WO2006070582A1 - Method of preparing silica sphere containing labeled molecule - Google Patents

Method of preparing silica sphere containing labeled molecule Download PDF

Info

Publication number
WO2006070582A1
WO2006070582A1 PCT/JP2005/022628 JP2005022628W WO2006070582A1 WO 2006070582 A1 WO2006070582 A1 WO 2006070582A1 JP 2005022628 W JP2005022628 W JP 2005022628W WO 2006070582 A1 WO2006070582 A1 WO 2006070582A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
labeled molecule
labeled
molecule
sphere
Prior art date
Application number
PCT/JP2005/022628
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Miyoshi
Michihiro Nakamura
Original Assignee
Techno Network Shikoku. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku. Co., Ltd. filed Critical Techno Network Shikoku. Co., Ltd.
Priority to JP2006550652A priority Critical patent/JP4982687B2/en
Publication of WO2006070582A1 publication Critical patent/WO2006070582A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/552Glass or silica

Definitions

  • the present invention relates to a method for producing a labeled molecule-containing silica sphere useful as a detection reagent. More specifically, the present invention relates to a method for preparing a labeled molecule-containing silica sphere capable of stably and efficiently fixing a labeled molecule to a silica sphere under mild conditions. Furthermore, the present invention relates to a labeled molecule-containing silica sphere obtained by a powerful method.
  • Non-Patent Document 1 Patent documents 1 to 7
  • This is made using latex donor beads (registered trademark) and axector bead (registered trademark) made of latex with a diameter of 250 mm.
  • the donor beads and axe beads are bonded, the donor beads are excited with a laser.
  • the singlet oxygen molecule is generated by the fluorescence from the internal fluorescent molecule, and this chemically reacts with the fluorescent substance in the first sector bead to produce chemiluminescence, and this is observed.
  • silica spheres as the above beads (fine particles) have been studied, and various methods for producing silica spheres containing fluorescent dye molecules have been proposed.
  • Such silica spheres have a form in which fluorescent dye molecules held inside are surrounded by silica, and as a result, quenching by external factors (for example, absorption of excitation energy by biochemical polymers) can be suppressed. Therefore, it is expected to be applied to various tests as a highly sensitive detection reagent.
  • Non-patent Document 2 Concentration of fluorescent dye molecules (FITC) is retained inside the silica sphere On the other hand, it has also been reported that quenching occurs inside the silica sphere at its maximum concentration (Non-patent Document 2). In addition, as a result of investigations by the present inventors, the above-described method has a too high bondability between FITC and APS, resulting in poor production efficiency, and the resulting silica sphere has a single particle size and several forces. Compared to a hundred nanometers, it was powerful. Patent Document 1: US 4918200 A
  • Patent Document 2 WO 917087 A1
  • Patent Document 3 EP 502060 A1
  • Patent Document 4 Japanese Patent Laid-Open No. 5-501611
  • Patent Document 5 US 5252743 A
  • Patent Document 6 US 5451683 A
  • Patent Document 7 US 5482867 A
  • Non-patent literature l Analytica Chimica Acta 1998, 367, 159
  • the present invention has been made in view of the above-mentioned problems of the prior art, and a novel method for efficiently and stably preparing a labeled molecule-containing silica sphere containing a desired labeled molecule.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for producing the above-described labeled molecule-containing silica sphere by adjusting it to a desired size.
  • an object of the present invention is to provide a labeled molecule-containing silica sphere obtained by the above method and to provide a use as a detection reagent thereof.
  • succinimidyl ester ester formed by binding a labeled molecule and succinimide via an ester bond (-CO-0-) has been studied.
  • silica compound (1) When the compound (1) is reacted with an amino group-containing silica compound (2), the carbonyl group of the succinimidyl ester compound (1) and the amino group of the silica compound (2) are bonded with an amide bond (-NH-CO -) To obtain a silica compound containing a labeled molecule (silica compound containing a labeled molecule) (3) And by further reacting the labeled molecule-containing silica compound (3) with the silica compound (4), silica spheres stably containing the labeled molecule can be efficiently prepared, and the size ( It was found that the particle size can be adjusted freely.
  • silica compound (4) used for the reaction with the labeled molecule-containing silica compound (3), various desired groups (for example, OH group, SH group, amine group, SCN group, epoxy group, CNO group, etc.) can be introduced, and such silica spheres can bind various functional molecules using these groups as acceptor groups, and can be applied to various reactions. It was confirmed that it can be used effectively as a possible reaction reagent.
  • desired groups for example, OH group, SH group, amine group, SCN group, epoxy group, CNO group, etc.
  • the present invention has been completed on the basis of strong knowledge.
  • the present invention includes the following modes:
  • Item 2 As the silica compound having an amino group (2), 3- (aminopropyl) triethoxysilane or 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane should be used.
  • Item 2. A method for preparing a labeled molecule-containing silica sphere according to Item 1.
  • the silica compound (4) includes tetraethoxysilane, ⁇ -mercaptopropyltriethoxysilane, aminopropyltriethoxysilane, 3-thiocyanatopropyltriethoxysilane, and 3-glycidyloxypropyltriethoxysilane.
  • a group power consisting of 3-isocyanatopropyltriethoxysilane and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane, wherein at least one silica compound selected from the group forces is used.
  • Item 3. The method for preparing a labeled molecule-containing silica sphere according to Item 1 or 2.
  • Item 4 The method for preparing a labeled molecule-containing silica sphere according to any one of Items 1 to 3, wherein the step (b) is performed in the presence of water, alcohol, and ammonia.
  • Item 5. The method for preparing a labeled molecule-containing silica sphere according to Item 4, wherein the volume ratio of water to alcohol is 1: 0.5 to 1: 8.
  • Item 6 A labeled molecule-containing silica sphere obtained by the method according to any one of Items 1 to 5.
  • the labeled molecule-containing silica sphere obtained by the method according to Item 1 of Item 1 to Item 5 is further converted to a silica compound (4) different from the silica compound (4) used in step (b).
  • Item 8 A labeled molecule-containing silica sphere obtained by the method according to Item 8.
  • Item 9 A silica sphere obtained by binding a peptide, protein, gene, microorganism, coupling agent, piotin, avidin, or a labeled molecule to the surface of the labeled molecule-containing silica sphere described in Item 9.
  • Item 10 A labeled molecule-containing silica sphere obtained by the method according to any one of Items 1 to 5, and
  • step (c) optionally having a step of treating with a silica compound (4) different from the silica compound (4) used in step (b);
  • a method for preparing a multiple bond of labeled spheres containing labeled molecules is provided.
  • Item 11 A multi-bond product of labeled spheres containing labeled molecules obtained by the method according to item 10. The present invention will be described in detail below.
  • the method for preparing a labeled molecule-containing silica sphere of the present invention is characterized by having the following steps (a) and (b).
  • succinimidyl ester compound (1) used in the step (a) examples include compounds represented by the following general formula.
  • R means a labeled molecule. More specifically, R can be bonded to succinimide via an ester bond (-CO-0-) as shown in the following formula.
  • R represents a labeled molecule
  • R ′ represents a hydrogen atom or an arbitrary group.
  • R forms a carboxylic acid or a derivative thereof by bonding a -COOR 'group (R' means a hydrogen atom or an arbitrary group) as a side chain.
  • R' means a hydrogen atom or an arbitrary group
  • Examples of the carboxylic acid or its derivative shown as the compound (0) in the above include 5-carboxy-fluorescein, 6-carboxy-fluorescein, 5 (6) -carboxy-fluorescein, 6-carboxy-2 ′, 4 , 4 ', 5', 7,7, -Hexaclo oral fluorescein, 6-carboxy-2,4,7,7, -Tetrachloro oral fluorescein, 6-carboxy-4,5, -dichloro-2, 7, -dimethoxyfluorescein, 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5 (6) -carboxy-rhodamine, Alexa Fluor 350 carboxylic acid, Alexa Fluor 4
  • the succinimidyl ester compound (1) used in the step (a) of the present invention is a carboxylic acid or a derivative thereof [compound (0)] as shown in the above formula.
  • N-hydroxysuccinimide can be prepared by esterification according to a conventional method. However, it can also be obtained commercially.
  • succinimidyl ester compound (1) 5-succinimidyl ester-fluorescein, corresponding to the carboxylic acid or derivative thereof [compound (1)], 6 -Succinimidyl ester-fluorescein, 5 (6) -succinimidyl ester-fluorescein, 6-succinimidyl ester-2 ', 4,4', 5 ', 7,7' Fluorescein, 6-succinimidyl ester-2 ', 4,7,7'-Tetrachrome mouth fluorescein, 6-succinimidyl ester-4,5,5-dichloro-2,7, -dimethoxyfur Olethein, 5-succinimidyl ester-rhodamine, 6-succinimidyl ester-rhodamine, 5 (6) -succinimidyl ester-rhodamine, succinimidyl ester-Alexa Fluor 350, succinimidyl ester-Alexa
  • the silica compound (2) having an amino group is not particularly limited, and examples thereof include 3- (aminobutylpyr) triethoxysilane, 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxy.
  • Examples include silane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, and 3-aminopropyltrimethoxysilane.
  • the reaction between the succinimidyl ester compound (1) and the silica compound having an amino group (2) is performed by dissolving in a solvent such as DMSO or water and stirring at room temperature. It can be done by doing.
  • the carbo group of the succinimidyl ester compound (1) and the amino group of the silica compound (2) having an amino group are bonded to an amide bond (-NH-CO -)
  • the labeled molecule-containing silica compound (3) has an embodiment in which the labeled molecule and the silica compound are bonded via an amide bond.
  • step (b) the labeled molecule-containing silica compound (3) is reacted with the silica compound (4).
  • the silica compound (4) used here is not particularly limited, but includes tetraethoxysilane, ⁇ -mercaptopropyltriethoxysilane, aminopropyltriethoxysilane, 3-thiocyanatopropyltriethoxysilane, 3-glycidyl. Mention may be made of oxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane.
  • the ratio of the labeled molecule-containing silica compound (3) and the silica compound (4) is not particularly limited, but the molar ratio of the silica compound (4) to 1 mole of the labeled molecule-containing silica compound (3) is 100 to 40000. Preferable ⁇ is 300 to 20000, more preferable ⁇ is 500 to 10000, and more preferable ⁇ is 600 to 7000. [0021] This reaction is carried out in the presence of alcohol, water and ammonia. Examples of the alcohol include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol.
  • the ratio of water and alcohol in the powerful reaction system is not particularly limited, but preferably 0.5 to 8 parts by volume of alcohol, preferably 1 to 5 parts by volume, more preferably 1 part by volume of water.
  • the range of 1-2 volume parts can be mentioned.
  • the amount of ammonia is not particularly limited, for example, a molar ratio of 200 to 250000, preferably 400 to 150,000, more preferably 2500 to 25000 can be mentioned with respect to 1 mol of the labeled molecule-containing silane compound to be reacted. it can.
  • This reaction can be performed at room temperature, and is preferably performed with stirring.
  • the silica sphere (5) containing the target labeled molecule can be prepared by reaction for several tens of minutes to several tens of hours.
  • the size (diameter) of the silica spheres to be prepared can be appropriately adjusted by adjusting the concentration of the silica compound (4) used or adjusting the reaction time. it can. Larger silica spheres can be prepared by increasing the concentration of the silica compound (4) used or increasing the reaction time (eg Blaaderen et al., “Synthesis an d Characyerization of Monodisperse Collidal Organo -silica Spheres ", J. Colloid and Interface Science 156, 1-18.1993). Also, larger silica spheres can be prepared by repeating step (b) a plurality of times.
  • the size (diameter) of the obtained labeled molecule-containing silica sphere can be freely adjusted to a desired size, for example, from the nm order to the m order.
  • the labeled molecule-containing silica sphere having a size of several to several tens of nm, specifically 3 to 3 Onm. It is also possible to prepare. Further, if necessary, it can be adjusted to a desired particle size distribution by subsequent treatment, and thus silica spheres in a desired particle size distribution range can be obtained.
  • the labeled molecule-containing silica spheres thus obtained may be purified by removing conventional coexisting ions and unnecessary coexisting substances using a conventional method such as ultrafiltration membrane, if necessary.
  • the labeled molecule is immobilized in the silica sphere by using the method of the present invention.
  • the sensitivity can be increased more than that of a free labeled molecule.
  • many labeling molecules fluorescent dye molecules
  • Silica is generally known to be chemically inert and easy to modify.
  • the labeled molecule-containing silica sphere of the present invention prepared by the method described in (1) above can also easily bind a desired molecule to the surface, and the surface can be mesoporous or smooth. It can also be.
  • a labeled molecule-containing silica sphere having a group on the surface can be provided.
  • Table 1 shows the relationship between the silica compound (4) used for the reaction and the acceptor group formed on the surface of the labeled molecule-containing silica sphere obtained thereby.
  • the labeled molecule-containing silica sphere (5) obtained by the method (1) an acceptor group different from the acceptor group introduced onto the surface by the silica compound (4) used in the reaction was introduced. If so, the labeled molecule-containing silica sphere (5) is further treated with a silica compound different from the silica compound (4) used in step (b). This treatment can be performed by performing the same operation as in the above step (b) using a silica compound different from the silica compound (4) used in the step (b).
  • the labeled molecule-containing silica sphere of the present invention (surface-modified labeled molecule-containing silica sphere) prepared by such a method has a desired molecule [eg, peptide, protein, depending on the type of acceptor group on the surface. , Genes (poly or oligonucleotides such as RNA and DNA), microorganisms, coupling agents, piotin, avidin, and labeled molecules) can be bound to the surface.
  • a desired molecule eg, peptide, protein, depending on the type of acceptor group on the surface.
  • Genes poly or oligonucleotides such as RNA and DNA
  • microorganisms microorganisms
  • coupling agents piotin, avidin, and labeled molecules
  • a surface-modified-labeled-molecule-containing silica sphere having an OH group is formed on the surface of various silica compounds [for example, the silica described above via a silane bond (-Si-0-Si-). Compound (4), etc.]
  • Surface modification with SH groups Labeled molecule-containing silica spheres can be converted to peptides, proteins on their surface via bonds via disulfide bonds (-SS-), thioester bonds, or thiol substitution reactions. , Genes, etc .: surfaces with NH groups
  • Modified Labeled molecule-containing silica spheres have peptides, proteins, etc. on their surfaces via amide bonds or cheaure bonds; surface-modified silica molecules containing SCN groups have peptide molecules on their surfaces via chearea bonds Surface modification with epoxy group Labeled molecule-containing silica spheres have peptide or protein on the surface via amide bond; Surface modification with CNO group Labeled molecule-containing silica sphere has amide bond Thus, peptides, proteins, and the like can be respectively bound to the surface.
  • Molecules such as peptides, proteins, or genes bound to the modified labeled molecule-containing silica spheres as such become further acceptor molecules such as antigen-antibody reaction, piotin-avidin reaction, base sequence, and the like. Further, a desired molecule can be bound by utilizing a specific reaction such as hybridization utilizing the homology of each other.
  • the labeled molecule-containing silica sphere of the present invention (surface-modified labeled molecule-containing silica sphere) prepared by such a method can be applied to various applied technologies due to its fine shape, inclusion, and surface modification characteristics. More diverse applications are possible.
  • a mimic of a virus, a bacterium, a living microorganism, or an animal cell from its minute shape.
  • a surface protein such as a virus is labeled with the labeled molecule of the present invention.
  • the outer shell resembles the virus, but without the gene, a “pseudovirus” can be created. This could be applied to animal immunization and vaccine preparation without the need for adjuvants.
  • pseudovirus can be used as a means for drug delivery using the organ-specific infectivity of viruses.
  • the labeled molecule-containing silica sphere of the present invention binds a substance such as an arbitrary protein or gene based on its surface modification property (acceptor group) and presents its function on the surface. It can have the property that Such binding characteristics are useful not only in terms of adding functions by simply binding desired molecules, but also in terms of being able to concentrate substances such as arbitrary proteins and genes on the surface of silica spheres. For example, it is possible to improve reaction efficiency by binding and concentrating various enzymes that catalyze multistep reactions on silica spheres (reaction-enhanced silica spheres), and antibodies on silica spheres.
  • a bar code labeling method is conceivable.
  • silica spheres with various functions added for example, a library with various antibodies and peptides displayed on the surface
  • functional silica spheres to quickly distinguish them.
  • One of the methods is bar code sign.
  • a fluorescent dye molecule-containing silica compound labeled with two or more fluorescent dye molecules is mixed at various blending ratios to produce fluorescent dye molecule-containing silica spheres, thereby having various fluorescent properties.
  • Barcode labeled silica spheres can be made and can be distinguished by flow cytometry and fluorescence microscopy. Furthermore, using the above surface modification technology,
  • barcode labeling can also be performed by modifying proteins or genes labeled with dyes at various compounding ratios.
  • gene sequencing technology since gene sequencing technology is being simplified in recent years, it is possible to identify specific gene sequences by binding them to the surface of silica spheres, amplifying them with PCR as necessary, and reading the base sequences. It becomes.
  • the present invention provides a method for preparing a multiple bond product of labeled molecule-containing silica spheres as a method for increasing the strength of the labeled molecules possessed by the labeled molecule-containing silica spheres.
  • This method is carried out by further coupling the labeled molecule-containing silica spheres to the labeled molecule-containing silica spheres obtained by the above method using a coupling agent corresponding to the acceptor group of the labeled molecule-containing silica spheres. (Step (d)).
  • step (b) when the acceptor group of the labeled molecule-containing silica sphere is changed to a desired one different from the original acceptor group, the silica compound (4) used in step (b) described above is used before step (d).
  • a treatment with a silica compound (4) having a desired acceptor group, which is different from) may be carried out [step (c)].
  • Examples of the coupling agent that can be used here include those listed in Table 2 depending on the acceptor group on the surface of the labeled molecule-containing silica sphere.
  • the reaction with the coupling agent can be performed by reacting the labeled molecule-containing sirisphere of the present invention in the presence of the coupling agent.
  • a method in which a stirring reaction is performed at room temperature for several tens of minutes to several tens of hours can be used.
  • the ratio of the coupling agent to be used is 300 to 6000 parts, preferably 600 to 5400 parts, more preferably 2100 to 3000 parts by mole with respect to 1 mole of the labeled molecule-containing silica sphere.
  • the labeled molecule-containing silica spheres of the present invention are multiply bonded through the coupling agent.
  • Such a method can be effectively used as a means for increasing the strength of a labeled molecule (for example, a fluorescent pixel or a radical) derived from the labeled molecule-containing silica sphere.
  • the granular material formed by multiple bonding is not particularly limited, but can have a particle size in the range of 60 to 150 nm.
  • FIG. 1 is a graph showing a fluorescence decay curve of fluorescein (labeled molecule) -containing silica sphere A prepared in Example 1.
  • FIG. 2 is a schematic diagram showing the surface treatment of silica spheres described in Example 2.
  • FIG. 3 Spectrum A: Absorption spectrum of fluorescein (labeled molecule) -containing silica sphere A (Ist Growth) (diameter: 20 nm) prepared in Example 1 in an aqueous solution, spectrum B: adjusted in Example 2 (1)
  • FIG. 3 is a graph showing absorption spectra of the produced fluorescein (labeled molecule) -containing silica sphere (2nd Growth) (diameter: 230 nm) in an aqueous solution.
  • FIG. 4 is a diagram showing an image of a TEM photograph (X 90,000) of a fluorescein (labeled molecule) -containing silica sphere (diameter: 20 nm) (1st Growth) prepared in Example 1.
  • FIG. 5 Fluorescein (labeled molecule) -containing silica sphere prepared in Example 2 (1) (diameter: 230 nm) It is a figure which shows the image of the TEM photograph (X 15,000) of (2nd Growth).
  • FIG. 7 Fluorescence microscope findings (Fig. A) of silica spheres (SH base surface modified silica spheres) containing fluorescent dye molecules (fluorescein) prepared in Example 5, and silica with rhodamine-labeled GST attached to the silica spheres Shows the sphere's findings ( Figure b) (X 400) (Original is a color chart).
  • FIG. 8 Transmission electron microscope (T) of silica spheres containing rhodamine (labeled molecules) prepared in Example 7.
  • FIG. 9 A diagram showing the findings (a) in which rhodamine-labeled GST was attached to silica spheres that did not contain fluorescent dye molecules (a) and then the findings (b) in which FITC-labeled anti-GST antibody was bound (X) (X) 400)
  • a silica compound (3) containing fluorescein as a labeled molecule was prepared according to the following formula.
  • succinimidyl ester compound fluorescein (labeled molecule: represented by R in the formula) and succinimide are bonded through an ester bond.
  • FLUoS Carboxyfluorescein— N—hydroxysuccinimide ester
  • Aminopropyl) triethoxysilane [3- (aminopropyl) triethoxysilane: hereinafter also referred to as “APS”! /, U)] (2) is added to equimolarity with the above FLUOS, and stirred for about 1 hour using a stirrer piece.
  • Fluorescein (labeled molecule) -containing silica formed by reacting with stirring to form an amide bond between the carbo group of the succinimidyl ester compound [FLUOS (l)] and the amino group of the silica compound [APS (2)] Compound (3) was prepared.
  • FLUOS (1) which had a yellow color, was added with DMSO solution strength APS (2), it turned orange.
  • fluorescein (labeled molecule) -containing silica spheres (5) were prepared from the fluorescein (labeled molecule) -containing silica compound (3) according to the following formula.
  • reaction solution was subjected to ultrafiltration (Amicon (registered trademark) stirring cell) (filter 1; UF disk YM100 Ultracell RC100K NMWL) (sales company: MILLIPORE ⁇ Nomin al Molecular Weight Limit (NMWL ): 100 kDa] and repeated filtration and washing with distilled water several times to obtain 2 ml of sample solution A (containing fluorescein (labeled molecule) -containing silica spheres (5).
  • ultrafiltration Analogened trademark
  • filter 1 UF disk YM100 Ultracell RC100K NMWL
  • MILLIPORE Nomin al Molecular Weight Limit
  • Sphere is called “silica sphere A.”
  • the filtrate obtained here is further filtered with an ultrafiltration device (Amicon (registered trademark) stirring cell) (filter; UF disk YM-3 Ultracell RC100K NMWL) Company: MILLIPORE ⁇ Nominal Molecular Weight Limit (NMWL): 3 kDa], and repeated filtration and washing with distilled water several times to obtain 3 ml of sample solution B (fluorescein (labeled molecule)) Contains silica sphere (5) . This silica sphere Is called “silica sphere B”).
  • the reaction completed solution (yellow green) after reacting the reaction solution for 24 hours was diluted 10-fold in the same manner as the reaction solution (all component mixture solution before reaction), and the absorption spectrum was measured. However, the absorbance of the peak was 0.607.
  • the molecular extinction coefficient of FLUOS (7.5xl0 4), when calculating the concentration of Furuoresein molecules contained in the reaction-terminated liquid is 80.9 / z mol / l, the concentration of Furuoresein molecules contained in mixed Goeki before the reaction It was about 1.2 times larger than that.
  • the excitation wavelength was determined for the peak power of the emission spectrum of each emission peak.
  • the fluorescence intensity (excitation wavelength: 496 nm, emission wavelength: 520 nm) was measured for the pre-reaction mixture and the post-reaction reaction end solution. The results were 17.06 (pre-reaction mixture) and 33.95 (reaction end solution), respectively. Yes, it was obvious that the fluorescence intensity increased by about 2 times due to the reaction.
  • the silica sphere A and the silica sphere B prepared by the above-described method have 18.4% and 46.7% of the labeled molecules (fluorescein) bound (labeled), respectively.
  • the utilization rate of FLUOS fluorescein molecule used in the reaction was found to be 65.1%.
  • the labeling rates of silica sphere A and silica sphere B are both Imhofe's paper (A. Imhof, et al., “Spectroscopy or fluorescein (riT) Dyea Colloidal bilica spheres, J. Phys. Chem. B 1999, 103, 1408. -1415), which exceeded the maximum label rate of 13%.
  • the silica sphere A in the sample solution A and the silica sphere B in the sample solution B prepared in (1) were transferred to a transmission electron microscope (Tokushima University School of Medicine) and an ultra high voltage electron microscope (Osaka University Ultra High Voltage Electron Microscope Center). When observed with, particle images with diameters of about 20 and 4 were observed. From this result, it was judged that the diameter of silica sphere A was about 20 mm, and the diameter of silica sphere B was about 4 nm.
  • the diameter of the silica sphere obtained by Imhofb's method is 18 4-305 nm (A. Imhof, et al., Spectroscopy of Fluorescein (FITC) Dyea Colloida 1 Silica Spheres ", J. Phys. Chem. B 1999, 103, 1408-1415).
  • Silica spheres fluorescence intensity of A1 particles 2.0x10- 11 (the number of silica spheres A contained in the sample solution A 2 ml is 4.72X10 "number / 2 ml: fluorescence intensity of the sample solution A 0.03 ml is 143.38), and silica spheres B1 the number of silica spheres B fluorescence intensity of the particles contained in 2.2x10- 13 (sample solution B 2 ml 1.16x10 "/ 2ml: The fluorescence intensity of 0.03ml of sample solution B is 255.10).
  • the fluorescence intensity of one molecule of free fluorescein is 1.8 ⁇ 10-13 (the fluorescence intensity is 957.562 in 10 ml sample of 0.0029 mmol / l).
  • the number of Furuorese Inn molecules contained in the sample because it is 15 5.25Xl0, fluorescence intensity per molecule becomes 1.8X10- 13].
  • the fluorescence intensity of silica sphere A1 particles is 11% of the fluorescence intensity of one molecule of fluorescein.
  • the fluorescence intensity of the silica sphere B1 particle is 1.2 times the fluorescence intensity of one molecule of fluorescein.
  • the volume of the silica spheres A1 particles (particle size 20 nm) are 4.2x10- 18 cm 3, since the number of Furuoresein molecules are Ru contained per one particle is 97 molecules / SiO particles in silica spheres A1 particles
  • silica sphere A has a fluorescence intensity equivalent to 111 molecular weight fluorescein molecule, although it contains 97 molecules of fluorescein molecule (concentration of fluorescein molecule: 38.4 mmol / l) in one particle. It can be said that.
  • the volume of the silica spheres B1 particles (particle size 4 nm) is 3.4x10- 2 ° cm 3, 1 molecule / SiO particles and the possible forces et number of Furuoresein component element included in one particle, silica spheres B1 Of the fluorescein molecule in the particle
  • silica sphere B contains one fluorescein molecule (concentration of fluorescein molecule: 48.9 mmol / l) in one particle, but has a fluorescence intensity corresponding to a 1.2 molecular weight fluorescein molecule. You can hear it.
  • the concentration of fluorescein molecules in one particle of silica sphere obtained by Imhofe's method is 3 ⁇ mmol / 1 (A. Imhof, et al., "Spectroscopy of Fluorescein (FIT) Dyed Colloida 1 Silica Spheres ", J. Phys. Chem. B 1999, 103, 1408-1415). From this, the concentration of fluorescein molecules contained in one particle of silica sphere B (48.9 mmol / l) is 1.58 times that amount.
  • Fluorescence lifetime was measured for the silica sphere A (diameter 20 °) obtained above. Specifically, a sample (an aqueous solution of silica sphere A) is irradiated using pulsed light (nanosecond (nsec) order) that is not stationary light when excited at an excitation wavelength (494 nm). Excited by the pulsed light The intensity of the emitted fluorescent peak was measured. Figure 1 shows the results (fluorescence decay curve) with time on the horizontal axis and emission peak intensity on the vertical axis.
  • the label rate (labeled molecule content) is 18.4% and 46.7%, respectively, 20 nm and 4 nm fluorescein (labeled molecule) -containing silica nanoparticles (particle size: several Several tens of thousands) can be prepared.
  • the number of fluorescein molecules per particle was 1 and 97, respectively, and the concentration of fluorescein molecule per particle calculated was 38.4 mmol / l and 48.9 mmol / l.
  • the fluorescence intensity of the fluorescein molecule per particle was 111 times and 1.2 times that of one free fluorescein molecule, respectively. This is because one molecule of fluoresce in one particle of SiO molecule.
  • the surface of the fluorescein (labeled molecule) -containing silica sphere formed by the above reaction has an OH group as an acceptor group based on the silica compound (tetraethoxysilane) (4) used in the reaction. (OH-based surface modified silica sphere).
  • Example 1 [Fluorescein (labeled molecule) -containing silica particles (diameter 20 nm)] (1st Growth) in an aqueous solution of 1 ml, ethanol 4 ml, tetraethoxysilane (TEOS) 50 ⁇ 1, 27 wt% aqueous ammonia 50 ⁇ 1 were mixed, and then magnetic stirring was performed at room temperature for 24 hours. Then, ultrafiltration (filter: UF disk ⁇ 100 Ultracel RC 100 K NMWL) was performed, washed several times with distilled water, and taken out as silica spheres containing 2nd Growth fluorescein (labeled molecules).
  • TEOS tetraethoxysilane
  • the diameter of the silica sphere was 230 nm, which was about 10 times larger than the diameter of silica sphere A (20 nm).
  • R means fluorescein (labeled molecule)
  • the aqueous solution of silica sphere A (diameter 20 nm) (1st Growth) had a deep yellow color and was stable even after one month.
  • fluorescein molecules are known to emit stable and strong fluorescence under alkaline conditions. Since the solution used for the preparation of silica spheres is strongly alkaline, the results obtained above (strong and stable fluorescence) are attributed to the alkali inside the prepared silica spheres. Conceivable.
  • silica sphere A (diameter: 20 nm) prepared in Example 1 and the silica sphere (diameter: 230 nm) prepared in (1) above were observed with a transmission electron microscope.
  • a transmission electron microscope image of silica sphere A is shown in FIG. 4, and a transmission electron microscope image of silica sphere prepared in (1) is shown in FIG.
  • Silica sphere A prepared in Example 1 (diameter: 20 nm) (1st Growth) (Fig. 4) has a mesoporous shape with irregularities on the surface, whereas the silica sphere prepared in (1) (diameter : 230nm) (2nd Growth) ( Figure 5) had a smooth surface.
  • the sample of the present invention had a fluorescence intensity of 9.8 (excitation wavelength of 484 nm and an emission wavelength of 515 nm), which was clearly about 1/15 of the fluorescence intensity of the control sample.
  • the fluorescence intensity of the sample of the present invention treated with crab dartal aldehyde was decreased. From this decrease in fluorescence intensity (quenching phenomenon), by adding dartal aldehyde, NH
  • FIG. 6 schematically shows the above reaction.
  • the silica spheres are bonded to each other to form large particles by blending the sample solution of the present invention to a predetermined amount (in this case, 0.2 ml), that is, by adjusting the amount of the mixture solution to be blended. It is possible to make a lump (multiple bond).
  • silica spheres bind to each other and It was obvious that a mass of forceballs (multiple bonds) could be formed. That is, it can be said that larger fluorescein (labeled molecule) -containing silica particles can be prepared by the above reaction.
  • the obtained solution was subjected to ultrafiltration (Amicon (registered trademark) stirring cell) (filter; UF disk YM100 Ultracell RC100K NMWL) (sales company: MILLIPORE ⁇ Nominal Molecular Weight Limit (NMWL) : 100 kDa], and filtration and washing with distilled water were repeated several times to prepare fluorescein (labeled molecule) -containing silica spheres.
  • the SH group is derived from the silica compound (MPS) used in the above reaction (SH group surface modified silica sphere), and when this silica sphere was observed with a fluorescence microscope, the fluorescence of fluorescein could be observed ( Figure 7a).
  • Piotin (labeled molecule) -containing silica compound (7) was prepared according to the following formula.
  • R means piotin (labeled molecule).
  • * is a bond with an ester group.
  • D-Biotin-N-hyd is formed by binding biotin (labeled molecule) (shown by R in the formula) and succinimide through an ester bond.
  • silica particles (8) containing piotin and fluorescein as labeling molecules were prepared according to the following formula.
  • R represents a fluorescein molecule
  • R represents a piotin molecule
  • the reaction solution obtained above [Piotin (labeled molecule) -containing silica compound] (7) 2.5 ml and the fluorescein (labeled molecule) -containing silica compound (3) obtained in Example 1
  • TEOS tetraethoxysilane
  • the silica sphere (8) containing piotin-fluorescein (labeled molecule) (8) is present in a form in which piotin is exposed on the surface layer portion just by the incorporation of piotin inside. So it was found to react with avidin. Therefore, the silica sphere (8) containing piotin-fluorescein (labeling molecule) is useful as a fluorescent reagent for detection using the piotin-avidin reaction.
  • a rhodamine (labeled molecule) -containing silica compound was prepared according to the following formula.
  • R means rhodamine (labeled molecule).
  • * indicates the bond with the ester group.
  • succinimidyl ester compound 5-carboxyltetramethylrhodamine formed by binding podamine (labeled molecule) and succinimide via an ester bond.
  • succinimidyl ester (9) (Molecular Probes) is dissolved in 1 ml of DMSO solution, and 3- (aminopropyl) triethoxysilane (APSX 2) is used as a silica compound having an amino group.
  • APSX 2 3- (aminopropyl) triethoxysilane
  • a hydramine (labeled molecule) -containing silica compound (10) comprising an amide bond between the group and an amino group of the silica compound (2) was prepared.
  • Rhodamine (labeled molecule) -containing silica compound (10) force Rhodamine (labeled molecule) -containing silica sphere (12) was prepared according to the following formula.
  • R means rhodamine (labeled molecule).
  • TEOS tetraethoxysilane
  • water 4: 1, volume ratio
  • ammonia water 2 ml of about 30% ammonia water was added to this and left at room temperature with stirring for one day.
  • Rhodamine (labeled molecule) -containing silica compound (10) prepared by the method described in Example 7
  • Dispersed aqueous solution (10 ml) In 4 ml of ethanol, tetraethyl orthosilicate (TEOS) 60 1, water 1.2 ml Rhodamine (labeled molecule) -containing silica spheres (11) were prepared by adding 0.4 ml of 27 wt% aqueous ammonia and reacting at room temperature.
  • Silica spheres were prepared by mixing 15 ml and 1 ml of 27% by weight aqueous ammonia and leaving it agitated for one day. This silica sphere has SH groups derived from MPS as acceptor groups on its surface (SH base surface modified silica spheres). Next, the silica spheres were washed with ethanol, water, and physiological saline using a centrifuge separator.
  • Washed rhodamine-labeled GST-bound SH group surface modified silica spheres were mixed with anti-GST antibody 5 ⁇ 1 fluorescently labeled with 0.2 mg / ml fluorescein isothiocyanate (FITC) and fluorescent microscope The observation was performed. As a result, as shown in Fig. 9b, FITC fluorescence was observed in the silica sphere. This confirmed that the anti-GST antibody was bound to the antigen GST on the silica sphere.
  • FITC fluorescein isothiocyanate

Abstract

A novel method of efficiently and stably preparing a silica sphere containing a desired labeled molecule; a labeled-molecule-containing silica sphere obtained by the method; and a use of the silica sphere as a detection reagent. The labeled-molecule-containing silica sphere (5) is prepared through (a) a step in which a succinimidyl ester compound (1) comprising succinimide and a labeled molecule bonded thereto through an ester bond (-CO-O-) is reacted with a silica compound (2) having an amino group to yield a silica compound (3) containing the labeled molecule and (b) a step in which one of or a combination of two or more of such labeled-molecule-containing silica compounds (3) obtained in the step (a) is reacted with a silica compound (4).

Description

明 細 書  Specification
標識分子含有シリカ球の調製方法  Method for preparing labeled spheres containing labeled molecules
技術分野  Technical field
[0001] 本発明は、検出試薬として有用な標識分子含有シリカ球の製造方法に関する。より 詳細には、本発明は、穏和な条件で、標識分子をシリカ球に安定にまた効率的に固 定できる、標識分子含有シリカ球の調製方法に関する。さらに本発明は力かる方法 によって得られる標識分子含有シリカ球に関する。  The present invention relates to a method for producing a labeled molecule-containing silica sphere useful as a detection reagent. More specifically, the present invention relates to a method for preparing a labeled molecule-containing silica sphere capable of stably and efficiently fixing a labeled molecule to a silica sphere under mild conditions. Furthermore, the present invention relates to a labeled molecule-containing silica sphere obtained by a powerful method.
背景技術  Background art
[0002] 近年、検出試薬として蛍光色素を含む微粒子を利用した生化学的検査手法が各 種研究されており、例えば、ノ ッカード社によりアルファスクリーン技法が商品化され ている(非特許文献 1、特許文献 1〜7)。これは、直径 250應のラテックス製のドナー ビーズ (登録商標)とァクセクタ一ビーズ (登録商標)を使用したものであり、ドナービ ーズとァクセクタ一ビーズが結合した後、ドナービーズをレーザーで励起すると、内部 の蛍光分子からの蛍光で一重項酸素分子が生成し、これがァクセクタ一ビーズ中の 蛍光物質と化学反応して化学発光を生じ、これを観測するというものである。  [0002] In recent years, various biochemical inspection methods using fine particles containing a fluorescent dye as a detection reagent have been studied. For example, the Alpha Screen technique has been commercialized by Nockard (Non-Patent Document 1, Patent documents 1 to 7). This is made using latex donor beads (registered trademark) and axector bead (registered trademark) made of latex with a diameter of 250 mm. When the donor beads and axe beads are bonded, the donor beads are excited with a laser. The singlet oxygen molecule is generated by the fluorescence from the internal fluorescent molecule, and this chemically reacts with the fluorescent substance in the first sector bead to produce chemiluminescence, and this is observed.
[0003] また、上記のビーズ (微粒子)としてシリカ球を用いた検出試薬も研究されており、内 部に蛍光色素分子を入れたシリカ球の製法も各種提案されている。かかるシリカ球は 、内部に保持した蛍光色素分子をシリカで囲った形態を備えており、その結果、外部 因子による消光 (例えば生化学的高分子等による励起エネルギーの吸収)を抑制す ることができるため、高感度な検出試薬として各種の検査に応用されることが期待さ れている。  [0003] In addition, detection reagents using silica spheres as the above beads (fine particles) have been studied, and various methods for producing silica spheres containing fluorescent dye molecules have been proposed. Such silica spheres have a form in which fluorescent dye molecules held inside are surrounded by silica, and as a result, quenching by external factors (for example, absorption of excitation energy by biochemical polymers) can be suppressed. Therefore, it is expected to be applied to various tests as a highly sensitive detection reagent.
[0004] この代表的な試薬の調製方法として、予め 3- (ァミノプロピル)トリエトキシシラン〔APS  As a typical method for preparing this reagent, 3- (aminopropyl) triethoxysilane [APS
: 3—、aminopropyl)tnethoxysilane〕【こ 接フノレォレセインイソテオン" 7 ^ ~~ト〔FITC :flu orescein isothiocyanate]を結合させた APS— FITC〔N- 1- (3- triethoxysilylpropyl)- N ' -fluoresceyl thiourea]を、アンモニアを含むエタノーノレ水溶液中で N- tris(hydroxylm ethyl)methyl-2-aminoethane sulfonic acid (TES)と反応させる方法がある(非特許文 献 2)。この方法によると、高濃度の蛍光色素分子 (FITC)をシリカ球内部に保持させる ことができるが、その一方で、その最大濃度では、シリカ球内部で消光が起こることも 報告されている (非特許文献 2)。また、本発明者らが検討した結果、上記の方法で は、 FITCと APSの結合性は余り高くなぐ製造効率が悪いと共に、得られるシリカ球 の粒子サイズが単一であって、し力も数百ナノメーターと比較大き 、ことがわ力つた。 特許文献 1 : US 4918200 A : 3—, aminopropyl) tnethoxysilane] [this contact with fluorescein isothiocyanate] 7 ^ ~~ to [FITC: flu orescein isothiocyanate] APS— FITC [N- 1- (3-triethoxysilylpropyl)-N ' -fluoresceyl thiourea] is reacted with N-tris (hydroxylmethyl) methyl-2-aminoethanesulfonic acid (TES) in an aqueous ethanol solution containing ammonia (Non-patent Document 2). Concentration of fluorescent dye molecules (FITC) is retained inside the silica sphere On the other hand, it has also been reported that quenching occurs inside the silica sphere at its maximum concentration (Non-patent Document 2). In addition, as a result of investigations by the present inventors, the above-described method has a too high bondability between FITC and APS, resulting in poor production efficiency, and the resulting silica sphere has a single particle size and several forces. Compared to a hundred nanometers, it was powerful. Patent Document 1: US 4918200 A
特許文献 2 : WO 917087 A1  Patent Document 2: WO 917087 A1
特許文献 3 : EP 502060 A1  Patent Document 3: EP 502060 A1
特許文献 4:特開平 5-501611号公報  Patent Document 4: Japanese Patent Laid-Open No. 5-501611
特許文献 5 : US 5252743 A  Patent Document 5: US 5252743 A
特許文献 6 : US 5451683 A  Patent Document 6: US 5451683 A
特許文献 7 : US 5482867 A  Patent Document 7: US 5482867 A
非特許文献 l :Analytica Chimica Acta 1998, 367, 159  Non-patent literature l: Analytica Chimica Acta 1998, 367, 159
特干文献 2 :A.Imhof, et al., "spectroscopy of Fluorescein (FITしノ Dyed Colloidal Silica Spheres", J. Phys. Chem. B 1999, 103, 1408-1415  Special Reference 2: A. Imhof, et al., "Spectroscopy of Fluorescein (FIT)", J. Phys. Chem. B 1999, 103, 1408-1415
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、上記従来技術の課題に鑑みてなされたものであり、所望の標識分子を 含有する標識分子含有シリカ球を、効率的にまた安定して調製するための新規な方 法を提供することを目的とする。また、本発明は、上記の標識分子含有シリカ球を所 望の大きさに調整し製造する方法を提供することを目的とする。さらに本発明は、上 記方法によって得られる標識分子含有シリカ球を提供するとともに、その検出試薬と しての用途を提供することを目的とする。 [0005] The present invention has been made in view of the above-mentioned problems of the prior art, and a novel method for efficiently and stably preparing a labeled molecule-containing silica sphere containing a desired labeled molecule. The purpose is to provide. Another object of the present invention is to provide a method for producing the above-described labeled molecule-containing silica sphere by adjusting it to a desired size. Furthermore, an object of the present invention is to provide a labeled molecule-containing silica sphere obtained by the above method and to provide a use as a detection reagent thereof.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記目的を達成するために日夜鋭意検討して ヽたところ、エステル 結合 (-CO-0-)を介して、標識分子とスクシンイミドとが結合してなるスクシンィミジル エステルイ匕合物 (1)とアミノ基を有するシリカ化合物 (2)とを反応させると、スクシンイミジ ルエステルイ匕合物 (1)のカルボニル基とシリカ化合物 (2)のァミノ基がアミド結合 (-NH- CO-)して、標識分子を含有するシリカ化合物 (標識分子含有シリカ化合物) (3)が得 られること、そして当該標識分子含有シリカ化合物 (3)を更にシリカ化合物 (4)と反応さ せることにより、標識分子を安定して含有するシリカ球が効率的に調製できること、ま たその大きさ (粒径)も自由に調整できることを見いだした。さらに、標識分子含有シリ 力化合物 (3)との反応に使用するシリカ化合物 (4)の種類に応じて、シリカ球の表面に 各種の所望の基 (例えば、 OH基、 SH基、アミン基、 SCN基、エポキシ基、 CNO基など )を導入することができること、そしてかかるシリカ球は、これらの基をァクセプター基と して、各種の機能性分子を結合することができ、多様な反応に適用可能な反応試薬 として有効に使用できることを確認した。 [0006] In order to achieve the above object, the present inventors have intensively studied day and night. As a result, the succinimidyl ester ester formed by binding a labeled molecule and succinimide via an ester bond (-CO-0-) has been studied. When the compound (1) is reacted with an amino group-containing silica compound (2), the carbonyl group of the succinimidyl ester compound (1) and the amino group of the silica compound (2) are bonded with an amide bond (-NH-CO -) To obtain a silica compound containing a labeled molecule (silica compound containing a labeled molecule) (3) And by further reacting the labeled molecule-containing silica compound (3) with the silica compound (4), silica spheres stably containing the labeled molecule can be efficiently prepared, and the size ( It was found that the particle size can be adjusted freely. In addition, depending on the type of silica compound (4) used for the reaction with the labeled molecule-containing silica compound (3), various desired groups (for example, OH group, SH group, amine group, SCN group, epoxy group, CNO group, etc.) can be introduced, and such silica spheres can bind various functional molecules using these groups as acceptor groups, and can be applied to various reactions. It was confirmed that it can be used effectively as a possible reaction reagent.
本発明は力かる知見に基づいて完成したものである。本発明は、下記に掲げる態 様を含むものである:  The present invention has been completed on the basis of strong knowledge. The present invention includes the following modes:
項 1. (a)エステル結合 (-CO-0-)を介して標識分子とスクシンイミドとが結合してなる スクシンィミジルエステルイ匕合物 (1)とアミノ基を有するシリカ化合物 (2)とを反応して、 標識分子含有シリカ化合物 (3)を生成する工程、 Item 1. (a) Succinimidyl ester compound (1) formed by binding of labeled molecule and succinimide via ester bond (-CO-0-) and silica compound having amino group (2 ) To produce a labeled molecule-containing silica compound (3),
及び as well as
(b) (a)の工程で得られる標識分子含有シリカ化合物 (3)を、 1種または 2種以上組み 合わせて、シリカ化合物 (4)と反応する工程  (b) A step of reacting the silica compound (4) with one or more of the labeled molecule-containing silica compounds (3) obtained in the step (a).
を有する、標識分子含有シリカ球 (5)の調製方法。 A method for preparing a labeled molecule-containing silica sphere (5).
項 2.上記アミノ基を有するシリカ化合物 (2)として、 3- (ァミノプロピル)トリエトキシシラ ンまたは 3-[2-(2-アミノエチルァミノ)ェチルァミノ]プロピル-トリエトキシシランを用い ることを特徴とする、項 1記載の標識分子含有シリカ球の調製方法。 Item 2. As the silica compound having an amino group (2), 3- (aminopropyl) triethoxysilane or 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane should be used. Item 2. A method for preparing a labeled molecule-containing silica sphere according to Item 1.
項 3.上記シリカ化合物 (4)として、テトラエトキシシラン、 γ—メルカプトプロピルトリエト キシシラン、ァミノプロピルトリエトキシシラン、 3-チオシアナトプロピルトリエトキシシラ ン、 3-グリシジルォキシプロピルトリエトキシシラン、 3-イソシアナトプロピルトリエトキシ シラン、及び 3-[2-(2-アミノエチルァミノ)ェチルァミノ]プロピル-トリエトキシシランより なる群力 選択されるいずれか少なくとも 1つのシリカ化合物を用いることを特徴とす る、項 1または 2に記載する標識分子含有シリカ球の調製方法。 Item 3. The silica compound (4) includes tetraethoxysilane, γ-mercaptopropyltriethoxysilane, aminopropyltriethoxysilane, 3-thiocyanatopropyltriethoxysilane, and 3-glycidyloxypropyltriethoxysilane. A group power consisting of 3-isocyanatopropyltriethoxysilane and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane, wherein at least one silica compound selected from the group forces is used. Item 3. The method for preparing a labeled molecule-containing silica sphere according to Item 1 or 2.
項 4. (b)の工程を、水、アルコール、及びアンモニアの存在下で行うことを特徴とす る、項 1乃至 3のいずれかに記載の標識分子含有シリカ球の調製方法。 項 5.水とアルコールの容量比が 1 : 0.5〜1 : 8であることを特徴とする項 4に記載する 標識分子含有シリカ球の調製方法。 Item 4. The method for preparing a labeled molecule-containing silica sphere according to any one of Items 1 to 3, wherein the step (b) is performed in the presence of water, alcohol, and ammonia. Item 5. The method for preparing a labeled molecule-containing silica sphere according to Item 4, wherein the volume ratio of water to alcohol is 1: 0.5 to 1: 8.
項 6.項 1乃至 5のいずれか 1項に記載の方法によって得られる標識分子含有シリカ 球。 Item 6. A labeled molecule-containing silica sphere obtained by the method according to any one of Items 1 to 5.
項 7.項 1乃至 5の 、ずれか 1項に記載の方法で得られた標識分子含有シリカ球を、 さらに、工程 (b)で用いたシリカ化合物 (4)と異なるシリカ化合物 (4)で処理する工程を 有する、標識分子含有シリカ球の調製方法。 Item 7. The labeled molecule-containing silica sphere obtained by the method according to Item 1 of Item 1 to Item 5 is further converted to a silica compound (4) different from the silica compound (4) used in step (b). A method for preparing a labeled molecule-containing silica sphere, comprising a treatment step.
項 8.項 7に記載の方法によって得られる標識分子含有シリカ球。 Item 8. A labeled molecule-containing silica sphere obtained by the method according to Item 8.
項 9.項 6または 8に記載する標識分子含有シリカ球の表面に、ペプチド、蛋白質、遺 伝子、微生物、カップリング剤、ピオチン、アビジン、または標識分子が結合してなる シリカ球。 Item 9. A silica sphere obtained by binding a peptide, protein, gene, microorganism, coupling agent, piotin, avidin, or a labeled molecule to the surface of the labeled molecule-containing silica sphere described in Item 9.
項 10.項 1乃至 5のいずれか 1項に記載の方法で得られた標識分子含有シリカ球を 、さらに Item 10. A labeled molecule-containing silica sphere obtained by the method according to any one of Items 1 to 5, and
(c)必要に応じて、工程 (b)で用いたシリカ化合物 (4)と異なるシリカ化合物 (4)で処理 する工程を有する、及び  (c) optionally having a step of treating with a silica compound (4) different from the silica compound (4) used in step (b); and
(d)標識分子含有シリカ球のァクセプター基に応じたカップリング剤を用いて、標識 分子含有シリカ球同士を結合させる工程  (d) A step of bonding the labeled molecule-containing silica spheres together using a coupling agent according to the acceptor group of the labeled molecule-containing silica spheres.
を有する、標識分子含有シリカ球の多重結合物を調製する方法。 A method for preparing a multiple bond of labeled spheres containing labeled molecules.
項 11.項 10に記載する方法によって得られる標識分子含有シリカ球の多重結合物。 以下、本発明を詳細に説明する。 Item 11. A multi-bond product of labeled spheres containing labeled molecules obtained by the method according to item 10. The present invention will be described in detail below.
(1)標識分子含有シリカ球の調製方法  (1) Preparation method of labeled spheres containing labeled molecules
本発明の標識分子含有シリカ球の調製方法は、下記 (a)及び (b)の工程を有する ことを特徴とする。  The method for preparing a labeled molecule-containing silica sphere of the present invention is characterized by having the following steps (a) and (b).
(a)エステル結合 (-CO-0-)を介して標識分子とスクシンイミドとが結合してなるスク シンィミジルエステルイ匕合物 (1)とアミノ基を有するシリカ化合物 (2)とを反応させて、標 識分子含有シリカ化合物 (3)を生成する工程、  (a) A succinimidyl ester compound (1) obtained by binding a labeled molecule and succinimide through an ester bond (-CO-0-) and a silica compound (2) having an amino group. A step of reacting to produce a labeling molecule-containing silica compound (3),
及び as well as
(b) (a)で得られた標識分子含有シリカ化合物 (3)を、シリカ化合物 (4)と反応させて標 識分子含有シリカ球 (5)を形成する工程。 (b) The labeled molecule-containing silica compound (3) obtained in (a) is reacted with the silica compound (4) to produce a standard. Forming a silica sphere (5) containing a sensing molecule.
[0009] 上記 (a)の工程にぉ 、て使用されるスクシンィミジルエステルイ匕合物 (1)としては、下 記の一般式で示される化合物を例示することができる。 [0009] Examples of the succinimidyl ester compound (1) used in the step (a) include compounds represented by the following general formula.
[0010] [化 1] [0010] [Chemical 1]
Figure imgf000006_0001
Figure imgf000006_0001
[0011] ここで、 Rは標識分子を意味する。より詳細には、 Rは、下式に示すように、エステル 結合 (-CO-0-)を介してスクシンイミドと結合することができるものである。 [0011] Here, R means a labeled molecule. More specifically, R can be bonded to succinimide via an ester bond (-CO-0-) as shown in the following formula.
[0012] [化 2] [0012] [Chemical 2]
Figure imgf000006_0002
Figure imgf000006_0002
[0013] (式中、 Rは標識分子、 R'は水素原子または任意の基を意味する。 )  [Wherein R represents a labeled molecule, R ′ represents a hydrogen atom or an arbitrary group.]
具体的には、 Rとしては、上記式に示すように、側鎖として- COOR'基 (R'は水素 原子または任意の基を意味する)を結合することによってカルボン酸またはその誘導 体を形成するものを挙げることができる。上記において化合物(0)として示されるカル ボン酸またはその誘導体としては、例えば、 5-カルボキシ-フルォレセイン、 6-カルボ キシ-フルォレセイン、 5(6)-カルボキシ-フルォレセイン、 6-カルボキシ- 2 ' ,4,4' , 5 ' ,7, 7,-へキサクロ口フルォレセイン、 6-カルボキシ -2,,4,7,7,-テトラクロ口フルォレセイン 、 6-カルボキシ- 4,, 5,-ジクロロ- 2,, 7,-ジメトキシフルォレセイン、 5-カルボキシ-ロー ダミン、 6-カルボキシ-ローダミン、 5(6)-カルボキシ-ローダミン、 Alexa Fluor 350カル ボン酸、 Alexa Fluor 405カルボン酸、 Alexa Fluor 430カルボン酸、 Alexa Fluor 488 カルボン酸、 Alexa Fluor 500カルボン酸、 Alexa Fluor 514カルボン酸、 Alexa Fluor 5 32カルボン酸、 Alexa Fluor 546カルボン酸、 Alexa Fluor 555カルボン酸、 Alexa Fluo r 568カルボン酸、 Alexa Fluor 594カルボン酸、 Alexa Fluor 610カルボン酸、 Alexa Fluor 633カルボン酸、 Alexa Fluor 647カルボン酸、 Alexa Fluor 660カルボン酸、 Ale xa Fluor 680カルボン酸、 Alexa Fluor 700カルボン酸、 Alexa Fluor 750カルボン酸 、ビォチン等の色素; 3- carboxy TEMPO (4- carboxy- 2,2,6,6- tetramethylpiperidine 1 — oxy)、 3— carboxy PROXYL [3— (carboxy)— 2,2,5,5— tetramethyl—l—piperidinyloxy)等の フリ ~~フン力ノレ; ethylenediaminetetraacetic acid, iron(III) sodium salt hydrate、 ethyle nediaminetetraacetic acid, iron(II) acetate等 举げ oこと力できる。 Specifically, as shown in the above formula, R forms a carboxylic acid or a derivative thereof by bonding a -COOR 'group (R' means a hydrogen atom or an arbitrary group) as a side chain. Can be listed. Examples of the carboxylic acid or its derivative shown as the compound (0) in the above include 5-carboxy-fluorescein, 6-carboxy-fluorescein, 5 (6) -carboxy-fluorescein, 6-carboxy-2 ′, 4 , 4 ', 5', 7,7, -Hexaclo oral fluorescein, 6-carboxy-2,4,7,7, -Tetrachloro oral fluorescein, 6-carboxy-4,5, -dichloro-2, 7, -dimethoxyfluorescein, 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5 (6) -carboxy-rhodamine, Alexa Fluor 350 carboxylic acid, Alexa Fluor 405 carboxylic acid, Alexa Fluor 430 carboxylic acid, Alexa Fluor 488 carboxylic acid, Alexa Fluor 500 carboxylic acid, Alexa Fluor 514 carboxylic acid, Alexa Fluor 5 32 carboxylic acid, Alexa Fluor 546 carboxylic acid, Alexa Fluor 555 carboxylic acid, Alexa Fluo r 568 carboxylic acid, Alexa Fluor 594 carboxylic acid, Alexa Fluor 610 carboxylic acid, Alexa Fluor 633 carboxylic acid, Alexa Fluor 647 carboxylic acid, Alexa Fluor 660 carboxylic acid, Ale xa Fluor 680 carboxylic acid, Alexa Fluor 700 carboxylic acid, Alexa Fluor 750 Dye such as carboxylic acid and biotin; 3-carboxy TEMPO (4-carboxy-2,2,6,6-tetramethylpiperidine 1 — oxy), 3—carboxy PROXYL [3— (carboxy) — 2,2,5,5 — Tetramethyl-l-piperidinyloxy), etc .; ethylenediaminetetraacetic acid, iron (III) sodium salt hydrate, ethylenediaminetetraacetic acid, iron (II) acetate, etc.
[0014] なお、本発明の工程 (a)で用いるスクシンィミジルエステルイ匕合物 (1)は、上記式に 示すように、カルボン酸またはその誘導体〔ィ匕合物 (0)〕と N—ヒドロキシスクシンイミドと を定法に従ってエステルイ匕反応することによって調製することができる。但し、簡便に は商業的に入手することも可能である。  [0014] The succinimidyl ester compound (1) used in the step (a) of the present invention is a carboxylic acid or a derivative thereof [compound (0)] as shown in the above formula. And N-hydroxysuccinimide can be prepared by esterification according to a conventional method. However, it can also be obtained commercially.
[0015] スクシンィミジルエステルイ匕合物 (1)として具体的には、上記カルボン酸またはその 誘導体〔化合物 (1)〕に対応して、 5-スクシンィミジルエステル-フルォレセイン、 6-スク シンィミジルエステル-フルォレセイン、 5(6)-スクシンィミジルエステル-フルォレセィ ン、 6-スクシンィミジルエステル- 2 ' , 4,4' , 5 ' , 7,7' -へキサクロ口フルォレセイン、 6-スク シンィミジルエステル- 2 ' ,4,7,7' -テトラクロ口フルォレセイン、 6-スクシンィミジルエス テル- 4,,5,-ジクロロ- 2,,7,-ジメトキシフルォレセイン、 5-スクシンィミジルエステル- ローダミン、 6-スクシンィミジルエステル-ローダミン、 5(6)-スクシンィミジルエステル- ローダミン、スクシンィミジルエステル- Alexa Fluor 350、スクシンィミジルエステル- Al exa Fluor 405、スクシンィミジルエステル- Alexa Fluor 430、スクシンィミジルエステル -Alexa Fluor 488、スクシンィミジルエステル- Alexa Fluor 500、スクシンィミジルエス テル- Alexa Fluor 514、スクシンィミジルエステル- Alexa Fluor 532、スクシンィミジル エステル- Alexa Fluor 546、スクシンィミジルエステル- Alexa Fluor 555、スクシンイミ ジルエステル- Alexa Fluor 568、スクシンィミジルエステル- Alexa Fluor 594、スクシン ィミジルエステル- Alexa Fluor 610、スクシンィミジルエステル- Alexa Fluor 633、スク シンィミジルエステル- Alexa Fluor 647、スクシンィミジルエステル- Alexa Fluor 660、 スクシンィミジルエステル- Alexa Fluor 680、スクシンィミジルエステル- Alexa Fluor 70 0、スクシンィミジルエステル- Alexa Fluor 750、スクシンィミジルエステル-ビォチン; 3-スクシンィミジルエステル- TEMPO、 3-スクシンィミジルエステル- PROXYL ;N- sue cinimidyl ester- ethyleneaiaminetetraacetic acid, lron(III) sodium salt hydrate、 N- su ccinimidyl ester- ethylenediaminetetraacetic acid, iron(II) acetate等を挙げること力 Sで きる。 [0015] Specifically, as the succinimidyl ester compound (1), 5-succinimidyl ester-fluorescein, corresponding to the carboxylic acid or derivative thereof [compound (1)], 6 -Succinimidyl ester-fluorescein, 5 (6) -succinimidyl ester-fluorescein, 6-succinimidyl ester-2 ', 4,4', 5 ', 7,7' Fluorescein, 6-succinimidyl ester-2 ', 4,7,7'-Tetrachrome mouth fluorescein, 6-succinimidyl ester-4,5,5-dichloro-2,7, -dimethoxyfur Olethein, 5-succinimidyl ester-rhodamine, 6-succinimidyl ester-rhodamine, 5 (6) -succinimidyl ester-rhodamine, succinimidyl ester-Alexa Fluor 350, succini Midyl ester-Al exa Fluor 405, Succini Dilester-Alexa Fluor 430, Succinimidyl ester -Alexa Fluor 488, Succinimidyl ester-Alexa Fluor 500, Succinimidyl ester-Alexa Fluor 514, Succinimidyl ester-Alexa Fluor 532, Succinimidyl Esters-Alexa Fluor 546, Succinimidyl ester-Alexa Fluor 555, Succinimidyl ester-Alexa Fluor 568, Succinimidyl ester-Alexa Fluor 594, Succinimidyl ester-Alexa Fluor 610, Succinimidyl ester-Alexa Fluor 633 , Succinimidyl ester-Alexa Fluor 647, Succinimidyl ester-Alexa Fluor 660, Succinimidyl ester-Alexa Fluor 680, Succinimidyl ester-Alexa Fluor 70 0, Succinimidyl ester-Alexa Fluor 750, succinimidyl ester-biotin; 3-succinimidyl ester- TEMPO, 3-succinimidyl ester- PROXYL; N- sue cinimidyl ester- ethyleneaiaminetetraacetic acid, lron (III) sodium salt hydrate, N- su ccinimidyl ester- ethylenediaminetetraacetic acid, iron (II) Ability to raise acetate etc.
[0016] アミノ基を有するシリカ化合物 (2)としては、特に制限されないが、例えば 3- (アミノブ 口ピル)トリエトキシシラン、 3- [2- (2-アミノエチルァミノ)ェチルァミノ]プロピル-トリエトキ シシラン、 N- 2 (アミノエチル) 3-ァミノプロピルメチルジメトキシシラン、 3-ァミノプロピ ルトリメトキシシランを挙げることができる。  [0016] The silica compound (2) having an amino group is not particularly limited, and examples thereof include 3- (aminobutylpyr) triethoxysilane, 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxy. Examples include silane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, and 3-aminopropyltrimethoxysilane.
[0017] スクシンィミジルエステルイ匕合物 (1)とアミノ基を有するシリカ化合物 (2)との反応は、 DMSOや水等の溶媒に溶解した後、室温条件下で攪拌しながら反応することによつ て行うことができる。反応に使用するスクシンィミジルエステルイ匕合物 (1)とシリカ化合 物 (2)との割合は特に制限されな ヽが、好適にはスクシンィミジルエステルイ匕合物 (1): シリカ化合物 (2)= 1 : 0.5〜4 (モル比)の範囲、より好適には 1: 1〜2 (モル比)の割合を 挙げることができる。  [0017] The reaction between the succinimidyl ester compound (1) and the silica compound having an amino group (2) is performed by dissolving in a solvent such as DMSO or water and stirring at room temperature. It can be done by doing. The ratio of the succinimidyl ester compound (1) and the silica compound (2) used in the reaction is not particularly limited, but preferably the succinimidyl ester compound (1 ): Silica compound (2) = 1: 0.5 to 4 (molar ratio), more preferably 1: 1 to 2 (molar ratio).
[0018] 斯くして、スクシンィミジルエステルイ匕合物 (1)のカルボ-ル基と、アミノ基を有するシ リカ化合物 (2)のァミノ基とが、アミド結合 (-NH-CO-)して、標識分子含有シリカ化合 物 (3)が生成する。すなわち当該標識分子含有シリカ化合物 (3)は、アミド結合を介し て標識分子とシリカ化合物が結合してなる態様を有している。  [0018] Thus, the carbo group of the succinimidyl ester compound (1) and the amino group of the silica compound (2) having an amino group are bonded to an amide bond (-NH-CO -) To produce the labeled molecule-containing silica compound (3). That is, the labeled molecule-containing silica compound (3) has an embodiment in which the labeled molecule and the silica compound are bonded via an amide bond.
[0019] 次 、で工程 (b)で、当該標識分子含有シリカ化合物 (3)をシリカ化合物 (4)と反応さ せる。ここで使用されるシリカ化合物 (4)としては、特に制限はされないが、テトラエトキ シシラン、 γ—メルカプトプロピルトリエトキシシラン、ァミノプロピルトリエトキシシラン、 3-チオシアナトプロピルトリエトキシシラン、 3-グリシジルォキシプロピルトリエトキシシ ラン、 3-イソシアナトプロピルトリエトキシシラン、及び 3-[2-(2-アミノエチルァミノ)ェチ ルァミノ]プロピル-トリエトキシシランを挙げることができる。  Next, in step (b), the labeled molecule-containing silica compound (3) is reacted with the silica compound (4). The silica compound (4) used here is not particularly limited, but includes tetraethoxysilane, γ-mercaptopropyltriethoxysilane, aminopropyltriethoxysilane, 3-thiocyanatopropyltriethoxysilane, 3-glycidyl. Mention may be made of oxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane.
[0020] 標識分子含有シリカ化合物 (3)とシリカ化合物 (4)の割合は、特に制限されないが、 標識分子含有シリカ化合物 (3)1モルに対するシリカ化合物 (4)のモル比として、 100 〜40000、好まし <は 300〜20000、より好まし <は 500〜10000、さらに好まし <は 600〜7000を挙げ、ること力 Sできる。 [0021] この反応は、アルコール、水及びアンモニアの存在下で行われる。ここでアルコー ルとしてはメタノール、エタノール、プロパノール等の炭素数 1〜3の低級アルコール を挙げることができる。 [0020] The ratio of the labeled molecule-containing silica compound (3) and the silica compound (4) is not particularly limited, but the molar ratio of the silica compound (4) to 1 mole of the labeled molecule-containing silica compound (3) is 100 to 40000. Preferable <is 300 to 20000, more preferable <is 500 to 10000, and more preferable <is 600 to 7000. [0021] This reaction is carried out in the presence of alcohol, water and ammonia. Examples of the alcohol include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol.
[0022] 力かる反応系における水とアルコールの割合は、特に制限されないが、好ましくは 水 1容量部に対してアルコールを 0.5〜8容量部、好ましくは 1〜5容量部、より好まし くは 1〜2容量部の範囲を挙げることができる。アンモニアの量も特に制限されないが 、例えば、反応させる標識分子含有シラン化合物 1モルに対して、モル比で、 200〜 250000、好ましくは 400〜 150000、より好ましくは 2500〜25000の割合を挙げる ことができる。  [0022] The ratio of water and alcohol in the powerful reaction system is not particularly limited, but preferably 0.5 to 8 parts by volume of alcohol, preferably 1 to 5 parts by volume, more preferably 1 part by volume of water. The range of 1-2 volume parts can be mentioned. Although the amount of ammonia is not particularly limited, for example, a molar ratio of 200 to 250000, preferably 400 to 150,000, more preferably 2500 to 25000 can be mentioned with respect to 1 mol of the labeled molecule-containing silane compound to be reacted. it can.
[0023] この反応は室温で行うことができ、また攪拌しながら行うことが好ま 、。通常、数十 分〜数十時間の反応で、目的の標識分子を含有するシリカ球 (5)を調製することがで きる。  [0023] This reaction can be performed at room temperature, and is preferably performed with stirring. Usually, the silica sphere (5) containing the target labeled molecule can be prepared by reaction for several tens of minutes to several tens of hours.
[0024] なお、当該工程 (b)において、使用するシリカ化合物 (4)の濃度を調整したり、反応 時間を調整することにより、調製するシリカ球の大きさ(直径)を適宜調節することがで きる。使用するシリカ化合物 (4)の濃度を多くしたり、また反応時間を長くすることにより 、より大きいシリカ球を調製することができる(例えば、 Blaaderen et al., "Synthesis an d Characyerization of Monodisperse Collidal Organo- silica Spheres", J. Colloid and Interface Science 156, 1-18.1993参照)。また工程(b)を複数回、繰り返し行うことに よっても、より大きなシリカ球を調製することができる。このように本発明の方法によれ ば、得られる標識分子含有シリカ球のサイズ (直径)を、所望の大きさに、例えば nm オーダーから mオーダーへと自在に調整することができる。具体的には、本発明の 方法によれば、後述の実施例 1に示すように、数〜数十 nmサイズ、具体的には 3〜3 Onmといった微小な大きさを有する標識分子含有シリカ球を調製することも可能であ る。また必要に応じて、その後の処理により希望する粒子径分布となるように調整す ることもでき、斯くして所望の粒子径分布範囲にあるシリカ球を得ることもできる。  [0024] In the step (b), the size (diameter) of the silica spheres to be prepared can be appropriately adjusted by adjusting the concentration of the silica compound (4) used or adjusting the reaction time. it can. Larger silica spheres can be prepared by increasing the concentration of the silica compound (4) used or increasing the reaction time (eg Blaaderen et al., “Synthesis an d Characyerization of Monodisperse Collidal Organo -silica Spheres ", J. Colloid and Interface Science 156, 1-18.1993). Also, larger silica spheres can be prepared by repeating step (b) a plurality of times. Thus, according to the method of the present invention, the size (diameter) of the obtained labeled molecule-containing silica sphere can be freely adjusted to a desired size, for example, from the nm order to the m order. Specifically, according to the method of the present invention, as shown in Example 1 described later, the labeled molecule-containing silica sphere having a size of several to several tens of nm, specifically 3 to 3 Onm. It is also possible to prepare. Further, if necessary, it can be adjusted to a desired particle size distribution by subsequent treatment, and thus silica spheres in a desired particle size distribution range can be obtained.
[0025] このようにして得られる標識分子含有シリカ球は、必要に応じて、限界濾過膜などの 慣用の方法を利用して共存イオンや共存する不要物を除いて精製してもよい。  [0025] The labeled molecule-containing silica spheres thus obtained may be purified by removing conventional coexisting ions and unnecessary coexisting substances using a conventional method such as ultrafiltration membrane, if necessary.
[0026] 後述する実施例 1に示すように、本発明の方法を用いて標識分子をシリカ球内に固 定若しくは包含させると、フリーの標識分子よりも感度を上げることができる。また、本 発明の方法によると、標識分子として蛍光色素分子を使用した場合でも、自己消光 を起こすことなく、多くの標識分子 (蛍光色素分子)をシリカ球内に固定もしくは包含さ せることができる。このため、本発明の方法によると、微小な領域でも使用可能な、高 感度な検出試薬を提供することが可能である。 [0026] As shown in Example 1 to be described later, the labeled molecule is immobilized in the silica sphere by using the method of the present invention. When fixed or included, the sensitivity can be increased more than that of a free labeled molecule. In addition, according to the method of the present invention, even when a fluorescent dye molecule is used as a labeling molecule, many labeling molecules (fluorescent dye molecules) can be fixed or included in the silica sphere without causing self-quenching. . Therefore, according to the method of the present invention, it is possible to provide a highly sensitive detection reagent that can be used even in a minute region.
[0027] (2)標識分子含有シリカ球  [0027] (2) Silica spheres containing labeled molecules
シリカは、一般に、化学的に不活性であると共に、その修飾が容易であることが知ら れて 、る。上記(1)で説明した方法で調製される本発明の標識分子含有シリカ球もま た、容易に所望の分子を表面に結合させることが可能であり、またその表面をメソポ 一ラスや平滑状にすることもできる。  Silica is generally known to be chemically inert and easy to modify. The labeled molecule-containing silica sphere of the present invention prepared by the method described in (1) above can also easily bind a desired molecule to the surface, and the surface can be mesoporous or smooth. It can also be.
[0028] 具体的には、本発明の標識分子含有シリカ球の調製方法によれば、上記工程 (b) で使用するシリカ化合物 (4)の種類に応じて、所望の分子と結合可能なァクセプター 基を表面に有する標識分子含有シリカ球 (表面修飾 標識分子含有シリカ球)を提 供することができる。反応に使用するシリカ化合物 (4)と、それによつて得られる標識分 子含有シリカ球の表面に形成されたァクセプター基との関係を表 1に示す。  [0028] Specifically, according to the method for preparing a labeled molecule-containing silica sphere of the present invention, an acceptor capable of binding to a desired molecule according to the type of the silica compound (4) used in the step (b). A labeled molecule-containing silica sphere having a group on the surface (surface-modified labeled molecule-containing silica sphere) can be provided. Table 1 shows the relationship between the silica compound (4) used for the reaction and the acceptor group formed on the surface of the labeled molecule-containing silica sphere obtained thereby.
[0029] [表 1] シリカ化合物 (4) シリ力球表面に形成されるァクセプター  [0029] [Table 1] Silica compound (4) Acceptor formed on the surface of Siri-ball
OH基  OH group
SH基  SH group
NH2 2 NH
Figure imgf000010_0001
S CN基
Figure imgf000010_0002
Figure imgf000010_0001
S CN group
Figure imgf000010_0002
[0030] なお、上記(1)の方法によって得られる標識分子含有シリカ球 (5)について、反応に 使用したシリカ化合物 (4)によって表面に導入されるァクセプター基とは異なるァクセ プタ一基を導入したい場合には、当該標識分子含有シリカ球 (5)を、さらに工程 (b)で 使用したシリカ化合物 (4)とは異なるシリカ化合物で処理する。この処理は、工程 (b) で使用したシリカ化合物 (4)とは異なるシリカ化合物を用いて、上記工程 (b)と同様な 操作を行うことにより実施することができる。 [0031] このような方法により調製される本発明の標識分子含有シリカ球 (表面修飾 標識 分子含有シリカ球)は、表面に有するァクセプター基の種類に応じて所望の分子〔例 えば、ペプチド、蛋白質、遺伝子 (RNA、 DNAなどのポリ若しくはオリゴヌクレオチド )、微生物、カップリング剤、ピオチンやアビジン、標識分子など〕を表面に結合させる ことができる。その一例を示せば、例えば、 OH基を有する表面修飾—標識分子含有 シリカ球は、シラン結合 (-Si-0-Si-)を介して、その表面に各種のシリカ化合物〔例え ば、上記シリカ化合物 (4)など〕を; SH基を有する表面修飾 標識分子含有シリカ球 は、ジスルフイド結合 (-S-S-)、チォエステル結合、またはチオール置換反応を介し た結合を介して、その表面にペプチド、蛋白質、遺伝子などを: NH基を有する表面 [0030] For the labeled molecule-containing silica sphere (5) obtained by the method (1), an acceptor group different from the acceptor group introduced onto the surface by the silica compound (4) used in the reaction was introduced. If so, the labeled molecule-containing silica sphere (5) is further treated with a silica compound different from the silica compound (4) used in step (b). This treatment can be performed by performing the same operation as in the above step (b) using a silica compound different from the silica compound (4) used in the step (b). [0031] The labeled molecule-containing silica sphere of the present invention (surface-modified labeled molecule-containing silica sphere) prepared by such a method has a desired molecule [eg, peptide, protein, depending on the type of acceptor group on the surface. , Genes (poly or oligonucleotides such as RNA and DNA), microorganisms, coupling agents, piotin, avidin, and labeled molecules) can be bound to the surface. As an example, for example, a surface-modified-labeled-molecule-containing silica sphere having an OH group is formed on the surface of various silica compounds [for example, the silica described above via a silane bond (-Si-0-Si-). Compound (4), etc.] Surface modification with SH groups Labeled molecule-containing silica spheres can be converted to peptides, proteins on their surface via bonds via disulfide bonds (-SS-), thioester bonds, or thiol substitution reactions. , Genes, etc .: surfaces with NH groups
2  2
修飾 標識分子含有シリカ球は、アミド結合やチォゥレア結合を介して、その表面に ペプチドや蛋白質等を; SCN基を有する表面修飾 標識分子含有シリカ球は、チォ ゥレア結合を介して、その表面にペプチドや蛋白質等を;エポキシ基を有する表面修 飾 標識分子含有シリカ球は、アミド結合を介して、その表面にペプチドや蛋白質等 を; CNO基を有する表面修飾 標識分子含有シリカ球は、アミド結合を介して、その 表面にペプチドや蛋白質等を、それぞれ結合することができる。  Modified Labeled molecule-containing silica spheres have peptides, proteins, etc. on their surfaces via amide bonds or cheaure bonds; surface-modified silica molecules containing SCN groups have peptide molecules on their surfaces via chearea bonds Surface modification with epoxy group Labeled molecule-containing silica spheres have peptide or protein on the surface via amide bond; Surface modification with CNO group Labeled molecule-containing silica sphere has amide bond Thus, peptides, proteins, and the like can be respectively bound to the surface.
[0032] このため、例えば溶液中に拡散して低濃度で存在する分子であっても、本発明の 標識分子含有シリカ球 (表面修飾 標識分子含有シリカ球)によれば、その表面に 結合させて濃縮することができ、こうすることでシリカ球上でこれらの分子を高感度に 検出することが可能となる。  Therefore, for example, even a molecule that diffuses in a solution and exists at a low concentration is bound to the surface according to the labeled molecule-containing silica sphere (surface modified labeled molecule-containing silica sphere) of the present invention. This makes it possible to detect these molecules on silica spheres with high sensitivity.
[0033] このようにして修飾標識分子含有シリカ球に結合したペプチド、蛋白質、または遺 伝子などの分子は、更にそれ自体がァクセプター分子となって、例えば抗原 抗体 反応、ピオチン アビジン反応、塩基配列の相同性を利用したハイブリダィゼーショ ンなどの特異的な反応を利用して、更に所望の分子を結合させることもできる。  [0033] Molecules such as peptides, proteins, or genes bound to the modified labeled molecule-containing silica spheres as such become further acceptor molecules such as antigen-antibody reaction, piotin-avidin reaction, base sequence, and the like. Further, a desired molecule can be bound by utilizing a specific reaction such as hybridization utilizing the homology of each other.
[0034] このような方法により調製される本発明の標識分子含有シリカ球 (表面修飾 標識 分子含有シリカ球)は、その微小な形状、包容性、表面修飾特性から、各種の応用技 術へのより多様な適用が可能となる。  [0034] The labeled molecule-containing silica sphere of the present invention (surface-modified labeled molecule-containing silica sphere) prepared by such a method can be applied to various applied technologies due to its fine shape, inclusion, and surface modification characteristics. More diverse applications are possible.
[0035] 例えば、その微小な形状から、ウィルスや細菌と 、つた微生物、動物の細胞の模擬 物を構成することが可能である。例えばウィルス等の表面蛋白を本発明の標識分子 含有シリカ球の表面に結合させることによって、外殻はそのウィルスと類似するが、遺 伝子を持たな 、「偽ウィルス」を作成することができる。これはアジュバンドなどを必要 とすることなぐ動物の免疫化やワクチンの調製に応用できる可能性がある。また、内 部に蛍光を含有させた「偽ウィルス」と、国際公開公報 (WO 03/060519)に記載の「 凝集反応の測定方法」の技術を用いて抗体価の測定を行うことも可能である。 [0035] For example, it is possible to construct a mimic of a virus, a bacterium, a living microorganism, or an animal cell from its minute shape. For example, a surface protein such as a virus is labeled with the labeled molecule of the present invention. By binding to the surface of the containing silica spheres, the outer shell resembles the virus, but without the gene, a “pseudovirus” can be created. This could be applied to animal immunization and vaccine preparation without the need for adjuvants. It is also possible to measure the antibody titer using the “pseudovirus” containing fluorescence inside and the “aggregation measurement method” technique described in International Publication (WO 03/060519). is there.
[0036] 更に、ウィルスの臓器特異的感染能を用いて「偽ウィルス」をドラッグデリバリーの手 段として用いることも可能である。  [0036] Furthermore, "pseudovirus" can be used as a means for drug delivery using the organ-specific infectivity of viruses.
[0037] また、本発明の標識分子含有シリカ球の表面に抗体や T細胞レセプターを結合さ せることにより、 B細胞や T細胞と類似した「免疫シリカ球」を作成することも可能であ る。これは単に研究のみならず、癌や免疫疾患に対する診断や治療にも応用するこ とができる。更に、本発明の標識分子含有シリカ球においてレセプターやシグナル分 子、遺伝子発現システムの再構成が可能になれば、インスリンを分泌する脾臓 j8細 胞を人工的に再現した細胞など「シリカ( β )細胞」〖こも利用できると考えられる。  [0037] It is also possible to create "immunosilica spheres" similar to B cells and T cells by binding antibodies and T cell receptors to the surface of the labeled molecule-containing silica spheres of the present invention. . This can be applied not only to research but also to diagnosis and treatment of cancer and immune diseases. Furthermore, if the receptor, signal molecule, and gene expression system can be reconfigured in the labeled molecule-containing silica sphere of the present invention, cells that artificially reproduce spleen j8 cells that secrete insulin such as “silica (β) It is thought that “cells” can also be used.
[0038] 本発明の標識分子含有シリカ球は、その表面修飾特性 (ァクセプター基)に基づ!/ヽ て、任意の蛋白質や遺伝子などの物質を結合し、そして、その機能を表面に提示す るという性質を有することができる。かかる結合特性は、単に所望の分子を結合させる ことによって機能が付加できるという側面に留まらず、任意の蛋白質や遺伝子などの 物質をシリカ球の表面に濃縮できるという面においても有用である。例えば、多段階 反応を触媒する多種の酵素をシリカ球上に結合させ、且つ濃縮させることによって反 応効率を向上させることも可能であるし (反応強化シリカ球)、また抗体をシリカ球上 にて多重化させることにより結合特性を向上させることも可能である(結合強化シリカ 球)。また、抗原で表面修飾した本発明の標識分子含有シリカ球に抗体を結合させ て濃縮する方法、アビジンを表面修飾した本発明の標識分子含有シリカ球を用いて 、ビチオンィ匕蛋白を結合させて濃縮する方法も例示できる。  [0038] The labeled molecule-containing silica sphere of the present invention binds a substance such as an arbitrary protein or gene based on its surface modification property (acceptor group) and presents its function on the surface. It can have the property that Such binding characteristics are useful not only in terms of adding functions by simply binding desired molecules, but also in terms of being able to concentrate substances such as arbitrary proteins and genes on the surface of silica spheres. For example, it is possible to improve reaction efficiency by binding and concentrating various enzymes that catalyze multistep reactions on silica spheres (reaction-enhanced silica spheres), and antibodies on silica spheres. It is also possible to improve the bonding properties by combining them (bond-reinforced silica spheres). Further, a method of concentrating an antibody by binding to the labeled molecule-containing silica sphere of the present invention surface-modified with an antigen, a labeled molecule-containing silica sphere of the present invention having a surface modified with avidin, and binding and concentrating a bithione protein. The method of doing can also be illustrated.
[0039] さらに、元来、共役が困難な 2種類以上の物質であっても、本発明の標識分子含有 シリカ球を介することによれば、両者を共役させることも可能である。例えば、後述す る実施例 9に示す SH基表層修飾シリカ球をローダミン標識ダルタチオン- S-トランス フェラーゼと Green fluorescein protein(GFP)の混合液と反応させると、ローダミン標識 グルタチオン- S-トランスフェラーゼと Green fluorescein protein(GFP)の両方の蛍光を 観察することが可能となる。また、表面にアビジンを結合させた標識分子含有シリカ 球を二種類のピオチン化蛋白質を含む混合液と反応させると、シリカ球の表面に二 種類のピオチンィ匕蛋白質を結合させることができる。 [0039] Furthermore, even two or more substances that are inherently difficult to conjugate can be conjugated via the labeled molecule-containing silica sphere of the present invention. For example, when SH-based surface modified silica spheres shown in Example 9 described below are reacted with a mixed solution of rhodamine-labeled dartathione-S-transferase and green fluorescein protein (GFP), rhodamine-labeled It is possible to observe the fluorescence of both glutathione-S-transferase and green fluorescein protein (GFP). In addition, when a labeled molecule-containing silica sphere having avidin bound to its surface is reacted with a mixed solution containing two types of pyotinylated proteins, two types of pyotin チ ン protein can be bound to the surface of the silica sphere.
[0040] また、別の応用技術として、例えば、バーコード標識手法が考えられる。多種の機 能付加を行ったシリカ球 (例えば多様な抗体やペプチドを表面に提示させライブラリ 一としたもの等)において、それらを速やかに区別することは機能性シリカ球の応用 に多大な利便性をもたらすと考えられ、その方法の一つとしてバーコード標識が挙げ られる。具体的には、 2種あるいはそれ以上の蛍光色素分子で標識された蛍光色素 分子含有シリカ化合物を種々の配合比で混合し、蛍光色素分子含有シリカ球を作成 することにより多様な蛍光特性を持つバーコード標識シリカ球が作成でき、フローサイ トメトリーや蛍光顕微鏡で区別し得る。更に、上記表面修飾技術を用いて表層に色素[0040] As another applied technique, for example, a bar code labeling method is conceivable. In silica spheres with various functions added (for example, a library with various antibodies and peptides displayed on the surface), it is very convenient to apply functional silica spheres to quickly distinguish them. One of the methods is bar code sign. Specifically, a fluorescent dye molecule-containing silica compound labeled with two or more fluorescent dye molecules is mixed at various blending ratios to produce fluorescent dye molecule-containing silica spheres, thereby having various fluorescent properties. Barcode labeled silica spheres can be made and can be distinguished by flow cytometry and fluorescence microscopy. Furthermore, using the above surface modification technology,
、もしくは色素で標識した蛋白質や遺伝子等を多様な配合比で修飾することによって もバーコード標識化することができる。特に近年、遺伝子配列解読技術が簡便化され つつあるため、特定の遺伝子配列をシリカ球表面に結合させておき、必要に応じて P CRなどで増幅し塩基配列を読むことにより識別することも可能となる。 Alternatively, barcode labeling can also be performed by modifying proteins or genes labeled with dyes at various compounding ratios. In particular, since gene sequencing technology is being simplified in recent years, it is possible to identify specific gene sequences by binding them to the surface of silica spheres, amplifying them with PCR as necessary, and reading the base sequences. It becomes.
[0041] (3)標識分子含有シリカ球の多重結合物の調製  [0041] (3) Preparation of multiple bonds of labeled spheres containing labeled molecules
本発明は、標識分子含有シリカ球が有する標識分子の強度を高める方法として、 標識分子含有シリカ球の多重結合物の調製方法を提供する。当該方法は、上記の 方法で得られた標識分子含有シリカ球に、標識分子含有シリカ球のァクセプター基 に応じたカップリング剤を用いて、さらに標識分子含有シリカ球を結合させることによ つて行うことができる(工程 (d) )。また、標識分子含有シリカ球のァクセプター基を、 当初のァクセプター基とは異なる所望のものに変更する場合には、工程 (d)の前に、 前述する工程 (b)で用いたシリカ化合物 (4)とは異なる、所望のァクセプター基を有す るシリカ化合物 (4)での処理を実施してもよ ヽ〔工程 (c)〕。  The present invention provides a method for preparing a multiple bond product of labeled molecule-containing silica spheres as a method for increasing the strength of the labeled molecules possessed by the labeled molecule-containing silica spheres. This method is carried out by further coupling the labeled molecule-containing silica spheres to the labeled molecule-containing silica spheres obtained by the above method using a coupling agent corresponding to the acceptor group of the labeled molecule-containing silica spheres. (Step (d)). In addition, when the acceptor group of the labeled molecule-containing silica sphere is changed to a desired one different from the original acceptor group, the silica compound (4) used in step (b) described above is used before step (d). A treatment with a silica compound (4) having a desired acceptor group, which is different from) may be carried out [step (c)].
[0042] ここで使用できるカップリング剤としては、標識分子含有シリカ球が表面に有するァ クセプター基に応じて、表 2に記載するものを挙げることができる。  [0042] Examples of the coupling agent that can be used here include those listed in Table 2 depending on the acceptor group on the surface of the labeled molecule-containing silica sphere.
[0043] [表 2] 標讀^ ¾有シリ力球の表面のァクセプター基 カップリング剤 [0043] [Table 2] 标 讀 ^ ¾Acceptor group on the surface of Siri force ball coupling agent
OH基 テトラエチルオルソシリケート  OH group Tetraethyl orthosilicate
SH基 メルカプトプロピルェチルシリゲート  SH group Mercaptopropylethyl siligate
NH2基 ダルタールアルデヒド NH 2 group dartal aldehyde
S CN基 ァミノプロピルェチルシリケ一ト  S CN group aminopropylethyl silicate
エポキシ基 ァミノプロピルェチルシリケ一卜  Epoxy group Aminopropylethylsilique
CNO基 ァミノプロピルェチルシリケート  CNO group Aminopropylethyl silicate
[0044] カップリング剤との反応は、カップリング剤の存在下で、本発明の標識分子含有シリ 力球を反応することによって行うことができる。通常、室温下で数十分〜数十時間攪 拌反応する方法を用いることができる。 [0044] The reaction with the coupling agent can be performed by reacting the labeled molecule-containing sirisphere of the present invention in the presence of the coupling agent. Usually, a method in which a stirring reaction is performed at room temperature for several tens of minutes to several tens of hours can be used.
[0045] 使用するカップリング剤の割合は、標識分子含有シリカ球 1モルに対して、モル比 で 300〜6000部、好ましくは 600〜5400部、より好ましくは 2100〜3000部である  [0045] The ratio of the coupling agent to be used is 300 to 6000 parts, preferably 600 to 5400 parts, more preferably 2100 to 3000 parts by mole with respect to 1 mole of the labeled molecule-containing silica sphere.
[0046] 斯くして本発明の標識分子含有シリカ球は、カップリング剤を介して多重的に結合 する。かかる方法は、標識分子含有シリカ球に由来する標識分子 (例えば、蛍光色 素やラジカル)の強度を高める手段として有効に利用することができる。なお、多重結 合によって形成される粒状物は、特に制限されないが、粒径 60〜150nmの範囲の 大きさを有することができる。 [0046] Thus, the labeled molecule-containing silica spheres of the present invention are multiply bonded through the coupling agent. Such a method can be effectively used as a means for increasing the strength of a labeled molecule (for example, a fluorescent pixel or a radical) derived from the labeled molecule-containing silica sphere. The granular material formed by multiple bonding is not particularly limited, but can have a particle size in the range of 60 to 150 nm.
図面の簡単な説明  Brief Description of Drawings
[0047] [図 1]実施例 1で調製したフルォレセイン (標識分子)含有シリカ球 Aの蛍光減衰曲線 を示す図である。  FIG. 1 is a graph showing a fluorescence decay curve of fluorescein (labeled molecule) -containing silica sphere A prepared in Example 1.
[図 2]実施例 2に記載するシリカ球の表層処理を示す模式図を示す。  FIG. 2 is a schematic diagram showing the surface treatment of silica spheres described in Example 2.
[図 3]スペクトル A:実施例 1で調製したフルォレセイン (標識分子)含有シリカ球 A (Is t Growth) (直径: 20nm)の水溶液中の吸収スペクトル、スペクトル B :実施例 2(1)で調 製したフルォレセイン (標識分子)含有シリカ球 (2nd Growth) (直径: 230nm)の水溶 液中の吸収スペクトルをそれぞれ示す図である。  [Fig. 3] Spectrum A: Absorption spectrum of fluorescein (labeled molecule) -containing silica sphere A (Ist Growth) (diameter: 20 nm) prepared in Example 1 in an aqueous solution, spectrum B: adjusted in Example 2 (1) FIG. 3 is a graph showing absorption spectra of the produced fluorescein (labeled molecule) -containing silica sphere (2nd Growth) (diameter: 230 nm) in an aqueous solution.
[図 4]実施例 1で調製したフルォレセイン (標識分子)含有シリカ球 (直径: 20nm) (1st Growth)の TEM写真 ( X 90,000)の画像を示す図である。  FIG. 4 is a diagram showing an image of a TEM photograph (X 90,000) of a fluorescein (labeled molecule) -containing silica sphere (diameter: 20 nm) (1st Growth) prepared in Example 1.
[図 5]実施例 2 (1)で調製したフルォレセイン (標識分子)含有シリカ球 (直径: 230nm) (2nd Growth)の TEM写真( X 15,000)の画像を示す図である。 [FIG. 5] Fluorescein (labeled molecule) -containing silica sphere prepared in Example 2 (1) (diameter: 230 nm) It is a figure which shows the image of the TEM photograph (X 15,000) of (2nd Growth).
[図 6]実施例 4に記載する標識分子含有シリカ球の NH基修飾と、カップリング剤を  [Fig. 6] NH group modification of a labeled molecule-containing silica sphere described in Example 4 and a coupling agent
2  2
用いたシリカ球同士の結合を示す模式図を示す。  The schematic diagram which shows the coupling | bonding of the used silica spheres is shown.
[図 7]実施例 5で調製した蛍光色素分子 (フルォレセイン)含有シリカ球 (SH基表層 修飾シリカ球)の蛍光顕微鏡の所見(図 a)、及び当該シリカ球にローダミン標識 GST を付着させたシリカ球の所見(図 b)を示す( X 400) (原本はカラー図)。  [Fig. 7] Fluorescence microscope findings (Fig. A) of silica spheres (SH base surface modified silica spheres) containing fluorescent dye molecules (fluorescein) prepared in Example 5, and silica with rhodamine-labeled GST attached to the silica spheres Shows the sphere's findings (Figure b) (X 400) (Original is a color chart).
[図 8]実施例 7で調製したローダミン (標識分子)含有シリカ球の透過型電子顕微鏡 (T [Fig. 8] Transmission electron microscope (T) of silica spheres containing rhodamine (labeled molecules) prepared in Example 7.
EM)写真(X 10,000) (図 a)と蛍光顕微鏡像(図 b)を示す (原本はカラー図)。 EM) A photograph (X 10,000) (Figure a) and a fluorescence microscope image (Figure b) are shown (the original is a color diagram).
[図 9]蛍光色素分子を含有していないシリカ球上にローダミン標識 GSTを付着させた 所見 (a)、その後、 FITC標識抗 GST抗体を結合させた所見 (b)を示す図である(X 400) [Fig. 9] A diagram showing the findings (a) in which rhodamine-labeled GST was attached to silica spheres that did not contain fluorescent dye molecules (a) and then the findings (b) in which FITC-labeled anti-GST antibody was bound (X) (X) 400)
(原本はカラー図)。 (The original is a color diagram).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下、本発明を詳細に説明するために、実施例を記載する。但し、本発明はこれら の実施例に何等限定されるものではな 、。 [0048] Hereinafter, examples will be described in order to describe the present invention in detail. However, the present invention is not limited to these examples.
実施例 1  Example 1
[0049] フルォレセイン (標識分子)含有シリカ化合物の調製、及びこれを用いたシリカ球 (フ ルォレセイン含有シリカ粒子)の調製  [0049] Preparation of silica compound containing fluorescein (labeled molecule) and silica sphere (fluorescein-containing silica particles) using the same
(1)フルォレセイン (標識分子)含有シリカ化合物の調製  (1) Preparation of fluorescein (labeled molecule) -containing silica compound
下式に従って、標識分子としてフルォレセインを含有するシリカ化合物 (3)を調製し た。  A silica compound (3) containing fluorescein as a labeled molecule was prepared according to the following formula.
[0050] [化 3] [0050] [Chemical 3]
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0002
[0051] 〔式中、 はフルォレセイン (標識分子)を意味する。また 1^中、 *はエステル基との 結合部を意味する。〕  [0051] [In the formula, represents fluorescein (labeled molecule). In 1 ^, * means the bond with the ester group. ]
具体的には、まずスクシンィミジルエステルイ匕合物として、エステル結合を介して通 じてフルォレセイン (標識分子:式中、 Rで示す)とスクシンイミドとが結合してなる、 5( 6)— Carboxyfluorescein— N— hydroxysuccinimide ester (以" h、「FLU〇S」と 、つ) (1) (約 3.3mg)を lmlの DMSO溶液に溶解した後、アミノ基を有するシリカ化合物として 3- (アミ ノプロピル)トリエトキシシラン〔3- (aminopropyl) triethoxysilane:以下、「APS」とも!/、う) 〕(2)を上記 FLUOSと等モルになるように加え、約 1時間スターラーピースを用いて攪 拌して反応させて、スクシンィミジルエステル化合物〔FLUOS(l)〕のカルボ-ル基とシ リカ化合物〔APS(2)〕のァミノ基がアミド結合してなるフルォレセイン (標識分子)含有 シリカ化合物 (3)を調製した。最初、黄色を呈していた FLUOS(l)の DMSO溶液力 AP S(2)を加えると、オレンジ色に変化した。  Specifically, as a succinimidyl ester compound, fluorescein (labeled molecule: represented by R in the formula) and succinimide are bonded through an ester bond. ) — Carboxyfluorescein— N—hydroxysuccinimide ester (hereinafter “h”, “FLUºS”) (1) (approx. 3.3 mg) is dissolved in 1 ml of DMSO solution. Aminopropyl) triethoxysilane [3- (aminopropyl) triethoxysilane: hereinafter also referred to as “APS”! /, U)] (2) is added to equimolarity with the above FLUOS, and stirred for about 1 hour using a stirrer piece. Fluorescein (labeled molecule) -containing silica formed by reacting with stirring to form an amide bond between the carbo group of the succinimidyl ester compound [FLUOS (l)] and the amino group of the silica compound [APS (2)] Compound (3) was prepared. When FLUOS (1), which had a yellow color, was added with DMSO solution strength APS (2), it turned orange.
[0052] (2)標識分子含有シリカ球の調製  [0052] (2) Preparation of labeled molecule-containing silica sphere
次いで、下式に従って、フルォレセイン (標識分子)含有シリカ化合物 (3)からフルォ レセイン (標識分子)含有シリカ球 (5)を調製した。  Next, fluorescein (labeled molecule) -containing silica spheres (5) were prepared from the fluorescein (labeled molecule) -containing silica compound (3) according to the following formula.
[0053] [化 4] [0053] [Chemical 4]
Figure imgf000017_0001
Figure imgf000017_0001
[0054] 具体的には、上記で得られたフルォレセイン (標識分子)含有シリカ化合物 (3)を含 む反応溶液から 50 1を採取し、エタノール 3.95mlに加えた。これに、さらにシリカ化 合物としてテトラエトキシシラン(Tetraethylorthosilicate:以下、「TEOS」とも!/、う) (4)50 μ 1、蒸留水 lml、及び 27重量0 /0のアンモニア水溶液を約 100 1加えて、スターラーピ ースを用いて室温で約 24時間撹拌して反応した。このとき、反応液中のエタノールと 蒸留水の容量比が 4 : 1となるようにした。得られた溶液は、反応前の混合液の黄色と は明らかに異なる黄緑色を呈しており、反応が生じていることが確認された。 [0054] Specifically, 50 1 was collected from the reaction solution containing the fluorescein (labeled molecule) -containing silica compound (3) obtained above and added to 3.95 ml of ethanol. This further tetraethoxysilane as the silica of compound (Tetraethylorthosilicate:! Hereinafter, both "TEOS" /, the Hare) (4) 50 μ 1, distilled water lml, and 27 weight 0/0 to about 100 1 aqueous ammonia In addition, the reaction was allowed to stir at room temperature for about 24 hours using a stirrer piece. At this time, the volume ratio of ethanol and distilled water in the reaction solution was set to 4: 1. The obtained solution had a yellowish green color clearly different from the yellow color of the mixed solution before the reaction, and it was confirmed that the reaction occurred.
[0055] 得られた反応終了液を、限外ろ過装置〔アミコン (登録商標)攪拌式セル〕(フィルタ 一; UFディスク YM100ウルトラセル RC100K NMWL) (販売会社: MILLIPORE丌 Nomin al Molecular Weight Limit (NMWL): 100 kDa]を使用してろ過し、蒸留水を使用した ろ過洗浄を数回繰り返して、 2mlのサンプル溶液 Aを得た (フルォレセイン (標識分子 )含有シリカ球 (5)を含む。このシリカ球を「シリカ球 A」という)。またここで得られたろ過 液を、さらに限外ろ過装置〔アミコン (登録商標)攪拌式セル〕(フィルター; UFディスク YM- 3ウルトラセル RC100K NMWL) (販売会社: MILLIPORE丌 Nominal Molecular We ight Limit (NMWL) : 3kDa〕を用いてろ過し、蒸留水を使用したろ過洗浄を数回繰り返 して、 3mlのサンプル溶液 Bを得た (フルォレセイン (標識分子)含有シリカ球 (5)を含 む。このシリカ球を「シリカ球 B」という)。  [0055] The obtained reaction solution was subjected to ultrafiltration (Amicon (registered trademark) stirring cell) (filter 1; UF disk YM100 Ultracell RC100K NMWL) (sales company: MILLIPORE 丌 Nomin al Molecular Weight Limit (NMWL ): 100 kDa] and repeated filtration and washing with distilled water several times to obtain 2 ml of sample solution A (containing fluorescein (labeled molecule) -containing silica spheres (5). Sphere is called “silica sphere A.” The filtrate obtained here is further filtered with an ultrafiltration device (Amicon (registered trademark) stirring cell) (filter; UF disk YM-3 Ultracell RC100K NMWL) Company: MILLIPORE 丌 Nominal Molecular Weight Limit (NMWL): 3 kDa], and repeated filtration and washing with distilled water several times to obtain 3 ml of sample solution B (fluorescein (labeled molecule)) Contains silica sphere (5) .This silica sphere Is called “silica sphere B”).
[0056] (3)得られた標識分子含有シリカ球 (5)のラベル率 (標識分子含有率)  [0056] (3) Label rate of the labeled spheres containing the labeled molecules (5) (labeled molecule content)
(3-1)上記の反応液 (24時間反応前)に含まれるフルォレセイン分子の濃度は、計 算上、 67.7 μ mol/1となる〔FLUOS (分子量 473.4) 0.165mg (3.3mg x 50 1/1000 μ ΐ)を 、最終反応液 (約 5.15ml)に使用〕。実際に、全成分を混合した直後の反応液の 10倍 希釈溶液について吸収スペクトル (光路長さ lcmの角セル使用)を測定し、それから ピーク吸光度を求めたところ、 0.510であった。 FLUOSの分子吸光係数は 7.5xl04であ ることから、当該反応液中のフルォレセイン分子の濃度を計算すると、 68 /z mol/lとな り、上記の計算値と一致した。 (3-1) The concentration of fluorescein molecules in the above reaction solution (before 24 hours reaction) is calculated to be 67.7 μmol / 1 [FLUOS (molecular weight 473.4) 0.165 mg (3.3 mg x 50 1 / Use 1000 μΐ for the final reaction (approximately 5.15 ml)]. Actually, 10 times the reaction mixture immediately after mixing all components The absorption spectrum (using a square cell with an optical path length of 1 cm) was measured for the diluted solution, and the peak absorbance was determined from it, which was 0.510. Molecular extinction coefficient of FLUOS from 7.5Xl0 4 der Rukoto of the calculation of the concentration of Furuoresein molecules of the reaction solution, Ri Do a 68 / z mol / l, was consistent with the calculated value mentioned above.
[0057] 一方、その反応液を 24時間反応させた後の反応終了液 (黄緑色)を、上記反応液( 反応前の全成分混合液)と同様に 10倍希釈して吸収スペクトルを測定したところ、ピ 一クの吸光度は 0.607だった。 FLUOSの分子吸光係数 (7.5xl04)から、反応終了液中 に含まれるフルォレセイン分子の濃度を計算すると、 80.9 /z mol/lであり、反応前の混 合液中に含まれるフルォレセイン分子の濃度に比して約 1.2倍大きな値になっていた 。この結果から、シリカ粒子(ナノ粒子)内のフルォレセインの分子吸光係数が当初の 7.5xl04から 8.9xl04に変化したと判断された。このため、以下のラベル率 (標識分子含 有率)の計算では、分子吸光係数として後者の分子吸光係数値 (8.9xl04)を使用した [0057] On the other hand, the reaction completed solution (yellow green) after reacting the reaction solution for 24 hours was diluted 10-fold in the same manner as the reaction solution (all component mixture solution before reaction), and the absorption spectrum was measured. However, the absorbance of the peak was 0.607. The molecular extinction coefficient of FLUOS (7.5xl0 4), when calculating the concentration of Furuoresein molecules contained in the reaction-terminated liquid is 80.9 / z mol / l, the concentration of Furuoresein molecules contained in mixed Goeki before the reaction It was about 1.2 times larger than that. From this result, the molecular extinction coefficient of Furuoresein in silica particles (nanoparticles) is determined to have changed from the original 7.5Xl0 4 to 8.9xl0 4. Therefore, in the following calculation of the label rate (labeled molecules including Yuritsu), it was used latter molecular extinction coefficient values (8.9Xl0 4) as a molecular extinction coefficient
[0058] 反応前の混合液と反応後の反応終了液につ!、て、それぞれ蛍光スペクトル (スリツ ト幅(Ex/Em) = 1.5nm/1.5nm、 Low sensitivity)を測定した。励起波長は、それぞれ 発光ピークの励起スペクトルのピーク力 決定した。反応前の混合液と反応後の反応 終了液について、蛍光強度 (励起波長 496nm、発光波長 520nm)を測ったところ、そ れぞれ 17.06 (反応前の混合液)と 33.95 (反応終了液)であり、反応によって約 2倍蛍 光強度が増加したことがわ力つた。 [0058] A fluorescence spectrum (a slit width (Ex / Em) = 1.5 nm / 1.5 nm, Low sensitivity) was measured for each of the mixed solution before the reaction and the reaction completed solution after the reaction. The excitation wavelength was determined for the peak power of the emission spectrum of each emission peak. The fluorescence intensity (excitation wavelength: 496 nm, emission wavelength: 520 nm) was measured for the pre-reaction mixture and the post-reaction reaction end solution. The results were 17.06 (pre-reaction mixture) and 33.95 (reaction end solution), respectively. Yes, it was obvious that the fluorescence intensity increased by about 2 times due to the reaction.
[0059] (3-2)フィルタ一として UFディスク YM 100ウルトラセル RC100K NMWLを用いた限外 濾過により得られた 2mlのサンプル溶液 Aから 0.1ml採取し蒸留水で 10倍に希釈して 吸収スペクトルを測定し、吸光度を求めた(吸光度 0.285)。上記で求めた FLUOSの 分子吸光係数 (8.9xl04)を用いて算出した値 (32 mol/1)から、フルォレセイン分子 の量を計算すると、 32 μ mol/1 x 473.4 x 2/1000=0.0303mgとなった。最初に加えたフ ルォレセイン分子の量力 SO.165mg (正確には FLUOSの量)であることから、サンプル溶 液 Aにおけるシリカ球 Aのラベル率は 0.0303/0.165x100=18.4%であると判断された。 [0059] (3-2) 0.1 ml of 2 ml sample solution A obtained by ultrafiltration using UF disk YM 100 Ultracel RC100K NMWL as a filter, diluted 10-fold with distilled water, and absorption spectrum Was measured to determine the absorbance (absorbance 0.285). From the calculated value (32 mol / 1) using a molecular extinction coefficient (8.9xl0 4) of FLUOS obtained above, when calculating the amount of Furuoresein molecule, 32 μ mol / 1 x 473.4 x 2/1000 = 0.0303mg It became. The labeling rate of silica sphere A in sample solution A was determined to be 0.0303 / 0.165x100 = 18.4% because the amount of fluorescein molecule added was SO.165 mg (more precisely, the amount of FLUOS). .
[0060] 同様に、フィルタ一として UFディスク YM-3ウルトラセル RC100K NMWLを用いた限 外濾過により得られた 3mlのサンプル溶液 Bカゝら 0.1ml採取して蒸留水で 10倍に希釈 して、吸収スペクトルを測定し、吸光度を求めた(吸光度 0.482)。 FLUOSの分子吸光 係数 (8.9xl04)を用いて算出した値 (54.2 μ mol/1)力 、フルォレセイン分子の量を計 算すると、 54.2 mol/lx473.4x3/1000=0.077mgとなった。最初に加えたフルォレセィ ン量カ S0.165mg (正確には FLUOSの量)であることから、サンプル溶液 Bにおけるシリ 力球 Bのラベル率 (標識分子含有率)は 0.077/0.165x100=46.7%と判断された。 [0060] Similarly, 0.1 ml of 3 ml of sample solution B obtained by ultrafiltration using UF disk YM-3 Ultracel RC100K NMWL as a filter was diluted 10-fold with distilled water. Then, the absorption spectrum was measured to determine the absorbance (absorbance 0.482). Molecular extinction coefficient of FLUOS calculated value using (8.9xl0 4) (54.2 μ mol / 1) force, when the to calculate the amount of Furuoresein molecules became 54.2 mol / lx473.4x3 / 1000 = 0.077mg . Since the amount of fluorescein added initially is S0.165 mg (more precisely, the amount of FLUOS), the labeling rate (labeled molecule content) of Siri-Bogball B in sample solution B is 0.077 / 0.165x100 = 46.7%. It was judged.
[0061] 以上のことから、上記の方法によって調製されたシリカ球 A及びシリカ球 Bは、それ ぞれ 18.4%及び 46.7%の割合で標識分子 (フルォレセイン)が結合しており(ラベル化) 、反応に使用した FLUOSのフルォレセイン分子の利用率は 65.1%であることがわかつ た。シリカ球 A及びシリカ球 Bのラベル率はいずれも Imhofeの論文(A.Imhof, et al., " spectroscopy or Fluorescein (riTし) Dyea Colloidal bilica spheres , J. Phys. Chem. B 1999,103, 1408-1415)で報告されているの最大ラベル率 13%を上回っていた。  [0061] From the above, the silica sphere A and the silica sphere B prepared by the above-described method have 18.4% and 46.7% of the labeled molecules (fluorescein) bound (labeled), respectively. The utilization rate of FLUOS fluorescein molecule used in the reaction was found to be 65.1%. The labeling rates of silica sphere A and silica sphere B are both Imhofe's paper (A. Imhof, et al., “Spectroscopy or fluorescein (riT) Dyea Colloidal bilica spheres, J. Phys. Chem. B 1999, 103, 1408. -1415), which exceeded the maximum label rate of 13%.
[0062] (4) 1粒子当たりの蛍光分子数  [0062] (4) Number of fluorescent molecules per particle
(1)で調製された、サンプル溶液 A中のシリカ球 A及びサンプル溶液 B中のシリカ 球 Bを、透過型電子顕微鏡 (徳島大学医学部)及び超高圧電子顕微鏡 (大阪大学超 高圧電子顕微鏡センター)で観察したところ、それぞれ直径約 20應及び約 4應の粒 子像が観察された。この結果から、シリカ球 Aの直径は約 20應、シリカ球 Bの直径は 約 4nmであると判断された。なお、 Imhofbの方法で得られているシリカ球の直径は 18 4- 305nmである (A.Imhof, et al., spectroscopy of Fluorescein (FITC) Dyea Colloida 1 Silica Spheres", J. Phys. Chem. B 1999,103, 1408-1415)。  The silica sphere A in the sample solution A and the silica sphere B in the sample solution B prepared in (1) were transferred to a transmission electron microscope (Tokushima University School of Medicine) and an ultra high voltage electron microscope (Osaka University Ultra High Voltage Electron Microscope Center). When observed with, particle images with diameters of about 20 and 4 were observed. From this result, it was judged that the diameter of silica sphere A was about 20 mm, and the diameter of silica sphere B was about 4 nm. The diameter of the silica sphere obtained by Imhofb's method is 18 4-305 nm (A. Imhof, et al., Spectroscopy of Fluorescein (FITC) Dyea Colloida 1 Silica Spheres ", J. Phys. Chem. B 1999, 103, 1408-1415).
[0063] シリカ球 B (直径 4nm) 1粒子に含まれるフルォレセイン分子の数を 1個と仮定して、 シリカ球の直径をもとにして、シリカ球 A (直径 20nm) 1粒子に含まれるフルォレセイン 分子の数を求めた。その結果、シリカ球 A (直径 20應) 1粒子あたりに含まれるフルォ レセイン分子の数は、 97分子/ SiO粒子であった〔シリカ球 B (直径 4nm) 1粒子あたり  [0063] Assuming that the number of fluorescein molecules contained in one particle of silica sphere B (diameter 4 nm) is one, fluorescein contained in one particle of silica sphere A (diameter 20 nm) based on the diameter of silica sphere The number of molecules was determined. As a result, the number of fluorescein molecules contained in each silica sphere A (diameter 20 mm) was 97 molecules / SiO particles [silica sphere B (diameter 4 nm) per particle.
2  2
に含まれるフルォレセイン分子の数は、 1分子/ SiO粒子〕。  The number of fluorescein molecules contained in 1 molecule / SiO particles].
2  2
[0064] (5) 1粒子あたりの蛍光強度  [0064] (5) Fluorescence intensity per particle
シリカ球 A1粒子の蛍光強度は 2.0x10— 11 (サンプル溶液 A 2ml中に含まれるシリカ球 Aの数は 4.72x10"個 /2ml :サンプル溶液 A 0.03mlの蛍光強度は 143.38)、及びシリカ 球 B1粒子の蛍光強度は 2.2x10— 13 (サンプル溶液 B 2ml中に含まれるシリカ球 Bの数 は 1.16x10"個 /2ml:サンプル溶液 B 0.03mlの蛍光強度は 255.10)である。 Silica spheres fluorescence intensity of A1 particles 2.0x10- 11 (the number of silica spheres A contained in the sample solution A 2 ml is 4.72X10 "number / 2 ml: fluorescence intensity of the sample solution A 0.03 ml is 143.38), and silica spheres B1 the number of silica spheres B fluorescence intensity of the particles contained in 2.2x10- 13 (sample solution B 2 ml 1.16x10 "/ 2ml: The fluorescence intensity of 0.03ml of sample solution B is 255.10).
[0065] 一方、フリーのフルォレセイン 1分子の蛍光強度は、 1.8x10— 13である〔0.0029mmol/l のサンプル 10mlで蛍光強度が 957.562である。このサンプル中に含まれるフルォレセ イン分子の数は 5.25xl015個であるから、 1分子当たりの蛍光強度は 1.8x10— 13となる〕。 On the other hand, the fluorescence intensity of one molecule of free fluorescein is 1.8 × 10-13 (the fluorescence intensity is 957.562 in 10 ml sample of 0.0029 mmol / l). The number of Furuorese Inn molecules contained in the sample because it is 15 5.25Xl0, fluorescence intensity per molecule becomes 1.8X10- 13].
[0066] このことから、シリカ球 A1粒子の蛍光強度はフルォレセイン 1分子の蛍光強度の 11[0066] From this, the fluorescence intensity of silica sphere A1 particles is 11% of the fluorescence intensity of one molecule of fluorescein.
1倍、シリカ球 B1粒子の蛍光強度はフルォレセイン 1分子の蛍光強度の 1.2倍である ことがわ力ゝる。 The fluorescence intensity of the silica sphere B1 particle is 1.2 times the fluorescence intensity of one molecule of fluorescein.
[0067] (6) 1粒子内のフルォレセイン分子の濃度 [0067] (6) Concentration of fluorescein molecule in one particle
シリカ球 A1粒子 (粒子径 20nm)の体積は 4.2x10— 18cm3であり、 1粒子あたりに含まれ るフルォレセイン分子の数は 97分子/ SiO粒子であることから、シリカ球 A1粒子内の The volume of the silica spheres A1 particles (particle size 20 nm) are 4.2x10- 18 cm 3, since the number of Furuoresein molecules are Ru contained per one particle is 97 molecules / SiO particles in silica spheres A1 particles
2  2
フルォレセイン分子の濃度は、 38.4mmol/l (97/6.02 x 1023/4.2 x 10— 18χ1000 = 38. 4mmol/l)である。このことから、シリカ球 Aは、 1粒子内に、フルォレセイン分子を 97分 子(フルォレセイン分子の濃度: 38.4mmol/l)の割合で含むものの、 111分子量のフル ォレセイン分子に相当する蛍光強度を有しているといえる。一方、シリカ球 B1粒子( 粒子径 4nm)の体積は 3.4x10— 2°cm3であり、 1粒子あたりに含まれるフルォレセイン分 子の数を 1分子/ SiO粒子としたこと力ら、シリカ球 B1粒子内のフルォレセイン分子の Concentration of Furuoresein molecule is 38.4mmol / l (97 / 6.02 x 10 23 /4.2 x 10- 18 χ1000 = 38. 4mmol / l). From this, silica sphere A has a fluorescence intensity equivalent to 111 molecular weight fluorescein molecule, although it contains 97 molecules of fluorescein molecule (concentration of fluorescein molecule: 38.4 mmol / l) in one particle. It can be said that. On the other hand, the volume of the silica spheres B1 particles (particle size 4 nm) is 3.4x10- 2 ° cm 3, 1 molecule / SiO particles and the possible forces et number of Furuoresein component element included in one particle, silica spheres B1 Of the fluorescein molecule in the particle
2  2
濃度は、 48.9mmol/l (1/6.02 x 1023/3.4 x 10— 2。x 1000 = 48.9mmol/l)である。このこと から、シリカ球 Bは、 1粒子内に、フルォレセイン分子を 1分子(フルォレセイン分子の 濃度: 48.9mmol/l)の割合で含むものの、 1.2分子量のフルォレセイン分子に相当す る蛍光強度を有して ヽると ヽえる。 The concentration is 48.9 mmol / l (1 / 6.02 × 10 23 /3.4×10— 2, x 1000 = 48.9 mmol / l). From this, silica sphere B contains one fluorescein molecule (concentration of fluorescein molecule: 48.9 mmol / l) in one particle, but has a fluorescence intensity corresponding to a 1.2 molecular weight fluorescein molecule. You can hear it.
[0068] なお、 Imhofeの方法で得られたシリカ球 1粒子内のフルォレセイン分子の濃度は、 3丄 mmol/1で teる (A.Imhof, et al., "spectroscopy of Fluorescein (FITし) Dyed Colloida 1 Silica Spheres", J. Phys. Chem. B 1999,103, 1408-1415)。このことからシリカ球 Bが 1粒子内に含むフルォレセイン分子の濃度(48.9mmol/l)は、その 1.58倍量である。  [0068] The concentration of fluorescein molecules in one particle of silica sphere obtained by Imhofe's method is 3 丄 mmol / 1 (A. Imhof, et al., "Spectroscopy of Fluorescein (FIT) Dyed Colloida 1 Silica Spheres ", J. Phys. Chem. B 1999, 103, 1408-1415). From this, the concentration of fluorescein molecules contained in one particle of silica sphere B (48.9 mmol / l) is 1.58 times that amount.
[0069] (7)自己消光の有無  [0069] (7) Self-quenching
上記で得られたシリカ球 A (直径 20應)について、蛍光寿命を測定した。具体的に は、励起波長 (494nm)で励起する際に定常光ではなぐパルス光〔ナノ秒 (nsec)ォー ダー〕を使用して、試料 (シリカ球 Aの水溶液)を照射し、その 1回のパルス光で励起さ れ発光した蛍光ピークの強度を測定した。時間を横軸に、発光ピークの強度を縦軸 に示した結果 (蛍光減衰曲線)を図 1に示す。この結果は、同様にして測定した FLU OSの水溶液 (フルォレセインをシリカで被覆して ヽな 、もの)の結果とほぼ同じであつ たことから(蛍光寿命: 3.8nsec)、シリカ球 A (直径 20nm)は、自己消光を起こしていな いことがわかった。 Fluorescence lifetime was measured for the silica sphere A (diameter 20 °) obtained above. Specifically, a sample (an aqueous solution of silica sphere A) is irradiated using pulsed light (nanosecond (nsec) order) that is not stationary light when excited at an excitation wavelength (494 nm). Excited by the pulsed light The intensity of the emitted fluorescent peak was measured. Figure 1 shows the results (fluorescence decay curve) with time on the horizontal axis and emission peak intensity on the vertical axis. This result is almost the same as that of the FLU OS aqueous solution (fluorescein coated with silica) measured in the same way (fluorescence lifetime: 3.8 nsec), and silica sphere A (diameter 20 nm). ) Was found not to cause self-quenching.
[0070] (8)まとめ [0070] (8) Summary
以上のことから、(1)の方法により、ラベル率 (標識分子含有率)がそれぞれ 18.4%及 び 46.7%の粒子径20nm及び4nmのフルォレセィン(標識分子)含有シリカナノ粒子(粒 子径:数〜数十應)が調製できることが示された。 1粒子あたりのフルォレセイン分子 の数は、それぞれ 1個及び 97個で、計算で算出される 1粒子あたりのフルォレセイン 分子の濃度は、 38.4mmol/l及び 48.9mmol/lであった。また、 1粒子あたりのフルォレ セイン分子の蛍光強度は、フリーのフルォレセイン分子 1個と比較した場合の、それ ぞれ 111倍と 1.2倍であった。このこと力 、 1粒子の SiO分子内に 1分子のフルォレセ  From the above, by the method of (1), the label rate (labeled molecule content) is 18.4% and 46.7%, respectively, 20 nm and 4 nm fluorescein (labeled molecule) -containing silica nanoparticles (particle size: several Several tens of thousands) can be prepared. The number of fluorescein molecules per particle was 1 and 97, respectively, and the concentration of fluorescein molecule per particle calculated was 38.4 mmol / l and 48.9 mmol / l. In addition, the fluorescence intensity of the fluorescein molecule per particle was 111 times and 1.2 times that of one free fluorescein molecule, respectively. This is because one molecule of fluoresce in one particle of SiO molecule.
2  2
イン分子を封じ込める(言い換えれば、 1分子のフルォレセイン分子を SiO分子で覆  In molecule (in other words, one fluorescein molecule is covered with SiO molecule)
2 う)ことによって、フルォレセイン分子の蛍光強度が 1.2倍程増加することがわかる。  2), the fluorescence intensity of the fluorescein molecule increases by about 1.2 times.
[0071] また上記の反応により形成されたフルォレセイン (標識分子)含有シリカ球の表面は 、反応に用いたシリカ化合物 (テトラエトキシシラン) (4)に基づいて、ァクセプター基と して OH基を有して 、た(OH基表層修飾シリカ球)。 [0071] The surface of the fluorescein (labeled molecule) -containing silica sphere formed by the above reaction has an OH group as an acceptor group based on the silica compound (tetraethoxysilane) (4) used in the reaction. (OH-based surface modified silica sphere).
実施例 2  Example 2
[0072] (1)実施例 1で調製したシリカ球 A〔フルォレセイン (標識分子)含有シリカ粒子 (直 径 20nm)〕 (1st Growth)の水溶液 lmlに対して、エタノール 4ml、テトラエトキシシラン( TEOS) 50 μ 1、 27重量%のアンモニア水 50 μ 1を混合し、次いで室温で 24時間、磁気 撹拌を行った。その後、限外濾過(フィルター: UFディスク ΥΜ 100ウルトラセル RC 100 K NMWL)を行い蒸留水で数回洗浄して 2nd Growthのフルォレセイン(標識分子)含 有シリカ球として取り出した。当該シリカ球の直径は 230nmであり、シリカ球 Aの直径( 20nm)の約 10倍大きくなつていた。なお、さらにシリカ層を厚くしたい場合は、上記の 反応によって増加したシリカ層の厚みの割合を考慮して、上記の反応操作を繰り返 すことで所望の大きさのシリカ球を調製することができる。 [0073] 図 2は、上記の反応を模式的に示したものである。図中、 Rはフルォレセイン (標識 分子)を、 R'は水素原子を意味する。 [0072] (1) Silica sphere A prepared in Example 1 [Fluorescein (labeled molecule) -containing silica particles (diameter 20 nm)] (1st Growth) in an aqueous solution of 1 ml, ethanol 4 ml, tetraethoxysilane (TEOS) 50 μ1, 27 wt% aqueous ammonia 50 μ1 were mixed, and then magnetic stirring was performed at room temperature for 24 hours. Then, ultrafiltration (filter: UF disk ΥΜ 100 Ultracel RC 100 K NMWL) was performed, washed several times with distilled water, and taken out as silica spheres containing 2nd Growth fluorescein (labeled molecules). The diameter of the silica sphere was 230 nm, which was about 10 times larger than the diameter of silica sphere A (20 nm). In order to further increase the thickness of the silica layer, it is possible to prepare silica spheres having a desired size by repeating the above reaction operation in consideration of the ratio of the thickness of the silica layer increased by the above reaction. it can. [0073] FIG. 2 schematically shows the above reaction. In the figure, R means fluorescein (labeled molecule), and R 'means a hydrogen atom.
[0074] (2)実施例 1で調製したシリカ球 A (直径 20應) (1st Growth)及び上記 (1)で調製し たシリカ球(2nd Growth) (直径 230nm)の水溶液中の吸収スペクトルを、図 3にそれぞ れスペクトル A及び Bとして示す。この結果からゎカゝるように、実施例 1のシリカ球 A( 直径 20nm) (1st Growth)及び上記 (1)で調製したシリカ球(直径 230nm) (2nd Growth) は 、ずれも 490應に典型的な吸収ピークを観測することができた。上記(1)で調製し たシリカ球(直径 230nm) (2nd Growth)の吸収スペクトルは、短波長側に向かって吸 収が増大する傾向が観測された。これは粒子が大きくなることに基づいて生じる散乱 効果によるものと考えられた。  [0074] (2) Absorption spectra of silica sphere A (diameter 20 °) (1st growth) prepared in Example 1 and silica sphere (2nd growth) (diameter 230 nm) prepared in (1) above in an aqueous solution. Figure 3 shows the spectra as A and B, respectively. As can be seen from these results, the silica sphere A of Example 1 (diameter 20 nm) (1st Growth) and the silica sphere (diameter 230 nm) (2nd Growth) prepared in (1) above were all offset by 490 °. A typical absorption peak could be observed. In the absorption spectrum of the silica sphere (diameter 230 nm) (2nd Growth) prepared in (1) above, a tendency for the absorption to increase toward the shorter wavelength side was observed. This was thought to be due to the scattering effect caused by the larger particles.
[0075] また結果は示さな!/、が、 V、ずれのシリカ球もフルォレセイン (標識分子)に基づく蛍 光スペクトルを示した。シリカ球 A (直径 20nm)を含む水溶液 (3mL)のフルォレセイン の濃度は 0.075mMであった〔フルォレセインの分子吸光係数; 7.5xl04として計算〕。 [0075] In addition, the results are not shown! /, But V, and the silica sphere of the deviation also showed a fluorescence spectrum based on fluorescein (labeled molecule). The concentration of Furuoresein silica spheres A solution containing (diameter 20 nm) (3 mL) was 0.075mM [molecular extinction coefficient of Furuoresein; 7.5Xl0 calculated as 4].
[0076] シリカ球 A (直径 20nm) (1st Growth)の水溶液は濃い黄色を呈しており、 1ヶ月を経 ても安定であった。一般にフルォレセイン分子はアルカリ条件下で、安定で強い蛍光 を発することが知られている。シリカ球の調製に使用する溶液は強アルカリ性であるこ とから、上記で得られた結果 (強く安定した蛍光性)は、調製されたシリカ球の内部が アルカリ性になっていることに起因するものと考えられる。  [0076] The aqueous solution of silica sphere A (diameter 20 nm) (1st Growth) had a deep yellow color and was stable even after one month. In general, fluorescein molecules are known to emit stable and strong fluorescence under alkaline conditions. Since the solution used for the preparation of silica spheres is strongly alkaline, the results obtained above (strong and stable fluorescence) are attributed to the alkali inside the prepared silica spheres. Conceivable.
[0077] (3)実施例 1で調製したシリカ球 A (直径: 20nm)及び上記(1)で調製したシリカ球( 直径: 230nm)を、透過型電子顕微鏡で観察した。シリカ球 Aの透過型電子顕微鏡画 像を図 4に、(1)で調製したシリカ球の透過型電子顕微鏡画像を図 5に示す。実施例 1で調製したシリカ球 A (直径: 20nm) (1st Growth) (図 4)は表面に凹凸がありメソポ 一ラス様を呈しているのに対し、(1)で調製したシリカ球(直径: 230nm) (2nd Growth) ( 図 5)は表面が滑らかであった。  [0077] (3) The silica sphere A (diameter: 20 nm) prepared in Example 1 and the silica sphere (diameter: 230 nm) prepared in (1) above were observed with a transmission electron microscope. A transmission electron microscope image of silica sphere A is shown in FIG. 4, and a transmission electron microscope image of silica sphere prepared in (1) is shown in FIG. Silica sphere A prepared in Example 1 (diameter: 20 nm) (1st Growth) (Fig. 4) has a mesoporous shape with irregularities on the surface, whereas the silica sphere prepared in (1) (diameter : 230nm) (2nd Growth) (Figure 5) had a smooth surface.
実施例 3  Example 3
[0078] 表面に NH基を有する標識分子含有シリカ球の作製と修飾特性  [0078] Preparation and modification properties of silica spheres containing labeled molecules with NH groups on the surface
2  2
実施例 1で調製したフルォレセイン (標識分子)含有シリカ球 A (粒径 20nm)の分散 水溶液 0.5mlを、 4.5mlの 4mM 3- (ァミノプロピル)トリエトキシシラン〔APS〕とともに、室 温下で一晩反応させた。これにより、シリカ球に APSを付着させて表面にァクセプター 基として NH基を有するシリカ球 (NH基表層修飾シリカ球)を作製することができた Dispersion of fluorescein (labeled molecule) -containing silica sphere A (particle size 20 nm) prepared in Example 1 0.5 ml of aqueous solution together with 4.5 ml of 4 mM 3- (aminopropyl) triethoxysilane [APS] The reaction was allowed to proceed overnight under heat. As a result, it was possible to produce silica spheres (NH-based surface modified silica spheres) having NH groups as acceptor groups on the surface by attaching APS to the silica spheres.
2 2  twenty two
[0079] a)蛋白修飾 [0079] a) Protein modification
蛍光顕微鏡下で、上記で得られた NH基表層修飾シリカ球 5 /z gを 0.5 /z g/mlの Gre  Under the fluorescence microscope, NH base surface modified silica sphere 5 / z g obtained above was replaced with 0.5 / z g / ml Gre
2  2
en fluorescein protein (GFP) 5 1と混和した。すると、混和直後より、 NH基表層修  It was mixed with en fluorescein protein (GFP) 51. Then, immediately after mixing, NH base surface repair
2 飾シリカ球力 GFPの緑色の蛍光を発することを確認することができた。この結果から、 上記 NH基表層修飾シリカ球はその表面に GFP (蛋白質)を付着することがわ力つた  2 Decorative silica sphere power It was confirmed to emit GFP green fluorescence. From this result, it was proved that the above-mentioned NH-based surface modified silica sphere attaches GFP (protein) to its surface.
2  2
[0080] b)遺伝子修飾 [0080] b) Genetic modification
蛍光顕微鏡下で、上記で得られた NH基表層修飾シリカ球 5 gを、 20mMの蛍光  Under a fluorescent microscope, 5 g of the NH-based surface modified silica sphere obtained above was converted to 20 mM fluorescence.
2  2
標識 DNA〔PCR用プライマー: FITC- GST- AS (FITC- 5, - GGCAGATCGTCAGTCA GTCAC-3' ):配列番号 1〕(Invitrogen社製)を 5 1と混和した。すると、混和直後より NH基表層修飾シリカ球力FITCの蛍光を発することを確認することができた。この Labeled DNA [PCR primer: FITC-GST-AS (FITC-5, -GGCAGATCGTCAGTCA GTCAC-3 '): SEQ ID NO: 1] (manufactured by Invitrogen) was mixed with 51. Then, immediately after mixing, it was confirmed that the NH base surface modified silica spherical force FITC fluoresced. this
2 2
結果から、上記 NH基表層修飾シリカ球はその表面に DNAを付着することがわかつ  The results show that the NH-based surface modified silica sphere attaches DNA to its surface.
2  2
た。  It was.
実施例 4  Example 4
[0081] NH基表層修飾シリカ球の作製とフルォレセイン (標識分子)含有シリカ球同士の  [0081] Preparation of NH-based surface-modified silica spheres and fluorescein (labeled molecule) -containing silica spheres
2  2
結合(1)実施例 1で調製したサンプル溶液 B (シリカ球 B:粒径 4nm) 2mlに、ジメチル スルホキシド(以下、「DMSO」とも!/、う)で 10倍希釈した 3- (ァミノプロピル)トリエトキシ シラン〔APS〕溶液 2 1を加えて、室温で 1時間撹拌した。これにより、シリカ球 B〔フル ォレセイン (標識分子)含有シリカ球〕の表面に、ァクセプター基として APSに由来す る NH基を有するシリカ球 (NH基表層修飾シリカ球)を作製することができた。  Binding (1) 3- (aminopropyl) triethoxy diluted 10-fold with dimethyl sulfoxide (hereinafter also referred to as “DMSO”! /, U) in 2 ml of sample solution B (silica sphere B: particle size 4 nm) prepared in Example 1 Silane [APS] solution 21 was added and stirred at room temperature for 1 hour. As a result, silica spheres (NH group surface modified silica spheres) having NH groups derived from APS as acceptor groups on the surface of silica spheres B (fluorescein (labeled molecule) -containing silica spheres) could be produced. .
2 2  twenty two
[0082] その後、この混合溶液 0.1mlを 1.5ml容量の反応チューブに加えて、これに 40 1の ダルタールアルデヒド (カップリング剤)を添加して室温で撹拌した (本発明試料)。な お、当該ダルタールアルデヒドの使用割合は、上記 NH基表層修飾シリカ球 1モル  [0082] Thereafter, 0.1 ml of this mixed solution was added to a 1.5 ml reaction tube, and 40 1 of dartal aldehyde (coupling agent) was added thereto and stirred at room temperature (sample of the present invention). In addition, the use ratio of the dartal aldehyde is 1 mol of the NH base surface modified silica sphere.
2  2
に対して 2190モル、 APS1モルに対して 329モルである。また、対照試験として、上記 4 0 μ 1のダルタールアルデヒドに代えて 40 μ 1の蒸留水を用いて、同様に攪拌反応を行 つた (対照試料)。 Is 2190 moles per mole and 329 moles per mole of APS. As a control test, 40 μ1 distilled water was used instead of the 40 μ1 dartal aldehyde, and a similar stirring reaction was performed. (Control sample).
[0083] 本発明試料と対照試料の蛍光強度を測定したところ、対照試料では、蛍光強度 145  [0083] The fluorescence intensity of the sample of the present invention and that of the control sample were measured.
(励起波長 503nm、発光波長 520nm)であったのに対し、本発明試料は、蛍光強度 9.8 (励起波長 484nm、発光波長 515nm)であり、対照試料の蛍光強度の約 1/15と、明ら かにダルタールアルデヒドで処理した本発明試料の蛍光強度が減少して 、た。この 蛍光強度の減少(消光現象)から、ダルタールアルデヒドをカ卩えることで、 NH  Whereas the excitation wavelength was 503 nm and the emission wavelength was 520 nm, the sample of the present invention had a fluorescence intensity of 9.8 (excitation wavelength of 484 nm and an emission wavelength of 515 nm), which was clearly about 1/15 of the fluorescence intensity of the control sample. The fluorescence intensity of the sample of the present invention treated with crab dartal aldehyde was decreased. From this decrease in fluorescence intensity (quenching phenomenon), by adding dartal aldehyde, NH
2基表層 修飾シリカ球が集まって集合体 (シリカ球の多重結合物)が形成されたことがうかがわ れた。すなわち、上記の蛍光強度の減少は、シリカ球が集まることによって励起する 光や発光する光が干渉し合うことによって生じているものと推測された。  Two surface layers It was observed that the modified silica spheres gathered to form aggregates (multiple bonds of silica spheres). That is, it was speculated that the decrease in the fluorescence intensity was caused by interference between the light excited by the silica spheres gathered and the light emitted.
[0084] 図 6に、上記の反応を模式的に示す。 [0084] FIG. 6 schematically shows the above reaction.
[0085] (2)この溶液 (本発明試料)にさらに、シリカ球 B、 DMSO及び APSの混合溶液を 0. lml加えると、蛍光強度が 25になり、最初の蛍光強度 (約 10)に比べて約 15に相当す る蛍光が増えた。一方、上記の対照試料にさらに混合溶液を 0.1mlカ卩えて 0.2mlとした 場合は、当初 145あった蛍光強度が 72.5 (実測)になった。このことから、 72.5-15=57.5 の蛍光強度に相当する粒子が、上記においてシリカ球の多重結合物の調製に使わ れたと考えられる。  [0085] (2) When 0.1 ml of a mixed solution of silica sphere B, DMSO and APS is further added to this solution (the sample of the present invention), the fluorescence intensity becomes 25, which is compared with the initial fluorescence intensity (about 10). The fluorescence corresponding to about 15 increased. On the other hand, when 0.1 ml of mixed solution was added to the control sample to make 0.2 ml, the fluorescence intensity that was initially 145 became 72.5 (actual measurement). From this, it is considered that the particles corresponding to the fluorescence intensity of 72.5-15 = 57.5 were used in the above preparation of the silica sphere multiple bond.
[0086] 上記の本発明試料にさらに混合溶液を 0.1ml (合計 0.3ml)加えると、蛍光強度は 70 になり、上記の蛍光強度 25に比べて約 45 (蛍光強度: 70-25=45)に相当する蛍光が 増えた。一方、上記の対照試料にさらに蒸留水を 0.1ml加えて 0.3mlとした場合は、 3 倍希釈になるので 48 (実測)となった。この値は、上記蛍光増加分 45とほぼ等しいこと から、最後に本発明試料に添加した混合溶液 0.1mlは、シリカ球の多重結合に関わつ ていないと思われた。これらのことから、本発明試料に混合溶液を所定の量まで (ここ では 0.2ml)配合することによって、すなわち配合する混合溶液の量を調整することに よって、シリカ球を互いに結合させて大きな粒子の塊(多重結合物)を作ることができ ることがゎカゝる。  [0086] When 0.1 ml (0.3 ml in total) of the mixed solution is further added to the above-mentioned sample of the present invention, the fluorescence intensity becomes 70, which is about 45 (fluorescence intensity: 70-25 = 45) compared to the above fluorescence intensity 25. Fluorescence equivalent to increased. On the other hand, when 0.1 ml of distilled water was further added to the above control sample to make 0.3 ml, it was 48 times (actual measurement) because it was diluted 3 times. Since this value is almost equal to the above fluorescence increase 45, it seems that the 0.1 ml of the mixed solution added to the sample of the present invention is not related to the multiple binding of silica spheres. For these reasons, the silica spheres are bonded to each other to form large particles by blending the sample solution of the present invention to a predetermined amount (in this case, 0.2 ml), that is, by adjusting the amount of the mixture solution to be blended. It is possible to make a lump (multiple bond).
[0087] 以上のことから、シリカ球をァミノプロピルトリエトキシシラン (シリカ化合物)で処理す ることによりシリカ球の表面にァクセプター基として NH基を導入し、次いでカップリン  [0087] From the above, by treating silica spheres with aminopropyltriethoxysilane (silica compound), NH groups were introduced as acceptor groups on the surface of silica spheres, and then coupling
2  2
グ剤としてダルタールアルデヒドで処理することで、シリカ球がお互いに結合し、シリ 力球の塊(多重結合物)を形成することができることがわ力つた。すなわち、上記の反 応によりさらなる大きなフルォレセイン (標識分子)含有シリカ粒子が調製できることが ゎカゝる。 By treating with dartal aldehyde as a ligating agent, silica spheres bind to each other and It was obvious that a mass of forceballs (multiple bonds) could be formed. That is, it can be said that larger fluorescein (labeled molecule) -containing silica particles can be prepared by the above reaction.
実施例 5  Example 5
[0088] 表面に SH基を有する標識分子含有シリカ球の作製  [0088] Preparation of labeled molecule-containing silica spheres with SH groups on the surface
(1)実施例 1 (1)で調製したフルォレセイン (標識分子)含有シリカ化合物 (3) 50 μ 1 を、水 3ml、エタノール 10ml、 γ -メルカプトプロピルトリエトキシシラン (MPS) 0.15ml, 及び 27重量%アンモニア水溶液 lmlと混合して、室温下で 24時間攪拌反応させた。 得られた溶液 (反応終了液)を、限外ろ過装置〔アミコン (登録商標)攪拌式セル〕(フ ィルター; UFディスク YM100ウルトラセル RC100K NMWL) (販売会社: MILLIPORE丌 Nominal Molecular Weight Limit (NMWL): 100 kDa]を使用してろ過し、蒸留水を使 用したろ過洗浄を数回繰り返して、フルォレセイン (標識分子)含有シリカ球を調製し た。斯くして得られたシリカ球は、その表面に上記反応に使用したシリカ化合物 (MPS )に由来する SH基を有している(SH基表層修飾シリカ球)。このシリカ球を蛍光顕微 鏡で観察したところ、フルォレセインの蛍光が観察できた(図 7a)。  (1) Fluorescein (labeled molecule) -containing silica compound prepared in Example 1 (1) (3) 50 μ1 was mixed with 3 ml of water, 10 ml of ethanol, 0.15 ml of γ-mercaptopropyltriethoxysilane (MPS), and 27 wt. The mixture was mixed with 1 ml of an aqueous ammonia solution and stirred at room temperature for 24 hours. The obtained solution (reaction completed solution) was subjected to ultrafiltration (Amicon (registered trademark) stirring cell) (filter; UF disk YM100 Ultracell RC100K NMWL) (sales company: MILLIPORE 丌 Nominal Molecular Weight Limit (NMWL) : 100 kDa], and filtration and washing with distilled water were repeated several times to prepare fluorescein (labeled molecule) -containing silica spheres. The SH group is derived from the silica compound (MPS) used in the above reaction (SH group surface modified silica sphere), and when this silica sphere was observed with a fluorescence microscope, the fluorescence of fluorescein could be observed ( Figure 7a).
[0089] (2)次いで、この SH基表層修飾シリカ球 10 μ 1に、 1.0mg/mlのローダミンで標識し たダルタチオン— S—トランスフェラーゼ(ローダミン標識 GST)の水溶液を 10 μ 1にカロ え、蛍光顕微鏡で観察を行ったところ、ローダミンの蛍光が観察された(図 7b)。この ことからシリカ球 (SH基表層修飾シリカ球)の表面に、ローダミン標識 GSTを付着させ ることができることが確認できた。  [0089] (2) Next, 10 μ 1 of SH base surface modified silica spheres were charged with 10 μ 1 of an aqueous solution of dartathione-S-transferase (rhodamine labeled GST) labeled with 1.0 mg / ml of rhodamine, When observed with a fluorescence microscope, rhodamine fluorescence was observed (FIG. 7b). This confirmed that rhodamine-labeled GST can be attached to the surface of silica spheres (SH-based surface-modified silica spheres).
実施例 6  Example 6
[0090] ピオチン (標識分子)含有シリカ化合物の調製、及びこれを用いたシリカ球〔ピオチン  [0090] Preparation of silica compound containing piotin (labeled molecule) and silica spheres using this
(標識分子)含有シリカ球〕の調製  Preparation of (labeled molecule-containing silica sphere)
(1)ピオチン (標識分子)含有シリカ化合物の調製  (1) Preparation of silica compound containing piotin (labeled molecule)
下式に従って、ピオチン (標識分子)含有シリカ化合物 (7)を調製した。  Piotin (labeled molecule) -containing silica compound (7) was prepared according to the following formula.
[0091] [化 5] [0091] [Chemical 5]
Figure imgf000026_0001
Figure imgf000026_0001
[0092] 〔式中、 Rはピオチン (標識分子)を意味する。また、 R中、 *はエステル基との結合  [In the formula, R means piotin (labeled molecule). In R, * is a bond with an ester group.
2 2  twenty two
部位を意味する。〕  It means a part. ]
具体的には、まずスクシンィミジルエステルイ匕合物として、エステル結合を通じてビ ォチン (標識分子)(式中、 Rで示す)とスクシンイミドが結合してなる D- Biotin-N-hyd  Specifically, as a succinimidyl ester compound, D-Biotin-N-hyd is formed by binding biotin (labeled molecule) (shown by R in the formula) and succinimide through an ester bond.
2  2
roxysuccinimide ester(o (Roshe Molecular Biochemicals) (約 50mg)を DMSO溶揿 (約 lml)に溶解 (終濃度 146mM)した後、その 35 μ 1とアミノ基を有するシリカ化合物として 5.7Μの 3- (ァミノプロピル)トリエトキシシラン〔APS〕(2) 1 1及び DMSO 5mlを混合して 、約 1時間攪拌して反応させて、ピオチン (標識分子)含有シリカ化合物 (7)を調製した  After dissolving roxysuccinimide ester (o (Roshe Molecular Biochemicals) (approx. 50 mg) in DMSO solution (approx. 1 ml) (final concentration: 146 mM), 5.7 3- of 3- (aminopropyl) as a silica compound having 35 μ1 and amino groups. ) Triethoxysilane [APS] (2) 1 1 and DMSO 5 ml were mixed and stirred for about 1 hour to react to prepare a silica compound (7) containing piotin (labeled molecule).
[0093] (2)シリカ球 (標識分子としてピオチンとフルォレセインを含有するシリカ球)の調製 次いで、下式に従って、標識分子としてピオチンとフルォレセインを含有するシリカ 粒 (8)を調製した。 (2) Preparation of Silica Sphere (Silica Sphere Containing Piotin and Fluorescein as Labeling Molecules) Next, silica particles (8) containing piotin and fluorescein as labeling molecules were prepared according to the following formula.
[0094] [化 6] [0094] [Chemical 6]
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000027_0002
(なお式中、 Rはフルォレセイン分子、 Rはピオチン分子を示す。また R及び R中、
Figure imgf000027_0002
(In the formula, R represents a fluorescein molecule, R represents a piotin molecule, and in R and R,
1 2 1 2 1 2 1 2
*はいずれもエステル基との結合部位を意味する。 ) * Means a bonding site with an ester group. )
具体的には、上記で得られた反応溶液〔ピオチン (標識分子)含有シリカ化合物〕 (7) 2.5mlと実施例 1 (1)で得られたフルォレセイン (標識分子)含有シリカ化合物 (3)を含 む反応溶液 2.5mlを混合し、これにエタノール 20ml、水 6 ml、テトラエトキシシラン (TE OS) 0.3 ml、 27重量%のアンモニア水 2mlをカ卩えてスターラーを用いて室温にて 24時間 攪拌した。反応終了後、得られた反応終了液を限外濾過装置〔アミコン (登録商標) 攪拌式セル〕(フィルター; UFディスク YM 100ウルトラセル RC100K NMWL) (販売会社 : MILLIPORE) [Nominal Molecular Weight Limit (NMWL): 100 kDa]を用いて洗浄し た。これによつて、標識分子としてピオチン及びフルォレセインを含有するシリカ球〔 ピオチン-フルォレセイン (標識分子)含有シリカ球〕 (8)が調製できた。 Specifically, the reaction solution obtained above [Piotin (labeled molecule) -containing silica compound] (7) 2.5 ml and the fluorescein (labeled molecule) -containing silica compound (3) obtained in Example 1 (1) Mix 2.5 ml of the reaction solution containing it, and add 20 ml of ethanol, 6 ml of water, 0.3 ml of tetraethoxysilane (TEOS), 2 ml of 27% by weight ammonia water and stir at room temperature for 24 hours using a stirrer. did. After completion of the reaction, the obtained reaction solution was subjected to ultrafiltration [Amicon (registered trademark) stirring cell] (filter; UF disk YM 100 Ultracell RC100K NMWL) (sales company: MILLIPORE) [Nominal Molecular Weight Limit (NMWL ): 100 kDa]. Thereby, silica spheres containing piotin and fluorescein as labeling molecules [ Piotin-fluorescein (labeled molecule) -containing silica sphere] (8) was prepared.
[0096] 次 、で得られたピオチン-フルォレセイン (標識分子)含有シリカ球 (8)5 μ 1を、 0.5 m g/mlアビジン溶液 5 μ 1と混合したところ、蛍光顕微鏡並びに電子顕微鏡にて凝集 像が認められた。一方、対照実験として実施例 1 (1)及び (2)の方法で調製されるビ ォチンを含まな 、フルォレセイン (標識分子)含有シリカ球 (5)を用いて上記と同条件 でアビジン溶液と混合したところ、この場合には凝集像は認められなかった。 [0096] Next, 5 μ1 of the silica sphere (8) containing piotin-fluorescein (labeled molecule) obtained in (5) was mixed with 5 μ1 of a 0.5 mg / ml avidin solution. Was recognized. On the other hand, as a control experiment, a silica ball (5) containing fluorescein (labeled molecule) containing no biotin prepared by the method of Example 1 (1) and (2) was mixed with an avidin solution under the same conditions as described above. As a result, no aggregated image was observed in this case.
[0097] このことから、ピオチン-フルォレセイン (標識分子)含有シリカ球 (8)は、内部にピオ チンが取り込まれているだけでなぐ表層部にピオチンが露出した形で存在しており 、これによつてアビジンと反応することがわかった。よってピオチン-フルォレセイン (標 識分子)含有シリカ球 (8)は、ピオチン—アビジン反応を利用した検出の蛍光試薬とし て有用である。 [0097] From this, the silica sphere (8) containing piotin-fluorescein (labeled molecule) (8) is present in a form in which piotin is exposed on the surface layer portion just by the incorporation of piotin inside. So it was found to react with avidin. Therefore, the silica sphere (8) containing piotin-fluorescein (labeling molecule) is useful as a fluorescent reagent for detection using the piotin-avidin reaction.
実施例 7  Example 7
[0098] ローダミン (標識分子)含有シリカ化合物の調製、及びこれを用いたシリカ球〔ローダミ ン (標識分子)含有シリカ球〕の調製  [0098] Preparation of Rhodamine (labeled molecule) -containing silica compound, and preparation of silica sphere [rhodamine (labeled molecule) -containing silica sphere] using the same
(1)ローダミン (標識分子)含有シリカ化合物の調製  (1) Preparation of Rhodamine (labeled molecule) -containing silica compound
下式に従って、ローダミン (標識分子)含有シリカ化合物を調製した。  A rhodamine (labeled molecule) -containing silica compound was prepared according to the following formula.
[0099] [化 7] [0099] [Chemical 7]
Figure imgf000028_0001
Figure imgf000028_0001
〔式中、 Rはローダミン (標識分子)を意味する。 R中、 *はエステル基との結合部を  [In the formula, R means rhodamine (labeled molecule). In R, * indicates the bond with the ester group.
3 3  3 3
意味する。〕  means. ]
具体的には、まずスクシンィミジルエステルイ匕合物として、エステル結合を介して口 ーダミン(標識分子)とスクシンイミドが結合してなる 5-carboxyltetramethylrhodamine succinimidyl ester (9) (Molecular Probes社製)約 5mgを、 1mlの DMSO溶液に溶解し た後、アミノ基を有するシリカ化合物として 3- (ァミノプロピル)トリエトキシシラン (APSX 2)を、上記スクシンィミジルエステル化合物 (9)と等モルになるように DMSOで 51.2 1 カロえて、約 1時間スターラーピースを用いて攪拌して反応させて、スクシンィミジルェ ステルイ匕合物 (9)のカルボニル基とシリカ化合物 (2)のァミノ基がアミド結合してなる口 ーダミン (標識分子)含有シリカ化合物 (10)を調製した。 Specifically, as a succinimidyl ester compound, 5-carboxyltetramethylrhodamine formed by binding podamine (labeled molecule) and succinimide via an ester bond. About 5 mg of succinimidyl ester (9) (Molecular Probes) is dissolved in 1 ml of DMSO solution, and 3- (aminopropyl) triethoxysilane (APSX 2) is used as a silica compound having an amino group. Carry out 51.2 1 in DMSO so that it is equimolar with the midyl ester compound (9) and stir with a stirrer piece for about 1 hour to react with the carbonyl of succinimidylsteri compound (9). A hydramine (labeled molecule) -containing silica compound (10) comprising an amide bond between the group and an amino group of the silica compound (2) was prepared.
[0101] (2)シリカ球の調製  [0101] (2) Preparation of silica sphere
下式に従って、ローダミン (標識分子)含有シリカ化合物 (10)力 ローダミン (標識分 子)含有シリカ球 (12)を調製した。  Rhodamine (labeled molecule) -containing silica compound (10) force Rhodamine (labeled molecule) -containing silica sphere (12) was prepared according to the following formula.
[0102] [化 8]  [0102] [Chemical 8]
Figure imgf000029_0001
Figure imgf000029_0001
(1 1 )  (1 1)
[0103] 〔式中、 Rはローダミン (標識分子)を意味する。〕  [In the formula, R means rhodamine (labeled molecule). ]
3  Three
具体的には、上記で得られた反応溶液〔ローダミン (標識分子)含有シリカ化合物 (1 0)〕の DMSO溶液 5mlに、テトラエトキシシラン(TEOS) 0.3ml、水 6ml及びエタノール 20 mlを加えて(エタノール:水 =4 : 1、容量比)、これに約 30%のアンモニア水 2mlをカロえ て、一日撹拌しながら室温条件下に放置した。得られた溶液 (反応終了液)を、限外 ろ過装置〔アミコン (登録商標)攪拌式セル〕(フィルター; UFディスク YM100ウルトラセ ル RC100K NMWL) (販売会社: MILLIPORE丌 Nominal Molecular Weight Limit (NM WL): 100 kDa〕を使用してろ過し、蒸留水を使用したろ過洗浄を数回繰り返して、口 ーダミン (標識分子)含有シリカ球 (11)を調製した。このものの透過型電子顕微鏡 (TE M)写真( X 10,000)と蛍光顕微鏡像を図 8a、図 8bに示す。 実施例 8 Specifically, tetraethoxysilane (TEOS) 0.3 ml, water 6 ml and ethanol 20 ml were added to DMSO solution 5 ml of the reaction solution [rhodamine (labeled molecule) -containing silica compound (10)] obtained above. (Ethanol: water = 4: 1, volume ratio) 2 ml of about 30% ammonia water was added to this and left at room temperature with stirring for one day. The resulting solution (reaction completed solution) was subjected to ultrafiltration (Amicon (registered trademark) stirring cell) (filter; UF disk YM100 Ultracell RC100K NMWL) (sales company: MILLIPORE 丌 Nominal Molecular Weight Limit (NM WL) : 100 kDa], and filtration and washing with distilled water were repeated several times to prepare silica spheres (11) containing tetradamine (labeled molecule), which was transmitted electron microscope (TEM) A photograph (X 10,000) and a fluorescence microscope image are shown in FIGS. 8a and 8b. Example 8
[0104] 表面に SH基を有する標識分子含有シリカ球の作製、及びその性質  [0104] Preparation of labeled molecule-containing silica spheres with SH groups on the surface and their properties
(1)実施例 7の(1)に記載する方法で調製したローダミン (標識分子)含有シリカ化合 物 (10)の分散水溶液 lmlに、エタノール 4ml、テトラエチルオルソシリケート(TEOS) 60 1、水 1.2ml、 27重量%のアンモニア水 0.4mlをカ卩えて室温でー晚反応してローダミン (標識分子)含有シリカ球 (11)を調製した。反応終了液を限外濾過装置〔アミコン (登 録商標)攪拌式セル〕(フィルター; UFディスク YM 100ウルトラセル RC100K NMWL) ( 販売会社: MILLIPORE) [Nominal Molecular Weight Limit (NMWL): 100 kDa]にて洗 浄した。  (1) Rhodamine (labeled molecule) -containing silica compound (10) prepared by the method described in Example 7 (1) Dispersed aqueous solution (10 ml) In 4 ml of ethanol, tetraethyl orthosilicate (TEOS) 60 1, water 1.2 ml Rhodamine (labeled molecule) -containing silica spheres (11) were prepared by adding 0.4 ml of 27 wt% aqueous ammonia and reacting at room temperature. Transfer the reaction solution to an ultrafiltration device [Amicon (registered trademark) stirring cell] (filter; UF disk YM 100 Ultracell RC100K NMWL) (Distributor: MILLIPORE) [Nominal Molecular Weight Limit (NMWL): 100 kDa] And washed.
[0105] (2)洗浄を行ったシリカ球含有液 0.1 mlを、 5.8 mM MPS ( γ メルカプトプロビルト リエトキシシラン)水溶液 lmlにカ卩え、室温下にてー晚反応させた。これにより、ローダ ミン (標識分子)含有シリカ球(11)の表面に MPSを付着させて、表面にァクセプター基 として SH基を有するシリカ球 (SH基表層修飾シリカ球)を作製することができた。  (2) 0.1 ml of the washed silica sphere-containing solution was added to 1 ml of a 5.8 mM MPS (γ-mercaptoprovir triethoxysilane) aqueous solution and allowed to react at room temperature. As a result, MPS was attached to the surface of rhodamine (labeled molecule) -containing silica sphere (11), and a silica sphere (SH group surface-modified silica sphere) having an SH group as an acceptor group on the surface could be produced. .
[0106] (3)次いで、遠心分離機を用いて蒸留水にて洗浄を行った。得られたシリカ球 (SH 基表層修飾シリカ球)含有液 2 μ 1と、 34 μ g/mlの割合で Green fluorescein protein (G FP)を含む生理的食塩水溶液 3 1とを混合し、蛍光顕微鏡で観察したところ、混和 直後より、 SH基表層修飾シリカ球力 GFPの緑色の蛍光を発することを確認することが できた。この結果から、上記 SH基表層修飾シリカ球は他の特殊な試薬を必要とする ことなく蛋白質を含む溶液と混合するだけでその表面に蛋白質を吸着することがわか つた o  (3) Next, washing with distilled water was performed using a centrifuge. Mix the obtained silica sphere (SH-based surface modified silica sphere) -containing solution 2 μ 1 and physiological saline solution 31 containing Green fluorescein protein (G FP) at a rate of 34 μg / ml, and use a fluorescence microscope. As a result, it was confirmed that the SH base surface-modified silica spherical force GFP emitted green fluorescence immediately after mixing. From this result, it was found that the SH-based surface modified silica sphere adsorbs protein on its surface just by mixing with a solution containing protein without the need for other special reagents.
実施例 9  Example 9
[0107] 水 3ml、エタノール 10ml、 5.7 Mの γ メルカプトプロピルトリエトキシシラン(MPS) 0.  [0107] 3 ml of water, 10 ml of ethanol, 5.7 M gamma mercaptopropyltriethoxysilane (MPS) 0.
15 ml、 27重量%のアンモニア水 1 mlを混合し、一日撹拌しながら放置して、シリカ球 を調製した。このシリカ球はその表面にァクセプター基として MPSに由来する SH基を 有している(SH基表層修飾シリカ球)。次いで、遠心機分離機を用いてエタノール、 水、生理的食塩水にて当該シリカ球を洗浄した。  Silica spheres were prepared by mixing 15 ml and 1 ml of 27% by weight aqueous ammonia and leaving it agitated for one day. This silica sphere has SH groups derived from MPS as acceptor groups on its surface (SH base surface modified silica spheres). Next, the silica spheres were washed with ethanol, water, and physiological saline using a centrifuge separator.
[0108] 得られた SH基表層修飾シリカ球 10 μ 1に、 1.0mg/mlのローダミン標識したダルタチ オン— S トランスフェラーゼ(ローダミン標識 GST)の水溶液を 10 μ 1に加え、蛍光顕 微鏡で観察を行った。その結果、ローダミンの蛍光が観察された(図 9a)。次に l.Omg /mlゥシ血清アルブミンでブロッキングを行った後、遠心分離機を用いて洗浄した。洗 浄したローダミン標識 GSTを結合させた SH基表層修飾シリカ球を、 0.2mg/mlのフル ォレセインイソチオシァネート(FITC)で蛍光標識した抗 GST抗体 5 μ 1と混合し、蛍光 顕微鏡にて観察を行った。その結果、図 9bに示すように、シリカ球に FITCの蛍光を 認めた。このことから、シリカ球上で抗 GST抗体が抗原である GSTと結合していること が確認できた。 [0108] To the obtained SH base surface modified silica sphere 10 μ1, 1.0 mg / ml rhodamine-labeled dartathione-S transferase (rhodamine-labeled GST) aqueous solution was added to 10 μ1, and fluorescence microscopy was performed. Observation was performed with a microscope. As a result, rhodamine fluorescence was observed (FIG. 9a). Next, after blocking with l.Omg / ml ushi serum albumin, it was washed with a centrifuge. Washed rhodamine-labeled GST-bound SH group surface modified silica spheres were mixed with anti-GST antibody 5 μ1 fluorescently labeled with 0.2 mg / ml fluorescein isothiocyanate (FITC) and fluorescent microscope The observation was performed. As a result, as shown in Fig. 9b, FITC fluorescence was observed in the silica sphere. This confirmed that the anti-GST antibody was bound to the antigen GST on the silica sphere.
以上、実施例 3 (1)、実施例 8及び 9の結果から、本発明のシリカ球によれば、その 表面に有するァクセプター基を介して蛋白質を付着させることができ、これによりシリ 力球表面で抗原-抗体反応を行うことが可能であることが示された。  As described above, from the results of Example 3 (1), Examples 8 and 9, according to the silica sphere of the present invention, proteins can be attached via the acceptor group on the surface thereof. It was shown that an antigen-antibody reaction can be performed.

Claims

請求の範囲 The scope of the claims
[1] (a)エステル結合 (-CO-0-)を介して標識分子とスクシンイミドとが結合してなるスク シンィミジルエステルイ匕合物 (1)とアミノ基を有するシリカ化合物 (2)とを反応して、標識 分子含有シリカ化合物 (3)を生成する工程、  [1] (a) Succinimidyl ester compound (1) obtained by binding a labeled molecule and succinimide via an ester bond (-CO-0-) (1) and a silica compound having an amino group (2 ) To produce a labeled molecule-containing silica compound (3),
及び  as well as
(b) (a)の工程で得られる標識分子含有シリカ化合物 (3)を、 1種または 2種以上組み 合わせて、シリカ化合物 (4)と反応する工程  (b) A step of reacting the silica compound (4) with one or more of the labeled molecule-containing silica compounds (3) obtained in the step (a).
を有する、標識分子含有シリカ球 (5)の調製方法。  A method for preparing a labeled molecule-containing silica sphere (5).
[2] 上記アミノ基を有するシリカ化合物 (2)として、 3- (ァミノプロピル)トリエトキシシランまた は 3-[2-(2-アミノエチルァミノ)ェチルァミノ]プロピル-トリエトキシシランを用いることを 特徴とする、請求項 1記載の標識分子含有シリカ球の調製方法。  [2] As the silica compound having an amino group (2), 3- (aminopropyl) triethoxysilane or 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane is used. The method for preparing a labeled molecule-containing silica sphere according to claim 1.
[3] 上記シリカ化合物 (4)として、テトラエトキシシラン、 γ—メルカプトプロピルトリエトキシ シラン、ァミノプロピルトリエトキシシラン、 3-チオシアナトプロピルトリエトキシシラン、 3 -グリシジルォキシプロピルトリエトキシシラン、 3-イソシアナトプロピルトリエトキシシラ ン、及び 3-[2-(2-アミノエチルァミノ)ェチルァミノ]プロピル-トリエトキシシランよりなる 群力 選択されるいずれか少なくとも 1つのシリカ化合物を用いることを特徴とする、 請求項 1または 2に記載する標識分子含有シリカ球の調製方法。  [3] As the silica compound (4), tetraethoxysilane, γ-mercaptopropyltriethoxysilane, aminopropyltriethoxysilane, 3-thiocyanatopropyltriethoxysilane, 3-glycidyloxypropyltriethoxysilane, A group power consisting of 3-isocyanatopropyltriethoxysilane and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane is used, and at least one silica compound selected is used. A method for preparing a labeled molecule-containing silica sphere according to claim 1 or 2.
[4] (b)の工程を、水、アルコール、及びアンモニアの存在下で行うことを特徴とする、請 求項 1乃至 3のいずれかに記載の標識分子含有シリカ球の調製方法。  [4] The method for preparing a labeled molecule-containing silica sphere according to any one of claims 1 to 3, wherein the step (b) is performed in the presence of water, alcohol, and ammonia.
[5] 水とアルコールの容量比が 1 : 0.5〜1 : 8であることを特徴とする請求項 4に記載する 標識分子含有シリカ球の調製方法。  5. The method for preparing a labeled molecule-containing silica sphere according to claim 4, wherein the volume ratio of water to alcohol is 1: 0.5 to 1: 8.
[6] 請求項 1乃至 5のいずれか 1項に記載の方法によって得られる標識分子含有シリカ 球。  [6] A labeled molecule-containing silica sphere obtained by the method according to any one of claims 1 to 5.
[7] 請求項 1乃至 5のいずれか 1項に記載の方法で得られた標識分子含有シリカ球を、さ らに、工程 (b)で用いたシリカ化合物 (4)と異なるシリカ化合物 (4)で処理する工程を有 する、標識分子含有シリカ球の調製方法。  [7] The labeled molecule-containing silica sphere obtained by the method according to any one of claims 1 to 5, further comprising a silica compound (4) different from the silica compound (4) used in the step (b) (4) A method for preparing a labeled molecule-containing silica sphere, which comprises a step of treating with (1).
[8] 請求項 7に記載の方法によって得られる標識分子含有シリカ球。 [8] A labeled molecule-containing silica sphere obtained by the method according to claim 7.
[9] 請求項 6または 8に記載する標識分子含有シリカ球の表面に、ペプチド、蛋白質、遺 伝子、微生物、カップリング剤、ピオチン、アビジン、または標識分子が結合してなる シリカ球。 [9] On the surface of the labeled molecule-containing silica sphere according to claim 6 or 8, peptides, proteins, residues Silica spheres formed by binding genes, microorganisms, coupling agents, piotin, avidin, or labeled molecules.
[10] 請求項 1乃至 5のいずれか 1項に記載の方法で得られた標識分子含有シリカ球を、さ らに (c)必要に応じて、工程 (b)で用いたシリカ化合物 (4)と異なるシリカ化合物 (4)で 処理する工程を有する、及び  [10] The labeled molecule-containing silica sphere obtained by the method according to any one of claims 1 to 5, further comprising (c) a silica compound used in step (b), if necessary (4 And a step of treating with a silica compound (4) different from
(d)標識分子含有シリカ球のァクセプター基に応じたカップリング剤を用いて、標識 分子含有シリカ球同士を結合させる工程  (d) A step of bonding the labeled molecule-containing silica spheres together using a coupling agent according to the acceptor group of the labeled molecule-containing silica spheres.
を有する、標識分子含有シリカ球の多重結合物を調製する方法。  A method for preparing a multiple bond of labeled spheres containing labeled molecules.
[11] 請求項 10に記載する方法によって得られる標識分子含有シリカ球の多重結合物。 [11] A multi-bonded product of labeled molecule-containing silica spheres obtained by the method according to claim 10.
PCT/JP2005/022628 2004-12-09 2005-12-09 Method of preparing silica sphere containing labeled molecule WO2006070582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550652A JP4982687B2 (en) 2004-12-09 2005-12-09 Method for preparing labeled spheres containing labeled molecules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004356608 2004-12-09
JP2004-356608 2004-12-09

Publications (1)

Publication Number Publication Date
WO2006070582A1 true WO2006070582A1 (en) 2006-07-06

Family

ID=36614703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022628 WO2006070582A1 (en) 2004-12-09 2005-12-09 Method of preparing silica sphere containing labeled molecule

Country Status (2)

Country Link
JP (1) JP4982687B2 (en)
WO (1) WO2006070582A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265306A (en) * 2005-03-22 2006-10-05 Univ Of Tokushima Color material composition and color developing or luminescent product containing the same
WO2007142316A1 (en) 2006-06-08 2007-12-13 The University Of Tokushima Method for production of novel nano silica particle and use of the nano silica particle
JP2008247713A (en) * 2007-03-30 2008-10-16 Univ Of Tokushima Fluorescent coloring material-containing nano-silica particle, and method for preparing the same
JP2009046330A (en) * 2007-08-15 2009-03-05 Furukawa Electric Co Ltd:The Method for producing silica nanoparticle using reverse micelle dispersion system, silica nanoparticle obtained by the method, and labeling reagent using the nanoparticle
JP2009115822A (en) * 2009-02-23 2009-05-28 Furukawa Electric Co Ltd:The Label silica nano-particle for immuno-chromatography reagent, immuno-chromatography reagent, test strip for immuno-chromatography using it, and fluorescence detection system for immuno-chromatography
WO2009072657A1 (en) 2007-12-06 2009-06-11 The University Of Tokushima Nanofunctional silica particles and manufacturing method thereof
JP2009281760A (en) * 2008-05-20 2009-12-03 Konica Minolta Medical & Graphic Inc Nanoparticle-containing silica, labeling material of biosubstance using it, and labeling method of biosubstance
JP2010105896A (en) * 2008-10-31 2010-05-13 Furukawa Electric Co Ltd:The Method for producing silica nanoparticle containing functional organic molecule having carboxy group, silica nanoparticle obtained thereby and labeling reagent using the same
US7955866B2 (en) 2007-06-08 2011-06-07 The Furukawa Electric Co., Ltd. Labelled silica nanoparticles for immunochromatographic assays
WO2014119624A1 (en) * 2013-02-04 2014-08-07 古河電気工業株式会社 Method for producing labeled antibody
WO2015163424A1 (en) * 2014-04-23 2015-10-29 株式会社ニチレイバイオサイエンス Combination for target marker detection
WO2016068324A1 (en) * 2014-10-31 2016-05-06 信一郎 礒部 Alkoxysilyl group-containing organic el pigment and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501611A (en) * 1989-11-13 1993-03-25 アフィマックス テクノロジーズ ナームロゼ ベノートスハップ Spatially addressable immobilization of antiligands on surfaces

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214019A1 (en) * 2002-03-30 2003-10-16 Detlef Mueller-Schulte Luminescent, spherical, non-autofluorescent silica gel particles with variable emission intensities and frequencies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05501611A (en) * 1989-11-13 1993-03-25 アフィマックス テクノロジーズ ナームロゼ ベノートスハップ Spatially addressable immobilization of antiligands on surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IMNOF A. ET AL.: "Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres", J. PHYS. CHEM. B., vol. 103, 1999, pages 1408 - 1415, XP002909427 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265306A (en) * 2005-03-22 2006-10-05 Univ Of Tokushima Color material composition and color developing or luminescent product containing the same
WO2007142316A1 (en) 2006-06-08 2007-12-13 The University Of Tokushima Method for production of novel nano silica particle and use of the nano silica particle
JP2008247713A (en) * 2007-03-30 2008-10-16 Univ Of Tokushima Fluorescent coloring material-containing nano-silica particle, and method for preparing the same
US7955866B2 (en) 2007-06-08 2011-06-07 The Furukawa Electric Co., Ltd. Labelled silica nanoparticles for immunochromatographic assays
US10209249B2 (en) 2007-06-08 2019-02-19 The Furukawa Electric Co., Ltd. Labelled silica nanoparticles for immunochromatographic reagent, immunochromatographic test strip using the same, and immunochromomatographic fluorescence-detecting system or radiation-detecting system
JP2009046330A (en) * 2007-08-15 2009-03-05 Furukawa Electric Co Ltd:The Method for producing silica nanoparticle using reverse micelle dispersion system, silica nanoparticle obtained by the method, and labeling reagent using the nanoparticle
WO2009072657A1 (en) 2007-12-06 2009-06-11 The University Of Tokushima Nanofunctional silica particles and manufacturing method thereof
JP2009281760A (en) * 2008-05-20 2009-12-03 Konica Minolta Medical & Graphic Inc Nanoparticle-containing silica, labeling material of biosubstance using it, and labeling method of biosubstance
JP2010105896A (en) * 2008-10-31 2010-05-13 Furukawa Electric Co Ltd:The Method for producing silica nanoparticle containing functional organic molecule having carboxy group, silica nanoparticle obtained thereby and labeling reagent using the same
JP2009115822A (en) * 2009-02-23 2009-05-28 Furukawa Electric Co Ltd:The Label silica nano-particle for immuno-chromatography reagent, immuno-chromatography reagent, test strip for immuno-chromatography using it, and fluorescence detection system for immuno-chromatography
WO2014119624A1 (en) * 2013-02-04 2014-08-07 古河電気工業株式会社 Method for producing labeled antibody
TWI595009B (en) * 2013-02-04 2017-08-11 Furukawa Electric Co Ltd Identification of antibody manufacturing methods and labeling antibodies
US10466234B2 (en) 2013-02-04 2019-11-05 Furukawa Electric Co., Ltd. Method of producing labeled antibody
WO2015163424A1 (en) * 2014-04-23 2015-10-29 株式会社ニチレイバイオサイエンス Combination for target marker detection
JP2017026631A (en) * 2014-04-23 2017-02-02 株式会社ニチレイバイオサイエンス Combination product for detecting target marker
KR20160147830A (en) * 2014-04-23 2016-12-23 가부시키가이샤 니찌레이 바이오사이언스 Combination for target marker detection
RU2678108C2 (en) * 2014-04-23 2019-01-23 Нитирей Байосайенсиз Инк. Combination for target marker detection
JP6019254B2 (en) * 2014-04-23 2016-11-02 株式会社ニチレイバイオサイエンス Target marker detection combination
US10324084B2 (en) 2014-04-23 2019-06-18 Nichirei Biosciences Inc. Combination product for detecting target marker
KR102190207B1 (en) 2014-04-23 2020-12-15 가부시키가이샤 니찌레이 바이오사이언스 Combination for target marker detection
US11156602B2 (en) 2014-04-23 2021-10-26 Nichirei Biosciences Inc. Combination product for detecting target marker
JPWO2016068324A1 (en) * 2014-10-31 2017-08-10 信一郎 礒部 Alkoxysilyl group-containing organic EL dye and method for producing the same
WO2016068324A1 (en) * 2014-10-31 2016-05-06 信一郎 礒部 Alkoxysilyl group-containing organic el pigment and method for producing same

Also Published As

Publication number Publication date
JPWO2006070582A1 (en) 2008-06-12
JP4982687B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2006070582A1 (en) Method of preparing silica sphere containing labeled molecule
JP6595974B2 (en) Chromophore polymer dot
WO2007074722A1 (en) Fluorescent silica nano-particle, fluorescent nano-material, biochip using the material, and assay method
JP4598403B2 (en) Functionalized compositions for improved immobilization
JP5709292B2 (en) Nano-functional silica particles and method for producing the same
JP4985541B2 (en) Nanoparticle-encapsulating silica, biological substance labeling substance and biological substance labeling method using the same
GB2474456A (en) Dendrimer functionalised nanoparticle label
JP5224330B2 (en) Method for producing core-shell structured silica nanoparticles, core-shell structured silica nanoparticles, and labeling reagent using the same
WO2012147774A1 (en) Method for producing silica nanoparticles containing functional molecules to which biomolecules are bonded
JP5277431B2 (en) Fluorescent dye-containing nanosilica particles and preparation method thereof
JP7226329B2 (en) Dye Aggregate Particles, Dye Encapsulating Particles, and Fluorescent Labeling Materials
WO2005023961A1 (en) Novel fine fluorescent particle
GB2445580A (en) An encoded microsphere
JP4774507B2 (en) Color material composition and colored or luminescent product containing the same
US20110201784A1 (en) Functionalized cyanine having a silane linker arm, a method of preparing thereof and uses thereof
KR101368076B1 (en) Surface-modified fluorescent silica nanoparticles with excellent aqeous dispersibility and preparing method thereof
JP2003270154A (en) Fluorescent dye molecule-containing silica ball
Dixit et al. Novel epoxy-silica nanoparticles to develop non-enzymatic colorimetric probe for analytical immuno/bioassays
JP2011232072A (en) Silica nano-particle containing organic fluorescence dye, its manufacturing method and biological substance indicating agent
JP5024291B2 (en) Fluorescent semiconductor fine particles, method for producing the same, fluorescent labeling agent for biological material using the same, and bioimaging method using the same
GB2445579A (en) An encoded microsphere
JP5224359B2 (en) Method for producing silica nanoparticles containing organic dye molecules having a carboxyl group, silica nanoparticles obtained by the production method, and labeling reagent using the same
JP5168092B2 (en) Semiconductor nanoparticle labeling agent
CN114813686B (en) Method for detecting GP73 based on NGQDs-MoS2@RGO junction suitable ligand
JP5192752B2 (en) Method for producing silica nanoparticles using reverse micelle dispersion, silica nanoparticles obtained by the method, and labeling reagent using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550652

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814741

Country of ref document: EP

Kind code of ref document: A1