currents recorded from m embraneof denervated frog muscle fibers. Nature 260: 799—802
  • Non-Patent Document 2 Hamill OP, Marty A, Neher E, Sakmann B & Sigworth FJ (1981) Impro ved patch-clamp techniques for high-resolution current recording from cells and cell -free membrane patches. Pflugers Arch 391: 85-100.
  • an object of the present invention is to provide an electrical measurement method and an electrical measurement apparatus that can measure at least one of the characteristics and state of a cell membrane faster, more accurately, and more easily than before.
  • the measurement method of the present invention is an electrical measurement method of at least one of the characteristics and state of a cell membrane, comprising preparing a measurement electrode, a reference electrode, and a plurality of cells.
  • the measurement electrode and each cell are electrically connected, and the reference electrode and each cell membrane surface are electrically connected, and in this state, a voltage is applied to the measurement electrode to both the electrodes.
  • This is an electrical measurement method for measuring fluctuations in the current flowing between them.
  • the measurement apparatus of the present invention is an electrical measurement apparatus for at least one of the characteristics and state of a cell membrane, comprising a container having a plurality of holes for holding and fixing cells, a measurement electrode, a reference electrode, An application unit that applies a voltage to the measurement electrode; a detection unit that detects a current flowing between the electrodes; and a measurement unit that measures fluctuations in the current; and the measurement electrode and each cell
  • the application means can connect the measurement electrode.
  • a voltage is applied, a current flowing between the electrodes is detected by the detection means, and the fluctuation of the current is detected by the measurement means. Is an electrical measuring device to be measured.
  • the measurement method and the measurement apparatus of the present invention measure fluctuations in current caused by at least one of the characteristics and state of the cell membrane for the entirety of a plurality of cells. As will be described later, this current fluctuation reflects the characteristics and state of the cell membrane of the plurality of cells as a whole. Therefore, according to the present invention, the cell membrane state and the like of a plurality of cells are measured simultaneously at the same time. Therefore, even if the success rate of the measurement of the cell membrane state and the like of individual cells is not 100%, a single measurement is performed. Thus, highly reliable information can be obtained. In addition, when measuring the current due to the state of the cell membrane, etc.
  • the present invention measures the fluctuation of the force current that requires conditions such as arranging electrodes for each cell and insulating the cells. Therefore, a pair of electrodes (measurement electrode and reference electrode) that do not need to insulate each cell can measure the cell membrane state of multiple cells, and it is necessary to apply strict measurement conditions such as current measurement. There is no. Therefore, according to the present invention, it is possible to measure at least one of the characteristics and state of the cell membrane faster, more accurately and more easily than the conventional method.
  • FIG. 1 (a) is a diagram showing an example of an electric circuit presumed to be formed inside and outside a cell
  • FIG. 1 (b) shows a simplified model of the electric circuit.
  • FIG. 2 is a diagram showing an example of an electric circuit presumed to be formed in a plurality of cells.
  • FIG. 3 is a cross-sectional view showing an example of a container constituting a part of the electrical measuring apparatus of the present invention.
  • FIG. 4 is a graph theoretically examined for the reproducibility of the number of cells per electrode and current amplitude in an example of the electrical measurement method of the present invention.
  • FIG. 5 is a block diagram showing an example of an electrical measuring apparatus according to the present invention.
  • FIG. 6 is a graph theoretically obtained dose response characteristics using the standard deviation of the current value at 20 cells in an example of the electrical measurement method of the present invention.
  • FIG. 7 is a diagram of a power spectrum in one embodiment of the electrical measurement method of the present invention.
  • the electrical measurement apparatus of the present invention preferably further includes a power spectrum measurement means for measuring a power spectrum of the current fluctuation.
  • the number of the plurality of cells is not particularly limited, and is a force determined appropriately according to various conditions.
  • the range is 2 to: LOO.
  • the characteristics and state of the cell membrane to be measured and measured include, for example, the characteristics and state of ion channels existing in the cell membrane.
  • the characteristics and states of the ion channel include at least one of the number of ion channels and the open / closed state of the ion channels.
  • the cells may be, for example, individually separated cells or cells existing in a tissue.
  • the fluctuation of the current may be measured before and after the chemical substance is administered to the cell.
  • the influence of the chemical substance on the cell membrane can be measured, and is useful, for example, in the development of pharmaceuticals.
  • the electrical measuring device of the present invention is preferably used for examining the influence of chemical substances on the cell membrane.
  • the container can be filled with an electrolyte solution, and the electrolyte solution can be used between the measurement electrode and each cell and between the reference electrode and each of the cells.
  • the cell membrane surface may be electrically connected.
  • the number of holes in the container is not particularly limited, and is a force determined appropriately depending on the number of cells to be measured, etc.
  • the range of 2 to: LOO. is there.
  • a feature of the present invention is that, for a plurality of cells that do not measure a membrane potential, a fluctuation in current that reflects the characteristics and state of the cell membrane is measured collectively for a single cell.
  • the fluctuation of the current of the plurality of cells is the sum of the fluctuations of the current of each cell. Then, by measuring the power spectrum of fluctuations in the membrane current of multiple cells and analyzing it, the characteristics and state of the cell membrane can be evaluated in detail. The rationale is as follows.
  • Figure 1 shows an equivalent circuit model when one cell is in a state of forming a seal in the device hole.
  • the model parameters are summarized in the table described later.
  • the seal resistance R is sufficiently large (>> 100 M ⁇ ) and the resistance R of the cell surface in contact with the device is small enough ( ⁇ 20 M ⁇ )
  • take the appropriate reference voltage ⁇ 20 M ⁇
  • the part of the circuit in Fig. 1 (a) excluding the capacitance component C can be simplified as shown in Fig. 1 (b). Die of this system
  • Namitas is shown by the following formula (1).
  • FIG. 2 shows an equivalent circuit model of an eHTS device system using multiple cells.
  • This system has a structure in which a device hole system that forms a seal with each cell is connected in parallel. If the number of cells is N, the observed current I is given by the following equation (2).
  • the current fluctuation in the steady state recorded in the voltage-clamped mode is the conductance g that accompanies the switching fluctuation of the ion channel.
  • the bandwidth of the observed signal is limited by the ch m acc filter characteristics, which consists of this resistance component, cell membrane capacitance component C, and access resistance R.
  • the time constant of this system is given by the following equation (4).
  • the conductance change is proportional to the change in the number of open channels. For this reason, it is possible to evaluate the fluctuation of the number of aperture channels by performing spectrum analysis of the membrane current fluctuation signal.
  • Membrane conductance is expressed as the membrane conductance g
  • a channel having a potential dependency is included in the membrane potential V force S. Opening m
  • the membrane current is also a stochastic process. As shown above, the minute change component of the membrane current is proportional to the fluctuation of the number of open channels. Therefore, the power spectrum of the membrane current fluctuation component (difference from the average value, i (t)) is proportional to the power spectrum of channel fluctuation P. Therefore, these are equated below.
  • the observed current in an eHTS device in which a plurality of cell lines form a parallel circuit is the sum of the cell membrane currents.
  • the fluctuation z (t) of the observed current can be expressed by the following equation (8).
  • S ( ⁇ ) and S ( ⁇ ) are cross spectra of x and y, and are represented by the following formula (15).
  • the power spectrum ( ⁇ ) of the total current I which is the sum of ⁇ cell membrane currents Ij, can be assumed that there is no correlation between the current fluctuations. Equal to ( ⁇ ). That is, it can be expressed as the following formula (18).
  • V Command potential (determined by the experimenter)
  • V Intracellular potential (membrane potential)
  • FIG. 3 is a cross-sectional view of the container 1 used for measurement.
  • the material of the container 1 include single crystal substrates such as silicon, gallium arsenide, and quartz, as well as glass, quartz, and resin. Various substrate materials are used.
  • the container body 11 is partitioned vertically by an internal force cutting plate 11A, and a plurality of holes 14 are formed in the partition plate 11A. Cells 17 are retained and fixed.
  • the diameter of the hole 14 is determined optimally depending on the size of the cell 17. For example, when the measurement target is HEK cells, the diameter of the hole 14 is usually 0.5 to 10 ⁇ m. Meters, preferably 1 to 5 micrometers in diameter.
  • the optimum number of pores 14 is influenced by the activity of the cell 17 to be measured, the degree of adsorption of the cells 17 to the pore 14, etc., and is the most efficient measurement by the measurement method described later. It is decided so.
  • one measurement electrode 12 is disposed on the lower surface of the partition plate 11A. In the measurement electrode 12, holes 15 are formed in portions corresponding to the holes 14 of the partition plate. Yes.
  • the interior of the container body 11 that is partitioned up and down is filled with the electrolyte solution 16.
  • a single reference electrode 13 is disposed on the top of the container body 11 so as to enter the electrolyte solution 16.
  • a conductive material such as gold, silver, copper, aluminum, stainless steel, chromium, titanium, or the like is used.
  • a portion of these conductive materials is provided with salty silver. It is that you are. This makes it possible to measure the potential change of the electrolyte solution 16 more accurately.
  • the shape and size of these electrodes are not particularly limited. As shown in the measurement electrode 12 shown in the figure, the partition plate 11A can be simply immersed in the electrolyte solution 16 as in the reference electrode 13 in FIG. May be formed in close contact with the inner wall of the container 1.
  • the electrode material such as gold, silver, copper, aluminum, stainless steel, chromium, titanium, silver chloride, etc. is deposited, sputtered, plated, etc.
  • An electrode may be formed on the surface.
  • the cell membrane in the portion located in the hole 14 of the partition plate is partially broken. Therefore, the measurement electrode 12 and the inside of the cell 17 are electrically connected by the electrolyte solution 16. Further, the cell 17 membrane surface and the reference electrode 13 are electrically connected by the electrolyte solution 16.
  • the measurement electrode 12 and the reference electrode 13 are connected to a current Z voltage conversion circuit, an AZD conversion circuit, a DZA conversion circuit, a CPU, a display device, and the like via a connector.
  • a current Z voltage conversion circuit an AZD conversion circuit
  • a DZA conversion circuit a DZA conversion circuit
  • CPU a display device
  • the like a connector
  • FIG. 5 is a schematic diagram of a measuring apparatus used for measurement.
  • the electrical measuring device 18 includes a control unit 19, a D / A conversion circuit 20 connected thereto, a current Z voltage conversion circuit 21, an A / D conversion circuit 22 and a solution driving unit 23, a mounting unit 24, and a stimulation signal.
  • a grant unit 26 is provided.
  • 1 indicates the container.
  • the measurement of the current fluctuation of the cell membrane using this apparatus is performed, for example, as follows. That is, first, the container 1 is placed on the placement unit 24. The placement unit 24 can hold the placed container 1 at a predetermined temperature, gas concentration, humidity, and atmospheric pressure. Next, the isolated cell 17 is introduced from the upper surface of the container 1.
  • the control unit 19 detects and records the current flowing between the electrodes 12 and 13 of the container 1 based on the signal input from the current Z voltage conversion circuit.
  • the control unit 19 controls the stimulation signal applying unit 26 via the D / A conversion circuit 20 and the current Z voltage conversion circuit 21 based on the set stimulation conditions.
  • This current reflects the cell membrane state of the plurality of cells 17 as a whole.
  • This current is detected by the measurement electrode 12 and the reference electrode 13, and is input to the control unit 19 through the current Z voltage conversion circuit 21 and the AZD conversion circuit 22, and is measured as current fluctuation in the CPU. Power spectrum analysis. The analysis result is displayed on the display device.
  • the current fluctuation reflects the state of the entire cell membrane of a plurality of cells, for example, the number of ion channels, opening / closing, and the like.
  • the solution driving unit 23 discharges the electrolyte solution 16 inside the container body 11, and the tank has a function of injecting the electrolyte solution 16 into the container body 11, and is driven by the control unit 19 as necessary.
  • the graph in Fig. 4 shows a theoretical study of the reproducibility of the number of cells per electrode and the current amplitude. This graph shows the number of cells measured together when the success rate of measurement is not 1.0 (100%) due to factors such as hole failure, insufficient seal, unstable baseline, and insufficient ion channel expression. Increasing the value indicates that the coefficient of variation decreases, that is, the reproducibility increases.
  • the graph in Fig. 6 is a theoretical calculation of dose response characteristics using the standard deviation of the current value for 20 cells, and shows the simulation of noise current characteristics when a drug is applied to cells. It is a graph. Membrane current fluctuations were simulated when an open channel blocker was applied to a cell model incorporating a membrane voltage-gated ion channel, and the relationship between the block force concentration and the standard deviation (SD) of the noise current was measured in a steady state. evaluated. The dissociation constant of the block force was 10 M. SD has a maximum when the drug concentration is the dissociation constant. As shown in the figure, by utilizing this characteristic, it is possible to estimate the dissociation constant of the drug from the noise current.
  • Example 1 [0061] In the container 1 shown in FIG. 3, the number of the holes 14 was two, and the current fluctuation was actually measured using the electrical measuring device shown in FIG. 5 (FIG. 5). The following operation was performed at 25 ° C.
  • the inner electrolyte solution (KC1 130 mM, MgCl 1 mM, EGTA 5 mM, ATP 5)
  • the upper surface of the device (vessel 1 upper side) is the outer electrolyte solution (NaCl 137 mM, KC1 4 mM, CaCl 1.8 mM, MgCl 1 mM, glucose 10 mM, HEPES
  • HEK cells in which hERG channels were steadily expressed were isolated by pipetting in an external solution in a separate container and then placed on the upper surface of the device.
  • negative pressure up to 530mmHg
  • the sealing resistance between the device and cells was increased.
  • the inner electrolyte solution on the lower surface of the device was replaced with a solution containing -statin (nystatin concentration 250 g / ml) to construct perforations with nystatin in the cell membrane.
  • hERG-expressing HEK cells were first fixed at ⁇ 80 mV using an EPC-10 amplifier (HEKA), then the fixed voltage was raised to OmV for 6 seconds. Fluctuations were measured. The measured current fluctuation was digitally sampled at 10 kHz (PATCHMASTER software, manufactured by HEKA), and the power spectrum was obtained by fast Fourier transform of the data for the last 2 seconds (Origin 7.0). Next, the hERG channel inhibitor E-4031 (manufactured by Sigma) is placed in the outer electrolyte solution on the upper surface of the device to a final concentration of 1M, and the voltage fluctuation is similarly fixed to measure the current fluctuation. The power spectrum was determined. These power spectra are shown in the graph of Fig. 7.
  • the electrical measurement method and the electrical measurement device for at least one of the characteristics and states of the cell membrane of the present invention summarize the fluctuations in current caused by the characteristics and states of the cell membranes of a plurality of cells. Therefore, electrical measurement of cell membrane state and the like is possible at high speed, accurately and easily. Therefore, the electrical measurement method and electrical measurement apparatus of the present invention are applicable to all fields for analyzing characteristics and states of cell membranes such as ion channel states. For example, it is useful in fields such as biology, medicine, pharmacy, and agriculture, and is particularly suitable for the development of pharmaceuticals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A measuring method capable of electrically measuring the conditions of cell membranes at high-speed, accurately and easily. A method of electrically measuring the conditions of cell membranes comprising the steps of providing a measuring electrode (12), a reference electrode (13) and a plurality of cells (17), electrically connecting the measuring electrode (12) with the interiors of respective cells (17) and electrically connecting the reference electrode (13) with surfaces of the respective cells (17), and, under this condition, applying a voltage to the measuring electrode (12) to measure the fluctuation of a current running between the both electrodes (12, 13). The fluctuation of a current at the plurality of cells is equal to a total of the fluctuation of a current at each cell. The condition of a cell membrane can be evaluated by analyzing the power spectrum of this current fluctuation.

Description

細胞膜の特性および状態の少なくとも一方の電気的測定方法および電 気的測定装置  Method and apparatus for electrical measurement of at least one of characteristics and state of cell membrane
技術分野  Technical field
[0001] 本発明は、細胞膜の特性および状態の少なくとも一方の電気的測定方法および電 気的測定装置に関する。  The present invention relates to an electrical measurement method and an electrical measurement apparatus for at least one of characteristics and states of cell membranes.
背景技術  Background art
[0002] 電気生理学の初期のころから、ガラス電極を細胞に刺入して細胞の膜電位を測定 することが行われ、細胞膜におけるイオンチャネルの存在が予見されていた。そして 、細胞膜電位の測定は、パッチクランプ法の開発により、大きく進展した。パッチクラ ンプ法は、 1976年に Neherおよび Sakmannによって開発され(非特許文献 1)、これ により、実際にイオンチャンネルの存在を証明するという画期的成果を生み出した。さ らに、 1981年に、 Hamill等によってホールセルクランプ (whole- ceU- clamp)法が開発 され、これにより細胞膜表面全体に存在するイオンチャネルの全電流の測定が可能 となった。イオンチャネルの異常と疾病との関係が明らかになるにつれ、イオンチヤネ ルの状態を測定できるホールセルパッチクランプ法力 医薬品開発にぉ 、て重要に なってきており、これを高速で実施可能にするための技術が開発されている。例えば 、ホールセルパッチクランプ法のための平板パッチデバイスおよびそのシステムがあ る(特許文献 1〜4)。しかしながら、この方法では、つぎの問題がある。すなわち、パ ツチクランプ法は、記録用ピペットを細胞に密に接着させ、ギガオームを超える緊密 なシールを形成させることが必要である力 このシールが緩ければ、信頼性のあるデ ータが得られない。この他、パッチクランプ法においては、 hole不良、ベースラインの 不安定、イオンチャネルの発現量不足など、さまざまな要因で、測定が失敗に終わる ことがある。したがって、信頼性のあるデータを得るためには、ある程度の繰り返し実 験が必要である。このため、例えば、測定装置が、一日当たり 3000個の細胞膜電位 が測定可能であるとした場合、信頼性のあるデータを得るために、 4回繰り返し測定 が必要だとすれば、結局、 750個のデータしか測定できないことになる。したがって、 ホールセルクランプ法において、さらに高速かつ正確に測定可能な技術の開発が望 まれている。 From the early days of electrophysiology, glass electrodes were inserted into cells and the membrane potential of the cells was measured, and the presence of ion channels in the cell membrane was foreseen. The measurement of cell membrane potential has greatly progressed with the development of the patch clamp method. The patch clamp method was developed by Neher and Sakmann in 1976 (Non-Patent Document 1), which produced an epoch-making result in actually demonstrating the existence of ion channels. Furthermore, in 1981, Hamill et al. Developed a whole-cell U-clamp method, which made it possible to measure the total current of ion channels existing on the entire cell membrane surface. As the relationship between ion channel abnormalities and diseases becomes clear, the ability of whole cell patch clamps to measure the state of ion channels has become increasingly important for drug development, and to enable this to be implemented at high speed. Technology has been developed. For example, there is a flat patch device and its system for the whole cell patch clamp method (Patent Documents 1 to 4). However, this method has the following problems. That is, the patch clamp method requires the recording pipette to adhere tightly to the cells and form a tight seal that exceeds gigaohms. If this seal is loose, reliable data can be obtained. Absent. In addition, in the patch clamp method, measurement may be unsuccessful due to various factors such as hole failure, unstable baseline, and insufficient ion channel expression. Therefore, in order to obtain reliable data, a certain amount of repeated experiments are required. For this reason, for example, if the measuring device is capable of measuring 3000 cell membrane potentials per day, if it is necessary to repeat measurement four times in order to obtain reliable data, after all, 750 Only the data of can be measured. Therefore, In the whole cell clamp method, it is desired to develop a technology that can measure even faster and more accurately.
特許文献 1: WO00159447  Patent Document 1: WO00159447
特許文献 2 : US 6488829  Patent Document 2: US 6488829
特許文献 3 : US06315940  Patent Document 3: US06315940
特許文献 4:WO00125769  Patent Document 4: WO00125769
非特干文献 1 :Neher E &Sakmann B (197りノ Single cnannel currents recorded from m embraneof denervated frog muscle fibers. Nature 260: 799—802  Non-patent literature 1: Neher E & Sakmann B (197 Rino Single cnannel currents recorded from m embraneof denervated frog muscle fibers. Nature 260: 799—802
非特許文献 2 : Hamill OP, Marty A, Neher E, Sakmann B &Sigworth FJ (1981) Impro ved patch-clamp techniques for high-resolution current recording from cells and cell -free membrane patches. Pflugers Arch 391: 85 - 100.  Non-Patent Document 2: Hamill OP, Marty A, Neher E, Sakmann B & Sigworth FJ (1981) Impro ved patch-clamp techniques for high-resolution current recording from cells and cell -free membrane patches. Pflugers Arch 391: 85-100.
発明の開示  Disclosure of the invention
[0003] そこで、本発明は、細胞膜の特性および状態の少なくとも一方を、従来よりも高速、 正確および容易に測定可能な電気的測定方法および電気的測定装置の提供を、そ の目的とする。  [0003] Therefore, an object of the present invention is to provide an electrical measurement method and an electrical measurement apparatus that can measure at least one of the characteristics and state of a cell membrane faster, more accurately, and more easily than before.
[0004] 前記目的を達成するために、本発明の測定方法は、細胞膜の特性および状態の 少なくとも一方の電気的測定方法であって、測定電極と、参照電極と、複数の細胞と を準備し、前記測定電極と前記各細胞内とを電気的に接続し、かつ前記参照電極と 前記各細胞膜表面とを電気的に接続し、この状態で、前記測定電極に電圧を印加し て前記両電極間に流れる電流のゆらぎを測定する電気的測定方法である。  [0004] In order to achieve the above object, the measurement method of the present invention is an electrical measurement method of at least one of the characteristics and state of a cell membrane, comprising preparing a measurement electrode, a reference electrode, and a plurality of cells. The measurement electrode and each cell are electrically connected, and the reference electrode and each cell membrane surface are electrically connected, and in this state, a voltage is applied to the measurement electrode to both the electrodes. This is an electrical measurement method for measuring fluctuations in the current flowing between them.
[0005] また、本発明の測定装置は、細胞膜の特性および状態の少なくとも一方の電気的 測定装置であって、細胞を保持固定する孔を複数有する容器と、測定電極と、参照 電極と、前記測定電極に電圧を印加する印加手段と、前記両電極間に流れる電流を 検出する検出手段と、前記電流のゆらぎを測定する測定手段とを有し、前記測定電 極と前記各細胞内とが電気的に接続可能であり、かつ前記参照電極と前記細胞膜 表面とが電気的に接続可能であり、前記両電極が前記状態で電気的に接続された 場合、前記印加手段により、前記測定電極に電圧が印加され、前記検出手段により 、前記両電極間に流れる電流が検出され、前記測定手段により、前記電流のゆらぎ が測定される電気的測定装置である。 [0005] The measurement apparatus of the present invention is an electrical measurement apparatus for at least one of the characteristics and state of a cell membrane, comprising a container having a plurality of holes for holding and fixing cells, a measurement electrode, a reference electrode, An application unit that applies a voltage to the measurement electrode; a detection unit that detects a current flowing between the electrodes; and a measurement unit that measures fluctuations in the current; and the measurement electrode and each cell When the reference electrode and the cell membrane surface can be electrically connected and the both electrodes are electrically connected in the state, the application means can connect the measurement electrode. A voltage is applied, a current flowing between the electrodes is detected by the detection means, and the fluctuation of the current is detected by the measurement means. Is an electrical measuring device to be measured.
[0006] このように、本発明の測定方法および測定装置では、複数の細胞の全体につ 、て 、その細胞膜の特性および状態の少なくとも一方に起因する電流のゆらぎを測定す る。後述のように、この電流のゆらぎは、前記複数の細胞の細胞膜の特性や状態を 全体的に反映するものである。したがって、本発明によれば、複数の細胞の細胞膜 状態等を全体的に同時に測定するので、個々の細胞の細胞膜状態等の測定の成功 率が、仮に 100%でなくても、一回の測定で、信頼性の高い情報を得ることができる。 また、複数の細胞について細胞膜状態等に起因する電流を測定する場合は、細胞 毎に電極を配置し、細胞間を絶縁する等の条件が必要となる力 電流のゆらぎを測 定する本発明によれば、各細胞間を絶縁する必要がなぐ一対の電極 (測定電極お よび参照電極)で、複数の細胞の細胞膜状態等を測定でき、電流の測定のような厳 しい測定条件を適用する必要がない。したがって、本発明によれば、従来法よりも、 高速、正確および容易に細胞膜の特性および状態の少なくとも一方を測定できる。 図面の簡単な説明  [0006] As described above, the measurement method and the measurement apparatus of the present invention measure fluctuations in current caused by at least one of the characteristics and state of the cell membrane for the entirety of a plurality of cells. As will be described later, this current fluctuation reflects the characteristics and state of the cell membrane of the plurality of cells as a whole. Therefore, according to the present invention, the cell membrane state and the like of a plurality of cells are measured simultaneously at the same time. Therefore, even if the success rate of the measurement of the cell membrane state and the like of individual cells is not 100%, a single measurement is performed. Thus, highly reliable information can be obtained. In addition, when measuring the current due to the state of the cell membrane, etc. for a plurality of cells, the present invention measures the fluctuation of the force current that requires conditions such as arranging electrodes for each cell and insulating the cells. Therefore, a pair of electrodes (measurement electrode and reference electrode) that do not need to insulate each cell can measure the cell membrane state of multiple cells, and it is necessary to apply strict measurement conditions such as current measurement. There is no. Therefore, according to the present invention, it is possible to measure at least one of the characteristics and state of the cell membrane faster, more accurately and more easily than the conventional method. Brief Description of Drawings
[0007] [図 1]図 1 (a)は、細胞内外に形成されると推定される電気回路の一例を示す図であり 、図 1 (b)は、前記電気回路の簡略化モデルを示す図である。  [0007] FIG. 1 (a) is a diagram showing an example of an electric circuit presumed to be formed inside and outside a cell, and FIG. 1 (b) shows a simplified model of the electric circuit. FIG.
[図 2]図 2は、複数の細胞に形成されると推定される電気回路の一例を示す図である  FIG. 2 is a diagram showing an example of an electric circuit presumed to be formed in a plurality of cells.
[図 3]図 3は、本発明の電気的測定装置の一部を構成する容器の一例を示す断面図 である。 FIG. 3 is a cross-sectional view showing an example of a container constituting a part of the electrical measuring apparatus of the present invention.
[図 4]図 4は、本発明の電気的測定方法の一例において、電極あたりの細胞数と電流 振幅の再現性を理論的に検討したグラフである。  [FIG. 4] FIG. 4 is a graph theoretically examined for the reproducibility of the number of cells per electrode and current amplitude in an example of the electrical measurement method of the present invention.
[図 5]図 5は、本発明の電気的測定装置の一例を示す構成図である。  FIG. 5 is a block diagram showing an example of an electrical measuring apparatus according to the present invention.
[図 6]図 6は、本発明の電気的測定方法の一例において、細胞数 20個での電流値の 標準偏差を用いて用量反応特性を理論的に求めたグラフである。  [FIG. 6] FIG. 6 is a graph theoretically obtained dose response characteristics using the standard deviation of the current value at 20 cells in an example of the electrical measurement method of the present invention.
[図 7]図 7は、本発明の電気的測定方法の一実施例におけるパワースペクトルのダラ フである。  [FIG. 7] FIG. 7 is a diagram of a power spectrum in one embodiment of the electrical measurement method of the present invention.
発明を実施するための最良の形態 [0008] 本発明の細胞膜の特性および状態の少なくとも一方の電気的測定方法において、 さらに、前記電流のゆらぎのパワースペクトルを測定することが好ましい。同様に、本 発明の電気的測定装置において、さらに、前記電流のゆらぎのパワースペクトルを測 定するためのパワースペクトル測定手段を有することが好ましい。 BEST MODE FOR CARRYING OUT THE INVENTION [0008] In the electrical measurement method of at least one of the characteristics and state of the cell membrane of the present invention, it is further preferable to measure a power spectrum of the current fluctuation. Similarly, the electrical measurement apparatus of the present invention preferably further includes a power spectrum measurement means for measuring a power spectrum of the current fluctuation.
[0009] 本発明の電気的測定方法において、前記複数の細胞の数は、特に制限されず、 種々の条件により適宜決定される力 例えば、 2〜: LOO個の範囲である。  [0009] In the electrical measurement method of the present invention, the number of the plurality of cells is not particularly limited, and is a force determined appropriately according to various conditions. For example, the range is 2 to: LOO.
[0010] 本発明の電気的測定方法にお!、て、前記測定測定対象である細胞膜の特性およ び状態は、例えば、前記細胞膜に存在するイオンチャネルの特性および状態がある 。前記イオンチャネルの特性および状態としては、例えば、イオンチャネルの個数お よびイオンチャネルの開閉状態の少なくとも一方の状態がある。  [0010] In the electrical measurement method of the present invention, the characteristics and state of the cell membrane to be measured and measured include, for example, the characteristics and state of ion channels existing in the cell membrane. Examples of the characteristics and states of the ion channel include at least one of the number of ion channels and the open / closed state of the ion channels.
[0011] 本発明の電気的測定方法において、前記細胞は、例えば、個々に分離した細胞で あってもょ 、し、組織内に存在する細胞であってもよ 、。  [0011] In the electrical measurement method of the present invention, the cells may be, for example, individually separated cells or cells existing in a tissue.
[0012] 本発明の電気的測定方法において、化学物質を前記細胞に投与する前後で、前 記電流のゆらぎを測定してもよい。このようにすれば、前記化学物質が、細胞膜に及 ぼす影響を測定でき、例えば、医薬品の開発に有用である。同様に、本発明の電気 的測定装置は、化学物質が細胞膜に与える影響を調べるために使用することが好ま しい。  In the electrical measurement method of the present invention, the fluctuation of the current may be measured before and after the chemical substance is administered to the cell. In this way, the influence of the chemical substance on the cell membrane can be measured, and is useful, for example, in the development of pharmaceuticals. Similarly, the electrical measuring device of the present invention is preferably used for examining the influence of chemical substances on the cell membrane.
[0013] 本発明の電気的測定装置において、例えば、前記容器には、電解質溶液が充填 可能であり、この電解質溶液によって、前記測定電極と前記各細胞内との間および 前記参照電極と前記各細胞膜表面との間が、電気的に接続されるという態様であつ てもよい。  [0013] In the electrical measurement device of the present invention, for example, the container can be filled with an electrolyte solution, and the electrolyte solution can be used between the measurement electrode and each cell and between the reference electrode and each of the cells. The cell membrane surface may be electrically connected.
[0014] 本発明の細胞膜の電気的測定装置において、前記容器の孔の数は、特に制限さ れず、測定対象の細胞の数等により適宜決定される力 例えば、 2〜: LOO個の範囲 である。  [0014] In the electrical measurement apparatus for cell membrane of the present invention, the number of holes in the container is not particularly limited, and is a force determined appropriately depending on the number of cells to be measured, etc. For example, in the range of 2 to: LOO. is there.
[0015] つぎに、本発明につ 、て、詳しく説明する。  [0015] Next, the present invention will be described in detail.
[0016] 本発明の特徴は、単一の細胞について、膜電位を測定するのではなぐ複数の細 胞について、細胞膜の特性や状態を反映する電流のゆらぎを、まとめて測定する点 である。複数の細胞全体の電流のゆらぎは、各細胞の電流のゆらぎの総和である。 そして、複数の細胞の膜電流のゆらぎのパワースペクトルを測定し、これを解析すれ ば、細胞膜の特性や状態を詳細に評価できる。その理論的根拠は、以下のとおりで ある。 [0016] A feature of the present invention is that, for a plurality of cells that do not measure a membrane potential, a fluctuation in current that reflects the characteristics and state of the cell membrane is measured collectively for a single cell. The fluctuation of the current of the plurality of cells is the sum of the fluctuations of the current of each cell. Then, by measuring the power spectrum of fluctuations in the membrane current of multiple cells and analyzing it, the characteristics and state of the cell membrane can be evaluated in detail. The rationale is as follows.
[0017] (1) 等価電気回路モデル  [0017] (1) Equivalent electrical circuit model
図 1に、 1個の細胞がデバイス孔にシールを形成している状態にあるときの等価回 路モデルを示す。なお、モデルパラメータは、後述の表にまとめて示した。シール抵 抗 R が十分大きく( > > 100M Ω )、デバイスと接触して 、る細胞面の抵抗 R が十 seal nys 分小さ 、とき(< < 20M Ω )、基準電圧の取り方を適切にとれば、図 1 (a)の回路のう ち容量成分 Cを除いた部分は図 1(b)のように簡約化することができる。この系のダイ d  Figure 1 shows an equivalent circuit model when one cell is in a state of forming a seal in the device hole. The model parameters are summarized in the table described later. When the seal resistance R is sufficiently large (>> 100 MΩ) and the resistance R of the cell surface in contact with the device is small enough (<<20 MΩ), take the appropriate reference voltage. For example, the part of the circuit in Fig. 1 (a) excluding the capacitance component C can be simplified as shown in Fig. 1 (b). Die of this system
ナミタスは、下記式(1)で示される。  Namitas is shown by the following formula (1).
[0018] [数 1] d VCMD [0018] [ Equation 1] d V CMD
I +Cd= =0 (1) I + C d = = 0 (1)
[0019] 以下では、この簡約化されたモデル(図 1 (b)参照)について解析を行うことにする。 [0019] In the following, this simplified model (see Fig. 1 (b)) will be analyzed.
[0020] 図 2に、多細胞を用いた eHTSデバイス系の等価回路モデルを示す。この系は、各 細胞とシールを形成するデバイス孔系が並列接続された構造をなしている。細胞数 を Nとすると、観測される電流 I は、下記式(2)で与えられる。 FIG. 2 shows an equivalent circuit model of an eHTS device system using multiple cells. This system has a structure in which a device hole system that forms a seal with each cell is connected in parallel. If the number of cells is N, the observed current I is given by the following equation (2).
total  total
[0021] [数 2] d VCMD d VCMD [0021] [Equation 2] d V CMD d V CMD
d ) +c, . d ) + c,
dd tt  dd tt
N N
V d VCMD V d V CMD
I i+ (NCd + Cch i p)—— (2) I i + (NC d + C ch ip ) —— (2)
[0022] アンプによって容量電流 (右辺第二項)を補正 (キャンセル)することにより、下記式 ([0022] By correcting (cancelling) the capacitance current (second term on the right side) by the amplifier, the following formula (
3)のように表すことができ、すなわち、総電流は各細胞電流の和となる。 3), ie, the total current is the sum of the cell currents.
[0023] [数 3] [0024] 以下では、まず、 1個の細胞 デバイス孔を流れる電流とチャネルゆらぎの関係に ついて線形近似を用いて説明し、ついで、それが合成された電流が呈するゆらぎの パワースペクトル密度について説明する。 [0023] [Equation 3] [0024] In the following, first, the relationship between the current flowing through one cell device hole and the channel fluctuation will be explained using linear approximation, and then the power spectral density of the fluctuation exhibited by the synthesized current will be explained. .
[0025] (2) 線形近似  [0025] (2) Linear approximation
単一の細胞 デバイス孔系の等価回路において、電位固定モードで記録された定 常状態における電流のゆらぎは、イオンチャネルの開閉ゆらぎに伴って生じるコンダ クタンス g  In the equivalent circuit of a single cell device pore system, the current fluctuation in the steady state recorded in the voltage-clamped mode is the conductance g that accompanies the switching fluctuation of the ion channel.
chの変化によって生じる膜抵抗の時間変動による。ただし、 R=1Z(R +1 m Due to the time variation of the membrane resistance caused by ch change. However, R = 1Z (R +1 m
/g )である。この抵抗成分と細胞膜の容量成分 Cやアクセス抵抗 R で構成される ch m acc フィルタ特性によって観測信号の帯域が制限される。この系の時定数は下記式 (4) で与えられる。 / g). The bandwidth of the observed signal is limited by the ch m acc filter characteristics, which consists of this resistance component, cell membrane capacitance component C, and access resistance R. The time constant of this system is given by the following equation (4).
[0026] [数 4] [0026] [Equation 4]
C R a c„ R CR ac „R
.//R) = (4)  .//R) = (4)
' R +R ノ ラメータを R ^20MΩ、R=100MΩ、及びC =3pFとおくと τ =0.05msと  '' If R + R parameter is R ^ 20MΩ, R = 100MΩ, and C = 3pF, τ = 0.05ms
acc m  acc m
計算される。これより遮断周波数は ί。=ΐΖ(2π τ ) 3kHzと求まる。この場合、 lk Hz ( = 3kHz/3)以下の信号成分にっ 、ては容量成分を無視することができること がわかる。膜電流のゆらぎ解析では 1kHz以下の帯域を対象とすることが多いため、 以下では簡単のため、 C =OFと近似する。膜電流とチャネルゆらぎとの関係を調べ  Calculated. The cut-off frequency is ί. = ΐΖ (2π τ) 3kHz In this case, it can be seen that the signal component below lk Hz (= 3kHz / 3) can be ignored. Since the fluctuation analysis of the membrane current often covers the band below 1kHz, for simplicity, it is approximated as C = OF. Investigating the relationship between membrane current and channel fluctuation
m  m
る。膜電流を膜コンダクタンス gの関数とみると、下記式(5)のように表すことができる  The When the membrane current is regarded as a function of the membrane conductance g, it can be expressed as the following formula (5).
[0028] [数 5]
Figure imgf000009_0001
ただし、 とおいた、コンダクタンス変化( δ g:ゆらぎ成分)が定常
Figure imgf000009_0002
[0028] [Equation 5]
Figure imgf000009_0001
However, the conductance change (δg: fluctuation component) is steady.
Figure imgf000009_0002
値 (平均値)に比べて十分小さいと仮定すると、膜電流の微小変化分 δ I = l(g+ δ g ) -Kg)は、下記式 (6)に示すように近似できる。ただし、 K=V /(gR +1)2とお cmd acc いた。 Assuming that it is sufficiently smaller than the value (average value), the minute change of membrane current δ I = l (g + δ g) −Kg) can be approximated as shown in the following equation (6). However, K = V / (gR +1) 2 and cmd acc.
[0030] [数 6] d I (g)  [0030] [Equation 6] d I (g)
δ I二 δ g + o (δ g2) δ I 2 δ g + o (δ g 2 )
d g  d g
VcMD  VcMD
δ g=K · δ g (6)  δ g = K · δ g (6)
(gRacc+ 1)  (gRacc + 1)
[0031] コンダクタンス変化は開口チャネル数の変化に比例する。そのため、膜電流ゆらぎ 信号のスペクトル解析を行うことによって、開口チャネル数のゆらぎを評価することが できることが分力ゝる。 [0031] The conductance change is proportional to the change in the number of open channels. For this reason, it is possible to evaluate the fluctuation of the number of aperture channels by performing spectrum analysis of the membrane current fluctuation signal.
[0032] (3) パワースペクトル  [0032] (3) Power spectrum
単一細胞の膜電流 Iは膜コンダクタンス gの関数である。膜コンダクタンスは、膜のリ 一タコンダクタンスを g Single cell membrane current I is a function of membrane conductance g. Membrane conductance is expressed as the membrane conductance g
m、単一イオンチャネルコンダクタンスを Ύ、イオンチャネルの開 口数を Pとおくと、下記式(7)のように表すことができる。ここで、 tは時間、 sはチャネル 開口確率を支配するパラメータである。 m, Y a single ion channel conductance, when the opening number of units of ion channels put by P, can be expressed by the following equation (7). Where t is the time and s is the parameter governing the channel opening probability.
[0033] [数 7] g = g + p (t; s) γ (7)  [0033] [Equation 7] g = g + p (t; s) γ (7)
[0034] 例えば、電位依存性を持つチャネルは膜電位 V力 Sこのパラメータに含まれる。開口 m [0034] For example, a channel having a potential dependency is included in the membrane potential V force S. Opening m
チャネル数は時間とともに変動する確率変数であることから、膜電流も確率過程とな る。前述で示したように、膜電流の微小変化成分は開口チャネル数ゆらぎに比例す るので、膜電流ゆらぎ成分(平均値との差、 i(t)とおく)のパワースペクトルはチャネル ゆらぎ Pのパワースペクトルに比例する。そのため、以下ではこれらを同一視する。 Since the number of channels is a random variable that varies with time, the membrane current is also a stochastic process. As shown above, the minute change component of the membrane current is proportional to the fluctuation of the number of open channels. Therefore, the power spectrum of the membrane current fluctuation component (difference from the average value, i (t)) is proportional to the power spectrum of channel fluctuation P. Therefore, these are equated below.
[0035] 複数の細胞系が並列回路をなす eHTSデバイスにおける観測電流は、各々の細胞 膜電流の総和になる。まず簡単な例として、 2個の孔を持つ eHTSデバイスで観測さ れる電流ゆらぎのスペクトルにつ 、て考察する。それぞれの電流ゆらぎを X (t)及び y (t)とすると、観測電流のゆらぎ z (t)は、下記式 (8)で表すことができる。  [0035] The observed current in an eHTS device in which a plurality of cell lines form a parallel circuit is the sum of the cell membrane currents. As a simple example, let us consider the current fluctuation spectrum observed in an eHTS device with two holes. If each current fluctuation is X (t) and y (t), the fluctuation z (t) of the observed current can be expressed by the following equation (8).
[0036] [数 8]  [0036] [Equation 8]
( t ) ( t ) + y ( t ) (8) (t) (t) + y (t) (8)
[0037] それぞれの細胞の膜電流ゆらぎのフーリエ変換を、下記式(9)および式(10)とおく と、これより、下記式(11)のように表すことができる。 [0037] When the Fourier transform of the membrane current fluctuation of each cell is expressed by the following equations (9) and (10), it can be expressed as the following equation (11).
[0038] [数 9]
Figure imgf000010_0001
[0038] [Equation 9]
Figure imgf000010_0001
[0039] [数 10]
Figure imgf000010_0002
[0039] [Equation 10]
Figure imgf000010_0002
[0040] [数 11] [0040] [Equation 11]
( t ) e— i w t d t
Figure imgf000010_0003
(t) e— iwt dt
Figure imgf000010_0003
=X (ω) +Y (< ( 1 1) また、それぞれ電流ゆらぎのパワースペクトルは、下記式(12)および式(13)で与 えられる。ここで、 Tは観測時間、 X' ( ω )は Χ( ω )の複素共役を表す。 = X (ω) + Y (<(1 1) In addition, the power spectrum of the current fluctuation is given by the following equations (12) and (13). Where T is the observation time and X '(ω) is the complex conjugate of Χ (ω).
[数 12]  [Equation 12]
2 π 2 π
S χ (ω) = X' (ω) X (ω) ( 1 2) S χ (ω) = X '(ω) X (ω) (1 2)
χ Τ  χ Τ
[0042] [数 13] [0042] [Equation 13]
2 π 2 π
S (ω) = Υ' (ω) Υ (ω) ( 1 3)  S (ω) = Υ '(ω) Υ (ω) (1 3)
y y Τ y y Τ
[0043] 以上から、総電流のパワースペクトルは S ( ω )は、下記式(14)で示すように計算 される。 From the above, the power spectrum of the total current S (ω) is calculated as shown in the following equation (14).
[0044] [数 14] 〕  [0044] [Equation 14]]
,
[0045] ここで、 S (ω)および S (ω)は xと yのクロススペクトルであり、下記式(15)で表さ れる。 Here, S (ω) and S (ω) are cross spectra of x and y, and are represented by the following formula (15).
[0046] [数 15] [0046] [Equation 15]
2 π 2 π
S x y (ω) = Χ' (co) Y (ω) ( 1 5) S xy (ω) = Χ '(co) Y (ω) (1 5)
Τ  Τ
[0047] 一般に、膜電流ゆらぎは細胞ごとに無相関湘互相関関数: C (て ) =0)であると 仮定できるので、下記式(16)のようにおける。 [0048] [数 16] [0047] Generally, it can be assumed that the membrane current fluctuation is uncorrelated and cross-correlation function: C (te) = 0) for each cell. [0048] [Equation 16]
S x y (ω) = S y x (ω) = 0 ( 1 6 ) S xy (ω) = S yx (ω) = 0 (1 6)
[0049] これより、下記式(17)が得られる。 From this, the following formula (17) is obtained.
[0050] [数 17] [0050] [Equation 17]
S z z (ω) = S X X (ω) + S y y (ω) ( 1 7) S zz (ω) = S XX (ω) + S yy (ω) (1 7)
[0051] 一般に, Ν個の細胞膜電流 Ijの和である総電流 Iのパワースペクトル ( ω )は、それ らの電流ゆらぎの間に相関がないと仮定できる場合、各々の電流ゆらぎのパワース ベクトル S (ω)に等しい。つまり、下記式(18)のように表すことができる。 [0051] In general, the power spectrum (ω) of the total current I, which is the sum of Ν cell membrane currents Ij, can be assumed that there is no correlation between the current fluctuations. Equal to ( ω ). That is, it can be expressed as the following formula (18).
I]  I]
[0052] [数 18]  [0052] [Equation 18]
S j (ω) S j j (ω) ( 1 8 ) S j (ω) S j j (ω) (1 8)
j = 1  j = 1
[0053] 仮に、すべての細胞の膜電流ゆらぎが同じ確率過程に従うのであれば、それぞれ のパワースペクトルの期待値は一致する。このこと力 、同じ特性をもつ N個の細胞の 膜電流ゆらぎのパワースペクトルは単一の細胞の膜電流ゆらぎのパワースペクトルを N倍したものに等しくなる。もし、細胞ごとのパラメータのばらつきが小さぐその結果と して膜電流ゆらぎのパワースペクトルがほぼ等しいとき、 N個の細胞の並列回路の膜 電流ゆらぎのパワースペクトルは単一の膜電流ゆらぎを N倍したものとなるため、信号 Z雑音比の向上が期待できる。 [0053] If the membrane current fluctuations of all cells follow the same stochastic process, the expected values of the respective power spectra match. This means that the power spectrum of membrane current fluctuations of N cells with the same characteristics is equal to the power spectrum of membrane current fluctuations of a single cell multiplied by N. If the cell-to-cell parameter variation is small, and as a result, the power spectrum of membrane current fluctuations is almost equal, the power spectrum of membrane current fluctuations in a parallel circuit of N cells will have a single membrane current fluctuation N The signal Z-to-noise ratio can be expected to improve.
[0054] 変数'パラメーター  [0054] Variable 'parameter
N:細胞数  N: Number of cells
t:時間  t: time
1::細胞半径(5 111)  1 :: Cell radius (5 111)
S:細胞表面積 (4πΐ:2) S: Cell surface area ( 4 πΐ: 2 )
C :膜容量(=1 F/cm2XS 3pF) C: membrane capacitance (= 1 F / cm 2 XS 3pF)
m c :デバイス孔付近の電気容量 m c: Electric capacity near the device hole
d  d
c :デバイスチップの電気容量  c: Device chip capacitance
chip  chip
R :膜リーク抵抗( = 0. 03mS X S)  R: membrane leakage resistance (= 0.03mS X S)
m  m
E :静止膜電位  E: resting membrane potential
m  m
p (t; s):開口チャネル数(sはパラメータ)  p (t; s): Number of aperture channels (s is a parameter)
y:単一チャネルコンダクタンス  y: Single channel conductance
g :イオンチャネルによる膜コンダクタンス( = p (t;s) γ )  g: Membrane conductance by ion channel (= p (t; s) γ)
ch  ch
g:膜チャネルコンダクタンス(g = g m +g di )
Figure imgf000013_0001
g: Membrane channel conductance (g = gm + g di)
Figure imgf000013_0001
E :イオンチャネル電流の平衡電位  E: Equilibrium potential of ion channel current
ch  ch
R :デバイス孔に接して ヽる部分の膜抵抗 (エスタチン等による) nys  R: Membrane resistance in contact with device hole (due to estatin etc.) nys
R :デバイス孔部の抵抗  R: Device hole resistance
hole  hole
R :細胞とデバイス接触部におけるシール抵抗  R: Seal resistance at cell / device contact area
seal  seal
V :指令電位 (実験者が決定する)  V: Command potential (determined by the experimenter)
C D  C D
V :細胞内電位 (膜電位)  V: Intracellular potential (membrane potential)
m  m
R :アクセス抵抗(  R: Access resistance (
acc =R n^s +R hole )  acc = R n ^ s + R hole)
R:膜抵抗(=R m ZZR ch =R mR ch Z (R m +R ch ) )  R: Membrane resistance (= R m ZZR ch = R mR ch Z (R m + R ch))
x、 y:単一細胞の膜電流ゆらぎ成分  x, y: Single-cell membrane current fluctuation components
z :総電流のゆらぎ成分  z: Fluctuation component of total current
ω :信号の角周波数  ω: Angular frequency of signal
X、 Υ、∑:各 、 y、 zのフーリエ変換  X, Υ, ∑: Fourier transform of each, y, z
X,、 Y,ゝ Z,:各 X、 Υ、 Ζの複素共役  X, Y, ゝ Z ,: complex conjugate of each X, Υ, Ζ
S 、 S 、 S :各 x、y、 zのパワースペクトル密度  S, S, S: Power spectral density of each x, y, z
XX yy zz  XX yy zz
S :xと yのクロススペクトル  S: Cross spectrum of x and y
[0055] つぎに、本発明の電気的測定装置の一例について、図 3の断面図および図 5の構 成図に基づき説明する。 Next, an example of the electrical measurement apparatus of the present invention will be described based on the cross-sectional view of FIG. 3 and the configuration diagram of FIG.
[0056] まず、図 3は、測定に使用する容器 1の断面図である。容器 1の材質としては、例え ば、シリコン、ガリウムヒ素、水晶などの単結晶基板の他、ガラス、石英、榭脂、などの 各種基板材料が用いられる。図示のように、この容器 1では、容器本体 11内部力 仕 切りプレート 11Aで上下に仕切られており、前記仕切りプレート 11Aには、複数の孔 14が形成されており、各孔 14の上に、細胞 17が保持固定されている。ここで、この 孔 14の径は細胞 17の大きさによって最適なものに決められるものであり、例えば、測 定対象が HEK細胞の場合の前記孔 14の直径は、通常、直径 0.5から 10マイクロメート ルであり、好ましくは直径 1から 5マイクロメートルである。また、孔 14の最適な数は、 測定対象である細胞 17の活性度、細胞 17の孔 14への吸着度等によって影響される ものであり、後述される測定方法で最も効率よい測定となるよう決められる。さらに、前 記仕切りプレート 11A下側表面には、一つの測定電極 12が配置されており、この測 定電極 12では、前記仕切りプレートの各孔 14に対応する部分に、孔 15が形成され ている。この容器本体 11の上下に仕切られた内部は、共に電解質溶液 16で満たさ れている。そして、容器本体 11の上部には、前記電解質溶液 16中に侵入する状態 で、一つの参照電極 13が配置されている。これら電極の材質には、例えば、金、銀、 銅、アルミ、ステンレス、クロム、チタンなどの導体材料が用いられ、好ましくは、さらに 、これら導体材料の一部に塩ィ匕銀が設けられていることである。これによつて前記電 解質溶液 16の電位変化をより正確に測定することが可能である。また、これら電極の 形状、大きさは特に限定されるものではなぐ図 3の参照電極 13のように電解質溶液 16に浸水させるだけでもよぐ図示した測定電極 12のように仕切りプレート 11Aある Vヽは容器 1の内壁に密着させるように形成しても良い。内壁に密着した測定電極 12 を形成するためには、電極材料である金、銀、銅、アルミ、ステンレス、クロム、チタン 、塩ィ匕銀などを蒸着、スパッタ、メツキ、などの方法で、内壁表面上に電極を形成すれ ばよい。さらに、細胞 17において、仕切りプレートの孔 14内に位置する部分の細胞 膜は、一部破断している。このため、電解質溶液 16により、測定電極 12と細胞 17内 部とが電気的に接続されている。また、電解質溶液 16により、細胞 17膜表面と参照 電極 13とが電気的に接続されている。また、図示していないが、測定電極 12および 参照電極 13は、コネクタを介し、電流 Z電圧変回路、 AZD変換回路、 DZA変換 回路、 CPU、表示装置等に接続されている。すなわち、この容器 1では、各細胞 17 について、ホールセルクランプ法の状態が実現可能となっており、仮に、各細胞につ いて等価回路が形成されると仮定すると、前述のように、その等価回路は、並列に接 続した状態となっている。 [0056] First, FIG. 3 is a cross-sectional view of the container 1 used for measurement. Examples of the material of the container 1 include single crystal substrates such as silicon, gallium arsenide, and quartz, as well as glass, quartz, and resin. Various substrate materials are used. As shown in the figure, in this container 1, the container body 11 is partitioned vertically by an internal force cutting plate 11A, and a plurality of holes 14 are formed in the partition plate 11A. Cells 17 are retained and fixed. Here, the diameter of the hole 14 is determined optimally depending on the size of the cell 17. For example, when the measurement target is HEK cells, the diameter of the hole 14 is usually 0.5 to 10 μm. Meters, preferably 1 to 5 micrometers in diameter. In addition, the optimum number of pores 14 is influenced by the activity of the cell 17 to be measured, the degree of adsorption of the cells 17 to the pore 14, etc., and is the most efficient measurement by the measurement method described later. It is decided so. Furthermore, one measurement electrode 12 is disposed on the lower surface of the partition plate 11A. In the measurement electrode 12, holes 15 are formed in portions corresponding to the holes 14 of the partition plate. Yes. The interior of the container body 11 that is partitioned up and down is filled with the electrolyte solution 16. A single reference electrode 13 is disposed on the top of the container body 11 so as to enter the electrolyte solution 16. As the material of these electrodes, for example, a conductive material such as gold, silver, copper, aluminum, stainless steel, chromium, titanium, or the like is used. Preferably, a portion of these conductive materials is provided with salty silver. It is that you are. This makes it possible to measure the potential change of the electrolyte solution 16 more accurately. In addition, the shape and size of these electrodes are not particularly limited. As shown in the measurement electrode 12 shown in the figure, the partition plate 11A can be simply immersed in the electrolyte solution 16 as in the reference electrode 13 in FIG. May be formed in close contact with the inner wall of the container 1. In order to form the measuring electrode 12 in close contact with the inner wall, the electrode material such as gold, silver, copper, aluminum, stainless steel, chromium, titanium, silver chloride, etc. is deposited, sputtered, plated, etc. An electrode may be formed on the surface. Further, in the cell 17, the cell membrane in the portion located in the hole 14 of the partition plate is partially broken. Therefore, the measurement electrode 12 and the inside of the cell 17 are electrically connected by the electrolyte solution 16. Further, the cell 17 membrane surface and the reference electrode 13 are electrically connected by the electrolyte solution 16. Although not shown, the measurement electrode 12 and the reference electrode 13 are connected to a current Z voltage conversion circuit, an AZD conversion circuit, a DZA conversion circuit, a CPU, a display device, and the like via a connector. In other words, in this container 1, the state of the whole cell clamp method can be realized for each cell 17, and it is assumed that each cell 17 Assuming that an equivalent circuit is formed, the equivalent circuit is connected in parallel as described above.
[0057] 図 5は、測定に使用する測定装置の概略図である。電気的測定装置 18は、制御部 19、これに接続された D/A変換回路 20、電流 Z電圧変換回路 21、 A/D変換回路 2 2および溶液駆動部 23、載置部 24および刺激信号付与部 26を備える。なお、同図 において、 1は前記容器を示す。この装置を用いた細胞膜の電流のゆらぎの測定は 、例えば、つぎのようにして実施される。すなわち、まず、載置部 24には容器 1が載置 される。載置部 24は載置された容器 1を所定の温度、ガス濃度、湿度、気圧下に保 持することが出来る。次に容器 1の上面より単離した細胞 17を投入する。このとき仕 切りプレート下面に陰圧をかけることにより細胞 17が孔 14に保持される。仕切りプレ ~~ト上ィ則 Ikm i poly— L— lysineゝ gelatinゝ polyethyieniminebしく ίま gel等によるコ ~~アイ ングをされていてもよい。制御部 19は、電流 Z電圧変換回路から入力される信号に 基づいて容器 1の電極 12, 13間に流れる電流を検出、記録する。また制御部 19は 設定された刺激条件に基づいて D/A変換回路 20ならびに電流 Z電圧変換回路 21 を介して刺激信号付与部 26を制御する。刺激信号付与部 26により容器 1上の細胞 に、測定電極 12と参照電極 13間が任意の電圧になるように、電流を印加すると、測 定電極 12および参照電極 13の間に電流が流れる。この電流は、複数の細胞 17全 体の細胞膜状態を反映したものである。この電流を、前記測定電極 12および参照電 極 13で検出し、電流 Z電圧変換回路 21および AZD変換回路 22を介して、制御部 19に入力され、 CPUにおいて、電流のゆらぎとして測定し、そのパワースペクトル解 析する。この解析結果を、表示装置に表示する。前述のように、前記電流のゆらぎは 、複数の細胞の全体の細胞膜状態等、例えば、イオンチャネルの数や開閉等を反映 するものである。溶液駆動部 23は容器本体 11の内部の電解質溶液 16を排出し、あ ¾ ヽは容器本体 11の内部に電解質溶液 16を注入する機能を有し、必要に応じて制 御部 19により駆動される。電解質溶液 16は、例えば、下記のような組成のものを使 用してちょい。  FIG. 5 is a schematic diagram of a measuring apparatus used for measurement. The electrical measuring device 18 includes a control unit 19, a D / A conversion circuit 20 connected thereto, a current Z voltage conversion circuit 21, an A / D conversion circuit 22 and a solution driving unit 23, a mounting unit 24, and a stimulation signal. A grant unit 26 is provided. In the figure, 1 indicates the container. The measurement of the current fluctuation of the cell membrane using this apparatus is performed, for example, as follows. That is, first, the container 1 is placed on the placement unit 24. The placement unit 24 can hold the placed container 1 at a predetermined temperature, gas concentration, humidity, and atmospheric pressure. Next, the isolated cell 17 is introduced from the upper surface of the container 1. At this time, the cells 17 are held in the holes 14 by applying a negative pressure to the lower surface of the cutting plate. The partitioning plate may be coated with Ikm i poly- L-lysine ゝ gelatin ゝ polyethyienimineb or gel. The control unit 19 detects and records the current flowing between the electrodes 12 and 13 of the container 1 based on the signal input from the current Z voltage conversion circuit. The control unit 19 controls the stimulation signal applying unit 26 via the D / A conversion circuit 20 and the current Z voltage conversion circuit 21 based on the set stimulation conditions. When a current is applied to the cells on the container 1 by the stimulation signal applying unit 26 so that the voltage between the measurement electrode 12 and the reference electrode 13 becomes an arbitrary voltage, a current flows between the measurement electrode 12 and the reference electrode 13. This current reflects the cell membrane state of the plurality of cells 17 as a whole. This current is detected by the measurement electrode 12 and the reference electrode 13, and is input to the control unit 19 through the current Z voltage conversion circuit 21 and the AZD conversion circuit 22, and is measured as current fluctuation in the CPU. Power spectrum analysis. The analysis result is displayed on the display device. As described above, the current fluctuation reflects the state of the entire cell membrane of a plurality of cells, for example, the number of ion channels, opening / closing, and the like. The solution driving unit 23 discharges the electrolyte solution 16 inside the container body 11, and the tank has a function of injecting the electrolyte solution 16 into the container body 11, and is driven by the control unit 19 as necessary. The For example, use the electrolyte solution 16 having the following composition.
[0058] (電解質溶液組成例 1)  [0058] (Electrolyte solution composition example 1)
NaCl 137 mM, KC1 4 mM NaCl 137 mM, KC1 4 mM
CaCl 1.8 mM  CaCl 1.8 mM
2  2
MgCl 1 mM  MgCl 1 mM
2  2
glucose 10 mM  glucose 10 mM
HEPES 10 mM  HEPES 10 mM
[0059] (電解質溶液組成例 2) [0059] (Electrolyte solution composition example 2)
KC1 130 mM  KC1 130 mM
MgCl 1 mM  MgCl 1 mM
2  2
EGTA 5 mM  EGTA 5 mM
ATP 5 mM  ATP 5 mM
HEPES 10 mM  HEPES 10 mM
[0060] このように、複数の細胞の細胞膜の状態に起因する電流のゆらぎを測定することに より、高速かつ正確な細胞膜状態等の電気的測定が可能になる。図 4のグラフに、電 極あたりの細胞数と電流振幅の再現性を理論的に検討したグラフを示す。このグラフ は、 Hole不良、シール不十分、ベースライン不安定、そしてイオンチャンネル発現 量過少等の要因で、測定の成功率が 1. 0 (100%)で無い場合に、まとめて測定する 細胞数を増やすと変動係数が減少する、すなわち再現性が上昇することを示して 、 る。図示のように、例えば、成功率 0. 7であっても、 100個の細胞をまとめて測定すれ ば、成功率 0. 9の場合と遜色ない変動係数が得られることが分かる。図 6のグラフは 、細胞数 20個での電流値の標準偏差を用いて用量反応特性を理論的に求めたもの であり、細胞に薬物を作用させた時のノイズ電流特性のシュミレーシヨンを示すグラフ である。膜電位依存性イオンチャネルを組込んだ細胞モデルにオープンチャネルブ 口ッカを作用させた際の膜電流ゆらぎをシユミレーシヨンし、定常状態においてブロッ 力濃度とノイズ電流の標準偏差 (SD)の関係を評価した。ブロッ力の解離定数は 10 Mとした。 SDは、薬物濃度が解離定数のときに最大値をとつている。図示のように 、この特性を利用することにより、ノイズ電流カゝら薬物の解離定数を推定することがで さることがゎカゝる。  As described above, by measuring the fluctuation of the current due to the state of the cell membrane of a plurality of cells, it is possible to perform an electrical measurement of the cell membrane state at high speed and accurately. The graph in Fig. 4 shows a theoretical study of the reproducibility of the number of cells per electrode and the current amplitude. This graph shows the number of cells measured together when the success rate of measurement is not 1.0 (100%) due to factors such as hole failure, insufficient seal, unstable baseline, and insufficient ion channel expression. Increasing the value indicates that the coefficient of variation decreases, that is, the reproducibility increases. As shown in the figure, for example, even if the success rate is 0.7, if 100 cells are measured together, it can be seen that a coefficient of variation comparable to that of the success rate of 0.9 is obtained. The graph in Fig. 6 is a theoretical calculation of dose response characteristics using the standard deviation of the current value for 20 cells, and shows the simulation of noise current characteristics when a drug is applied to cells. It is a graph. Membrane current fluctuations were simulated when an open channel blocker was applied to a cell model incorporating a membrane voltage-gated ion channel, and the relationship between the block force concentration and the standard deviation (SD) of the noise current was measured in a steady state. evaluated. The dissociation constant of the block force was 10 M. SD has a maximum when the drug concentration is the dissociation constant. As shown in the figure, by utilizing this characteristic, it is possible to estimate the dissociation constant of the drug from the noise current.
実施例 1 [0061] 図 3に示す容器 1において、孔 14を 2つとし、図 5に示す電気的測定装置(図 5)を 用いて実際に電流ゆらぎを測定した。以下の操作は 25°Cで行った。デバイス下面( 容器 1下側)には内側電解質溶液 (KC1 130 mM, MgCl 1 mM, EGTA 5 mM, ATP 5 Example 1 [0061] In the container 1 shown in FIG. 3, the number of the holes 14 was two, and the current fluctuation was actually measured using the electrical measuring device shown in FIG. 5 (FIG. 5). The following operation was performed at 25 ° C. The inner electrolyte solution (KC1 130 mM, MgCl 1 mM, EGTA 5 mM, ATP 5)
2  2
mM, HEPES lOmM, pH 7.4)を満たし、デバイス上面 (容器 1上側)は外側電解質溶 液 (NaCl 137 mM, KC1 4 mM, CaCl 1.8 mM, MgCl 1 mM, glucose 10 mM, HEPES  mM, HEPES lOmM, pH 7.4), the upper surface of the device (vessel 1 upper side) is the outer electrolyte solution (NaCl 137 mM, KC1 4 mM, CaCl 1.8 mM, MgCl 1 mM, glucose 10 mM, HEPES
2 2  twenty two
10 mM, pH 7.4)で満たした。 hERGチャネルを定常的に発現させた HEK細胞を別の 容器に入れた外液中でピペッティングにより単離した後、デバイス上面に投入した。 デバイス下面に吸引により陰圧 (最大 530mmHg)をかけることによりデバイスと細胞の シール抵抗を上昇させた。十分にシール抵抗が上がったところでデバイス下面の内 側電解質溶液を-スタチン入り溶液 (ニスタチン濃度 250 g/ml)に置換し細胞膜に ニスタチンによる穿孔を構築した。ニスタチンによって細胞膜に穿孔を形成した後、 E PC- 10増幅器(HEKA社製)を用いて hERG発現 HEK細胞を、まず - 80mVの電圧で固 定し、その後固定電圧を OmVまで上げて 6秒間電流ゆらぎを測定した。測定した電流 ゆらぎは 10kHzでデジタルサンプリングし(PATCHMASTER software, HEKA社製)、 さらにそのうち最後の 2秒間のデータを高速フーリエ変換してパワースペクトルを求め た(Origin7.0)。つぎに、デバイス上面の外側電解質液に hERGチャネル阻害薬であ る E-4031 (Sigma社製)を最終濃度 1Mになるようにカ卩え、同様に電圧固定を行って電 流ゆらぎ測定、そしてパワースペクトルを求めた。これらのパワースペクトルを図 7のグ ラフに示す。  10 mM, pH 7.4). HEK cells in which hERG channels were steadily expressed were isolated by pipetting in an external solution in a separate container and then placed on the upper surface of the device. By applying negative pressure (up to 530mmHg) to the lower surface of the device by suction, the sealing resistance between the device and cells was increased. When the sealing resistance was sufficiently increased, the inner electrolyte solution on the lower surface of the device was replaced with a solution containing -statin (nystatin concentration 250 g / ml) to construct perforations with nystatin in the cell membrane. After perforation of the cell membrane by nystatin, hERG-expressing HEK cells were first fixed at −80 mV using an EPC-10 amplifier (HEKA), then the fixed voltage was raised to OmV for 6 seconds. Fluctuations were measured. The measured current fluctuation was digitally sampled at 10 kHz (PATCHMASTER software, manufactured by HEKA), and the power spectrum was obtained by fast Fourier transform of the data for the last 2 seconds (Origin 7.0). Next, the hERG channel inhibitor E-4031 (manufactured by Sigma) is placed in the outer electrolyte solution on the upper surface of the device to a final concentration of 1M, and the voltage fluctuation is similarly fixed to measure the current fluctuation. The power spectrum was determined. These power spectra are shown in the graph of Fig. 7.
[0062] 図 7に示すように、 E-4031をカ卩える前(実線)に較べて、 E-4031を加えた後(点線) では、 lOOHz以下でパワーが低くなつた。これは E-4031が hERGチャネル阻害剤で あることを良く表しており、本発明の装置方法で電流ゆらぎのパワースペクトルを求め ることにより、イオンチャンネルの挙動変化を測定できたことを示している。  [0062] As shown in Fig. 7, the power decreased below lOOHz after adding E-4031 (dotted line) as compared to before E-4031 was covered (solid line). This clearly shows that E-4031 is a hERG channel inhibitor, and that the change in the behavior of the ion channel could be measured by obtaining the power spectrum of the current fluctuation with the method of the present invention. .
[0063] 以上のように、本発明の細胞膜の特性および状態の少なくとも一方の電気的測定 方法および電気的測定装置は、複数の細胞の細胞膜の特性や状態に起因する電 流のゆらぎを、まとめて測定するため、高速、正確および容易に細胞膜状態等の電 気的測定が可能である。したがって、本発明の電気的測定方法および電気的測定 装置は、イオンチャネル状態等の細胞膜の特性や状態を分析する全ての分野に有 用であり、例えば、生物学、医学、薬学、農学等の分野に有用であり、特に、医薬品 の開発に好適である。 [0063] As described above, the electrical measurement method and the electrical measurement device for at least one of the characteristics and states of the cell membrane of the present invention summarize the fluctuations in current caused by the characteristics and states of the cell membranes of a plurality of cells. Therefore, electrical measurement of cell membrane state and the like is possible at high speed, accurately and easily. Therefore, the electrical measurement method and electrical measurement apparatus of the present invention are applicable to all fields for analyzing characteristics and states of cell membranes such as ion channel states. For example, it is useful in fields such as biology, medicine, pharmacy, and agriculture, and is particularly suitable for the development of pharmaceuticals.

Claims

請求の範囲 The scope of the claims
[1] 細胞膜の特性および状態の少なくとも一方の電気的測定方法であって、測定電極 と、参照電極と、複数の細胞とを準備し、前記測定電極と前記各細胞内とを電気的に 接続し、かつ前記参照電極と前記各細胞膜表面とを電気的に接続し、この状態で、 前記測定電極に電圧を印加して前記両電極間に流れる電流のゆらぎを測定する電 気的測定方法。  [1] An electrical measurement method for at least one of the characteristics and state of a cell membrane, comprising preparing a measurement electrode, a reference electrode, and a plurality of cells, and electrically connecting the measurement electrode and the inside of each cell And the electrical measurement method which electrically connects the said reference electrode and each said cell membrane surface, applies a voltage to the said measurement electrode, and measures the fluctuation | variation of the electric current which flows between the said both electrodes.
[2] さらに、前記電流のゆらぎのパワースペクトルを測定する請求の範囲 1記載の電気 的測定方法。  [2] The electrical measurement method according to claim 1, further comprising measuring a power spectrum of the fluctuation of the current.
[3] 前記複数の細胞の数が、 2〜: LOO個の範囲である請求の範囲 1記載の電気的測定 方法。  [3] The electrical measurement method according to claim 1, wherein the number of the plurality of cells is in the range of 2 to: LOO.
[4] 測定対象である細胞膜の特性および状態が、前記細胞膜に存在するイオンチヤネ ルの特性および状態である請求の範囲 1記載の電気的測定方法。  [4] The electrical measurement method according to claim 1, wherein the characteristics and state of the cell membrane to be measured are those of the ion channel existing in the cell membrane.
[5] 前記イオンチャネルの特性および状態力 前記イオンチャネルの個数およびイオン チャネルの開閉状態の少なくとも一方である請求の範囲 4記載の電気的測定方法。  5. The electrical measurement method according to claim 4, wherein the ion channel has a characteristic and a state force that are at least one of the number of the ion channels and the open / closed state of the ion channels.
[6] 前記細胞が、組織内に存在する細胞である請求の範囲 1記載の電気的測定方法。  6. The electrical measurement method according to claim 1, wherein the cell is a cell present in a tissue.
[7] 化学物質を前記細胞に投与する前後において、前記電流のゆらぎを測定する請求 の範囲 1記載の電気的測定方法。  7. The electrical measurement method according to claim 1, wherein the fluctuation of the current is measured before and after the chemical substance is administered to the cell.
[8] 細胞膜の特性および状態の少なくとも一方の電気的測定装置であって、細胞を保 持固定する孔を複数有する容器と、測定電極と、参照電極と、前記測定電極に電圧 を印加する印加手段と、前記両電極間に流れる電流を検出する検出手段と、前記電 流のゆらぎを測定する測定手段とを有し、前記測定電極と前記各細胞内とが電気的 に接続可能であり、かつ前記参照電極と前記細胞膜表面とが電気的に接続可能で あり、前記両電極が前記状態で電気的に接続された場合、前記印加手段により、前 記測定電極に電圧が印加され、前記検出手段により、前記両電極間に流れる電流 が検出され、前記測定手段により、前記電流のゆらぎが測定される電気的測定装置  [8] An electrical measurement device for at least one of the characteristics and state of a cell membrane, a container having a plurality of holes for holding and fixing cells, a measurement electrode, a reference electrode, and an application for applying a voltage to the measurement electrode Means, a detecting means for detecting a current flowing between the electrodes, and a measuring means for measuring fluctuations in the current, and the measuring electrode and each cell can be electrically connected, In addition, when the reference electrode and the cell membrane surface are electrically connectable and the electrodes are electrically connected in the state, a voltage is applied to the measurement electrode by the applying means, and the detection is performed. Means for detecting the current flowing between the electrodes and measuring the fluctuation of the current by the measuring means.
[9] さらに、前記電流のゆらぎのパワースペクトルを測定するためのパワースペクトル測 定手段を有する請求の範囲 8記載の電気的測定装置。 9. The electrical measurement device according to claim 8, further comprising power spectrum measurement means for measuring a power spectrum of the fluctuation of the current.
[10] 前記容器には、電解質溶液が充填可能であり、この電解質溶液によって、前記測 定電極と前記各細胞内との間および前記参照電極と前記各細胞膜表面との間が、 電気的に接続される請求の範囲 8記載の電気的測定装置。 [10] The container can be filled with an electrolyte solution, and the electrolyte solution electrically connects between the measurement electrode and each cell and between the reference electrode and each cell membrane surface. The electrical measuring device according to claim 8 to be connected.
[11] 前記容器の孔の数力 2〜: LOO個の範囲である請求の範囲 8記載の電気的測定装 置。 [11] The electrical measuring device according to claim 8, wherein the number of holes in the container is 2 to: LOO.
[12] 化学物質が細胞膜に与える影響を調べるために使用する請求の範囲 8記載の測 定装置。  [12] The measuring device according to claim 8, which is used for examining the influence of a chemical substance on a cell membrane.
PCT/JP2005/024076 2004-12-28 2005-12-28 Method of electrically measuring and device of electrical meauring at least one of chracteristic and condition of cell membrane WO2006070872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-380245 2004-12-28
JP2004380245A JP2006184207A (en) 2004-12-28 2004-12-28 Method and instrument for electric measurement of at least one of characteristic and state of cell membrane

Publications (1)

Publication Number Publication Date
WO2006070872A1 true WO2006070872A1 (en) 2006-07-06

Family

ID=36614983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024076 WO2006070872A1 (en) 2004-12-28 2005-12-28 Method of electrically measuring and device of electrical meauring at least one of chracteristic and condition of cell membrane

Country Status (2)

Country Link
JP (1) JP2006184207A (en)
WO (1) WO2006070872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527440A (en) * 2007-05-04 2010-08-12 テセラ, エルエルシー Subsystem and method for use in a patch clamp system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103137A1 (en) 2012-12-27 2014-07-03 ソニー株式会社 Cell analysis system, cell analysis program, and cell analysis method
JP6942925B2 (en) 2013-11-08 2021-09-29 ソニーグループ株式会社 Cell analysis system, cell analysis program and cell analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518678A (en) * 1998-06-12 2002-06-25 セネス リミティド High throughput screen
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
JP2003511699A (en) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン Method and apparatus for measuring cells in a liquid environment
JP2003511668A (en) * 1999-10-01 2003-03-25 ソフィオン・バイオサイエンス・アクティーゼルスカブ Substrates and methods for measuring and / or monitoring the electrophysiological properties of ion channels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518678A (en) * 1998-06-12 2002-06-25 セネス リミティド High throughput screen
JP2003511668A (en) * 1999-10-01 2003-03-25 ソフィオン・バイオサイエンス・アクティーゼルスカブ Substrates and methods for measuring and / or monitoring the electrophysiological properties of ion channels
JP2003511699A (en) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン Method and apparatus for measuring cells in a liquid environment
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EBINA Y. ET AL.: "Risan Jikan Markov Chain Model ni yoru Makudenryu Yuragi no Power Spectrum Mitsudoshiki. (Power Spectrum Densisty Equation of Flustuating Membrane Current Based on Discrete Time Markov Chain Model 'Analysis of Ion Channels with 2,3 States')", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS D-II, vol. J72-D-II, no. 11, 25 November 1989 (1989-11-25), pages 1926 - 1934, XP003002099 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527440A (en) * 2007-05-04 2010-08-12 テセラ, エルエルシー Subsystem and method for use in a patch clamp system

Also Published As

Publication number Publication date
JP2006184207A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Anh-Nguyen et al. An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis
EP1221046B1 (en) Assembly and method for determining and/or monitoring electrophysiological properties of ion channels
CA2316966C (en) Positioning and electrophysiological characterization of individual cells and reconstituted membrane systems on microstructured carriers
Baaken et al. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents
US6377057B1 (en) Classification of biological agents according to the spectral density signature of evoked changes in cellular electric potential
Rosenstein et al. Single ion channel recordings with CMOS-anchored lipid membranes
Kloß et al. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models
Gornall et al. Simple reconstitution of protein pores in nano lipid bilayers
WO2002055653A1 (en) Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
WO2009077734A2 (en) Formation of layers of amphiphilic molecules
EP3436816B1 (en) Electrical enhancement of bilayer formation
EP3436817B1 (en) Non-destructive bilayer monitoring using measurement of bilayer response to electrical stimulus
US20100270176A1 (en) Automatic positioning and sensing microelectrode arrays
EP2766724B1 (en) Device and method for parallel recording of impedance spectra and field potential
JP2007527540A (en) Method and apparatus for measuring cell volume change
US20100330612A1 (en) Biochip for electrophysiological measurements
US20140222123A1 (en) Nanopillar electrode devices and methods of recording action potentials
WO2006070872A1 (en) Method of electrically measuring and device of electrical meauring at least one of chracteristic and condition of cell membrane
US20230242863A1 (en) Piezoelectric membrane-microelectrode array
Ta et al. Reusable floating-electrode sensor for the quantitative electrophysiological monitoring of a nonadherent cell
Thielecke et al. Biohybrid microarrays–impedimetric biosensors with 3D in vitro tissues for toxicological and biomedical screening
Kraya et al. On chip bioelectric impedance spectroscopy reveals the effect of P-glycoprotein efflux pumps on the paracellular impedance of tight junctions at the blood–brain barrier
Cabello et al. Lab-on-pcb: Low cost 3d microelectrode array device for extracellular recordings
Alberti et al. Impedance spectra of patch clamp scenarios for single cells immobilized on a lab-on-a-chip
CA2585763A1 (en) Device and process for measuring cell properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05822455

Country of ref document: EP

Kind code of ref document: A1