WO2006069499A1 - Triterpenes type protein tyrosine phosphatase 1b inhibitors and the preparation method and the use - Google Patents

Triterpenes type protein tyrosine phosphatase 1b inhibitors and the preparation method and the use Download PDF

Info

Publication number
WO2006069499A1
WO2006069499A1 PCT/CN2005/000172 CN2005000172W WO2006069499A1 WO 2006069499 A1 WO2006069499 A1 WO 2006069499A1 CN 2005000172 W CN2005000172 W CN 2005000172W WO 2006069499 A1 WO2006069499 A1 WO 2006069499A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
conh
compound
cooh
Prior art date
Application number
PCT/CN2005/000172
Other languages
French (fr)
Chinese (zh)
Inventor
Lihong Hu
Jia Li
Di Hong
Qizhuang Ye
Original Assignee
Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences
The National Center For Drug Screening
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences, The National Center For Drug Screening filed Critical Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences
Publication of WO2006069499A1 publication Critical patent/WO2006069499A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J63/00Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by expansion of only one ring by one or two atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin

Definitions

  • the present invention relates to a class of triterpenoids which exhibit high inhibitory activity against protein tyrosine phosphatase IB (PTP1B). These compounds act as PTP1 B inhibitors and insulin sensitizers for the treatment of diabetes, obesity and its complications caused by insulin resistance.
  • PTP1B protein tyrosine phosphatase IB
  • the invention also relates to a process for the preparation of such compounds.
  • Diabetes mellitus is a group of clinical syndromes caused by the interaction of genetic and environmental factors, due to absolute or relative deficiency of insulin secretion and decreased sensitivity of target tissue cells to insulin, causing sugar, protein, fat, water, and electrolytes.
  • a series of metabolic disorders Clinically, hyperglycemia is the main common mark. Long-term disease can cause multiple system damage.
  • Acute metabolic disorders such as ketoacidosis can occur when the condition is severe and stress. Serious complications such as coronary heart disease, iron deficiency or hemorrhagic cerebrovascular disease, blindness, and gangrene in the diabetic population were significantly higher than those in the non-diabetic population. Therefore, diabetes and its complications have become a worldwide public health problem that seriously threatens human health.
  • type I diabetes insulin-dependent diabetes mellitus
  • type II diabetes non-insulin-dependent diabetes mellitus
  • WHO estimates that the number of people with diabetes will rise from 135 million in 1995 to 300 million in 2025 due to an aging population, obesity, unhealthy diet and a lack of lifestyle.
  • Type I diabetes patients have genetic susceptibility due to HLA-D gene on the short arm of chromosome 6 and abnormal response to environmental factors, especially viral infection or chemical toxic substances, directly or indirectly through autoimmune reactions, causing islets Beta cells are destroyed, resulting in insufficient insulin.
  • the clinical features are acute onset, more common symptoms such as polyphagia, polyuria, polydipsia, and weight loss. There is a tendency to develop ketoacidosis, and insulin therapy must be relied upon to maintain life.
  • Type II diabetes also has strong hereditary and environmental factors, and it is significantly heterogeneous.
  • the pathogenesis is diverse and complex, and there are large differences among patients. In general, it can be summarized as the relative deficiency of insulin secretion and insulin resistance.
  • a series of studies on people with type 2 diabetes, especially obese diabetics, have confirmed that insulin resistance is a key factor in the development and progression of type 2 diabetes.
  • Based on the study of insulin signaling pathways in adipocytes and muscle cells, the development of insulin sensitizers to improve insulin resistance is the focus of new drug research for type II diabetes and one of its main directions.
  • Type II diabetes is characterized by resistance to insulin action by insulin-sensitive tissues such as skeletal muscle, liver, and adipose tissue. Although the specific mechanism is still unclear, the attenuation or even blockade of insulin signaling in its conduction pathway must be a direct factor. Insulin binds to its receptor extracellular alpha subunit to activate the intrinsic tyrosine kinase activity of the receptor intracellular beta subunit, resulting in autophosphorylation of key tyrosine residues in the regulatory domain, thereby fully activating insulin receptor tyrosine The kinase activity of the insulin receptor, the insulin receptor tyrosine kinase, then transmits the signal by phosphorylating its substrate.
  • insulin-sensitive tissues such as skeletal muscle, liver, and adipose tissue.
  • PTPases protein tyrosine phosphatase
  • IR autophosphorylation-activated insulin receptor
  • IRS-1 insulin receptor substrate 1
  • IRS-2 insulin receptor substrate 2
  • She and other insulin receptors are dephosphorylated, thereby negatively regulating the insulin-receptor receptor pathway.
  • An imbalance in enzyme activity between tyrosine kinases in specific PTPases and insulin pathways may be responsible for insulin resistance in type 2 diabetes. Therefore, it is becoming more and more important to treat type 2 diabetes by finding inhibitors of PTPases that selectively act on this pathway to inhibit its activity, and to enhance and prolong insulin signaling.
  • PTPases include a large family of transmembrane (receptor) and intracellular (non-receptor) enzymes involved in the regulation of a range of important life processes. Although a variety of PTPases are expressed in insulin-sensitive tissues, such as transmembrane CD45 and LAR-PTPase; intracellular SHPTP-1, SHPTP-2, PTP1B, PTP1C, etc., only a few PTPases may be in the insulin pathway. The receptor or receptor pathway affects normal insulin action. Current research focuses on LAR-PTPa Se , SHPTP-2 and PTP1B.
  • PTP1B is the first PTPase to be purified and characterized biologically, with a total length of approximately 50 KD.
  • PTP1B derived from human placenta into Xenopus oocytes will reduce insulin-induced oocyte maturation and S6 peptide phosphorylation.
  • PTP1B was highly expressed in all insulin-sensitive tissues; after administration of PTP1B antibody by osmotic shock, DNA synthesis and PI3 kinase activity levels were significantly increased in mouse KRC-7 hepatocytes stimulated by insulin, IR autophosphorylation level, IR The level of kinase activity and the level of IRS-1 tyrosine phosphorylation were also significantly elevated.
  • PTP1B interacts directly with activated IR; it also shows the highest selective activity of IRS-1 in vitro; high expression of PTP1B in rat fibroblasts can significantly reduce ligand-induced IR phosphorylation Levels of adenovirus-mediated gene transfection, high expression of PTP1B in insulin-targeted skeletal and hepatic model cell lines L6 muscle cells and Fao cells, significantly inhibiting insulin-induced IR and IRS-1 tyrosine Acid phosphorylation, and thus significantly inhibits the formation of IRS-1 and PI3 kinase P85 subunit complexes and phosphorylation of Akt, MAPK, and insulin-induced glycogen synthesis is also inhibited [Egawa K. et al. J.
  • PTP1B was highly expressed in model cell 3T3-L1 cells of another insulin-targeted tissue adipose tissue, which also significantly inhibited insulin-induced tyrosine phosphorylation of IR, IRS-1 and PI3 kinase, P42 and P44 MAPK phosphoric acid.
  • the level of chemistry is also significantly reduced, while Akt phosphorylation levels and activity are not affected [Venable CL et al. J. Biol. Chem. 275 (24), 18318-18326].
  • the high expression of PTP1B had no effect on the basic, medium and maximum insulin-induced glucose transport and had no effect on the transported EC 5() insulin concentration.
  • PTP1B knockout mice demonstrate that PTP1B is capable of negatively regulating the insulin signaling pathway and acting primarily on the insulin receptor. More important experimental evidence comes from PTP1B knockout mice. Elchebly et al. reported that PTP1B knockout mice produced by homologous recombination have normal growth, fertility, and significant sensitivity to insulin, and this enhancement is associated with insulin receptors and insulin in the liver and skeletal muscle. Enhancement of phosphorylation levels in bulk substrate 1 [Elchebly M., et al. Science, 283, 1544-1548.] Surprisingly, PTP1B knockout mice It is also resistant to food-induced weight gain and insulin resistance. Klaman et al.
  • PTP1B knockout mice have elevated levels of basic metabolism and overall energy expenditure [Klaman LD, et al. Molecular and Cellular Biology, 20(15), 5479-5489]. These experiments have more strongly demonstrated the important role of PTP1B in insulin sensitivity, energy expenditure, and fat storage, making it clear that it is a potential drug target for the treatment of type 2 diabetes and obesity.
  • F 2 PMP the inhibitor EEDE
  • the object of the present invention is to provide a class of triterpenoids which are useful as protein tyrosine phosphatase PTP1B inhibitors and insulin sensitizers for the treatment of various diabetes, obesity and complications thereof.
  • Another object of the present invention is to provide a method for synthesizing such compounds by using oleanolic acid or ursolic acid or cola acid or 2oc-hydroxy sinoic acid or betulinic acid as a starting material.
  • the triterpenoid PTP1B inhibitor of the present invention is a compound having the structure of the following formula I or a physiologically acceptable salt thereof:
  • is an alkyl group or hydrogen
  • R 3 is hydrogen, hydroxy, amino, halogen or fluorenyl
  • R4 is a hydroxyl group, an amino group, a halogen or a fluorenyl group; Is ⁇ - ⁇ .
  • the aryl group in the aryl group or the substituted aryl group in the present invention means a phenyl group, a pyridyl group, a fluorenyl group, a furyl group, a thienyl group or a pyrrolyl group.
  • a preferred compound of the invention is a triterpenoid PTP1B inhibitor of formula I or a physiologically acceptable salt thereof, wherein is hydrogen;
  • Another preferred compound of the invention is a triterpenoid PTP1B inhibitor of structural formula I or is physiologically acceptable
  • is one.
  • R 3 is hydrogen, hydroxy, amino, halogen or fluorenyl
  • X is a fluorenyl group of d-Czo, an unsaturated hydrocarbon group of d-Czo, YCH(R 5 ), CONH(CH 2 ) solicitCH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH( R 7 )COOH, wherein n is 1 -20, m is 1-20; Y is a fluorenyl group of d-o or an unsaturated hydrocarbon group of -, ⁇ , and R 5 , and R 7 are each independently selected from d- C 5 thiol, aryl, substituted aryl.
  • the invention is implemented by the following steps:
  • the invention uses oleanolic acid, ursolic acid, colanic acid or 2 ⁇ -hydroxy sinoic acid as raw materials to synthesize 28-long-chain fatty acid derivatives by Wittig or Wittig-Horner reaction, and obtains 3 positions by substituting 3-hydroxyl groups.
  • W 200 is oleanolic acid, ursolic acid, colanic acid or 2 ⁇ -hydroxy sinoic acid
  • Synthesis route of 28-long-chain fatty acid triterpene derivative Compound A can be obtained by NaH/Mel or CH 2 N 2 / TBDMSC1 or 2, 2 dimethoxypropane to obtain 3-methyl ether-28-methyl ester or 3-tert. Butyl dimethyl chlorosilyl ether ether - 28 - methyl ester or 2, 3 acetone fork derivative, and then reduced by LiAlH 4 to obtain alcohol B. B is oxidized by oxalyl chloride to give aldehyde C. Aldehyde C is reacted by Wittig reaction or Wittig-Homer to give compound D, wherein n is 0-20.
  • Compound D is then hydrogenated to give the 28-long chain fatty acid derivative E.
  • Compound E is further deprotected by 3-tert-butyldimethylsilyl group or methoxy deprotected or deprotected with acetone fork to give 28-long chain fatty acid derivative G.
  • Compound G is reductively deaminated by IBX oxidation or reacted with hydrogen sulfide and trialuminum or HX to give product I.
  • Compound E is obtained by reacting an ⁇ -position with a halogen or by condensing with an ⁇ -substituted amino acid to obtain a compound F.
  • Compound F is further deprotected by 3-tert-butyldimethylsilyl sulfonyl group or methoxy deprotected or acetone fork deprotected to give 28-long chain fatty acid derivative hydrazine.
  • the compound ⁇ is deamidated by deuteration by hydrazine oxidation or reacted with hydrogen sulfide and trialuminum or by hydrazine treatment to obtain product J.
  • the product obtained was confirmed by NMR.
  • Synthesis route of 28-peptide chain triterpene derivatives Compound A is reacted with a mixed solution of acetic anhydride and pyridine (1:1, V/V) to obtain an acetylated product K of Compound A.
  • Compound ⁇ is treated with a certain amount of oxalyl chloride to give compound L.
  • Compound L is reacted with the methyl ester of the amino acid and the methyl ester of the dipeptide in an anhydrous aprotic solvent (eg, methylene chloride, trichloromethane, 1, 4-dioxane), which requires the addition of some organic base.
  • an anhydrous aprotic solvent eg, methylene chloride, trichloromethane, 1, 4-dioxane
  • a catalyst e.g., triethylamine, pyridine, diisopropylethylamine, N, N-dimethylpiperidine, etc.
  • the reaction temperature is generally carried out at room temperature, and the reaction time is usually from 1 to 3 h, and TLC is usually used to detect the degree of completion of the reaction. Then, the acetyl group is protected with NaOH. After the completion of the reaction, the product is directly subjected to solvent removal under reduced pressure, and the concentrate is subjected to column chromatography to obtain the final products M and N.
  • the reaction yield is generally from 75% to 90%.
  • Compound M or N is oxidized by IBX to reductively deamination or is reacted with hydrogen sulfide and trialuminum or HX to give product O or P. The product obtained was confirmed by NMR.
  • Figure 1 shows the effect of compound L-5 on the K m value of PTP1B against the substrate pNPP.
  • Figure 2 shows the effect of compound L-5 on the at value of PTP1B on the substrate pNPP.
  • Figure 3 shows the effect of compound L-5 on the level of tyrosine phosphorylation of ⁇ in CHO/IR cells. Beneficial effect
  • the present invention demonstrates that a series of compounds synthesized are a novel class of protein tyrosine phosphatase IB inhibitors which are derivatives derived from natural products as compared to the currently known PTP1B inhibitors;
  • the parent ursolic acid and oleanolic acid are clinically used drugs with low toxicity and very safe; the raw materials for synthesizing these compounds are ursolic acid and oleanolic acid are very cheap.
  • ⁇ -NMR was measured with a Varian Mercury AMX300 model; MS was measured with a VG ZAB-HS or VG-7070 meter, except for the EI source (70 ev); all solvents were re-distilled before use.
  • the anhydrous solvent was obtained by drying according to the standard method; except for the description, all the reactions were carried out under the protection of Ar gas and traced by TLC, and the post-treatment was washed with saturated brine and anhydrous MgS0 4 ;
  • the column chromatography using silica gel (200-300 mesh) was used; the silica gel used, including 200-300 mesh and GF 254, was produced by Qingdao Ocean Chemical Plant or Yantai Yuanbo Silicone Company.
  • the PTP1B, TCPTP, CDC25A, CDC25B, LAR high-throughput screening models and CHO/IR cell model construction methods refer to the Guide to Molecular Cloning: PNpp. 2Na (p-nitrophenyl phosphate disodium salt) purchased from Shanghai Bio-Bio Ltd.; Insulin (insulin injection) was purchased from Shanghai First Biochemical Pharmaceutical Co., Ltd.; F12 medium and serum were purchased from GibcoTM.
  • PNpp. 2Na p-nitrophenyl phosphate disodium salt
  • Insulin insulin injection
  • F12 medium and serum were purchased from GibcoTM.
  • A-1 (500 mg, 1.093 mmol) was dissolved in dry tetrahydrofuran (25 mL;), then lithium aluminum hydride (100 mg, 2.632 mmol) was added and stirred at room temperature overnight under argon. Unreacted lithium aluminum hydride was quenched with a small amount of ethyl acetate, then iced water and chloroform (50 mL). The mixture was transferred to a sep. funnel, chloroform layer was dried, dried over anhydrous sodium sulfate, and evaporated to give a white solid B-1 (460 mg, 1.016 mmol), yield 93%.
  • Methyl oleate (470 mg, 1 mmol) was dissolved in 10 mL of anhydrous DMF, then imidazole (98 mg, 1.2 mmol), TBDMSCl (180 mg, 1.2 mmol). Diluted with 100 mL of distilled water, suction filtered, washed with EtOAc EtOAc (EtOAc)
  • Oxalyl chloride (0.1 mL, 1.1 mmol) was dissolved in dichloromethane (5 mL), cooled to -60 °C, and DMSO (0.17 mL, 2.2 mmol) in dichloromethane (5 mL) Stir at -60 °C for 5 min.
  • a solution of the above white solid product in dichloromethane (5 mL) was slowly added dropwise, and stirred at -60 °C for 15 min, then triethylamine (0.7 mL, 5 mmol). The temperature was slowly raised to room temperature, stirred for 48 ho.
  • the methylene chloride solution was washed three times with water (10 mL), dried over sodium sulfate and evaporated.
  • the acid chloride of acetylated oleanolic acid (103.3 mg, 0.2 mmol) was taken and dissolved in (10 mL) anhydrous dichloromethane.
  • the hydrochloride salt of (95.4 mg, 0.4 mmol) of i ⁇ -amino acid methyl ester was dissolved in (10 mL) anhydrous dichloromethane, and (0.5 mL) triethylamine was added to give the eleven amino acid methyl ester hydrochloride.
  • hPTPlB human protein tyrosine phosphatase IB
  • the purified hPTPlB recombinant protein can hydrolyze the phospholipid bond of the substrate pNPP.
  • the product has a strong light absorption at 410 nm, so it is possible to directly observe the change in light absorption at 410 nm to observe changes in enzyme activity and inhibition of enzyme activity by the compound.
  • the standard assay system is as follows: 50 mM Mops, pH 7.0, 1 mM EDTA, 2 mM DTT, 2 mM PNPP, 2% DMSO, 40 nM hPTP1 B.
  • pNPP 410 nm II Observation index: The optical absorption at 410 nm is measured dynamically for 3 min, and the slope of the first-order reaction of the kinetic curve is used as the activity index of the enzyme.
  • Sample test 1. Dissolve 1 mg sample in 200 ⁇ DMSO. 20 was added to the A2-H11 sample well of a 96-well polypropylene plate, and then 80 DMS0 was added as a mother plate. 2. 2 ⁇ of the sample was added to the corresponding sample well of a 96-well polystyrene plate using the Biomek 2000 automatic sample loading system as a daughter plate for screening. 3. Add 2 L DMSO to the sample well Al-D E12-H12 as a 100% enzyme activity control. 4. Add 2 ⁇ of different concentrations of positive control (four concentrations diluted by 10 g/mL) to sample wells A12-D12 and E1-H1. 5.
  • Test compound oleanolic acid, ursolic acid, G-1, G-2, G-3, G-4, H-1, H-2, H-3, H-4, G-5, G- 6.
  • Test results The screening result is the percentage inhibition rate of enzyme activity when the concentration of the compound is 2 ( ⁇ g/mL, when the inhibitory activity is higher than 50%, IC 5 o is obtained by routine screening, positive control 4 [4-(4-oxalyl-phenoxymethyl)-benzyloxy]-phenyl-oxo-acetic acid ,
  • test method 1, in the 96-well polystyrene plate sample hole A1_H1; A3-H3; A5-H5; A7-H7; A9-H9; A11-H11 respectively added 625 nM double dilution with DMS0 Six concentrations of L-5 DMS0 solution 2 ⁇ . 2.
  • Test Results Compound N-2 inhibited PTP1B with an IC50 of 250 nM, which has high inhibitory activity. Moreover, as the concentration of the inhibitor increased, the binding capacity of PTP1B to the substrate pNPP, that is, Km became larger, and the catalytic rate (kcat) of the substrate did not change significantly (see Fig. 1 and Fig. 2). Thus, the compound is a competitive inhibitor of a class of PTP1B.
  • Example 39 Effect of Compound N-2 on IR Phosphorylation Level in CHO/IR Cells I. Test principle: The phosphorylation level of insulin receptor IR in insulin-sensitive cells is tightly regulated by protein tyrosine kinases and protein tyrosine phosphatases.
  • PTP1B is in this The process plays a role as a negative regulator.
  • CHO/IR cells National New Drug Screening Center
  • Test methods 1. Cell seeding: Cells with good growth state were connected to 6-well plates at a density of 3-4 X 105 cells/well, 2 mL of medium per well F12 + 10% NCS. 2. Hunger: After 24 hours, serum-free F12 medium, 2 mL, overnight for 12 h. 3. Administration: Remove the old medium, add fresh F12, l mL, and incubate for 20 minutes. Compound 1 was diluted with 1 mL of F12 serum-free medium and added to each well for 2.5 hours. Positive and negative controls were made with 1 mM Na3V04 and 0.1% DMSO, respectively. 4. Insulin stimulation: Insulin with a final concentration of ⁇ was added to each well for 10 minutes. Or no insulin stimulation. 5. Take the sample: Discard the medium and add 100 ⁇ L of X 1 loading buffer per well to lyse the cells.

Abstract

The present invention relates to a class of triterpenes type PTP1B inhibitors having structures as below. Pharmacological studies indicate that this class of compounds or the physiological acceptable salts thereof have inhibitory activity against PTP1B and they can be used as insulin sensitizers and manufacture of a medicament for the treatment of disease caused by insulin resistance. The present invention relates to the preparation method of this class of compounds.

Description

一类三萜类蛋白酪氨酸磷酸酯酶 1B抑制剂及其制备方法和用途 技术领域  Triterpenoid protein tyrosine phosphatase 1B inhibitor and preparation method and use thereof
本发明涉及的一类三萜类化合物, 该类化合物对蛋白酪氨酸磷酸酯酶 IB (PTP1B) 显 示高的抑制活性。 该类化合物作为 PTP1 B抑制剂和胰岛素增敏剂, 可用于治疗由胰岛素 抵抗引起的糖尿病、 肥胖症及其并发症。 本发明还涉及该类化合物的制备方法。 技术背景:  The present invention relates to a class of triterpenoids which exhibit high inhibitory activity against protein tyrosine phosphatase IB (PTP1B). These compounds act as PTP1 B inhibitors and insulin sensitizers for the treatment of diabetes, obesity and its complications caused by insulin resistance. The invention also relates to a process for the preparation of such compounds. technical background:
糖尿病 (diabetes mellitus) 是一组由遗传和环境因素相互作用而引起的临床综合症,因 胰岛素分泌绝对或相对不足以及靶组织细胞对胰岛素敏感性降低, 引起糖、 蛋白、 脂肪、 水、 和电解质等一系列代谢紊乱。 临床以高血糖为主要共同标志, 久病可引起多个系统损 害, 病情严重和应激时可发生急性代谢紊乱如酮症酸中毒等。 在糖尿病人群中发生冠心病、 缺铁性或出血性脑血管病、 失明、 肢端坏疽等严重并发症均明显高于非糖尿病人群。 因此, 糖尿病及其并发症己成为严重威胁人类健康的世界性公共卫生问题。  Diabetes mellitus is a group of clinical syndromes caused by the interaction of genetic and environmental factors, due to absolute or relative deficiency of insulin secretion and decreased sensitivity of target tissue cells to insulin, causing sugar, protein, fat, water, and electrolytes. A series of metabolic disorders. Clinically, hyperglycemia is the main common mark. Long-term disease can cause multiple system damage. Acute metabolic disorders such as ketoacidosis can occur when the condition is severe and stress. Serious complications such as coronary heart disease, iron deficiency or hemorrhagic cerebrovascular disease, blindness, and gangrene in the diabetic population were significantly higher than those in the non-diabetic population. Therefore, diabetes and its complications have become a worldwide public health problem that seriously threatens human health.
目前一般将糖尿病分为两类, I型糖尿病 (胰岛素依赖型糖尿病, IDDM) 与 II型糖尿 病 (非胰岛素依赖型糖尿病, NIDDM)。 糖尿病中 90% 以上是 II型糖尿病。 WHO预计, 由于人口老龄化、 肥胖、 不健康的饮食以及缺乏运动的生活方式, 到 2025年, 糖尿病患 者的数目将由 1995年的 1.35亿上升为 3亿。  Currently, diabetes is generally divided into two categories, type I diabetes (insulin-dependent diabetes mellitus, IDDM) and type II diabetes (non-insulin-dependent diabetes mellitus, NIDDM). More than 90% of diabetes is type 2 diabetes. WHO estimates that the number of people with diabetes will rise from 135 million in 1995 to 300 million in 2025 due to an aging population, obesity, unhealthy diet and a lack of lifestyle.
I型糖尿病病人由于第 6对染色体短臂上的 HLA-D基因决定了遗传易感性,对环境因 素, 特别是病毒感染或化学毒性物质刺激的反应异常, 直接或间接通过自身免疫反应, 引 起胰岛 β细胞破坏, 以致胰岛素不足。 临床特点是起病急, 多食、 多尿、 多饮、 体重减轻 等症状较明显, 有发生酮症酸中毒的倾向, 必须依赖胰岛素治疗维持生命。  Type I diabetes patients have genetic susceptibility due to HLA-D gene on the short arm of chromosome 6 and abnormal response to environmental factors, especially viral infection or chemical toxic substances, directly or indirectly through autoimmune reactions, causing islets Beta cells are destroyed, resulting in insufficient insulin. The clinical features are acute onset, more common symptoms such as polyphagia, polyuria, polydipsia, and weight loss. There is a tendency to develop ketoacidosis, and insulin therapy must be relied upon to maintain life.
II型糖尿病也有很强的遗传性和环境因素,并呈显著的异质性,发病机制多样而复杂, 各病人间存在较大差异。 总的来说可概括为胰岛素分泌的相对不足和胰岛素抵抗。 对 II 型糖尿病人,尤其是肥胖性糖尿病患者的一系列研究证实,胰岛素抵抗是 II型糖尿病发生、 发展过程中的关键因素。在研究脂肪细胞和肌肉细胞内胰岛素信号传导途径的基础上, 设 计开发胰岛素增敏剂, 以改善胰岛素抵抗状态, 是目前 II型糖尿病新药研究的重点, 也是 其主要方向之一。  Type II diabetes also has strong hereditary and environmental factors, and it is significantly heterogeneous. The pathogenesis is diverse and complex, and there are large differences among patients. In general, it can be summarized as the relative deficiency of insulin secretion and insulin resistance. A series of studies on people with type 2 diabetes, especially obese diabetics, have confirmed that insulin resistance is a key factor in the development and progression of type 2 diabetes. Based on the study of insulin signaling pathways in adipocytes and muscle cells, the development of insulin sensitizers to improve insulin resistance is the focus of new drug research for type II diabetes and one of its main directions.
II型糖尿病的特征是胰岛素敏感组织如骨骼肌、 肝、 脂肪组织对胰岛素作用的抵抗。 虽然其具体机制尚不清楚, 但胰岛素信号在其传导通路中的减弱甚至阻断必定是直接因 素。胰岛素通过与其受体胞外 α亚单位结合激活受体胞内 β亚单位内在的酪氨酸激酶活性, 导致调节结构域中关键的酪氨酸残基自身磷酸化,从而完全激活胰岛素受体酪氨酸激酶活 性, 胰岛素受体酪氨酸激酶再通过磷酸化其底物将信号传递下去。 随着对细胞内胰岛素作 用通路中可逆性酪氨酸磷酸化认识的加深,蛋白酪氨酸磷酸酯酶 (PTPases) 在平衡该通路 中相关蛋白酪氨酸磷酸化水平中的作用越来越受到重视。 PTPases可能作用于该通路中多 个环节, 例如将自身磷酸化活化的胰岛素受体 (IR) 去磷酸化, 从而降低受体激酶活性; 或将诸如胰岛素受体底物 1 (IRS-1)、 胰岛素受体底物 2 (IRS-2)、 She等胰岛素受体的底物 中蛋白酪氨酸残基去磷酸化, 从而负调控胰岛素作用受体后通路。 特定 PTPases和胰岛素 通路中酪氨酸激酶间酶活性的不平衡可能是引起 II型糖尿病胰岛素抵抗的原因。因此,通 过寻找选择性作用于该通路中 PTPases的抑制剂抑制其活性, 加强和延长胰岛素信号, 成 为越来越受重视的治疗 II型糖尿病的新途径。 Type II diabetes is characterized by resistance to insulin action by insulin-sensitive tissues such as skeletal muscle, liver, and adipose tissue. Although the specific mechanism is still unclear, the attenuation or even blockade of insulin signaling in its conduction pathway must be a direct factor. Insulin binds to its receptor extracellular alpha subunit to activate the intrinsic tyrosine kinase activity of the receptor intracellular beta subunit, resulting in autophosphorylation of key tyrosine residues in the regulatory domain, thereby fully activating insulin receptor tyrosine The kinase activity of the insulin receptor, the insulin receptor tyrosine kinase, then transmits the signal by phosphorylating its substrate. With intracellular insulin With the deepening of the understanding of reversible tyrosine phosphorylation in the pathway, the role of protein tyrosine phosphatase (PTPases) in balancing the levels of related protein tyrosine phosphorylation in this pathway has received increasing attention. PTPases may act on multiple pathways in the pathway, such as dephosphorylation of autophosphorylation-activated insulin receptor (IR) to reduce receptor kinase activity; or such as insulin receptor substrate 1 (IRS-1), The protein tyrosine residues in the substrate of the insulin receptor substrate 2 (IRS-2), She and other insulin receptors are dephosphorylated, thereby negatively regulating the insulin-receptor receptor pathway. An imbalance in enzyme activity between tyrosine kinases in specific PTPases and insulin pathways may be responsible for insulin resistance in type 2 diabetes. Therefore, it is becoming more and more important to treat type 2 diabetes by finding inhibitors of PTPases that selectively act on this pathway to inhibit its activity, and to enhance and prolong insulin signaling.
PTPases包括一大家族跨膜 (受体型) 和胞内 (非受体型) 酶,参与调控一系列重要生 命过程。虽然多种 PTPases在胰岛素敏感的组织中有表达,如跨膜的 CD45和 LAR-PTPase 等; 胞内的 SHPTP-1、 SHPTP-2、 PTP1B、 PTP1C等, 但只有几种 PTPases可能在胰岛素 通路中受体或受体后环节影响正常胰岛素作用。 目前的研究主要集中在 LAR-PTPaSe、 SHPTP-2和 PTP1B。 PTPases include a large family of transmembrane (receptor) and intracellular (non-receptor) enzymes involved in the regulation of a range of important life processes. Although a variety of PTPases are expressed in insulin-sensitive tissues, such as transmembrane CD45 and LAR-PTPase; intracellular SHPTP-1, SHPTP-2, PTP1B, PTP1C, etc., only a few PTPases may be in the insulin pathway. The receptor or receptor pathway affects normal insulin action. Current research focuses on LAR-PTPa Se , SHPTP-2 and PTP1B.
PTP1B是最早被纯化和确定生物学特性的 PTPase, 全长大约 50 KD。 早期研究证明 能在体外有效地将胰岛素受体去磷酸化; 将来源于人胎盘的 PTP1B显微注射入非洲蟾蜍 卵母细胞中, 将减少胰岛素诱导的卵母细胞成熟及 S6肽磷酸化水平。 随后发现 PTP1B在 所有胰岛素敏感组织中高表达; 用渗透休克的方法给予 PTP1B抗体后, 小鼠 KRC-7肝细 胞经胰岛素刺激时 DNA合成和 PI3激酶活性水平显著升高, IR自身磷酸化水平、 IR激酶 活性水平和 IRS-1酪氨酸磷酸化水平也显著升高。最近有研究表明, PTP1B直接与激活状 态的 IR相互作用; 在体外实验中也对 IRS-1显示最高的选择性活性; 大鼠成纤维细胞中 PTP1B的高表达能明显降低配体诱导的 IR磷酸化水平; 用腺病毒介导基因转染的方法, 在胰岛素靶向组织骨骼肌和肝组织的模型细胞 L6肌细胞和 Fao细胞中高表达 PTP1B, 明 显抑制胰岛素诱导的 IR和 IRS-1的酪氨酸磷酸化,并从而显著抑制 IRS-1和 PI3激酶 P85 亚单位复合物的形成以及 Akt、 MAPK的磷酸化水平, 而且胰岛素诱导的糖原合成也被抑 制 [Egawa K. et al. J. Biol. Chem. 276(13), 10207-10211.]。 用同样的方法在另一胰岛素靶向 组织脂肪组织的模型细胞 3T3-L1细胞中高表达 PTP1B, 同样明显抑制胰岛素诱导的 IR、 IRS-1和 PI3激酶的酪氨酸磷酸化, P42和 P44 MAPK磷酸化水平也明显降低, 而 Akt磷 酸化水平和活性不受影响 [Venable C. L. et al. J. Biol. Chem. 275(24), 18318-18326]。 PTP1B 的高表达对基本的、 中等的及最大量胰岛素诱导的葡萄糖转运无影响, 对转运的 EC5()胰 岛素浓度无影响。 这些研究证明 PTP1B 能够负调控胰岛素信号转导通路并主要作用于胰 岛素受体。更为重要的实验证据来自 PTP1B基因敲除小鼠。 Elchebly等报道, 运用同源重 组的方法产生的 PTP1B基因敲除的小鼠生长正常, 有生殖力, 对胰岛素敏感性显著增强, 而且这一增强作用与肝脏和骨骼肌中胰岛素受体及胰岛素受体底物 1 磷酸化水平的增强 相关 [Elchebly M., et al. Science, 283, 1544-1548.] 令人惊奇的是, PTP1B基因敲除的小鼠 对食物诱导的体重增加和胰岛素抵抗也有抵抗作用。 Klaman等运用大致相同的方法产生 的 PTP1B基因敲除的小鼠也得到同样的结果, 而且发现 PTP1B基因敲除的小鼠之所以对 食物诱导的体重增加有抵抗作用, 是由于脂肪细胞体积的减少, 而脂肪细胞的数量并不改 变。 PTP1B 基因敲除的小鼠基本代谢水平和总体能量消耗升高 [Klaman L. D., et al. Molecular and Cellular Biology, 20(15), 5479-5489]。 这些实验更加有力地证明了 PTP1B在 胰岛素敏感性、 能量消耗和脂肪储存方面的重要作用, 从而更加明确了它是治疗二型糖尿 病和肥胖症的一个潜在药物作用靶点。 PTP1B is the first PTPase to be purified and characterized biologically, with a total length of approximately 50 KD. Early studies have demonstrated that dephosphorylation of insulin receptors is effective in vitro; microinjection of PTP1B derived from human placenta into Xenopus oocytes will reduce insulin-induced oocyte maturation and S6 peptide phosphorylation. It was subsequently found that PTP1B was highly expressed in all insulin-sensitive tissues; after administration of PTP1B antibody by osmotic shock, DNA synthesis and PI3 kinase activity levels were significantly increased in mouse KRC-7 hepatocytes stimulated by insulin, IR autophosphorylation level, IR The level of kinase activity and the level of IRS-1 tyrosine phosphorylation were also significantly elevated. Recent studies have shown that PTP1B interacts directly with activated IR; it also shows the highest selective activity of IRS-1 in vitro; high expression of PTP1B in rat fibroblasts can significantly reduce ligand-induced IR phosphorylation Levels of adenovirus-mediated gene transfection, high expression of PTP1B in insulin-targeted skeletal and hepatic model cell lines L6 muscle cells and Fao cells, significantly inhibiting insulin-induced IR and IRS-1 tyrosine Acid phosphorylation, and thus significantly inhibits the formation of IRS-1 and PI3 kinase P85 subunit complexes and phosphorylation of Akt, MAPK, and insulin-induced glycogen synthesis is also inhibited [Egawa K. et al. J. Biol Chem. 276(13), 10207-10211.]. In the same way, PTP1B was highly expressed in model cell 3T3-L1 cells of another insulin-targeted tissue adipose tissue, which also significantly inhibited insulin-induced tyrosine phosphorylation of IR, IRS-1 and PI3 kinase, P42 and P44 MAPK phosphoric acid. The level of chemistry is also significantly reduced, while Akt phosphorylation levels and activity are not affected [Venable CL et al. J. Biol. Chem. 275 (24), 18318-18326]. The high expression of PTP1B had no effect on the basic, medium and maximum insulin-induced glucose transport and had no effect on the transported EC 5() insulin concentration. These studies demonstrate that PTP1B is capable of negatively regulating the insulin signaling pathway and acting primarily on the insulin receptor. More important experimental evidence comes from PTP1B knockout mice. Elchebly et al. reported that PTP1B knockout mice produced by homologous recombination have normal growth, fertility, and significant sensitivity to insulin, and this enhancement is associated with insulin receptors and insulin in the liver and skeletal muscle. Enhancement of phosphorylation levels in bulk substrate 1 [Elchebly M., et al. Science, 283, 1544-1548.] Surprisingly, PTP1B knockout mice It is also resistant to food-induced weight gain and insulin resistance. Klaman et al. used the same method to generate PTP1B knockout mice, and the same results were obtained, and it was found that the PTP1B knockout mice were resistant to food-induced weight gain due to the decrease in fat cell volume. , and the number of fat cells does not change. PTP1B knockout mice have elevated levels of basic metabolism and overall energy expenditure [Klaman LD, et al. Molecular and Cellular Biology, 20(15), 5479-5489]. These experiments have more strongly demonstrated the important role of PTP1B in insulin sensitivity, energy expenditure, and fat storage, making it clear that it is a potential drug target for the treatment of type 2 diabetes and obesity.
PTP1B 选择性抑制剂的研究取得了一定的进展, 但大多局限于一些肽类或类肽化合 物, 例如基于 PTP1B去磷酸化的底物序列设计的抑制剂 EEDE(F2PMP)M (Ki = 7.2 nM)、 Glu-F2PMP-F2PMP (IC50 = 40 nM),虽然这些肽类抑制剂具有较强的抑制活性及较高的选择 性, 但它们是肽类磷酸化合物的事实使其很难成为药物候选化合物。 最近, 一系列非肽类 非磷酸化合物类 PTP1B抑制剂被报道, 它们具有一定的选择性, 更重要的是, 其中一些 化合物对降低 ob/ob小鼠血浆中葡萄糖和胰岛素水平有显著作用。 这是第一例药理学的直 接证据,证明 PTP1B抑制剂具有抗糖尿病活性。 [Malamas, M. S., et al. J. Med. Chem., 2000, 43, 1293-1310] 这些无疑为我们寻找新的小分子非肽类有机化合物作为高效、 高选择性 PTP1B抑制剂提供了机遇。 发明内容 Some progress has been made in the study of PTP1B selective inhibitors, but most of them are limited to peptides or peptoid compounds, such as the inhibitor EEDE (F 2 PMP) M based on the substrate sequence of PTP1B dephosphorylation (Ki = 7.2). nM), Glu-F 2 PMP-F 2 PMP (IC 50 = 40 nM), although these peptide inhibitors have strong inhibitory activity and high selectivity, they are peptide phosphate compounds It is difficult to become a drug candidate compound. Recently, a series of non-peptide non-phosphorus compound PTP1B inhibitors have been reported, which have certain selectivity and, more importantly, some of them have a significant effect on reducing glucose and insulin levels in plasma of ob/ob mice. This is the first direct evidence of pharmacology that demonstrates that PTP1B inhibitors have anti-diabetic activity. [Malamas, MS, et al. J. Med. Chem., 2000, 43, 1293-1310] These undoubtedly provide us with an opportunity to find new small molecule non-peptide organic compounds as efficient, highly selective PTP1B inhibitors. Summary of the invention
本发明的目的在于提供一类三萜类化合物, 该类化合物作为蛋白酪氨酸磷酸酯酶 PTP1B抑制剂和胰岛素增敏剂, 可作治疗各种糖尿病、肥胖症及其并发症药物。本发明的 另一目的在于提供齐墩果酸或熊果酸或可乐酸或 2oc-羟基齐敦果酸或白桦脂酸为原料合成 该类化合物的方法。  The object of the present invention is to provide a class of triterpenoids which are useful as protein tyrosine phosphatase PTP1B inhibitors and insulin sensitizers for the treatment of various diabetes, obesity and complications thereof. Another object of the present invention is to provide a method for synthesizing such compounds by using oleanolic acid or ursolic acid or cola acid or 2oc-hydroxy sinoic acid or betulinic acid as a starting material.
本发明所述的三萜类 PTP1B抑制剂为具有下述通式 I结构的化合物或其生理上可接 受的盐:  The triterpenoid PTP1B inhibitor of the present invention is a compound having the structure of the following formula I or a physiologically acceptable salt thereof:
Figure imgf000005_0001
其中!^为^一^的烷基或氢;
Figure imgf000005_0001
among them! ^ is an alkyl group or hydrogen;
! 2为 — Cs的烷基或氢; 2 is - Cs alkyl or hydrogen;
R3为氢、 羟基、 氨基、 卤素或巯基; R 3 is hydrogen, hydroxy, amino, halogen or fluorenyl;
R4为羟基、 氨基、 卤素或巯基; 为 ^-^。的垸基、 -C20的不饱和烃基、 YCH(R5)、 CONH(CH2)nCH(R6)COOH或 CONH(CH2)nCONH(CH2)mCH(R7)COOH, 其中 n为 1 -20, m为 1-20; Y为 d-Cso的垸基 或 d- o的不饱和烃基; R5、 R6、 R7各自独立地选自 d—C5的烷基、 芳香基、 取代芳香 基。 R4 is a hydroxyl group, an amino group, a halogen or a fluorenyl group; Is ^-^. Anthracenyl, -C20 unsaturated hydrocarbon group, YCH(R 5 ), CONH(CH 2 ) n CH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH(R 7 )COOH, wherein n is 1 -20, m is 1-20; Y is a fluorenyl group of d-Cso or an unsaturated hydrocarbon group of d-o; and R 5 , R 6 , and R 7 are each independently selected from an alkyl group of d-C 5 , An aromatic group, a substituted aromatic group.
本发明中芳香基或取代芳香基中的芳香基指苯基、 吡啶基、 吲哚基、 呋喃基、 噻吩基 或吡咯基。  The aryl group in the aryl group or the substituted aryl group in the present invention means a phenyl group, a pyridyl group, a fluorenyl group, a furyl group, a thienyl group or a pyrrolyl group.
本发明的一个优选化合物是具有结构式 I的三萜类 PTP1B抑制剂或生理可接受的盐, 其中 为氢;  A preferred compound of the invention is a triterpenoid PTP1B inhibitor of formula I or a physiologically acceptable salt thereof, wherein is hydrogen;
为 d— C5的烷基或氢; Is an alkyl or hydrogen of d-C 5 ;
为氢、 羟基、 氨基、 卤素或巯基;  Is hydrogen, hydroxy, amino, halogen or sulfhydryl;
为氢、 羟基、 氨基、 卤素或巯基;  Is hydrogen, hydroxy, amino, halogen or sulfhydryl;
为 ^^^的烷基、 -CM的不饱和烃基、 YCH(R5)、 CONH(CH2)nCH(R6)COOH或 CONH(CH2)nCONH(CH2)mCH(R7)COOH , 其中 η为 1-20, m为 1-20; Y为 d-C2Q的垸基 或^ ^的不饱和烃基; R5、 、 R7各自独立地选自 C, _C5的垸基、 芳香基、 取代芳香 基。 Is an alkyl group of ^^^, an unsaturated hydrocarbon group of -CM, YCH(R 5 ), CONH(CH 2 ) n CH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH(R 7 COOH, wherein η is 1-20, m is 1-20; Y is a fluorenyl group of dC 2 Q or an unsaturated hydrocarbon group; R 5 , R 7 are each independently selected from C, _C 5 fluorenyl group , an aromatic group, a substituted aromatic group.
本发明的另一个优选化合物是具有结构式 I的三萜类 PTP1B抑制剂或生理可接受的 Another preferred compound of the invention is a triterpenoid PTP1B inhibitor of structural formula I or is physiologically acceptable
±卜, — ±卜, —
其中!^为 一。5的烷基; among them! ^ is one. An alkyl group of 5 ;
为 一。5的垸基或氢; For one. 5 sulfhydryl or hydrogen;
R3为氢、 羟基、 氨基、 卤素或巯基; R 3 is hydrogen, hydroxy, amino, halogen or fluorenyl;
为氢、 羟基、 氨基、 卤素或巯基;  Is hydrogen, hydroxy, amino, halogen or sulfhydryl;
X为 d-Czo的垸基、 d-Czo的不饱和烃基、 YCH(R5)、 CONH(CH2)„CH(R6)COOH或 CONH(CH2)nCONH(CH2)mCH(R7)COOH, 其中 n为 1 -20, m为 1-20; Y为 d- o的垸基 或。,-。^的不饱和烃基; R5、 、 R7各自独立地选自 d— C5的垸基、 芳香基、 取代芳香 基。 X is a fluorenyl group of d-Czo, an unsaturated hydrocarbon group of d-Czo, YCH(R 5 ), CONH(CH 2 ) „CH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH( R 7 )COOH, wherein n is 1 -20, m is 1-20; Y is a fluorenyl group of d-o or an unsaturated hydrocarbon group of -, ^, and R 5 , and R 7 are each independently selected from d- C 5 thiol, aryl, substituted aryl.
本发明通过下列步骤实施:  The invention is implemented by the following steps:
经筛选研究发现, 常用降糖中药山茱萸 Co us officinalis 果肉的乙醇提取物的 氯仿部位显示较好的抑制 PTP1B的活性 (IC5。<20 y g/mL),经活性跟踪分离,从氯仿部位发 现四个活性单体化合物熊果酸 (ursol ic acid, IC5。: 13. 45 μ Μ)、齐墩果酸 (oleanol ic acid, IC5。: 21. 90 μ M) , 可乐酸(2a-hydroxy ursol ic acid 2. 5 μ Μ)和 2ot-羟基齐敦果酸 (2a-hydroxyo 1 ean o 1 i c aci d 5. 0 μ M)0 After screening studies, it was found that the chloroform fraction of the ethanol extract of the commonly used hypoglycemic Chinese medicine Corydalis Cous officinalis showed better inhibition of PTP1B activity (IC 5 .<20 yg/mL), which was separated by activity and found from the chloroform site. A reactive monomeric compound ursol ic acid (IC 5 : 13. 45 μ Μ), oleanol ic acid ( IC 5 : 21. 90 μ M), 2a-hydroxy Ursol ic acid 2. 5 μ Μ) and 2ot-hydroxy hydroxy acid (2a-hydroxyo 1 ean o 1 ic aci d 5. 0 μ M) 0
本发明以齐墩果酸, 熊果酸, 可乐酸或 2α-羟基齐敦果酸为原料, 通过 Wittig 或 Wittig-Horner反应合成 28-长链脂肪酸衍生物, 再通过取代 3位羟基获得 3位其他取代的 28-长链脂肪酸衍生物; 或通过与各种氨基酸缩合, 合成 28-肽链衍生物, 再通过取代 3位 羟基获得 3位其他取代的 28-肽链衍生物。 W 200 The invention uses oleanolic acid, ursolic acid, colanic acid or 2α-hydroxy sinoic acid as raw materials to synthesize 28-long-chain fatty acid derivatives by Wittig or Wittig-Horner reaction, and obtains 3 positions by substituting 3-hydroxyl groups. Other substituted 28-long chain fatty acid derivatives; or by condensing with various amino acids, synthesizing a 28-peptide chain derivative, and then obtaining 3 other substituted 28-peptide chain derivatives by substituting the 3-position hydroxyl group. W 200
Figure imgf000007_0001
Figure imgf000007_0001
28-长链脂肪酸三萜衍生物的合成路线 化合物 A在 NaH/Mel或 CH2N2/TBDMSC1或 2, 2二甲氧基丙烷作用下得 3-甲醚 -28- 甲酯或 3—叔丁基二甲基氯硅垸基醚一 28—甲酯或 2, 3丙酮叉衍生物, 再经 LiAlH4还原 得醇 B。 B经草酰氯氧化得醛 C。 醛 C经 Wittig反应或 Wittig-Homer反应得化合物 D, 其中 n为 0-20。 化合物 D再经氢化还原得 28-长链脂肪酸衍生物 E。 化合物 E再经 3—叔 丁基二甲基氯硅烷基脱保护或甲氧基脱保护或丙酮叉脱保护得 28-长链脂肪酸衍生物 G。 化合物 G通过 IBX氧化后还原氨化脱苄基或与硫化氢和三氧化铝反应或经过 HX处理得 到产物 I。 化合物 E通过 α位与卤代经反应或与 α位取代氨基酸缩合得到化合物F。 化合物 F再经 3—叔丁基二甲基氯硅垸基脱保护或甲氧基脱保护或丙酮叉脱保护得 28-长链脂肪 酸衍生物 Η。 化合物 Η通过 ΙΒΧ氧化后还原氨化脱苄基或与硫化氢和三氧化铝反应或经 过 ΗΧ处理得到产物 J。 得到的产物用 NMR证明。 Synthesis route of 28-long-chain fatty acid triterpene derivative Compound A can be obtained by NaH/Mel or CH 2 N 2 / TBDMSC1 or 2, 2 dimethoxypropane to obtain 3-methyl ether-28-methyl ester or 3-tert. Butyl dimethyl chlorosilyl ether ether - 28 - methyl ester or 2, 3 acetone fork derivative, and then reduced by LiAlH 4 to obtain alcohol B. B is oxidized by oxalyl chloride to give aldehyde C. Aldehyde C is reacted by Wittig reaction or Wittig-Homer to give compound D, wherein n is 0-20. Compound D is then hydrogenated to give the 28-long chain fatty acid derivative E. Compound E is further deprotected by 3-tert-butyldimethylsilyl group or methoxy deprotected or deprotected with acetone fork to give 28-long chain fatty acid derivative G. Compound G is reductively deaminated by IBX oxidation or reacted with hydrogen sulfide and trialuminum or HX to give product I. Compound E is obtained by reacting an α-position with a halogen or by condensing with an α-substituted amino acid to obtain a compound F. Compound F is further deprotected by 3-tert-butyldimethylsilyl sulfonyl group or methoxy deprotected or acetone fork deprotected to give 28-long chain fatty acid derivative hydrazine. The compound Η is deamidated by deuteration by hydrazine oxidation or reacted with hydrogen sulfide and trialuminum or by hydrazine treatment to obtain product J. The product obtained was confirmed by NMR.
Figure imgf000008_0001
Figure imgf000008_0001
R3=H; R4=SH, NH2l XR 3 =H; R 4 =SH, NH 2l X
3=SH, NH2, X; R4=SH,NH2,X 3=SH, NH 2 , X; R 4 =SH, NH 2 , X
28-肽链三萜衍生物的合成路线 化合物 A与乙酸酐和吡啶 (1 : 1, V/V) 混合溶液反应, 得到化合物 A的乙酰化产物 K。 化合物 Κ通过一定量的草酰氯处理后得到化合物 L。 化合物 L与氨基酸的甲酯以及二 肽的甲酯在无水非质子溶剂, (如: 二氯甲垸, 三氯甲垸, 1, 4-二氧六环)中反应, 需要加 入一些有机碱作为催化剂, (如: 三乙胺、 吡啶、 二异丙基乙基胺、 N, N-二甲基哌啶等)。 反应的温度一般在室温下进行, 反应时间一般在 1-3 h, 通常使用 TLC来检测反应完成程 度。 然后用 NaOH去乙酰基保护, 反应完毕以后直接将产物减压除溶剂, 浓缩物经柱层析 得到最终产物 M和 N。 反应产率一般在 75%-90%。 化合物 M或 N通过 IBX氧化后还原 氨化脱苄基或与硫化氢和三氧化铝反应或经过 HX处理得到产物 O或 P。 得到的产物用 NMR证明。 附图说明 Synthesis route of 28-peptide chain triterpene derivatives Compound A is reacted with a mixed solution of acetic anhydride and pyridine (1:1, V/V) to obtain an acetylated product K of Compound A. Compound Κ is treated with a certain amount of oxalyl chloride to give compound L. Compound L is reacted with the methyl ester of the amino acid and the methyl ester of the dipeptide in an anhydrous aprotic solvent (eg, methylene chloride, trichloromethane, 1, 4-dioxane), which requires the addition of some organic base. As a catalyst, (e.g., triethylamine, pyridine, diisopropylethylamine, N, N-dimethylpiperidine, etc.). The reaction temperature is generally carried out at room temperature, and the reaction time is usually from 1 to 3 h, and TLC is usually used to detect the degree of completion of the reaction. Then, the acetyl group is protected with NaOH. After the completion of the reaction, the product is directly subjected to solvent removal under reduced pressure, and the concentrate is subjected to column chromatography to obtain the final products M and N. The reaction yield is generally from 75% to 90%. Compound M or N is oxidized by IBX to reductively deamination or is reacted with hydrogen sulfide and trialuminum or HX to give product O or P. The product obtained was confirmed by NMR. DRAWINGS
图 1 表示化合物 L-5对 PTP1B对底物 pNPP的 Km值的影响。 Figure 1 shows the effect of compound L-5 on the K m value of PTP1B against the substrate pNPP.
图 2 表示化合物 L-5对 PTP1B对底物 pNPP的 at值的影响。 Figure 2 shows the effect of compound L-5 on the at value of PTP1B on the substrate pNPP.
图 3表示化合物 L-5对 CHO/IR细胞内 Π β的酪氨酸磷酸化水平的影响。 有益效果 Figure 3 shows the effect of compound L-5 on the level of tyrosine phosphorylation of Πβ in CHO/IR cells. Beneficial effect
本发明说明合成的一系列化合物为一类全新结构的蛋白酪氨酸磷酸酯酶 IB抑制剂, 与现在已知的 PTP1B抑制剂相比, 它们是来源于天然产物的衍生物;此类化合物的母体熊 果酸、齐墩果酸是临床上使用的药物, 毒性小, 非常安全; 合成此类化合物的原料熊果酸、 齐墩果酸非常便宜。 具体实施方式  The present invention demonstrates that a series of compounds synthesized are a novel class of protein tyrosine phosphatase IB inhibitors which are derivatives derived from natural products as compared to the currently known PTP1B inhibitors; The parent ursolic acid and oleanolic acid are clinically used drugs with low toxicity and very safe; the raw materials for synthesizing these compounds are ursolic acid and oleanolic acid are very cheap. detailed description
下面结合具体实施实例对本发明作进一步阐述, 但不限制本发明。  The invention is further illustrated by the following specific examples, without limiting the invention.
Ή-NMR用 Varian Mercury AMX300型仪测定; MS用 VG ZAB-HS或 VG-7070型仪测定, 除注明外均为 EI源 (70ev); 所有溶剂在使用前均经过重新蒸馏,所使用的无水溶剂均是按 标准方法干燥处理获得; 除说明外, 所有反应均是在 Ar气保护下进行并用 TLC跟踪, 后 处理时均经饱和食盐水洗和无水 MgS04干燥过程; 产品的纯化除说明外均使用硅胶 (200- 300 mesh)的柱色谱法; 所使用的硅胶, 包括 200- 300目和 GF254为青岛海洋化工厂或 烟台缘博硅胶公司生产。 PTP1B、 TCPTP、 CDC25A、 CDC25B、 LAR高通量筛选模型与 CHO/IR细胞模型的构建方法参照《分子克隆实验指南 》; PNpp. 2Na (对硝基苯磷酸二钠盐) 购自上海生工生物有限公司; 胰岛素 (胰岛素注射液) 购自上海第一生化药业有限公司; F12培养基和血清购自 Gibco™公司。 实施例 1 化合物 A- 1的制备 Ή-NMR was measured with a Varian Mercury AMX300 model; MS was measured with a VG ZAB-HS or VG-7070 meter, except for the EI source (70 ev); all solvents were re-distilled before use. The anhydrous solvent was obtained by drying according to the standard method; except for the description, all the reactions were carried out under the protection of Ar gas and traced by TLC, and the post-treatment was washed with saturated brine and anhydrous MgS0 4 ; The column chromatography using silica gel (200-300 mesh) was used; the silica gel used, including 200-300 mesh and GF 254, was produced by Qingdao Ocean Chemical Plant or Yantai Yuanbo Silicone Company. The PTP1B, TCPTP, CDC25A, CDC25B, LAR high-throughput screening models and CHO/IR cell model construction methods refer to the Guide to Molecular Cloning: PNpp. 2Na (p-nitrophenyl phosphate disodium salt) purchased from Shanghai Bio-Bio Ltd.; Insulin (insulin injection) was purchased from Shanghai First Biochemical Pharmaceutical Co., Ltd.; F12 medium and serum were purchased from GibcoTM. Example 1 Preparation of Compound A-1
Figure imgf000010_0001
Figure imgf000010_0001
将氢化钠 (40 mg, 50%, 0.870 mmol) 溶于干燥的 DMF (5 mL) 中, 搅拌 10min。 然后 在冰浴下加入齐墩果酸 (60 mg, 0.132 mmol), 20 min后滴加碘甲垸的 DMF (2 mL) 溶液, 室温搅拌过夜。 用冰水将未反应的氢化钠淬灭, 用乙酸乙酯 (50 mL) 提取, 无水硫酸钠 干燥, 减压旋转蒸发, 经硅胶柱色谱 (石油醚: 乙酸乙酯 = 80: 1,V/V) 纯化得白色固体 A-1 (58 mg, 0.121 mmol), 产率 92%。  Sodium hydride (40 mg, 50%, 0.870 mmol) was dissolved in dry DMF (5 mL) and stirred for 10 min. Then, oleanolic acid (60 mg, 0.132 mmol) was added in an ice bath, and after 20 min, a solution of iodothymidine in DMF (2 mL) was added and stirred at room temperature overnight. The unreacted sodium hydride was quenched with EtOAc (EtOAc)EtOAc. /V) Purified white solid A-1 (58 mg, 0.121 mmol).
Ή NMR (CDC13, 300 MHz) (δ): 5.28 (m, 1H, -CH in 12), 3.61 (s, 3H, -CH3 in -COOCH3): 3.35 (s, 3H, -CH3 in CH30-), 2.82 (m, 1H, -CH in 18), 2.67 (m, 1H, -CH in 3); 13C NMR (CDC13, 75.0 MHz) (δ) 38.51 (C-l), 22.17 (C-2), 88.88 (C-3), 38.86 (C-4), 55.95 (C-5), 18.39 (C-6), 32.84 (C-7), 39.47 (C-8), 47.80 (C-9), 37.23 (C-10), 23.63 (C-ll), 122.620 (C-12), 143.981 (C-13), 41.804 (C-14), 27.860 (C-15), 23.24 (C-16), 46.89 (C-17), 41.46 (C-l 8), 46.05 (C-19), 30.09 (C-20), 34.03 (C-21), 32.56 (C-22), 28.30 (C-23), 16.52 (C-24), 15.47 (C-25), 17.07 (C-26), 26.13 (C-27), 178.50 (C-28), 33.32 (C-29), 23.84 (C-30), 57.75 (-CH3 in CH30-), 51.75 (-CH3 in -COOCH3)。 实施例 2 化合物 B-l的制备 NMR NMR (CDC1 3 , 300 MHz) (δ): 5.28 (m, 1H, -CH in 12), 3.61 (s, 3H, -CH 3 in -COOCH 3 ): 3.35 (s, 3H, -CH 3 in CH 3 0-), 2.82 (m, 1H, -CH in 18), 2.67 (m, 1H, -CH in 3); 13 C NMR (CDC1 3 , 75.0 MHz) (δ) 38.51 (Cl), 22.17 ( C-2), 88.88 (C-3), 38.86 (C-4), 55.95 (C-5), 18.39 (C-6), 32.84 (C-7), 39.47 (C-8), 47.80 (C -9), 37.23 (C-10), 23.63 (C-ll), 122.620 (C-12), 143.981 (C-13), 41.804 (C-14), 27.860 (C-15), 23.24 (C- 16), 46.89 (C-17), 41.46 (Cl 8), 46.05 (C-19), 30.09 (C-20), 34.03 (C-21), 32.56 (C-22), 28.30 (C-23) , 16.52 (C-24), 15.47 (C-25), 17.07 (C-26), 26.13 (C-27), 178.50 (C-28), 33.32 (C-29), 23.84 (C-30), 57.75 (-CH 3 in CH 3 0-), 51.75 (-CH 3 in -COOCH3). Example 2 Preparation of Compound Bl
Figure imgf000010_0002
Figure imgf000010_0002
将 A-1 (500 mg, 1.093 mmol) 溶入干燥的四氢呋喃 (25 mL;), 然后加入氢化锂铝 (100 mg, 2.632 mmol), 在氩气的保护下室温搅拌过夜。 用少量的乙酸乙酯把未反应的氢化锂铝 淬灭, 然后加入冰水和氯仿 (50mL)。 转移至分液漏斗, 取氯仿层, 无水硫酸钠干燥, 减 压旋转蒸发, 得到白色固体 B-1 (460 mg, 1.016 mmol), 产率 93%。  A-1 (500 mg, 1.093 mmol) was dissolved in dry tetrahydrofuran (25 mL;), then lithium aluminum hydride (100 mg, 2.632 mmol) was added and stirred at room temperature overnight under argon. Unreacted lithium aluminum hydride was quenched with a small amount of ethyl acetate, then iced water and chloroform (50 mL). The mixture was transferred to a sep. funnel, chloroform layer was dried, dried over anhydrous sodium sulfate, and evaporated to give a white solid B-1 (460 mg, 1.016 mmol), yield 93%.
'HNMR (CDC13, 300 MHz) (δ): 5.19 (m, 1Η, -CH in 12), 3.53 (d, 15 Hz, 1H, -CH in 28), 3.35 (s, 3H, -CH3 in CH3O-), 3.17 (d, J= 15 Hz, 1H, -CH in 28), 2.67 (m, 1H, -CH in 18); 13C NMR (CDC13, 75.0 MHz) (S): 38.73 (C-l), 22.21 (C-2), 88.88 (C-3), 38.93 (C-4), 55.96 (C-5), 18.47 (C-6), 32.19 (C-7), 40.03 (C-8), 47.81 (C-9), 37.14 (C-10), 22.95 (C-11), 122.59 (C-12), 144.47 (C-13), 41.90 (C-14), 25.76 (C-15), 22.23 (C-16), 34.33 (C-17), 42.57 (C-18), 46.71 (C-19), 30.50 (C-20), 32.80 (C-21), 31.27 (C-22), 28.33 (C-23), 16.57 (C-24), 15.72 (C-25), 16.95 (C-26), 25.75 (C-27), 69.82 (C-28), 33.45 (C-29), 23.82 (C-30), 50.21 (-CH2 in— CH2-OH)。 实施例 3 化合物 C-1的制备 'HNMR (CDC1 3 , 300 MHz) (δ): 5.19 (m, 1Η, -CH in 12), 3.53 (d, 15 Hz, 1H, -CH in 28), 3.35 (s, 3H, -CH 3 in CH3O-), 3.17 (d, J = 15 Hz, 1H, -CH in 28), 2.67 (m, 1H, -CH in 18); 13 C NMR (CDC1 3 , 75.0 MHz) (S): 38.73 (Cl ), 22.21 (C-2), 88.88 (C-3), 38.93 (C-4), 55.96 (C-5), 18.47 (C-6), 32.19 (C-7), 40.03 (C-8) , 47.81 (C-9), 37.14 (C-10), 22.95 (C-11), 122.59 (C-12), 144.47 (C-13), 41.90 (C-14), 25.76 (C-15), 22.23 (C-16), 34.33 (C-17), 42.57 (C-18), 46.71 (C-19), 30.50 (C-20), 32.80 (C-21), 31.27 (C-22), 28.33 (C-23), 16.57 (C-24), 15.72 ( C-25), 16.95 (C-26), 25.75 (C-27), 69.82 (C-28), 33.45 (C-29), 23.82 (C-30), 50.21 (-CH 2 in- CH 2 - OH). Example 3 Preparation of Compound C-1
Figure imgf000011_0001
Figure imgf000011_0001
将草酰氯 (0.4 mL, 4.4 mmol) 溶于二氯甲垸 (10 mL),冷却到 -60 °C,将 DMSO (0.68 mL, 8.8 mmol) 的二氯甲垸溶液 (10 mL) 慢慢滴入,在 -60 °C下搅拌 5 min。 将 B-l (1.824 g, 4 mmol) 的二氯甲垸 (20 mL) 溶液慢慢滴入,在 -60 °C下搅拌 15 min后,将三乙胺 (2.8 mL, 20 mmol) 加入。 温度缓慢升至室温, 搅拌 48 h。 加冰浴冷却反应物, 向反应物中加 入冰水, 并用氯仿提取 (25X3 mL), 用无水硫酸钠干燥, 减压旋转蒸发, 得到白色固 C-1 (1.680 g, 3.6 mmol), 产率 90%。  Dissolve oxalyl chloride (0.4 mL, 4.4 mmol) in dichloromethane (10 mL), cool to -60 °C, and slowly dilute DMSO (0.68 mL, 8.8 mmol) in dichloromethane (10 mL) Add and stir at -60 °C for 5 min. A solution of B-l (1.824 g, 4 mmol) in dichloromethane (20 mL) was slowly added dropwise and stirred at -60 °C for 15 min, then triethylamine (2.8 mL, 20 mmol). The temperature was slowly raised to room temperature and stirred for 48 h. The reaction mixture was cooled with ice-cooled EtOAc (EtOAc m.) The rate is 90%.
Ή NMR (CDC13, 300 MHz) (δ): 9.39 (s, 1Η, -CH in 28), 5.33 (m, 1H, -CH in 12), 3.36 (s, 3H, -CH3 in CH3O-), 2.60 (m, 1H, -CH in 18); l3C NMR (CDC13, 75.0 MHz) (S): 38.61 (C-1), 22.21 (C-2), 88.86 (C-3), 38.90 (C-4), 55.97 (C-5), 18.40 (C-6), 31.82 (C-7), 39.82 (C-8), 47.77 (C-9), 37.02 (C-10), 23.66 (C-11), 123.53 (C-12), 143.21 (C-13), 41.92 (C-14), 26.95 (C-15), 22.33 (C-16), 49.32 (C-17), 40.63 (C-18), 45.82 (C-19), 30.87 (C-20), 33.38 (C-21), 32.97 (C-22), 28.35 (C-23), 16.56 (C-24), 】5.55 (C-25), 17.25 (C-26), 25.77 (C-27), 207.76 (C-28), 33.31 (C-29), 22.66 (C-30), 57.77 (- CH3 in CH30-),。 实施例 4 化合物 D- 1的制备 NMR NMR (CDC1 3 , 300 MHz) (δ): 9.39 (s, 1Η, -CH in 28), 5.33 (m, 1H, -CH in 12), 3.36 (s, 3H, -CH 3 in CH3O-) , 2.60 (m, 1H, -CH in 18); l3 C NMR (CDC1 3 , 75.0 MHz) (S): 38.61 (C-1), 22.21 (C-2), 88.86 (C-3), 38.90 ( C-4), 55.97 (C-5), 18.40 (C-6), 31.82 (C-7), 39.82 (C-8), 47.77 (C-9), 37.02 (C-10), 23.66 (C -11), 123.53 (C-12), 143.21 (C-13), 41.92 (C-14), 26.95 (C-15), 22.33 (C-16), 49.32 (C-17), 40.63 (C- 18), 45.82 (C-19), 30.87 (C-20), 33.38 (C-21), 32.97 (C-22), 28.35 (C-23), 16.56 (C-24), 】5.55 (C- 25), 17.25 (C-26), 25.77 (C-27), 207.76 (C-28), 33.31 (C-29), 22.66 (C-30), 57.77 (- CH 3 in CH 3 0-), . Example 4 Preparation of Compound D-1
Figure imgf000011_0002
Figure imgf000011_0002
在氩气保护下将氢化钠 (240 mg, 50%, 1 mmol) 加入到 DME (10 mL), 搅拌 10 min, 冷却到 20°C, 将 (二乙氧基-磷酰基) -乙酸乙酯 (224 mg, 1 mmol) 加入, 室温搅拌 1 h。 在 25°C下将 C-1 (20 mg, 0.043 mmol) 的 DME (2 mL) 溶液加入, 室温搅拌 1 h, 然后加热回 流 3h。 冷却后向反应溶液加入大量的冰水, 用氯仿 (50 mL) 提取, 无水硫酸钠干燥, 减 压旋转蒸发, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙酯 =80: 1, V/V) 纯化得淡 黄色粉末 D-1 (17 mg, C.032 mmol), 产率 75.4%。 Add sodium hydride (240 mg, 50%, 1 mmol) to DME (10 mL) under argon, stir for 10 min, cooled to 20 ° C, (diethoxy-phosphoryl)-ethyl acetate (224 mg, 1 mmol) was added and stirred at room temperature for 1 h. Add C-1 (20 mg, 0.043 mmol) in DME (2 mL) at 25 ° C, stir at room temperature for 1 h, then heat back Stream 3h. After cooling, a large amount of ice water was added to the reaction solution, which was extracted with chloroform (50 mL), dried over anhydrous sodium sulfate and evaporated. , V/V) Purified pale yellow powder D-1 (17 mg, C. 032 mmol), yield 75.4%.
Ή NMR (CDC13, 300 MHz) (S): 6.90 (d,J= 16.2 Hz, 1H, -CH in— CH=CH-), 5.75 (d,J== 16.2 Hz, 1H, -CH in 28), 5.29 (m, 1H, -CH in 12), 3.35 (s, 3H, -CH3 in CH30-), 2.67 (m, 1H, -CH in 3), 2.37(m, 1H, -CH in 18); l3C NMR (CDC13, 75.0 MHz) (S) 38.51 (C-l), 22.17 (C-2), 88.88 (C-3), 38.86 (C-4), 55.48 (C-5), 18.72 (C-6), 32.78 (C-7), 39.92 (C-8), 47.93 (C-9), 37.75 (C-10), 23.80 (C-ll), 123.09 (C-12), 144.20 (C-13), 41.91 (C-14), 27.18 (C-15), 26.41 (C-16), 39.55 (C-17), 44.00 (C-18), 46.65 (C- 19), 30.98 (C-20), 34.52 (C-21), 34.23 (C-22), 29.15 (C-23), 16.92 (C-24), 15.92 (C-25), 17.04 (C-26), 26.15 (C-27), 119.51 (C-28), 32.78 (C-29), 23.80 (C-30), 57.78 (-CH3 in CH30-), 159.28 (-CH in _CH=CH-), 167.54 (C in -CO-), 60.30 (-CH2- in - COCH2-), 14.55 (-CH3 in 一 CH2CH3)。 实施例 5 化合物 E-1的制备 NMR NMR (CDC1 3 , 300 MHz) (S): 6.90 (d, J = 16.2 Hz, 1H, -CH in - CH=CH-), 5.75 (d, J== 16.2 Hz, 1H, -CH in 28 ), 5.29 (m, 1H, -CH in 12), 3.35 (s, 3H, -CH 3 in CH 3 0-), 2.67 (m, 1H, -CH in 3), 2.37 (m, 1H, -CH) In 18); l3 C NMR (CDC1 3 , 75.0 MHz) (S) 38.51 (Cl), 22.17 (C-2), 88.88 (C-3), 38.86 (C-4), 55.48 (C-5), 18.72 (C-6), 32.78 (C-7), 39.92 (C-8), 47.93 (C-9), 37.75 (C-10), 23.80 (C-ll), 123.09 (C-12), 144.20 (C-13), 41.91 (C-14), 27.18 (C-15), 26.41 (C-16), 39.55 (C-17), 44.00 (C-18), 46.65 (C- 19), 30.98 ( C-20), 34.52 (C-21), 34.23 (C-22), 29.15 (C-23), 16.92 (C-24), 15.92 (C-25), 17.04 (C-26), 26.15 (C -27), 119.51 (C-28), 32.78 (C-29), 23.80 (C-30), 57.78 (-CH 3 in CH 3 0-), 159.28 (-CH in _CH=CH-), 167.54 ( C in -CO-), 60.30 (-CH 2 - in - COCH 2 -), 14.55 (-CH 3 in -CH 2 CH 3 ). Example 5 Preparation of Compound E-1
Figure imgf000012_0001
Figure imgf000012_0001
将 D-1 (50 mg, 0.095 mmol) 溶于乙酸乙酯 (25 mL), 加入 Pd-C (10 mg), 加上一个氢 气球,室温搅拌过夜。用硅藻土过滤,将滤液减压旋转蒸发,得白色固体 E-1 (47 mg, 0.090 mmol), 产率 95%。  D-1 (50 mg, 0.095 mmol) was dissolved in ethyl acetate (25 mL). Pd-C (10 mg). Filtration over celite, EtOAc (EtOAc:EtOAc)
Ή NMR (CDC13, 300 MHz) (δ): 5.18 (m, 1H, -CH in 12), 4.11 (q,J= 7.2 Hz, 2H, -CH2- in -COCH2), 3.34 (s, 3H, -CH3 in -CH2CH3), 2.65 (m, 1H, -CH in 3); ,3C NMR (CDC13, 75.0 MHz) 38.74 (C-l), 22.26 (C-2), 88.94 (C-3), 38.94 (C-4), 55.96 (C-5), 18.47 (C-6), 32.73 (C-7), 40.07 (C-8), 47.86 (C-9), 37.16 (C-10), 23.83 (C-ll), 122.73 (C-12), 144.62 (C-13), 41.79 (C-14), 25.84 (C-15), 22.16 (C-16), 34.56 (C-17), 47.28 (C-l 8), 46.87 (C-l 9), 29.59 (C-20), 34.62 (C-21), 32.77 (C-22), 28.33 (C-23), 16.58 (C-24), 15.75 (C-25), 16.87 (C-26), 26.32 (C-27), 32.16 (C-28), 33.48 (C-29), 23.83 (C-30), 57.78 (-CH3 in C¾0-), 34.96 (-CH2 in -CH2CO -), 177.94 (C in -CO-), 60.30 (-CH2- in -COCH2-), 14.53 (-CH3 in _CH2CH3)。 实施例 6 化合物 G-l的制备
Figure imgf000013_0001
NMR NMR (CDC1 3 , 300 MHz) (δ): 5.18 (m, 1H, -CH in 12), 4.11 (q,J= 7.2 Hz, 2H, -CH 2 - in -COCH2), 3.34 (s, 3H , -CH 3 in -CH 2 CH 3 ), 2.65 (m, 1H, -CH in 3); , 3 C NMR (CDC1 3 , 75.0 MHz) 38.74 (Cl), 22.26 (C-2), 88.94 (C -3), 38.94 (C-4), 55.96 (C-5), 18.47 (C-6), 32.73 (C-7), 40.07 (C-8), 47.86 (C-9), 37.16 (C- 10), 23.83 (C-ll), 122.73 (C-12), 144.62 (C-13), 41.79 (C-14), 25.84 (C-15), 22.16 (C-16), 34.56 (C-17 ), 47.28 (Cl 8), 46.87 (Cl 9), 29.59 (C-20), 34.62 (C-21), 32.77 (C-22), 28.33 (C-23), 16.58 (C-24), 15.75 (C-25), 16.87 (C-26), 26.32 (C-27), 32.16 (C-28), 33.48 (C-29), 23.83 (C-30), 57.78 (-CH 3 in C3⁄40-) , 34.96 (-CH 2 in -CH 2 CO -), 177.94 (C in -CO-), 60.30 (-CH 2 - in -COCH2-), 14.53 (-CH 3 in _CH 2 CH 3 ). Example 6 Preparation of Compound G1
Figure imgf000013_0001
将 E-l (40mg,0.080mmol)溶于乙睛 (lOmL), 加入碘化钠 (50mg), 再加入三甲基氯 硅焼 (0.5 mL), 回流 6h。 向反应物中加入少许冰水, 用氯仿 (50 mL) 稀释, 用 (3X20mL) 饱和食盐水洗涤, 用无水硫酸钠干燥, 旋转蒸发, 得红褐色固体。经硅胶柱色谱 (石油醚: 乙酸乙酯 =5: 1, V V) 纯化得黄色固体 G-1 (12 mg, 0.024 mmol), 产率 30%。  E-l (40 mg, 0.080 mmol) was dissolved in acetonitrile (10 mL), sodium iodide (50 mg) was added, and then trimethylchlorosilane (0.5 mL) was added and refluxed for 6 h. A little ice water was added to the mixture, which was diluted with chloroform (50 mL). Purification by silica gel column chromatography (EtOAc:EtOAc:EtOAc:
Ή NMR (CDC13, 300 MHz) (δ): 5.20 (m, 1Η, -CH in 12), 3.21 (m, 1H, -CH in 3); 13C NMR (CDC13, 75.0 MHz) (δ): 39.30 (C-l), 28.47 (C-2), 78.44 (C-3), 39.76 (C-4), 56.18 (C-5), 18.47 (C-6), 32.77 (C-7), 40.07 (C-8), 47.86 (C-9), 37.75 (C-10), 23.83 (C-ll), 122.73 (C-l 2), 144.62 (C-13), 41.79 (C-14), 25.84 (C-15), 22.16 (C-16), 34.56 (C-17), 47.29 (C-l 8), 46.87 (C-l 9), 29.59 (C-20), 34.62 (C-21), 32.77 (C-22), 29.15 (C-23), 16.92 (C-24), 15.75 (C-25), 16.87 (C-26), 26.32 (C-27), 32.16 (C-28), 33.48 (C-29), 23.83 (C-30), 34.96 (-CH2 in -CH2CO-), 181.27(Cin—CO-)。 实施例 7 化合物 G-2的制备 NMR NMR (CDC1 3 , 300 MHz) (δ): 5.20 (m, 1Η, -CH in 12), 3.21 (m, 1H, -CH in 3); 13 C NMR (CDC1 3 , 75.0 MHz) (δ) : 39.30 (Cl), 28.47 (C-2), 78.44 (C-3), 39.76 (C-4), 56.18 (C-5), 18.47 (C-6), 32.77 (C-7), 40.07 ( C-8), 47.86 (C-9), 37.75 (C-10), 23.83 (C-ll), 122.73 (Cl 2), 144.62 (C-13), 41.79 (C-14), 25.84 (C- 15), 22.16 (C-16), 34.56 (C-17), 47.29 (Cl 8), 46.87 (Cl 9), 29.59 (C-20), 34.62 (C-21), 32.77 (C-22), 29.15 (C-23), 16.92 (C-24), 15.75 (C-25), 16.87 (C-26), 26.32 (C-27), 32.16 (C-28), 33.48 (C-29), 23.83 (C-30), 34.96 (-CH 2 in -CH 2 CO-), 181.27 (Cin-CO-). Example 7 Preparation of Compound G-2
Figure imgf000013_0002
Figure imgf000013_0002
将 D-l (40 mg, 0.080 mmol) 溶于乙睛 (10 mL), 加入碘化钠 (50 mg), 再加入三甲基 氯硅垸 (0.5 mL),回流 6 h。向反应物中加入少许冰水,用氯仿 (50mL) 稀释,用 (3X20mL) 饱和食盐水洗涤, 用无水硫酸钠千燥, 减压旋转蒸发, 得红褐色固体。 经硅胶柱色谱 (石 油醚: 乙酸乙酯 =5: 1, V/V) 纯化得黄色固体 G-2(12mg, 0.024 mmol), 产率 30%。  D-l (40 mg, 0.080 mmol) was dissolved in acetonitrile (10 mL), sodium iodide (50 mg) was added, and then trimethylsilyl chlorosilane (0.5 mL) was added and refluxed for 6 h. A little ice water was added to the reaction mixture, which was diluted with chloroform (50 mL). Purification by silica gel column chromatography (EtOAc:EtOAc:EtOAc:EtOAc
'Η NMR (CDCI3, 300 MHz) (δ): 6.98 (d,J= 16.2 Hz, 1H, -CH in -CH=CH-), 5.78 (d, J = 'Η NMR (CDCI3, 300 MHz) (δ): 6.98 (d, J = 16.2 Hz, 1H, -CH in -CH=CH-), 5.78 (d, J =
16.2 Hz, 1H, -CH in 28), 5.20 (m, 1H, -CH in 12), 3.21 (m, 1H, -CH in 3); l3C NMR (CDC13,16.2 Hz, 1H, -CH in 28), 5.20 (m, 1H, -CH in 12), 3.21 (m, 1H, -CH in 3); l3 C NMR (CDC1 3 ,
75.0 MHz) (S): 39.30 (C-l), 28.47 (C-2), 78.44 (C-3), 39.76 (C-4), 56.18 (C-5), 18.4775.0 MHz) (S): 39.30 (C-l), 28.47 (C-2), 78.44 (C-3), 39.76 (C-4), 56.18 (C-5), 18.47
(C-6), 32.77 (C-7), 40.07 (C-8), 47.86 (C-9), 37.75 (C-10), 23.83 (C-ll), 122.73 (C-12),(C-6), 32.77 (C-7), 40.07 (C-8), 47.86 (C-9), 37.75 (C-10), 23.83 (C-ll), 122.73 (C-12),
144.62 (C-13), 41.79 (C-14), 25.84 (C-15), 22.16 (C-16), 34.56 (C-17), 47.29 (C-18),144.62 (C-13), 41.79 (C-14), 25.84 (C-15), 22.16 (C-16), 34.56 (C-17), 47.29 (C-18),
46.87 (C-19), 29.59 (C-20), 34.62 (C-21), 32.77 (C-22), 29.15 (C-23), 16.92 (C-24),46.87 (C-19), 29.59 (C-20), 34.62 (C-21), 32.77 (C-22), 29.15 (C-23), 16.92 (C-24),
15.75 (C-25), 16.87 (C-26), 26.32 (C-27), 118.96 (C-28), 33.48 (C-29), 23.83 (C-30), 159.28 (-CH in -CH=CH-), 172.67 (C in -CO-)。 实施例 8 化合物 A 2的制备 15.75 (C-25), 16.87 (C-26), 26.32 (C-27), 118.96 (C-28), 33.48 (C-29), 23.83 (C-30), 159.28 (-CH in -CH=CH-), 172.67 (C in -CO-). Example 8 Preparation of Compound A 2
Figure imgf000014_0001
Figure imgf000014_0001
取齐墩果酸甲酯 (470 mg, 1 mmol) 溶于 10 mL无水的 DMF中,加入咪唑 (98 mg, 1.2 mmol), TBDMSCl (180 mg, 1.2 mmol), 室温搅拌反应过夜。 用 100 mL蒸馏水稀释, 抽滤, 沉淀用 (20 mL) 水洗涤, 干燥, 得到白色固体 A-2 (532 mg, 9.1 mmol), 产率 91%。  Methyl oleate (470 mg, 1 mmol) was dissolved in 10 mL of anhydrous DMF, then imidazole (98 mg, 1.2 mmol), TBDMSCl (180 mg, 1.2 mmol). Diluted with 100 mL of distilled water, suction filtered, washed with EtOAc EtOAc (EtOAc)
Ή-NMR (CDC13, 300 MHz) (δ): 0.03 (s, 6Η, -(CH3)2Si-), 2.82 (m, - CH in 18), 3.17 (m, 1H, H in 3), 3.62 (s, 3H, -CH3 in COOCH3), 5.27 (m, 1H, H in 12); l3C NMR (CDC13, 75.0 MHz) (δ): 39.52 (C-l), 27.84 (C-2), 79.70 (C-3), 39.54 (C-4), 55.54 (C-5), 18.75 (C-6), 32.97 (C-7), 39.47 (C-8), 47.89 (C-9), 37.15 (C-10), 23.66 (C-ll), 122.67 (C-12), 143.99 (C-13), 41.85 (C-14), 27.92 (C-15), 23.30 (C-16), 46.95 (C-17), 41.52 (C-18), 46.10 (C-19), 30.91 (C-20), 34.03 (C-21), 32.62 (C-22), 28.76 (C-23)', 16.32 (C-24), 15.54 (C-25), 17.05 (C-26), 26.14 (C-27), 178.50 (C-28), 33.34 (C- 29), 23.84 (C-30), -3.52 (-CH3 in — (CH3)2Si- ), -4.66 (-CH3 in— (CH3)2Si- ), 26.15 (-CH3 in (CH3)3C-) 。 实施例 9 化合物 B— 2的制备 Ή-NMR (CDC1 3 , 300 MHz) (δ): 0.03 (s, 6Η, -(CH 3 ) 2 Si-), 2.82 (m, - CH in 18), 3.17 (m, 1H, H in 3) , 3.62 (s, 3H, -CH 3 in COOCH 3 ), 5.27 (m, 1H, H in 12); l3 C NMR (CDC1 3 , 75.0 MHz) (δ): 39.52 (Cl), 27.84 (C-2 ), 79.70 (C-3), 39.54 (C-4), 55.54 (C-5), 18.75 (C-6), 32.97 (C-7), 39.47 (C-8), 47.89 (C-9) , 37.15 (C-10), 23.66 (C-ll), 122.67 (C-12), 143.99 (C-13), 41.85 (C-14), 27.92 (C-15), 23.30 (C-16), 46.95 (C-17), 41.52 (C-18), 46.10 (C-19), 30.91 (C-20), 34.03 (C-21), 32.62 (C-22), 28.76 (C-23)', 16.32 (C-24), 15.54 (C-25), 17.05 (C-26), 26.14 (C-27), 178.50 (C-28), 33.34 (C- 29), 23.84 (C-30), - 3.52 (-CH 3 in - (CH 3 ) 2 Si- ), -4.66 (-CH 3 in - (CH 3 ) 2 Si- ), 26.15 (-CH 3 in (CH 3 ) 3 C-). Example 9 Preparation of Compound B-2
Figure imgf000014_0002
Figure imgf000014_0002
取化合物 A-2 (584 mg, 1 mmol) 溶于干燥的四氢呋喃 (20 mL)中, 然后加入氢化锂铝 (76 mg, 2 mmol),在氩气的保护下室温搅拌过夜。加入水 (0.09 mL) 淬灭,再加入 (5 mol/L) NaOH (0.06 mL), 水 (0.29 mL), 搅拌 1 h, 用砂芯漏斗抽滤, 沉淀用 (20 mL) 二氯甲垸 洗涤, 滤液减压旋转蒸发, 得到白色固体 B-2 (528 mg, 0.95 mmol), 产率 9'5%。  Compound A-2 (584 mg, 1 mmol) was dissolved in dry THF (20 mL). Add water (0.09 mL) to quench, add (5 mol/L) NaOH (0.06 mL), water (0.29 mL), stir for 1 h, filter with a sand funnel, and use (20 mL) After washing, the filtrate was evaporated in vacuo to give a white solid.
Ή NMR (CDC13, 300 MHz) (<5): 5.19 (m, 1H, -CH in 12), 3.56 (d, 1H,J= 15.2 Hz, -CH in 28), 3.17 (m, 1H, H in 28), 3.17 (m, 1H, H in 3) 0.03 (s, 6H, -(CH3)2Si-); 1 C NMR (CDC13, 75.0 MHz) (S): 38.81 (C-l), 28.75 (C-2), 79.66 (C-3), 40.01 (C-4), 55.46 (C-5), 18.77 (C-6), 32.86 (C-7), 40.01 (C-8), 47.82 (C-9), 37.14 (C-10), 23.77 (C-ll), 122.64 (C-12), 144.43 (C-13), 41.90 (C-14), 27.86 (C-15), 26.22 (C-16), 37.02 (C-17), 42.55 (C-18), 46.68 (C-19), 31.16 (C-20), 34.33 (C-21), 31.26 (C-22), 28.75 (C-23), 16.33 (C-24), 15.76 (C-25), 16.94 (C-26), 25.92 (C-27), 69.86 (C-28), 33.45 (C-29), 23.82 (C-30), -3.52 (-CH3 in -(CH3)2Si-), -4.66 (-CH3 in— (CH3)2Si-), 26.15 (-CH3 in (CH3)3C-) 。 实施例 10 化合物 C一 2的制备 NMR NMR (CDC1 3 , 300 MHz) (<5): 5.19 (m, 1H, -CH in 12), 3.56 (d, 1H, J = 15.2 Hz, -CH in 28), 3.17 (m, 1H, H In 28), 3.17 (m, 1H, H in 3) 0.03 (s, 6H, -(CH 3 ) 2 Si-); 1 C NMR (CDC1 3 , 75.0 MHz) (S): 38.81 (Cl), 28.75 (C-2), 79.66 (C-3), 40.01 (C-4), 55.46 (C-5), 18.77 (C-6), 32.86 (C-7), 40.01 (C-8), 47.82 ( C-9), 37.14 (C-10), 23.77 (C-ll), 122.64 (C-12), 144.43 (C-13), 41.90 (C-14), 27.86 (C-15), 26.22 (C-16), 37.02 (C-17), 42.55 (C-18), 46.68 (C-19), 31.16 ( C-20), 34.33 (C-21), 31.26 (C-22), 28.75 (C-23), 16.33 (C-24), 15.76 (C-25), 16.94 (C-26), 25.92 (C -27), 69.86 (C-28), 33.45 (C-29), 23.82 (C-30), -3.52 (-CH 3 in -(CH 3 ) 2 Si-), -4.66 (-CH 3 in- (CH 3 ) 2 Si-), 26.15 (-CH 3 in (CH 3 ) 3 C-). Example 10 Preparation of Compound C-2
Figure imgf000015_0001
Figure imgf000015_0001
将草酰氯 (0.4 mL, 4.4 mmol) 溶于二氯甲垸 (10mL), 冷却到 -60 V, 将 DMSO (0.68 mL, 8.8 mmol) 的二氯甲烷溶液 (10 mL) 慢慢滴入, 在 -60 °C下搅拌 5min。 将 B-2(2.112 g, 4 mmol) 的二氯甲烷 (20 mL) 溶液慢慢滴入,在 -60 °C下搅拌 15 min后,将三乙胺 (2.8 mL, 20 mmol)加入。温度缓慢升至室温, 搅拌 48 h。 将二氯甲垸溶液用 (10 mL) 水洗涤三 次, 用硫酸钠干燥, 减压蒸馏, 得到微黄色固体 C-2 (2.11 g, 3.8 mmol) 产率 95 %。  Dissolve oxalyl chloride (0.4 mL, 4.4 mmol) in dichloromethane (10 mL), cool to -60 V, and slowly add DMSO (0.68 mL, 8.8 mmol) in dichloromethane (10 mL). Stir at -60 °C for 5 min. A solution of B-2 (2.112 g, 4 mmol) in dichloromethane (20 mL) was slowly added dropwise and stirred at -60 °C for 15 min, then triethylamine (2.8 mL, 20 mmol). The temperature was slowly raised to room temperature and stirred for 48 h. The solution of methylene chloride was washed three times with (10 mL) water, dried over sodium sulfate, and evaporated to dryness to give a pale yellow solid C-2 (2.11 g, 3.8 mmol) yield 95%.
'HNMR (CDC13, 300 MHz) (δ): 9.39 (s, 1H, -CH in 28), 5.33 (m, 1H, -CH in 12), 2.60 (m, 1H, -CH in 18), 0.03 ( s, 6H, -(CH3)2Si-); 13C NMR (CDC13, 75.0 MHz) (δ): 38.79 (C-l), 27.90 (C-2), 82.32 (C-3), 39.61 (C-4), 55.59 (C-5), 18.79 (C-6), 33.12 (C-7), 39.89 (C-8), 47.89 (C-9), 37.18 (C-10), 23.74 (C-11), 123.63 (C-12), 143.26 (C-13), 41.98 (C-14), 27.02 (C-15), 22.43 (C-16), 49.36 (C-17), 40.74 (C-18), 45.90 (C-19), 30.93 (C-20), 33.47 (C-21), 28.06 (C-22), 28.84 (C-23), 16.39 (C-24), 15.66 (C-25), 17.30 (C-26), 25.85 (C-27), 207.78 (C-28), 33.37 (C-29), 23.74 (C-30). 实施例 11 化合物 D-2的制备 'HNMR (CDC1 3 , 300 MHz) (δ): 9.39 (s, 1H, -CH in 28), 5.33 (m, 1H, -CH in 12), 2.60 (m, 1H, -CH in 18), 0.03 ( s, 6H, -(CH 3 ) 2 Si-); 13 C NMR (CDC1 3 , 75.0 MHz) (δ): 38.79 (Cl), 27.90 (C-2), 82.32 (C-3), 39.61 ( C-4), 55.59 (C-5), 18.79 (C-6), 33.12 (C-7), 39.89 (C-8), 47.89 (C-9), 37.18 (C-10), 23.74 (C -11), 123.63 (C-12), 143.26 (C-13), 41.98 (C-14), 27.02 (C-15), 22.43 (C-16), 49.36 (C-17), 40.74 (C- 18), 45.90 (C-19), 30.93 (C-20), 33.47 (C-21), 28.06 (C-22), 28.84 (C-23), 16.39 (C-24), 15.66 (C-25 ), 17.30 (C-26), 25.85 (C-27), 207.78 (C-28), 33.37 (C-29), 23.74 (C-30). Example 11 Preparation of Compound D-2
Figure imgf000015_0002
Figure imgf000015_0002
取 4一溴丁酸三苯基磷盐 (1.28 g, 3 mmol) 溶于 (10 mL) 干燥的四氢呋喃中, 加入叔 丁醇钠 (168 mg, 1.5 mmol) 搅拌 15 min, 加入 C-2 (555 mg, 1 mmol), 反应 3 h。 加入 (10 mL) 水, 用 (10 mL) 氯仿萃取三次, 氯仿层用无水硫酸钠干燥, 减压蒸馏, 将所得的油 状物经硅胶柱色谱 (石油醚: 乙酸乙酯 = 10: 1, V/V) 纯化得淡黄色粉末 D-2 (543.3 mg, 0.87 mmol), 产率 87%。 Take triphenylphosphonium 4-bromobutyrate (1.28 g, 3 mmol) in (10 mL) dry tetrahydrofuran, add sodium tert-butoxide (168 mg, 1.5 mmol), stir for 15 min, add C-2 ( 555 mg, 1 mmol), reaction for 3 h. After adding (10 mL) of water, the mixture was extracted with EtOAc (EtOAc)EtOAc. V/V) purified to pale yellow powder D-2 (543.3 mg, 0.87 mmol), yield 87%.
Ή-NMR (CDC13 , 300 MHz) (J): 2.43 (m , 2H , -CH2- in -CH=CH-CH2-) , 2.46 (t , J = 5.7 Hz , 2H , -CH2- in -CH2-COOH), 3.22 (m , 1H , H in 3) , 5.12 (m , 1H , -CH= in -CH=CH-) , 5.21 (t,J=3.2 Hz, ΙΗ ,Ηϊη 12) , 5.30 (d , J=12.6 Hz, 1H,=CH- in =CH-COOH)。 实施例 12 化合物 G-3的制备 Ή-NMR (CDC1 3 , 300 MHz) (J): 2.43 (m , 2H , -CH 2 - in -CH=CH-CH 2 -) , 2.46 (t , J = 5.7 Hz , 2H , -CH 2 - In -CH 2 -COOH), 3.22 (m , 1H , H in 3) , 5.12 (m , 1H , -CH= in -CH=CH-) , 5.21 (t, J=3.2 Hz, ΙΗ , Ηϊη 12) , 5.30 (d , J = 12.6 Hz, 1H, =CH- in =CH-COOH). Example 12 Preparation of Compound G-3
Figure imgf000016_0001
Figure imgf000016_0001
取化合物 D-2(628 mg, 1 mmol) 溶于 (10 mL) 四氢呋喃中, 加入 (10 mL) 三氟乙酸: 水 (9:1) 混合溶液, 搅拌反应过夜, 用 (10 mL) 氯仿萃取三次, 氯仿层用无水硫酸钠干 燥, 减压蒸馏, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙酯 =2: 1,V V) 纯化得白 色粉末 G-3 (163 mg, 0.32 mmol), 产率 32%。  Compound D-2 (628 mg, 1 mmol) was dissolved in (10 mL) tetrahydrofuran, (10 mL) trifluoroacetic acid: water (9:1) mixture was stirred and stirred overnight (10 mL) chloroform After three times, the chloroform layer was dried over anhydrous sodium sulfate and evaporated to dryness. EtOAcjjjjjjj Mmmol), yield 32%.
Ή-NMR (CDC13 , 300 MHz) (S): 2.43 (m , 2H , -CH2- in -CH=CH-CH2-) , 2.46 (t,J= 5.7 Hz, 2H , -CH2- in -CH2-COOH) 3.22 (m, 1H, H in 3) , 5.12 (m , 1H , -CH= in -CH=CH-) , 5.21 (t , J =3.2 Hz, 1H , H in 12) , 5.30 (d , J =12.6 Hz, 1H , =CH- in =CH-COOH); l3C NMR (Pyridine, 75.0 MHz) (S): 37.68 (C-l), 25.75 (C-2), 78.42 (C-3), 39.72 (C-4), 56.10 (C-5), 19.13 (C-6), 35.07 (C-7), 40.35 (C-8), 48.88 (C-9), 37.68 (C-10), 24.22 (C-ll), 128.58 (C-l 2), 145.60 (C-13), 42.55 (C-14), 28.45 (C-15), 28.01 (C-16), 39.99 (C-17), 48.46 (C-18), 46.68 (C-l 9), 31.13 (C-20), 35.46 (C-21), 34.07 (C-22), 29.14 (C-23), 16.91 (C-24), 15.95 (C-25), 17.79 (C-26), 26.51 (C-27), 123.21 (C-28), 33.83 (C-29), 24.29 (C-30), 141.60 ( =CH- in -CH=CH-), 31.13 (-CH2- in - C¾-COOH), 25.48 (-CH2- in =CH-CH2-), 175.84 (C in _COOH)。 实施例 13 化合物 G-4的制备 Ή-NMR (CDC1 3 , 300 MHz) (S): 2.43 (m , 2H , -CH 2 - in -CH=CH-CH 2 -) , 2.46 (t, J = 5.7 Hz, 2H , -CH 2 - In -CH 2 -COOH) 3.22 (m, 1H, H in 3) , 5.12 (m , 1H , -CH= in -CH=CH-) , 5.21 (t , J =3.2 Hz, 1H , H in 12) , 5.30 (d , J = 12.6 Hz, 1H , =CH- in =CH-COOH); l3 C NMR (Pyridine, 75.0 MHz) (S): 37.68 (Cl), 25.75 (C-2), 78.42 (C -3), 39.72 (C-4), 56.10 (C-5), 19.13 (C-6), 35.07 (C-7), 40.35 (C-8), 48.88 (C-9), 37.68 (C- 10), 24.22 (C-ll), 128.58 (Cl 2), 145.60 (C-13), 42.55 (C-14), 28.45 (C-15), 28.01 (C-16), 39.99 (C-17) , 48.46 (C-18), 46.68 (Cl 9), 31.13 (C-20), 35.46 (C-21), 34.07 (C-22), 29.14 (C-23), 16.91 (C-24), 15.95 (C-25), 17.79 (C-26), 26.51 (C-27), 123.21 (C-28), 33.83 (C-29), 24.29 (C-30), 141.60 (=CH- in -CH= CH-), 31.13 (-CH 2 - in - C3⁄4-COOH), 25.48 (-CH 2 - in =CH-CH 2 -), 175.84 (C in _COOH). Example 13 Preparation of Compound G-4
Figure imgf000016_0002
Figure imgf000016_0002
取化合物 G-3 (509 mg, 1 mmol) 溶于 5mL 乙酸乙酯, 加入 5%Pa-C (5 mg), 在氢气氛 下搅拌过夜, 将 Pa-C滤去, 减压蒸馏, 得到化合物 G-4 (500 mg, 0.98 mmol) 产率 98%。  Compound G-3 (509 mg, 1 mmol) was dissolved in 5 mL of ethyl acetate, 5% EtOAc (5 mg) was added, and the mixture was stirred overnight under hydrogen atmosphere. G-4 (500 mg, 0.98 mmol) Yield 98%.
Ή-NMR (CDC13, 300 MHz) (S): 2.46 (t, 2H,J= 5.8 Hz, -CH2- in -CH2-COOH), 3.22 (m, 1H, H in 3), 5.21 (t, 1H,J= 3.4 Hz, H in 12); 13C NMR (CDC13, 75.0 MHz) (S): 38.83 (C-l), /u/u/ i/JOOOsoosild 66-690900Ζ7 5s) 802()6。)8ς8ι(3) 6683。 9Γ6Ζ.3)(8。)δ9) ί7--- - -.·.Ή-NMR (CDC1 3 , 300 MHz) (S): 2.46 (t, 2H, J = 5.8 Hz, -CH 2 - in -CH 2 -COOH), 3.22 (m, 1H, H in 3), 5.21 ( t, 1H, J = 3.4 Hz, H in 12); 13 C NMR (CDC1 3 , 75.0 MHz) (S): 38.83 (Cl), /u/u/ i/JOOOsoosild 66-690900Ζ7 5s) 802()6. ) 8ς8ι(3) 6683. 9Γ6Ζ.3)(8.)δ9) ί7--- - -.·.
3(υ一寸s(Η)98£3)寸3寸一lεζ(0ιόζ- S---- ~ ~ "... ¾3i。 09)。) 0寸( ¾H£)ΓΖ xos3)i(83¾H3H) 98εζ(6Y x¾-- --- *.-.  3(υ一寸s(Η)98£3) inch 3 inch一lεζ(0ιόζ- S---- ~ ~ "... 3⁄43i. 09).) 0 inch ( 3⁄4H£)ΓΖ xos3)i(833⁄4H3H) 98εζ(6Y x3⁄4-- --- *.-.
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000018_0001
取 28—丁酸熊果酸衍生物 (512 mg, 1 mmol) 溶于 10mL千燥的二氯甲烷中, 加入 EDC (230 mg, 1.2mmol), HOBT (162mg, 1.2mmol), 在氮气氛下搅拌 20min, 将苯丙氨酸甲 酯的盐酸盐 (258.6mmg, 1.2mmol) 溶于 5 mL干燥的二氯甲垸, 再加入 lmL重蒸的三乙 胺, 将此溶液加入到 E-2的混合溶液中, 在氮气氛下搅拌过夜, 反应结束用 5mL饱和食 盐水洗涤有机相三次, 干燥, 减压蒸熘, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙 酯 =5: 1,V/V)分离纯化。向产物中加入 THF(12mL), 甲醇 (8mL), 4MNaOH水溶液 (5 mL), 搅拌过夜。用 1 M稀盐酸调节 pH值为 3左右, 用 (20 mL)氯仿萃取, 再用 (20 mL) 饱和 NaCl溶液冲洗氯仿层三次,无水硫酸钠干燥,浓缩蒸干溶剂,得淡黄色固体 H-2 (524.1 mg, 0.71 mmol), 产率 71%。  Take 28-butyric acid ursolic acid derivative (512 mg, 1 mmol) in 10 mL of dry dichloromethane, add EDC (230 mg, 1.2 mmol), HOBT (162 mg, 1.2 mmol) under nitrogen atmosphere Stir for 20 min, dissolve the hydrochloride salt of phenylalanine methyl ester (258.6 mmg, 1.2 mmol) in 5 mL of dry dichloromethane, add 1 mL of re-distilled triethylamine, and add this solution to E-2. The mixed solution was stirred overnight under a nitrogen atmosphere, and the organic phase was washed three times with 5 mL of brine, dried, and evaporated to dryness, and the obtained oil was subjected to silica gel column chromatography ( petroleum ether: ethyl acetate = 5: 1, V / V) separation and purification. To the product was added THF (12 mL), MeOH (EtOAc) The pH was adjusted to about 3 with 1 M of dilute hydrochloric acid, and extracted with chloroform (20 mL). The chloroform layer was washed three times with (20 mL) saturated NaCl solution, dried over anhydrous sodium sulfate, and evaporated to dryness. -2 (524.1 mg, 0.71 mmol), yield 71%.
Ή-NMR (CDC13, 300 MHz) (S): 2.46 (t, 2H,J= 5.8 Hz, -CH2- in -CH2-COOH), 3.22 (m, 1H, H in 3), 7.11 (m, 2H, H in -ph), 7.24 (m, 3H, H in -ph); 13C NMR (CDC13, 75.0 MHz) (<5): 38.83 (C-l), 22.21 (C-2), 79.32 (C-3), 38.99 (C-4), 55.42 (C-5), 18.58 (C-6), 32.79 (C-7), 40.08 (C-8), 47.88 (C-9)' 37.16 (C-10), 23.86 (C-ll), 122.14 (C-12), 145.13 (C-13), 41.83 (C-14), 25.88 (C-15), 23.39 (C-16), 33.41 (C-17), 47.48 (C-18), 46.89 (C-19), 39.92 (C-20), 33.54 (C-21), 39.75 (C-22), 26.30 (C-23), 15.82 (C-24), 15.82 (C-25), 16.99 (C-26), 25.88 (C-27), 31.18 (C-28), 17.46 (C-29), 21.52 (C-30), 26.33 (-CH2- in -CH2-CH2-), 27.42 (-CH2- in - CH2-CH2-), 34.27 (-CH2- in -CH2-COOH), 174.88 (C in - COOH), 53.55 (-NH-CH(-CH2-ph)-COOH), 173.86 (C in -CONH-), 38.31 (-CH2-ph), 136.37 (C in -ph), 131.32 (m-C in -ph), 129.65 (o-C in -ph), 127.78 (p-C in -ph)。 实施例 16 化合物 H-3的制备 Ή-NMR (CDC1 3 , 300 MHz) (S): 2.46 (t, 2H, J = 5.8 Hz, -CH 2 - in -CH 2 -COOH), 3.22 (m, 1H, H in 3), 7.11 ( m, 2H, H in -ph), 7.24 (m, 3H, H in -ph); 13 C NMR (CDC1 3 , 75.0 MHz) (<5): 38.83 (Cl), 22.21 (C-2), 79.32 (C-3), 38.99 (C-4), 55.42 (C-5), 18.58 (C-6), 32.79 (C-7), 40.08 (C-8), 47.88 (C-9)' 37.16 ( C-10), 23.86 (C-ll), 122.14 (C-12), 145.13 (C-13), 41.83 (C-14), 25.88 (C-15), 23.39 (C-16), 33.41 (C -17), 47.48 (C-18), 46.89 (C-19), 39.92 (C-20), 33.54 (C-21), 39.75 (C-22), 26.30 (C-23), 15.82 (C- 24), 15.82 (C-25), 16.99 (C-26), 25.88 (C-27), 31.18 (C-28), 17.46 (C-29), 21.52 (C-30), 26.33 (-CH 2 - in -CH 2 -CH 2 -), 27.42 (-CH 2 - in - CH 2 -CH 2 -), 34.27 (-CH 2 - in -CH 2 -COOH), 174.88 (C in - COOH), 53.55 (-NH-CH(-CH 2 -ph)-COOH), 173.86 (C in -CONH-), 38.31 (-CH 2 -ph), 136.37 (C in -ph), 131.32 (mC in -ph), 129.65 (oC in -ph), 127.78 (pC in -ph). Example 16 Preparation of Compound H-3
Figure imgf000018_0002
Figure imgf000018_0002
取 28—丁酸可乐酸衍生物 (528 mg, 1 mmol) 溶于 10mL千燥的二氯甲垸中, 加入 EDC (230 mg, 1.2mmol), HOBT(162mg, 1.2mmol), 在氮气氛下搅拌 20min, 将苯丙氨酸甲 酯的盐酸盐 (258.6mmg, 1.2mmol) 溶于 5 mL干燥的二氯甲烷, 再加入 lmL重蒸的三乙 胺, 将此溶液加入到 E-2的混合溶液中, 在氮气氛下搅拌过夜, 反应结束用 5mL饱和食 /u/u/ O i/JOOOsoosild 66-690900ZAV7 Take 28-butyric acid colaic acid derivative (528 mg, 1 mmol) dissolved in 10 mL of dry dichloromethane, add EDC (230 mg, 1.2 mmol), HOBT (162 mg, 1.2 mmol) under nitrogen atmosphere Stir for 20 min, dissolve the hydrochloride salt of phenylalanine methyl ester (258.6 mmg, 1.2 mmol) in 5 mL of dry dichloromethane, then add 1 mL of re-distilled triethylamine. Add this solution to E-2. In a mixed solution, stir under a nitrogen atmosphere overnight, and the reaction was finished with 5 mL of a saturated food. /u/u/ O i/JOOOsoosild 66-690900ZAV7
,τΟ ¾ ¾£ s(Ν¾. ¾L ί ( D iρ) ΗΗυ¾。 ζ 00£8)MHN 0--- --- ,τΟ 3⁄4 3⁄4£ s(Ν3⁄4. 3⁄4L ί ( D iρ) ΗΗυ3⁄4. ζ 00£8)MHN 0--- ---
Figure imgf000019_0001
Figure imgf000019_0001
40.08 (C-8), 47.88 (C-9), 37.16 (C-10), 23.86 (C-ll), 122.27 (C-12), 145.18 (C-13), 41.83 (C-14), 25.88 (C-15), 23.39 (C-16), 33.41 (C-17), 47.48 (C-l¾), 46.89 (C-19), 39.92 (C-20), 33.54 (C-21), 39.75 (C-22), 26.30 (C-23), 15.82 (C-24), 15.82 (C-25), 16.99 (C-26), 25.88 (C-27), 31.18 (C-28), 34.79 (C-29), 23.84 (C-30), 39.82 (-CH- in-CH-COOH), 178.52 (C in -COOH), 38.50 (-CH2-ph), 136.29 (C in -ph), 131.32 (m-C in -ph), 129.60 (o-C in -ph), 127.82 (p-C in -ph)。 实施例 18 化合物 D-3的制备 40.08 (C-8), 47.88 (C-9), 37.16 (C-10), 23.86 (C-ll), 122.27 (C-12), 145.18 (C-13), 41.83 (C-14), 25.88 (C-15), 23.39 (C-16), 33.41 (C-17), 47.48 (C-l3⁄4), 46.89 (C-19), 39.92 (C-20), 33.54 (C-21), 39.75 ( C-22), 26.30 (C-23), 15.82 (C-24), 15.82 (C-25), 16.99 (C-26), 25.88 (C-27), 31.18 (C-28), 34.79 (C -29), 23.84 (C-30), 39.82 (-CH- in-CH-COOH), 178.52 (C in -COOH), 38.50 (-CH 2 -ph), 136.29 (C in -ph), 131.32 ( mC in -ph), 129.60 (oC in -ph), 127.82 (pC in -ph). Example 18 Preparation of Compound D-3
Figure imgf000020_0001
Figure imgf000020_0001
取化合物 D-2 (628 mg, 1 mmol) 溶于干燥的四氢呋喃 (20 mL) 中,然后加入氢化锂铝 (76 mg,2mmol),在氩气的保护下室温搅拌过夜。加入水 (0.09 mL) 淬灭,再加入 (5mol/L) NaOH (0.06 mL), 水 (0.29 mL), 搅拌 1 h, 用砂芯漏斗抽滤, 沉淀用 (20 mL) 二氯甲垸洗 涤, 滤液减压旋转蒸发, 得到白色固体。 将草酰氯 (0.1 mL, 1.1 mmol) 溶于二氯甲烷 (5 mL), 冷却到 -60 °C, 将 DMSO(0.17mL,2.2mmol) 的二氯甲烷溶液(5 mL) 慢慢滴入, 在 -60°C下搅拌 5min。将上述白色固体产物的二氯甲烷 (5 mL) 溶液慢慢滴入, 在 -60°C下 搅拌 15 min后, 将三乙胺 (0.7 mL, 5 mmol) 加入。 温度缓慢升至室温, 搅拌 48 h。 将二 氯甲烷溶液用 (10 mL) 水洗涤三次, 用硫酸钠干燥, 减压蒸馏, 得到微黄色固体。 取 4 一溴丁酸三苯基磷盐 (1.28 g, 3 mmol) 溶于 (10 mL) 干燥的四氢呋喃中, 加入叔丁醇钠 (168 mg, 1.5 mmol) 搅拌 15 min,加入反应所得的微黄色固体产物 (555 mg, 1 mmol), 反应 3h。 加入 (10 mL) 水, 用 (10 mL) 氯仿萃取三次, 氯仿层用无水硫酸钠干燥, 减压蒸熘, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙酯 = 10: 1, V/V) 纯化得淡黄色粉末 D-3 (393 mg, 0.58 mmol), 产率 58%。  Compound D-2 (628 mg, 1 mmol) was dissolved in dry THF (20 mL). Add water (0.09 mL) to quench, add (5mol/L) NaOH (0.06 mL), water (0.29 mL), stir for 1 h, filter with a sand core funnel, and wash with (20 mL) dichloromethane. The filtrate was rotary evaporated under reduced pressure to give a white solid. Oxalyl chloride (0.1 mL, 1.1 mmol) was dissolved in dichloromethane (5 mL), cooled to -60 °C, EtOAc (0.17 mL, 2.2 mmol) in dichloromethane (5 mL) Stir at -60 ° C for 5 min. A solution of the above white solid product in dichloromethane (5 mL) was slowly added dropwise, and stirred at -60 ° C for 15 min, then triethylamine (0.7 mL, 5 mmol) was added. The temperature was slowly raised to room temperature and stirred for 48 h. The methylene chloride solution was washed three times with (10 mL) water, dried over sodium sulfate and evaporated Take 4 bromobutyric acid triphenylphosphonium salt (1.28 g, 3 mmol) dissolved in (10 mL) dry tetrahydrofuran, add sodium tert-butoxide (168 mg, 1.5 mmol) and stir for 15 min. The product was obtained as a yellow solid (555 mg, 1 mmol). After adding (10 mL) of water, the mixture was extracted with EtOAc (EtOAc) (EtOAc) , V/V) Purified pale yellow powder D-3 (393 mg, 0.58 mmol), yield 58%.
Ή-NMR (CDC13, 300 MHz) (δ): 0.03 (s, 3Η, -(CH3)2Si -), 3.18 (m, 1H, H in 3), 5.13 (m, 3H), 5.42 (m, 2H)。 实施例 19 化合物 G-5的制备 Ή-NMR (CDC1 3 , 300 MHz) (δ): 0.03 (s, 3Η, -(CH 3 ) 2 Si -), 3.18 (m, 1H, H in 3), 5.13 (m, 3H), 5.42 ( m, 2H). Example 19 Preparation of Compound G-5
Figure imgf000020_0002
取化合物 D-3(678 mg, 1 mmol) 溶于 (10 mL ) 四氢呋喃中, 加入 (10 mL) 三氟乙 酸 : 水 (9:1) 混合溶液, 搅拌反应过夜, 用 (10 mL) 氯仿萃取三次, 氯仿层用无水硫酸 钠干燥, 减压蒸馏, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙酯 =2: 1,V V) 纯化 得白色粉末 G-5 (214 mg, 0.38 mmol), 产率 38%。
Figure imgf000020_0002
Compound D-3 (678 mg, 1 mmol) was dissolved in (10 mL) tetrahydrofuran, (10 mL) trifluoroacetic acid: water (9:1) mixture was stirred and stirred overnight (10 mL) chloroform After three times, the chloroform layer was dried over anhydrous sodium sulfate and evaporated to dryness. EtOAcjjjjjjjjjj Mmmol), yield 38%.
Ή-NMR (CDC13, 300 MHz) (δ): 2.37 (t, 2H,J= 5.6 Hz, -CH2- in - CH2-COOH), 3.22 (m, 1H, H in 3), 5.21 (m, 1H, H in 12), 5.21 (m, 2H, H in -CH=CH-), 5.43 (m, 2H, H in -CH=CH-COO-); 13C NMR (CDC13, 75.0 MHz) (S): 38.67 (C-l), 28.35 (C-2), 79.33 (C-3), 38.97 (C-4), 55.43 (C-5), 18.55 (C-6), 33.64 (C-7), 39.90 (C-8), 48.36 (C-9), 37.24 (C-10), 22.91 (C-11), 127.97 (C-12), 145.40 (C-13), 42.08 (C-14), 29.22 (C-15), 24.05 (C-16), 39.45 (C-17), 47.94 (C-18), 46.33 (C-19), 30.87 (C-20), 34.75 (C-21), 32.90 (C-22), 29.92 (C-23), 15.84 (C-24), 15.53 (C-25), 17.34 (C-26), 26.21 (C-27), 122.48 (C-28), 33.68 (C-29), 23.74 (C-30), 34.37 (-CH2- in -CH2-COOH ), 27.67 (-CH2- in =CH-CH2-), 27.60 (-CH2- in -CH2-CH=), 27.39 (-CH2- in =CH-C¾-), 177.86 (C in— COOH)。 实施例 20 化合物 G-6的制备 Ή-NMR (CDC1 3 , 300 MHz) (δ): 2.37 (t, 2H, J = 5.6 Hz, -CH 2 - in - CH 2 -COOH), 3.22 (m, 1H, H in 3), 5.21 ( m, 1H, H in 12), 5.21 (m, 2H, H in -CH=CH-), 5.43 (m, 2H, H in -CH=CH-COO-); 13 C NMR (CDC1 3 , 75.0 MHz (S): 38.67 (Cl), 28.35 (C-2), 79.33 (C-3), 38.97 (C-4), 55.43 (C-5), 18.55 (C-6), 33.64 (C-7 ), 39.90 (C-8), 48.36 (C-9), 37.24 (C-10), 22.91 (C-11), 127.97 (C-12), 145.40 (C-13), 42.08 (C-14) , 29.22 (C-15), 24.05 (C-16), 39.45 (C-17), 47.94 (C-18), 46.33 (C-19), 30.87 (C-20), 34.75 (C-21), 32.90 (C-22), 29.92 (C-23), 15.84 (C-24), 15.53 (C-25), 17.34 (C-26), 26.21 (C-27), 122.48 (C-28), 33.68 (C-29), 23.74 (C-30), 34.37 (-CH 2 - in -CH 2 -COOH ), 27.67 (-CH 2 - in =CH-CH 2 -), 27.60 (-CH 2 - in - CH 2 -CH=), 27.39 (-CH 2 - in =CH-C3⁄4-), 177.86 (C in-COOH). Example 20 Preparation of Compound G-6
Figure imgf000021_0001
Figure imgf000021_0001
取化合物 G-5 (564 mg, 1 mmol) 溶于 5mL 乙酸乙酯, 加入 5 %Pa-C (5 mg),在氢气 氛下搅拌过夜, 将 Pa-C滤去, 减压蒸馏, 得到白色粉末 G-6 (541 mg, 0.96 mmol)产率 96 Compound G-5 (564 mg, 1 mmol) was dissolved in 5 mL of ethyl acetate, 5% EtOAc (5 mg) was added, and the mixture was stirred overnight under hydrogen atmosphere. Powder G-6 (541 mg, 0.96 mmol) Yield 96
%。 %.
Ή-NMR (CDC13, 300 MHz) : 2.35 (t, 2H, J= 5.8 Hz, -CH2-CQO-), 3.22 (m, 1H, H in 3), 5.16(t, lH,J=3.2Hz,Hin l2)。 实施例 21 化合物 D-4的制备 Ή-NMR (CDC1 3 , 300 MHz): 2.35 (t, 2H, J = 5.8 Hz, -CH 2 -CQO-), 3.22 (m, 1H, H in 3), 5.16(t, lH, J=3.2 Hz, Hin l2). Example 21 Preparation of Compound D-4
Figure imgf000021_0002
Figure imgf000021_0002
取化合物 D-3 (678 mg, 1 mmol) 溶于干燥的四氢呋喃 (20 mL) 中,然后加入氢化锂铝 (76 mg, 2 mmol),在氩气的保护下室温搅拌过夜。加入水 (0.09 mL) 淬灭,再加入 (5 mol/L) NaOH (0.06 mL), 水 (0.29 mL), 搅拌 1 h, 用砂芯漏斗抽滤, 沉淀用 (20 mL) 二氯甲垸洗 涤 (补充用量), 滤液减压旋转蒸发, 得到白色固体。 将草酰氯 (0.1 mL, 1.1 mmol) 溶于 二氯甲烷 (5 mL), 冷却到 -60 °C, 将 DMSO (0.17 mL, 2.2 mmol) 的二氯甲烷溶液 (5 mL) 慢慢滴入,在 -60 °C下搅拌 5 min。将上述白色固体产物的二氯甲烷 (5 mL) 溶液慢慢滴入, 在 -60 °C下搅拌 15 min后, 将三乙胺 (0.7 mL, 5 mmol) 加入。 温度缓慢升至室温, 搅拌 48 ho 将二氯甲烷溶液用 (10 mL) 水洗涤三次, 用硫酸钠干燥, 减压蒸馏,得到微黄色固 体。 取 4一溴丁酸三苯基磷盐 (1.28 g, 3 mmol) 溶于 (10 mL) 干燥的四氢呋喃中, 加入叔 丁醇钠 (168 mg, 1.5 mmol) 搅拌 15 min, 加入反应所得的微黄色固体产物, 反应 3 h。 加 入 (10 mL) 水, 用 (10 mL) 氯仿萃取三次, 氯仿层用无水硫酸钠干燥, 减压蒸馏, 将所 得的油状物经硅胶柱色谱 (石油醚:乙酸乙酯 = 10: 1, V/V) 纯化得淡黄色粉末 D-4(440 mg, 0.60 mmol), 产率 60%。 Compound D-3 (678 mg, 1 mmol) was dissolved in dry tetrahydrofuran (20 mL), then lithium aluminum hydride was added (76 mg, 2 mmol), stirred at room temperature overnight under argon. Add water (0.09 mL) to quench, add (5 mol/L) NaOH (0.06 mL), water (0.29 mL), stir for 1 h, filter with a sand funnel, and use (20 mL) Washing (supplemental amount), the filtrate was rotary evaporated under reduced pressure to give a white solid. Oxalyl chloride (0.1 mL, 1.1 mmol) was dissolved in dichloromethane (5 mL), cooled to -60 °C, and DMSO (0.17 mL, 2.2 mmol) in dichloromethane (5 mL) Stir at -60 °C for 5 min. A solution of the above white solid product in dichloromethane (5 mL) was slowly added dropwise, and stirred at -60 °C for 15 min, then triethylamine (0.7 mL, 5 mmol). The temperature was slowly raised to room temperature, stirred for 48 ho. The methylene chloride solution was washed three times with water (10 mL), dried over sodium sulfate and evaporated. Take triphenylphosphonium 4-bromobutyrate (1.28 g, 3 mmol) dissolved in (10 mL) dry tetrahydrofuran, add sodium tert-butoxide (168 mg, 1.5 mmol) and stir for 15 min. The product was yellow solid and was reacted for 3 h. After adding (10 mL) of water, the mixture was extracted with EtOAc (EtOAc) (EtOAc) V/V) Purified to pale yellow powder D-4 (440 mg, 0.60 mmol), yield 60%.
1H-NMR (CDC13, 300 MHz) (δ): 0.03 (s, 6Η, -(CH3)2Si-), 3.19 (m, 1H, H in 3), 5.2 l(m, 4H), 5.41(m, 3H)。 实施例 22 化合物 G-7的制备 1H-NMR (CDC1 3 , 300 MHz) (δ): 0.03 (s, 6Η, -(CH 3 ) 2 Si-), 3.19 (m, 1H, H in 3), 5.2 l(m, 4H), 5.41 (m, 3H). Example 22 Preparation of Compound G-7
Figure imgf000022_0001
Figure imgf000022_0001
取化合物 D-4 (732 mg, 1 mmol) 溶于 (10 mL) 四氢呋喃中, 加入 (10 mL) 三氟乙 酸 : 水 (9:1) 混合溶液, 搅拌反应过夜, 用 (10 mL ) 氯仿萃取三次, 氯仿层用无水硫酸 钠干燥, 减压蒸馏, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙酯 = 2: 1, V/V) 纯化 得白色粉末 G-7 (229 mg, 0.38 mmol), 产率 38%。  Compound D-4 (732 mg, 1 mmol) was dissolved in (10 mL) tetrahydrofuran, (10 mL) trifluoroacetic acid: water (9:1) mixture was stirred and stirred overnight (10 mL) chloroform After three times, the chloroform layer was dried over anhydrous sodium sulfate and evaporated to dryness. The purified oil was purified by silica gel column chromatography (ethyl ether: ethyl acetate = 2:1, V/V) to obtain white powder G-7 (229 mg) , 0.38 mmol), yield 38%.
Ή-NMR (CDC13, 300 MHz) (δ): 3.22 (m, 1Η, Η in 3), 5.21 (m, 4Η), 5.42 (m, 3H); 13C NMR (CDC13, 75.0 MHz) (δ): 38.63 (C-l), 29.36 (C-2), 79.32 (C-3), 38.95 (C-4), 55.38 (C-5), 18.53 (C-6), 33.60 (C-7), 39.86 (C-8), 48.33 (C-9), 37.21 (C-10), 22.88 (C-l l), 127.88 (C-12), 145.40 (C-13), 42.05 (C-14), 29.91 (C-15), 23.72 (C-16), 39.41 (C-17), 47.91 (C-18), 46.30 (C-19), 30.87 (C-20), 34.73 (C-21), 32.86 (C-22), 28.32 (C-23), 15.51 (C-24), 14.35 (C-25), 17.34 (C-26), 26.20 (C-27), 122.40 (C-28), 33.64 (C-29), 24.01 (C-30), 34.40 (-CH2- in — CH2-COOH), 27.36, 27.44, 27.50, 27.58, 27.76, 28.32 (6C, -CH2- in =CH-CH2- 或 -CH2-CH=), 178.70 (C in— COOH)。 WH X Z-D) Ζζ-ζ\ ίΖ-D) LZ'SZ ZZ-D) 9S ZZ \Z-3) O £ '(03"3) Ζ.8Ό£'(6ΐ-θ) '(81-3) WL L\-D) d '(91-0) ZZ LVZi SO '(Π_ ) ZZ'i Xl )Ή-NMR (CDC1 3 , 300 MHz) (δ): 3.22 (m, 1Η, Η in 3), 5.21 (m, 4Η), 5.42 (m, 3H); 13 C NMR (CDC1 3 , 75.0 MHz) ( δ): 38.63 (Cl), 29.36 (C-2), 79.32 (C-3), 38.95 (C-4), 55.38 (C-5), 18.53 (C-6), 33.60 (C-7), 39.86 (C-8), 48.33 (C-9), 37.21 (C-10), 22.88 (Cl l), 127.88 (C-12), 145.40 (C-13), 42.05 (C-14), 29.91 ( C-15), 23.72 (C-16), 39.41 (C-17), 47.91 (C-18), 46.30 (C-19), 30.87 (C-20), 34.73 (C-21), 32.86 (C -22), 28.32 (C-23), 15.51 (C-24), 14.35 (C-25), 17.34 (C-26), 26.20 (C-27), 122.40 (C-28), 33.64 (C- 29), 24.01 (C-30), 34.40 (-CH 2 - in - CH2-COOH), 27.36, 27.44, 27.50, 27.58, 27.76, 28.32 (6C, -CH 2 - in =CH-CH 2 - or - CH 2 -CH=), 178.70 (C in—COOH). WH X ZD) Ζζ-ζ\ ίΖ-D) LZ'SZ ZZ-D) 9S ZZ \Z-3) O £ '(03"3) Ζ.8Ό£'(6ΐ-θ) '(81-3) WL L\-D) d '(91-0) ZZ LVZi SO '(Π_ ) ZZ'i Xl )
99'9 1 '(U-D) Z'ZZ '(Ol'D) ζΖ'ίί '(6 ) '8 '(8-0) 16'6£ '(ΖτΖ)) 09'££ '(9-3) ε ·8Ι '(S"3) Ο8'"'0- ) 36·8ε '(e-0) 6688 Z-J) 9"62 '(1-0) 6S"8£ :(?) (ZH1A[ O^L 腦 N-3n 99'9 1 '(UD) Z'ZZ '(Ol'D) ζΖ'ίί '(6 ) '8 '(8-0) 16'6£ '(ΖτΖ)) 09'££ '(9-3 ) ε ·8Ι '(S"3) Ο8'"'0- ) 36·8ε '(e-0) 6688 ZJ) 9"62 '(1-0) 6S"8£ :(?) ( Z H1A[ O^L brain N-3 n
•(HOOD-HD= u! -H3= 'ZH 9"3l =f ' P) ' (31 u! H ¾i VZ=fi 11 S ' (,Η -ΗΟ u! =H3" Ή t7l"g ' (¾30- ' H ' s) 9£ '(euiH'Hl 'ω) 99'3 ' (Η00 -¾ — u! H - ' HZ ' 09 =f 1) 9YZ (- ¾D-HD=HD- H — 'H3 ' ΟΙ^'ζ: (?) (ZHW 00£ ' ^DQD) ¾WN"H, • (HOOD-HD= u! -H3= 'ZH 9"3l =f ' P) ' (31 u! H 3⁄4i VZ=f i 11 S ' (,Η -ΗΟ u! =H3" Ή t7l"g ' (3⁄430- ' H ' s) 9£ '(euiH'Hl 'ω) 99'3 ' (Η00 -3⁄4 — u ! H - ' HZ ' 09 =f 1) 9YZ (- 3⁄4D-HD=HD- H — 'H3 'ΟΙ^'ζ: (?) (ZHW 00£ ' ^DQD) 3⁄4WN"H,
°%38 ^ 'douiui zs o £sui ζ6ε) g-α ^¾¾ ^f^¾¾ (Λ/Λ'Ι :OI = ¾t¾a) ¾¾T ¾¾ ^ m^ ^ m ' ^mm^ ^m 曹 im oo ¾r '氺 (^u°%38 ^ 'douiui zs o £ sui ζ6 ε) g-α ^3⁄43⁄4 ^f^3⁄43⁄4 (Λ/Λ'Ι : OI = 3⁄4t3⁄4a) 3⁄43⁄4T 3⁄43⁄4 ^ m^ ^ m ' ^mm^ ^m 曹i m oo 3⁄4r '氺(^u
01) ΥΗΪ ° '(lomui I £§m t I -3 Ytl? 'uiuigi ^ ( louiui '§ui 89l) 昀 |i丄 YH( 'ψ¾¥ϋ¾0 [^蔡士 (T^OI) -i (lo iuie'§ 83Ί) 邈丄^ 01) ΥΗΪ ° '(l omui I £§m t I -3 Ytl? 'uiuigi ^ ( louiui '§ui 89l) 昀|i丄YH( 'ψ3⁄4¥ϋ3⁄40 [^Cai Shi (T^OI) -i ( Lo iuie'§ 83Ί) 邈丄^
Figure imgf000023_0001
Figure imgf000023_0001
° (HOO -u! 3) ζς·6ί \ '(- ¾3- ' Οΐ) Ιί'βΖ 'ξΥ6Ζ 'Ζβ'βΖ '58Ό£ '(Η00 -¾3 - -¾3") £ Κ '(θε- ) 98'£3 ΧβΖ' ) £ £ '(83-D) 9S'££ '(.Ζ-3)00'9Ζ; '(9乙 -3) W91 '( - ) Z S\ 08·Π iZ-D) LZ ΖΖ'θ)° (HOO -u! 3) ζς·6ί \ '(- 3⁄43- ' Οΐ) Ιί'βΖ 'ξΥ6Ζ 'Ζβ'βΖ '58Ό£ '(Η00 -3⁄43 - -3⁄43") £ Κ '(θε- ) 98 '£3 ΧβΖ' ) £ £ '(83-D) 9S'££ '(.Ζ-3)00'9Ζ; '(9B-3) W91 '( - ) ZS\ 08·Π iZ-D) LZ ΖΖ'θ)
S0O17 lZ-D) 08' '(03-3) 03" 1C '(6ΐ_ ) 96'9t^ '(8Ι·3) ^L iVO) SV6i '(9Ι· ) OViZS0O17 lZ-D) 08' '(03-3) 03" 1C '(6ΐ_ ) 96'9t^ '(8Ι·3) ^L iVO) SV6i '(9Ι· ) OViZ
'(si-3)ie-93 '(w- ) 8"it7 '(ει- ) ZI-D) mzz\ XU-D)L ZZ '(οι-ο) PVLZ '(6- )'(si-3)ie-93 '(w- ) 8"it7 '(ει- ) ZI-D) mzz\ XU-D)L ZZ '(οι-ο) PVLZ '(6- )
88· '(8-3) irOt '(i-D) 6 Z£ '(9_ ) "·8Ι '(SO) £6'SS '(t-D) Ζ.6'8 '(£-0) Z£'6L Z-D) ίξ'ΖΖ '(l-D) 08·8£: (?) (ZHW O'SZ, 'ED D) ¾WN 3EI ·(∑;! ui H '^Η Γ£ =/"¾! ¾ SI'S '(£ «ί H 'HI ΐ '(Η003-¾3- u! -¾3- ¾i S'S 'H Ί ) eC : (?) (ZHW 00£ \DQD) ΉΝΝΉ, °%86^ (IOUIUI 86Ό £§ i [ 19) 8-9 '辛 丄 88· '(8-3) irOt '(iD) 6 Z£ '(9_ ) "·8Ι '(SO) £6'SS '(tD) Ζ.6'8 '(£-0) Z£'6L ZD) ξ 'ΖΖ '(lD) 08·8£: (?) (ZHW O'SZ, ' E DD) 3⁄4WN 3 EI ·(∑;! ui H '^Η Γ£ =/"3⁄4! 3⁄4 SI'S ' (£ «ί H 'HI ΐ '(Η003-3⁄43- u! -3⁄43- 3⁄4i S'S 'H Ί ) eC : (?) (ZHW 00£ \DQD) ΉΝΝΉ, °%86^ (IOUIUI 86Ό £ § i [ 19) 8 - 9 '辛丄
£(§ui g) -'Bd %g Ydti ξ -ί (lounu ΐ 'Sui 819) L_ £ (§ui g) -'Bd %g Ydti ξ -ί (l ounu ΐ ' Sui 819) L_
Figure imgf000023_0002
Figure imgf000023_0002
Z.T000/S00ZN3/X3d 66t690/900Z OAV (C-25), 17.30 (C-26), 26.19 (C-27), 122.70 (C-28), 33.60 (C-29), 24.55 (C-30), 34.38 (-CH2- in— CH2-COOH), 142.00, ( =CH- in— CH-CH-), 29.95 (-CH2- in =CH-CH2-), 29.95 (-CH2- in -CH2-CH=), 179.32 ( C in— COOH)。 实施例 25 化合物 D-6的制备 Z.T000/S00ZN3/X3d 66t690/900Z OAV (C-25), 17.30 (C-26), 26.19 (C-27), 122.70 (C-28), 33.60 (C-29), 24.55 (C-30), 34.38 (-CH 2 - in- CH2 -COOH), 142.00, (=CH- in-CH-CH-), 29.95 (-CH 2 - in =CH-CH 2 -), 29.95 (-CH 2 - in -CH 2 -CH=), 179.32 ( C in — COOH). Example 25 Preparation of Compound D-6
Figure imgf000024_0001
Figure imgf000024_0001
取化合物 D-5 (484 mg, 1 mmol) 溶于 5 mL 乙酸乙酯, 加入 5 % Pa-C (5 mg), 在氢气 氛下搅拌过夜, 将 Pa-C滤去, 减压蒸馏, 得到白色粉末 D-6 (489 mg, 0.93 mmol), 产率 93 Compound D-5 (484 mg, 1 mmol) was dissolved in 5 mL of ethyl acetate, 5% EtOAc (5 mg) was added, and the mixture was stirred overnight under hydrogen atmosphere. White powder D-6 (489 mg, 0.93 mmol), Yield 93
%。 %.
Ή-NMR (CDC13, 300 MHz) (δ): 2.33 (t, J = 5.8 Hz, 2H, -CH2-COO-) 2.67 (m, 1H, H in 3): 3.36 (s, 3H, -OCH3), 5.16 (m, 1H, H in 12)。 实施例 26 化合物 D-7的制备 Ή-NMR (CDC1 3 , 300 MHz) (δ): 2.33 (t, J = 5.8 Hz, 2H, -CH 2 -COO-) 2.67 (m, 1H, H in 3) : 3.36 (s, 3H, - OCH 3 ), 5.16 (m, 1H, H in 12). Example 26 Preparation of Compound D-7
Figure imgf000024_0002
Figure imgf000024_0002
取化合物 D-5 (484 mg, 1 mmol)溶于干燥的四氢呋喃 (20 mL) 中, 然后加入氢化锂铝 (76 mg, 2 mmol), 在氩气的保护下室温搅拌过夜。 加入水 (0.09 mL) 淬灭,再加入 5 N NaOH (0.06 mL), 水 (0.29 mL), 搅拌 1 h, 用砂芯漏斗抽滤, 沉淀用 (20 mL) 二氯甲垸洗 涤,滤液减压旋转蒸发,得到白色固体。将草酰氯 (0.1 mL, U mmol)溶于二氯甲垸 (5 mL), 冷却到 -60 °C j DMSO (0.17 mL,2.2 mmol) 的二氯甲垸溶液 (5 mL) 慢慢滴入,在 -60 'C 下搅拌 5 min。将上述白色固体产物的二氯甲垸(5 mL) 溶液慢慢滴入, 在 -60 °C下搅拌 15 min后, 将三乙胺 (0.7 mL, 5 mmol)加入。 温度缓慢升至室温, 搅拌 48 h。 将二氯甲垸溶 液用 (10 mL) 水洗涤三次, 用硫酸钠干燥, 减压蒸馏,得到微黄色固体。 取 4一溴丁酸三苯 基磷盐 (1.28 g, 3 mmol) 溶于 (10 mL) 干燥的四氢呋喃中, 加入叔丁醇钠 (168 mg, 1.5 mmol)搅拌 15 min, 加入反应所得的微黄色固体产物, 反应 3 h。加入 (10 mL) 水, 用 (10 mL) 氯仿萃取三次, 氯仿层用无水硫酸钠干燥, 减压蒸馏, 将所得的油状物经硅胶柱色谱 (石油醚: 乙酸乙酯 = 10: 1, V/V) 纯化得淡黄色粉末 D-7 (375 mg, 0.65 mmol), 产率 65%。 Ή-NMR (CDC13, 300 MHz) (S): 2.66 (m, 1H, H in 3), 3.37 (s, 3H, -OCH3), 5.13 (m, 3H), 5.42 (m, 2H); 13C-NMR (CDC13, 75.0 MHz) (δ): 38.66 (C-l), 22.12 (C-2), 88.95 (C-3), 38.52 (C-4), 57.67 (C-5), 18.37 (C-6), 32.69 (C-7), 40.00 (C-8), 47.78 (C-9), 37.07 (C-10), 23.73 (C-ll), 122.18 (C-12), 145.07 (C-13), 41.70 (C-14), 25.85 (C-15), 23.26 (C-16), 33.34 (C-17), 47.39 (C-l 8), 46.79 (C-19), 28.25 (C-20), 33.49 (C-21), 39.67 (C-22), 26.20 (C-23), 15.63 (C-24), 14.34 (C-25), 16.88 (C-26), 25.78 (C-27), 31.09 (C-28), 34.66 (C-29), 23.79 (C-30), 34.24 (-CH2- in -CH2-COOH), 179.84 (C in -COOH)。 实施例 27 化合物 D-8的制备 Compound D-5 (484 mg, 1 mmol) was dissolved in dry THF (20 mL). Add water (0.09 mL) to quench, add 5 N NaOH (0.06 mL), water (0.29 mL), stir for 1 h, filter with a sand core funnel, wash with (20 mL) dichloromethane, and filtrate. The mixture was rotary evaporated to give a white solid. Oxalyl chloride (0.1 mL, U mmol) was dissolved in dichloromethane (5 mL), cooled to -60 °C j DMSO (0.17 mL, 2.2 mmol) in dichloromethane (5 mL) Stir at -60 'C for 5 min. The solution of the above white solid product in dichloromethane (5 mL) was slowly added dropwise, and stirred at -60 °C for 15 min, then triethylamine (0.7 mL, 5 mmol) was added. The temperature was slowly raised to room temperature and stirred for 48 h. The solution was washed three times with (10 mL) water, dried over sodium sulfate and evaporated. Take triphenylphosphonium 4-bromobutyrate (1.28 g, 3 mmol) dissolved in (10 mL) dry tetrahydrofuran, add sodium tert-butoxide (168 mg, 1.5 mmol) and stir for 15 min. The product was yellow solid and was reacted for 3 h. After adding (10 mL) of water, the mixture was extracted with EtOAc (EtOAc)EtOAc. V/V) purified to pale yellow powder D-7 (375 mg, 0.65 mmol), yield 65%. Ή-NMR (CDC1 3 , 300 MHz) (S): 2.66 (m, 1H, H in 3), 3.37 (s, 3H, -OCH 3 ), 5.13 (m, 3H), 5.42 (m, 2H); 13 C-NMR (CDC1 3 , 75.0 MHz) (δ): 38.66 (Cl), 22.12 (C-2), 88.95 (C-3), 38.52 (C-4), 57.67 (C-5), 18.37 ( C-6), 32.69 (C-7), 40.00 (C-8), 47.78 (C-9), 37.07 (C-10), 23.73 (C-ll), 122.18 (C-12), 145.07 (C -13), 41.70 (C-14), 25.85 (C-15), 23.26 (C-16), 33.34 (C-17), 47.39 (Cl 8), 46.79 (C-19), 28.25 (C-20 ), 33.49 (C-21), 39.67 (C-22), 26.20 (C-23), 15.63 (C-24), 14.34 (C-25), 16.88 (C-26), 25.78 (C-27) , 31.09 (C-28), 34.66 (C-29), 23.79 (C-30), 34.24 (-CH 2 - in -CH 2 -COOH), 179.84 (C in -COOH). Example 27 Preparation of Compound D-8
Figure imgf000025_0001
Figure imgf000025_0001
取化合物 D-7 (578 mg, 1 mmol) 溶于 5 mL 乙酸乙酯, 加入 5% Pa-C (5 mg), 在氢气 氛下搅拌过夜, 将 Pa-C滤去, 减压蒸馏, 得到白色粉末 D-8 (523 mg, 0.90 mmol)产率 90 The compound D-7 (578 mg, 1 mmol) was dissolved in 5 mL of ethyl acetate, 5% EtOAc (5 mg) was added, and the mixture was stirred overnight under a hydrogen atmosphere. White powder D-8 (523 mg, 0.90 mmol) Yield 90
%。 %.
Ή-NMR (CDC13, 300 MHz) (δ): 2.33 (t, 2Η, J= 5.7 Hz, -C¾- COO-) 2.67 (m, 1H, H in 3): 3.36 (s, 3H, -OCH3), 5.16 (m, 1H, H in 12)。 . 实施例 28 化合物 D-9的制备 Ή-NMR (CDC1 3 , 300 MHz) (δ): 2.33 (t, 2Η, J= 5.7 Hz, -C3⁄4-COO-) 2.67 (m, 1H, H in 3) : 3.36 (s, 3H, -OCH 3 ), 5.16 (m, 1H, H in 12). Example 28 Preparation of Compound D-9
Figure imgf000025_0002
Figure imgf000025_0002
取化合物 D-7 (578 mg, 1 mmol) 溶于干燥的四氢呋喃 (20 mL) 中,然后加入氢化锂铝 (76 mg, 2 mmol), 在氩气的保护下室温搅拌过夜。 加入水 (0.09 mL) 淬灭,再加入 5 M NaOH (0.06 mL), 水 (0.29 mL), 搅拌 1 h, 用砂芯漏斗抽滤, 沉淀用 (20 mL) 二氯甲垸洗 涤,滤液减压旋转蒸发,得到白色固体。将草酰氯 (0.1 mL, 1.1 mmol)溶于二氯甲垸 (5 mL), 冷却到 -60 °C,将 DMSO(0.17mL,2.2mmol) 的二氯甲垸溶液 (5 mL) 慢慢滴入,在 -60 V 下搅拌 5 min。 将上述白色固体产物的二氯甲垸 (_5 mL) 溶液慢慢滴入, 在 -60 °C下搅拌 15min后, 将三乙胺 (0.7 mL, 5 mmol) 加入。 温度缓慢升至室温, 搅拌 48 h。 将二氯甲烷
Figure imgf000026_0001
Compound D-7 (578 mg, 1 mmol) was dissolved in dry THF (20 mL). Add water (0.09 mL) to quench, add 5 M NaOH (0.06 mL), water (0.29 mL), stir for 1 h, filter with a sand core funnel, wash with (20 mL) dichloromethane, and filtrate. The mixture was rotary evaporated to give a white solid. Oxalyl chloride (0.1 mL, 1.1 mmol) was dissolved in dichloromethane (5 mL), cooled to -60 °C, and DMSO (0.17 mL, 2.2 mmol) in dichloromethane (5 mL) Stir and stir at -60 V for 5 min. The solution of the above white solid product in dichloromethane (~5 mL) was slowly dropped, and stirred at -60 °C for 15 min, then triethylamine (0.7 mL, 5 mmol) was added. The temperature was slowly raised to room temperature and stirred for 48 h. Dichloromethane
Figure imgf000026_0001
127.19 (。- C in -ph), 123.39 (p-C in -ph), 171.09 (-CO- in CH3-CO-), 21.42 (CH3 in CH3-CO -)。 实施例 30 化合物 M-2的制备 127.19 (.-C in -ph), 123.39 (pC in -ph), 171.09 (-CO- in CH 3 -CO-), 21.42 (CH 3 in CH 3 -CO -). Example 30 Preparation of Compound M-2
Figure imgf000027_0001
Figure imgf000027_0001
取 M-l (78.9 mg, 0.12 mmol), 加入 THF (12 mL), 甲醇 (8 mL) , 4 M NaOH水溶液 (5 mL) , 搅拌过夜, 用 1 M稀盐酸调节 pH值为 3左右, 用 (20 mL) 氯仿萃取, 再用 (20 mL) 饱和 NaCl溶液冲洗氯仿层三次, 无水硫酸钠干燥, 浓缩蒸干溶剂, 得白色固体 M-2 (60.5 mg, 0.1 mmol), 产率 90%。  Take Ml (78.9 mg, 0.12 mmol), add THF (12 mL), methanol (8 mL), 4 M NaOH aqueous solution (5 mL), stir overnight, and adjust pH to about 3 with 1 M diluted hydrochloric acid. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt;
Ή-NMR (pyridine, 300 MHz) (δ): 3.46 (d, J = 6.3 Ηζ, ΙΗ, -CH- in 18), 3.64 (m, 2H, CH2 in CH2-ph), 3.65 (m, 1 H, -CH- in 3), 5.271 (m, 1H,-H in -CONH-), 7.34 (m, 2H, -H in -ph), 7.42 (m, 3H, -H in -ph); 13C-NM (CDC13, 75.0 MHz) (δ): 39.18 (C-l), 27.95 (C-2), 78.22 (C-3), 38.14 (C-4), 55.93 (C-5), 18.88 (C-6), 33.42 (C-7), 39.54 (C-8), 48.27 (C-9), 37.46 (C-10), 24.10 (C-1 1), 123.68 (C-12), 144.36 (C-13), 42.1 8 (C- 14), 28.24 (C-15), 24.00 (C-16), 46.94 (C- 17), 42.33 (C- 18), 46.70 (C- 19), 30.16 (C-20), 34.61 (C-21), 33.19 (C-22), 28.95 (C-23), 16.70 (C-24), 15.72 (C-25), 17.06 (C-26), 26.16 (C-27), 174.89 (C-28), 54.90 (C- l '), 177.58 (C-2'), 39.94 (CH2 in -CH2-ph), 136.04 (C in -ph), 130.33 (m-C in -ph), 128.87 ( -C in -ph), 127.20 (p-C in -ph)。 实施例 31 化合物 M- 3的制备 Ή-NMR (pyridine, 300 MHz) (δ): 3.46 (d, J = 6.3 Ηζ, ΙΗ, -CH- in 18), 3.64 (m, 2H, CH 2 in CH 2 -ph), 3.65 (m, 1 H, -CH- in 3), 5.271 (m, 1H, -H in -CONH-), 7.34 (m, 2H, -H in -ph), 7.42 (m, 3H, -H in -ph); 13 C-NM (CDC1 3 , 75.0 MHz) (δ): 39.18 (Cl), 27.95 (C-2), 78.22 (C-3), 38.14 (C-4), 55.93 (C-5), 18.88 ( C-6), 33.42 (C-7), 39.54 (C-8), 48.27 (C-9), 37.46 (C-10), 24.10 (C-1 1), 123.68 (C-12), 144.36 ( C-13), 42.1 8 (C-14), 28.24 (C-15), 24.00 (C-16), 46.94 (C- 17), 42.33 (C- 18), 46.70 (C- 19), 30.16 ( C-20), 34.61 (C-21), 33.19 (C-22), 28.95 (C-23), 16.70 (C-24), 15.72 (C-25), 17.06 (C-26), 26.16 (C -27), 174.89 (C-28), 54.90 (C- l '), 177.58 (C-2'), 39.94 (CH 2 in -CH 2 -ph), 136.04 (C in -ph), 130.33 (mC In -ph), 128.87 ( -C in -ph), 127.20 (pC in -ph). Example 31 Preparation of Compound M-3
Figure imgf000027_0002
Figure imgf000027_0002
取乙酰化齐墩果酸的酰氯 (103.3 mg, 0.2 mmol), 溶于 (10 mL) 无水二氯甲烷备用。 将 (95.4 mg, 0.4 mmol) i ^一氨基酸甲酯的盐酸盐溶于 (10 mL) 无水二氯甲垸, 加入 (0.5 mL) 三乙胺, 使十一氨基酸甲酯的盐酸盐完全溶解在无水二氯甲垸中, 再将后者加入到备 用溶液中, 搅拌 3 h, 浓缩, 用硅胶层析柱分离 (石油醚: 乙酸乙酯 = 10 : 1 V/V), 浓缩, 干燥, 得到白色固体 (115.7 mg, 0.17 mmol) , 产率, 85%。 向产物中加入 THF (12 mL), 甲 醇 (8 mL), 4 M NaOH水溶液 (5 mL), 搅拌过夜。 用 1M稀盐酸调节 PH值为 3左右, 9Z The acid chloride of acetylated oleanolic acid (103.3 mg, 0.2 mmol) was taken and dissolved in (10 mL) anhydrous dichloromethane. The hydrochloride salt of (95.4 mg, 0.4 mmol) of i^-amino acid methyl ester was dissolved in (10 mL) anhydrous dichloromethane, and (0.5 mL) triethylamine was added to give the eleven amino acid methyl ester hydrochloride. Completely dissolved in anhydrous dichloromethane, then added to the reserve solution, stirred for 3 h, concentrated, separated by silica gel column (petroleum ether: ethyl acetate = 10: 1 V/V), concentrated Dry to give a white solid (115.7 mg, 0.17 mmol). To the product was added THF (12 mL), EtOAc (EtOAc) Adjust the pH to about 3 with 1M dilute hydrochloric acid. 9Z
i- εε m^.  I- εε m^.
°(Η003-"Ϊ 3) OZ' X -D)°(Η003-"Ϊ 3) OZ' X -D)
ZV£Z '(J- ) L 6£ '(83-D) 9V2Ll z-j) W^Z '(9Z— ) 5891 SZ-D) l 'SI '(^Z-j) /.S'SI XiZ-O) 90 'ZZ-D) %\Z-D) £6 £ '(OZ'O) LS'0€ '(6ί- ) ·9^ £(8ΐ-θ) L&W L\-0)ZV£Z '(J- ) L 6£ '(83-D) 9V2Ll zj) W^Z '(9Z— ) 5891 SZ-D) l 'SI '(^Zj) /.S'SI XiZ-O) 90 'ZZ-D) %\ZD) £6 £ '(OZ'O) LS'0€ '(6ί- ) ·9^ £ (8ΐ-θ) L&W L\-0)
L 9 '(91-3) LYil '(SI- ) QZ'LZ '(W- ) 9Z'Z Xil'D) 66»I 6S Zl '(II- ) L^iZL 9 '(91-3) LYil '(SI- ) QZ'LZ '(W- ) 9Z'Z Xil'D) 66»I 6S Zl '(II- ) L^iZ
:(01-D) 18'9£ '(6-D) £VL '(8"D) 9i'6£ '(乙 -0) ZZ'Zi '(9_ ) ·8Ι 90"SS ·8£ '(£-□) : (01-D) 18'9£ '(6-D) £VL '(8"D) 9i'6£ '(B-0) ZZ'Zi '(9_ ) ·8Ι 90"SS ·8£ ' (£-□)
698/. '(3-D) Z9' Z '(1-3) 59'S£ : (?) (z函 Ο' '¾ D)腦 :(-HNOD" u! HI '«ι) 10"9 '( u! H - 'HI 's) 0V5 '(J u! H 'Ηΐ'^) 6 £ '(£ "ϊ _Η · 'Ηί'^) 9Ζ'£ U! Η 'HI '冚) ΟΟΎ '(81 u! -HD- 'HI 'ΖΗ Π = "Ρ) 9VZ '( 1 -¾3"'Η3 ' ) ίΖ: (?) (2顧 00£ ¾WM"H, 698/. '(3-D) Z9' Z '(1-3) 59'S£ : (?) (z Ο ''3⁄4 D) Brain : (-HNOD" u! HI '«ι) 10"9 ' ( u! H - 'HI 's) 0V5 '(J u! H 'Ηΐ'^) 6 £ '(£ "ϊ _Η · 'Ηί'^) 9Ζ'£ U ! Η 'HI '冚) ΟΟΎ '( 81 u! -HD- 'HI 'ΖΗ Π = "Ρ" 9VZ '( 1 -3⁄43"'Η3 ' ) ίΖ: (?) ( 2 Gu 00£ 3⁄4WM"H,
°%S8 ^ ' (IOUIIU 17 Γ0 9-86) e-W g) ¾ 5 U 'f^缀士裟
Figure imgf000028_0001
& ώ '(l^ l\) JHl γαϊφΓ ^Ι ) °%06 '傘 ^ '(I0UHU61 '§w/.'S£l) #@l¾g「ii . ' 士
Figure imgf000028_0002
°%S8 ^ ' (IOUIIU 17 Γ0 9-86) eW g) 3⁄4 5 U 'f^ 裟士裟
Figure imgf000028_0001
& ώ '(l^ l\) JHl γαϊφΓ ^Ι ) °%06 'Umbrella ^ '(I0UHU61 '§w/.'S£l) #@l3⁄4g"ii . '
Figure imgf000028_0002
^ ^^-^ 'Ψ^ώ驚二氺 娜 ^ 邈 s¾¥+¾ ' 2三 (τ^ ς-ο) γαί 二氺 ¾ (,οι) ¾ ^¾ 邈¾驚¥屮 (\omm vo^s- i) \ ^ ^^-^ 'Ψ^ώ惊二氺娜^ 邈s3⁄4¥+3⁄4 ' 2三(τ^ ς-ο) γαί 二氺3⁄4 (,οι) 3⁄4 ^3⁄4 邈3⁄4惊¥屮(\ omm vo^ S-i) \
Figure imgf000028_0003
Figure imgf000028_0003
°(H003- m. D) iVSLl X.Z-D)°(H003- m . D) iVSLl XZ-D)
£V9Z c l-D) 9V6i '(82-D) Π·8 I z-j) Z9'£Z '(9ζ— ) e8'9l '(S3"D) 6ΓΠ SS'Sl X£Z-D) ZOSZ '(ZZ-3) WLZ ΐΖΌ) \6T£ '(03_ ) 09'0£ '(6I_ ) ZV9P '(81-0) L&\^ XL ) L 9^ '(91-3) Οςτΐ '(gi-3) YLZ '(171-3) LZ '(£1-0) L6'VH XZ\-D) \9TZ\ '(Π-Ο) 09" εζ (01 -3) S'9Z '(6-0) IVL '(8-0) 8 6〔 '(Λ_。) ZZTZ '(9_ ) Z£Sl '( ) ΖΟ'ζζ 'Ο ) ·8£ '(ε_ ) \L%L Ζ-Ό) 09'SZ: '(1-3)乙 9'8£ "· (?) (ζΗίΜ O'SL ^DQD) ΉΡΜΝ-3ει :(-HNOD" u! HI '^) W9 Z\ u! HD- 'HI 's) 9£ ς '(J ui H 'Ηΐ'ω) 9 £ '(ε u? _Η · 'Ηΐ'^) ΖΖ'ί '(J u! Η 'HI cui) 66 Z '(81 u! -HO- 'HI 'ΖΗΓΠ 'Ρ) 9VZ '('01 u! -¾ -'HZ ' ) Z£'Z (ξ>) 0顏 00ί Ήθαθ)爾 Ν-Η, £V9Z c lD) 9V6i '(82-D) Π·8 I zj) Z9'£Z '(9ζ— ) e8'9l '(S3"D) 6ΓΠ SS'Sl X£ZD) ZOSZ '(ZZ-3 ) WLZ ΐΖΌ) \6T£ '(03_ ) 09'0£ '(6I_ ) ZV9P '(81-0) L&\^ XL ) L 9^ '(91-3) Οςτΐ '(gi-3) YLZ '( 171-3) LZ '(£1-0) L6'VH XZ\-D) \9TZ\ '(Π-Ο) 09" εζ (01 -3) S'9Z '(6-0) IVL '(8 -0) 8 6[ '(Λ_.) ZZTZ '(9_ ) Z£Sl '( ) ΖΟ'ζζ 'Ο ) ·8£ '(ε_ ) \L%L Ζ-Ό) 09'SZ: '(1 -3) B 9'8 £ "· (?) (ζΗίΜ O'SL ^DQD) ΉΡΜΝ-3 ει : (-HNOD" u! HI '^) W9 Z\ u! HD- 'HI 's) 9£ ς '(J u i H 'Ηΐ'ω) 9 £ '(ε u? _Η · 'Ηΐ'^) ΖΖ'ί '(J u ! Η 'HI c ui) 66 Z '(81 u! -HO- 'HI 'ΖΗΓΠ 'Ρ) 9VZ '('01 u! -3⁄4 -'HZ ' ) Z£'Z (ξ>) 0颜00ί Ήθαθ) 尔Ν-Η,
'「 缀士裟
Figure imgf000028_0004
oz) if
'" 裟士裟
Figure imgf000028_0004
Oz) if
ZLlOOO/SOOZSLD/lDd 661^690/900^ OAV ^^n-^^m ^^m^m^ wmm^ (i) -邈 ¾篱一屮¾ 三 (τ« SO) γΒί 二氺 ( ^ οι) -i m^ M ^mu^ π) -^SB- + (§UI 8'6π) °¾ί^^ώ驚二氺 ¾ (ι^ οι) -im '( ui i ro 'Sui e-eoi) m wn ZLlOOO/SOOZSLD/lDd 661^690/900^ OAV ^^n-^^m ^^m^m^ wmm^ (i) -邈3⁄4篱一屮3⁄4 三(τ« SO) γΒί 二氺 ( ^ οι) -im^ M ^mu^ π) -^SB - + ( §UI 8'6π) °3⁄4ί^^ώ惊氺3⁄4 (ι^ οι) -im '( ui i ro 'Sui e-eoi) m wn
Figure imgf000029_0001
Figure imgf000029_0001
ui d) t70'/.21 '(qd- D"0) 35'8 1 '(qd- ui j-w) ζ^βΖΙ '(qd- ui 3) i 9l\ '(,£1-3) 98'8Z.l '('3 ) ZV££ '('Π- ) ίζ'ίίΐ '(('6一 )- ) 6V6Z-W6Z Z-0) OL'iZ '(JO) L 6i X8Z-D) L9TLl '(/ - ) O SZ 30'/.1 5Z-J 1£ 1 X l'D)Ui d) t70'/.21 '(qd- D"0) 35'8 1 '(qd- ui jw) ζ^βΖΙ '(qd- ui 3) i 9l\ '(, £1-3) 98' 8Z.l '('3 ) ZV££ '('Π- ) ίζ' ίίΐ '(('6 a)- ) 6V6Z-W6Z Z-0) OL'iZ '(JO) L 6i X8Z-D) L9TLl '(/ - ) O SZ 30'/.1 5Z-J 1£ 1 X l'D)
\ζ-ς\ ίΖ-D) ZZSZ ZZ-D) OZ'iZ '(13-3)€ Ρ£ θΖ'θ) Z^OZ '(61-0) i "9t7 '(81-3) IZ'ZV \-D) 88"9†7 '(91-0) 0 £Z S D) ζΖ'ίΖ '0ΐ_3) \ξ'Ζ^ '(Π-3) ZVS l XlV ) Ld'ZZX WD) '(OI ) l '9i '(6-0) WL '(8·。) L 6£ '(Z ) ZYZ£ '(9-0) 6£"8l Xf-J) Ζξ'ίί '(e-3) £V6L '(Z-D) ZO'LZ '(1-3) S8'8C : (?) (z謂 0· '£1303) ΜΝ Π '■(≠- u! Η" 'H3 'm) \ZL '(qd- ui H- 'HZ ' ) VL '(H HNO — u! "HM" 'Ηΐ '8'/.= ·'Ρ) 6Γ9 '(ZH HNO — u! -HN- 'HI 'ui) S0'9 Z\ u! HO- 'HI 's) 9i Z\ u! H 'HI '^) S8 '(J ui H 'Ηΐ ΖΖ'ί '(e u! -HO- 'Hl'ui) 61 \≠-ζΗ3~ u! ¾。 'H3 '^) 81 '(J ui H 'HI 'ω) Π '(81 u! -HO 'HI 'ZH \\ =Γ'Ρ) ZVZ '('01 u! -¾3- ¾3 'ZHST. \YZ: (?) (ZHW 00£ 'HDQD) \ζ-ς\ ίΖ-D) ZZSZ ZZ-D) OZ'iZ '(13-3)€ Ρ£ θΖ'θ) Z^OZ '(61-0) i "9t7 '(81-3) IZ' ZV \-D) 88"9†7 '(91-0) 0 £ZSD) ζΖ'ίΖ '0ΐ_3) \ξ'Ζ^ '(Π-3) ZVS l XlV ) Ld'ZZX WD) '(OI ) l '9i '(6-0) WL '(8·.) L 6£ '(Z ) ZYZ£ '(9-0) 6£"8l Xf-J) Ζξ'ίί '(e-3) £V6L '(ZD) ZO'LZ '(1-3) S8'8C : (?) (z#0· '£1303) ΜΝ Π '■(≠- u! Η"'H3'm) \ZL '(qd - ui H- 'HZ ' ) VL '(H HNO — u ! "HM"'Ηΐ'8'/.=·'Ρ) 6Γ9 '(ZH HNO — u! -HN- 'HI 'ui) S0'9 Z\ u! HO- 'HI 's) 9i Z\ u! H 'HI '^) S8 '(J ui H 'Ηΐ ΖΖ'ί '(eu! -HO- 'Hl'ui) 61 \≠- ζ Η3~ u! 3⁄4. 'H3 '^) 81 '(J ui H 'HI 'ω) Π '(81 u! -HO 'HI 'ZH \\ =Γ'Ρ) ZVZ '('01 u! -3⁄43 - 3⁄43 'ZHST. \YZ: (?) (ZHW 00£ 'HDQD)
°%16  °%16
Figure imgf000029_0002
three
Figure imgf000029_0002
¾ w i ¾ί '( ^ ς) MW^ ao n 'd^ 8) iii '(Τ«Π) 3ΗΙ γ^ψ呦 °%£8傘 ( ixu 99· I '§ui 3·0ΐ7ΐ)
Figure imgf000029_0003
= 2M
Figure imgf000029_0004
3⁄4 wi 3⁄4ί '( ^ ς) MW^ ao n 'd^ 8) iii '(Τ«Π) 3ΗΙ γ^ψ呦°%£8 Umbrella (ixu 99· I '§ui 3· 0 ΐ7ΐ)
Figure imgf000029_0003
= 2M
Figure imgf000029_0004
曹二氺 级^ ¾ ·^ ¾ι¾ώ邈耷篱 (Ί) -m n-^ ': ¾7三 (τ« S ) Y m 蔦二氺 ¾
Figure imgf000029_0005
曹二氺级^ 3⁄4 ·^ 3⁄4ι3⁄4ώ邈耷(Ί) -m n-^ ': 3⁄47三(τ« S ) Y m 茑二氺3⁄4
Figure imgf000029_0005
Figure imgf000029_0006
Figure imgf000029_0006
Z.T000/S00ZN3/X3d 66t690/900Z OAV = 15: 1 V/V)。 浓缩, 干燥,得到白色固体 (136.7 mg, 1.72 mmol)产率 86%。 向产物中加 入 THF (12 mL), 甲醇 (8 mL), 4 M NaOH水溶液 (5 mL), 搅拌过夜。 用 1 M稀盐酸调节 pH值为 3左右, 用 (20 mL) 氯仿萃取, 再用 (20 mL) 饱和 NaCl溶液冲洗氯仿层三次, 无水硫酸钠干燥, 浓缩蒸千溶剂, 得淡黄色固体 N-2 (118.8 mg, 1.44 mmol), 产率 87%。 Z.T000/S00ZN3/X3d 66t690/900Z OAV = 15: 1 V/V). Concentration and drying gave a white solid (136.7 mg, 1.72 mmol). To the product was added THF (12 mL), EtOAc (EtOAc) Adjust the pH to about 3 with 1 M dilute hydrochloric acid, extract with chloroform (20 mL), then rinse the chloroform layer three times with (20 mL) saturated NaCl solution, dry over anhydrous sodium sulfate, and then dilute the solvent to give a pale yellow solid N -2 (118.8 mg, 1.44 mmol), yield 87%.
Ή-NMR (CDC13, 300 MHz) {δ): 2.13 (t,J= 7.5Hz, 2Η, -CH2- in 10'), 3.02 (m, IH, H in V), 3.14 (m, 2H, CH2 in -CH2-ph), 3.19 (m, IH, H in 3), 3.29 (m, IH, m, 1H,H in Γ), 4.91 (m, 1H,CH in -CONHCH-), 5.29 (s, IH, -CH in 12), 6.03 (m, IH, -NH- in -CONHCH2), 6.19 (d, J= 7.8, IH, H in 12'), 7.10 (m, 2H, -H in -ph), 7.30 (m, 2H, -H in -ph); l3C-NMR (CDC13, 75.0 MHz) (δ): 37.61 (C-1), 27.16 (C-2), 79.27 (C-3), 38.94 (C-4), 55.34 (C-5), 18.48 (C-6), 32.96 (C-7), 39.89 (C-8), 47.93 (C-9), 37.22 (C-10), 23.62 (C-11), 125.89 (C-12), 140.19 (C-13), 42.75 (C-14), 28.02 (C-15), 27.30 (C-16), 47.71 (C-17), 54.24 (C-18), 39.29 (C-19), 40.00 (C-20), 31.08 (C-21), 36.66 (C-22), 28.35 (C-23), 15.90 (C-24), 15.73 (C-25), 17.13 (C-26), 23.45 (C-27), 173.62 (C-28), 17.46 (C-29), 21.43 (C-30), 39.89 (C-1'), 25.02 (C-2'), 29.89-29.24 (C- (3'-8')), 25.78 (C-9), 37.12 (C-10'), 173.62 (C-ΙΓ), 53.24 (C-12'), 178.84 (C-13'), 136.40 (C in -ph), 129.70 (m-C in -ph), 128.60 (o-C in -ph), 127.12 (p-C in -ph)。 实施例 35 化合物 N- 3的制备 Ή-NMR (CDC1 3 , 300 MHz) {δ): 2.13 (t, J = 7.5 Hz, 2Η, -CH 2 - in 10'), 3.02 (m, IH, H in V), 3.14 (m, 2H , CH 2 in -CH 2 -ph), 3.19 (m, IH, H in 3), 3.29 (m, IH, m, 1H, H in Γ), 4.91 (m, 1H, CH in -CONHCH-), 5.29 (s, IH, -CH in 12), 6.03 (m, IH, -NH- in -CONHCH2), 6.19 (d, J= 7.8, IH, H in 12'), 7.10 (m, 2H, -H In -ph), 7.30 (m, 2H, -H in -ph) ; l3 C-NMR (CDC1 3 , 75.0 MHz) (δ): 37.61 (C-1), 27.16 (C-2), 79.27 (C -3), 38.94 (C-4), 55.34 (C-5), 18.48 (C-6), 32.96 (C-7), 39.89 (C-8), 47.93 (C-9), 37.22 (C- 10), 23.62 (C-11), 125.89 (C-12), 140.19 (C-13), 42.75 (C-14), 28.02 (C-15), 27.30 (C-16), 47.71 (C-17 ), 54.24 (C-18), 39.29 (C-19), 40.00 (C-20), 31.08 (C-21), 36.66 (C-22), 28.35 (C-23), 15.90 (C-24) , 15.73 (C-25), 17.13 (C-26), 23.45 (C-27), 173.62 (C-28), 17.46 (C-29), 21.43 (C-30), 39.89 (C-1') , 25.02 (C-2'), 29.89-29.24 (C- (3'-8')), 25.78 (C-9), 37.12 (C-10'), 173.62 (C-ΙΓ), 53.24 (C- 12'), 178.84 (C-13'), 136.40 (C in -ph), 129.70 (mC in -ph), 128.60 (oC in -ph), 127.12 (pC in -ph). Example 35 Preparation of Compound N-3
Figure imgf000030_0001
Figure imgf000030_0001
取乙酰化齐墩果酸的酰氯 (103.3 mg, 0.2 mmol), 溶于 (10 mL) 无水二氯甲垸备用。 将 (159.8 mg) 十一氨基酸- (L) 酪氨基酸甲酯的盐酸盐溶于 (10 mL) 无水二氯甲垸, 加 入 (0.5 mL) 三乙胺, 使十一氨基酸- (L) 酪氨基酸甲酯的盐酸盐完全溶解在无水二氯甲 垸中, 再将后者加入到备用溶液中, 搅拌 3 h, 浓缩, 用硅胶层析柱分离 (石油醚: 乙酸 乙酯 = 15: 1 V/V)o浓缩, 干燥, 得到白色固体 (140.2 mg, 1.66 mmol) 产率 83%。 向产物 中加入 THF(12mL), 甲醇 (8mL), 4 M NaOH水溶液 (5mL), 搅拌过夜。 用 1 M稀盐酸 调节 pH值为 3左右, 用 (20 mL)氯仿萃取, 再用 (20 mL) 饱和 NaCl溶液冲洗氯仿层三 次,无水硫酸钠干燥,浓缩蒸干溶剂,得淡黄色固体 N-3 (118.8 mg, 1.51 mmol),产率 91%。  Acetyl chloride of acetylated oleanolic acid (103.3 mg, 0.2 mmol) was dissolved in (10 mL) anhydrous dichloromethane. Dissolve (159.8 mg) eleven amino acid-(L) tyrosine methyl ester hydrochloride in (10 mL) anhydrous dichloromethane, add (0.5 mL) triethylamine to make eleven amino acids - (L) The hydrochloride salt of the amino acid methyl ester was completely dissolved in anhydrous dichloromethane, and the latter was added to the reserve solution, stirred for 3 h, concentrated, and separated by silica gel chromatography (petroleum ether: ethyl acetate = 15 : 1 V/V) concentrated, dried to give a white solid (140.2 mg, 1.66 mmol). To the product was added THF (12 mL), MeOH (EtOAc) The pH was adjusted to about 3 with 1 M dilute hydrochloric acid, extracted with chloroform (20 mL), and then washed with EtOAc (EtOAc) (EtOAc) -3 (118.8 mg, 1.51 mmol), yield 91%.
Ή-NMR (CDC13, 300 MHz) (S): 2.11 (t,J= 7.5Hz, 2H, -CH- in 10'), 2.42 (d,J= 11.2Hz, IH, -CH.in 18), 3.11 (m, IH, H in Γ), 3.17 (m, 2H, CH2 in -CH2-ph), 3.23 (m, IH, -CH- in 3), 3.25 (m, IH, H in Γ), 4.79 (m, IH, H in 12'), 5.32(s, IH, -CH in 12), 6.10 (m, IH, -NH- in -CONHCH2), 6.21(d,J=7.8, IH, -NH- in - CONHCH), 7.21 (m, 2H, -H in -ph), 7.25 (m, 2H, -H in -ph); ,3C-NMR (CDC13, 75.0 MHz) (S): 38.85 (C-1), 27.02 (C-2), 79.13 (C-3), 37.52 (C-4); 55.19 (C-5), 18.39 (C-6), 32.45 (C-7), 39.84 (C-8), 47.43 (C-9), 36.59 (C- 10), 23.81 (C- l l ), 122.92 (C-12), 145.22 (C-13), 42.60 (C- 14), 27.40 (C- 15), 23.73 (C- 16), 46.82 (C-17), 42.23(C- 18), 46.45 (C- 19), 30.75 (C-20), 34.30 (C-21 ), 27.22 (C-22), 28.25 (C-23), 15.49 (C-24), 14.40 (C-25), 17.05 (C-26), 25.88 (C-27), 173.78 (C-28), 33.10 (C-29), 23.71 (C-30), 39.80 (C-l,), 23.75 (C-2'), 29.79-29.23 (C- (3,-9')), 173.63 (C-Ι Γ), 53.20 (C- 12'), 178.90 (C-13'), 136.14 (C in -ph), 129.22 (m-C in -ph), 128.32 (o-C in -ph), 174.12 (p-C in -ph)。 实施例 36 PTP1 B抑制活性测试 Ή-NMR (CDC1 3 , 300 MHz) (S): 2.11 (t, J = 7.5 Hz, 2H, -CH- in 10'), 2.42 (d, J = 11.2 Hz, IH, -CH.in 18) , 3.11 (m, IH, H in Γ), 3.17 (m, 2H, CH 2 in -CH 2 -ph), 3.23 (m, IH, -CH- in 3), 3.25 (m, IH, H in Γ ), 4.79 (m, IH, H in 12'), 5.32(s, IH, -CH in 12), 6.10 (m, IH, -NH- in -CONHCH 2 ), 6.21(d,J=7.8, IH , -NH- in - CONHCH), 7.21 (m, 2H, -H in -ph), 7.25 (m, 2H, -H in -ph); , 3 C-NMR (CDC1 3 , 75.0 MHz) (S) : 38.85 (C-1), 27.02 (C-2), 79.13 (C-3), 37.52 (C-4) ; 55.19 (C-5), 18.39 (C-6), 32.45 (C-7), 39.84 (C-8), 47.43 (C-9), 36.59 (C-10), 23.81 (C-ll), 122.92 (C-12), 145.22 (C-13), 42.60 (C-14), 27.40 (C- 15), 23.73 (C- 16), 46.82 (C-17), 42.23 (C- 18), 46.45 ( C- 19), 30.75 (C-20), 34.30 (C-21), 27.22 (C-22), 28.25 (C-23), 15.49 (C-24), 14.40 (C-25), 17.05 (C -26), 25.88 (C-27), 173.78 (C-28), 33.10 (C-29), 23.71 (C-30), 39.80 (Cl,), 23.75 (C-2'), 29.79-29.23 ( C- (3,-9')), 173.63 (C-Ι Γ), 53.20 (C- 12'), 178.90 (C-13'), 136.14 (C in -ph), 129.22 (mC in -ph) , 128.32 (oC in -ph), 174.12 (pC in -ph). Example 36 PTP1 B inhibitory activity test
一、测试原理: 利用分子生物学手段在大肠杆菌系统表达人源蛋白质酪氨酸磷酸酯酶 IB (hPTPlB) 催化结构域, 经纯化后的 hPTPlB重组蛋白能水解底物 pNPP的磷脂键, 得到 的产物在 410 nm处有很强的光吸收, 因此可以通过直接检测 410 nm处光吸收的变化以观 察酶的活性变化以及化合物对酶活性的抑制情况。标准的测活体系如下: 50 mM Mops, PH 7.0, 1 mM EDTA, 2 mM DTT, 2 mM PNPP, 2% DMSO, 40 nM hPTPl B。  I. Test principle: The molecular structure of the human protein tyrosine phosphatase IB (hPTPlB) catalytic domain is expressed in the E. coli system. The purified hPTPlB recombinant protein can hydrolyze the phospholipid bond of the substrate pNPP. The product has a strong light absorption at 410 nm, so it is possible to directly observe the change in light absorption at 410 nm to observe changes in enzyme activity and inhibition of enzyme activity by the compound. The standard assay system is as follows: 50 mM Mops, pH 7.0, 1 mM EDTA, 2 mM DTT, 2 mM PNPP, 2% DMSO, 40 nM hPTP1 B.
Figure imgf000031_0001
Figure imgf000031_0001
pNPP 410 nm 二、 观察指标: 动态测定波长为 410 nm处的光吸收, 时间为 3 min, 其动力学曲线一 级反应的斜率作为酶的活性指标。  pNPP 410 nm II. Observation index: The optical absorption at 410 nm is measured dynamically for 3 min, and the slope of the first-order reaction of the kinetic curve is used as the activity index of the enzyme.
三、 样品测试: 1、 将 1 mg样品溶于 200 μΐ DMSO中。 取 20 加入到 96孔聚丙烯 板的 A2-H11样品孔中, 然后加 80 DMS0, 作为母板。 2、 用 Biomek 2000自动加样系统 取 2 μΐ样品加入到 96孔聚苯乙烯板的对应样品孔中, 作为筛选用的子板。 3、 样品孔 Al-D E12- H12中加入 2 L DMSO作为百分之百酶活性对照。 4、 样品孔 A12-D12、 E1-H1 中加入 2 μΐ不同浓度的阳性对照物 (由 lO g/mL两倍稀释的四个浓度) 。 5、 样品孔 A1-H12分别加入 88 μΐ Assay mi x。 6、 样品孔 A1-H12分别加入 10 μΐ hPTP lB。 7、 在 SpectraMAX 340上测量 410 nm处光吸收, 时间为 3分钟。 8、 将数据输出为文本文件, 然后以 Excel方式打开, 以样品孔 A1-D1、 E12-H12 的 Vma,值平均作为 100% 酶活力。 化合 物对 PTP1B的抑制率通过以下公式求得: 3. Sample test: 1. Dissolve 1 mg sample in 200 μΐ DMSO. 20 was added to the A2-H11 sample well of a 96-well polypropylene plate, and then 80 DMS0 was added as a mother plate. 2. 2 μΐ of the sample was added to the corresponding sample well of a 96-well polystyrene plate using the Biomek 2000 automatic sample loading system as a daughter plate for screening. 3. Add 2 L DMSO to the sample well Al-D E12-H12 as a 100% enzyme activity control. 4. Add 2 μΐ of different concentrations of positive control (four concentrations diluted by 10 g/mL) to sample wells A12-D12 and E1-H1. 5. Add 88 μΐ Assay mi x to the sample wells A1-H12. 6. Add 10 μΐ hPTP lB to the sample wells A1-H12. 7. Measure the light absorption at 410 nm on a SpectraMAX 340 for 3 minutes. 8. Export the data as a text file and open it in Excel. The V ma of the sample wells A1-D1 and E12-H12 is averaged as 100% enzyme activity. The inhibition rate of the compound to PTP1B was obtained by the following formula:
% 抑制率 = ( 1 ― 各筛选孔 值 I 空白对照 Vmx平均值) X 100% % inhibition rate = ( 1 - each screening hole value I blank control V mx average) X 100%
测试化合物: 齐墩果酸、 熊果酸、 G- 1、 G- 2、 G- 3、 G- 4、 H- 1、 H- 2、 H- 3、 H-4、 G-5、 G—6、 G-7、 G- 8、 D- 7、 M- 2、 M- 3、 M— 4、 N—l、 N— 2、 N- 3。 四、 测试结果: 筛选结果是当化合物的浓度为 2(^g/mL时对酶活性的百分抑制率, 抑 制活性高于 50% 时, 按常规筛选得出 IC5o,阳性对照 4-[4-(4-草酰基 -苯氧甲基) -苯甲氧基] - 苯 乙 酮 酸 (4-[4-(4-oxalyl-phenoxymethyl)-benzyloxy]-phenyl-oxo-acetic acid , Test compound: oleanolic acid, ursolic acid, G-1, G-2, G-3, G-4, H-1, H-2, H-3, H-4, G-5, G- 6. G-7, G-8, D-7, M-2, M-3, M-4, N-1, N-2, N-3. IV. Test results: The screening result is the percentage inhibition rate of enzyme activity when the concentration of the compound is 2 (^g/mL, when the inhibitory activity is higher than 50%, IC 5 o is obtained by routine screening, positive control 4 [4-(4-oxalyl-phenoxymethyl)-benzyloxy]-phenyl-oxo-acetic acid ,
Figure imgf000032_0001
的 IC50为 5.4 μΜ (Christopher T. Seto, et al. J. Med. Chem., 2002; 45, 3946-3952 )o 各测试化合物抑制 hPTP-ΙΒ的 IC5。值见表 1。 实施例 37 本发明化合物对 PTP1B抑制的选择性测试
Figure imgf000032_0001
The IC 50 was 5.4 μΜ (Christopher T. Seto, et al. J. Med. Chem., 2002 ; 45, 3946-3952) o Each test compound inhibited the IC 5 of hPTP-ΙΒ. The values are shown in Table 1. Example 37 Selectivity Test of PTP1B Inhibition by Compounds of the Invention
本试验通过比较测试本发明化合物对与 PTP1B 同族的磷酸脂酶 (PTPs) (TCPTP、 CDC25A、 CDC25B及 LAR) 的抑制活性, 来观察本发明化合物对 PTP1B的选择抑制效 果。 测试化合物及化合物对 TCPTP、 CDC25A、 CDC25B及 LAR的活性抑制测试条件及 方法同实施例 36, 各测试化合物抑制 TCPTP、 CDC25A、 CDC25B、 LAR的 IC5。值见表 1。 In this test, the selective inhibitory effect of the compound of the present invention on PTP1B was observed by comparing the inhibitory activities of the compounds of the present invention against phospholipases (PTPs) (TCPTP, CDC25A, CDC25B and LAR) of the same family of PTP1B. The test conditions and methods for inhibiting the activity of test compounds and compounds against TCPTP, CDC25A, CDC25B and LAR were the same as those in Example 36, and each test compound inhibited IC 5 of TCPTP, CDC25A, CDC25B, and LAR. The values are shown in Table 1.
表 1所示的试验结果表明本发明化合物对 PTP1B有较高的抑制效果, 而对其同族的 磷酸脂酶 (PTPs) (TCPTP、 CDC25A、 CDC25B及 LAR) 则弱效, 可见本发明化合物对 PTP1B有较好的选择性抑制效果。 表 1 测试化合物抑制 PTP1B、 TCPTP、 CDC25A、 CDC25B、 LAR活性数据  The results of the tests shown in Table 1 indicate that the compounds of the present invention have a high inhibitory effect on PTP1B, while the same family of phospholipases (PTPs) (TCPTP, CDC25A, CDC25B and LAR) are weak, and it can be seen that the compound of the present invention is PTP1B. Has a better selective inhibition effect. Table 1 Test compound inhibition PTP1B, TCPTP, CDC25A, CDC25B, LAR activity data
IC50 (uM) IC 50 (uM)
化合物 化学结构  Compound chemical structure
PTP1 B TCPTP CDC25A CDC25B LAR  PTP1 B TCPTP CDC25A CDC25B LAR
21. 90 5. 94 + 21. 90 5. 94 +
齐墩果酸 . Ύ*ΟΟΟΗ 弱效 弱效 弱效 Oleanolic acid . Ύ*ΟΟΟΗ weak effect weak effect weak
± 1. 81 0. 08  ± 1. 81 0. 08
5. 76 + 5. 76 +
熊果酸 ■ Ι · | Γ*ΟΟΟΗ 弱效 弱效 弱效  Ursolic acid ■ Ι · | Γ*ΟΟΟΗ weak effect weak effect weak
0. 79
Figure imgf000033_0001
Figure imgf000034_0001
0. 79
Figure imgf000033_0001
Figure imgf000034_0001
Z.T000/S00ZN3/X3d 66t690/900Z OAV
Figure imgf000035_0001
实施例 38 化合物 N-2对 PTP1B对底物 pNPP的结合力及催化速率的影响试验
Z.T000/S00ZN3/X3d 66t690/900Z OAV
Figure imgf000035_0001
Example 38 Effect of Compound N-2 on the Binding Capacity and Catalytic Rate of PTP1B to Substrate pNPP
一、试验方法: 1、在 96孔聚苯乙烯板的样品孔 A1_H1; A3-H3; A5-H5; A7-H7; A9-H9; A11-H11中分别加入由 625 nM开始用 DMS0两倍稀释的六个浓度的 L-5的 DMS0溶液 2 μΐ. 2、 在样品孔 A1-A12; B1-B12; C1-C12; D1-D12; E1-E12; F1-F12; G1-G12; HI- H12中加 入由 40mM开始用 DMS0两倍稀释的八个浓度的底物 pNPP的 DMSO溶液 10 μΙα 3、 样品 孔 A1-H12分别加入 88 μΐ Assay mix。 6、 样品孔 Al- H12分别加入 10 μΐ ΡΤΡ1Β。 7、 在 SpectraMAX 340上测量 410 nm处光吸收, 时间为 3分钟。 First, the test method: 1, in the 96-well polystyrene plate sample hole A1_H1; A3-H3; A5-H5; A7-H7; A9-H9; A11-H11 respectively added 625 nM double dilution with DMS0 Six concentrations of L-5 DMS0 solution 2 μΐ. 2. In sample wells A1-A12; B1-B12; C1-C12; D1-D12; E1-E12; F1-F12; G1-G12; HI-H12 DMSO solution of 10 concentrations of substrate pNPP diluted twice with DMS0 starting at 40 mM was added with 10 μΙ α 3 and sample wells A1-H12 were added to 88 μΐ Assay mix, respectively. 6. Add 10 μΐ ΡΤΡ1Β to the sample well Al-H12. 7. Measure the light absorption at 410 nm on a SpectraMAX 340 for 3 minutes.
二、 试验结果: 化合物 N-2抑制 PTP1B的 IC50为 250nM, 具有很高的抑制活性。 而且随着抑制剂浓度的升高, PTP1B对底物 pNPP的结合力, 即 Km变大, 而对底物的催 化速率 (kcat) 并没有明显的改变 (见图 1和图 2)。 由此可见, 该化合物是一类 PTP1B的 竞争型抑制剂。 实施例 39 化合物 N-2对 CHO/IR细胞内 IR磷酸化水平的影响试验 一、 试验原理: 胰岛素敏感细胞内胰岛素受体 IR的磷酸化水平受到蛋白酪氨酸激酶 (protein tyrosine kinases) 和蛋白酪氨酸憐酸酉旨酶 (protein tyrosine phosphatases) 的严密 调控, PTP1B在这个过程中起着负调控因子的作用。通过检测 CHO/IR细胞(国家新药筛 选中心) 内 IR磷酸化水平变化, 可以判断 PTP1B抑制剂是否进入细胞以及在细胞内的作 用效果。 II. Test Results: Compound N-2 inhibited PTP1B with an IC50 of 250 nM, which has high inhibitory activity. Moreover, as the concentration of the inhibitor increased, the binding capacity of PTP1B to the substrate pNPP, that is, Km became larger, and the catalytic rate (kcat) of the substrate did not change significantly (see Fig. 1 and Fig. 2). Thus, the compound is a competitive inhibitor of a class of PTP1B. Example 39 Effect of Compound N-2 on IR Phosphorylation Level in CHO/IR Cells I. Test principle: The phosphorylation level of insulin receptor IR in insulin-sensitive cells is tightly regulated by protein tyrosine kinases and protein tyrosine phosphatases. PTP1B is in this The process plays a role as a negative regulator. By detecting changes in IR phosphorylation levels in CHO/IR cells (National New Drug Screening Center), it is possible to determine whether PTP1B inhibitors enter cells and function intracellularly.
二、 试验方法: 1、 细胞接种: 生长状态良好的细胞以 3-4 X 105 cell/孔的密度接入 6 孔板,每孔 2 mL的培养基 F12 + 10% NCS。 2、饥饿: 24 h后晚上无血清 F12培养基, 2 mL, 过夜 12 h。 3、 给药: 去除旧培养基, 加入新鲜 F12, l mL , 孵育 20分钟。 将化合物 1 用 1 mL F12 无血清培养基稀释, 分别加入各孔中,作用^ 小时。 其中分别以 ImM 的 Na3V04和 0.1%的 DMSO做阳性和阴性对照。 4、 胰岛素刺激: 每孔中加入终浓度为 ΙΟηΜ的 insulin作用 10 分钟。 或没有胰岛素刺激。 5、 收样: 弃去培养基, 每孔加 100 μ L X 1 loading buffer裂解细胞收样。  2. Test methods: 1. Cell seeding: Cells with good growth state were connected to 6-well plates at a density of 3-4 X 105 cells/well, 2 mL of medium per well F12 + 10% NCS. 2. Hunger: After 24 hours, serum-free F12 medium, 2 mL, overnight for 12 h. 3. Administration: Remove the old medium, add fresh F12, l mL, and incubate for 20 minutes. Compound 1 was diluted with 1 mL of F12 serum-free medium and added to each well for 2.5 hours. Positive and negative controls were made with 1 mM Na3V04 and 0.1% DMSO, respectively. 4. Insulin stimulation: Insulin with a final concentration of ΙΟηΜ was added to each well for 10 minutes. Or no insulin stimulation. 5. Take the sample: Discard the medium and add 100 μL of X 1 loading buffer per well to lyse the cells.
三、 试验结果: 对化合物 N-2 的研究表明随着抑制剂浓度的升高, IR的磷酸化水平 呈现明显的升高趋势。 由此可见, N-2在细胞内 IR的去磷酸化过程中起抑制作用, 预示 着该类化合物可能在维持胰岛素刺激的信号具有增强作用,能够在一定程度上缓解胰岛素 抵抗。  III. Test results: The study of compound N-2 showed that the phosphorylation level of IR increased significantly with the increase of inhibitor concentration. It can be seen that N-2 plays an inhibitory role in the dephosphorylation of IR in cells, indicating that such compounds may enhance the signal of insulin stimulation and can alleviate insulin resistance to some extent.

Claims

权利要求 Rights request
1、 一类具有下述通式 I结构的三萜类 PTP1B抑制剂或其生理可接受的盐: 1. A triterpenoid PTP1B inhibitor having the structure of the following formula I or a physiologically acceptable salt thereof:
Figure imgf000037_0001
其中!^为^一^的垸基或氢;
Figure imgf000037_0001
among them! ^ is a sulfhydryl group or hydrogen;
R2为 d _C5的烷基或氢; R 2 is an alkyl group or hydrogen of d _C 5 ;
R3为氢、 羟基、 氨基、 卤素或巯基; R 3 is hydrogen, hydroxy, amino, halogen or fluorenyl;
为羟基、 氨基、 卤素或巯基;  Is a hydroxyl group, an amino group, a halogen or a fluorenyl group;
为。,^^的烷基、 d-C2o的不饱和烃基、 YCH(R5)、 CONH(CH2)nCH(R6)COOH或 CONH(CH2)nCONH(CH2)mCH(R7)COOH , 其中 η为 1-20, m为 1-20; Y为 C!-C^的烷基 或^^^的不饱和烃基; R5、 R6、 R7各自独立地选自 — Cs的垸基、 芳香基、 取代芳香 基; for. , ^^ alkyl, dC 2 o unsaturated hydrocarbon group, YCH(R 5 ), CONH(CH 2 ) n CH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH(R 7 COOH, wherein η is 1-20, m is 1-20; Y is C!-C^ alkyl or ^^^ unsaturated hydrocarbon group; R 5 , R 6 , R 7 are each independently selected from - Cs Sulfhydryl, aryl, substituted aryl;
所述的芳香基或取代芳香基中的芳香基指苯基、 吡啶基、 吲哚基、 呋喃基、 噻吩基或 吡咯基。  The aryl group in the aryl group or substituted aryl group means a phenyl group, a pyridyl group, a fluorenyl group, a furyl group, a thienyl group or a pyrrolyl group.
2、 根据权利要求 1所述的三萜类 PTP1B抑制剂或其生理可接受的盐, 其特征在于 其中!^为氢时; The triterpenoid PTP1B inhibitor according to claim 1, or a physiologically acceptable salt thereof, which is characterized in that! ^ is hydrogen;
为 d—C5的烷基或氢; Is an alkyl or hydrogen of d-C 5 ;
R3为羟基、 氨基、 卤素或巯基; R 3 is a hydroxyl group, an amino group, a halogen or a fluorenyl group;
R4为羟基、 氨基、 卤素或巯基;  R4 is a hydroxyl group, an amino group, a halogen or a fluorenyl group;
为 ^ ^的垸基、 d-C20的不饱和烃基、 YCH(R5)、 CONH(CH2)nCH(R6)COOH或 CONH(CH2)nCONH(CH2)mCH(R7)COOH , 其中 η为 1-20, m为 1-20; Y为 d-C^的烷基 或。,^^的不饱和烃基; R5、 R6、 R7各自独立地选自 _^的烷基、 芳香基、 取代芳香 基。 Is a thiol group of ^^, an unsaturated hydrocarbon group of dC 20 , YCH(R 5 ), CONH(CH 2 ) n CH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH(R 7 ) COOH wherein η is 1-20 and m is 1-20; Y is an alkyl group of dC^. And an unsaturated hydrocarbon group; R 5 , R 6 , and R 7 are each independently selected from an alkyl group, an aromatic group, and a substituted aromatic group.
3、 根据权利要求 1所述的三萜类 PTP1 B抑制剂或其生理可接受的盐, 其特征在于 其中 为 一。5的垸基时; The triterpenoid PTP1 B inhibitor according to claim 1, or a physiologically acceptable salt thereof, which is one of them. 5垸 时;
为 —C5的垸基或氢;  Is a sulfhydryl group or a hydrogen of -C5;
为羟基、 氨基、 卤素或巯基 R4为羟基、 氨基、 卤素或巯基; Is a hydroxyl group, an amino group, a halogen or a fluorenyl group R4 is a hydroxyl group, an amino group, a halogen or a fluorenyl group;
为 ^-^。的烷基、 d-C o的不饱和烃基、 YCH(R5)、 CONH(CH2)nCH(R6)COOH或 CONH(CH2)nCONH(CH2)mCH(R7)COOH, 其中 n为 1 -20 , m为 1 -20; Y为
Figure imgf000038_0001
的垸基 或^ ^的不饱和烃基; R5、 R6、 R7各自独立地选自 d—C5的垸基、 芳香基、 取代芳香 基。
Is ^-^. Alkyl, dC o unsaturated hydrocarbon group, YCH(R 5 ), CONH(CH 2 ) n CH(R 6 )COOH or CONH(CH 2 ) n CONH(CH 2 ) m CH(R 7 )COOH, wherein n is 1 -20 and m is 1 -20; Y is
Figure imgf000038_0001
An alkyl group or an unsaturated hydrocarbon group; R 5 , R 6 , and R 7 are each independently selected from the group consisting of a fluorenyl group, an aryl group, and a substituted aryl group of d-C 5 .
4、权利要求 1所述的三萜类 PTP1B抑制剂的制备方法, 其特征在于以齐墩果酸、熊 果酸、 可乐酸或 2α-羟基齐敦果酸为原料, 通过 Wi Uig或 Wittig- Horner反应合成 28-长 链脂肪酸衍生物, 再通过取代 3位羟基获得 3位其他取代的 28-长链脂肪酸衍生物; 通过 与各种氨基酸缩合, 合成 28-肽链衍生物, 再通过取代 3位羟基获得 3位其他取代的 28- 肽链衍生物。 The method for preparing a triterpenoid PTP1B inhibitor according to claim 1, which is characterized in that oleanolic acid, ursolic acid, colanic acid or 2α-hydroxy sinoic acid is used as a raw material, and is passed through Wi Uig or Wittig- The Horner reaction synthesizes a 28-long-chain fatty acid derivative, and then obtains 3 other substituted 28-long-chain fatty acid derivatives by substituting the 3-position hydroxyl group; synthesizing the 28-peptide chain derivative by condensation with various amino acids, and then substituting 3 The hydroxyl group at the position obtains 3 other substituted 28-peptide chain derivatives.
5、 权利要求 1所述的三萜类 PTP1 B抑制剂或其生理可接受的盐作为胰岛素增敏剂的 用途。 The use of the triterpenoid PTP1 B inhibitor according to claim 1 or a physiologically acceptable salt thereof as an insulin sensitizer.
6、权利要求 1所述的三萜类 PTP1 B抑制剂或其生理可接受的盐具有抑制 PTP1B活性, 作为治疗由胰岛素抵抗引起的糖尿病、 肥胖症及其并发症的药物中的用途。 The triterpenoid PTP1 B inhibitor according to Claim 1 or a physiologically acceptable salt thereof, which has activity of inhibiting PTP1B activity as a medicament for treating diabetes, obesity and complications thereof caused by insulin resistance.
PCT/CN2005/000172 2004-12-27 2005-02-06 Triterpenes type protein tyrosine phosphatase 1b inhibitors and the preparation method and the use WO2006069499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2004/001525 2004-12-27
PCT/CN2004/001525 WO2006069466A1 (en) 2004-12-27 2004-12-27 Series of triterpenoid ptp1b inhibitors and their preparing method and use

Publications (1)

Publication Number Publication Date
WO2006069499A1 true WO2006069499A1 (en) 2006-07-06

Family

ID=36614441

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2004/001525 WO2006069466A1 (en) 2004-12-27 2004-12-27 Series of triterpenoid ptp1b inhibitors and their preparing method and use
PCT/CN2005/000172 WO2006069499A1 (en) 2004-12-27 2005-02-06 Triterpenes type protein tyrosine phosphatase 1b inhibitors and the preparation method and the use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/001525 WO2006069466A1 (en) 2004-12-27 2004-12-27 Series of triterpenoid ptp1b inhibitors and their preparing method and use

Country Status (1)

Country Link
WO (2) WO2006069466A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928321A (en) * 2010-03-02 2010-12-29 福州大学 Acidic amino acid chemically-modified ursolic acid derivatives with anti-cancer activities
CN109232708A (en) * 2018-10-24 2019-01-18 江西农业大学 Water-soluble hawthorn acid derivative and its preparation method and application

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509079B (en) * 2013-10-22 2015-05-20 中国人民解放军第三军医大学 Ursolic acid derivative and preparation method thereof
CN104098645B (en) * 2014-07-14 2016-09-14 南京林业大学 One class ursolic acid indole derivatives, preparation method and its usage
CN112047993A (en) * 2020-07-02 2020-12-08 济南大学 Alpha-glucosidase inhibitor and application thereof
CN115677815A (en) * 2022-10-28 2023-02-03 江西中医药大学 PROTAC compound for targeted degradation of PTP1B and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240573A (en) * 2000-03-01 2001-09-04 Meiji Seika Kaisha Ltd Triterpene derivative and liver disease medical treatment agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163315A (en) * 1981-04-01 1982-10-07 Nitsukan Kourai Ninjin Kk Preventing agent and remedy for thrombosis
JPH01207262A (en) * 1988-02-10 1989-08-21 Sawai Seiyaku Kk Novel pentacyclic triterpenic compound
CN1164609C (en) * 2002-10-24 2004-09-01 青岛海洋大学 Olive acid lactose conjugated material and its preparation method and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240573A (en) * 2000-03-01 2001-09-04 Meiji Seika Kaisha Ltd Triterpene derivative and liver disease medical treatment agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA C.-M. ET AL.: "Chemical modification of oleanene type triterpenes and their inhibitory activity against HIV-1 protease dimerization", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 48, no. 11, 2000, pages 1681 - 1688, XP001208133 *
QU F. ET AL.: "Synthesis of Oleanolic Acid Glycoconjugates", CHINESE JOURNAL OF ORGANIC CHEMISTRY, vol. 23, no. 3, 2003, pages 249 - 257 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928321A (en) * 2010-03-02 2010-12-29 福州大学 Acidic amino acid chemically-modified ursolic acid derivatives with anti-cancer activities
CN109232708A (en) * 2018-10-24 2019-01-18 江西农业大学 Water-soluble hawthorn acid derivative and its preparation method and application

Also Published As

Publication number Publication date
WO2006069466A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP7038745B2 (en) Methods for Synthesizing Thyroid Hormone Analogs and Their Polymorphs
CN107207513B (en) Fused bicyclic compounds for the treatment of diseases
ES2427166T3 (en) Novel tricyclic heterocyclic compound
JP5398743B2 (en) Lipoprotein lipase activating composition containing benzene derivative
US20070123508A1 (en) PAR2-modulating compounds and their use
KR20200015528A (en) Compound for the treatment of systemic insulin resistant disease and use thereof
JP5302901B2 (en) Protein tyrosine phosphatase 1B inhibitor and preparation method and use thereof
BR112012007828B1 (en) xanthine oxidase inhibitor compounds, process for preparing the compounds, and pharmaceutical composition for xanthine oxidase inhibition
JP2009526035A (en) Treatment of Duchenne muscular dystrophy
US20070244108A1 (en) Phenylsulfonamide Derivatives for Use as 11-Beta-Hydroxysteroid Dehydrogenase Inhibitors
IL193279A (en) Piperidinoylpyrrolidines, pharmaceutical compositions comprising them and use thereof in the preparation of medicaments
WO2006069499A1 (en) Triterpenes type protein tyrosine phosphatase 1b inhibitors and the preparation method and the use
MX2007015617A (en) Sulfonamide compounds and uses thereof.
EP2382215B1 (en) Derivatives of 2-pyridin-2-yl-pyrazol-3(2h)-one, preparation and therapeutic use thereof
WO2018121610A1 (en) Hedgehog pathway inhibitor for smoothened mutant strain
EP1301516B1 (en) Modulators of protein tyrosine phosphatases (ptpases)
WO2012157746A1 (en) Therapeutic drug for autoimmune disease
US8563742B2 (en) Substituted aminothiazole derivatives, pharmaceutical compositions, and methods of use
EP2382205B1 (en) Derivatives of 2-pyridin-2-yl-pyrazol-3(2h)-one, preparation and therapeutic use thereof as hif activators
US6255298B1 (en) Macrophage scavenger receptor antagonists for use in the treatment of cardiovascular diseases
JPH11515027A (en) Combination therapy for the treatment of diabetes and obesity
TW202225160A (en) Preparation methods and application of fxr agonists with a novel pyrazine structure
US20020151561A1 (en) Modulators of Protein Tyrosine Phosphatases (PTPases)
US5302608A (en) Age formation inhibitors
WO2000044721A1 (en) 3,7-disubstituted indole derivatives and medicinal compositions containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05706610

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5706610

Country of ref document: EP