WO2006069487A1 - Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante - Google Patents

Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante Download PDF

Info

Publication number
WO2006069487A1
WO2006069487A1 PCT/CN2004/001579 CN2004001579W WO2006069487A1 WO 2006069487 A1 WO2006069487 A1 WO 2006069487A1 CN 2004001579 W CN2004001579 W CN 2004001579W WO 2006069487 A1 WO2006069487 A1 WO 2006069487A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user terminal
step size
power control
transmit power
Prior art date
Application number
PCT/CN2004/001579
Other languages
English (en)
French (fr)
Inventor
Jia Qiao
Original Assignee
Utstarcom Telecom Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utstarcom Telecom Co., Ltd. filed Critical Utstarcom Telecom Co., Ltd.
Priority to PCT/CN2004/001579 priority Critical patent/WO2006069487A1/zh
Publication of WO2006069487A1 publication Critical patent/WO2006069487A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present invention relates to a wireless communication system, and more particularly to a TD-SCDMA wireless communication system with improved downlink power control.
  • the CDMA (Code Division Multiple Access) system is a self-interference system. To reduce interference, both the base station and the user transmit signals at a lower power level as much as possible while ensuring acceptable quality of service. Therefore, power control is one of the key technologies in CDMA systems.
  • the attenuation factor for signal transmission between the base station and the user includes three factors: transmission distance, shadow effect, and multipath fading. The change in transmission distance and shadow effect is slow and easy to compensate. The rate of change of multipath fading depends on the user's moving speed and carrier frequency. Tracking and compensating for multipath fading is relatively difficult, especially for high speed mobile users.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the open loop power control will issue an erroneous command that will cause the base station to adjust to the opposite "up" or "down” direction for the user.
  • the transmit power when the transmit power is adjusted in a large amount in the wrong direction, will seriously affect the performance of the system.
  • the uplink of the TD-SCDMA system of the LCR (low chip rate) option of the third generation mobile communication system TDD CDMA adopts the combination of open loop power control and closed loop power control. Control Method.
  • the downlink of the TD-SCDMA system has no beacon channel like PCCPCH (main common control physical channel) as the power reference, and only closed-loop power control can be used.
  • the loss of TDD mode can take advantage of open-loop power control.
  • the frame structure of the TD-SCDMA system determines the frequency of downlink power control is 200 times/second. Compared with the power control frequency of FDD mode of 1500 times/second, it is more difficult to track and compensate multipath fading.
  • the user terminal is called a UE
  • the base station is called a NodeB
  • the base station controller is called an RNC.
  • dynamically adjusting the power control step size can also cause the NodeB's transmit power to converge to the required level as quickly as possible.
  • the downlink power control step size of the existing TD-SCDMA system can be set to 1 dB, 2 dB, and 3 dB, and the downlink power control step is notified by the RNC to the NodeB through the Iub interface.
  • the RNC has no information on the real-time status of the radio channel between the NodeB and the UE.
  • the RNC determines that the feedback loop of the downlink power control step is slow and cannot be reached. The purpose of making the transmit power of the NodeB converge to the required level as soon as possible.
  • the inherent characteristics of the existing TD-SCDMA downlink power control determine that the base station must use additional transmit power to combat multipath fading, resulting in a reduction in system capacity.
  • the technical problem to be solved by the present invention is to provide a TD-SCDMA wireless communication system with improved downlink power control, which can enable the base station to quickly adjust the transmission power to the required power level without occupying the existing data information transmission bandwidth. And is compatible with the existing TD-SCDMA downlink power control mode.
  • the technical solution of the present invention is: UE measures the received
  • the signal-to-interference ratio of the downlink signal transmitted by the NodeB is compared with the target SIR, or the UE measures the received signal strength of the downlink signal transmitted by the NodeB to be compared with the target received signal strength.
  • the target S IR or target received signal strength is typically generated by the outer loop power control module.
  • a command for requesting the "up” or “down” power of the NodeB is generated, and is transmitted to the NodeB through the transmit power control bit TPC in the uplink subframe in a manner compatible with the downlink power control of the existing TD-SCDMA system;
  • the difference between the measured SIR and the target SIR, or the difference between the measured received signal strength and the target received signal strength is quantized into a downlink power control step size, and transmitted to the NodeB through the SS reserved bits in the uplink subframe.
  • the NodeB adjusts the transmit power according to the detected "up” or "down” command transmitted by the UE and the downlink power control step size.
  • the coding scheme of the SS reserved bits may be, but not limited to, the following two coding schemes:
  • the coding scheme of the SS reserved bit may be: In the case of QPSK modulation, the UE does not transmit, indicating that the NodeB is required to adjust the transmit power for the UE in the preferred step size; the UE transmission "11" indicates that the NodeB is required to adjust in the secondary step size. The transmit power of the UE; the UE transmitting "00" indicates that the NodeB is required to adjust the transmit power for the UE in the third step. Of course, the UE does not transmit, the transmission "11", and the definition of the transmission "00" are interchangeable, and are not limited to the use of "no transmission", "11", and "00".
  • UE No transmission indicating that the NodeB is required to adjust the transmit power for the UE in the preferred step size
  • the UE transmission "111" indicates that the NodeB is required to adjust the transmit power for the UE in the second selection step
  • the UE transmission "001" indicates that the NodeB is required to be the third
  • the step size adjusts the transmit power for the UE.
  • the UE does not transmit, the transmission "111", and the definition of the transmission "001" are also interchangeable, and are not limited to the use of "no transmission", "111", and "001".
  • the coding scheme of the SS reserved bit may also be:
  • the UE transmitting "11” indicates that the Node is required to adjust the transmit power for the UE in the preferred step size; the UE transmitting "00" indicates that the NodeB is required to take the second step. Adjust the transmit power for the UE.
  • the definition of the transmission "11” and the transmission “00” are also interchangeable and are not limited to the use of "11” and "00”.
  • the UE transmission "111” indicates that the NodeB is required to adjust the transmission power for the UE in the preferred step size; the UE transmission "001” indicates that the NodeB is required to adjust the transmission power for the UE in the second selection step.
  • the definitions of the transmission "111” and the transmission "001” are also interchangeable and are not limited to the use of "111” and "001".
  • the decision method of the downlink power control step size on the NodeB side may be but not limited to the following methods:
  • the NodeB can adjust the transmit power for the UE according to the following principles: When the SS code detected by the NodeB is smaller than a certain threshold, or decoded to "01”, or decoded For "10", the NodeB adjusts the transmit power for the UE in the preferred step size; when the SS code signal detected by the NodeB is decoded to "11", the NodeB adjusts the transmit power for the UE in the second selection step; when the NodeB detects The SS coded signal is decoded to "00", and the base station adjusts the transmit power for the UE in the third step.
  • the base station adjusts the decision principle for the transmit power to be changed accordingly.
  • the NodeB can adjust the transmit power for the UE according to the following principles: When the SS code detected by the NodeB is less than a certain threshold, or is decoded as "000”, "010”, “011”, "100”,
  • the NodeB adjusts the transmit power for the UE in the preferred step size; when the SS code signal detected by the NodeB is decoded as "111", the NodeB adjusts the UE in the second step. Transmit power; when the SS coded signal detected by the NodeB is decoded to "001", the base station adjusts the transmit power for the UE in the third step.
  • the base station adjusts the decision principle for the transmission power to be changed accordingly.
  • the NodeB adjusts the transmit power for the UE according to the following principles: When the SS code detected by the NodeB is smaller than a certain threshold, or decoded to "01”, or decoded as “10”, or decoded to "11", the base station adjusts the transmit power for the UE in the preferred step size; when the SS coded signal detected by the NodeB is decoded as "00", the NodeB adjusts the transmission for the UE in the second step. power.
  • the base station adjusts the decision principle for the transmission power to be changed accordingly.
  • the NodeB adjusts the transmit power for the UE according to the following principles: When the SS code detected by the NodeB is smaller than a certain threshold, or decoded to "01”, or Decoded to one of "000”, “010", “011”, “100”, “101", “110”, “111”, the base station adjusts the transmit power for the UE with the preferred step size; when NodeB The detected SS coded signal is decoded to "001", and the NodeB adjusts the transmit power for the UE in a sub-selection step.
  • the base station adjusts the decision principle for the transmit power to also change accordingly.
  • the preferred step size, the second step size, and the third step size can be fixed values to reduce the signaling overhead between the RNC, the NodeB, and the UE. It can also be configured according to the actual network operation. And modifications to achieve maximum flexibility.
  • the configuration and modification are notified by the RNC to the NodeB through the Iub interface, and the UE is notified through the RRC signaling of the Uu interface.
  • the improved TD-SCDMA system increases the number of bits of power control information, allowing the base station to adjust the transmit power to the desired level at a faster rate. Since the reserved bits are used, the existing data transmission bandwidth is not occupied.
  • the downlink power control improved TD-SCDMA system is completely compatible with the downlink power control mode of the existing TD-SCDMA system. Both the base station and the user terminal can work in the original manner without affecting their functions and performance.
  • a TD-SCDMA wireless communication system with improved downlink power control includes at least a base station, a user terminal, wherein the base station includes a transmitting unit, an inner loop algorithm module, and the user terminal includes: a receiving unit, Means for measuring a signal to interference ratio SIR or a received signal strength of the downlink from the base station; an inner loop algorithm module, configured to compare the SIR measured by the receiving unit with the target SIR, or measure the receiving unit Comparing the received signal strength with the target received signal strength, and generating a power control signal and a downlink power control step according to the comparison result, and finally transmitting the power control signal and the downlink power control step to the base station by using an uplink subframe
  • the inner loop algorithm module the inner loop algorithm module of the base station controls the downlink transmit power of the base station according to the detected power control signal and the downlink power control step size in the subframe that is carried in the uplink.
  • Figure 1 is a diagram showing the composition of a TD-SCDMA wireless communication system.
  • FIG. 2 is a schematic diagram of downlink power control of a conventional TD-SCDMA system.
  • Figure 3 is a diagram showing the structure of a subframe when the TD-SCDMA system transmits SS and TPC.
  • FIG. 4 is a schematic diagram of downlink power control of the TD-SCDMA system of the present invention.
  • Figure 5 is a step size configuration scheme in accordance with one embodiment of the present invention.
  • Figure 6 is a step size configuration scheme in accordance with another embodiment of the present invention.
  • the TD-SCDMA radio communication system is composed of a base station NodeB 110, a user terminal UE 120, and a base station controller RNC 130.
  • the RNC 130 is connected to the core network via an Iu interface.
  • the interface between the NodeB 110 and the UE 120 is referred to as the Uu interface 140, and the interface between the NodeB 110 and the RNC 130 is referred to as the Iub interface 150.
  • the downlink power control of the existing TD-SCDMA system consists of two parts: outer loop power control and inner loop power control.
  • the receiving unit 220 of the UE 120 measures the signal to interference ratio SIR or the received signal strength of the signal of the downlink 240 transmitted by the transmitting unit 210 of the NodeB 110.
  • the inner loop algorithm module 221 compares the SIR measured by the receiving unit 220 with the target SIR. When the measured S IR is greater than the target SIR, the UE 120 requests the NodeB 110 to reduce the transmit power. When the measured S IR is smaller than the target SIR, the UE 120 requests the NodeB 110 to upgrade. Transmit power.
  • the inner loop algorithm module 221 compares the received signal strength measured by the receiving unit 220 with the target received signal strength. When the measured received signal strength is greater than the target received signal strength, the UE 120 requests the NodeB 110 to reduce the transmit power; when the measured received signal strength is less than the target When receiving the signal strength, the UE 120 requires the NodeB 110 to boost the transmit power.
  • the target SIR or target received signal strength is typically generated by outer loop algorithm module 222. The UE 120 requests the NodeB 110 to raise and lower the transmit power information to the NodeB 110 via the TPC bit 350 in the subframe of the uplink 241.
  • the inner loop algorithm module 211 of the NodeB 110 performs the decision of the "up” or “down” command of the downlink power control according to the detected TPC, and the sending of the NodeB 110
  • the firing unit 210 adjusts the downlink transmit power for the chirp 120 according to the result of the "up” or “down” of the decision and the downlink power control step required by the RNC 130.
  • the radio resource management module 230 of the RNC 130 transmits the downlink power control step information to the NodeB 110 through the Iub interface 150; and transmits the downlink target BLER (block error rate) information to the UE 120 through the RRC layer signaling 242 of the Uu interface 140.
  • the outer loop power control of the UE 120 is a configurablerability for the UE.
  • the downlink 240 and the uplink 241 of the Uu interface 140 of the TD-SCDMA shown in FIG. 3 transmit the SS and the TPC when the subframe is transmitted by the data field 310, the intermediate code 320, the TFCI bit 330, the SS bit 340, and the TPC bit 350. And GP 360.
  • SS bit 340 is used for the uplink synchronization function of the TD-SCDMA system.
  • the location is reserved and unused.
  • UE 120 transmits downlink power control commands over TPC bit 350 in the uplink 241 subframe structure.
  • the NodeB 110 boosts or lowers the downlink transmit power to the UE 120 according to the TPC detected from the uplink 241 in accordance with the step size required by the RNC 130.
  • the inner loop algorithm module 221 of the UE 120 can not only indicate that the measured SIR is higher or lower than the target SIR, or the measured received signal strength is higher or lower than the target received signal strength, it can also indicate the difference between the measured SIR and the target SIR. What is the difference between the received signal strength and the target received signal strength, and the two pieces of information are transmitted to the NodeB 110 via the uplink 241, and the NodeB 110 can adjust the transmit power to the required speed more quickly. s level.
  • the downlink power control principle of the TD-SCDMA system of the present invention is shown in FIG.
  • the SS bit 340 is used to transmit the step size of the downlink power control.
  • the receiving unit 220 of the UE 120 measures the signal to interference ratio S IR or the received signal strength of the signal of the downlink 240 transmitted by the transmitting unit 210 of the NodeB 110.
  • the inner loop algorithm module 221 compares the S IR measured by the receiving unit 220 with the target SIR, or the inner loop algorithm module 221 compares the received signal strength measured by the receiving unit 220 with the target received signal strength.
  • the UE 120 When the measured SIR is greater than the target SIR, the UE 120 requires the NodeB 110 to reduce the transmit power; when the measured SIR is less than the target SIR, the UE 120 requires the NodeB 110 to boost the transmit power. Or when the measured received signal strength is greater than the target received signal strength, the UE 120 requires the NodeB 110 to reduce the transmit power; When the measured received signal strength is less than the target received signal strength, the UE 120 requires the NodeB 110 to boost the transmit power. The UE 120 requests the NodeB 110 to raise and lower the transmit power information to the odeB 110 via the TPC 350 in the subframe of the uplink 241.
  • the inner loop algorithm module 211 of the NodeB 110 performs the decision of the "up” and “down” commands of the downlink power control according to the detected TPC, and performs the step determination of the downlink power control according to the detected SS, the NodeB 110 Transmitting unit 210 adjusts the downlink transmit power for the UE 120 in accordance with the commanded "up” or “down” command and step size.
  • SS uses 2-bit encoding.
  • the following illustrates the SS coding scheme:
  • the preferred coding scheme is: UE 120 does not transmit at SS reserved bit 340, indicating that NodeB 110 is required to adjust the transmit power for the UE in the preferred step size; UE 120 transmits "11" at SS reserved bit 340, indicating that NodeB 110 is required to The selection step adjusts the transmit power for the UE 120; the UE 120 transmits "00" at the SS reserved bit 340, indicating that the NodeB 110 is required to adjust the transmit power for the UE 120 in a third step, ie: Table 2
  • the NodeB 110 may adopt, but is not limited to, the following decision mode of the downlink power control step: the SS signal detected by the NodeB 110 is less than a certain threshold, or is decoded as "01”, or decoded as "10", the transmit power for the UE 120 is adjusted in the preferred step size; the SS signal detected by the NodeB 110 is decoded as "11”, and the transmit power for the UE 120 is adjusted in the second selection step; the NodeB 110 detects The SS signal is decoded to "00", and the transmit power for the UE 120 is adjusted in the third step.
  • the SS can also use the deformation of the coding scheme. For example, no transmission indicates the preferred step size, "00" indicates the secondary step size, “11” indicates the third step size; or, no transmission indicates the preferred step size, "01” Indicates the second step, "10” means the third step, and so on.
  • These coding schemes are all within the scope of the present invention.
  • the coding scheme of the second selection is: UE 120 transmits "11" at SS reserved bit 340, indicating that NodeB 110 is required to adjust the transmit power for the UE 120 with the preferred step size; UE 120 transmits "00" at SS reserved bit 340, indicating that the request is The NodeB 110 adjusts the transmit power for the UE 120 in a secondary step size, namely: Table 3
  • the NodeB 110 may adopt, but is not limited to, the following decision mode of the downlink power control step: the SS signal detected by the NodeB 110 is less than a certain threshold, or is decoded as "01”, or decoded as “10”, or decoded to "11", the transmit power for the UE 120 is adjusted in the preferred step size; the SS signal detected by the NodeB 110 is decoded as "00", and the UE 120 is adjusted in the second step. Transmit power.
  • the SS can also use the deformation of the coding scheme. For example, "00" indicates the preferred step size, "11” indicates the second step size; or, "01” indicates the preferred step size, "10” indicates the preferred step size, etc. Wait.
  • the SS coding scheme can even introduce the fourth step, the fifth step, not - enumeration.
  • the mapping of data bits to complex symbols is shown in the following table: Table 4
  • the SS uses 3-bit coding.
  • the following illustrates an encoding scheme for an SS similar to QPSK.
  • a preferred coding scheme is: UE 120 does not transmit at SS reserved bit 340, indicating that NodeB 110 is required to adjust the transmit power for the UE 120 in the preferred step size; UE 120 transmits "111" at SS reserved bit 340, indicating that NodeB 110 is required to The secondary selection step adjusts the transmit power for the UE 120; the UE 120 transmits "001" at the SS reserved bit 340, indicating The NodeB 110 is required to adjust the transmit power for the UE 120 in a third step, namely:
  • the NodeB 110 may adopt, but is not limited to, the following downlink power control step decision mode: the SS signal detected by the NodeB 110 is less than a certain threshold, or decoded as "000”, “010” , “011”, “100”, “101”,
  • One of the "110” adjusts the transmit power for the UE 120 in the preferred step size; the SS signal detected by the NodeB 110 is decoded as “111”, and the transmit power for the UE 120 is adjusted in the second selection step. The SS signal detected by the NodeB 110 is decoded to "001", and the transmission power for the UE 120 is adjusted in the third step.
  • SS can also use the deformation of the coding scheme, for example, not transmitting indicates the preferred step size,
  • the coding scheme of the second selection is: UE 120 transmits "111" at SS reserved bit 340, indicating that NodeB 110 is required to adjust the transmit power for the UE 120 with the preferred step size; UE 120 transmits "001" at SS reserved bit 340, indicating that the request is The NodeB 110 adjusts the transmit power for the UE 120 in a secondary step size, namely: Table 6
  • the NodeB 110 can adopt, but is not limited to, the following downlink power control step size decision mode:
  • the SS signal detected by the NodeB 110 is smaller than a certain gate.
  • the limit value either decoded as "01”, or decoded as "000”, “010", “011”, “100”, “101", “110”, “111”, is the preferred step
  • the transmit power for the UE 120 is adjusted for a long time; the SS signal detected by the NodeB 110 is decoded as "00", and the transmit power for the UE 120 is adjusted in a sub-selection step.
  • SS can also use the variant of the coding scheme, for example, "001" means the preferred step size, "111” means the second choice step size; or, "010” means the preferred step size, "100” means the preferred step size, etc. .
  • These coding schemes are all within the scope of the present invention.
  • the coding scheme of SS can even introduce the fourth step, the fifth step, up to the ninth step, not - enumeration.
  • the preferred step size, the second step size, and the third step length value may be fixed values to reduce the signaling overhead between the RNC 130, the NodeB 110, and the UE 120; or may be allowed according to the actual network. Run configuration and modification for maximum flexibility.
  • Figure 5 is a first step configuration of the present invention.
  • the radio resource management module 230 of the RNC 130 passes the RRC layer signaling of the Uu interface 140.
  • the 242 transmits the preferred step size, the secondary selection step, and the third step, and other step information that may be used to the UE 120.
  • the preferred step size, sub-selection step size, and third step size, as well as other step sizes that may be used, may be, but are not limited to, 1 dB, 2 dB, and 3 dB.
  • the radio resource management module 230 of the RNC 130 transmits the same step information to the NodeB 110 via the Iub interface 150.
  • the method of reconfiguration is the same as the initial configuration, that is, the radio resource management module 230 of the RNC 130 passes the RRC layer signaling 242 of the Uu interface 140 to the preferred step size, the second step size, and the third step size, and possibly The other step information to be transmitted is transmitted to the UE 120.
  • the radio resource management module 230 of the RNC 130 transmits the same step size information to the NodeB 110 through the Iub interface 150.
  • Figure 6 is a second step configuration scheme of the present invention.
  • the RNC 130 is not required to notify the NodeB 110 through the Iub interface 150, and is notified by the RRC layer signaling 242 of the Uu interface 140.
  • UE 120 The following example illustrates the case where the preferred step size, the second step size, and the third step size are fixed values.
  • the step size may be, but is not limited to, the following Table 7
  • the step size may be, but is not limited to, the following values: Table 8

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

TD-SCDMA无线通信系统和改进其中下行功率控制的方法 技术领域
本发明涉及一种无线通信系统, 尤其是一种下行功率控制改进的 TD-SCDMA无线通信系统。
技术背景
CDMA (码分多址) 系统是自干扰系统, 为了减小干扰, 基站和用 户都在保证可接受的服务质量的前提下, 尽可能以较低的功率水平发 射信号。 因此, 功率控制成为 CDMA 系统的关键技术之一。 基站与用 户之间信号传输的衰减因子包括三个因素: 传输距离, 阴影效应, 和 多径衰落。 传输距离和阴影效应的变化慢, 容易补偿。 多径衰落的变 化速率取决于用户移动速度和载波频率。 跟踪和补偿多径衰落是相对 困难的, 特别是针对高速移动的用户。
在 FDD (频分双工) 和 TDD (时分双工)模式中, 上下行链路的 阴影效应都是高度相关的。 在 FDD模式中, 上下行链路是不同频的, 所以多径衰落是不相关的。 在 TDD模式中, 上下行链路是同频的, 所 以多径衰落是高度相关的, 这一特性使得 TDD CDMA 系统可以使用开 环功率控制, FDD CDMA系统只能使用闭环功率控制。
当用户移动速度快到信道衰落周期远小于功率控制周期时, 开环 功率控制会发出错误的指令, 这种错误的指令会使基站向相反的 "升" 或 "降" 的方向调整针对该用户的发射功率, 当发射功率按照错误的 方向调整幅度很大时, 将严重影响系统的性能。 为克服上述开环功率 控制的缺点, 第三代移动通信系统 TDD CDMA的 LCR (低码片速率)选 项的 TD-SCDMA 系统的上行链路采用了开环功率控制与闭环功率控制 相结合的功率控制方法。
TD-SCDMA 系统的下行链路由于没有类似 PCCPCH (主公共控制物 理信道) 的信标信道做为功率参考, 只能采用闭环功率控制, 失去了 TDD模式可以采用开环功率控制的优势。 同时 TD-SCDMA系统的帧结构 决定了下行功率控制的频度是 200次 /秒, 与 FDD模式 1500次 /秒的 功率控制频度相比, 跟踪与补偿多径衰落更为困难。
在第三代移动通信系统中用户终端称为 UE, 基站称为 NodeB, 基 站控制器称为 RNC。 在 TD- SCDMA下行功率控制的频度已经固定的现状 下, 才艮据 NodeB 和 UE 之间的无线信道的实时状态, 动态调整功率控 制的步长也可以使 NodeB 的发射功率尽快地收敛到所需的水平。 现有 的 TD-SCDMA系统的下行功率控制步长可以设置为 1 dB, 2 dB, 和 3 dB, 下行功率控制步长由 RNC通过 Iub接口通知 NodeB。 由 RNC决定下行 功率控制步长有两个问题: 第一, RNC无 NodeB和 UE之间的无线信道 的实时状态的信息; 第二, RNC决定下行功率控制步长的反馈环路慢, 无法达到使 NodeB的发射功率尽快收敛到所需水平的目的。
现有的 TD-SCDMA 的下行功率控制的固有特性决定了基站必须用 额外的发射功率对抗多径衰落, 从而导致系统容量的降低。
发明内容
本发明要解决的技术问题是提供一种下行功率控制改进的 TD- SCDMA 无线通信系统, 可以使基站更快的调整发射功率达到所需的功 率水平, 同时又不占用现有的数据信息传输带宽, 并且又兼容现有的 TD-SCDMA下行功率控制方式。
为解决上述技术问题, 本发明的技术方案为: UE 测量接收到的
NodeB发射的下行链路信号的信干比 SIR或者接收信号强度与目标 SIR 比较, 或者 UE 测量接收到的 NodeB发射的下行链路信号的接收信号 强度与目标接收信号强度比较。 目标 S IR或者目标接收信号强度通常 由外环功率控制模块生成。 根据比较的结果产生要求 NodeB "升" 或 "降" 功率的命令, 采用与现有 TD-SCDMA 系统下行功率控制兼容的 方式, 通过上行子帧中的发射功率控制位 TPC传送给 NodeB; 同时 UE 将测量 S IR与目标 SIR之间的差值, 或者测量的接收信号强度与目标 接收信号强度之间的差值量化为下行功率控制步长, 通过上行子帧中 的 SS保留位传送给 NodeB。 NodeB才艮据检测到的 UE传送来的 "升" 或 "降" 的命令以及下行功率控制步长, 调整发射功率。
SS保留位的编码方案可以是但不限于以下两种编码方案:
SS保留位的编码方案可以是: 在 QPSK调制的情况下, UE不传输, 表示要求 NodeB以首选步长调整针对该 UE的发射功率; UE传输 " 11 " 表示要求 NodeB以次选步长调整针对该 UE的发射功率; UE传输 " 00" 表示要求 NodeB 以第三步长调整针对该 UE的发射功率。 当然, UE不 传输, 传输 " 11 " , 和传输 " 00" 的定义也可以互换, 并且不限于使 用 "不传输", " 11" , 和 " 00"来表示。 在 8-PSK 调制的情况下, UE 不传输, 表示要求 NodeB 以首选步长调整针对该 UE 的发射功率; UE 传输 "111"表示要求 NodeB以次选步长调整针对该 UE的发射功率; UE 传输 "001" 表示要求 NodeB 以第三步长调整针对该 UE的发射功率。 当然, UE不传输, 传输 "111" , 和传输 "001" 的定义也可以互换, 并 且不限于使用 "不传输", "111", 和 "001"来表示。
SS保留位的编码方案也可以是: 在 QPSK调制的情况下, UE传输 "11" 表示要求 Node以首选步长调整针对该 UE的发射功率; UE传输 "00" 表示要求 NodeB 以次选步长调整针对该 UE的发射功率。 当然, 传输 "11" , 和传输 "00" 的定义也可以互换, 并且不限于使用 "11" 和 "00"来表示。在 8-PSK调制的情况下, UE传输" 111"表示要求 NodeB 以首选步长调整针对该 UE的发射功率; UE传输 "001"表示要求 NodeB 以次选步长调整针对该 UE 的发射功率。 当然, 传输 "111" , 和传输 "001" 的定义也可以互换, 并且不限于使用 "111"和 "001"来表示。
对应于上述两种编码方案, NodeB 侧的下行功率控制步长的判决 方法可以是但不限于以下方法:
在第一种编码方案并且是 QPSK调制的情况下, NodeB可以根据如 下原则调整针对该 UE的发射功率: 当 NodeB检测到的 SS编码信号小 于某门限值, 或者解码为 "01" , 或者解码为 "10" , NodeB 以首选 步长调整针对该 UE的发射功率; 当 NodeB检测到的 SS编码信号解码 为 "11" , NodeB以次选步长调整针对该 UE的发射功率; 当 NodeB检 测到的 SS编码信号解码为 "00" , 基站以第三步长调整针对该 UE的 发射功率。 当然, 如果 UE侧 SS编码的定义互换或者改变, 基站调整 对发射功率的判决原则也要相应改变。
在第一种编码方案并且是 8- PSK 调制的情况下, NodeB 可以根据 如下原则调整针对该 UE的发射功率: 当 NodeB检测到的 SS编码信号 小于某门限值, 或者解码为 "000" , "010" , "011" , "100" ,
"101" , "110" 之中的一种, NodeB 以首选步长调整针对该 UE的发 射功率; 当 NodeB检测到的 SS编码信号解码为 "111" , NodeB 以次 选步长调整针对该 UE的发射功率; 当 NodeB检测到的 SS编码信号解 码为 "001" , 基站以第三步长调整针对该 UE 的发射功率。 当然, 如 果 UE侧 SS编码的定义互换或者改变, 基站调整对发射功率的判决原 则也要相应改变。 在第二种编码方案并且是 QPSK调制的情况下, NodeB根据如下原 则调整针对该 UE的发射功率: 当 NodeB检测到的 SS编码信号小于某 门限值, 或者解码为 "01" , 或者解码为 "10" , 或者解码为 "11" , 基站以首选步长调整针对该 UE的发射功率; 当 NodeB检测到的 SS编 码信号解码为 "00" , NodeB以次选步长调整针对该 UE的发射功率。 当然, 如果 UE侧 SS编码的定义互换或者改变, 基站调整对发射功率 的判决原则也要相应改变。
在第二种编码方案并且是 8-PSK 调制的情况下, NodeB根据如下 原则调整针对该 UE的发射功率: 当 NodeB检测到的 SS编码信号小于 某门限值, 或者解码为 "01" , 或者解码为 "000" , "010" , "011" , "100" , "101" , "110" , "111" 之中的一种, 基站以首选步长 调整针对该 UE 的发射功率; 当 NodeB检测到的 SS 编码信号解码为 "001" , NodeB以次选步长调整针对该 UE的发射功率。 当然, 如果 UE 侧 SS 编码的定义互换或者改变, 基站调整对发射功率的判决原则也 要相应改变。
首选步长, 次选步长, 和第三步长等步长取值可以采用固定值, 以减小 RNC, NodeB, 和 UE 之间的信令开销; 也可以允许根据实际的 网络运行情况配置和修改, 达到最大灵活性。
如果首选步长, 次选步长, 和第三步长等步长取值允许配置和修 改,其配置和修改由 RNC通过 Iub接口通知 NodeB,通过 Uu接口的 RRC 信令通知 UE。
下行功率控制经过改进的 TD-SCDMA 系统, 增加了功率控制信息 位数, 使基站可以以更快的速度将发射功率调整到所需的水平。 由于 使用的是保留位, 没有占用已有的数据传输带宽。 下行功率控制改进 的 TD-SCDMA 系统与已有的 TD-SCDMA 系统的下行功率控制方式完全兼 容, 基站和用户终端都可以在不影响其功能和性能的前提下, 以原有 的方式工作。
根据本发明, 具有改进的下行功率控制的 TD-SCDMA 无线通信系 统, 所述系统至少包括基站, 用户终端, 其中所述基站包括发射单元, 内环算法模块; 所述用户终端包括: 接收单元, 用于测量来自所述基 站的下行链路的信号干扰比 SIR或者接收信号强度; 内环算法模块, 用于将接收单元测量的 SIR与目标 SIR比较, 或者将接收单元测量的 接收信号强度与目标接收信号强度比较, 并根据比较结果产生功率控 制信号和下行功率控制步长, 最后通过上行链路的子帧将所述功率控 制信号和下行功率控制步传送给所述基站的内环算法模块; 所述基站 的内环算法模块, 根据检测到的携带在上行链路的子帧中的述功率控 制信号和下行功率控制步长, 控制所述基站的下行发射功率。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图 1是 TD-SCDMA无线通信系统组成图。
图 2是现有的 TD-SCDMA系统下行功率控制原理图。
图 3是 TD- SCDMA系统发送 SS和 TPC时的子帧结构图。
图 4是本发明的 TD-SCDMA系统下行功率控制原理图。
图 5是根据本发明一个实施例的步长配置方案。
图 6是根据本发明另一个实施例的步长配置方案。
具体实施方式
图 1所示, TD-SCDMA无线通信系统由基站 NodeB 110, 用户终端 UE 120, 和基站控制器 RNC 130组成。 RNC 130通过 Iu接口与核心网 相连。 NodeB 110和 UE 120之间的接口称为 Uu接口 140, NodeB 110 和 RNC 130之间的接口称为 Iub接口 150。
图 2 所示, 现有的 TD-SCDMA 系统下行功率控制由外环功率控制 和内环功率控制两部分组成。 UE 120的接收单元 220测量 NodeB 110 的发射单元 210发射的下行链路 240的信号的信干比 SIR或者接收信 号强度。 内环算法模块 221将接收单元 220测量的 SIR与目标 SIR比 较, 当测量 S IR大于目标 SIR时, UE 120要求 NodeB 110降低发射功 率; 当测量 S IR小于目标 SIR时, UE 120要求 NodeB 110提升发射功 率。 或者内环算法模块 221将接收单元 220测量的接收信号强度与目 标接收信号强度比较, 当测量接收信号强度大于目标接收信号强度 时, UE 120要求 NodeB 110降低发射功率; 当测量接收信号强度小于 目标接收信号强度时, UE 120要求 NodeB 110提升发射功率。 目标 SIR 或者目标接收信号强度通常由外环算法模块 222 产生。 UE 120要求 NodeB 110升降发射功率的信息通过上行链路 241 的子帧中的 TPC位 350传输给 NodeB 110。 NodeB 110的内环算法模块 211根据检测到的 TPC , 做下行功率控制的 "升" 或 "降" 命令的判决, NodeB 110 的发 射单元 210按照判决的 "升" 或 "降" 的结果和 RNC 130要求的下行 功率控制步长调整针对该 ϋΕ 120的下行发射功率。 RNC 130的无线资 源管理模块 230 将下行功率控制步长信息通过 Iub接口 150传送给 NodeB 110; 将下行的目标 BLER (误块率)信息通过 Uu接口 140的 RRC 层信令 242传送给 UE120, 用于 UE 120的外环功率控制。
图 3所示 TD- SCDMA的 Uu接口 140的下行链路 240和上行链路 241 发送 SS和 TPC时的子帧由数据域 310, 中间码 320, TFCI位 330, SS 位 340, TPC位 350, 和 GP 360组成。 在 TD-SCDMA的下行链路 240子 帧结构中, SS位 340用于 TD-SCDMA 系统的上行同步功能。 在上行链 路 241的子帧结构中, 该位置予以保留, 未用。 UE 120通过上行链路 241子帧结构中的 TPC位 350来传输下行功率控制命令。 在 QPSK调制 的情况下, TPC = " 11" 表示增加发射功率, TPC = " 00" 表示减少 发射功率。 在 8-PSK 调制的情况下, TPC = " 111" 表示增加发射功 率, TPC = "001" 表示减少发射功率。 NodeB 110根据从上行链路 241 中检测的 TPC , 按照 RNC 130所要求的步长, 提升或者降低对该 UE 120 的下行发射功率。
如果 UE 120的内环算法模块 221不仅能指示测量 SIR比目标 SIR 高或者低, 或者测量接收信号强度比目标接收信号强度高或者低, 还 能指示出测量 S IR与目标 SIR之间的差值是多少, 或者测量接收信号 强度与目标接收信号强度之间的差值是多少, 将这两项信息通过上行 链路 241传送给 NodeB 110, NodeB 110就可以更快速的将发射功率调 整到所需的水平。
本发明 TD-SCDMA 系统下行功率控制原理如图 4 所示。 在上行链 路 241发送 SS和 TPC时的子帧中 TPC位 350保持现有的使用方式的 基础上, SS 位 340 用于传输下行功率控制的步长。 UE 120 的接收单 元 220测量 NodeB 110的发射单元 210发射的下行链路 240的信号的 信干比 S IR或者接收信号强度。 内环算法模块 221将接收单元 220测 量的 S IR与目标 SIR比较, 或者内环算法模块 221将接收单元 220测 量的接收信号强度与目标接收信号强度比较。当测量 SIR大于目标 SIR 时, UE 120要求 NodeB 110降低发射功率; 当测量 SIR小于目标 SIR 时, UE 120要求 NodeB 110提升发射功率。 或者当测量接收信号强度 大于目标接收信号强度时, UE 120要求 NodeB 110降低发射功率; 当 测量接收信号强度小于目标接收信号强度时, UE 120要求 NodeB 110 提升发射功率。 UE 120要求 NodeB 110升降发射功率的信息通过上行 链路 241 的子帧中的 TPC 350传输给 odeB 110。 同时测量 SIR与目 标 S IR之间的差值, 或者测量接收信号强度与目标接收信号强度之间 的差值量化为下行功率控制步长, 通过上行链路 241 的子帧中的 SS 保留位 340传输给 NodeB 110。 NodeB 110的内环算法模块 211才艮据检 测到的 TPC, 做下行功率控制的 "升" 和 "降" 命令的判决, 根据检 测到的 SS , 做下行功率控制的步长判决, NodeB 110 的发射单元 210 按照判决的 "升" 或 "降" 的命令和步长调整针对该 UE 120的下行发 射功率。
TD-SCDMA 系统在 QPSK 调制的情况下, 数据比特到复数符号的映 射关系如表 1所示: 表 1
Figure imgf000009_0001
在 QPSK调制的情况下, SS采用 2 比特编码。 为了尽可能传输更 多的信息, 同时又保证对无线信道的容错性, 误差距离的最大化, 和 系统的稳定性, 下面举例说明 SS的编码方案:
优选的编码方案为: UE 120在 SS保留位 340不发射, 表示要求 NodeB 110 以首选步长调整针对该 UE的发射功率; UE 120在 SS保留 位 340传输 "11" , 表示要求 NodeB 110以次选步长调整针对该 UE 120 的发射功率; UE 120在 SS保留位 340传输 " 00" , 表示要求 NodeB 110 以第三步长调整针对该 UE 120的发射功率, 即: 表 2
Figure imgf000010_0001
在这种编码方案的情况下, NodeB 110 可以采用但不限于如下的 下行功率控制步长的判决方式: NodeB 110检测到的 SS信号小于某门 限值, 或者解码为 " 01 " , 或者解码为 " 10" , 则以首选步长调整针 对该 UE 120的发射功率; NodeB 110检测到的 SS信号解码为 "11" , 则以次选步长调整针对该 UE 120的发射功率; NodeB 110检测到的 SS 信号解码为 " 00" , 则以第三步长调整针对该 UE 120的发射功率。
当然 SS 也可以采用该编码方案的变形, 如, 不发射表示首选步 长, " 00" 表示次选步长, " 11 " 表示第三步长; 或者, 不发射表示 首选步长, " 01" 表示次选步长, " 10" 表示第三步长, 等等。 这些 编码方案均落在本发明的保护范围之内。
次选的编码方案为: UE 120在 SS保留位 340传输 "11" , 表示 要求 NodeB 110 以首选步长调整针对该 UE 120 的发射功率; UE 120 在 SS保留位 340传输 " 00" , 表示要求 NodeB 110以次选步长调整针 对该 UE 120的发射功率, 即: 表 3
Figure imgf000010_0002
在这种编码方案的情况下, NodeB 110 可以采用但不限于如下的 下行功率控制步长的判决方式: NodeB 110检测到的 SS信号小于某门 限值, 或者解码为 " 01 " , 或者解码为 " 10" , 或者解码为 "11 " , 则以首选步长调整针对该 UE 120的发射功率; NodeB 110检测到的 SS 信号解码为 " 00" , 则以次选步长调整针对该 UE 120的发射功率。 当然 SS 也可以采用该编码方案的变形, 如, " 00" 表示首选步 长, "11" 表示次选步长; 或者, " 01" 表示首选步长, "10" 表示 次选步长, 等等。 这些编码方案均落在本发明的保护范围之内。
SS的编码方案甚至还可以引入第四步长, 第五步长, 不——列举。 TD-SCDMA系统在 8-PSK调制的情况下, 数据比特到复数符号的映 射关系如下表所示: 表 4
Figure imgf000011_0001
在 8-PSK调制的情况下, SS采用 3比特编码。下面举例说明与 QPSK 类似的 SS的编码方案。
优选的编码方案为: UE 120在 SS保留位 340不发射, 表示要求 NodeB 110以首选步长调整针对该 UE 120的发射功率; UE 120在 SS 保留位 340传输 "111" , 表示要求 NodeB 110 以次选步长调整针对 该 UE 120的发射功率; UE 120在 SS保留位 340传输 " 001" , 表示 要求 NodeB 110以第三步长调整针对该 UE 120的发射功率, 即:
Figure imgf000012_0001
Figure imgf000012_0002
在这种编码方案的情况下, NodeB 110 可以采用但不限于如下的 下行功率控制步长的判决方式: NodeB 110检测到的 SS信号小于某门 限值, 或者解码为 "000" , "010" , "011" , "100" , "101" ,
"110" 之中的一种, 则以首选步长调整针对该 UE 120 的发射功率; NodeB 110检测到的 SS 信号解码为 "111" , 则以次选步长调整针对 该 UE 120的发射功率; NodeB 110检测到的 SS信号解码为 "001" , 则以第三步长调整针对该 UE 120的发射功率。
SS 也可以采用该编码方案的变形, 如, 不发射表示首选步长,
"001" 表示次选步长, "111" 表示第三步长; 或者, 不发射表示首 选步长, "010" 表示次选步长, "100" 表示第三步长, 等等。 这些 编码方案均落在本发明的保护范围之内。
次选的编码方案为: UE 120在 SS保留位 340传输 "111" , 表示 要求 NodeB 110 以首选步长调整针对该 UE 120 的发射功率; UE 120 在 SS保留位 340传输 "001" , 表示要求 NodeB 110 以次选步长调整 针对该 UE 120的发射功率, 即: 表 6
Figure imgf000012_0003
在这种编码方案的情况下, NodeB 110 可以采用但不限于如下的 下行功率控制步长的判决方式: NodeB 110检测到的 SS信号小于某门 限值, 或者解码为 " 01" , 或者解码为 " 000" , " 010" , " 011" , " 100" , " 101 " , " 110" , " 111 " 之中的一种, 则以首选步长调 整针对该 UE 120的发射功率; NodeB 110检测到的 SS信号解码为 " 00", 则以次选步长调整针对该 UE 120的发射功率。
SS 也可以采用该编码方案的变形, 如, " 001 " 表示首选步长, "111" 表示次选步长; 或者, " 010" 表示首选步长, " 100" 表示次 选步长, 等等。 这些编码方案均落在本发明的保护范围之内。
SS 的编码方案甚至还可以引入第四步长, 第五步长, 直至第九步 长, 不——列举。
首选步长, 次选步长, 和第三步长等步长取值可以采用固定值, 以减小 RNC 130, NodeB 110, 和 UE 120 之间的信令开销; 也可以允 许根据实际的网络运行情况配置和修改, 达到最大灵活性。
图 5是本发明的步长配置方案一。 在 RNC 130与 UE 120 的通信 链路建立的初始阶段, RNC 130为 UE 120分配新的下行 CCTrCH (编码 复合传输信道)时, RNC 130的无线资源管理模块 230通过 Uu接口 140 的 RRC层信令 242将首选步长, 次选步长, 和第三步长, 以及可能用 到的其他步长信息传输给 UE 120。 首选步长, 次选步长, 和第三步长, 以及可能用到的其他步长的取值范围可以是但不限于 1 dB, 2 dB, 和 3 dB。 同时, RNC 130 的无线资源管理模块 230 将相同的步长信息通 过 Iub接口 150传输给 NodeB 110。 在通信的过程中, 由于无线环境 的变化或者其他原因, 允许对首选步长, 次选步长, 和第三步长, 以 及可能用到的其他步长重新配置, 以达到性能的优化。 重新配置的方 法与初始配置的方法相同, 即, RNC 130 的无线资源管理模块 230通 过 Uu接口 140的 RRC层信令 242将首选步长, 次选步长, 和第三步 长, 以及可能用到的其他步长信息传输给 UE 120。 同时, RNC 130 的 无线资源管理模块 230将相同的步长信息通过 Iub接口 150传输给 NodeB 110。
图 6 是本发明的步长配置方案二。 在首选步长, 次选步长, 和第 三步长等步长取值采用固定值的情况下, 不需要 RNC 130通过 Iub接 口 150通知 NodeB 110,通过 Uu接口 140的 RRC层信令 242通知 UE 120。 下面举例说明首选步长, 次选步长, 和第三步长等步长取值采用固定 值的情况。 在优选 SS 编码方案的情况下, 步长可以但不限于如下取 表 7
Figure imgf000014_0001
在次选 SS编码方案的情况下, 步长可以但不限于如下取值: 表 8
首选步长 3 dB
次选步长 1 dB

Claims

权 利 要 求
1. 用于改进 TD-SCDMA 无线通信系统中下行功率控制的方法, 所 述通信系统至少包括基站(110), 用户终端(120), 所述方法包括:
所述用户终端(120)测量从基站(110)接收到的下行链路信号的信 号干扰比 SIR或者接收信号强度;
所述用户终端(120)将测量的信号干扰比 SIR 与目标 SIR 比较, 或者将测量的接收信号强度与目标接收信号强度比较;
所述用户终端(120)将测量的信号干扰比 SIR 与目标 SIR 之间的 差值, 或者测量的接收信号强度与目标接收信号强度之间的差值量化 为下行功率控制步长; 控制步长传送给所述基站 (110) ;
所述基站 (110)根据检测到的所述用户终端(120)传送来的功率 控制命令以及下行功率控制步长, 调整发射到所述用户终端 ( 120) 的信号功率。
2. 根据权利要求 1 所述的方法, 其中所述用户终端(120)分别通 过上行子帧中的发射功率控制位 TPC 和 SS 保留位, 将下行功率控制 命令以及下行功率控制步长传送给所述基站 (110) 。
3. 根据权利要求 2 所述的方法, 进一步包括对所述 SS保留位进 行编码, 以对应不同的下行功率控制步长。
4. 根据权利要求 3所述的方法, 其中在 QPSK调制的情况下, 所 述用户终端 (120) 不传输, 表示要求所述基站 (110) 以首选步长调 整针对该用户终端(120)的发射功率; 所述用户终端(120)传输 "11" 表示要求所述基站 (110) 以次选步长调整针对该用户终端 (120) 的 发射功率; 所述用户终端 (120)传输 "00" 表示要求所述基站 (110) 以第三步长调整针对该用户终端 (120) 的发射功率。
5. 根据权利要求 3 所述的方法, 其中在 8- PSK 调制的情况下, 所述用户终端 (120) 不传输, 表示要求所述基站 (110) 以首选步长 调整针对该所述用户终端 (120) 的发射功率; 所述用户终端 (120) 传输 "111" , 表示要求所述基站 (110) 以次选步长调整针对该用户 终端 ( 120) 的发射功率; 所述用户终端 ( 120) 传输 "001" , 表示 要求所述基站以第三步长调整针对该基站 (110) 的发射功率。
6. 根据权利要求 3所述的方法, 其中在 QPSK调制的情况下, 所 述用户终端 (120)传输 "11" , 表示要求所述基站以首选步长调整 针对所述用户终端(120)的发射功率;所述用户终端(120)传输" 00", 表示要求所述基站 (110) 以次选步长调整针对所述用户终端 (120) 的发射功率。
7. 根据权利要求 3 所述的方法, 其中在 8- PSK 调制的情况下, 所述用户终端 (120) 传输 "111" , 表示要求所述基站 (110) 以首 选步长调整针对该所述用户终端 (120) 的发射功率; 所述用户终端
( 120) 传输 "001" , 表示要求所述基站 ( 110) 以次选步长调整针 对所述用户终端 (120) 的发射功率。
8. 根据权利要求 4所述的方法, 其中当所述基站检测到的 SS编 码信号小于某门限值, 或者解码为 "01" , 或者解码为 "10" , 所述 基站以首选步长调整针对该 UE 的发射功率; 当所述基站(110)检测 到的 SS 编码信号解码为 "11" , 以次选步长调整针对所述用户终端
( 120) 的发射功率; 当所述用户终端 (120)检测到的 SS 编码信号 解码为 "00" , 所述基站以第三步长调整针对该所述用户终端 (120) 的发射功率。
9. 根据权利要求 6 所述的方法, 其中当所述基站 (110)检测到 的 SS编码信号小于某门限值, 或者解码为 "01" , 或者解码为 "10" , 或者解码为 "11" , 所述基站以首选步长调整针对所述用户终端(120) 的发射功率; 当所述基站 (110)检测到的 SS编码信号解码为 "00" , 以第三步长调整针对所述用户终端 (120) 的发射功率。
10. 根据权利要求 5所述的方法, 当所述基站( 110)检测到的 SS 编码信号小于某门限值,或者解码为 " 000", "010" , "011" , "100" ,
"101" , "110" 之中的一种时, 以首选步长调整针对所述用户终端 ( 120) 的发射功率; 当所述基站 (110)检测到的 SS 编码信号解码 为 "111" , 以次选步长调整针对所述用户终端 (120) 的发射功率; 当所述基站 (110)检测到的 SS 编码信号解码为 "001" , 以第三步 长调整针对所述用户终端 (120) 的发射功率。
11. 根据权利要求 7所述的方法, 当所述基站( 110)检测到的 SS 编码信号小于某门限值,或者解码为 "01",或者解码为 "000", "010", "Oil" , "100" , "101" , "110" , "111" 之中的一种时, 以首 选步长调整针对该 UE 的发射功率; 当所述基站 (110 )检测到的 SS 编码信号解码为 " 001" , 以次选步长调整针对该用户终端 (120 ) 的 发射功率。
12. 根据权利要求 1 - 11 任意之一所述的方法, 其中所述步长信 息包括首选步长, 次选步长, 和第三步长, 以及更多的步长。
13. 根据权利要求 12 所述的方法, 其中所述首选步长, 次选步 长, 和第三步长分别可以是 1 dB, 2 dB或 3 dB任意之一。
14. 根据权利要求 12 所述的方法, 其中所述首选步长, 次选步 长, 和第三步长, 以及更多的步长取值为固定值。
15. 根据权利要求 12 所述的方法, 其中所述首选步长, 次选步 长, 和第三步长, 以及更多的步长可以根据实际的网络运行情况配置 和修改。
16. 具有改进的下行功率控制的 TD - SCDMA 无线通信系统, 所述 系统至少包括基站 (110 ) , 用户终端(120),
其中所述基站(110 )包括发射单元(210 ), 内环算法模块(211 ) ; 所述用户终端(120)包括:
接收单元 ( 220 ) , 用于测量来自所述基站的下行链路( 240 ) 的 信号干扰比 SIR或者接收信号强度;
内环算法模块(221 ) , 用于将接收单元( 220 )测量的 SIR 与目 标 SIR 比较, 或者将接收单元 ( 220 ) 测量的接收信号强度与目标接 收信号强度比较, 并根据比较结果产生功率控制信号和下行功率控制 步长, 最后通过上行链路(241 ) 的子帧将所述功率控制信号和下行 功率控制步传送给所述基站的内环算法模块(211 ) ;
所述基站的内环算法模块(211 ) , 根据检测到的携带在上行链 路 (241 ) 的子帧中的述功率控制信号和下行功率控制步长, 控制所 述基站的下行发射功率。
17. 根据权利要求 16 所述的系统, 其中所述用户终端(120)将功 率升降的控制信息通过上行链路 241 的子帧中的 TPC传输给所述基站
( 110 ) , 将下行功率控制步长通过上行链路 241 的子帧中的 SS保留 位传输给所述基站 (110 ) 。
18. 根据权利要求 17 所述的系统, 其中所述无线通信系统进一 步包括基站控制器 (130) , 而所述基站控制器进一步包括无线资源 管理模块( 230 ) , 用于通过 Uu接口 140的 RRC层信令 242将步长信 息传输给所述用户终端 (120) , 同时, 将所述步长信息通过 lub 接 口 150传输给所述基站 (110) 。
PCT/CN2004/001579 2004-12-30 2004-12-30 Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante WO2006069487A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/001579 WO2006069487A1 (fr) 2004-12-30 2004-12-30 Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/001579 WO2006069487A1 (fr) 2004-12-30 2004-12-30 Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante

Publications (1)

Publication Number Publication Date
WO2006069487A1 true WO2006069487A1 (fr) 2006-07-06

Family

ID=36614462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/001579 WO2006069487A1 (fr) 2004-12-30 2004-12-30 Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante

Country Status (1)

Country Link
WO (1) WO2006069487A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534515B (zh) * 2008-03-13 2011-03-09 展讯通信(上海)有限公司 Td-scdma终端发射信号信噪比的测量方法和系统
CN101132207B (zh) * 2007-03-09 2011-05-25 中兴通讯股份有限公司 一种td-scdma系统中的下行功率控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406033A (zh) * 2001-08-25 2003-03-26 三星电子株式会社 发送/接收上行发送功率偏移和功率电平的设备和方法
WO2003100992A2 (en) * 2002-05-09 2003-12-04 Nokia Corporation Multiple level power control command signaling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406033A (zh) * 2001-08-25 2003-03-26 三星电子株式会社 发送/接收上行发送功率偏移和功率电平的设备和方法
WO2003100992A2 (en) * 2002-05-09 2003-12-04 Nokia Corporation Multiple level power control command signaling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132207B (zh) * 2007-03-09 2011-05-25 中兴通讯股份有限公司 一种td-scdma系统中的下行功率控制方法
CN101534515B (zh) * 2008-03-13 2011-03-09 展讯通信(上海)有限公司 Td-scdma终端发射信号信噪比的测量方法和系统

Similar Documents

Publication Publication Date Title
JP4435983B2 (ja) ワイヤレス通信システムにおける、レートおよび電力などのリソースの分散型最適リバースリンクスケジューリングのための方法および装置
US8712460B2 (en) Methods of reverse link power control
CN104904279B (zh) 用于d2d通信的发射功率控制方案
US7136666B2 (en) Control of the transmission power of a CDMA based system
EP1207644B1 (en) Method of link adaptation of blind type using acknowledgements in ARQ system
US8284728B2 (en) DPCCH and HS-DPCCH control at low grants for E-DCH
EP2223438B1 (en) Outer loop power control for e-dch
JP2007053780A (ja) パワー制御を用いて、移動無線通信システムの性能を改善する方法
WO2006091172A1 (en) Method and apparatus for using uplink relative path gain related measurements to support uplink resource management
JP2004515109A (ja) 無線通信システムにおけるパワー制御方法および装置
US7379755B2 (en) Mobile communication system, radio base station controller and transmitting and receiving power control method therefor
WO2003088519A1 (fr) Procede de commande de puissance destine a un canal de commande de liaison montante dans un transfert souple, dans un systeme d'acces par paquets en liaison descendante a haut debit
CA2436042A1 (en) Adaptive pilot/traffic channel power control for 3gpp wcdma
MX2007011922A (es) Procedimientos para ajustar a escala un canal e-dch.
WO2006122489A1 (fr) Méthode de contrôle de puissance pour station de base
WO2006122488A1 (fr) Méthode de contrôle de puissance de terminal
JP2005130503A (ja) 移動無線通信システムにおいてダウンリンクシェアドチャネルの電力制御のために電力オフセットを設定する方法
WO2005125040A2 (en) A method of controlling uplink power level
CN101640556A (zh) 一种功率控制的方法和装置
KR20030059283A (ko) 통신 시스템에서 공유 채널 데이터율의 할당
US20050232177A1 (en) Method for transmission power control of a multicast signal
JP2005537741A5 (zh)
WO2006069487A1 (fr) Systeme de communication sans fil td-scdma et procede d'amelioration de la commande de puissance en liaison descendante
EP1928105B1 (en) A method for power control in a mobile communication system
AU2008200143A1 (en) Transmissions in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04802591

Country of ref document: EP

Kind code of ref document: A1