WO2006068170A9 - Method for improvement of heat stability of glucose dehydrogenase - Google Patents

Method for improvement of heat stability of glucose dehydrogenase

Info

Publication number
WO2006068170A9
WO2006068170A9 PCT/JP2005/023468 JP2005023468W WO2006068170A9 WO 2006068170 A9 WO2006068170 A9 WO 2006068170A9 JP 2005023468 W JP2005023468 W JP 2005023468W WO 2006068170 A9 WO2006068170 A9 WO 2006068170A9
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
gdh
glucose
activity
pqqgdh
Prior art date
Application number
PCT/JP2005/023468
Other languages
French (fr)
Japanese (ja)
Other versions
WO2006068170A1 (en
Inventor
Tadanobu Matsumura
Masao Kitabayashi
Original Assignee
Toyo Boseki
Tadanobu Matsumura
Masao Kitabayashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004371277A external-priority patent/JP4591074B2/en
Priority claimed from JP2005327281A external-priority patent/JP2007129966A/en
Application filed by Toyo Boseki, Tadanobu Matsumura, Masao Kitabayashi filed Critical Toyo Boseki
Publication of WO2006068170A1 publication Critical patent/WO2006068170A1/en
Publication of WO2006068170A9 publication Critical patent/WO2006068170A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Definitions

  • the present invention relates to a method for improving the stability of a composition comprising a soluble coenzyme-bound type of gnolecose dehydrogenase (hereinafter referred to as GDH).
  • GDH soluble coenzyme-bound type of gnolecose dehydrogenase
  • the present invention relates to a glucose measurement method using GDH with improved stability and a genolecose sensor.
  • the present invention also relates to a method for improving the holoformation rate or stability in a dry state of a composition containing soluble coenzyme-linked gnolecose dehydrogenase (hereinafter, dalcose dehydrogenase is also referred to as GDH).
  • GDH soluble coenzyme-linked gnolecose dehydrogenase
  • the present invention relates to a glucose measuring method using a GDH with improved holo-formation rate or stability, and a genolecose sensor.
  • the PQQGDH of the present invention is useful for the determination of glucose in clinical examinations and food analysis.
  • Blood glucose self-measurement is important for diabetics to grasp their normal blood glucose level and use it for treatment.
  • an enzyme using gnolecose as a substrate is used for sensors used for blood glucose self-measurement.
  • An example of such an enzyme is gnorecoxidase (EC 1. 1. 3. 4).
  • Glucose oxidase has been used for a long time as an enzyme for blood glucose sensors because of its high specificity to glucose and excellent heat stability, and its first announcement was made about 40 years ago. Go back.
  • measurement is performed by passing electrons generated in the process of oxidizing glucose and converting it to D dalcono ⁇ rataton to the electrode through a mediator.
  • dissolved oxygen affects the measured value because the protons generated in the above are easily passed to oxygen.
  • P QQ is also described.
  • Dependent glucose dehydrogenase (EC1. 1. 5. 2 (BEC1. 1. 99. 17)) is used as an enzyme for blood glucose sensors. These are superior in that they are not affected by dissolved oxygen, but the former NAD (P) -dependent glucose dehydrogenase has poor stability and requires the addition of a coenzyme.
  • PQQ-dependent glucose dehydrogenase PQQ-dependent glucose dehydrogenase is
  • QQGDH has the disadvantage that it affects the accuracy of measured values because it also acts on sugars other than glucose, such as maltose and ratatoose, which have poor substrate specificity.
  • Patent Document 1 discloses a flavin-binding glucose dehydrogenase derived from the genus Aspergillus. This enzyme is superior in that it has excellent substrate specificity and is not affected by dissolved oxygen. With regard to thermal stability, the activity remaining rate is about 89% after 15 minutes of treatment at 50 ° C, and it is said that the stability is also excellent. However, considering the fact that heat treatment may be required in the process of manufacturing the sensor chip, it is by no means sufficient stability.
  • Patent Literature l WO 2004/058958
  • Fig. 1 shows the residual rate (%) of PQQGDH activity after treatment for 16 hours at 50 ° C in a PQQGDH composition based on PIPES buffer (pH 6.5) in the presence of various compounds. Show.
  • Figure 2 shows the results after treatment of PQQGDH composition in the presence of various compounds based on phthalate buffer (pH 7.0) and potassium phosphate buffer (pH 7.0) at 50 ° C for 16 hours. P Indicates the residual rate (%) of QQGDH activity.
  • FIG. 3 shows the residual rate (%) of NADGDH activity after 1 hour treatment of NADGDH composition coexisting with various compounds at 50 ° C.
  • FIG. 4 shows the residual rate (%) of FADGDH activity after treatment for 30 minutes at 50 ° C. with a FADGDH composition in the presence of a proteinaceous stabilizer.
  • FIG. 5 shows the residual ratio (%) of FADGDH activity after treatment of a FADGDH composition coexisting with a dicarboxylic acid compound at 50 ° C. for 30 minutes.
  • FIG. 6 shows the FADGDH activity remaining rate (%) after a 15 minute treatment at 50 ° C. with a FADGDH composition in the presence of a salt compound.
  • Fig. 7 shows the optimum temperature for PQQ-dependent GDH.
  • Fig. 8 shows the thermal stability of PQQ-dependent GDH.
  • FIG. 9 shows the results of studying the thermal stability effect of heating treatment. 4 after heating
  • Residual activity was calculated with the activity value of Sampu Nore stored at ° C as 100%.
  • FIG. 10 shows the results of the examination of the heat treatment conditions (temperature X time). The residual activity was calculated with the activity value of the sample stored at 4 ° C after the heating treatment as 100%.
  • FIG. 11 shows the results of an examination of the effect of re-cooking treatment at 50 ° C for 16 hours after the heating treatment.
  • the residual activity after heat treatment at 55 ° C for 1 hour was calculated with the activity value of the sampnore stored at 4 ° C as 100%.
  • FIG. 12 Percentage of expression level of holo-type PQQGDH calculated by dividing holo-type PQQGDH activity (U / ml) expressed per unit liquid volume by total PQQGDH activity (U / ml).
  • FIG. 13 Percentage of expression level of holo-type PQQGDH calculated by dividing holo-type PQQGDH activity (U / ml) expressed per unit volume by total PQQGDH activity (U / ml).
  • An object of the present invention is to provide a reagent for measuring a blood glucose level that overcomes the above-mentioned drawbacks related to the stability of known enzymes for blood glucose sensors and is more practically advantageous.
  • Patent Document 2 has reported on measures to improve the stability of PQQGDH, among which there are reports of studies using PQQGDH modification means at the gene level. The possibility of increasing means It was not touched.
  • Patent Document 2 WO02 / 072839
  • the present invention has the following configuration.
  • a method for improving the thermal stability of a composition comprising a soluble coenzyme-linked glucose dehydrogenase comprising a step of heating the composition.
  • Item 2 The method for improving thermal stability according to Item 1, wherein the coenzyme is pyrroloquinone quinoline or a flavin compound.
  • a glucose assembly kit comprising the composition according to Item 5.
  • the improvement in thermal stability according to the present invention reduces the heat inactivation of the enzyme during preparation of the glucose measurement reagent, the gnolecose assay kit, and the glucose sensor, thereby reducing the amount of the enzyme used and the measurement accuracy. Enable improvement. It also makes it possible to provide a blood glucose measurement reagent using GDH, which has excellent storage stability.
  • the improvement of the holo-type ratio or storage stability according to the present invention also improves the storage stability of glucose measuring reagents, glucose assembly kits, and glucose sensors, thereby reducing the amount of the enzyme used and improving the measurement accuracy. To. It also makes it possible to provide a blood glucose level measurement reagent using GDH, which has excellent storage stability.
  • GDH is an enzyme that catalyzes the following reaction.
  • GDH that can be applied to the method of the present invention is not particularly limited as long as it is a soluble coenzyme-bound dalcos dehydrogenase (GDH).
  • coenzyme for example, pyrroloquinone quinoline or flavin compound or nicotinamide adenine dinucleotide (NAD) can be used.
  • NAD nicotinamide adenine dinucleotide
  • the GD H (PQQGDH) taking pyrroloquinone quinoline as a coenzyme that can be applied to the method of the present invention is not particularly limited, but for example, acinetopacter • force no coreaceticus (Acinetobacter calcoaceticus) from LMD79.41 (A. M. Cleton—Jansen et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Genet., 217, 430 (1989)), Escherichia E. coli) (A. M. Cleton—Jansen et al., J.
  • Acinetobacter baumannii (CIcinetobacter baumannii) NCIMB1151 7 or more, ij, Acinetobacter calcoaceticus (this was classified).
  • PQQGDH that can be applied to the method of the present invention is not limited to those exemplified above, as long as it has glucose dehydrogenase activity. Other amino acid residues may be added.
  • PQQGDH for example, commercially available products such as GLD-321 manufactured by Toyobo Co., Ltd. can be used. Alternatively, it can be easily produced by those skilled in the art using known techniques in the technical field.
  • the above-mentioned natural microorganisms that produce PQQGDH, or the gene encoding natural PQQGDH as it is or after mutation expression vectors (many are known in the art) Cultivated transformants transformed into suitable plasmids (many are known in the art, eg, E. coli), and culture fluid force centrifugation After harvesting the cells, etc., destroy the cells by mechanical methods or enzymatic methods such as lysozyme, and if necessary, solubilize by adding a chelating agent such as EDT A or a surfactant.
  • a water-soluble fraction containing PQQGDH can be obtained. Or expressed P by using an appropriate host vector system.
  • QQGDH can be secreted directly into the culture medium.
  • the PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting-out treatment such as ammonium sulfate or sodium sulfate, or hydrophilic organic solvents such as methanol, ethanol, acetone and the like. Precipitate by the fractional precipitation method. Heat treatment and isoelectric point treatment are also effective purification means.
  • purified PQQGDH can be obtained by performing gel filtration using an adsorbent or gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purified enzyme preparation should preferably be purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • a heat treatment of preferably 25 to 50 ° C, more preferably 30 to 45 ° C may be performed.
  • concentration of PQQGDH in the present invention is not particularly limited.
  • GDH taking FAD as a coenzyme (FAD-dependent GDH) that can be applied to the method of the present invention is not particularly limited.
  • filamentous fungi belonging to the category of eukaryotes And those derived from microorganisms such as Penicillium and Aspergillus. These microbial strains can be easily obtained by requesting distribution from each strain storage organization.
  • Penicillium Penicillium, Lirashino Echinulatam is registered with the Product Evaluation Technology Foundation's “Biological Resources Department” under the deposit number NBRC6092.
  • the medium for culturing the microorganism is not particularly limited as long as the microorganism grows and can produce the GDH shown in the present invention. More preferably, the medium is a carbon source or inorganic necessary for the growth of the microorganism.
  • a liquid medium containing a nitrogen source and Z or an organic nitrogen source is more preferable, and a liquid medium suitable for aeration stirring is preferred.
  • liquid medium for example, glucose, dextran, soluble starch, sucrose, etc. as the carbon source.
  • the nitrogen source for example, ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meat extract, defatted soybeans, A potato extract etc. are illustrated.
  • other nutrients for example, inorganic salts such as calcium chloride, sodium dihydrogen phosphate, magnesium chloride, Vitamins and the like).
  • the culture method follows a method known in the art. For example, spore of microorganisms or growing cells are inoculated in a liquid medium containing the above nutrients, and the cells are allowed to grow by standing or aeration stirring, but preferably cultured by aeration stirring.
  • the pH of the culture solution is preferably 5-9, more preferably 6-8.
  • the temperature is usually 14 to 42 ° C, more preferably 20 to 40 ° C.
  • the culture is continued for 14 to 144 hours, but the culture is preferably terminated when the expression level of GDH is maximized under each culture condition.
  • the change is monitored by sampling the culture medium and measuring the GDH activity in the culture liquid, and the point when the increase in GDH activity over time is eliminated is regarded as the peak. To stop the culture.
  • a method of extracting GDH from the above culture solution when collecting GDH accumulated in the microbial cells, only the microbial cells are collected by an operation such as centrifugation or filtration, and the microbial cells are collected as a solvent, Preferably resuspended in water or buffer.
  • the resuspended cells can be disrupted by a known method to extract GDH in the cells into a solvent.
  • a crushing method a lytic enzyme can be used, or a physical crushing method can be used.
  • the lytic enzyme is not particularly limited as long as it has the ability to digest the fungal cell wall. Examples of applicable enzymes include “Lyticase” manufactured by Sigma.
  • Examples of the physical crushing method include ultrasonic crushing, glass bead crushing, and French press. After the crushing treatment, the residue can be removed by centrifugation or filtration to obtain a GDH crude solution.
  • the culture method in the present invention may be solid culture.
  • the eukaryotic microorganism having the ability to produce GDH of the present invention is grown on wheat bran or the like while appropriately controlling temperature, humidity and the like.
  • the culture may be performed by standing or may be mixed by stirring the culture.
  • GDH extraction is performed by adding a solvent, preferably water or a buffer, to the culture to dissolve GDH, and removing solid matter such as bacterial cell bran by centrifugation or filtration.
  • GDH GDH
  • Purification of GDH can be performed by appropriately combining various separation techniques that are usually used depending on the fraction in which GDH activity is present. From the GDH extract above, for example Salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration, non-denaturing PAGE, SDS_PAGE, ion exchange chromatography, hydroxyapatite chromatography, affinity chromatography, reverse phase high performance liquid chromatography, isoelectric A known separation method such as point electrophoresis can be selected appropriately. Various stabilizers and the like can also be added to the extracted GDH or the purified GDH solution.
  • Such substances include sugars and sugar alcohols such as mannitol, trehalose, sucrose, sonorebitonore, erythritole, glyceronole, etc., amino acids such as bovine serum albumin, egg white albumin, Proteins such as chaperones and peptides.
  • sugars and sugar alcohols such as mannitol, trehalose, sucrose, sonorebitonore, erythritole, glyceronole, etc.
  • amino acids such as bovine serum albumin, egg white albumin, Proteins such as chaperones and peptides.
  • the GDH of the present invention can also be pulverized by force S, lyophilization, vacuum drying, spray drying or the like which can be provided in a liquid state.
  • GDH dissolved in a buffer solution or the like can be used, and it is preferable to add sugar / sugar alcohols, amino acids, proteins, peptides, etc. as excipients or stabilizers. It can also be granulated after pulverization.
  • the composition of the buffer used for the GDH extraction, purification, pulverization, and stability test described above is not particularly limited, but preferably has a buffer capacity in the range of pH 5-8.
  • buffers such as boric acid, Tris hydrochloric acid, potassium phosphate, BES, Bicine, Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, M ⁇ PS ⁇ , PIPES, P ⁇ Good buffering agents such as PS0, TAPS, TAPS0, TES, Tricine are listed.
  • the concentration of these additives is not particularly limited as long as it has a buffering capacity, but the preferable upper limit is 10 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
  • the content of the buffering agent in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.:! To 30% (weight ratio). Used in the range of.
  • These buffers may be added at the time of measurement, or may be contained in advance when a glucose measuring reagent, a glucose assay kit, or a glucose sensor described later is prepared. In this case, the liquid state, the dry state, etc. are not limited, and it is sufficient to function during measurement.
  • the improvement in stability as used in the present invention means that the residual rate (%) of the maintained GDH enzyme increases after heat treatment of the composition containing the GDH enzyme at a certain temperature for a certain period of time.
  • the sampnore stored at 4 ° C is regarded as 100%, and the activity value of the GDH solution after heat treatment at 55 ° C for 1 hour is compared with that of the enzyme. Survival rate is calculated. If this residual rate was increased compared to that without heating treatment, it was judged that the thermal stability of GDH was improved.
  • the PQQGDH activity value (a) after 4 hours at 16 ° C and the GDH activity value (b) after heat treatment were measured.
  • the relative value ((b) / (a) X 100) was calculated when a) was 100. This relative value was defined as the residual rate (%). Then, the presence or absence of the heating treatment was compared, and it was determined that the thermal stability was improved when the residual rate increased due to the execution.
  • heat treatment in the above description refers to a treatment for confirming the stability of the enzyme and is different from the “warming treatment” of the present invention. The same applies to the explanations other than in this paragraph.
  • the heating treatment requires that at least 50% or more of the activity be maintained before and after the heating treatment, preferably 80% or more of the activity is maintained, and more preferably 90% or more. It is desirable that the activity of is maintained.
  • the temperature at which large heat inactivation of the enzyme occurs is the absolute value of the slope of the approximate expression obtained from three or more consecutive data when the residual activity of the enzyme is examined at several different processing temperatures. This means the point where the temperature changes more than twice (processing temperature).
  • processing temperature For example, in Fig. 1, the absolute expression of the approximate expression at 0, 30, and 40 ° C is 0.23, and the inclination of the approximate expression at 40, 50, and 60 ° C is 0.233. The absolute value is 3.63. Therefore, under this heat treatment condition, 40 ° C is a temperature at which large thermal deactivation occurs.
  • the temperature at which large heat inactivation of the enzyme in this patent occurs is the temperature at which the residual activity of the enzyme is 80% or less when heat-treated at several different temperatures.
  • the lower temperature is referred to as “temperature at which large heat inactivation of the enzyme occurs”. If it can only be determined by one method, the temperature determined by that method is defined as “the temperature at which a large heat inactivation of the enzyme occurs”.
  • the temperature at which this large heat inactivation occurs varies depending on the type of enzyme, and even for the same enzyme, it varies depending on the enzyme concentration used in the study.
  • the temperature at which large heat inactivation occurred was 40 ° C (Fig. 1)
  • the heating treatment is examined at 50 ° C. or less.
  • the improvement of the holo-type ratio of the present invention is thought to lead to an increase in stability.
  • the improvement of the holo-type ratio in the present invention means that the residual rate (%) of GDH enzyme is maintained after the composition containing GDH enzyme is heat-treated at a certain temperature for a certain time. Means. In the present invention, 100 sampnole stored at 4 ° C, in which the activity is almost completely maintained, is 100. / 0 and to, by comparing the activity value of GDH solution after heat treatment certain time and this at a constant temperature, and calculates the residual rate of that enzyme. When this residual ratio was increased compared to that without the compound, it was judged that the holo ratio of GDH was improved.
  • the improvement in stability as used in the present invention means that the residual rate (%) of the maintained GDH enzyme increases after heat treatment of the composition containing the GDH enzyme at a certain temperature for a fixed time. Means. In the present invention, 100 sampnole stored at 4 ° C, in which the activity is almost completely maintained. / 0, by comparing the activity value of GDH solution after heat treatment predetermined time which is constant temperature, and calculates the residual rate of the enzyme. When this residual ratio was increased as compared with that without the compound, it was judged that the storage stability of GDH was improved.
  • the GDH activity value (a) of the solution stored at 4 ° C and the GDH activity value after heat treatment at a constant temperature for a certain time (b) ) was measured, and the relative value ((b) / (a) X 100) with respect to the measured value (a) as 100 was determined. This relative value was defined as the residual rate (%). Then, by comparing the presence or absence of the additive of the compound, it was determined that the stability was improved when the residual ratio increased by the addition.
  • Each GDH using different coenzymes is considering improvement of the holo-type ratio or stability under different conditions.
  • PQQGDH the enzyme solution prepared to 5 U / ml with a pH 6.5 buffer solution is heat-treated at 50 ° C for 16 hours, and then the remaining PQQGDH activity is compared to improve the holo ratio or stability. I have confirmed.
  • NADGDH was heat-treated at 50 ° C for 1 hour with a pH 8.0 buffer solution at 85 U / ml
  • the remaining N ADGDH activity was compared to improve the holo ratio or stability. I have confirmed.
  • the enzyme solution prepared at 5 U / ml in a buffer solution of ⁇ 6.5 was heat-treated at 50 ° C for 15-30 minutes, and then the remaining FADGDH activity was compared to determine the holo ratio or stability. The improvement is confirmed.
  • the determination as to whether the holo-type ratio is improved can also be made as follows.
  • the GDH activity value (a) measured by adding a sufficient amount of coenzyme to the activity measurement method described in the measurement method for GDH enzyme activity described below, and measured without adding any coenzyme.
  • the GDH activity value (b) was measured, and the relative value ((b) Z (a) X 100) with respect to the measured value (a) as 100 was determined. This relative value was defined as a holo-formation rate (%). Then, by comparing the presence or absence of the addition of the compound, it was determined that the stability was improved when the holoformation rate was increased by the additive.
  • the effect of the present invention becomes more remarkable in a system including a mediator.
  • the mediator applicable to the method of the present invention is not particularly limited, but a combination of phenazine methosulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP), PMS and nitro blue tetra Combinations with Zorium (NBT), DCPIP alone, ferricyanide ions (such as ferricyanium potassium as a compound) alone, and furcene alone. Of these, ferricyanide ions (such as potassium ferricyanide as the compound) are preferable.
  • Each of these mediators has various differences in sensitivity, so it is not necessary to uniformly define the concentration of addition, but generally an additive of ImM or higher is desirable.
  • mediators may be added at the time of measurement, or may be contained in advance when a glucose measuring reagent, a glucose assay kit, or a gnolecose sensor described later is prepared.
  • the liquid state, the dry state, etc. may be used, and it may be dissociated during the reaction at the time of measurement so as to be in an ionic state.
  • various components can be allowed to coexist if necessary.
  • surfactants, stabilizers, excipients and the like may be added.
  • PQQGDH it is possible to further stabilize PQQGDH by adding calcium ions or salts thereof, amino acids such as glutamic acid, gnoretamine, and lysine, and serum albumin.
  • PQQGDH can be stabilized by containing calcium ions or calcium salts.
  • the calcium salt include calcium chloride, calcium acetate, calcium salt of inorganic acid such as calcium citrate, and calcium salt of organic acid.
  • the calcium ion content is preferably 1 X 10-4-1 X 10-2M.
  • the stabilizing effect of PQQGDH by containing calcium ions or calcium salts can be further improved by containing an amino acid selected from the group consisting of gnoretamic acid, gnoletamine and lysine.
  • the amino acid selected from the group consisting of glutamic acid, glutamine and lysine may be one type or two or more types.
  • egg white albumin (OVA) may be added.
  • one or more compounds selected from the group consisting of aspartic acid, glutamic acid, monoketoglutaric acid, malic acid, monoketognoreconic acid, a- cyclodextrin and their salts, and (2 ) PQQGDH can be stabilized by coexisting albumin.
  • PQQGDH as an enzyme is a glucose dehydrogenase having pyroguchi quinoline quinone (PQQ) as a coenzyme. Since it catalyzes the reaction that oxidizes glucose to produce darconoratone, it can be used for blood glucose measurement. Blood glucose level is diabetes It is an extremely important index for clinical diagnosis as an important marker of disease. Currently, blood glucose levels are measured mainly using a biosensor that uses glucose oxidase, but the reaction is affected by the dissolved oxygen concentration, which may cause errors in the measured values. was there. PQQ-dependent glucose dehydrogenase is attracting attention as a new enzyme that replaces this glucose oxidase.
  • the inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, the aqueous solution containing the PQQ-dependent dalcoyl dehydrogenase is subjected to heat treatment, so that the holo in the total GDH enzyme protein during production can be obtained. The proportion of type PQQGDH could be improved and the present invention was finally completed.
  • Improvement in productivity as a holo-type PQQGDH according to the present invention results in a reduction in manufacturing cost. Furthermore, the increase in the proportion of holo-type PQQGDH eliminates the need to add a PQQ to form holo to obtain active PQQGDH, resulting in a reduction in manufacturing costs. These make it possible to manufacture PQQGDH inexpensively. Furthermore, it is also possible to provide a dull course assembly kit and a gnore course sensor at a low price.
  • PQQGDH used in the present invention is an enzyme that catalyzes the reaction when P-Q quinoline quinone is coordinated as a coenzyme to oxidize D-darcose to produce D-darcono 1,5 ratatones. (ECl. 1. 5. 2 (formerly ECl. 1. 99. 17)), and the origin and structure are not particularly limited.
  • Seticus Acinetobacter calcoaceticus LMD79. 41 (AM Cleton—Jans en et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Genet., 217, 430 (1989)), Escherichia coli ) (AM Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990)), Gnoreconactor oxydans (Mol. Gen. Genet., 229, 206 (1991)) And Acinetobacter baumanni NCIMB11517 reported in Patent Document 1.
  • Acinetobacter baumannii NCIMB11517 strain was categorized as ij, Acinetobacter calcoaceticus.
  • the amino acid sequence of PQQGDH derived from the genus Acinetobacter is preferably the AQ / DH of PQQu ⁇ DH derived from Acinetob acter calcoaceticus or AcinetoDacter baumanmi.
  • SEQ ID NO: 1 is preferable.
  • the wild-type PQ QGDH protein represented by SEQ ID NO: 1 and its base sequence represented by SEQ ID NO: 2 originated from Acinetobacter baumannii strain NCIMB 11517, and Japanese Patent Application Laid-Open No. 11-243949 Is disclosed.
  • the amino acid notation is numbered with 1 for aspartic acid from which the signal sequence has been removed.
  • PQQGDH used in the present invention has glucose dehydrogenase activity
  • a part of another amino acid residue may be deleted or substituted. Residues may be added.
  • the produced DNA having the genetic information of the modified protein is transferred into a host microorganism in a state of being linked to a plasmid, and becomes a transformant that produces the modified protein.
  • a host microorganism for example, pBluescript, pUC18 and the like can be used when Escherichia coli is used as a host microorganism.
  • host microorganisms that can be used include Escherichia coli W3110, Escherichia coli C600, Escherichia coli JM109, and Escherichia coli DH5.
  • a method for transferring the recombinant vector into the host microorganism for example, when the host microorganism belongs to the genus Escherichia, a method of transferring the recombinant DNA in the presence of calcium ions can be employed. Further, an elect port position method may be used. Furthermore, a commercially available combi- tive cell (for example, combitent high JM109; manufactured by Toyobo) may be used.
  • Such a gene can be extracted from these strains or chemically synthesized. Furthermore, a DNA fragment containing the PQQGDH gene can be obtained by using the PCR method.
  • methods for obtaining a gene encoding PQQGDH include the following methods. For example, after isolating and purifying the chromosome of Acinetobacter calcoaceticus NCIMB11517, DNA was cleaved using sonication, restriction enzyme treatment, etc., linear expression vector and blunt ends or attachment of both DNAs A recombinant vector is constructed by closing and ligating DNA ends with DNA ligase. Recombinant vector containing a gene encoding GDH having PQQ as a prosthetic group after transferring the recombinant vector into a replicable host microorganism and screening using the expression of the vector marker and enzyme activity as an indicator To obtain microorganisms that retain
  • the microorganism carrying the recombinant vector is cultured, the recombinant vector is isolated and purified from the cells of the cultured microorganism, and a gene encoding GDH is obtained from the expression vector.
  • a gene encoding GDH is obtained from the expression vector.
  • the chromosomal DNA of the gene donor Acinetopacter 'calcoaceticus NCIMB11517 is specifically collected as follows.
  • the gene-donating microorganism is centrifuged, for example:! ⁇ For 3 days with stirring.
  • the lysate containing GDH gene having PQQ as a prosthetic group can be prepared by collecting the bacterium and then lysing it.
  • a method for lysis for example, treatment is performed with a lytic enzyme such as lysozyme, and a protease or other enzyme or a surfactant such as sodium lauryl sulfate (SDS) is used in combination as necessary.
  • SDS sodium lauryl sulfate
  • it may be combined with a physical crushing method such as freeze-thawing or French press treatment.
  • a method such as deproteinization by phenol treatment or protease treatment, ribonuclease treatment, alcohol precipitation treatment or the like is appropriately performed according to a conventional method. It can be done by combining.
  • a method for cleaving DNA separated and purified from a microorganism can be performed by, for example, ultrasonic treatment, restriction enzyme treatment, or the like. Type II restriction enzymes that act on specific nucleotide sequences are suitable.
  • a vector constructed for gene recombination from a phage or plasmid capable of autonomously growing in a host microorganism is suitable.
  • the fage include Lambda gtlO and Lambda gtl l when Escherichia coli is used as a host microorganism.
  • plasmids include pBR322, pUC19, and pBluescript when Escherichia coli is used as a host microorganism.
  • a vector fragment can be obtained by cleaving the above-described vector with the restriction enzyme used for cleaving the microbial DNA that is the gene donor encoding GDH described above. It is not necessary to use the same restriction enzyme as that used to cleave the microbial DNA.
  • the microbial DNA fragment and the vector DNA fragment may be combined by any known DNA ligase method. For example, after annealing the attachment end of the microbial DNA fragment and the attachment end of the vector fragment, an appropriate DNA ligase may be used. Use to create a recombinant vector of microbial and vector DNA fragments. If necessary, after annealing, it can be transferred to a host microorganism and a recombinant vector can be prepared using in vivo DNA ligase.
  • the host microorganism used for cloning is not particularly limited as long as the recombinant vector is stable, can autonomously proliferate, and can express a foreign gene.
  • Escherichia coli W3110, Escherichia coli C600, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli DH5, etc. can be used.
  • a method for transferring the recombinant vector into the host microorganism for example, when the host microorganism is Escherichia coli, a competent cell method using calcium treatment, an electo-baudation method, or the like can be used.
  • the microorganism which is a transformant obtained as described above, can stably produce a large amount of GDH by being cultured in a nutrient medium.
  • the selection of whether or not the target recombinant vector is transferred to the host microorganism may be performed by searching for a microorganism that simultaneously expresses GDH activity by adding PQQ and the drug resistance marker of the vector holding the target DNA. For example, a microorganism that grows on a selective medium based on a drug resistance marker and produces GDH may be selected.
  • transfer from a recombinant vector carrying a GDH gene having PQQ selected once as a prosthetic group to a recombinant vector capable of replicating in a microorganism capable of producing PQQ is as follows. It can be easily carried out by collecting DNA, which is a GDH gene, from a recombinant vector carrying the GDH gene by restriction enzymes or PCR and linking it to other vector fragments. In addition, the transformation of microorganisms capable of producing PQQ with these vectors can be carried out by using the calcium treatment, the electoral cell method, the electopore method, or the like.
  • microorganisms capable of producing PQQ include methanol-utilizing bacteria such as Methylobacterium, acetic acid bacteria belonging to the genus Acetobacter and Gluconobacter, Flavobacterium (Flavobacterium) And bacteria of the genus Genus, Syudomonas, and Acinetopacter.
  • methanol-utilizing bacteria such as Methylobacterium, acetic acid bacteria belonging to the genus Acetobacter and Gluconobacter, Flavobacterium (Flavobacterium) And bacteria of the genus Genus, Syudomonas, and Acinetopacter.
  • a host-vector system that can use a genus Pseudomonas and a bacterium belonging to the genus Acinetopacter has been established and is preferable because it is easy to use.
  • Pseudomonas In the genus Pseudomonas, Pseudomonas' Elginosa, Pseudomonas' fluorescens, Pseudomonas' Putida and the like can be used.
  • Acinetobacter 1 'Calcoaceticus For bacteria belonging to the genus Acinetopacter, Acinetobacter 1 'Calcoaceticus, Acinetobacter 1' Baumannii and the like can be used.
  • a vector derived from RSF1010 or a vector having a similar replicon can be used for bacteria belonging to the genus Pseudomonas.
  • ⁇ 240, ⁇ 24, etc. MM Bagdasarian et al., Gene, 26, 273 (1983)
  • pCN40, pCN60 etc. CC Nieto et al., Gene, 87, 145 (1990)
  • pTS 1137 gene recombination practical technology
  • pME290 etc. Y. Itoh et al., Gene, 36, 27 (1985)
  • pNIll, pNI20C N. Itoh et al., J. Biochem., 110, 614 (1991)
  • pNIll pNI20C
  • Microorganisms which are transformants thus obtained, can be produced as a whole P QQGDH protein by cultivating them in a nutrient medium, ⁇ the ability to produce QQGDH protein S, and adding an organic solvent to the medium. Both productivity improvement and productivity improvement as holo-type PQQGDH protein are possible.
  • the culture conditions should be selected in consideration of the nutritional physiological properties of the host. Industrially, aeration and agitation culture is advantageous.
  • the holo-type PQQGDH refers to the PQQGDH enzyme itself in which the coenzyme PQQ is bound to the GDH protein and the state thereof, and the enzyme having the GDH activity without the addition of PQQ and the state thereof. It is.
  • all PQQGDH means (1) holo-type PQQGDH, (2) apo-type PQQGDH in which coenzyme PQQ is not bound to GDH protein, and (3) the binding state of PQQGDH that is further bound by PQQ This refers to the total GDH enzyme protein combined with PQ QGDH, which does not have GDH activity because it is complete, and its state.
  • PQQ-dependent gnolecose dehydrogenase or “PQQGDH” is a single protein, but as an enzyme co-enzyme complex, it is a mixture containing at least one of the above (1) to (3) when viewed from the binding state of PQ Q. means.
  • a nutrient source of the medium those commonly used for culturing microorganisms can be widely used.
  • Any carbon compound that can be assimilated may be used as the carbon source.
  • the nitrogen source may be any available nitrogen compound.
  • peptone, meat extract, yeast extract, casein hydrolyzate, soybean cake alkaline extract, and the like are used.
  • phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese, zinc and other salts, specific amino acids, specific vitamins and the like are used as necessary.
  • the culture temperature is a force that can be appropriately changed within the range in which the bacteria grow and produce PQQGDH.
  • the culture time is slightly different depending on the conditions. It is usually about 6 to 48 hours, preferably about 16 to 36 hours if the culture is completed at an appropriate time in consideration of the time when the maximum yield of PQQGDH is reached.
  • the pH of the medium can be appropriately changed within the range in which the bacteria grow and produce PQQGDH, but is preferably in the range of about ⁇ 6.0 to 9.0, more preferably in the range of ⁇ 6.5 to 8.0.
  • a culture solution containing cells that produce PQQGDH in the culture can be collected and used as is, but generally, if PQQGDH is present in the culture solution, it is filtered and centrifuged according to conventional methods. It is used after separating the PQQGDH-containing solution and microbial cells by the above.
  • PQQGDH is present in the microbial cells
  • the microbial cells are collected from the obtained culture by means of filtration or centrifugation, and then the microbial cells are collected by a mechanical method or an enzymatic method such as lysozyme. Destroy it, and if necessary, add a chelating agent such as EDTA and a surfactant to solubilize GDH and separate and collect it as an aqueous solution.
  • the PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting-out treatment such as ammonium sulfate or sodium sulfate, or hydrophilic organic solvents such as methanol, ethanol, acetone, etc. It may be precipitated by the fractional precipitation method. Heat treatment and isoelectric point treatment are also effective purification means. Also, adsorbent or gel Purified PQQGDH can be obtained by gel filtration using a filter medium, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purified enzyme preparation can be obtained by separation and purification by column chromatography.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • the heat treatment described above plays a role of improving the ratio of holo-type PQQGDH to the total GDH enzyme protein.
  • This treatment that improves PQQGDH activity without adding PQQ from the outside is extremely useful for industrial applications.
  • GDH enzyme protein strength S which is inactive due to imperfect binding state of GQ enzyme protein, but that binds to PQQ, is confirmed by heat treatment. Yong's change is considered to have improved the binding state with PQQ and became active.
  • the heat treatment conditions are preferably 25 ° C to 50 ° C, more preferably 30 ° C to 45 ° C.
  • This heat treatment is not only useful for production using a host producing PQQ as described above. It is also useful when preparing a holo-type PQQGDH by holizing apo-type GDH protein. For example, after cloning the GDH gene, the apo-type GDH protein is expressed directly using Escherichia coli DH5, purified in the same manner as PQQGDH, and then the purified apo-type GDH protein is holoed to prepare the holo-type PQQGDH And so on.
  • the purified enzyme obtained as described above can be pulverized and distributed, for example, by freeze drying, vacuum drying, spray drying, or the like.
  • the purified enzyme can be dissolved in phosphate buffer, Tris-HCl buffer or GOOD buffer.
  • Preferred are GOOD buffers, with PIPES, MES or MOPS buffers being particularly preferred.
  • PQQGDH can be further stabilized by adding calcium ions or salts thereof, amino acids such as gnoretamine, gnoretamine, and lysine, and serum albumin.
  • the PQQGDH protein can take various forms such as liquid (aqueous solution, suspension, etc.), powder, and lyophilized.
  • the freeze-drying method is not particularly limited and may be performed according to a conventional method.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, and may be in a solution state in which the lyophilized product is redissolved. Further, when measuring the genole course, various forms such as a glucose assembly kit and a glucose sensor can be taken.
  • the purified modified protein thus obtained can be stabilized by the following method.
  • the purified modified protein includes (1) one or more selected from the group consisting of aspartic acid, glutamic acid, ⁇ -ketoglutanolic acid, malic acid, ketogluconic acid, ⁇ -cyclodextrin, and salts thereof By coexisting the above compound and (2) albumin, the modified protein can be further stabilized.
  • the PQQGDH content varies depending on the origin of the enzyme, but is usually suitably used in the range of about 5 to 50% (weight ratio). In terms of enzyme activity, it is preferably used in the range of 100 to 2000 U / mg.
  • Salts of aspartic acid, gnoretamic acid, ⁇ -ketoglutaric acid, malic acid, and hyketogluconic acid include salts such as sodium, potassium, ammonium, calcium, and magnesium, but are not particularly limited. .
  • the addition amount of the above compound, its salt and dicyclodextrin is preferably 1 to 90% (weight ratio). These substances can be used alone or in combination.
  • the buffer solution to be contained is not particularly limited, but Tris buffer solution, phosphate buffer Examples include impulse solution, borate buffer solution, and GOOD buffer solution.
  • the pH of the buffer solution is adjusted in accordance with the intended use within a range of about 5.0.90.
  • the content of the buffer in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0. 30% (weight ratio). Used in range.
  • albumin examples include bovine serum albumin (BSA) and ovalbumin (OVA). BSA is particularly preferable.
  • the albumin content is preferably in the range of 180% (weight ratio), more preferably 570% (weight ratio).
  • Further stabilizers and the like may be added to the composition in a range that does not particularly adversely affect the reaction of PQQGDH.
  • the blending method of the stabilizer of the present invention is not particularly limited. For example, a method in which a stabilizer is added to a buffer solution containing PQQGDH, a method in which PQQGDH is added to a buffer solution containing a stabilizer, or a method in which PQQGDH and a stabilizer are simultaneously added to a buffer solution are included.
  • a stabilizing effect can also be obtained by adding calcium ions. That is, the modified protein can be stabilized by containing calcium ions or calcium salts.
  • the calcium salt include calcium chloride, calcium acetate, calcium salt of inorganic acid such as calcium citrate, and calcium salt of organic acid.
  • the content of calcium ions is preferably 1 X 10 1 X 10_ 2 M .
  • the stabilizing effect by containing calcium ions or calcium salts is further improved by containing an amino acid selected from the group consisting of glutamic acid, glutamine and lysine.
  • the amino acid selected from the group consisting of gnoretamic acid, glutamine and lysine may be one kind or two or more kinds.
  • the content of an amino acid selected from the group consisting of gnoretamic acid, gnoletamine and lysine is preferably 0.01 to 0.2% by weight.
  • serum albumin may be added.
  • the content is preferably 0.05 to 0.5% by weight.
  • the buffering agent a normal one is used, and the buffer having a pH of 5 to 10 is usually used. I like it. Specifically, Tris-HCl, boric acid, and the power for which Good's buffer is used Any buffer that does not form an insoluble salt with calcium can be used.
  • a surfactant such as sodium EDTA, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • the present invention includes a step of heating the composition in a composition containing a soluble coenzyme-bound type of gnolecose dehydrogenase.
  • This is a method for producing a composition containing soluble coenzyme-linked gnolecose dehydrogenase with improved thermostability.
  • the present invention provides a composition comprising a soluble coenzyme-bound glucose dehydrogenase produced by the method described above, wherein a soluble coenzyme-bound glucose dehydrogenase having improved thermal stability is obtained. It is a composition to contain.
  • gnole course can be measured by the following various methods.
  • the reagent for measuring gnolecose, the gnolecose assembly kit, and the gnolecose sensor of the present invention are various forms such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, etc. Can be taken.
  • the drying method is not particularly limited and may be performed according to a conventional method.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the dried product is redissolved.
  • gnole course can be measured by the following various methods.
  • the reagent for measuring gnolecose of the present invention typically includes reagents necessary for measurement such as GDH, buffer solution, mediator, glucose standard solution for preparing a calibration curve, and usage guidelines.
  • the kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the GDH of the present invention is provided in the form of a holo, but it may be provided in the form of an apoenzyme and holo- ed at the time of use.
  • the invention also features a glucose assembly kit comprising GDH according to the invention.
  • the glucose assay kit of the present invention is a GDH according to the present invention is converted into at least one assay. Contains enough.
  • the kit contains the GDH of the present invention plus the buffers necessary for assembly, mediators, glucose standard solutions for creating calibration curves, and usage guidelines.
  • the GDH according to the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the GDH of the present invention is provided in the form of a holo, but it can also be provided in the form of an apoenzyme and hololated at the time of use.
  • the invention also features a glucose sensor using GDH according to the invention.
  • a carbon electrode, a gold electrode, a platinum electrode or the like is used, and the enzyme of the present invention is immobilized on this electrode.
  • Immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, an oxidation-reduction polymer, or the like in the polymer together with a mediator. These can be adsorbed and fixed on the electrode, or a combination of these may be used.
  • the GDH of the present invention may be immobilized in the form of apoenzyme in the form of a holoform and immobilized on the electrode, and the coenzyme may be supplied as a separate layer or in solution.
  • the GDH of the present invention is immobilized on a carbon electrode using dartalaldehyde, and then treated with a reagent having an amine group to block dartalaldehyde.
  • the glucose concentration can be measured as follows. Put the buffer in the thermostatic cell and add the mediator to maintain a constant temperature.
  • As the working electrode an electrode on which the GDH of the present invention is immobilized is used, and a counter electrode (for example, platinum electrode) and a reference electrode (for example, Ag / Ag C1 electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. It is possible to calculate the glucose concentration in the sample according to the calibration curve prepared with the standard concentration glucose solution.
  • a method for improving the stability of the enzyme comprising a step of subjecting the composition to a heating treatment, wherein the composition comprises a soluble coenzyme-linked glucose dehydrogenase.
  • a soluble complement with improved thermal stability produced by a method comprising a step of subjecting a composition comprising a soluble coenzyme-linked glucose dehydrogenase to a heating treatment.
  • Composition comprising enzyme-linked glucose dehydrogenase
  • a glucose sensor comprising the composition according to [5].
  • Soluble coenzyme-bound glucose dehydrogenase with improved stability comprising a step of subjecting the composition to soluble coenzyme-bound glucose dehydrogenase to a heating treatment.
  • a method for producing a composition comprising:
  • the present invention has the following configuration from another viewpoint.
  • a method comprising a composition containing a soluble coenzyme-bound glucose dehydrogenase, wherein a compound having a carbocinole group or an amino group is added to the composition to improve the mouth ratio of the enzyme.
  • composition comprising a soluble coenzyme-bound dalcoose dehydrogenase having an improved holo-type ratio by the method of [1] to [3].
  • a glucose sensor comprising the composition according to [ 9 ].
  • a method for improving the ratio of holo-type PQQGDH to total GDH enzyme protein characterized by heat-treating an aqueous solution containing PQQ-dependent glucose dehydrogenase
  • a method for producing a PQQ-dependent glucose dehydrogenase comprising heat-treating an aqueous solution containing the PQQ-dependent glucose dehydrogenase
  • a glucose sensor comprising a PQQ-dependent glucose dehydrogenase produced by the method according to [2].
  • Example 1 Construction of an expression plasmid for the PQQ-dependent gnolecose dehydrogenase gene
  • Wild-type PQQ-dependent glucose dehydrogenase expression plasmid PNPG5 is expressed in the multiple cloning site of the vector pBluescript SK (-).
  • Acinetobacter baumannii A structural gene encoding PQQ-dependent glucose dehydrogenase derived from NCIMB 1 1517 strain.
  • the base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • PNPG5 DNA (5 ⁇ g) was cleaved with restriction enzymes BamHI and Xhol (Toyobo Co., Ltd.), and the structural gene part of mutant PQQ-dependent glucose dehydrogenase was isolated.
  • the isolated DNA and pTM33 (1 ⁇ g) cleaved with BamHI and Xhol were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA.
  • the ligated DNA was transformed using a competent cell of Escherichia coli DH5a.
  • the resulting expression plasmid was named pNPG6.
  • Pseudomonas' Putida TE3493 (Microeken No. 12298) was cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and the cells were collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (PH7.0) containing 300 mM sucrose cooled on ice was added to the cells to suspend the cells. The cells are collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer ( ⁇ 7.0) containing 300 mM sucrose ice-cooled is added to the cells. The body was suspended.
  • LBG medium LB medium + 0.3% glycerol
  • the suspension was transformed with the expression plasmid PNPG6 obtained in Example 1 by the electrovolution method.
  • the desired transformant was obtained from a colony grown on LB agar medium containing 100 ⁇ g Zml of streptomycin.
  • the PQQ-dependent glucose dehydrogenase activity at the end of the culture is about 30 U / ml per 1 ml of the culture solution, as measured by the above activity measurement.
  • the cells are collected by centrifugation, suspended in 20 mM phosphate buffer ( PH 7.0), disrupted by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. It was.
  • the obtained crude enzyme solution was separated and purified by HiTrap_SP (Amersham-Falmasia) ion exchange column chromatography. Next, after dialyzing with 10 mM PIPES_Na 0 H buffer (pH 6.5), calcium chloride was added to a final concentration of mM. Finally, it was separated and purified by HiTrap-DEAE (Amersham-Falmacia) ion exchange column chromatography to obtain a purified enzyme preparation. The sample obtained by this method showed an almost single band on SDS-PAGE.
  • Test Example 1 Method for measuring PQQ-dependent GDH activity
  • the activity of PQQ-dependent GDH is measured under the following conditions.
  • DCPIP 2,6-dichlorophenol-indophenol
  • PMS phenazine methosulfate
  • One unit refers to the amount of PQQGDH enzyme that forms 1.0 mmol of DCPIP (red) per minute under the conditions described below.
  • D-glucose solution 1. OM (l. 8g D-glucose (molecular weight 180. 16) / l0ml H20)
  • PIPES_NaOH buffer solution pH 6.5: 50 mM (1.51 g PIPES (molecular weight 302. 36) suspended in 60 mL water was dissolved in 5 N NaOH, and 2 ml 10% Triton X— 1 Get 00 power Q. The pH was adjusted to 6.5 ⁇ 0.05 at 25 ° C using 5N NaOH, and water was added to make 100 ml. )
  • the enzyme powder was dissolved in ice-cooled enzyme diluent (E) immediately before the assembly and diluted to 0.05-0.10 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
  • the above activity measurement procedure was carried out using another type of sugar solution as a substrate instead of the glucose solution.
  • Vt Total volume (3. lml)
  • Vs Sample volume (0 ⁇ lml)
  • Test example 2 NAD-dependent GDH activity measurement method
  • NAD-dependent GDH activity is measured under the following conditions.
  • Toyobo's glucose dehydrogenase (GLD311) was used as the NAD-dependent GDH enzyme preparation.
  • the amount of D-gnolecose + NAD + ⁇ D-gnolecono_1,5-latataton + NADH + H + NADH was measured by the change in absorbance at 340 nm.
  • One unit is the amount of NADGDH enzyme that forms 1.0 micromolar NADH per minute under the conditions described below.
  • D-glucose solution 1.5M (2.7g D-glucose (molecular weight 180.16) / l0ml H20)
  • NAD solution 8% (80mg NAD (molecular weight 717.48) / lmlH20)
  • the enzyme powder was dissolved in ice-cold enzyme diluent (D) immediately before the assembly and diluted to 0.10-0.70 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
  • each L dry specimen was inoculated into potato dextrose agar medium (manufactured by Difco) and incubated at 25 ° C.
  • the mycelium on the restored plate was collected together with the agar and suspended in filter sterilized water.
  • Production medium 1% malt extract, 1.5% soy peptide, 0.1% MgS04'7 hydrate, 2./.Dalcos, pH6.5
  • the above mycelial suspensions were respectively added to start the culture.
  • the culture conditions were a temperature of 30 ° C, an aeration rate of 2 L / min, and a stirring rate of 3 80 i "pm. After 64 hours from the start of the culture, the culture was stopped and a Nutsche filter was used. The cells of each strain were collected on the filter paper by suction filtration. Concentrate 5 L of the culture solution to 1/10 volume with a hollow fiber module for ultrafiltration with a molecular weight of 10,000,000 cut, and add ammonium sulfate to the concentrate to a final concentration of 60% saturation (456 g / U).
  • the mediator used in the composition for measuring glucose, the glucose assay kit, the glucose sensor, or the glucose measuring method of the present invention is not particularly limited, but preferably 2, 6-dichlorophenol- indophenol (abbreviation). DCPIP), ferrocene or their derivatives (eg potassium ferricyanide, phenazine methosulfate, etc.). These mediators are commercially available.
  • Test Example 3 Method for measuring FAD-dependent GDH activity
  • the activity of FAD-dependent GDH is measured under the following conditions.
  • 1 unit (G) in GDH activity is defined as the amount of enzyme that reduces 1 micromole of DCPIP per minute in the presence of 200 mM D-darcose.
  • TEST BLANK In the formula, 3.0 is the volume of reaction reagent + enzyme solution (ml), 16.3 is the molar molecular extinction coefficient (cm2 / micromol) under the conditions for this activity measurement, 0.1 is the enzyme solution The amount of liquid (ml), 1.0 indicates the optical path length (cm) of the cell.
  • Example 5 Confirmation of holo ratio or storage stability using glucose measurement system The examination was performed according to the method for measuring PQQGDH activity in Test Example 1 described above. In addition, in order to measure the enzyme activity of PQQGDH including the apo-type, the activity was also measured in a reaction mixture containing a final concentration of 860 nM PQQ.
  • each sample was diluted 10-fold with an enzyme diluent, and then PQQGDH activity was measured.
  • the enzyme activity of each sample stored at 4 ° C for 16 hours was defined as 100, and the activity values after treatment at 50 ° C for 16 hours were compared and calculated as a relative value (%).
  • FIG. 1 shows the residual rate (%) of PQQGDH activity after treatment of PQQ GDH composition coexisting with various compounds based on PIPES buffer (pH 6.5) at 50 ° C. for 16 hours.
  • Figure 2 shows the residual rate of PQQG DH activity after treatment of PQQGDH composition in the presence of phthalate buffer ( ⁇ 7.0) and potassium phosphate buffer ( ⁇ 7.0) in the presence of various compounds at 50 ° C for 16 hours. (%).
  • Example 6 Confirmation of holo-type ratio or storage stability using glucose measurement system 1 The examination was performed according to the method for measuring GDH activity described above. First, NADGDH (Toyobo GLD-311) was diluted to 80-90 U / ml with enzyme dilution (ImM CaC12, 0.1%
  • the holo-type ratio or the storage stability was improved by adding the compounds to the NADGDH composition.
  • the highest effect was observed when succinic acid or maleic acid was added.
  • Fig. 3 shows the residual ratio (%) of NA DGDH activity after 1 hour treatment of NADGDH composition coexisting with various compounds at 50 ° C.
  • Example 7 Confirmation of holo ratio or storage stability using glucose measurement system 2 The study was conducted according to the NADGDH activity measurement method of Test Example 2 described above.
  • Example 8 Confirmation of holo ratio or storage stability using glucose measurement system 3
  • the examination was performed according to the method for measuring FADGDH activity in Test Example 3 described above.
  • the enzyme dilution solution (ImM) was adjusted so that the FADGLD obtained in Example 4 was about 10 U / ml.
  • FIG. 4 shows the residual ratio (%) of FADGDH activity after treatment at 50 ° C. for 30 minutes with a FADGDH composition in the presence of a proteinaceous stabilizer.
  • FIG. 5 shows the residual ratio (%) of FADGDH activity after treatment of a FADGDH composition coexisting with a dicarboxylic acid compound at 50 ° C. for 30 minutes.
  • FIG. 6 shows the residual rate (%) of the FAD GDH activity after treatment with a salt compound in the presence of a FADGDH composition at 50 ° C. for 15 minutes.
  • Example 7 Construction of PQQ-dependent Gnorecose Dehydrogenase Gene Expression Plasmid Wild-type PQQ-dependent glucose dehydrogenase expression plasmid PNPG5 was added to the multiple cloning site of the beta pBluescript SK (—). Acinetobacter baumannii) A structural gene encoding a PQQ-dependent darcos dehydrogenase derived from NCIMB11517 strain. The base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • QuickChangeTM Site -Directed Mutagenes is Kit (manufactured by STRATAGENE) based on a recombinant plasmid pN PG5 containing a wild-type PQQ-dependent glucose dehydrogenase gene and a synthetic oligonucleotide of about 40mer containing a triplet encoding the amino acid at the site of mutation introduction
  • Mutation treatment operation according to the protocol using J, J168, Q168A, 169Y, L169P, A170L, E245D, M342I, N429D, 430P mutations introduced, mutant PQQ-dependent type with improved substrate specificity Glucose dehydro
  • a recombinant plasmid (pNPG5_Q168A + 169Y + L169P + Al70L + E245D + M342I + N429D + 430P) encoding a genease was obtained.
  • the nucleotide sequence of the obtained candidate strain was determined, and the 168th glutamine of the amino acid sequence described in SEQ ID NO: 1 was alanine, the 169th leucine was proline, the 170th alanine was leucine, and the 245th gnore.
  • Mutant PQQ with thamic acid replaced with aspartic acid, 342th methionine replaced with isoleucine, 429th asparagine replaced with aspartic acid, 168th followed by tyrosine and 429th after proline It was confirmed that it encodes type glucose dehydrogenase.
  • E. coli competent cells (Escherichia coli JM 109; manufactured by Toyobo Co., Ltd.) were transformed with the recombinant plasmid to obtain transformants.
  • Example 9 Construction of an expression vector that can replicate in Pseudomonas bacteria
  • Recombinant plasmid obtained in Example 8 pNPG5-Q 168A + 169Y + L169P + A170L + E245D + M342I + N429D + 430P DNA 5 ⁇ g cleaved with restriction enzymes BamHI and Xhol (manufactured by Toyobo) and dependent on mutant PQQ The structural gene portion of type glucose dehydrogenase was isolated. The isolated DNA was reacted with pTM33 (1 ig) cleaved with BamHI and Xhol and 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA.
  • the ligated DNA was transformed using a competent cell of Escherichia coli DH5a.
  • the obtained expression plasmid was designated as pNPG6-Q168A + 169Y + L169P + A170L + E245D + M342I + N429D + 430P.
  • Pseudomonas.Putida TE3493 (Microeken No. 12298) was cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and the cells were collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K_phosphate buffer solution (PH7.0) containing 300 mM sucrose cooled with ice was added to the cells to suspend the cells. The cells are collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer ( ⁇ 7.0) containing 300 mM sucrose cooled on ice is added to the cells. The body was suspended.
  • LBG medium LB medium + 0.3% glycerol
  • Example 9 the expression plasmid pNPG6-Q168A + 169Y + L169P + A170L + E245D + M342I + N429D + 430P obtained in Example 9 was added to 0.5 / ig calecto, electopores. Transformation was performed by the Yong method. A target transformant was obtained from a colony grown on an LB agar medium containing 100 ⁇ g / ml streptomycin.
  • the PQQ-dependent glucose dehydrogenase activity at the end of the culture was about 30 U / ml per 1 ml of the culture solution after the measurement of the activity, and the cells were collected by centrifugation, and the 20 mM phosphate buffer solution ( After suspending in pH 7.0), the mixture was crushed by sonication and further centrifuged to obtain a supernatant as a crude enzyme solution.
  • the resulting crude enzyme solution was separated and purified by HiTrap-SP (Amersham-Falmasia) ion exchange column chromatography. Then, after dialyzing with 10 mM PIPES-NaOH buffer ( ⁇ 6 ⁇ 5), calcium chloride was added so that the final concentration force was SlmM. Finally, it was separated and purified by HiTrap-DEAE (Amersham-Falmacia) ion exchange column chromatography to obtain a purified enzyme preparation. The sample obtained by this method showed an almost single band on SDS-PAGE.
  • the purified enzyme thus obtained was used as a PQQ-dependent GLD evaluation sample.
  • each L dry specimen was inoculated into potato dextrose agar medium (manufactured by Difco) and incubated at 25 ° C.
  • the mycelium on the restored plate was collected together with the agar and suspended in filter sterilized water.
  • Production medium 1% malt extract, 1.5% soy peptide, 0.1% MgS04'7 hydrate, 2./.Dalcos, pH6.5
  • 10L jar mentors Prepare the above mycelial suspension after autoclaving at 120 ° C for 15 minutes. Each was charged and culture was started.
  • the culture conditions were a temperature of 30 ° C., an aeration rate of 2 L / min, and a stirring rate of 3 80 ⁇ ⁇ ⁇ .
  • the culture was stopped 64 hours after the start of the culture, and the cells of each strain were collected on the filter paper by suction filtration using a Nutsche filter.
  • the mediator used in the composition for measuring glucose, the glucose assay kit, the glucose sensor or the glucose measuring method of the present invention is not particularly limited, but preferably 2, 6-dichlorophenol- indophenol (abbreviation). DCPIP), ferrocene or their derivatives (eg ferricyanium potassium, phenazine methosulfate, etc.). These mediators are commercially available.
  • Example 13 Optimal temperature and thermal stability of PQQ-dependent GDH
  • Thermal stability is 50, 40, 50, 60, 70 with 50 mM PIPES-NaOH (pH 6.5), ImU CaC12 composition and 5.0 U / ml PQQ-dependent GDH. Compare the GDH activity remaining after heat treatment at C for 30 minutes with the activity value of the sample stored at 4 ° C. Residual activity (%) was calculated (FIG. 8). Until the heat treatment temperature was 40 ° C, there was no significant decrease in activity, and there was a tendency to be largely deactivated by the 50 ° C treatment. Thermal stability is likely to vary depending on the solution composition and enzyme concentration. For example, the higher the enzyme concentration, the higher the temperature at which large heat inactivation is observed (it will be 50 ° C or higher).
  • Example 14 Effect of heating treatment on the stability of PQQ-dependent GDH
  • Figure 9 shows the results of studying the thermal stability effect of heating treatment.
  • the residual activity was calculated with the activity value of the sample stored at 4 ° C after the heating treatment as 100%.
  • Figure 10 shows the results of the examination of the heat treatment conditions (temperature X time). The residual activity was calculated by setting the activity value of the sample stored at 4 ° C after heating to 100%.
  • Fig. 11 shows the results of studying the effects of rewarming after warming.
  • the residual activity was calculated with the activity value of the sample stored at 4 ° C after the heating treatment as 100%.
  • the composition of the present invention is a composition comprising a soluble coenzyme-linked glucose dehydrogenase, which is produced by a method comprising a step of subjecting the composition to a heating treatment, and having improved heat stability.
  • Example 15 Construction of expression plasmid for PQQ-dependent gnolecose dehydrogenase gene
  • Wild-type PQQ-dependent gnolecose dehydrogenase expression plasmid PNPG5 is a cinetopactor ⁇ ⁇ ⁇ at the multiple cloning site of the vector pBluescript SK (-).
  • a structural gene encoding a PQQ-dependent glucose dehydrogenase derived from Acinetobacter baumannii NCIMB11517 strain was inserted.
  • the base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • Example 16 Construction of an expression vector capable of replicating in Pseudomonas bacteria
  • DNA 5 ⁇ g of the recombinant plasmid pNPG5 obtained in Example 15 was cleaved with restriction enzymes BamHI and XHoI (Toyobo Co., Ltd.) to depend on PQQ.
  • the structural gene portion of gnolecose dehydrogenase was isolated.
  • the isolated DNA and pTS 1 137 (1 ⁇ g) cleaved with BamHI and XHoI were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA.
  • the ligated DNA was transformed using Escherichia coli DH5a competent cells.
  • the resulting expression plasmid was named PNPG6.
  • Pseudomonas' Putida TE3493 (Microeken No. 12298) was cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and the cells were collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (PH7.0) containing 300 mM sucrose cooled on ice was added to the cells to suspend the cells. The cells are collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer ( ⁇ 7.0) containing 300 mM sucrose ice-cooled is added to the cells. The body was suspended.
  • LBG medium LB medium + 0.3% glycerol
  • the expression plasmid pNPG6 obtained in Example 16 was transformed to 0. 0, and transformed by the electrovolution method.
  • the desired transformant was obtained from a colony grown on LB agar medium containing 100 ⁇ g / ml streptomycin.
  • NTB nitrotetrazolium blue
  • PMS phenazine methosulfate
  • One unit forms 0.5 mmol of diformazan per minute under the conditions described below Check the amount of PQQGDH enzyme.
  • D glucose solution: 0.5M (0.9 g D—glucose (molecular weight 180. 16) / l0ml H 2 O)
  • PIPES NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302. 36) suspended in 60 mL of water, dissolved in 5N NaOH, 2. 2 ml of 10% Triton X Calorie free 100. Use 5N NaOH 25. Adjust the pH to 6.5 ⁇ 0.05 with C and add 100 ml with water.
  • reaction mixture into a test tube (plastic) and preheat at 37 ° C for 5 minutes 0.1 ml of enzyme solution was added and gently inverted to mix.
  • the enzyme powder was dissolved in ice-cold enzyme diluent (E) immediately before the assembly and diluted to 0.1 -0.8 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
  • Vt Total volume (3. lml)
  • the measurement was carried out in the same manner after the enzyme was diluted with 50 mM PIPES NaOH buffer (pH 6.5) containing 0.1% Triton X—100, 0.1% BSA and ⁇ ⁇ PQQ.
  • GDH production medium (1.5% glycerol, 4% yeast extract, 1.25% K2HP04, 0.23% KH2P04, pH 6.8) into a 500 ml Sakaguchi flask. C, 20 minutes A one-clave was performed and the medium was sterilized. After standing to cool, separately sterile filtered streptomycin was added to 100 ⁇ g / ml, and ethanol was further added to 1% (V / V). The transformant obtained in Example 17 was cultured in this medium at 33 ° C for 24 hours, and the cells were collected by centrifugation (12000 rpm, 5 minutes). The cells are suspended in 20 mM phosphate buffer (pH 7.0), crushed by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. According to Test Examples 4 and 5, PQQGDH Activity was measured.
  • the ratio of the expression level of holo PQQGDH was calculated by dividing the holo PQQGD H activity (U / ml) expressed per unit volume by the total PQQGDH activity (U / ml).
  • Figure 12 shows the measurement results.
  • Example 19 Purification of PQQGDH and confirmation of improvement in proportion of holo-type PQQGDH by heat treatment HiTrap— SP (Amersham-Falmacia) ion buffered with 20 mM phosphate buffer (pH 7.0) The exchange column chromatography was charged and the GDH protein was adsorbed on the resin. After washing the resin with 20 mM phosphate buffer (pH 7.0), which is twice the amount of column resin, use 20 mM phosphate buffer (pH 7.0) containing twice the same amount of 0.3 M NaCl. GDH protein was eluted from the resin, and the eluted fraction was collected. Next, after dialyzing in 10 mM PIPES-NaOH buffer (pH 6.5) and desalting, calcium chloride was added to a final concentration of SlmM.
  • the dialysate is divided into 2 minutes, (A) a method for obtaining a purified enzyme preparation after heat treatment, and (B) a method for obtaining a purified enzyme preparation without heat treatment, respectively. Carried out.
  • This change to the active form is because the ratio of holo-type PQQGDH does not change between the heat-treated solution (A) and the purified enzyme preparation (A) that has been further purified. 1 It turns out that it is permanent rather than transient.
  • the stability of GDH itself is increased by heating the GDH composition. It is possible to provide a reagent with high storage stability by performing a heating process at the time of production of the glucose measuring reagent.
  • the improvement of the holo-type ratio or the storage stability according to the present invention can improve the measurement accuracy with a glucose measuring reagent, a glucose assay kit and a glucose sensor.
  • productivity as a holo type PQQGDH can be improved, and PQQGDH can be manufactured at low cost.
  • the activity value per unit protein weight of PQQGDH is improved by increasing the proportion of holo-type PQQG DH.
  • PQQGDH is preferred for use because it allows a reduction in the amount of protein added to the glucose assembly kit and glucose sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[PROBLEMS] To provide a method for improving stability of a composition comprising coenzyme-binding soluble glucose dehydrogenase. [MEANS FOR SOLVING PROBLEMS] A method for improving heat stability of coenzyme-binding soluble glucose dehydrogenase in a composition comprising the enzyme, the method comprising treating the composition with heat; a process for producing a composition comprising the enzyme having improved heat stability; a composition produced by the method; a glucose assay kit and a glucose sensor comprising the composition; and a method for the determination of a glucose concentration by using the composition.

Description

明 細 書  Specification
グルコースデヒドロゲナーゼの熱安定性を向上させる方法  Method for improving the thermal stability of glucose dehydrogenase
技術分野  Technical field
[0001] 本発明は、可溶性の補酵素結合型のグノレコースデヒドロゲナーゼ(以下グノレコース デヒドロゲナーゼを GDHとも示す)を含む組成物の安定性を向上させる方法に関す る。また、安定性が向上した GDHを用いたグルコースの測定方法およびグノレコース センサに関する。  [0001] The present invention relates to a method for improving the stability of a composition comprising a soluble coenzyme-bound type of gnolecose dehydrogenase (hereinafter referred to as GDH). In addition, the present invention relates to a glucose measurement method using GDH with improved stability and a genolecose sensor.
また、本発明は、可溶性の補酵素結合型のグノレコースデヒドロゲナーゼ(以下ダル コースデヒドロゲナーゼを GDHとも示す)を含む組成物の乾燥状態でのホロ型化率 または安定性を向上させる方法に関する。また、ホロ型化率または安定性が向上した GDHを用いたグルコースの測定方法およびグノレコースセンサに関する。  The present invention also relates to a method for improving the holoformation rate or stability in a dry state of a composition containing soluble coenzyme-linked gnolecose dehydrogenase (hereinafter, dalcose dehydrogenase is also referred to as GDH). In addition, the present invention relates to a glucose measuring method using a GDH with improved holo-formation rate or stability, and a genolecose sensor.
本発明の PQQGDHは、臨床検査や食品分析などにおけるグルコースの定量に有 用である。  The PQQGDH of the present invention is useful for the determination of glucose in clinical examinations and food analysis.
背景技術  Background art
[0002] 血糖自己測定は、糖尿病患者が通常の自分の血糖値を把握し治療に生かすため に重要である。血糖自己測定に用いられるセンサにはグノレコースを基質とする酵素 が利用されている。そのような酵素の例としては例えばグノレコースォキシダーゼ(EC 1. 1. 3. 4)が挙げられる。グルコースォキシダーゼはグルコースに対する特異性が 高ぐ熱安定性に優れているという利点を有していることから血糖センサ用酵素として 古くから利用されており、その最初の発表は実に 40年ほど前に遡る。グルコースォキ シダーゼを利用した血糖センサにおいては、グルコースを酸化して D ダルコノー δ ラタトンに変換する過程で生じる電子がメディエーターを介して電極に渡されること で測定がなされるが、グノレコースォキシダーゼは反応で生じたプロトンを酸素に渡し やすいため溶存酸素が測定値に影響してしまうという問題があった。  [0002] Blood glucose self-measurement is important for diabetics to grasp their normal blood glucose level and use it for treatment. For sensors used for blood glucose self-measurement, an enzyme using gnolecose as a substrate is used. An example of such an enzyme is gnorecoxidase (EC 1. 1. 3. 4). Glucose oxidase has been used for a long time as an enzyme for blood glucose sensors because of its high specificity to glucose and excellent heat stability, and its first announcement was made about 40 years ago. Go back. In a blood glucose sensor using glucose oxidase, measurement is performed by passing electrons generated in the process of oxidizing glucose and converting it to D dalcono δ rataton to the electrode through a mediator. There is a problem that dissolved oxygen affects the measured value because the protons generated in the above are easily passed to oxygen.
[0003] このような問題を回避するために、例えば NAD (Ρ)依存型グノレコースデヒドロゲナー ゼ(EC 1. 1. 1. 47)あるいはピロ口キノリンキノン(本書ではピロ口キノリンキノンを P QQとも記載する。)依存型グルコースデヒドロゲナーゼ(EC1. 1. 5. 2 ( BEC1. 1. 99. 17) )が血糖センサ用酵素として用いられている。これらは溶存酸素の影響を受 けない点で優位であるが、前者の NAD (P)依存型グルコースデヒドロゲナーゼは安 定性の乏しさや補酵素の添加が必要とレ、う煩雑性がある。一方後者の PQQ依存型 グルコースデヒドロゲナーゼ(本書では PQQ依存型グルコースデヒドロゲナーゼを p[0003] In order to avoid such a problem, for example, NAD (Ρ) -dependent gnolecose dehydrogenase (EC 1. 1. 1. 47) or pyroguchi quinoline quinone (in this book, pyroguchi quinoline quinone is used). P QQ is also described.) Dependent glucose dehydrogenase (EC1. 1. 5. 2 (BEC1. 1. 99. 17)) is used as an enzyme for blood glucose sensors. These are superior in that they are not affected by dissolved oxygen, but the former NAD (P) -dependent glucose dehydrogenase has poor stability and requires the addition of a coenzyme. On the other hand, the latter PQQ-dependent glucose dehydrogenase (PQQ-dependent glucose dehydrogenase is
QQGDHとも記載する。)は、基質特異性に乏しぐマルトースゃラタトースといったグ ルコース以外の糖類にも作用するため測定値の正確性を損ねてしまうという欠点があ る。 Also described as QQGDH. ) Has the disadvantage that it affects the accuracy of measured values because it also acts on sugars other than glucose, such as maltose and ratatoose, which have poor substrate specificity.
[0004] また、特許文献 1にはァスペルギルス属由来フラビン結合型グルコースデヒドロゲナ ーゼが開示されている。本酵素は基質特異性に優れかつ溶存酸素の影響を受けな い点で優位である。熱安定性については 50°C 15分処理で 89%程度の活性残存率 であり安定性についても優れているとされている。しかし、センサーチップ作製の工程 において加熱処理を要する場合があることを考えれば決して十分な安定性とはいえ なレ、。  [0004] Patent Document 1 discloses a flavin-binding glucose dehydrogenase derived from the genus Aspergillus. This enzyme is superior in that it has excellent substrate specificity and is not affected by dissolved oxygen. With regard to thermal stability, the activity remaining rate is about 89% after 15 minutes of treatment at 50 ° C, and it is said that the stability is also excellent. However, considering the fact that heat treatment may be required in the process of manufacturing the sensor chip, it is by no means sufficient stability.
特許文献 l :WO 2004/058958  Patent Literature l: WO 2004/058958
図面の簡単な説明  Brief Description of Drawings
[0005] [図 1]図 1は、 PIPESバッファー(pH6. 5)をベースとして各種化合物を共存させた P QQGDH組成物の 50°C, 16時間処理後の PQQGDH活性の残存率(%)を示す。  [0005] [Fig. 1] Fig. 1 shows the residual rate (%) of PQQGDH activity after treatment for 16 hours at 50 ° C in a PQQGDH composition based on PIPES buffer (pH 6.5) in the presence of various compounds. Show.
[図 2]図 2は、フタル酸バッファー(pH7. 0)、リン酸カリウムバッファー(pH7. 0)をべ ースとして各種化合物を共存させた PQQGDH組成物の 50°C, 16時間処理後の P QQGDH活性の残存率(%)を示す。  [Figure 2] Figure 2 shows the results after treatment of PQQGDH composition in the presence of various compounds based on phthalate buffer (pH 7.0) and potassium phosphate buffer (pH 7.0) at 50 ° C for 16 hours. P Indicates the residual rate (%) of QQGDH activity.
[図 3]図 3は、各種化合物を共存させた NADGDH組成物の 50°C, 1時間処理後の NADGDH活性の残存率(%)を示す。  FIG. 3 shows the residual rate (%) of NADGDH activity after 1 hour treatment of NADGDH composition coexisting with various compounds at 50 ° C.
[図 4]図 4は、タンパク質性の安定化剤を共存させた FADGDH組成物の 50°C, 30 分間処理後の FADGDH活性の残存率(%)を示す。  [FIG. 4] FIG. 4 shows the residual rate (%) of FADGDH activity after treatment for 30 minutes at 50 ° C. with a FADGDH composition in the presence of a proteinaceous stabilizer.
[図 5]図 5は、ジカルボン酸化合物を共存させた FADGDH組成物の 50°C, 30分間 処理後の FADGDH活性の残存率(%)を示す。  FIG. 5 shows the residual ratio (%) of FADGDH activity after treatment of a FADGDH composition coexisting with a dicarboxylic acid compound at 50 ° C. for 30 minutes.
[図 6]図 6は、塩化合物を共存させた FADGDH組成物の 50°C, 15分間処理後の F ADGDH活性の残存率(%)を示す。 [図 7]図 7は PQQ依存型 GDHの至適温度を示す。 FIG. 6 shows the FADGDH activity remaining rate (%) after a 15 minute treatment at 50 ° C. with a FADGDH composition in the presence of a salt compound. [Fig. 7] Fig. 7 shows the optimum temperature for PQQ-dependent GDH.
[図 8]図 8は PQQ依存型 GDHの熱安定性を示す。  [Fig. 8] Fig. 8 shows the thermal stability of PQQ-dependent GDH.
[図 9]図 9は、加温処理が及ぼす熱安定性効果の検討結果である。加温処理後に 4 [FIG. 9] FIG. 9 shows the results of studying the thermal stability effect of heating treatment. 4 after heating
°Cにて保存したサンプノレの活性値を 100%として残存活性を算出した。 Residual activity was calculated with the activity value of Sampu Nore stored at ° C as 100%.
[図 10]図 10は、加温処理条件の検討 (温度 X時間)結果である。加温処理後に 4°Cに て保存したサンプルの活性値を 100 %として残存活性を算出した。  [FIG. 10] FIG. 10 shows the results of the examination of the heat treatment conditions (temperature X time). The residual activity was calculated with the activity value of the sample stored at 4 ° C after the heating treatment as 100%.
[図 11]図 11は、加温処理後さらに 50°C、 16時間の再カ卩温処理における効果の検討 結果である。加温処理後 55°C、 1時間熱処理した残存活性を、 4°Cにて保存したサ ンプノレの活性値を 100 %として算出した。  [FIG. 11] FIG. 11 shows the results of an examination of the effect of re-cooking treatment at 50 ° C for 16 hours after the heating treatment. The residual activity after heat treatment at 55 ° C for 1 hour was calculated with the activity value of the sampnore stored at 4 ° C as 100%.
[図 12]単位液量あたりに発現したホロ型 PQQGDH活性(U/ml)を全 PQQGDH活 性(U/ml)で割ることで算出したホロ型 PQQGDHの発現量の割合。  [Fig. 12] Percentage of expression level of holo-type PQQGDH calculated by dividing holo-type PQQGDH activity (U / ml) expressed per unit liquid volume by total PQQGDH activity (U / ml).
[図 13]単位液量あたりに発現したホロ型 PQQGDH活性(U/ml)を全 PQQGDH活 性(U/ml)で割ることで算出したホロ型 PQQGDHの発現量の割合。  [Fig. 13] Percentage of expression level of holo-type PQQGDH calculated by dividing holo-type PQQGDH activity (U / ml) expressed per unit volume by total PQQGDH activity (U / ml).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の目的は、上述のような公知の血糖センサ用酵素の安定性に関する欠点を 克服し、より実用面において有利な血糖値測定用試薬を提供することである。 [0006] An object of the present invention is to provide a reagent for measuring a blood glucose level that overcomes the above-mentioned drawbacks related to the stability of known enzymes for blood glucose sensors and is more practically advantageous.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、これまでの PQQGDHの研究で、該酵素の基質特異性を改善した 多重変異体を多数取得したが、その一部には、野生型 PQQGDHと比べて保存安 定性が低減した変異体が見られた。そこで、この課題を解決するため、その原因につ レ、て鋭意研究したところ、本特許で提示した該酵素の加温処理を施すことにより、 PQ QGDHの立体構造が安定に維持され安定性が改善できることがわかった。また、本 特許で提示した該酵素にある種の化合物を添加することにより、 PQQGDHの立体 構造が安定に維持され安定性が改善できることがわかった。 [0007] In the previous PQQGDH studies, the present inventors have obtained a large number of multiple mutants that have improved the substrate specificity of the enzyme, and some of them have storage stability compared to wild-type PQQGDH. A mutant with reduced was observed. Therefore, in order to solve this problem, intensive research was conducted on the cause of the problem, and by applying the heating treatment of the enzyme presented in this patent, the three-dimensional structure of PQ QGDH was stably maintained and the stability was improved. I found that it can be improved. In addition, it was found that by adding certain compounds to the enzyme presented in this patent, the three-dimensional structure of PQQGDH is stably maintained and the stability can be improved.
これまで PQQGDHの安定性を向上する方策に関する報告としては特許文献 2が あり、その中では遺伝子レベルでの PQQGDH改変手段を用いた検討が報告されて いる力 酵素の改変を用いずに安定性を増大させる手段については、その可能性す ら触れられていなかった。 To date, Patent Document 2 has reported on measures to improve the stability of PQQGDH, among which there are reports of studies using PQQGDH modification means at the gene level. The possibility of increasing means It was not touched.
特許文献 2: WO02/072839  Patent Document 2: WO02 / 072839
[0008] 本発明者らは、過去の方策とは異なる視点から、より簡便な安定性の改良策を探る こととし、さらなる鋭意研究を実施した結果、 GDH組成物を加温処理することにより G DH自体の安定性を増大できること、また、 GDH組成物を改良することにより GDHの ホロ型比率あるいは保存安定性を増大できることを明らかにして、遂に本発明を完成 するに到った。 [0008] As a result of further diligent research, the present inventors have sought to find a simpler method for improving stability from a viewpoint different from that of the past policy. It has been clarified that the stability of DH itself can be increased, and that the GDH holo-type ratio or storage stability can be increased by improving the GDH composition, and finally the present invention has been completed.
[0009] すなわち、本発明は以下のような構成からなる。  That is, the present invention has the following configuration.
[項 1コ  [Section 1
可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含有する組成物において 、該組成物に加温処理を施す工程を含む、該酵素の熱安定性を向上させる方法。  A method for improving the thermal stability of a composition comprising a soluble coenzyme-linked glucose dehydrogenase, comprising a step of heating the composition.
[項 2]  [Section 2]
補酵素がピロロキノンキノリンまたはフラビン化合物である、項 1に記載の熱安定性 を向上させる方法。  Item 2. The method for improving thermal stability according to Item 1, wherein the coenzyme is pyrroloquinone quinoline or a flavin compound.
[項 3コ  [Section 3
加温処理温度が酵素の大きな熱失活が発生する温度が発生する温度以下である 、請求項 1に記載の熱安定性を向上させる方法。  2. The method for improving the thermal stability according to claim 1, wherein the heating treatment temperature is not higher than a temperature at which a large heat inactivation of the enzyme occurs.
[項 4コ  [Section 4
可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含有する組成物において 、該組成物に加温処理を施す工程を含む、熱安定性が向上した、可溶性の補酵素 結合型グルコースデヒドロゲナーゼを含有する組成物を製造する方法。  A composition containing a soluble coenzyme-linked glucose dehydrogenase comprising a soluble coenzyme-linked glucose dehydrogenase having improved thermal stability, comprising a step of heating the composition. How to manufacture.
[項 5]  [Section 5]
項 4に記載の方法で製造された、可溶性の補酵素結合型のグルコースデヒドロゲナ ーゼを含有する組成物において、熱安定性が向上した、可溶性の補酵素結合型グ ルコースデヒドロゲナーゼを含有する組成物。  A composition containing a soluble coenzyme-bound glucose dehydrogenase produced by the method according to Item 4, which contains a soluble coenzyme-bound glucose dehydrogenase with improved thermal stability. Composition.
[項 6コ  [Section 6
項 5に記載の組成物を含むグルコースアツセィキット  A glucose assembly kit comprising the composition according to Item 5.
[項 7] 項 5に記載の組成物を含むグルコースセンサ。 [Section 7] Item 6. A glucose sensor comprising the composition according to Item 5.
[項 8コ  [Section 8
項 5に記載の組成物を用いるグルコース濃度の測定方法。  6. A method for measuring glucose concentration using the composition according to item 5.
発明の効果  The invention's effect
[0010] 本発明による熱安定性の向上は、グルコース測定試薬、グノレコースアツセィキット及 びグルコースセンサー作製時の酵素の熱失活を低減して、該酵素の使用量低減や 測定精度の向上を可能にする。また、保存安定性に優れた GDHを用いた血糖値測 定試薬の提供を可能にする。  [0010] The improvement in thermal stability according to the present invention reduces the heat inactivation of the enzyme during preparation of the glucose measurement reagent, the gnolecose assay kit, and the glucose sensor, thereby reducing the amount of the enzyme used and the measurement accuracy. Enable improvement. It also makes it possible to provide a blood glucose measurement reagent using GDH, which has excellent storage stability.
本発明によるホロ型比率あるいは保存安定性の向上は、グルコース測定試薬、グ ルコースアツセィキット及びグルコースセンサーにおいても保存安定性を改善して、 該酵素の使用量低減や測定精度の向上を可能にする。また、保存安定性に優れた GDHを用いた血糖値測定試薬の提供を可能にする。  The improvement of the holo-type ratio or storage stability according to the present invention also improves the storage stability of glucose measuring reagents, glucose assembly kits, and glucose sensors, thereby reducing the amount of the enzyme used and improving the measurement accuracy. To. It also makes it possible to provide a blood glucose level measurement reagent using GDH, which has excellent storage stability.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] GDHは、以下の反応を触媒する酵素である。  [0011] GDH is an enzyme that catalyzes the following reaction.
D—グルコース + 電子伝達物質(酸化型)  D—glucose + electron mediator (oxidized)
→ D—ダルコノー δ —ラタトン + 電子伝達物質 (還元型)  → D—Dalcono δ —Rataton + electron transfer material (reduced form)
D -グノレコースを酸化して D -グノレコノ一 1 , 5—ラタトンを生成するとレ、う反応を触媒 する酵素であり、由来や構造に関しては特に限定するものではない。  It is an enzyme that catalyzes the reaction when D-gnolecose is oxidized to produce D-gnolecono-1,5-latataton, and there is no particular limitation on the origin and structure.
[0012] 本発明の方法に適用することができる GDHは、可溶性の補酵素結合型のダルコ一 スデヒドロゲナーゼ(GDH)であれば特に限定されない。  [0012] GDH that can be applied to the method of the present invention is not particularly limited as long as it is a soluble coenzyme-bound dalcos dehydrogenase (GDH).
補酵素としては、例えばピロロキノンキノリンまたはフラビン化合物またはニコチン酸 アミドアデニンジヌクレオチド(NAD)などをとることができる。  As the coenzyme, for example, pyrroloquinone quinoline or flavin compound or nicotinamide adenine dinucleotide (NAD) can be used.
[0013] 本発明の方法に適用することができる、補酵素としてピロロキノンキノリンをとる GD H (PQQGDH)としては、特に限定されるものではないが、例えば、ァシネトパクター •力ノレコアセティカス(Acinetobacter calcoaceticus) LMD79. 41由来のもの(A . M. Cleton— Jansenら、 J. Bacteriol., 170, 2121 (1988)および Mol. Gen. Genet., 217, 430 (1989) )、ェシエリヒア 'コリ(Escherichia coli)由来のもの(A . M. Cleton—Jansenら、 J. Bacteriol., 172, 6308 (1990) )、ク、、ノレコノノ クタ一 · ォキシダンス(Gluconobacter oxydans)由来のもの(Mol. Gen. Genet., 229 , 206 (1991) )、及び、特許文献 1で報告されているァシネトパクター 'バウマンニ (A cinetobacter baumanni) NCIMB11517などの微生物由来のものなどが例示 できる。 [0013] The GD H (PQQGDH) taking pyrroloquinone quinoline as a coenzyme that can be applied to the method of the present invention is not particularly limited, but for example, acinetopacter • force no coreaceticus (Acinetobacter calcoaceticus) from LMD79.41 (A. M. Cleton—Jansen et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Genet., 217, 430 (1989)), Escherichia E. coli) (A. M. Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990)), Ku, Norecono Oxidans (Gluconobacter oxydans) (Mol. Gen. Genet., 229, 206 (1991)), and those derived from microorganisms such as Acinetobacter baumanni NCIMB11517 reported in Patent Document 1 Can be illustrated.
ただし、ェシエリヒア'コリなどに存在する膜型酵素を改変して可溶型にすることは困 難であり、起源としてはァシネトバクタ一'カルコァセティカスもしくはァシネトパクター 'バウマンニなどの可溶性 PQQGDHを選択することが好ましい。  However, it is difficult to modify the membrane enzyme present in Escherichia coli to make it soluble, and the origin is to select soluble PQQGDH such as Acinetobacter's Calcoaceticus or Acinetopacter 'Baumannii Is preferred.
なお、ァシネトパクター 'バウマンニ(Acinetobacter baumannii) NCIMB1151 7抹 ίま、以冃 ij、 Acinetobacter calcoaceticus (こ分類 れてレヽた。  In addition, Acinetobacter baumannii (CIcinetobacter baumannii) NCIMB1151 7 or more, ij, Acinetobacter calcoaceticus (this was classified).
[0014] 本発明の方法に適用することができる PQQGDHは、グルコースデヒドロゲナーゼ 活性を有する限り、上記に例示されたものにさらに他のアミノ酸残基の一部が欠失ま たは置換されていてもよぐまた他のアミノ酸残基が付加されていてもよい。  [0014] PQQGDH that can be applied to the method of the present invention is not limited to those exemplified above, as long as it has glucose dehydrogenase activity. Other amino acid residues may be added.
このような改変は当該技術分野における公知技術を用いて当業者であれば容易に 実施することが出来る。例えば、蛋白質に部位特異的変異を導入するために当該蛋 白質をコードする遺伝子の塩基配列を置換または挿入するための種々の方法が、 S ambrookら着、 Molecular Cloning; A Laboratory Manual 第 2片及 (1989) Cold Spring Harbor Laboratory Press, New Yorkに記載されてレヽる。  Such modifications can be easily carried out by those skilled in the art using known techniques in the art. For example, various methods for substituting or inserting a base sequence of a gene encoding a protein in order to introduce a site-specific mutation into the protein are described in Sambrook et al., Molecular Cloning; (1989) As described in Cold Spring Harbor Laboratory Press, New York.
[0015] これらの PQQGDHは、たとえば東洋紡績製 GLD— 321など市販のものを用いる ことが出来る。あるいは、当該技術分野における公知技術を用いて当業者であれば 容易に製造することが出来る。  [0015] As these PQQGDH, for example, commercially available products such as GLD-321 manufactured by Toyobo Co., Ltd. can be used. Alternatively, it can be easily produced by those skilled in the art using known techniques in the technical field.
[0016] 例えば、上記の PQQGDHを生産する天然の微生物、あるいは、天然の PQQGD Hをコードする遺伝子をそのまま、あるいは、変異させてから、発現用ベクター(多くの ものが当該技術分野において知られている。例えばプラスミド。 )に揷入し、適当な宿 主(多くのものが当該技術分野において知られている。例えば大腸菌。)に形質転換 させた形質転換体を培養し、培養液力 遠心分離などで菌体を回収した後、菌体を 機械的方法またはリゾチームなどの酵素的方法で破壊し、また、必要に応じて EDT Aなどのキレート剤や界面活性剤等を添加して可溶化し、 PQQGDHを含む水溶性 画分を得ることができる。または適当な宿主ベクター系を用いることにより、発現した P QQGDHを直接培養液中に分泌させることが出来る。 [0016] For example, the above-mentioned natural microorganisms that produce PQQGDH, or the gene encoding natural PQQGDH as it is or after mutation, expression vectors (many are known in the art) Cultivated transformants transformed into suitable plasmids (many are known in the art, eg, E. coli), and culture fluid force centrifugation After harvesting the cells, etc., destroy the cells by mechanical methods or enzymatic methods such as lysozyme, and if necessary, solubilize by adding a chelating agent such as EDT A or a surfactant. A water-soluble fraction containing PQQGDH can be obtained. Or expressed P by using an appropriate host vector system. QQGDH can be secreted directly into the culture medium.
[0017] 上記のようにして得られた PQQGDH含有溶液を、例えば減圧濃縮、膜濃縮、さら に硫酸アンモニゥム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例 えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿せしめればよ レ、。また、加熱処理や等電点処理も有効な精製手段である。また、吸着剤あるいはゲ ルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、 ァフィ二ティクロマトグラフィーを行うことにより、精製された PQQGDHを得ることがで きる。該精製酵素標品は、電気泳動(SDS— PAGE)的に単一のバンドを示す程度 に純化されてレ、ることが好ましレ、。  [0017] The PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting-out treatment such as ammonium sulfate or sodium sulfate, or hydrophilic organic solvents such as methanol, ethanol, acetone and the like. Precipitate by the fractional precipitation method. Heat treatment and isoelectric point treatment are also effective purification means. In addition, purified PQQGDH can be obtained by performing gel filtration using an adsorbent or gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography. The purified enzyme preparation should preferably be purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
[0018] 上記工程と前後して、全 GDH酵素タンパク質に対するホロ型 GDHの割合を向上 させるために、好ましくは 25〜50°C、より好ましくは 30〜45°Cの加熱処理を行っても 良い。  [0018] Before and after the above steps, in order to improve the ratio of holo-type GDH to the total GDH enzyme protein, a heat treatment of preferably 25 to 50 ° C, more preferably 30 to 45 ° C may be performed. .
[0019] 本発明における PQQGDHの濃度は特に制約がない。  [0019] The concentration of PQQGDH in the present invention is not particularly limited.
[0020] 本発明の方法に適用することができる、補酵素として FADをとる GDH (FAD依存型 GDH)としては、特に限定されるものではないが、例えば、真核生物の範疇に属する 糸状菌のぺニシリウム(Penicillium)属、ァスペルギルス(Aspergillus)属などの微 生物に由来するものが挙げられる。これら微生物菌株は各菌株保存機関より分譲を 依頼することにより容易に入手することができる。例えば、ぺニシリウム属のぺニシリウ ム.リラシノエキヌラタムは、寄託番号 NBRC6092として製品評価技術基盤機構 '生 物資源部門に登録されてレ、る。  [0020] GDH taking FAD as a coenzyme (FAD-dependent GDH) that can be applied to the method of the present invention is not particularly limited. For example, filamentous fungi belonging to the category of eukaryotes And those derived from microorganisms such as Penicillium and Aspergillus. These microbial strains can be easily obtained by requesting distribution from each strain storage organization. For example, Penicillium Penicillium, Lirashino Echinulatam, is registered with the Product Evaluation Technology Foundation's “Biological Resources Department” under the deposit number NBRC6092.
[0021] 上記微生物を培養する培地としては、微生物が生育しかつ本発明に示す GDHを 生産しうるものであれば特に限定しないが、より好適には微生物の生育に必要な炭 素源、無機窒素源及び Zまたは有機窒素源を含有するものがよぐさらに好ましくは 通気攪拌に適した液体培地であるのがよい。液体培地の場合、炭素源としては例え ばグルコース、デキストラン、可溶性デンプン、蔗糖など力 窒素源としては、例えば アンモニゥム塩類、硝酸塩類、アミノ酸、コーンスティープリカ一、ペプトン、カゼイン、 肉エキス、脱脂大豆、バレイショ抽出液などが例示される。また所望により他の栄養 素(例えば塩ィ匕カルシウム、リン酸二水素ナトリウム、塩化マグネシウム等の無機塩、 ビタミン類等)を含んでいてもよい。 [0021] The medium for culturing the microorganism is not particularly limited as long as the microorganism grows and can produce the GDH shown in the present invention. More preferably, the medium is a carbon source or inorganic necessary for the growth of the microorganism. A liquid medium containing a nitrogen source and Z or an organic nitrogen source is more preferable, and a liquid medium suitable for aeration stirring is preferred. In the case of liquid medium, for example, glucose, dextran, soluble starch, sucrose, etc. as the carbon source. As the nitrogen source, for example, ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meat extract, defatted soybeans, A potato extract etc. are illustrated. If desired, other nutrients (for example, inorganic salts such as calcium chloride, sodium dihydrogen phosphate, magnesium chloride, Vitamins and the like).
[0022] 培養方法は、当分野において知られている方法に従う。例えば上記栄養素を含む 液体培地に微生物の胞子もしくは生育状態の菌体を植菌し、静置もしくは通気攪拌 により菌体を増殖させるが、好ましくは通気攪拌により培養するのがよい。培養液の p Hは好ましくは 5〜9であり、さらに好ましくは 6〜8である。温度は通常 14〜42°C、よ り好ましくは 20°C〜40°Cで行うのがよレ、。通常は 14〜: 144時間培養を継続するが、 好ましくは各々の培養条件において GDHの発現量が最大となる時点で培養を終了 するのがよい。このような時点を見極める方策としては、培養液のサンプリングを行つ て培養液中の GDH活性を測定することでその変化をモニタリングし、経時的な GDH 活性の上昇がなくなった時点をピークとみなして培養停止すればよい。  [0022] The culture method follows a method known in the art. For example, spore of microorganisms or growing cells are inoculated in a liquid medium containing the above nutrients, and the cells are allowed to grow by standing or aeration stirring, but preferably cultured by aeration stirring. The pH of the culture solution is preferably 5-9, more preferably 6-8. The temperature is usually 14 to 42 ° C, more preferably 20 to 40 ° C. Usually, the culture is continued for 14 to 144 hours, but the culture is preferably terminated when the expression level of GDH is maximized under each culture condition. As a measure to identify such a time point, the change is monitored by sampling the culture medium and measuring the GDH activity in the culture liquid, and the point when the increase in GDH activity over time is eliminated is regarded as the peak. To stop the culture.
[0023] 上記の培養液から GDHを抽出する方法としては、菌体内に蓄積した GDHを回収 する場合にあっては遠心分離もしくはろ過等の操作によって菌体のみを集め、この菌 体を溶媒、好ましくは水もしくは緩衝液に再懸濁する。再懸濁した菌体は公知の方法 により破砕することで菌体中の GDHを溶媒中に抽出することができる。破砕方法とし ては、溶菌酵素を用いることもでき、また物理的破砕方法を用いてもよい。溶菌酵素 としては、真菌細胞壁を消化する能力を有するものであれば特に限定しないが、適 用可能な酵素の例としてはシグマ社製「Lyticase」等が挙げられる。また、物理的破 砕の方法としては例えば超音波破砕、ガラスビーズ破砕、フレンチプレス等が挙げら れる。破砕処理後の溶液は、遠心分離もしくはろ過により残渣を取り除いて GDH粗 キ由出溶 f夜を得ることができる。  [0023] As a method of extracting GDH from the above culture solution, when collecting GDH accumulated in the microbial cells, only the microbial cells are collected by an operation such as centrifugation or filtration, and the microbial cells are collected as a solvent, Preferably resuspended in water or buffer. The resuspended cells can be disrupted by a known method to extract GDH in the cells into a solvent. As a crushing method, a lytic enzyme can be used, or a physical crushing method can be used. The lytic enzyme is not particularly limited as long as it has the ability to digest the fungal cell wall. Examples of applicable enzymes include “Lyticase” manufactured by Sigma. Examples of the physical crushing method include ultrasonic crushing, glass bead crushing, and French press. After the crushing treatment, the residue can be removed by centrifugation or filtration to obtain a GDH crude solution.
[0024] また本発明における培養方法としては固体培養によることもできる。好ましくは温度 や湿度等を適宜制御の上で小麦等のふすま上に本発明の GDH生産能を有する真 核微生物を生育させる。このとき、培養は静置により行ってもよ また培養物を攪拌 する等して混合してもよい。 GDHの抽出は、培養物に溶媒、このましくは水もしくは 緩衝液を加えて GDHを溶解させ、遠心分離もしくはろ過により菌体ゃふすま等の固 形物を取り除くことでなされる。  [0024] Further, the culture method in the present invention may be solid culture. Preferably, the eukaryotic microorganism having the ability to produce GDH of the present invention is grown on wheat bran or the like while appropriately controlling temperature, humidity and the like. At this time, the culture may be performed by standing or may be mixed by stirring the culture. GDH extraction is performed by adding a solvent, preferably water or a buffer, to the culture to dissolve GDH, and removing solid matter such as bacterial cell bran by centrifugation or filtration.
[0025] GDHの精製は、 GDH活性の存在する画分に応じて通常使用される種々の分離 技術を適宜組み合わせることにより行うことができる。上記 GDH抽出液から、例えば 塩析、溶媒沈殿、透析、限外ろ過、ゲルろ過、非変性 PAGE、 SDS _PAGE、ィォ ン交換クロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー、ァフィ二ティークロマ トグラフィー、逆相高速液体クロマトグラフィー、等電点電気泳動などの公知の分離方 法を適当に選択して行うことができる。また、抽出した GDHもしくは精製した GDH溶 液中に各種安定化剤等を添加することもできる。このような物質の例としては例えば マンニトーノレ.トレハロース.スクロース.ソノレビトーノレ.エリスリトーノレ、グリセローノレ等に 代表される糖 ·糖アルコール類 'グノレタミン酸 'アルギニン等に代表されるアミノ酸、牛 血清アルブミン ·卵白アルブミンや各種シャペロン等に代表されるタンパク質.ぺプチ ド類等を挙げることができる。 [0025] Purification of GDH can be performed by appropriately combining various separation techniques that are usually used depending on the fraction in which GDH activity is present. From the GDH extract above, for example Salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration, non-denaturing PAGE, SDS_PAGE, ion exchange chromatography, hydroxyapatite chromatography, affinity chromatography, reverse phase high performance liquid chromatography, isoelectric A known separation method such as point electrophoresis can be selected appropriately. Various stabilizers and the like can also be added to the extracted GDH or the purified GDH solution. Examples of such substances include sugars and sugar alcohols such as mannitol, trehalose, sucrose, sonorebitonore, erythritole, glyceronole, etc., amino acids such as bovine serum albumin, egg white albumin, Proteins such as chaperones and peptides.
[0026] また本発明の GDHは液状で供することもできる力 S、凍結乾燥、真空乾燥あるいはス プレードライ等により粉末化することができる。このとき、 GDHは緩衝液等に溶解した ものを用いることができ、さらに賦形剤あるいは安定化剤として糖 ·糖アルコール類、 アミノ酸、タンパク質、ペプチド等を添加するのが好ましい。また、粉末化後さらに造 粒することもできる。 [0026] The GDH of the present invention can also be pulverized by force S, lyophilization, vacuum drying, spray drying or the like which can be provided in a liquid state. In this case, GDH dissolved in a buffer solution or the like can be used, and it is preferable to add sugar / sugar alcohols, amino acids, proteins, peptides, etc. as excipients or stabilizers. It can also be granulated after pulverization.
[0027] 上記に示す GDHの抽出 ·精製 ·粉末化、および安定性試験に用いる緩衝液の組 成は特に限定しなレ、が、好ましくは pH5〜8の範囲で緩衝能を有するものであればよ く、例えばホウ酸、トリス塩酸、リン酸カリウム等の緩衝剤や、 BES、 Bicine、 Bis— Tri s、 CHES、 EPPS、 HEPES、 HEPPSO、 MES、 MOPS, M〇PS〇、 PIPES, P〇 PS〇、 TAPS, TAPS〇、 TES、 Tricineといったグッド緩衝剤が挙げられる。  [0027] The composition of the buffer used for the GDH extraction, purification, pulverization, and stability test described above is not particularly limited, but preferably has a buffer capacity in the range of pH 5-8. For example, buffers such as boric acid, Tris hydrochloric acid, potassium phosphate, BES, Bicine, Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, M〇PS〇, PIPES, P〇 Good buffering agents such as PS0, TAPS, TAPS0, TES, Tricine are listed.
これらのうち 1種のみを適用してもよいし、 2種以上を用いてもよい。さらには上記以 外を含む 1種以上の複合組成であってもよい。  Of these, only one type may be applied, or two or more types may be used. Further, one or more composite compositions including those other than the above may be used.
また、これらの添加濃度としては、緩衝能を持つ範囲であれば特に限定されないが 、好ましい上限は lOOmM以下、より好ましくは 50mM以下である。好ましい下限は 5 mM以上である。  The concentration of these additives is not particularly limited as long as it has a buffering capacity, but the preferable upper limit is 10 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
凍結乾燥物中においては緩衝剤の含有量は、特に限定されるものではないが、好 ましくは 0. 1% (重量比)以上、特に好ましくは 0.:!〜 30% (重量比)の範囲で使用さ れる。  The content of the buffering agent in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.:! To 30% (weight ratio). Used in the range of.
これらは、種々の市販の試薬を用いることが出来る。 [0028] これらのバッファ一は測定時に添カ卩してもよいし、後記するグルコース測定用試薬、 グルコースアツセィキットあるいはグルコースセンサーを作製するときに予め含有させ ておくこともできる。なお、その際には、液体状態、乾燥状態などの形態は問われず、 測定時に機能するようにしておけばよい。 These can use various commercially available reagents. [0028] These buffers may be added at the time of measurement, or may be contained in advance when a glucose measuring reagent, a glucose assay kit, or a glucose sensor described later is prepared. In this case, the liquid state, the dry state, etc. are not limited, and it is sufficient to function during measurement.
[0029] 本発明でいう安定性の向上とは、 GDH酵素を含む組成物をある一定の温度で、一 定時間熱処理した後、維持されている GDH酵素の残存率(%)が増大することを意 味する。例えば、本願発明では、ほぼ完全に活性が維持されると 4°C保存のサンプノレ を 100%として、これと 55°C, 1時間熱処理後の GDH溶液の活性値を比較して、その 酵素の残存率を算出している。この残存率が加温処理を実施していないものと比べ て増大していた場合、 GDHの熱安定性が向上したと判断した。 [0029] The improvement in stability as used in the present invention means that the residual rate (%) of the maintained GDH enzyme increases after heat treatment of the composition containing the GDH enzyme at a certain temperature for a certain period of time. Means. For example, in the present invention, when the activity is almost completely maintained, the sampnore stored at 4 ° C is regarded as 100%, and the activity value of the GDH solution after heat treatment at 55 ° C for 1 hour is compared with that of the enzyme. Survival rate is calculated. If this residual rate was increased compared to that without heating treatment, it was judged that the thermal stability of GDH was improved.
安定性が向上しているかどうかの判断は、次のように行った。  Judgment as to whether or not stability was improved was performed as follows.
後述の GDH酵素活性の測定方法に記載の活性測定法において、 4°C, 16時間処 理後の PQQGDH活性値(a)と、熱処理後の GDH活性値 (b)を測定し、測定値(a) を 100とした場合に対する相対値((b) / (a) X 100)を求めた。この相対値を残存率 (%)とした。そして、該加温処理の実施の有無を比較して、実施により残存率が増大 した場合、熱安定性が向上したと判断した。  In the activity measurement method described in the method for measuring GDH enzyme activity described below, the PQQGDH activity value (a) after 4 hours at 16 ° C and the GDH activity value (b) after heat treatment were measured. The relative value ((b) / (a) X 100) was calculated when a) was 100. This relative value was defined as the residual rate (%). Then, the presence or absence of the heating treatment was compared, and it was determined that the thermal stability was improved when the residual rate increased due to the execution.
なお、上記説明における「熱処理」は、酵素の安定性を確認する試験のための処理 のことを言レ、、本発明の「加温処理」とは異なることを、念のため付記する。本段落以 外での説明においても同様である。  It should be noted that the “heat treatment” in the above description refers to a treatment for confirming the stability of the enzyme and is different from the “warming treatment” of the present invention. The same applies to the explanations other than in this paragraph.
[0030] 加温処理は、加温処理を施す前後で、少なくとも 50%以上の活性が維持されてい る必要があり、好ましくは 80%以上の活性が維持されており、さらに好ましくは 90% 以上の活性が維持されてレ、ることが望ましレ、。 [0030] The heating treatment requires that at least 50% or more of the activity be maintained before and after the heating treatment, preferably 80% or more of the activity is maintained, and more preferably 90% or more. It is desirable that the activity of is maintained.
本特許における酵素の大きな熱失活が発生する温度とは、幾つかの異なる処理温 度で酵素の残存活性を調べた時に、連続する 3点以上のデータから得られる近似式 の傾きの絶対値が 2倍以上に変化する点(処理温度)を意味している。例えば、図 1 で ίま、 0、 30、 40°Cでの近似式のィ頃きの絶対ィ直 ίま、 0. 233であり、 40、 50、 60°Cで の近似式の傾きの絶対値は、 3. 63である。よって、この熱処理条件では、 40°Cが大 きな熱失活が発生する温度となる。 あるいは、本特許における酵素の大きな熱失活が発生する温度とは、幾つかの異 なる温度で熱処理したときの酵素の残存活性が 80%以下となる温度である。 In this patent, the temperature at which large heat inactivation of the enzyme occurs is the absolute value of the slope of the approximate expression obtained from three or more consecutive data when the residual activity of the enzyme is examined at several different processing temperatures. This means the point where the temperature changes more than twice (processing temperature). For example, in Fig. 1, the absolute expression of the approximate expression at 0, 30, and 40 ° C is 0.23, and the inclination of the approximate expression at 40, 50, and 60 ° C is 0.233. The absolute value is 3.63. Therefore, under this heat treatment condition, 40 ° C is a temperature at which large thermal deactivation occurs. Alternatively, the temperature at which large heat inactivation of the enzyme in this patent occurs is the temperature at which the residual activity of the enzyme is 80% or less when heat-treated at several different temperatures.
本発明においては、上記の 2通りの方法で得られた温度のうち、低いほうの温度を「 酵素の大きな熱失活が発生する温度」とする。一方の方法でしか決められない場合 は、その方法で決定した温度を「酵素の大きな熱失活が発生する温度」とする。  In the present invention, among the temperatures obtained by the above two methods, the lower temperature is referred to as “temperature at which large heat inactivation of the enzyme occurs”. If it can only be determined by one method, the temperature determined by that method is defined as “the temperature at which a large heat inactivation of the enzyme occurs”.
[0031] この、大きな熱失活が発生する温度は、酵素の種類により異なり、また、同じ酵素で も、検討に用いる酵素濃度により異なる。例えば、本特許の検討で用いた PQQGD H改変体では、酵素濃度 5U/mlで検討した場合には、大きな熱失活が発生する温 度は、 40°Cであったが(図 1)、 20〜30U/mlで検討した場合には、 55°Cであった。 そこで、酵素濃度 20〜30U/mlの検討では、該温度以下で安全サイドを考え、 50 °C以下で加温処理を検討している。また、加温処理条件の検討の結果、大きな熱失 活が発生する温度以下では、処理時間を長くしても大きな熱失活は見られず、 90% 以上の活性が維持されていた。大きな熱失活が発生する温度よりも少し低い温度(5 °C程度)で長い時間処理することが最も有効であると思われた。  [0031] The temperature at which this large heat inactivation occurs varies depending on the type of enzyme, and even for the same enzyme, it varies depending on the enzyme concentration used in the study. For example, in the PQQGD H variant used in the study of this patent, when the enzyme concentration was examined at 5 U / ml, the temperature at which large heat inactivation occurred was 40 ° C (Fig. 1), When examined at 20-30 U / ml, it was 55 ° C. Therefore, in the examination of the enzyme concentration of 20-30 U / ml, considering the safety side below this temperature, the heating treatment is examined at 50 ° C. or less. In addition, as a result of examining the heat treatment conditions, below the temperature at which large heat deactivation occurs, no large heat deactivation was observed even if the treatment time was extended, and 90% or more of the activity was maintained. It seemed to be most effective to treat for a long time at a temperature (about 5 ° C) slightly lower than the temperature at which large heat deactivation occurs.
[0032] 本発明のホロ型比率の向上は安定性の増大に繋がっているものと思われる。本発 明でいうホロ型比率の向上とは、 GDH酵素を含む組成物をある一定の温度で、一定 時間熱処理した後、維持されてレ、る GDH酵素の残存率(%)が増大することを意味 する。本願発明では、ほぼ完全に活性が維持される 4°C保存のサンプノレを 100。/0とし て、これと一定温度で一定時間熱処理した後の GDH溶液の活性値を比較して、そ の酵素の残存率を算出している。この残存率が該化合物無添加のものと比べて増大 していた場合、 GDHのホロ型比率が向上したと判断した。 [0032] The improvement of the holo-type ratio of the present invention is thought to lead to an increase in stability. The improvement of the holo-type ratio in the present invention means that the residual rate (%) of GDH enzyme is maintained after the composition containing GDH enzyme is heat-treated at a certain temperature for a certain time. Means. In the present invention, 100 sampnole stored at 4 ° C, in which the activity is almost completely maintained, is 100. / 0 and to, by comparing the activity value of GDH solution after heat treatment certain time and this at a constant temperature, and calculates the residual rate of that enzyme. When this residual ratio was increased compared to that without the compound, it was judged that the holo ratio of GDH was improved.
[0033] 本発明でいう安定性の向上とは、 GDH酵素を含む組成物をある一定の温度で、一 定時間熱処理した後、維持されている GDH酵素の残存率(%)が増大することを意 味する。本願発明では、ほぼ完全に活性が維持される 4°C保存のサンプノレを 100。/0 として、これと一定温度で一定時間熱処理した後の GDH溶液の活性値を比較して、 その酵素の残存率を算出している。この残存率が該化合物無添加のものと比べて増 大していた場合、 GDHの保存安定性が向上したと判断した。 [0033] The improvement in stability as used in the present invention means that the residual rate (%) of the maintained GDH enzyme increases after heat treatment of the composition containing the GDH enzyme at a certain temperature for a fixed time. Means. In the present invention, 100 sampnole stored at 4 ° C, in which the activity is almost completely maintained. / 0, by comparing the activity value of GDH solution after heat treatment predetermined time which is constant temperature, and calculates the residual rate of the enzyme. When this residual ratio was increased as compared with that without the compound, it was judged that the storage stability of GDH was improved.
[0034] 具体的に、ホロ型比率または安定性が向上しているかどうかの判断は、次のように 行った。 [0034] Specifically, whether the holo-type ratio or stability is improved is determined as follows. went.
後述の GDH酵素活性の測定方法に記載の活性測定法にぉレ、て、 4°C保存した溶 液の GDH活性値(a)と、一定温度で一定時間熱処理した後の GDH活性値 (b)を測 定し、測定値(a)を 100とした場合に対する相対値((b) / (a) X 100)を求めた。この 相対値を残存率(%)とした。そして、該化合物の添カ卩の有無を比較して、添加により 残存率が増大した場合、安定性が向上したと判断した。  The GDH activity value (a) of the solution stored at 4 ° C and the GDH activity value after heat treatment at a constant temperature for a certain time (b) ) Was measured, and the relative value ((b) / (a) X 100) with respect to the measured value (a) as 100 was determined. This relative value was defined as the residual rate (%). Then, by comparing the presence or absence of the additive of the compound, it was determined that the stability was improved when the residual ratio increased by the addition.
[0035] 異なる補酵素を利用する GDHは、各々、異なる条件でホロ型比率あるいは安定性 の向上を検討している。例えば、 PQQGDHでは、 pH6. 5の緩衝液で 5U/mlに調 製した酵素液を 50°C、 16時間熱処理した後、残存する PQQGDH活性を比較して、 ホロ型比率あるいは安定性の向上を確認している。同じぐ NADGDHでは、 pH8. 0の緩衝液で 85U/mlに調製した酵素液を 50°C、 1時間熱処理した後、残存する N ADGDH活性を比較して、ホロ型比率あるいは安定性の向上を確認している。また、 同じぐ FADGDHでは、 ρΗ6· 5の緩衝液で 5U/mlに調製した酵素液を 50°C、 15 〜30分間熱処理した後、残存する FADGDH活性を比較して、ホロ型比率あるいは 安定性の向上を確認している。  [0035] Each GDH using different coenzymes is considering improvement of the holo-type ratio or stability under different conditions. For example, in PQQGDH, the enzyme solution prepared to 5 U / ml with a pH 6.5 buffer solution is heat-treated at 50 ° C for 16 hours, and then the remaining PQQGDH activity is compared to improve the holo ratio or stability. I have confirmed. At the same time, after NADGDH was heat-treated at 50 ° C for 1 hour with a pH 8.0 buffer solution at 85 U / ml, the remaining N ADGDH activity was compared to improve the holo ratio or stability. I have confirmed. In the same FADGDH, the enzyme solution prepared at 5 U / ml in a buffer solution of ρΗ6.5 was heat-treated at 50 ° C for 15-30 minutes, and then the remaining FADGDH activity was compared to determine the holo ratio or stability. The improvement is confirmed.
[0036] ホロ型比率が向上しているかどうかの判断は次のようにしても行うことができる。  [0036] The determination as to whether the holo-type ratio is improved can also be made as follows.
後述の GDH酵素活性の測定方法に記載の活性測定法にぉレ、て、十分量の補酵 素を添加して測定した GDH活性値 (a)と、補酵素を全く添加せずに測定した GDH 活性値 (b)を測定し、測定値 (a)を 100とした場合に対する相対値((b) Z (a) X 100 )を求めた。この相対値をホロ型化率(%)とした。そして、該化合物の添加の有無を 比較して、添カ卩によりホロ型化率が増大した場合、安定性が向上したと判断した。  The GDH activity value (a) measured by adding a sufficient amount of coenzyme to the activity measurement method described in the measurement method for GDH enzyme activity described below, and measured without adding any coenzyme. The GDH activity value (b) was measured, and the relative value ((b) Z (a) X 100) with respect to the measured value (a) as 100 was determined. This relative value was defined as a holo-formation rate (%). Then, by comparing the presence or absence of the addition of the compound, it was determined that the stability was improved when the holoformation rate was increased by the additive.
[0037] 本発明の効果は、メディエーターを含む系においてより顕著なものとなる。本発明 の方法に適用できるメディエーターは特に限定されなレ、が、フエナジンメトサルフヱ一 ト(PMS)と 2, 6—ジクロロフエノールインドフエノール(DCPIP)との組み合わせ、 P MSとニトロブルーテトラゾリゥム(NBT)との組み合わせ、 DCPIP単独、フェリシアン 化物イオン (ィ匕合物としてはフェリシアンィ匕カリウムなど)単独、フエ口セン単独などが 挙げられる。中でもフェリシアン化物イオン (ィ匕合物としてはフェリシアン化カリウムな ど)が好ましい。 これらの各メディエーターは感度に様々な違いが存在するために、添加濃度を一 律に規定する必要性はなレ、が、一般的には ImM以上の添カ卩が望ましい。 [0037] The effect of the present invention becomes more remarkable in a system including a mediator. The mediator applicable to the method of the present invention is not particularly limited, but a combination of phenazine methosulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP), PMS and nitro blue tetra Combinations with Zorium (NBT), DCPIP alone, ferricyanide ions (such as ferricyanium potassium as a compound) alone, and feucene alone. Of these, ferricyanide ions (such as potassium ferricyanide as the compound) are preferable. Each of these mediators has various differences in sensitivity, so it is not necessary to uniformly define the concentration of addition, but generally an additive of ImM or higher is desirable.
これらのメディエーターは測定時に添加してもよいし、後記するグルコース測定用 試薬、グルコースアツセィキットあるいはグノレコースセンサを作製するときに予め含有 させておくこともできる。なお、その際には、液体状態、乾燥状態などの形態は問わ れず、測定時に反応時に解離してイオンの状態になるようにしておけばよい。  These mediators may be added at the time of measurement, or may be contained in advance when a glucose measuring reagent, a glucose assay kit, or a gnolecose sensor described later is prepared. In this case, the liquid state, the dry state, etc. may be used, and it may be dissociated during the reaction at the time of measurement so as to be in an ionic state.
[0038] 本発明においてはさらに必要に応じて種々の成分を共存させることが出来る。例え ば、界面活性剤、安定化剤、賦形剤などを添加しても良い。 [0038] In the present invention, various components can be allowed to coexist if necessary. For example, surfactants, stabilizers, excipients and the like may be added.
例えば、カルシウムイオンまたはその塩、およびグルタミン酸、グノレタミン、リジン等 のアミノ酸類、さらに血清アルブミン等を添カ卩することにより PQQGDHをより安定化 すること力 Sできる。  For example, it is possible to further stabilize PQQGDH by adding calcium ions or salts thereof, amino acids such as glutamic acid, gnoretamine, and lysine, and serum albumin.
例えば、カルシウムイオンまたはカルシウム塩を含有させることにより、 PQQGDHを 安定ィ匕させることができる。カルシウム塩としては、塩化カルシウムまたは酢酸カルシ ゥムもしくはクェン酸カルシウム等の無機酸または有機酸のカルシウム塩などが例示 される。また、水性組成物において、カルシウムイオンの含有量は、 1 X 10-4-1 X 10— 2Mであることが好ましい。  For example, PQQGDH can be stabilized by containing calcium ions or calcium salts. Examples of the calcium salt include calcium chloride, calcium acetate, calcium salt of inorganic acid such as calcium citrate, and calcium salt of organic acid. In the aqueous composition, the calcium ion content is preferably 1 X 10-4-1 X 10-2M.
カルシウムイオンまたはカルシウム塩を含有させることによる PQQGDHの安定化効 果は、グノレタミン酸、グノレタミンおよびリジンからなる群から選択されたアミノ酸を含有 させることにより、さらに向上する。グルタミン酸、グルタミンおよびリジンからなる群か ら選択されるアミノ酸は、 1種または 2種以上であってもよい。ここにさらに卵白アルブ ミン(OVA)を含有させてもよい。  The stabilizing effect of PQQGDH by containing calcium ions or calcium salts can be further improved by containing an amino acid selected from the group consisting of gnoretamic acid, gnoletamine and lysine. The amino acid selected from the group consisting of glutamic acid, glutamine and lysine may be one type or two or more types. Furthermore, egg white albumin (OVA) may be added.
あるいは、(1)ァスパラギン酸、グルタミン酸、 ひ一ケトグルタル酸、リンゴ酸、 ひ一ケ トグノレコン酸、 a—サイクロデキストリンおよびそれらの塩からなる群から選ばれた 1種 または 2種以上の化合物および(2)アルブミンを共存せしめることにより、 PQQGDH を安定化することができる。 Or (1) one or more compounds selected from the group consisting of aspartic acid, glutamic acid, monoketoglutaric acid, malic acid, monoketognoreconic acid, a- cyclodextrin and their salts, and (2 ) PQQGDH can be stabilized by coexisting albumin.
[0039] ところで、酵素としての PQQGDHは、ピロ口キノリンキノン (PQQ)を補酵素とするグ ルコースデヒドロゲナーゼである。グルコースを酸化してダルコノラタトンを生成する反 応を触媒するから、血糖の測定に用いることができる。血中グルコース濃度は、糖尿 病の重要なマーカーとして臨床診断上きわめて重要な指標である。現在、血中ダル コース濃度の測定は、グルコースォキシダーゼを使用したバイオセンサーを用いる方 法が主流となっているが、反応が溶存酸素濃度に影響されるから、測定値に誤差が 生じる可能性があった。このグルコースォキシダーゼにかわる新たな酵素として PQQ 依存性グルコースデヒドロゲナーゼが注目されてレ、る。 [0039] By the way, PQQGDH as an enzyme is a glucose dehydrogenase having pyroguchi quinoline quinone (PQQ) as a coenzyme. Since it catalyzes the reaction that oxidizes glucose to produce darconoratone, it can be used for blood glucose measurement. Blood glucose level is diabetes It is an extremely important index for clinical diagnosis as an important marker of disease. Currently, blood glucose levels are measured mainly using a biosensor that uses glucose oxidase, but the reaction is affected by the dissolved oxygen concentration, which may cause errors in the measured values. was there. PQQ-dependent glucose dehydrogenase is attracting attention as a new enzyme that replaces this glucose oxidase.
[0040] 我々のグループは、ァシネトパクター 'バウマンニ(Acinetobacter baumannii) NCIMB11517株力 PQQ依存性グノレコース脱水素酵素を産生することを見出し, 遺伝子のクローニングならびに発現系を構築した(特開平 11 243949号公報参照 )。し力しながら、 PQQGDHのさらなる生産性の向上が工業生産上望まれていた。 本発明は、従来技術の課題を背景になされたもので、 PQQGDHの生産性向上を課 題としてその改良に関するものでもある。  [0040] Our group found that Acinetobacter baumannii NCIMB11517 strain PQQ-dependent gnolecose dehydrogenase was produced, and constructed a gene cloning and expression system (see Japanese Patent Application Laid-Open No. 11 243949) . However, further improvement in the productivity of PQQGDH has been desired for industrial production. The present invention has been made against the background of the problems of the prior art, and also relates to the improvement of PQQGDH as an issue.
[0041] 本発明者らは上記課題を解決するため、鋭意研究したところ、 PQQ依存性ダルコ 一スデヒドロゲナーゼを含有する水溶液に加熱処理を施すことにより、生産時におけ る全 GDH酵素タンパク質中におけるホロ型 PQQGDHの割合を向上させることがで き、遂に本発明を完成するに到った。  [0041] The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, the aqueous solution containing the PQQ-dependent dalcoyl dehydrogenase is subjected to heat treatment, so that the holo in the total GDH enzyme protein during production can be obtained. The proportion of type PQQGDH could be improved and the present invention was finally completed.
[0042] 本発明によるホロ型 PQQGDHとしての生産性の向上は製造コストの低減をもたら す。さらに、ホロ型 PQQGDHの割合が向上することにより、活性型の PQQGDHを 得るために PQQを添加しホロ化する必要性もなくなることも、製造コストの低減をもた らす。これらは、 PQQGDHを廉価に製造することを可能にする。また、さらにはダル コースアツセィキット及びグノレコースセンサを廉価で提供することも可能にする。  [0042] Improvement in productivity as a holo-type PQQGDH according to the present invention results in a reduction in manufacturing cost. Furthermore, the increase in the proportion of holo-type PQQGDH eliminates the need to add a PQQ to form holo to obtain active PQQGDH, resulting in a reduction in manufacturing costs. These make it possible to manufacture PQQGDH inexpensively. Furthermore, it is also possible to provide a dull course assembly kit and a gnore course sensor at a low price.
[0043] またホロ型 PQQGDHの割合が向上することにより PQQGDHの単位タンパク質重 量あたりの活性値が向上するので、グルコースアツセィキット及びグルコースセンサへ のタンパク質添カ卩量の減少も可能にする。  [0043] Further, since the activity value per unit protein weight of PQQGDH is improved by increasing the proportion of holo-type PQQGDH, it is possible to reduce the amount of protein added to the glucose assembly kit and glucose sensor.
[0044] 本発明で使用する PQQGDHとは、ピロ口キノリンキノンを補酵素として配位し、 D— ダルコースを酸化して D -ダルコノ一 1 , 5 ラタトンを生成するとレ、う反応を触媒する 酵素 (ECl . 1. 5. 2 (旧 ECl . 1. 99. 17) )であり、由来や構造に関しては特に限定 するものではない。  [0044] PQQGDH used in the present invention is an enzyme that catalyzes the reaction when P-Q quinoline quinone is coordinated as a coenzyme to oxidize D-darcose to produce D-darcono 1,5 ratatones. (ECl. 1. 5. 2 (formerly ECl. 1. 99. 17)), and the origin and structure are not particularly limited.
なお、現時点において、 PQQGDHのクローニングは、ァシネトバクタ一'カルコア セティカス (Acinetobacter calcoaceticus) LMD79. 41 (A. M. Cleton— Jans enら、 J. Bacteriol., 170, 2121 (1988)および Mol. Gen. Genet. , 217, 430 ( 1989) )、ェシエリヒア 'コり(Escherichia coli) (A. M. Cleton—Jansenら、 J. Ba cteriol. , 172, 6308 (1990) )、グノレコノノ クタ^ ~ ·ォキシタ、、ンス(Gluconobacter oxydans) (Mol. Gen. Genet., 229, 206 (1991) )、及び特許文献 1で報告され ているァシネトパクタ^ ~ ·バウマンニ(Acinetobacter baumanni) NCIMB1151 7より実施されている。ただし、ェシエリヒア'コリなどに存在する膜型酵素を改変して 可溶型にすることは困難であり、起源としてはァシネトパクター 'カルコァセティカスも しくはァシネトバクタ一 ·バウマンニなどの可溶性 PQQGDHを選択することが好まし い。 At this time, cloning of PQQGDH is Seticus (Acinetobacter calcoaceticus) LMD79. 41 (AM Cleton—Jans en et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Genet., 217, 430 (1989)), Escherichia coli ) (AM Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990)), Gnoreconactor oxydans (Mol. Gen. Genet., 229, 206 (1991)) And Acinetobacter baumanni NCIMB11517 reported in Patent Document 1. However, it is difficult to modify the membrane enzyme present in Escherichia coli etc. to make it soluble, and as a source, select soluble PQQGDH such as Acinetopacter 'Calcoaceticus or Acinetobacter baumannii I prefer that.
ァシネトパクタ^ ~ ·バウマンニ(Acinetobacter baumannii) NCIMB11517株は 、以冃 ij、 Acinetobacter calcoaceticusこ分類 れ飞レヽた。  Acinetobacter baumannii NCIMB11517 strain was categorized as ij, Acinetobacter calcoaceticus.
[0045] 上記の Acinetobacter属由来 PQQGDHのアミノ酸配列は、好ましくは Acinetob acter calcoaceticusまたは AcinetoDacter baumanmi由来 PQQu^DHの/ ^ノ 酸配列である。中でも好ましくは配列番号 1である。配列番号 1で示される野生型 PQ QGDHタンパク質及び配列番号 2で示されるその塩基配列は、ァシネトバタター 'バ ウマン二 (Acinetobacter baumannii) NCIMB 11517株を起源とするものであり、 特開平 11— 243949号公報に開示されている。なお、上記および配列番号 1におい て、アミノ酸の表記は、シグナル配列が除かれたァスパラギン酸を 1として番号付けさ れている。 [0045] The amino acid sequence of PQQGDH derived from the genus Acinetobacter is preferably the AQ / DH of PQQu ^ DH derived from Acinetob acter calcoaceticus or AcinetoDacter baumanmi. Among them, SEQ ID NO: 1 is preferable. The wild-type PQ QGDH protein represented by SEQ ID NO: 1 and its base sequence represented by SEQ ID NO: 2 originated from Acinetobacter baumannii strain NCIMB 11517, and Japanese Patent Application Laid-Open No. 11-243949 Is disclosed. In the above and SEQ ID NO: 1, the amino acid notation is numbered with 1 for aspartic acid from which the signal sequence has been removed.
[0046] 例えば、配列番号 1のアミノ酸配列と、ァシネトバクタ一 ·カルコァセティカス(Acine tobacter calcoaceticus) LMD79. 41株由来酵素のアミノ酸配列を比較すると、 相違箇所はわずかで、相同性は 92. 3% (シグナル配列含む)となり、非常に類似し ているので、配列番号 1におけるある残基が、他起源の酵素のどのアミノ酸残基に該 当するかを容易に認識することができる。これらの PQQGDHも本発明で使用する P QQGDHとして好ましレ、ものとして例示される。  [0046] For example, when the amino acid sequence of SEQ ID NO: 1 is compared with the amino acid sequence of the enzyme derived from Acine tobacter calcoaceticus LMD79.41, the difference is slight and the homology is 92.3. % (Including the signal sequence), which are very similar, it is easy to recognize which amino acid residue of an enzyme of other origin corresponds to a residue in SEQ ID NO: 1. These PQQGDHs are also preferred as PQQGDHs used in the present invention.
[0047] 本発明で使用する PQQGDHは、グルコースデヒドロゲナーゼ活性を有する限り、 さらに他のアミノ酸残基の一部が欠失または置換されていてもよぐまた他のアミノ酸 残基が付加されていてもよい。 [0047] As long as PQQGDH used in the present invention has glucose dehydrogenase activity, a part of another amino acid residue may be deleted or substituted. Residues may be added.
[0048] 作製された改変タンパク質の遺伝情報を有する DNAは、プラスミドと連結された状 態にて宿主微生物中に移入され、改変タンパク質を生産する形質転換体となる。こ の際のプラスミドとしては、例えば、ェシエリヒア'コリー(Escherichia coli)を宿主微 生物とする場合には pBluescript, pUC18などが使用できる。宿主微生物としては、 例えば、ェシエリヒア'コリー W3110、ェシエリヒア'コリー C600、ェシエリヒア'コリー JM109、ェシエリヒア'コリー DH5ひなどが利用できる。宿主微生物に組換えべクタ 一を移入する方法としては、例えば宿主微生物がェシエリヒア属に属する微生物の 場合には、カルシウムイオンの存在下で組換え DNAの移入を行なう方法などを採用 することができ、更にエレクト口ポレーシヨン法を用いても良い。更には、市販のコンビ テントセル (例えば、コンビテントハイ JM109 ;東洋紡績製)を用いても良い。  [0048] The produced DNA having the genetic information of the modified protein is transferred into a host microorganism in a state of being linked to a plasmid, and becomes a transformant that produces the modified protein. As the plasmid at this time, for example, pBluescript, pUC18 and the like can be used when Escherichia coli is used as a host microorganism. Examples of host microorganisms that can be used include Escherichia coli W3110, Escherichia coli C600, Escherichia coli JM109, and Escherichia coli DH5. As a method for transferring the recombinant vector into the host microorganism, for example, when the host microorganism belongs to the genus Escherichia, a method of transferring the recombinant DNA in the presence of calcium ions can be employed. Further, an elect port position method may be used. Furthermore, a commercially available combi- tive cell (for example, combitent high JM109; manufactured by Toyobo) may be used.
[0049] このような遺伝子はこれらの菌株より抽出してもよぐまた化学的に合成することもで きる。さらに、 PCR法の利用により、 PQQGDH遺伝子を含む DNA断片を得ることも 可能である。  [0049] Such a gene can be extracted from these strains or chemically synthesized. Furthermore, a DNA fragment containing the PQQGDH gene can be obtained by using the PCR method.
[0050] 本発明において、 PQQGDHをコードする遺伝子を得る方法としては、次のような 方法が挙げられる。例えばァシネトバクタ一 ·カルコァセティカス NCIMB11517 の 染色体を分離、精製した後、超音波処理、制限酵素処理等を用いて DNAを切断し たものと、リニア一な発現ベクターと両 DNAの平滑末端または付着末端において D NAリガーゼなどにより結合閉鎖させて組換えベクターを構築する。該組換えべクタ 一を複製可能な宿主微生物に移入した後、ベクターのマーカーと酵素活性の発現を 指標としてスクリーニングして、 PQQを補欠分子族とする GDHをコードする遺伝子を 含有する組換えベクターを保持する微生物を得る。  [0050] In the present invention, methods for obtaining a gene encoding PQQGDH include the following methods. For example, after isolating and purifying the chromosome of Acinetobacter calcoaceticus NCIMB11517, DNA was cleaved using sonication, restriction enzyme treatment, etc., linear expression vector and blunt ends or attachment of both DNAs A recombinant vector is constructed by closing and ligating DNA ends with DNA ligase. Recombinant vector containing a gene encoding GDH having PQQ as a prosthetic group after transferring the recombinant vector into a replicable host microorganism and screening using the expression of the vector marker and enzyme activity as an indicator To obtain microorganisms that retain
[0051] 次レ、で、上記組換えベクターを保持する微生物を培養して、該培養微生物の菌体 から該組換えベクターを分離、精製し、該発現べクタ一から GDHをコードする遺伝子 を採取することができる。例えば、遺伝子供与体であるァシネトパクター 'カルコァセ ティカス NCIMB11517 の染色体 DNAは、具体的には以下のようにして採取され る。  [0051] In the next step, the microorganism carrying the recombinant vector is cultured, the recombinant vector is isolated and purified from the cells of the cultured microorganism, and a gene encoding GDH is obtained from the expression vector. Can be collected. For example, the chromosomal DNA of the gene donor Acinetopacter 'calcoaceticus NCIMB11517 is specifically collected as follows.
[0052] 該遺伝子供与微生物を例えば:!〜 3日間攪拌培養して得られた培養液を遠心分離 により集菌し、次いで、これを溶菌させることにより PQQを補欠分子族とする GDH遺 伝子の含有溶菌物を調製することができる。溶菌の方法としては、例えばリゾチーム 等の溶菌酵素により処理が施され、必要に応じてプロテアーゼゃ他の酵素やラウリル 硫酸ナトリウム(SDS)等の界面活性剤が併用される。さらに、凍結融解やフレンチプ レス処理のような物理的破砕方法と組み合わせてもよい。 [0052] The gene-donating microorganism is centrifuged, for example:! ~ For 3 days with stirring. The lysate containing GDH gene having PQQ as a prosthetic group can be prepared by collecting the bacterium and then lysing it. As a method for lysis, for example, treatment is performed with a lytic enzyme such as lysozyme, and a protease or other enzyme or a surfactant such as sodium lauryl sulfate (SDS) is used in combination as necessary. Furthermore, it may be combined with a physical crushing method such as freeze-thawing or French press treatment.
[0053] 上記のようにして得られた溶菌物から DNAを分離精製するには、常法に従って、 例えばフエノール処理やプロテアーゼ処理による除蛋白処理や、リボヌクレアーゼ処 理、アルコール沈殿処理などの方法を適宜組み合わせることにより行うことができる。  [0053] In order to separate and purify DNA from the lysate obtained as described above, a method such as deproteinization by phenol treatment or protease treatment, ribonuclease treatment, alcohol precipitation treatment or the like is appropriately performed according to a conventional method. It can be done by combining.
[0054] 微生物から分離、精製された DNAを切断する方法は、例えば超音波処理、制限 酵素処理などにより行うことができる。好ましくは特定のヌクレオチド配列に作用する II 型制限酵素が適している。  [0054] A method for cleaving DNA separated and purified from a microorganism can be performed by, for example, ultrasonic treatment, restriction enzyme treatment, or the like. Type II restriction enzymes that act on specific nucleotide sequences are suitable.
[0055] クローニングする際のベクターとしては、宿主微生物内で自律的に増殖し得るファ ージまたはプラスミドから遺伝子組換え用として構築されたものが適している。ファー ジとしては、例えばェシエリヒア'コリを宿主微生物とする場合には Lambda gtlO 、 Lambda gtl l などが例示される。また、プラスミドとしては、例えば、ェシエリヒア · コリを宿主微生物とする場合には、 pBR322、 pUC19 、 pBluescript などが例示 される。  [0055] As a vector for cloning, a vector constructed for gene recombination from a phage or plasmid capable of autonomously growing in a host microorganism is suitable. Examples of the fage include Lambda gtlO and Lambda gtl l when Escherichia coli is used as a host microorganism. Examples of plasmids include pBR322, pUC19, and pBluescript when Escherichia coli is used as a host microorganism.
[0056] クローニングの際、上記のようなベクターを、上述した GDHをコードする遺伝子供 与体である微生物 DNAの切断に使用した制限酵素で切断してベクター断片を得る ことができるが、必ずしも該微生物 DNAの切断に使用した制限酵素と同一の制限酵 素を用いる必要はなレ、。微生物 DNA断片とベクター DNA断片とを結合させる方法 は、公知の DNAリガーゼを用いる方法であればよ 例えば微生物 DNA断片の付 着末端とベクター断片の付着末端とのアニーリングの後、適当な DNAリガーゼの使 用により微生物 DNA断片とベクター DNA断片との組換えベクターを作成する。必要 に応じて、アニーリングの後、宿主微生物に移入して生体内の DNAリガーゼを利用 し組換えベクターを作製することもできる。  [0056] During cloning, a vector fragment can be obtained by cleaving the above-described vector with the restriction enzyme used for cleaving the microbial DNA that is the gene donor encoding GDH described above. It is not necessary to use the same restriction enzyme as that used to cleave the microbial DNA. The microbial DNA fragment and the vector DNA fragment may be combined by any known DNA ligase method. For example, after annealing the attachment end of the microbial DNA fragment and the attachment end of the vector fragment, an appropriate DNA ligase may be used. Use to create a recombinant vector of microbial and vector DNA fragments. If necessary, after annealing, it can be transferred to a host microorganism and a recombinant vector can be prepared using in vivo DNA ligase.
[0057] クローユングに使用する宿主微生物としては、組換えベクターが安定であり、かつ 自律増殖可能で外来性遺伝子の形質発現できるものであれば特に制限されない。 一般的には、ェシエリヒア'コリ W3110 、ェシエリヒア'コリ C600、ェシエリヒア 'コリ H B101 、ェシエリヒア'コリ JM109 、ェシエリヒア'コリ DH5 ひなどを用いることがで きる。 [0057] The host microorganism used for cloning is not particularly limited as long as the recombinant vector is stable, can autonomously proliferate, and can express a foreign gene. In general, Escherichia coli W3110, Escherichia coli C600, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli DH5, etc. can be used.
[0058] 宿主微生物に組換えベクターを移入する方法としては、例えば宿主微生物がェシ エリヒア.コリの場合には、カルシウム処理によるコンビテントセル法やエレクト口ボーレ ーシヨン法などを用いることができる。  [0058] As a method for transferring the recombinant vector into the host microorganism, for example, when the host microorganism is Escherichia coli, a competent cell method using calcium treatment, an electo-baudation method, or the like can be used.
[0059] 上記のように得られた形質転換体である微生物は、栄養培地で培養されることによ り、多量の GDHを安定に生産し得る。宿主微生物への目的組換えベクターの移入 の有無についての選択は、 目的とする DNAを保持するベクターの薬剤耐性マーカ 一と PQQの添加により GDH活性を同時に発現する微生物を検索すればよい。例え ば、薬剤耐性マーカーに基づく選択培地で生育し、かつ GDHを生成する微生物を 選択すればよい。 [0059] The microorganism, which is a transformant obtained as described above, can stably produce a large amount of GDH by being cultured in a nutrient medium. The selection of whether or not the target recombinant vector is transferred to the host microorganism may be performed by searching for a microorganism that simultaneously expresses GDH activity by adding PQQ and the drug resistance marker of the vector holding the target DNA. For example, a microorganism that grows on a selective medium based on a drug resistance marker and produces GDH may be selected.
[0060] 上記の方法により得られた PQQを補欠分子族とする GDH遺伝子の塩基配列は、 Science ,第 214卷, 1205 (1981)に記載されたジデォキシ法により解読した。ま た、 GDHのアミノ酸配列は上記のように決定された塩基配列より推定した。  [0060] The base sequence of the GDH gene having PQQ obtained by the above method as a prosthetic group was decoded by the dideoxy method described in Science, 214, 1205 (1981). The amino acid sequence of GDH was estimated from the base sequence determined as described above.
[0061] 上記のようにして、一度選択された PQQを補欠分子族とする GDH遺伝子を保有 する組換えベクターより、 PQQ生産能を有する微生物にて複製できる組換えべクタ 一への移入は、 GDH遺伝子を保持する組換えベクターから制限酵素や PCR法によ り GDH遺伝子である DNAを回収し、他のベクター断片と結合させることにより容易 に実施できる。また、これらのベクターによる PQQ生産能を有する微生物の形質転 換は、カルシウム処理によるコンビテントセル法やエレクト口ポーレーシヨン法などを用 レ、ることができる。  [0061] As described above, transfer from a recombinant vector carrying a GDH gene having PQQ selected once as a prosthetic group to a recombinant vector capable of replicating in a microorganism capable of producing PQQ is as follows. It can be easily carried out by collecting DNA, which is a GDH gene, from a recombinant vector carrying the GDH gene by restriction enzymes or PCR and linking it to other vector fragments. In addition, the transformation of microorganisms capable of producing PQQ with these vectors can be carried out by using the calcium treatment, the electoral cell method, the electopore method, or the like.
[0062] PQQ生産能を有する微生物としては、メチロバクテリウム(Methylobacterium)属 等のメタノール資化性細菌、ァセトパクター(Acetobacter )属やダルコノバクタ一( Gluconobacter )属の酢酸菌、フラボバタテリゥム(Flavobacterium)属、シユード モナス属、ァシネトパクター属等の細菌を挙げることができる。なかでも、シユードモナ ス属細菌とァシネトパクター属細菌が利用できる宿主一ベクター系が確立されており 利用しやすいので好ましい。 [0063] シユードモナス属細菌では、シユードモナス'エルギノサ、シユードモナス'フルォレ ッセンス、シユードモナス 'プチダなどを用いることができる。また、ァシネトパクター属 細菌ではァシネトバクタ一'カルコァセティカス、ァシネトバクタ一'バウマンニ等を用 レ、ることができる。 [0062] Examples of microorganisms capable of producing PQQ include methanol-utilizing bacteria such as Methylobacterium, acetic acid bacteria belonging to the genus Acetobacter and Gluconobacter, Flavobacterium (Flavobacterium) And bacteria of the genus Genus, Syudomonas, and Acinetopacter. Among them, a host-vector system that can use a genus Pseudomonas and a bacterium belonging to the genus Acinetopacter has been established and is preferable because it is easy to use. [0063] In the genus Pseudomonas, Pseudomonas' Elginosa, Pseudomonas' fluorescens, Pseudomonas' Putida and the like can be used. For bacteria belonging to the genus Acinetopacter, Acinetobacter 1 'Calcoaceticus, Acinetobacter 1' Baumannii and the like can be used.
[0064] 上記微生物にて複製できる組換えベクターとしては、 RSF1010 由来のベクター もしくはとその類似のレプリコンを有するベクターがシユードモナス属細菌に利用可能 である。例えば、 ρΚΤ240、 ρΜΜΒ24等(M. M. Bagdasarian ら, Gene, 26, 2 73 (1983) )、 pCN40 、 pCN60 等(C. C. Nieto ら, Gene, 87, 145 (1990) ) や pTS 1137 (遺伝子組換え実用化技術技術,第 4集, p73から 85,昭和 58年, (株 )サイレンスフォーラム発行)等を挙げることができる。また、 pME290等(Y. Itohら、 Gene, 36, 27 (1985) )、 pNIl l l、 pNI20C (N. Itohら, J. Biochem. , 110, 61 4 (1991) )も利用できる。  [0064] As a recombinant vector that can be replicated in the above microorganism, a vector derived from RSF1010 or a vector having a similar replicon can be used for bacteria belonging to the genus Pseudomonas. For example, ρΚΤ240, ρΜΜΒ24, etc. (MM Bagdasarian et al., Gene, 26, 273 (1983)), pCN40, pCN60 etc. (CC Nieto et al., Gene, 87, 145 (1990)) and pTS 1137 (gene recombination practical technology) Technology, Vol. 4, p73-85, 1983, published by Silence Forum, Inc.). Moreover, pME290 etc. (Y. Itoh et al., Gene, 36, 27 (1985)), pNIll, pNI20C (N. Itoh et al., J. Biochem., 110, 614 (1991)) can also be used.
[0065] ァシネトパクター属細菌では、 pWM43 等(W. Minas ら, Appl. Environ. Mic robiol. , 59, 2807 (1993) )、 pKT230、 pWH1266 等(Μ. Hungerら, Gene , 87, 45 (1990) )がベクターとして利用可能である。  [0065] In bacteria belonging to the genus Acinetopacter, pWM43 etc. (W. Minas et al., Appl. Environ. Mic robiol., 59, 2807 (1993)), pKT230, pWH1266 etc. (Μ. Hunger et al., Gene, 87, 45 (1990) ) Can be used as a vector.
[0066] こうして得られた形質転換体である微生物は、栄養培地で培養されることにより、 Ρ QQGDHタンパク質を生産し得る力 S、培地中に有機溶媒を添加することにより、全 P QQGDHタンパク質としての生産性向上及びホロ型 PQQGDHタンパク質としての 生産性向上、いずれも可能になる。形質転換体である宿主微生物の培養形態は、宿 主の栄養生理的性質を考慮して培養条件を選択すればよ 多くの場合は液体培 養で行う。工業的には通気攪拌培養を行うのが有利である。  [0066] Microorganisms, which are transformants thus obtained, can be produced as a whole P QQGDH protein by cultivating them in a nutrient medium, 力 the ability to produce QQGDH protein S, and adding an organic solvent to the medium. Both productivity improvement and productivity improvement as holo-type PQQGDH protein are possible. For the culture form of the host microorganism, which is a transformant, the culture conditions should be selected in consideration of the nutritional physiological properties of the host. Industrially, aeration and agitation culture is advantageous.
[0067] 本発明におレ、てホロ型 PQQGDHとは GDHタンパク質に補酵素 PQQが結合した PQQGDH酵素自身及びその状態をさし、 PQQの添カ卩なしで GDH活性を有する酵 素及びその状態である。一方、全 PQQGDHとは、(1)ホロ型 PQQGDH、 (2) GDH タンパク質に補酵素 PQQが結合していないアポ型 PQQGDH、および、(3)さらに P QQが結合しているものの結合状態が不完全であるために GDH活性を有しない PQ QGDH、をあわせた全 GDH酵素タンパク質及びその状態をさす。  [0067] In the present invention, the holo-type PQQGDH refers to the PQQGDH enzyme itself in which the coenzyme PQQ is bound to the GDH protein and the state thereof, and the enzyme having the GDH activity without the addition of PQQ and the state thereof. It is. On the other hand, all PQQGDH means (1) holo-type PQQGDH, (2) apo-type PQQGDH in which coenzyme PQQ is not bound to GDH protein, and (3) the binding state of PQQGDH that is further bound by PQQ This refers to the total GDH enzyme protein combined with PQ QGDH, which does not have GDH activity because it is complete, and its state.
[0068] 本発明の請求項に記載されている「PQQ依存性グノレコースデヒドロゲナーゼ」また は「PQQGDH」は、蛋白質としては単一であるが、酵素一補酵素複合体としては PQ Qの結合状態から見た場合上記(1)〜(3)の少なくとも 1つ以上を含有する混合物を 意味する。 [0068] In the claims of the present invention, "PQQ-dependent gnolecose dehydrogenase" or “PQQGDH” is a single protein, but as an enzyme co-enzyme complex, it is a mixture containing at least one of the above (1) to (3) when viewed from the binding state of PQ Q. means.
[0069] 培地の栄養源としては,微生物の培養に通常用いられるものが広く使用され得る。  [0069] As a nutrient source of the medium, those commonly used for culturing microorganisms can be widely used.
炭素源としては資化可能な炭素化合物であればよ 例えば、グノレコース、シユーク ロース、ラタトース、マルトース、ラタトース、糖蜜、ピルビン酸などが使用される。また、 窒素源としては利用可能な窒素化合物であればよ 例えば、ペプトン、肉エキス、 酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物などが使用される。その他 、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛 などの塩類、特定のアミノ酸、特定のビタミンなどが必要に応じて使用される。  Any carbon compound that can be assimilated may be used as the carbon source. For example, gnolecose, sucrose, ratatoses, maltose, ratatoses, molasses, pyruvic acid and the like are used. The nitrogen source may be any available nitrogen compound. For example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean cake alkaline extract, and the like are used. In addition, phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese, zinc and other salts, specific amino acids, specific vitamins and the like are used as necessary.
[0070] 培養温度は菌が成育し、 PQQGDHを生産する範囲で適宜変更し得る力 上記の ような PQQ生産能を有する微生物の場合、好ましくは 20〜42°C、より好ましくは 30 〜37°C程度である。培養時間は条件によって多少異なる力 PQQGDHが最高収 量に達する時期を見計らって適当時期に培養を完了すればよぐ通常は 6〜48時間 、好ましくは 16〜36時間程度である。培地の pHは菌が発育し、 PQQGDHを生産 する範囲で適宜変更し得るが、好ましくは ρΗ6· 0〜9. 0程度、より好ましくは ρΗ6. 5〜8· 0の範囲である。  [0070] The culture temperature is a force that can be appropriately changed within the range in which the bacteria grow and produce PQQGDH. In the case of the microorganism having the PQQ production ability as described above, preferably 20 to 42 ° C, more preferably 30 to 37 ° C. About C. The culture time is slightly different depending on the conditions. It is usually about 6 to 48 hours, preferably about 16 to 36 hours if the culture is completed at an appropriate time in consideration of the time when the maximum yield of PQQGDH is reached. The pH of the medium can be appropriately changed within the range in which the bacteria grow and produce PQQGDH, but is preferably in the range of about ρΗ6.0 to 9.0, more preferably in the range of ρΗ6.5 to 8.0.
[0071] 培養物中の PQQGDHを生産する菌体を含む培養液をそのまま採取し、利用する こともできるが、一般には、常法に従って、 PQQGDHが培養液中に存在する場合は ろ過、遠心分離などにより、 PQQGDH含有溶液と微生物菌体とを分離した後に利 用される。 PQQGDHが菌体内に存在する場合には、得られた培養物からろ過また は遠心分離などの手段により菌体を採取し、次いで、この菌体を機械的方法またはリ ゾチームなどの酵素的方法で破壊し、また、必要に応じて、 EDTA等のキレート剤及 び界面活性剤を添加して GDHを可溶化し、水溶液として分離採取する。  [0071] A culture solution containing cells that produce PQQGDH in the culture can be collected and used as is, but generally, if PQQGDH is present in the culture solution, it is filtered and centrifuged according to conventional methods. It is used after separating the PQQGDH-containing solution and microbial cells by the above. When PQQGDH is present in the microbial cells, the microbial cells are collected from the obtained culture by means of filtration or centrifugation, and then the microbial cells are collected by a mechanical method or an enzymatic method such as lysozyme. Destroy it, and if necessary, add a chelating agent such as EDTA and a surfactant to solubilize GDH and separate and collect it as an aqueous solution.
[0072] 上記のようにして得られた PQQGDH含有溶液を、例えば減圧濃縮、膜濃縮、さら に硫酸アンモニゥム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例 えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿せしめればよ い。また、加熱処理や等電点処理も有効な精製手段である。また、吸着剤あるいはゲ ルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、 ァフィ二ティクロマトグラフィーを行うことにより、精製された PQQGDHを得ることがで きる。 [0072] The PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting-out treatment such as ammonium sulfate or sodium sulfate, or hydrophilic organic solvents such as methanol, ethanol, acetone, etc. It may be precipitated by the fractional precipitation method. Heat treatment and isoelectric point treatment are also effective purification means. Also, adsorbent or gel Purified PQQGDH can be obtained by gel filtration using a filter medium, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
[0073] 例えば、セフアデックス(Sephadex)ゲル (フアルマシアバイオテク)などによるゲル ろ過、 DEAEセファロース CL— 6B (フアルマシアバイオテク)、ォクチルセファロー ス CL— 6B (フアルマシアバイオテク)等のカラムクロマトグラフィーにより分離、精製 し、精製酵素標品を得ることができる。該精製酵素標品は、電気泳動(SDS— PAG E)的に単一のバンドを示す程度に純化されていることが好ましい。  [0073] For example, gel filtration using Sephadex gel (Farmasia Biotech), DEAE Sepharose CL-6B (Farmasia Biotech), Octyl Sepharose CL-6B (Farmasia Biotech), etc. The purified enzyme preparation can be obtained by separation and purification by column chromatography. The purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
[0074] 上述した加熱処理は、全 GDH酵素タンパク質に対するホロ型 PQQGDHの割合を 向上させる役割を果たす。外部から PQQを添加するわけでもなぐ PQQGDH活性 が向上する本処理は、産業用途上、極めて有用である。本現象は、推察するに、 GD H酵素タンパク質発現時にぉレ、て、 PQQと結合するものの結合状態が不完全である ために非活性型となっていた GDH酵素タンパク質力 S、加熱処理によるコンフオメーシ ヨンの変化により、 PQQとの結合状態が改善され、活性型となったと考えられる。この ように PQQと結合するものの結合状態が不完全であるために非活性型となっていた GDH酵素タンパク質が存在する可能性があるということは意外であり、驚くべき発見 であった。なお、加熱処理条件としては 25°C〜50°C、より好ましくは 30°C〜45°Cが 望ましい。  [0074] The heat treatment described above plays a role of improving the ratio of holo-type PQQGDH to the total GDH enzyme protein. This treatment that improves PQQGDH activity without adding PQQ from the outside is extremely useful for industrial applications. This phenomenon is presumed that GDH enzyme protein strength S, which is inactive due to imperfect binding state of GQ enzyme protein, but that binds to PQQ, is confirmed by heat treatment. Yong's change is considered to have improved the binding state with PQQ and became active. Thus, it was surprising and surprising that there may be GDH enzyme proteins that bind to PQQ but are inactive due to imperfect binding. The heat treatment conditions are preferably 25 ° C to 50 ° C, more preferably 30 ° C to 45 ° C.
[0075] なお、本加熱処理は、上述したような PQQを産生する宿主を用いた生産にのみ有 用なのではない。アポ型 GDHタンパク質をホロ化し、ホロ型 PQQGDHを調製する 際にも有用である。例えば GDH遺伝子のクローニング後、そのままェシエリヒア'コリ DH5 ひなどを用いてアポ型 GDHタンパク質を発現させ、 PQQGDHと同様に精製 後、精製されたアポ型 GDHタンパク質をホロ化し、ホロ型 PQQGDHを調製する例な どが挙げられる。なぜなら、通常、アポ型 GDHタンパク質をホロ化する際には、アポ 型 GDHタンパク質溶液に PQQ溶解液を添加し混合すればホロ型 PQQGDHが得ら れる力 このような状態では上述したような PQQと結合するものの結合状態が不完全 であるために非活性型となっている GDH酵素タンパク質が数多く存在する可能性は 非常に高レ、。このような場合においても、加熱処理によるホロ化は極めて有用であり、 その効果は高い。 [0075] This heat treatment is not only useful for production using a host producing PQQ as described above. It is also useful when preparing a holo-type PQQGDH by holizing apo-type GDH protein. For example, after cloning the GDH gene, the apo-type GDH protein is expressed directly using Escherichia coli DH5, purified in the same manner as PQQGDH, and then the purified apo-type GDH protein is holoed to prepare the holo-type PQQGDH And so on. Because normally, when apo-type GDH protein is made into a holo, the power to obtain a holo-type PQQGDH by adding a PQQ solution to the apo-type GDH protein solution and mixing it, PQQ as described above in this state It is very likely that there are many GDH enzyme proteins that are inactive due to imperfect binding. Even in such a case, holoformation by heat treatment is extremely useful, The effect is high.
[0076] 上記のようにして得られた精製酵素を、例えば凍結乾燥、真空乾燥やスプレードラ ィなどにより粉末化して流通させることが可能である。その際、精製酵素はリン酸緩衝 液、トリス塩酸緩衝液や GOODの緩衝液に溶解しているものを用いることができる。 好適なものは GOODの緩衝液であり、なかでも、 PIPES、 MESもしくは MOPS緩衝 液が特に好ましい。また、カルシウムイオンまたはその塩、およびグノレタミン酸、グノレ タミン、リジン等のアミノ酸類、さらに血清アルブミン等を添カ卩することにより PQQGD Hをより安定化することができる。  [0076] The purified enzyme obtained as described above can be pulverized and distributed, for example, by freeze drying, vacuum drying, spray drying, or the like. In this case, the purified enzyme can be dissolved in phosphate buffer, Tris-HCl buffer or GOOD buffer. Preferred are GOOD buffers, with PIPES, MES or MOPS buffers being particularly preferred. Furthermore, PQQGDH can be further stabilized by adding calcium ions or salts thereof, amino acids such as gnoretamine, gnoretamine, and lysine, and serum albumin.
[0077] PQQGDHタンパク質は、液状 (水溶液、懸濁液等)、粉末、凍結乾燥など種々の 形態をとることができる。凍結乾燥法としては、特に制限されるものではなく常法に従 つて行えばよい。本発明の酵素を含む組成物は凍結乾燥物に限られず、凍結乾燥 物を再溶解した溶液状態であってもよい。また、グノレコース測定を行なう際には、グ ルコースアツセィキット、グルコースセンサーなどの種々の形態をとることができる。こ の様にして得られた精製された改変タンパク質は、以下のような方法により安定化す ること力 Sできる。  [0077] The PQQGDH protein can take various forms such as liquid (aqueous solution, suspension, etc.), powder, and lyophilized. The freeze-drying method is not particularly limited and may be performed according to a conventional method. The composition containing the enzyme of the present invention is not limited to a lyophilized product, and may be in a solution state in which the lyophilized product is redissolved. Further, when measuring the genole course, various forms such as a glucose assembly kit and a glucose sensor can be taken. The purified modified protein thus obtained can be stabilized by the following method.
[0078] 精製された改変タンパク質に(1)ァスパラギン酸、グルタミン酸、 α—ケトグルタノレ 酸、リンゴ酸、 ケトグルコン酸、 α—サイクロデキストリンおよびそれらの塩からな る群から選ばれた 1種または 2種以上の化合物および(2)アルブミンを共存せしめる ことにより、改変タンパク質をさらに安定化することができる。  [0078] The purified modified protein includes (1) one or more selected from the group consisting of aspartic acid, glutamic acid, α-ketoglutanolic acid, malic acid, ketogluconic acid, α-cyclodextrin, and salts thereof By coexisting the above compound and (2) albumin, the modified protein can be further stabilized.
[0079] 凍結乾燥組成物中においては、 PQQGDH含有量は、酵素の起源によっても異な るが、通常は約 5〜50% (重量比)の範囲で好適に用いられる。酵素活性に換算す ると、 100〜2000U/mgの範囲で好適に用レヽられる。  [0079] In the lyophilized composition, the PQQGDH content varies depending on the origin of the enzyme, but is usually suitably used in the range of about 5 to 50% (weight ratio). In terms of enzyme activity, it is preferably used in the range of 100 to 2000 U / mg.
[0080] ァスパラギン酸、グノレタミン酸、 αーケトグルタル酸、リンゴ酸、及びひーケトグルコ ン酸の塩としては、ナトリウム、カリウム、アンモニゥム、カルシウム、及びマグネシウム 等の塩が挙げられるが特に限定されるものではない。上記化合物とその塩及びひ— シクロデキストリンの添カ卩量は、 1〜90% (重量比)の範囲で添カ卩することが好ましい。 これらの物質は単独で用いてもょレ、し、複数組み合わせてもよレ、。  [0080] Salts of aspartic acid, gnoretamic acid, α-ketoglutaric acid, malic acid, and hyketogluconic acid include salts such as sodium, potassium, ammonium, calcium, and magnesium, but are not particularly limited. . The addition amount of the above compound, its salt and dicyclodextrin is preferably 1 to 90% (weight ratio). These substances can be used alone or in combination.
[0081] 含有される緩衝液としては特に限定されるものではないが、トリス緩衝液、リン酸緩 衝液、ホウ酸緩衝液、 GOOD緩衝液などが挙げられる。該緩衝液の pHは 5. 0 9. 0程度の範囲で使用目的に応じて調整される。凍結乾燥物中においては緩衝剤の 含有量は、特に限定されるものではないが、好ましくは 0. 1 % (重量比)以上、特に好 ましくは 0. :! 30% (重量比)の範囲で使用される。 [0081] The buffer solution to be contained is not particularly limited, but Tris buffer solution, phosphate buffer Examples include impulse solution, borate buffer solution, and GOOD buffer solution. The pH of the buffer solution is adjusted in accordance with the intended use within a range of about 5.0.90. The content of the buffer in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0. 30% (weight ratio). Used in range.
[0082] 使用できるアルブミンとしては、牛血清アルブミン(BSA)、卵白アルブミン(OVA) などが挙げられる。特に BSAが好ましい。該アルブミンの含有量は、好ましくは 1 8 0% (重量比)、より好ましくは 5 70% (重量比)の範囲で使用される。  [0082] Examples of albumin that can be used include bovine serum albumin (BSA) and ovalbumin (OVA). BSA is particularly preferable. The albumin content is preferably in the range of 180% (weight ratio), more preferably 570% (weight ratio).
[0083] 組成物には、さらに他の安定化剤などを PQQGDHの反応に特に悪い影響を及ぼ さないような範囲で添加してもよい。本発明の安定化剤の配合法は特に制限されるも のではない。例えば PQQGDHを含む緩衝液に安定化剤を配合する方法、安定化 剤を含む緩衝液に PQQGDHを配合する方法、あるいは PQQGDHと安定化剤を緩 衝液に同時に配合する方法などが挙げられる。  [0083] Further stabilizers and the like may be added to the composition in a range that does not particularly adversely affect the reaction of PQQGDH. The blending method of the stabilizer of the present invention is not particularly limited. For example, a method in which a stabilizer is added to a buffer solution containing PQQGDH, a method in which PQQGDH is added to a buffer solution containing a stabilizer, or a method in which PQQGDH and a stabilizer are simultaneously added to a buffer solution are included.
[0084] また、カルシウムイオンを添加しても安定化効果が得られる。すなわち、カルシウム イオンまたはカルシウム塩を含有させることにより、改変タンパク質を安定化させること ができる。カルシウム塩としては、塩化カルシウムまたは酢酸カルシウムもしくはクェン 酸カルシウム等の無機酸または有機酸のカルシウム塩などが例示される。また、水性 組成物において、カルシウムイオンの含有量は、 1 X 10 1 X 10_2Mであることが 好ましい。 [0084] A stabilizing effect can also be obtained by adding calcium ions. That is, the modified protein can be stabilized by containing calcium ions or calcium salts. Examples of the calcium salt include calcium chloride, calcium acetate, calcium salt of inorganic acid such as calcium citrate, and calcium salt of organic acid. Further, in an aqueous composition, the content of calcium ions is preferably 1 X 10 1 X 10_ 2 M .
[0085] カルシウムイオンまたはカルシウム塩を含有させることによる安定化効果は、グルタ ミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸を含有させることによ り、さらに向上する。  [0085] The stabilizing effect by containing calcium ions or calcium salts is further improved by containing an amino acid selected from the group consisting of glutamic acid, glutamine and lysine.
[0086] グノレタミン酸、グルタミンおよびリジンからなる群から選択されるアミノ酸は、 1種また は 2種以上であってもよレ、。前記の水性組成物において、グノレタミン酸、グノレタミンお よびリジンからなる群から選択されたアミノ酸の含有量は、 0. 01 0. 2重量%である ことが好ましい。  [0086] The amino acid selected from the group consisting of gnoretamic acid, glutamine and lysine may be one kind or two or more kinds. In the aqueous composition, the content of an amino acid selected from the group consisting of gnoretamic acid, gnoletamine and lysine is preferably 0.01 to 0.2% by weight.
[0087] さらに血清アルブミンを含有させてもよレ、。前記の水性組成物に血清アルブミンを 添加する場合、その含有量は 0. 05-0. 5重量%であることが好ましい。  [0087] Further, serum albumin may be added. When serum albumin is added to the aqueous composition, the content is preferably 0.05 to 0.5% by weight.
[0088] 緩衝剤としては、通常のものが使用され、通常、組成物の pHを 5〜: 10とするものが 好ましレ、。具体的にはトリス塩酸、ホウ酸、グッド緩衝液が用いられる力 カルシウムと 不溶性の塩を形成しない緩衝液はすべて使用できる。 [0088] As the buffering agent, a normal one is used, and the buffer having a pH of 5 to 10 is usually used. I like it. Specifically, Tris-HCl, boric acid, and the power for which Good's buffer is used Any buffer that does not form an insoluble salt with calcium can be used.
[0089] 前記の水性組成物には、必要により他の成分、例えば界面活性剤、安定化剤、賦 形剤などを添加しても良い。 [0089] If necessary, other components such as a surfactant, a stabilizer, and an excipient may be added to the aqueous composition.
[0090] また、本発明は、上記で例示されるように、可溶性の補酵素結合型のグノレコースデ ヒドロゲナーゼを含有する組成物において、該組成物に加温処理を施す工程を含む[0090] In addition, as exemplified above, the present invention includes a step of heating the composition in a composition containing a soluble coenzyme-bound type of gnolecose dehydrogenase.
、熱安定性が向上した、可溶性の補酵素結合型グノレコースデヒドロゲナーゼを含有 する組成物を製造する方法である。 This is a method for producing a composition containing soluble coenzyme-linked gnolecose dehydrogenase with improved thermostability.
[0091] また、本発明は、上記の方法で製造された、可溶性の補酵素結合型のグルコース デヒドロゲナーゼを含有する組成物において、熱安定性が向上した、可溶性の補酵 素結合型グルコースデヒドロゲナーゼを含有する組成物である。  [0091] Further, the present invention provides a composition comprising a soluble coenzyme-bound glucose dehydrogenase produced by the method described above, wherein a soluble coenzyme-bound glucose dehydrogenase having improved thermal stability is obtained. It is a composition to contain.
[0092] 本発明においては以下の種々の方法によりグノレコースを測定することができる。  [0092] In the present invention, gnole course can be measured by the following various methods.
本発明のグノレコース測定用試薬、グノレコースアツセィキット、グノレコースセンサは、 液状 (水溶液、懸濁液等)、真空乾燥やスプレードライなどにより粉末化したもの、凍 結乾燥など種々の形態をとることができる。乾燥法としては、特に制限されるものでは なく常法に従って行えばよい。本発明の酵素を含む組成物は凍結乾燥物に限られ ず、乾燥物を再溶解した溶液状態であってもよレ、。  The reagent for measuring gnolecose, the gnolecose assembly kit, and the gnolecose sensor of the present invention are various forms such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, etc. Can be taken. The drying method is not particularly limited and may be performed according to a conventional method. The composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the dried product is redissolved.
本発明においては以下の種々の方法によりグノレコースを測定することができる。  In the present invention, gnole course can be measured by the following various methods.
[0093] グルコース測定用試薬  [0093] Glucose measuring reagent
本発明のグノレコース測定用試薬は、典型的には、 GDH、緩衝液、メディエーター など測定に必要な試薬、キャリブレーションカーブ作製のためのグルコース標準溶液 、ならびに使用の指針を含む。本発明のキットは、例えば、凍結乾燥された試薬とし て、または適切な保存溶液中の溶液として提供することができる。好ましくは本発明 の GDHはホロ化した形態で提供されるが、アポ酵素の形態で提供し、使用時にホロ ィ匕することもできる。  The reagent for measuring gnolecose of the present invention typically includes reagents necessary for measurement such as GDH, buffer solution, mediator, glucose standard solution for preparing a calibration curve, and usage guidelines. The kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Preferably, the GDH of the present invention is provided in the form of a holo, but it may be provided in the form of an apoenzyme and holo- ed at the time of use.
[0094] グルコースアツセィキット  [0094] Glucose Atsy Kit
本発明はまた、本発明に従う GDHを含むグルコースアツセィキットを特徴とする。本 発明のグルコースアツセィキットは、本発明に従う GDHを少なくとも 1回のアツセィに 十分な量で含む。典型的には、キットは、本発明の GDHに加えて、アツセィに必要な 緩衝液、メディエーター、キャリブレーションカーブ作製のためのグルコース標準溶液 、ならびに使用の指針を含む。本発明に従う GDHは種々の形態で、例えば、凍結乾 燥された試薬として、または適切な保存溶液中の溶液として提供することができる。 好ましくは本発明の GDHはホロ化した形態で提供されるが、アポ酵素の形態で提供 し、使用時にホロ化することもできる。 The invention also features a glucose assembly kit comprising GDH according to the invention. The glucose assay kit of the present invention is a GDH according to the present invention is converted into at least one assay. Contains enough. Typically, the kit contains the GDH of the present invention plus the buffers necessary for assembly, mediators, glucose standard solutions for creating calibration curves, and usage guidelines. The GDH according to the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Preferably, the GDH of the present invention is provided in the form of a holo, but it can also be provided in the form of an apoenzyme and hololated at the time of use.
[0095] グルコースセンサ  [0095] Glucose sensor
本発明はまた、本発明に従う GDHを用いるグルコースセンサを特徴とする。電極と しては、カーボン電極、金電極、白金電極などを用い、この電極上に本発明の酵素 を固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中 に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸 化還元ポリマーなどがあり、あるいはメディエーターとともにポリマー中に固定あるレ、 は電極上に吸着固定してもよぐまたこれらを組み合わせて用いてもよい。好ましくは 本発明の GDHはホロ化した形態で電極上に固定化する力 アポ酵素の形態で固定 化し、補酵素を別の層としてまたは溶液中で供給することも可能である。典型的には 、ダルタルアルデヒドを用いて本発明の GDHをカーボン電極上に固定化した後、ァ ミン基を有する試薬で処理してダルタルアルデヒドをブロッキングする。  The invention also features a glucose sensor using GDH according to the invention. As an electrode, a carbon electrode, a gold electrode, a platinum electrode or the like is used, and the enzyme of the present invention is immobilized on this electrode. Immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, an oxidation-reduction polymer, or the like in the polymer together with a mediator. These can be adsorbed and fixed on the electrode, or a combination of these may be used. Preferably, the GDH of the present invention may be immobilized in the form of apoenzyme in the form of a holoform and immobilized on the electrode, and the coenzyme may be supplied as a separate layer or in solution. Typically, the GDH of the present invention is immobilized on a carbon electrode using dartalaldehyde, and then treated with a reagent having an amine group to block dartalaldehyde.
[0096] グルコース濃度の測定は、以下のようにして行うことができる。恒温セルに緩衝液を 入れ、メディエーターを加えて一定温度に維持する。作用電極として本発明の GDH を固定化した電極を用い、対極(例えば白金電極)および参照電極(例えば Ag/Ag C1電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、 グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液 により作製したキャリブレーションカーブに従レ、、試料中のグルコース濃度を計算する こと力 Sできる。  [0096] The glucose concentration can be measured as follows. Put the buffer in the thermostatic cell and add the mediator to maintain a constant temperature. As the working electrode, an electrode on which the GDH of the present invention is immobilized is used, and a counter electrode (for example, platinum electrode) and a reference electrode (for example, Ag / Ag C1 electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. It is possible to calculate the glucose concentration in the sample according to the calibration curve prepared with the standard concentration glucose solution.
[0097] なお、本発明は別の見方では以下のような構成からなる。  Note that the present invention has the following configuration from another viewpoint.
[1]可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成物において、 該組成物に加温処理を施す工程を含む、該酵素の安定性を向上させる方法。  [1] A method for improving the stability of the enzyme, comprising a step of subjecting the composition to a heating treatment, wherein the composition comprises a soluble coenzyme-linked glucose dehydrogenase.
[2]補酵素がピロロキノンキノリンまたはフラビン化合物である [1]に記載の安定性を 向上させる方法。 [2] The stability according to [1], wherein the coenzyme is pyrroloquinone quinoline or a flavin compound. How to improve.
[3]加温処理温度が酵素の大きな熱失活が発生する温度が発生する温度以下であ る [1] , [2]に記載の安定性を向上させる方法。  [3] The method for improving stability according to [1], [2], wherein the heating treatment temperature is not higher than a temperature at which a temperature at which a large thermal inactivation of the enzyme occurs.
[4]可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成物にぉレ、て、 該組成物に加温処理を施す工程を含む方法により製造された、熱安定性が向上し た可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成物  [4] A soluble complement with improved thermal stability produced by a method comprising a step of subjecting a composition comprising a soluble coenzyme-linked glucose dehydrogenase to a heating treatment. Composition comprising enzyme-linked glucose dehydrogenase
[5] [4]の組成物を用いたグルコース濃度の測定方法。 [5] A method for measuring glucose concentration using the composition according to [4].
[6] [5]の組成物を含むグルコースセンサ。 [6] A glucose sensor comprising the composition according to [5].
[7]可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成物にぉレ、て、 該組成物に加温処理を施す工程を含む、安定性が向上した可溶性の補酵素結合型 のグルコースデヒドロゲナーゼを含む組成物を製造する方法。  [7] Soluble coenzyme-bound glucose dehydrogenase with improved stability, comprising a step of subjecting the composition to soluble coenzyme-bound glucose dehydrogenase to a heating treatment. A method for producing a composition comprising:
さらに、本発明は別の見方では以下のような構成からなる。  Furthermore, the present invention has the following configuration from another viewpoint.
[1]可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成物において、 該組成物にカルボシノレ基、アミノ基を持つ化合物を添加することにより、該酵素のホ 口型比率を向上させる方法。 [1] A method comprising a composition containing a soluble coenzyme-bound glucose dehydrogenase, wherein a compound having a carbocinole group or an amino group is added to the composition to improve the mouth ratio of the enzyme.
[2]補酵素がピロロキノンキノリンまたはフラビン化合物であることを特徴とする [1]に 記載のホロ型比率を向上させる方法。  [2] The method for improving the holo-type ratio according to [1], wherein the coenzyme is pyrroloquinone quinoline or a flavin compound.
[3]添カ卩する化合物がコハク酸、マロン酸、塩ィ匕アンモニゥムであることを特徴とする [1] , [2]に記載のホロ型比率を向上させる方法。  [3] The method for improving the holo-type ratio according to [1] or [2], wherein the compound to be added is succinic acid, malonic acid, or salt ammonium.
[4] [1]〜 [3]の方法によりホロ型比率が向上した可溶性の補酵素結合型のダルコ 一スデヒドロゲナーゼを含む組成物。  [4] A composition comprising a soluble coenzyme-bound dalcoose dehydrogenase having an improved holo-type ratio by the method of [1] to [3].
[5]可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成物にぉレ、て、 該組成物にカルボシノレ基、アミノ基を持つ化合物を添加することにより、該酵素の粉 末安定性を向上させる方法。  [5] Improve the powder stability of the enzyme by adding a compound having a carbocinole group or an amino group to the composition containing a soluble coenzyme-bound glucose dehydrogenase. Method.
[6]補酵素がピロロキノンキノリンまたはフラビン化合物であることを特徴とする [4]に 記載の安定性を向上させる方法。  [6] The method for improving stability according to [4], wherein the coenzyme is pyrroloquinone quinoline or a flavin compound.
[7]添カ卩する化合物がコハク酸、マロン酸、塩ィ匕アンモニゥムであることを特徴とする [4] , [5]に記載の安定性を向上させる方法。 [8] [5]〜 [7]の方法により熱安定性が向上した可溶性の補酵素結合型のダルコ一 スデヒドロゲナーゼを含む組成物。 [7] The method for improving stability according to [4] or [5], wherein the compound to be added is succinic acid, malonic acid, or salt ammonium. [8] A composition comprising a soluble coenzyme-bound darcos dehydrogenase improved in thermal stability by the method of [5] to [7].
[9] [4]または [8]の組成物を用いたグルコース濃度の測定方法。  [9] A method for measuring glucose concentration using the composition according to [4] or [8].
[10] [9]の組成物を含むグルコースセンサ。 [10] A glucose sensor comprising the composition according to [ 9 ].
[0099] さらに、本発明は別の見方では以下のような構成からなる。 [0099] Further, another aspect of the present invention is configured as follows.
[1] PQQ依存性グルコースデヒドロゲナーゼを含有する水溶液に加熱処理を施すこ とを特徴とする、全 GDH酵素タンパク質に対するホロ型 PQQGDHの割合を向上さ せる方法  [1] A method for improving the ratio of holo-type PQQGDH to total GDH enzyme protein, characterized by heat-treating an aqueous solution containing PQQ-dependent glucose dehydrogenase
[2] PQQ依存性グルコースデヒドロゲナーゼを含有する水溶液に加熱処理を施すこ とを特徴とする、 PQQ依存性グルコースデヒドロゲナーゼを製造する方法  [2] A method for producing a PQQ-dependent glucose dehydrogenase, comprising heat-treating an aqueous solution containing the PQQ-dependent glucose dehydrogenase
[3] PQQ依存性グルコースデヒドロゲナーゼを含有する水溶液に加熱処理を施すこ とを特徴とする、 [2]記載の、全 GDH酵素タンパク質に対するホロ型 PQQGDHの 割合が向上した PQQ依存性グノレコースデヒドロゲナーゼを製造する方法  [3] The aqueous solution containing PQQ-dependent glucose dehydrogenase is heated, and the PQQ-dependent gnolecose dehydrogenase having an improved ratio of holo-type PQQGDH to the total GDH enzyme protein according to [2] How to manufacture
[4] PQQ依存性グルコースデヒドロゲナーゼを含有する水溶液に加熱処理を施すこ とを特徴とする、 [2]記載のホロ型 PQQ依存性グルコースデヒドロゲナーゼの割合が 90%以上である PQQ依存性グルコースデヒドロゲナーゼを製造する方法  [4] An aqueous solution containing a PQQ-dependent glucose dehydrogenase is subjected to a heat treatment, and the ratio of the holo-type PQQ-dependent glucose dehydrogenase described in [2] is 90% or more. How to make
[5] [2]記載の方法で製造された PQQ依存性グルコースデヒドロゲナーゼ  [5] PQQ-dependent glucose dehydrogenase produced by the method according to [2]
[6] [2]記載の方法で製造された PQQ依存性グルコースデヒドロゲナーゼを含むグ ノレコースアツセィキット  [6] Gnore course assembly kit containing PQQ-dependent glucose dehydrogenase produced by the method according to [2]
[7] [2]記載の方法で製造された PQQ依存性グルコースデヒドロゲナーゼを含むグ ノレコ―スセンサ—。  [7] A glucose sensor comprising a PQQ-dependent glucose dehydrogenase produced by the method according to [2].
[8] [2]記載の方法で製造された PQQ依存性グルコースデヒドロゲナーゼを含むグ ルコース測定方法。  [8] A method for measuring glucose containing a PQQ-dependent glucose dehydrogenase produced by the method according to [2].
実施例  Example
[0100] 以下、本発明を実施例に基づきより詳細に説明する。  [0100] Hereinafter, the present invention will be described in more detail based on examples.
実施例 1 : PQQ依存型グノレコースデヒドロゲナーゼ遺伝子の発現プラスミドの構築 野生型 PQQ依存型グルコースデヒドロゲナーゼの発現プラスミド PNPG5は、ベクタ 一 pBluescript SK (-)のマルチクローニング部位にァシネトパクタ^ ~ ·バウマンニ ( Acinetobacter baumannii) NCIMB 1 1517株由来の PQQ依存型グルコース デヒドロゲナーゼをコードする構造遺伝子を揷入したものである。その塩基配列を配 列表の配列番号 2に、また該塩基配列から推定される PQQ依存型グルコースデヒド ログナーゼのアミノ酸配列を配列表の配列番号 1に示す。 Example 1: Construction of an expression plasmid for the PQQ-dependent gnolecose dehydrogenase gene Wild-type PQQ-dependent glucose dehydrogenase expression plasmid PNPG5 is expressed in the multiple cloning site of the vector pBluescript SK (-). Acinetobacter baumannii) A structural gene encoding PQQ-dependent glucose dehydrogenase derived from NCIMB 1 1517 strain. The base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
PNPG5の DNA5 μ gを制限酵素 BamHIおよび Xhol (東洋紡績製)で切断して、 変異型 PQQ依存型グルコースデヒドロゲナーゼの構造遺伝子部分を単離した。単 離した DNAと BamHIおよび Xholで切断した pTM33 ( 1 μ g)と T4DNAリガーゼ 1 単位で 16°C、 16時間反応させ、 DNAを連結した。連結した DNAはェシエリヒア'コ リ DH5 aのコンビテントセルを用いて形質転換を行った。得られた発現プラスミドを p NPG6と命名した。  PNPG5 DNA (5 μg) was cleaved with restriction enzymes BamHI and Xhol (Toyobo Co., Ltd.), and the structural gene part of mutant PQQ-dependent glucose dehydrogenase was isolated. The isolated DNA and pTM33 (1 μg) cleaved with BamHI and Xhol were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA. The ligated DNA was transformed using a competent cell of Escherichia coli DH5a. The resulting expression plasmid was named pNPG6.
[0101] 実施例 2:シユードモナス属細菌の形質転換体の作製 [0101] Example 2: Preparation of transformants of Pseudomonas bacteria
シユードモナス 'プチダ TE3493 (微ェ研寄 12298号)を LBG培地(LB培地 + 0. 3%グリセロール)で 30°C、 16時間培養し、遠心分離(12, 000rpm、 10分間)により 菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK—リン酸 緩衝液(PH7. 0) 8mlを加え、菌体を懸濁した。再度遠心分離(12, 000rpm、 10分 間)により菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK —リン酸緩衝液(ρΗ7· 0) 0. 4mlをカ卩え、菌体を懸濁した。  Pseudomonas' Putida TE3493 (Microeken No. 12298) was cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and the cells were collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (PH7.0) containing 300 mM sucrose cooled on ice was added to the cells to suspend the cells. The cells are collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer (ρΗ7.0) containing 300 mM sucrose ice-cooled is added to the cells. The body was suspended.
該懸濁液に実施例 1で得た発現プラスミド PNPG6を 0. カロえ、エレクトロボレ ーシヨン法により形質転換した。 100 μ gZmlのストレプトマイシンを含む LB寒天培 地に生育したコロニーより、 目的とする形質転換体を得た。  The suspension was transformed with the expression plasmid PNPG6 obtained in Example 1 by the electrovolution method. The desired transformant was obtained from a colony grown on LB agar medium containing 100 μg Zml of streptomycin.
[0102] 実施例 3 : PQQ依存型 GDH標品の調製 [0102] Example 3: Preparation of PQQ-dependent GDH preparation
500mlの Terrific brothを 2L容坂ロフラスコに分注し、 121。C、 20分間オートク レーブを行い、放冷後別途無菌濾過したストレプトマイシンを 100 μ g/mlになるよう に添カロした。この培地に 100 μ g/mlのストレプトマイシンを含む PY培地で予め 30 °C、 24時間培養したシユードモナス'プチダ TE3493 (pNPG6)の培養液を 5ml接 種し、 30°Cで 40時間通気攪拌培養した。培養終了時の PQQ依存型グルコースデヒ ドロゲナーゼ活性は、前記活性測定にぉレ、て、培養液 lml当たり約 30U/mlであつ 上記菌体を遠心分離により集菌し、 20mMリン酸緩衝液 (PH7. 0)に懸濁した後、 超音波処理により破砕し、更に遠心分離を行い、上清液を粗酵素液として得た。得ら れた粗酵素液を HiTrap_ SP (アマシャム—フアルマシア)イオン交換カラムクロマト グラフィ一により分離'精製した。次いで 10mM PIPES_Na〇H緩衝液(pH6. 5) で透析した後に終濃度力 mMになるように塩化カルシウムを添加した。最後に HiTr ap— DEAE (アマシャム一フアルマシア)イオン交換カラムクロマトグラフィーにより分 離'精製し、精製酵素標品を得た。本方法により得られた標品は、 SDS— PAGE的 にほぼ単一なバンドを示した。 Dispense 500 ml of Terrific broth into a 2 L volumetric flask. C, autoclaved for 20 minutes, and after standing to cool, separately sterile filtered streptomycin was added to 100 μg / ml. This medium was inoculated with 5 ml of Pseudomonas' Putida TE3493 (pNPG6) culture medium previously cultured for 24 hours at 30 ° C in PY medium containing 100 μg / ml streptomycin and cultured at 30 ° C for 40 hours with aeration and agitation. . The PQQ-dependent glucose dehydrogenase activity at the end of the culture is about 30 U / ml per 1 ml of the culture solution, as measured by the above activity measurement. The cells are collected by centrifugation, suspended in 20 mM phosphate buffer ( PH 7.0), disrupted by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. It was. The obtained crude enzyme solution was separated and purified by HiTrap_SP (Amersham-Falmasia) ion exchange column chromatography. Next, after dialyzing with 10 mM PIPES_Na 0 H buffer (pH 6.5), calcium chloride was added to a final concentration of mM. Finally, it was separated and purified by HiTrap-DEAE (Amersham-Falmacia) ion exchange column chromatography to obtain a purified enzyme preparation. The sample obtained by this method showed an almost single band on SDS-PAGE.
このようにして取得した精製酵素を PQQ依存型 GLD評価標品として使用した。 試験例 1 : PQQ依存型 GDH活性の測定方法  The purified enzyme thus obtained was used as a PQQ-dependent GLD evaluation sample. Test Example 1: Method for measuring PQQ-dependent GDH activity
本発明において、 PQQ依存型 GDHの活性測定は以下の条件で行う。  In the present invention, the activity of PQQ-dependent GDH is measured under the following conditions.
測定原理 Measurement principle
D—グルコース + PMS + PQQGDH → D—ダルコノ一 1, 5—ラタトン + PMS (red)  D—glucose + PMS + PQQGDH → D—Dalcono 1, 5—Lataton + PMS (red)
PMS (red) + DCPIP → PMS + DCPIP (red)  PMS (red) + DCPIP → PMS + DCPIP (red)
フエナジンメトサルフェート(PMS) (red)による 2, 6—ジクロロフエノール-インドフエノ ール(DCPIP)の還元により形成された DCPIP (red)の存在は、 600nmで分光光度 法により測定した。また、基質特異性の検討では、 D—グノレコースの部分を他の糖類 に変更して、それぞれの基質に対する特異性を測定した。 The presence of DCPIP (red) formed by the reduction of 2,6-dichlorophenol-indophenol (DCPIP) by phenazine methosulfate (PMS) (red) was measured spectrophotometrically at 600 nm. In addition, in the examination of substrate specificity, the part of D-gnolecose was changed to other saccharides, and the specificity for each substrate was measured.
単位の定義 Unit definition
1単位は、以下に記載の条件下で 1分当たり DCPIP (red)を 1. 0ミリモル形成させ る PQQGDHの酵素量をいう。  One unit refers to the amount of PQQGDH enzyme that forms 1.0 mmol of DCPIP (red) per minute under the conditions described below.
方法 Method
試薬 Reagent
A. D—グルコース溶液: 1. OM (l . 8g D—グルコース(分子量 180. 16) /l0ml H20)  A. D-glucose solution: 1. OM (l. 8g D-glucose (molecular weight 180. 16) / l0ml H20)
B. PIPES _Na〇H緩衝液, pH6. 5 : 50mM (60mLの水中に懸濁した 1. 51gの PIPES (分子量 302. 36)を、 5N NaOHに溶解し、 2· 2mlの 10% Triton X— 1 00を力 Qえる。 5N NaOHを用いて 25°Cで pHを 6. 5 ± 0. 05に調整し、水を加えて 1 00mlとした。) B. PIPES_NaOH buffer solution, pH 6.5: 50 mM (1.51 g PIPES (molecular weight 302. 36) suspended in 60 mL water was dissolved in 5 N NaOH, and 2 ml 10% Triton X— 1 Get 00 power Q. The pH was adjusted to 6.5 ± 0.05 at 25 ° C using 5N NaOH, and water was added to make 100 ml. )
C. PMS溶液: 24mM (73. 52mgのフエナジンメトサルフェート(分子量 817. 65) /l0mlH2O)  C. PMS solution: 24mM (73.52mg phenazine methosulfate (molecular weight 817.65) / l0mlH2O)
D. DCPIP溶液: 2. 0mM (6. 5mgのニトロテトラゾリゥムブルー(分子量 817. 65) /l0mlH2O)  D. DCPIP solution: 2.0mM (6.5mg of nitrotetrazolium blue (molecular weight 817.65) / l0mlH2O)
E.酵素希釈液: ImM CaC12, 0. 1% Triton X—100, 0. 1 % BSAを含 む 50mM PIPES— NaOH緩衝液(ρΗ6· 5) 手順  E. Enzyme Diluent: ImM CaC12, 0.1% Triton X—100, 0.1 mM BSA in 50 mM PIPES—NaOH buffer (ρΗ6 · 5) Procedure
1. 遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製)  1. Prepare the following reaction mixture in a light-proof bottle and store on ice (prepared at the time of use)
4. 5ml D—グルコース溶液 (A)  4. 5ml D-glucose solution (A)
21. 9ml PIPES— NaOH緩衝液(ρΗ6· 5) (Β)  21. 9ml PIPES—NaOH buffer (ρΗ6 · 5) (Β)
2. 0ml PMS溶液 (C)  2. 0ml PMS solution (C)
1. 0ml DCPIP溶液 (D) 上記アツセィ混合物の反応液中の濃度は次のとおり。  1. 0ml DCPIP solution (D) The concentration of the above mixture in the reaction solution is as follows.
PIPES緩衝液 36mM  PIPES buffer 36 mM
D—グルコース 148mM  D—glucose 148 mM
PMS 1. 58mM  PMS 1. 58mM
DCPIP 0. 066mM  DCPIP 0. 066mM
2. 3. 0mlの反応混合液を試験管(プラスチック製)に入れ、 37°Cで 5分間予備加 温した。 2. 3. 0 ml of the reaction mixture was placed in a test tube (plastic) and pre-warmed at 37 ° C for 5 minutes.
3. 0. 1mlの酵素溶液を加え、穏やかに反転して混合した。  3. 0.1 ml of enzyme solution was added and mixed by gentle inversion.
4. 600nmでの水に対する吸光度の減少を 37°Cに維持しながら分光光度計で 4〜 5分間記録し、曲線の初期直線部分からの 1分当たりの A〇Dを計算した(ODテスト) 同時に、酵素溶液に代えて酵素希釈液 (E)加えることを除いては同一の方法を繰り 返し、ブランク( Δ〇Dブランク)を測定した。 4. Record the decrease in absorbance at 600 nm for water at 37 ° C for 4-5 minutes with a spectrophotometer and calculate AOD per minute from the initial linear portion of the curve (OD test) At the same time, the same method was repeated except that the enzyme dilution solution (E) was added instead of the enzyme solution, and a blank (ΔD blank) was measured.
アツセィの直前に氷冷した酵素希釈液 (E)で酵素粉末を溶解し、同一の緩衝液で 0 .05-0.10U/mlに希釈した(該酵素の接着性のためにプラスチックチューブの使 用が好ましい)。 The enzyme powder was dissolved in ice-cooled enzyme diluent (E) immediately before the assembly and diluted to 0.05-0.10 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
基質特異性を評価する目的には、上記活性測定操作はグルコース溶液の代わりに 他の種類の糖溶液を基質として実施した  For the purpose of evaluating substrate specificity, the above activity measurement procedure was carried out using another type of sugar solution as a substrate instead of the glucose solution.
計算 Calculation
活性を以下の式を用いて計算する:  Activity is calculated using the following formula:
U/ml={ A〇D/min(A〇Dテスト一 AODブランク) XVtXdf}/(16.8X1. OXVs)U / ml = {A〇D / min (A〇D test one AOD blank) XVtXdf} / (16.8X1. OXVs)
Figure imgf000032_0001
Figure imgf000032_0001
Vt:総体積(3. lml)  Vt: Total volume (3. lml)
Vs:サンプル体積(0· lml)  Vs: Sample volume (0 · lml)
16.8:上記測定条件での DCPIPのミリモル分子吸光係数(cm2/マイクロモル) 1.0:光路長(cm)  16.8: Millimolecular extinction coefficient of DCPIP under the above measurement conditions (cm2 / micromol) 1.0: Optical path length (cm)
df:希釈係数 df: dilution factor
C:溶液中の酵素濃度(c mg/ml)  C: Enzyme concentration in solution (c mg / ml)
試験例 2: NAD依存型 GDH活性の測定方法 Test example 2: NAD-dependent GDH activity measurement method
本発明において、 NAD依存型 GDHの活性測定は以下の条件で行う。なお、 NA D依存型 GDH酵素標品として、東洋紡製のグルコース脱水素酵素(GLD311)を使 用した。  In the present invention, NAD-dependent GDH activity is measured under the following conditions. In addition, Toyobo's glucose dehydrogenase (GLD311) was used as the NAD-dependent GDH enzyme preparation.
測定原理 Measurement principle
D—グノレコース + NAD+ → D—グノレコノ _1, 5—ラタトン + NADH + H + NADHの生成量を 340nmの吸光度の変化で測定した。  The amount of D-gnolecose + NAD + → D-gnolecono_1,5-latataton + NADH + H + NADH was measured by the change in absorbance at 340 nm.
単位の定義 Unit definition
1単位は、以下に記載の条件下で 1分当たり NADHを 1.0マイクロモル形成させる NADGDHの酵素量をレ、う。 方法 One unit is the amount of NADGDH enzyme that forms 1.0 micromolar NADH per minute under the conditions described below. Method
試薬 Reagent
A. D—グルコース溶液: 1. 5M (2. 7g D—グルコース(分子量 180. 16) /l0ml H20)  A. D-glucose solution: 1.5M (2.7g D-glucose (molecular weight 180.16) / l0ml H20)
B. Tris_HCl緩衝液, pH8. 0 : 100mM (90mLの水中に懸濁した 1. 21gのトリス( ヒドロキシメチル)ァミノメタン(分子量 121. 14)を、 5N HC1を用いて 25°Cで pHを 8 . 0± 0. 05に調整し、水をカロ免て 100mlとした。)  B. Tris_HCl buffer, pH 8.0: 100 mM (1.2 g of tris (hydroxymethyl) aminomethane (molecular weight 121.14) suspended in 90 mL of water, pH 5 at 25 ° C with 5N HC1. (Adjusted to 0 ± 0.05, freed from water to make 100ml.)
C. NAD溶液: 8% (80mgの NAD (分子量 717. 48) /lmlH20)  C. NAD solution: 8% (80mg NAD (molecular weight 717.48) / lmlH20)
D.酵素希釈液:試薬 Bをそのまま使用した。 手順  D. Enzyme diluent: Reagent B was used as it was. Steps
1. 遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製)  1. Prepare the following reaction mixture in a light-proof bottle and store on ice (prepared at the time of use)
0. 9ml D—グルコース溶液 (A)  0. 9ml D-glucose solution (A)
7. 8ml Tris— HC1緩衝液(ρΗ8· 0) (Β)  7. 8ml Tris—HC1 buffer (ρΗ8 · 0) (Β)
0. 3ml NAD溶液 (C) 上記アツセィ混合物の反応液中の濃度は次のとおり。  0. 3ml NAD solution (C) The concentration of the above mixture in the reaction solution is as follows.
D—グルコース 148mM  D—glucose 148 mM
Tris _HC1緩衝液 77mM Tris _HC1 buffer 77 mM
NAD 0. 26%  NAD 0. 26%
2. 3. Omlの反応混合液を試験管(プラスチック製)に入れ、 37°Cで 5分間予備加 温した。 2. 3. Oml of reaction mixture was placed in a test tube (plastic) and pre-warmed at 37 ° C for 5 minutes.
3. 0. 05mlの酵素溶液を加え、穏やかに反転して混合した。  3. Add 0.05 ml enzyme solution and mix by gentle inversion.
4. 340nmでの水に対する吸光度の変化を 37°Cに維持しながら分光光度計で 4〜 5分間記録し、曲線の初期直線部分からの 1分当たりの A〇Dを計算した(ODテスト) 同時に、酵素溶液に代えて酵素希釈液 (D)加えることを除いては同一の方法を繰り 返し、ブランク( Δ〇Dブランク)を測定した。 4. Record the change in absorbance for water at 340 nm at 37 ° C for 4 to 5 minutes with a spectrophotometer, and calculate AOD per minute from the initial linear part of the curve (OD test) At the same time, the same method is repeated except that enzyme diluent (D) is added instead of enzyme solution. The blank (ΔOD blank) was measured.
アツセィの直前に氷冷した酵素希釈液(D)で酵素粉末を溶解し、同一の緩衝液で 0 . 10-0. 70U/mlに希釈した(該酵素の接着性のためにプラスチックチューブの使 用が好ましい)。 The enzyme powder was dissolved in ice-cold enzyme diluent (D) immediately before the assembly and diluted to 0.10-0.70 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
基質特異性を評価する目的には、上記活性測定操作はグルコース溶液の代わりに 他の種類の糖溶液を基質として実施した。 計算  For the purpose of evaluating substrate specificity, the above activity measurement procedure was carried out using another type of sugar solution as a substrate instead of the glucose solution. Calculation
活性を以下の式を用いて計算する:  Activity is calculated using the following formula:
U/ml= { A〇D/min ( A〇Dテスト一 Δ〇Dブランク) X Vt X df }/ (6· 22 X 1. O X Vs)U / ml = {A〇D / min (A〇D test one Δ〇D blank) X Vt X df} / (6.22 X 1. O X Vs)
Figure imgf000034_0001
Figure imgf000034_0001
Vt :総体積(3. 05ml)  Vt: Total volume (3.05ml)
Vs :サンプル体積(0· 05ml)  Vs: Sample volume (0 · 05ml)
6. 22 : NADHのミリモル分子吸光係数(cm2/マイクロモル)  6. 22: NADH millimolar extinction coefficient (cm2 / micromol)
1. 0 :光路長(cm) 1. 0: Optical path length (cm)
df :希釈係数 df: dilution factor
C :溶液中の酵素濃度(c mg/ml)  C: Enzyme concentration in solution (c mg / ml)
実施例 4: FAD依存型 GDH標品の調製 Example 4: Preparation of FAD-dependent GDH preparation
FAD依存型 GDH生産菌として Aspergillus terreus亜種と Penicillium  Aspergillus terreus subspecies and Penicillium as FAD-dependent GDH producing bacteria
lilacinoechinulatum NBRC6231 (独立行政法人製品評価技術基盤機構より購入)を 用レ、、それぞれの L乾標本をポテトデキストロース寒天培地(Difco製)に植菌し 25°C でインキュベートすることにより復元した。復元させたプレート上の菌糸を寒天ごと回 収してフィルター滅菌水に懸濁した。 2基の 10L容ジャーフアーメンター中に生産培 地(1%麦芽エキス、 1. 5%大豆ペプチド、 0. l%MgS04 ' 7水和物、 2。 /。ダルコ一 ス、 pH6. 5) 6Lを調製し、 120°C15分オートクレーブ滅菌後に上記の菌糸懸濁液を それぞれ投入、培養を開始した。培養条件は、温度 30°C、通気量 2L/分、攪拌数 3 80i"pmで行った。培養開始から 64時間後に培養を停止し、ヌッチェろ過器を用いて 吸引ろ過によりろ紙上にそれぞれの菌株の菌体を集めた。培養液 5Lを分子量 10, 0 00カットの限外ろ過用中空糸モジュールで 1/10量に濃縮し、濃縮液にそれぞれ硫 酸アンモニゥムを終濃度が 60%飽和(456g/Uとなるように添加、溶解した。続い て日立高速冷却遠心機で 8000rpml 5分遠心し残渣を沈殿させたのち、上清を Oct yl_ Sepharoseカラムに吸着させ、硫酸アンモニゥム濃度 0. 6〜0. 0飽和でグラジ ェント溶出して GDH活性のある画分を回収した。得られた GDH溶液を、 G— 25セフ ァロースカラムでゲルろ過を行ってタンパク質画分を回収することで脱塩を行レ、、脱 塩液に 0. 6飽和相当の硫酸アンモニゥムを添加して溶解した。これを Phenyl— Sep haroseカラムに吸着させ、硫酸アンモニゥム濃度 0. 6〜0. 0飽和でグラジェント溶 出して GDH活性のある画分を回収した。さらに、得られた GDH溶液を、 G— 25セフ ァロースカラムでゲルろ過を行ってタンパク質画分を回収し、取得した精製酵素を FA D依存型 GLD評価標品として使用した。 Using lilacinoechinulatum NBRC6231 (purchased from National Institute for Product Evaluation and Technology), each L dry specimen was inoculated into potato dextrose agar medium (manufactured by Difco) and incubated at 25 ° C. The mycelium on the restored plate was collected together with the agar and suspended in filter sterilized water. Production medium (1% malt extract, 1.5% soy peptide, 0.1% MgS04'7 hydrate, 2./.Dalcos, pH6.5) in two 10L jar mentors After the autoclave sterilization at 120 ° C. for 15 minutes, the above mycelial suspensions were respectively added to start the culture. The culture conditions were a temperature of 30 ° C, an aeration rate of 2 L / min, and a stirring rate of 3 80 i "pm. After 64 hours from the start of the culture, the culture was stopped and a Nutsche filter was used. The cells of each strain were collected on the filter paper by suction filtration. Concentrate 5 L of the culture solution to 1/10 volume with a hollow fiber module for ultrafiltration with a molecular weight of 10,000,000 cut, and add ammonium sulfate to the concentrate to a final concentration of 60% saturation (456 g / U). Next, after centrifuging at 8000 rpm for 5 minutes in a Hitachi high-speed cooling centrifuge to precipitate the residue, the supernatant was adsorbed on an Octyl_Sepharose column and eluted with a gradient of ammonium sulfate from 0.6 to 0.0 saturation. The fraction with GDH activity was collected, and the resulting GDH solution was subjected to gel filtration on a G-25 sepharose column and the protein fraction was collected for desalting. Ammonium sulfate equivalent to 6 saturation was added and dissolved, and this was adsorbed on a Phenyl- Sepharose column, and the fraction with GDH activity was recovered by gradient elution at an ammonium sulfate concentration of 0.6 to 0.0 saturation. Furthermore, the obtained GDH solution was added to G-25 The protein fraction by gel filtration was recovered by Sukaramu, using purified enzyme obtained as FA D dependent GLD evaluation standard.
[0106] 本発明のグルコース測定用組成物、グルコースアツセィキット、グルコースセンサー 、あるいはグルコース測定方法に用いるメディエーターは、特に制限されるものでは ないが、好ましくは、 2, 6— dichlorophenol— indophenol (略称 DCPIP)、フエロセ ンあるいはそれらの誘導体(例えばフェリシアン化カリウム、フエナジンメトサルフエ一 トなど)を用いるのがよレ、。これらのメディエーターは市販のものを入手することができ る。 [0106] The mediator used in the composition for measuring glucose, the glucose assay kit, the glucose sensor, or the glucose measuring method of the present invention is not particularly limited, but preferably 2, 6-dichlorophenol- indophenol (abbreviation). DCPIP), ferrocene or their derivatives (eg potassium ferricyanide, phenazine methosulfate, etc.). These mediators are commercially available.
[0107] 試験例 3: FAD依存型 GDH活性の測定方法  [0107] Test Example 3: Method for measuring FAD-dependent GDH activity
本発明において、 FAD依存型 GDHの活性測定は以下の条件で行う。  In the present invention, the activity of FAD-dependent GDH is measured under the following conditions.
<試薬 >  <Reagent>
50mM PIPES緩衝液 pH6. 5 (0. l %TritonX_ 100を含む)  50 mM PIPES buffer pH 6.5 (including 0.1% TritonX_ 100)
14mM 2, 6—ジクロロフヱノールインドフエノール(DCPIP)溶液  14mM 2,6-dichlorophenol indophenol (DCPIP) solution
1M D_グルコース溶液  1M D_glucose solution
上記 PIPES緩衝液 15. 8ml, DCPIP溶液 0. 2ml、 D—グルコース溶液 4mlを混合 して反応試薬とする。  Mix the above PIPES buffer (15.8 ml), DCPIP solution (0.2 ml) and D-glucose solution (4 ml) to make the reaction reagent.
[0108] <測定条件 > [0108] <Measurement conditions>
反応試薬 2. 9mlを 37°Cで 5分間予備加温する。 GDH溶液 0. 1mlを添加しゆるや かに混和後、水を対照に 37°Cに制御された分光光度計で、 600nmの吸光度変化を 5分記録し、直線部分から 1分間あたりの吸光度変化(A OD )を測定する。盲検 Pre-warm the reaction reagent 2. 9 ml at 37 ° C for 5 minutes. Add 0.1 ml of GDH solution and gently After mixing, record the change in absorbance at 600 nm for 5 minutes using a spectrophotometer controlled at 37 ° C with water as the control, and measure the change in absorbance per minute (A OD) from the straight line. Blinded
TEST  TEST
は GDH溶液の代わりに GDHを溶解する溶媒を試薬混液に加えて同様に 1分間あ たりの吸光度変化(A OD )を測定する。これらの値から次の式に従って GDH Add a solvent that dissolves GDH to the reagent mixture instead of the GDH solution, and measure the change in absorbance per minute (A OD). From these values, GDH according to the following formula
BLANK  BLANK
活性を求める。ここで GDH活性における 1単位(U)とは、濃度 200mMの D—ダルコ ース存在下で 1分間に 1マイクロモルの DCPIPを還元する酵素量として定義している Ask for activity. Here, 1 unit (G) in GDH activity is defined as the amount of enzyme that reduces 1 micromole of DCPIP per minute in the presence of 200 mM D-darcose.
活性 (U/ml) = Activity (U / ml) =
{ - ( Δ Οϋ - Δ Οϋ ) Χ 3. O X希釈倍率 }/ ( 16. 3 X 0. 1 X 1. 0)  {-(Δ Οϋ-Δ Οϋ) Χ 3. O X dilution factor} / (16.3 X 0. 1 X 1. 0)
TEST BLANK なお、式中の 3. 0は反応試薬 +酵素溶液の液量 (ml)、 16. 3は本活性測定条件に おけるミリモル分子吸光係数(cm2/マイクロモル)、 0. 1は酵素溶液の液量 (ml)、 1. 0はセルの光路長(cm)を示す。  TEST BLANK In the formula, 3.0 is the volume of reaction reagent + enzyme solution (ml), 16.3 is the molar molecular extinction coefficient (cm2 / micromol) under the conditions for this activity measurement, 0.1 is the enzyme solution The amount of liquid (ml), 1.0 indicates the optical path length (cm) of the cell.
実施例 5:グルコース測定系を用いたホロ型比率あるいは保存安定性の確認 検討は、先述の試験例 1の PQQGDH活性の測定方法に準じて行った。また、アポ 型も含めた形で PQQGDHの酵素活性を測定するために、終濃度 860nMの PQQ を添加した反応混合液でも活性を測定した。 Example 5: Confirmation of holo ratio or storage stability using glucose measurement system The examination was performed according to the method for measuring PQQGDH activity in Test Example 1 described above. In addition, in order to measure the enzyme activity of PQQGDH including the apo-type, the activity was also measured in a reaction mixture containing a final concentration of 860 nM PQQ.
まず、 PQQGDHを約 5. OUZmlになるように酵素希釈液(ImM CaC12, 0. 1%First, dilute PQQGDH to about 5. OUZml with enzyme diluent (ImM CaC12, 0.1%
Triton X—100, 0. 1% BSAを含む 50mM PIPES _Na〇H緩衝液(pH6 . 5) )にて溶解したものを 50ml用意した。この酵素溶液 0. 33mlに、図 1, 2記載の 1 0倍濃度の各種化合物を 0. 1ml添加して、同じく図 1, 2記載のベースバッファーを 加え、合計容量を 1. 0mlとしたものを 2本用意した。また、コントロールには、各種化 合物の代わりに蒸留水 0. 1mlを添加したものを 2本用意した。 2本のうち、 1本は 4°C, 16時間保存し、もう 1本は、 50°C、 16時間処理を施した。処理後、各サンプルを酵素 希釈液にて 10倍希釈した後、 PQQGDH活性を測定した。各々、 4°C, 16時間保存 したものの酵素活性を 100として、 50°C、 16時間処理後の活性値を比較して相対値 (%)として算出した。 PQQGDH組成物に、図 1 , 2で示す全ての化合物を共存させることにより、ホロ型 比率あるいは保存安定性の向上が認められた。リン酸カリウムバッファーをベースに したものでは、コハク酸、ピメリン酸、ジメチルダノレタル酸を添カ卩した場合、ホロ型 PQ QGLDのホロ型比率あるいは保存安定性が低下している力 これは該酵素から PQ Qが脱落していることが起因すると思われる。アポ型も含めたホロ型比率あるいは保 存安定性としては向上が見られており、酵素自体の立体構造の維持にこれら化合物 が効果を発揮しているものと思われる。 50 ml of a solution dissolved in 50 mM PIPES_NaOH buffer solution (pH 6.5) containing Triton X-100, 0.1% BSA was prepared. To 0.33 ml of this enzyme solution, add 0.1 ml of various compounds at 10-fold concentration shown in Figs. 1 and 2 and add the base buffer shown in Figs. 1 and 2 to make the total volume 1.0 ml. Two were prepared. In addition, two controls were prepared with addition of 0.1 ml of distilled water instead of various compounds. Of the two, one was stored at 4 ° C for 16 hours, and the other was treated at 50 ° C for 16 hours. After the treatment, each sample was diluted 10-fold with an enzyme diluent, and then PQQGDH activity was measured. The enzyme activity of each sample stored at 4 ° C for 16 hours was defined as 100, and the activity values after treatment at 50 ° C for 16 hours were compared and calculated as a relative value (%). By making all the compounds shown in FIGS. 1 and 2 coexist in the PQQGDH composition, an improvement in the holo-type ratio or storage stability was recognized. For those based on potassium phosphate buffer, when succinic acid, pimelic acid, and dimethyldanoletalic acid are added, the holo-type ratio or storage stability of holo-type PQ QGLD is reduced. This is probably because PQ Q is missing. The holo-type ratio including the apo-type and the storage stability have been improved, and it seems that these compounds are effective in maintaining the three-dimensional structure of the enzyme itself.
図 1は、 PIPESバッファー(pH6. 5)をベースとして各種化合物を共存させた PQQ GDH組成物の 50°C, 16時間処理後の PQQGDH活性の残存率(%)を示す。 図 2は、フタル酸バッファー(ρΗ7· 0)、リン酸カリウムバッファー(ρΗ7· 0)をベース として各種化合物を共存させた PQQGDH組成物の 50°C, 16時間処理後の PQQG DH活性の残存率(%)を示す。  FIG. 1 shows the residual rate (%) of PQQGDH activity after treatment of PQQ GDH composition coexisting with various compounds based on PIPES buffer (pH 6.5) at 50 ° C. for 16 hours. Figure 2 shows the residual rate of PQQG DH activity after treatment of PQQGDH composition in the presence of phthalate buffer (ρΗ7.0) and potassium phosphate buffer (ρΗ7.0) in the presence of various compounds at 50 ° C for 16 hours. (%).
実施例 6:グルコース測定系を用いたホロ型比率あるいは保存安定性の確認 1 検討は、先述の GDH活性の測定方法に準じて行った。まず、 NADGDH (東洋紡 製 GLD— 311)を 80〜90U/mlになるように酵素希釈液(ImM CaC12, 0. 1%Example 6: Confirmation of holo-type ratio or storage stability using glucose measurement system 1 The examination was performed according to the method for measuring GDH activity described above. First, NADGDH (Toyobo GLD-311) was diluted to 80-90 U / ml with enzyme dilution (ImM CaC12, 0.1%
Triton X— 100, 0. 1% BSAを含む 50mM リン酸カリウム緩衝液(ρΗ6. 5) )にて溶解したものを 50ml用意した。この酵素溶液 0. 33mlに、図 3記載の 10倍濃 度の各種化合物を 0. 1ml添加して、リン酸カリウム緩衝液 (PH6. 5)を加え、合計容 量を 1. 0mlとしたものを 2本用意した。また、コントロールには、各種化合物の代わり に蒸留水 0. 1mlを添加したものを 2本用意した。 2本のうち、 1本は 4°Cで保存し、もう 1本は、 50°C、 1時間処理を施した。処理後、各サンプルを酵素希釈液にて 100倍希 釈した後、 NADGDH活性を測定した。各々、 4°Cで保存したものの酵素活性を 100 として、 50°C、 1時間処理後の活性値を比較して活性残存率(%)として算出した。 50 ml of a solution dissolved in 50 mM potassium phosphate buffer (ρΗ6.5)) containing Triton X-100, 0.1% BSA was prepared. To 0.33 ml of this enzyme solution, 0.1 ml of 10-fold concentrated various compounds shown in FIG. 3 was added, and potassium phosphate buffer ( PH 6.5) was added to make the total volume 1.0 ml. Two things were prepared. In addition, two controls prepared by adding 0.1 ml of distilled water instead of various compounds were prepared. Of the two, one was stored at 4 ° C and the other was treated at 50 ° C for 1 hour. After the treatment, each sample was diluted 100-fold with an enzyme diluent, and then NADGDH activity was measured. The activity values after treatment at 50 ° C for 1 hour were calculated as the residual activity rate (%), with the enzyme activity of those stored at 4 ° C as 100, respectively.
NADGDH組成物に、図 3で示す全ての化合物において、該化合物を添加するこ とにより、ホロ型比率あるいは保存安定性の向上が認められた。そのなかでも、コハク 酸またはマレイン酸を添加した場合に、最も高い効果が認められた。  In all the compounds shown in FIG. 3, the holo-type ratio or the storage stability was improved by adding the compounds to the NADGDH composition. Among them, the highest effect was observed when succinic acid or maleic acid was added.
図 3は、各種化合物を共存させた NADGDH組成物の 50°C, 1時間処理後の NA DGDH活性の残存率(%)を示す。 [0111] 実施例 7:グルコース測定系を用いたホロ型比率あるいは保存安定性の確認 2 検討は、先述の試験例 2の NADGDH活性の測定方法に準じて行った。 Fig. 3 shows the residual ratio (%) of NA DGDH activity after 1 hour treatment of NADGDH composition coexisting with various compounds at 50 ° C. Example 7: Confirmation of holo ratio or storage stability using glucose measurement system 2 The study was conducted according to the NADGDH activity measurement method of Test Example 2 described above.
まず、 NADGLDを約 250U/mlになるように酵素希釈液にて溶解したものを 50ml 用意した。この酵素溶液 0. 33mlに、図 3記載の 10倍濃度の各種化合物を 0. lml 添加して、 Tris_HCl緩衝液(pH8. 0)をカロえ、合計容量を 1. Omlとしたものを 2本 用意した。また、コントロールには、各種化合物の代わりに蒸留水 0. lmlを添カ卩した ものを 2本用意した。 2本のうち、 1本は 4°Cで保存し、もう 1本は、 50°C、 1時間処理を 施した。処理後、各サンプノレを酵素希釈液にて 500倍希釈した後、 FADGDH活性 を測定した。各々、 4°Cで保存したものの酵素活性を 100として、 50°C、 1時間処理 後の活性値を比較して活性残存率(%)として算出した。  First, 50 ml of NADGLD dissolved in an enzyme dilution solution at about 250 U / ml was prepared. To 0.33 ml of this enzyme solution, add 0.1 ml of the 10-fold concentration of various compounds shown in Fig. 3 and remove the Tris_HCl buffer (pH 8.0) to make a total volume of 1. Oml. Prepared. In addition, two controls with 0.1 ml of distilled water added instead of various compounds were prepared as controls. Of the two, one was stored at 4 ° C and the other was treated at 50 ° C for 1 hour. After the treatment, each sampnore was diluted 500-fold with an enzyme diluent, and then FADGDH activity was measured. Each of those stored at 4 ° C was regarded as 100, and the activity value after 1 hour treatment at 50 ° C was compared to calculate the residual activity rate (%).
その結果、検討した全てのジカルボン酸で効果が見られ、中でもコハク酸またはマレ イン酸を添加した時に、最も高いホロ型比率あるいは保存安定性の向上効果が認め られた。  As a result, all the dicarboxylic acids studied showed an effect. In particular, when succinic acid or maleic acid was added, the highest holo-type ratio or storage stability was improved.
[0112] 実施例 8:グルコース測定系を用いたホロ型比率あるいは保存安定性の確認 3  [0112] Example 8: Confirmation of holo ratio or storage stability using glucose measurement system 3
検討は、先述の試験例 3の FADGDH活性の測定方法に準じて行った。  The examination was performed according to the method for measuring FADGDH activity in Test Example 3 described above.
まず、実施例 4で所得した FADGLDを約 10U/mlになるように酵素希釈液(ImM First, the enzyme dilution solution (ImM) was adjusted so that the FADGLD obtained in Example 4 was about 10 U / ml.
CaC12, 0. 1% Triton X— 100, 0. 1 % BSAを含む 50mM リン酸力リウ ム緩衝液 (PH6. 5) )にて溶解したものを 50ml用意した。この酵素溶液 0. 5mlに、 1 %, 0. 5%の BSAを 0. 5ml添加して、合計容量を 1. Omlとしたものを 2本用意した。 また、図 5、 6に記載の各 2倍濃度のコハク酸、マロン酸、フタル酸、マレイン酸、ダル タル酸、塩化ナトリウム、硫酸ナトリウム、クェン酸三ナトリウム、硫酸アンモニゥムを用 意して、同様に 0. 5ml添カ卩して、合計容量を 1. Omlとしたものを 2本用意した。コント ロールには、各種化合物の代わりに蒸留水 0. lmlを添カ卩したものを 2本用意した。 50 ml of CaC12, 0.1% Triton X—100, 0.1% BSA-containing 50 mM phosphate buffered saline (PH6.5) was prepared. Two 0.5 ml of 1% and 0.5% BSA were added to 0.5 ml of this enzyme solution to make a total volume of 1. Oml. In addition, the succinic acid, malonic acid, phthalic acid, maleic acid, daltaric acid, sodium chloride, sodium sulfate, trisodium citrate, and ammonium sulfate shown in FIGS. 5 and 6 were prepared in the same manner. Two bottles with a total volume of 1. Oml were prepared. Two types of controls were prepared, each containing 0.1 lml distilled water instead of various compounds.
2本のうち、 1本は 4°Cで保存し、もう 1本は、 50°C、 30分間処理を施した。処理後、 各サンプルを酵素希釈液にて 21倍希釈した後、 FADGDH活性を測定した。各々、 4°Cで保存したものの酵素活性を 100として、 50°C、 1時間処理後の活性値を比較し て活性残存率(%)として算出した。  Of the two, one was stored at 4 ° C and the other was treated at 50 ° C for 30 minutes. After the treatment, each sample was diluted 21-fold with an enzyme diluent, and then FADGDH activity was measured. In each case, the enzyme activity of those stored at 4 ° C. was defined as 100, and the activity values after 1 hour treatment at 50 ° C. were compared to calculate the residual activity rate (%).
これらの検討の結果、タンパク質性の安定化剤(BSA)を添加することにより、 FAD _GLDのホロ型比率あるいは保存安定性が増大することが明らかとなった(図 4)。ま た、各種ジカルボン酸化合物あるいは各種塩化合物の添加で FAD— GLDのホロ型 比率あるいは保存安定性の向上効果が見られ、ジカルボン酸化合物の中ではコハク 酸、マロン酸力 塩化合物の中では硫酸ナトリウムが最大の効果が見られた(図 5、 6) 。コハク酸、マロン酸、硫酸ナトリウムにおいては、数モル程度の添加でも安定性向上 効果が見られるものと思われる。また、塩ィ匕ナトリウムのような単純な塩化合物でも十 分な効果が見られていることから、 FAD— GLDにおいては、単純にイオン強度を上 げるだけで熱安定化することがはじめて見出された。 As a result of these studies, the addition of proteinaceous stabilizer (BSA) It became clear that the holo-type ratio or storage stability of _GLD increased (Fig. 4). In addition, the addition of various dicarboxylic acid compounds or various salt compounds has an effect of improving the FAD-GLD holo-type ratio or storage stability. Among dicarboxylic acid compounds, succinic acid and among malonic acid power compounds are sulfuric acid. Sodium had the greatest effect (Figures 5 and 6). In the case of succinic acid, malonic acid, and sodium sulfate, it seems that the stability improvement effect can be seen even with the addition of several moles. In addition, even simple salt compounds such as sodium chloride show sufficient effects, and FAD-GLD is the first to see that thermal stabilization is achieved simply by increasing the ionic strength. It was issued.
図 4は、タンパク質性の安定化剤を共存させた FADGDH組成物の 50°C, 30分間 処理後の FADGDH活性の残存率(%)を示す。  FIG. 4 shows the residual ratio (%) of FADGDH activity after treatment at 50 ° C. for 30 minutes with a FADGDH composition in the presence of a proteinaceous stabilizer.
図 5は、ジカルボン酸化合物を共存させた FADGDH組成物の 50°C, 30分間処理 後の FADGDH活性の残存率(%)を示す。  FIG. 5 shows the residual ratio (%) of FADGDH activity after treatment of a FADGDH composition coexisting with a dicarboxylic acid compound at 50 ° C. for 30 minutes.
図 6は、塩化合物を共存させた FADGDH組成物の 50°C, 15分間処理後の FAD GDH活性の残存率(%)を示す。  FIG. 6 shows the residual rate (%) of the FAD GDH activity after treatment with a salt compound in the presence of a FADGDH composition at 50 ° C. for 15 minutes.
[0113] 実施例 7 : PQQ依存型グノレコースデヒドロゲナーゼ遺伝子の発現プラスミドの構築 野生型 PQQ依存型グルコースデヒドロゲナーゼの発現プラスミド PNPG5は、ベタ ター pBluescript SK (—)のマルチクローニング部位にァシネトパクター 'バウマン 二(Acinetobacter baumannii) NCIMB11517株由来の PQQ依存型ダルコ一 スデヒドロゲナーゼをコードする構造遺伝子を揷入したものである。その塩基配列を 配列表の配列番号 2に、また該塩基配列から推定される PQQ依存型グルコースデヒ ドロゲナーゼのアミノ酸配列を配列表の配列番号 1に示す。 [0113] Example 7: Construction of PQQ-dependent Gnorecose Dehydrogenase Gene Expression Plasmid Wild-type PQQ-dependent glucose dehydrogenase expression plasmid PNPG5 was added to the multiple cloning site of the beta pBluescript SK (—). Acinetobacter baumannii) A structural gene encoding a PQQ-dependent darcos dehydrogenase derived from NCIMB11517 strain. The base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
[0114] 実施例 8:変異型 PQQ依存型グルコースデヒドロゲナーゼの作製  [0114] Example 8: Production of mutant PQQ-dependent glucose dehydrogenase
野生型 PQQ依存型グルコースデヒドロゲナーゼ遺伝子を含む組換えプラスミド pN PG5と変異導入部位のアミノ酸をコードするトリプレットを中央に含む 40mer程度の 合成オリゴヌクレオチドを基に、 QuickChangeTM Site -Directed Mutagenes is Kit (STRATAGENE製)を用いて、そのプロトコールに従って変異処理操作を J噴次行レヽ、 Q168A, 169Y, L169P, A170L, E245D, M342I, N429D, 430P の変異を導入した、基質特異性が改善された変異型 PQQ依存型グルコースデヒドロ ゲナーゼをコードする組換えプラスミド(pNPG5 _ Q 168A+ 169Y + L169P +Al 70L + E245D + M342I + N429D + 430P)を取得した。得られた候補株の塩基配 列を決定して、配列番号 1記載のアミノ酸配列の 168番目のグルタミンがァラニンに、 169番目のロイシンがプロリンに、 170番目のァラニンがロイシンに、 245番目のグノレ タミン酸がァスパラギン酸に、 342番目のメチォニンがイソロイシンに、 429番目のァ スパラギンがァスパラギン酸に置換され、 168番目の後ろにチロシンと 429番目の後 ろにプロリンが揷入された変異型 PQQ依存型グルコースデヒドロゲナーゼをコードし ていることを確認した。 QuickChangeTM Site -Directed Mutagenes is Kit (manufactured by STRATAGENE) based on a recombinant plasmid pN PG5 containing a wild-type PQQ-dependent glucose dehydrogenase gene and a synthetic oligonucleotide of about 40mer containing a triplet encoding the amino acid at the site of mutation introduction Mutation treatment operation according to the protocol using J, J168, Q168A, 169Y, L169P, A170L, E245D, M342I, N429D, 430P mutations introduced, mutant PQQ-dependent type with improved substrate specificity Glucose dehydro A recombinant plasmid (pNPG5_Q168A + 169Y + L169P + Al70L + E245D + M342I + N429D + 430P) encoding a genease was obtained. The nucleotide sequence of the obtained candidate strain was determined, and the 168th glutamine of the amino acid sequence described in SEQ ID NO: 1 was alanine, the 169th leucine was proline, the 170th alanine was leucine, and the 245th gnore. Mutant PQQ with thamic acid replaced with aspartic acid, 342th methionine replaced with isoleucine, 429th asparagine replaced with aspartic acid, 168th followed by tyrosine and 429th after proline It was confirmed that it encodes type glucose dehydrogenase.
該組換えプラスミドにて大腸菌コンピテントセル (ェシエリヒア 'コリ一 JM 109 ;東洋紡 績製)を形質転換して、形質転換体を取得した。  E. coli competent cells (Escherichia coli JM 109; manufactured by Toyobo Co., Ltd.) were transformed with the recombinant plasmid to obtain transformants.
[0115] 実施例 9:シユードモナス属細菌で複製できる発現ベクターの構築 [0115] Example 9: Construction of an expression vector that can replicate in Pseudomonas bacteria
実施例 8で得た組換えプラスミド pNPG5 - Q 168A+ 169Y+ L169P +A170L + E245D + M342I + N429D + 430Pの DNA5 μ gを制限酵素 BamHIおよび Xh ol (東洋紡績製)で切断して、変異型 PQQ依存型グルコースデヒドロゲナーゼの構 造遺伝子部分を単離した。単離した DNAと BamHIおよび Xholで切断した pTM33 ( 1 i g)と T4DNAリガーゼ 1単位で 16°C、 16時間反応させ、 DNAを連結した。連結 した DNAはェシエリヒア.コリ DH5 aのコンビテントセルを用いて形質転換を行った。 得られた発現プラスミドを pNPG6— Q 168A+ 169Y + L169P + A170L + E245D + M342I + N429D + 430Pと命名した。  Recombinant plasmid obtained in Example 8 pNPG5-Q 168A + 169Y + L169P + A170L + E245D + M342I + N429D + 430P DNA 5 μg cleaved with restriction enzymes BamHI and Xhol (manufactured by Toyobo) and dependent on mutant PQQ The structural gene portion of type glucose dehydrogenase was isolated. The isolated DNA was reacted with pTM33 (1 ig) cleaved with BamHI and Xhol and 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA. The ligated DNA was transformed using a competent cell of Escherichia coli DH5a. The obtained expression plasmid was designated as pNPG6-Q168A + 169Y + L169P + A170L + E245D + M342I + N429D + 430P.
[0116] 実施例 10 :シユードモナス属細菌の形質転換体の作製 Example 10: Preparation of transformants of Pseudomonas bacteria
シユードモナス.プチダ TE3493 (微ェ研寄 12298号)を LBG培地(LB培地 + 0. 3%グリセロール)で 30°C、 16時間培養し、遠心分離(12, 000rpm、 10分間)により 菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK_リン酸 緩衝液(PH7. 0) 8mlを加え、菌体を懸濁した。再度遠心分離(12, 000rpm、 10分 間)により菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK —リン酸緩衝液(ρΗ7. 0) 0. 4mlをカ卩え、菌体を懸濁した。  Pseudomonas.Putida TE3493 (Microeken No. 12298) was cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and the cells were collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K_phosphate buffer solution (PH7.0) containing 300 mM sucrose cooled with ice was added to the cells to suspend the cells. The cells are collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer (ρΗ7.0) containing 300 mM sucrose cooled on ice is added to the cells. The body was suspended.
該懸濁液に実施例 9で得た発現プラスミド pNPG6 - Q 168A+ 169Y + L169P + A170L + E245D + M342I + N429D + 430Pを 0. 5 /i gカロえ、エレクト口ポレーシ ヨン法により形質転換した。 100 μ g/mlのストレプトマイシンを含む LB寒天培地に 生育したコロニーより、 目的とする形質転換体を得た。 Into the suspension, the expression plasmid pNPG6-Q168A + 169Y + L169P + A170L + E245D + M342I + N429D + 430P obtained in Example 9 was added to 0.5 / ig calecto, electopores. Transformation was performed by the Yong method. A target transformant was obtained from a colony grown on an LB agar medium containing 100 μg / ml streptomycin.
[0117] 実施例 11 : PQQ依存型 GDH標品の調製 [0117] Example 11: Preparation of PQQ-dependent GDH preparation
500mlの Terrific brothを 2L容坂ロフラスコに分注し、 121。C、 20分間オートク レーブを行い、放冷後別途無菌濾過したストレプトマイシンを 100 μ g/mlになるよう に添カロした。この培地に 100 μ g/mlのストレプトマイシンを含む PY培地で予め 30 °C、 24時間培養したシユードモナス ·プチダ TE3493 (pNPG6 - Q 168 A + 169 Y + L169P+A170L + E245D + M342I + N429D + 430P)の培養液を 5ml接種 し、 30°Cで 40時間通気攪拌培養した。培養終了時の PQQ依存型グルコースデヒド ロゲナーゼ活性は、前記活性測定にぉレ、て、培養液 lml当たり約 30U/mlであった 上記菌体を遠心分離により集菌し、 20mMリン酸緩衝液 (pH7. 0)に懸濁した後、 超音波処理により破砕し、更に遠心分離を行い、上清液を粗酵素液として得た。得ら れた粗酵素液を HiTrap— SP (アマシャム—フアルマシア)イオン交換カラムクロマト グラフィ一により分離 '精製した。次いで 10mM PIPES— NaOH緩衝液(ρΗ6· 5) で透析した後に終濃度力 SlmMになるように塩化カルシウムを添加した。最後に HiTr ap— DEAE (アマシャム一フアルマシア)イオン交換カラムクロマトグラフィーにより分 離'精製し、精製酵素標品を得た。本方法により得られた標品は、 SDS— PAGE的 にほぼ単一なバンドを示した。  Dispense 500 ml of Terrific broth into a 2 L volumetric flask. C, autoclaved for 20 minutes, and after standing to cool, separately sterile filtered streptomycin was added to 100 μg / ml. Pseudomonas putida TE3493 (pNPG6-Q 168 A + 169 Y + L169P + A170L + E245D + M342I + N429D + 430P) previously cultured in PY medium containing 100 μg / ml streptomycin at 30 ° C for 24 hours 5 ml of the culture solution was inoculated and cultured with aeration and stirring at 30 ° C for 40 hours. The PQQ-dependent glucose dehydrogenase activity at the end of the culture was about 30 U / ml per 1 ml of the culture solution after the measurement of the activity, and the cells were collected by centrifugation, and the 20 mM phosphate buffer solution ( After suspending in pH 7.0), the mixture was crushed by sonication and further centrifuged to obtain a supernatant as a crude enzyme solution. The resulting crude enzyme solution was separated and purified by HiTrap-SP (Amersham-Falmasia) ion exchange column chromatography. Then, after dialyzing with 10 mM PIPES-NaOH buffer (ρΗ6 · 5), calcium chloride was added so that the final concentration force was SlmM. Finally, it was separated and purified by HiTrap-DEAE (Amersham-Falmacia) ion exchange column chromatography to obtain a purified enzyme preparation. The sample obtained by this method showed an almost single band on SDS-PAGE.
このようにして取得した精製酵素を PQQ依存型 GLD評価標品として使用した。  The purified enzyme thus obtained was used as a PQQ-dependent GLD evaluation sample.
[0118] 実施例 12: FAD依存型 GDH標品の調製 [0118] Example 12: Preparation of FAD-dependent GDH preparation
FAD依存型 GDH生産菌として Aspergillus terreus亜種と Penicillium  Aspergillus terreus subspecies and Penicillium as FAD-dependent GDH producing bacteria
lilacinoechinulatum NBRC6231 (独立行政法人製品評価技術基盤機構より購入)を 用レ、、それぞれの L乾標本をポテトデキストロース寒天培地(Difco製)に植菌し 25°C でインキュベートすることにより復元した。復元させたプレート上の菌糸を寒天ごと回 収してフィルター滅菌水に懸濁した。 2基の 10L容ジャーフアーメンター中に生産培 地(1%麦芽エキス、 1. 5%大豆ペプチド、 0. l%MgS04 ' 7水和物、 2。 /。ダルコ一 ス、 pH6. 5) 6Lを調製し、 120°C15分オートクレープ滅菌後に上記の菌糸懸濁液を それぞれ投入、培養を開始した。培養条件は、温度 30°C、通気量 2L/分、攪拌数 3 80ι·ρπιで行った。培養開始から 64時間後に培養を停止し、ヌッチェろ過器を用いて 吸引ろ過によりろ紙上にそれぞれの菌株の菌体を集めた。培養液 5Lを分子量 10, 0 00カットの限外ろ過用中空糸モジュールで 1/10量に濃縮し、濃縮液にそれぞれ硫 酸アンモニゥムを終濃度が 60%飽和(456g/Uとなるように添加、溶解した。続い て日立高速冷却遠心機で 8000rpml 5分遠心し残渣を沈殿させたのち、上清を Oct yl_ Sepharoseカラムに吸着させ、硫酸アンモニゥム濃度 0. 6〜0. 0飽和でグラジ ェント溶出して GDH活性のある画分を回収した。得られた GDH溶液を、 G— 25セフ ァロースカラムでゲルろ過を行ってタンパク質画分を回収することで脱塩を行い、脱 塩液に 0. 6飽和相当の硫酸アンモニゥムを添加して溶解した。これを Phenyl— Sep haroseカラムに吸着させ、硫酸アンモニゥム濃度 0. 6〜0. 0飽和でグラジェント溶 出して GDH活性のある画分を回収した。さらに、得られた GDH溶液を、 G— 25セフ ァロースカラムでゲルろ過を行ってタンパク質画分を回収し、取得した精製酵素を FA D依存型 GLD評価標品として使用した。 Using lilacinoechinulatum NBRC6231 (purchased from National Institute for Product Evaluation and Technology), each L dry specimen was inoculated into potato dextrose agar medium (manufactured by Difco) and incubated at 25 ° C. The mycelium on the restored plate was collected together with the agar and suspended in filter sterilized water. Production medium (1% malt extract, 1.5% soy peptide, 0.1% MgS04'7 hydrate, 2./.Dalcos, pH6.5) in two 10L jar mentors Prepare the above mycelial suspension after autoclaving at 120 ° C for 15 minutes. Each was charged and culture was started. The culture conditions were a temperature of 30 ° C., an aeration rate of 2 L / min, and a stirring rate of 3 80ι · ρπι. The culture was stopped 64 hours after the start of the culture, and the cells of each strain were collected on the filter paper by suction filtration using a Nutsche filter. Concentrate 5 L of the culture solution to 1/10 volume with a hollow fiber module for ultrafiltration with a molecular weight of 10,000,000 cut, and add ammonium sulfate to the concentrate to a final concentration of 60% saturation (456 g / U). Next, after centrifuging at 8000 rpm for 5 minutes in a Hitachi high-speed cooling centrifuge to precipitate the residue, the supernatant was adsorbed on an Octyl_Sepharose column and eluted with a gradient of ammonium sulfate from 0.6 to 0.0 saturation. The fraction with GDH activity was collected, and the obtained GDH solution was subjected to gel filtration on a G-25 Sepharose column, and the protein fraction was collected for desalting to give a desalted solution of 0.6. Ammonium sulfate equivalent to saturation was added and dissolved, and this was adsorbed on a Phenyl-Sepharose column, and the fraction with GDH activity was recovered by gradient elution at an ammonium sulfate concentration of 0.6 to 0.0 saturation. Furthermore, the obtained GDH solution is added to G-25 Protein fractions were collected before gel filtration column was used purified enzyme obtained as FA D dependent GLD evaluation standard.
[0119] 本発明のグルコース測定用組成物、グルコースアツセィキット、グルコースセンサー 、あるいはグルコース測定方法に用いるメディエーターは、特に制限されるものでは ないが、好ましくは、 2, 6— dichlorophenol— indophenol (略称 DCPIP)、フエロセ ンあるいはそれらの誘導体 (例えばフェリシアンィ匕カリウム、フエナジンメトサルフエ一 トなど)を用いるのがよレ、。これらのメディエーターは市販のものを入手することができ る。 [0119] The mediator used in the composition for measuring glucose, the glucose assay kit, the glucose sensor or the glucose measuring method of the present invention is not particularly limited, but preferably 2, 6-dichlorophenol- indophenol (abbreviation). DCPIP), ferrocene or their derivatives (eg ferricyanium potassium, phenazine methosulfate, etc.). These mediators are commercially available.
[0120] 実施例 13 : PQQ依存型 GDHの至適温度と熱安定性の検討  [0120] Example 13: Optimal temperature and thermal stability of PQQ-dependent GDH
実施例 7〜: 11で得た PQQ依存型 GDHを用いて、至適温度と熱安定性を調べた。 至適温度は、 50mM PIPES-NaOH (pH6. 5)緩衝液中で最大活性を示した温 度 (40°C)を 100%として、各温度における相対活性(%)を算出した(図 7)。検討に 用いた PQQ依存型 GDHは、 40〜45°Cが至適温度であった。  Examples 7 to: The optimum temperature and thermal stability were examined using the PQQ-dependent GDH obtained in 11. The optimum temperature was calculated as the relative activity (%) at each temperature with the temperature (40 ° C) showing maximum activity in 50 mM PIPES-NaOH (pH 6.5) buffer as 100% (Fig. 7). . The optimum temperature for the PQQ-dependent GDH used in the study was 40-45 ° C.
熱安定性は、 50mM PIPES-NaOH (pH6. 5)、 ImM CaC12組成にて 5. 0U/ mlの PQQ依存型 GDHを 30、 40, 50, 60, 70。Cで、 30分間熱処理した後に残存 する GDH活性を、 4°C保存していたサンプルの活性値と比較して、各温度における 残存活性(%)を算出した(図 8)。熱処理温度 40°Cまでは、あまり活性低下が見られ ず、 50°C処理にて大きく失活する傾向が見られた。熱安定性は、溶液の組成、酵素 濃度により、変動するものと思われる。例えば、酵素濃度が高くなれば、大きな熱失 活が見られる温度は高く推移する(50°C以上になる)ものと思われる。 実施例 14 :加温処理による PQQ依存型 GDHの安定性に及ぼす影響 Thermal stability is 50, 40, 50, 60, 70 with 50 mM PIPES-NaOH (pH 6.5), ImU CaC12 composition and 5.0 U / ml PQQ-dependent GDH. Compare the GDH activity remaining after heat treatment at C for 30 minutes with the activity value of the sample stored at 4 ° C. Residual activity (%) was calculated (FIG. 8). Until the heat treatment temperature was 40 ° C, there was no significant decrease in activity, and there was a tendency to be largely deactivated by the 50 ° C treatment. Thermal stability is likely to vary depending on the solution composition and enzyme concentration. For example, the higher the enzyme concentration, the higher the temperature at which large heat inactivation is observed (it will be 50 ° C or higher). Example 14: Effect of heating treatment on the stability of PQQ-dependent GDH
実施例 7〜: 11で得た PQQ依存型 GDHを用いて、加温処理前後でホロ型酵素の 安定性が変化しないか検討した。 PQQ依存型 GDH溶液を 20mM PIPES緩衝液 ( ρΗ6· 5)、 ImM  Examples 7 to: Using the PQQ-dependent GDH obtained in 11, it was examined whether the stability of the holo-type enzyme was changed before and after the heating treatment. PQQ-dependent GDH solution in 20 mM PIPES buffer (ρΗ6 · 5), ImM
CaC12を用いて 20〜30U/mlの活性となるよう希釈し、この希釈液をヒートバスにて 50°C, 1時間加温処理行った。加温処理後に、熱失活が起こる条件 (55°C, 1時間)に て処理した後、加温処理前後の PQQ依存型 GDH活性 (試験例 1)を比較した。加温 処理前の熱処理後の残存活性は 31 %であった力 S、加温処理後の熱処理後の残存 活性は後 42%であった。加温処理により、 PQQ依存型 GDHの安定性が増大するこ とが明らかとなった(図 9)。加温処理を行うことにより該酵素のホロ化率が増大してお り、これが安定性の増大に繋がっているものと思われた。  This was diluted with CaC12 to an activity of 20-30 U / ml, and this diluted solution was heated at 50 ° C. for 1 hour in a heat bath. After the heat treatment, the PQQ-dependent GDH activity (Test Example 1) before and after the heat treatment was compared after treatment under conditions where heat inactivation occurs (55 ° C, 1 hour). The residual activity after the heat treatment before the heat treatment was 31%, and the remaining activity after the heat treatment after the heat treatment was 42%. It was clarified that the stability of PQQ-dependent GDH was increased by heating treatment (Fig. 9). By carrying out the heating treatment, the holoformation rate of the enzyme increased, which seemed to lead to an increase in stability.
図 9は、加温処理が及ぼす熱安定性効果の検討結果である。加温処理後に 4°Cに て保存したサンプルの活性値を 100 %として残存活性を算出した。  Figure 9 shows the results of studying the thermal stability effect of heating treatment. The residual activity was calculated with the activity value of the sample stored at 4 ° C after the heating treatment as 100%.
次に、図 9と同様の操作方法にて加温処理条件について広く検討した(図 10)。処 理温度 35°Cで、 30分程度の処理を施した場合でも、微弱ながら安定性が向上する 効果が認められた。し力 ながら、処理温度 35°Cでは、長時間処理を行っても十分 な効果は見られなかった。また、加温処理温度 50°Cで、 16時間行った場合でも、安 定性が損なわれることがな GDHの安定化には、該酵素が変性するよりも若干低 い温度で、長時間処理することが最も有効であると思われた。なお、今回の実験では 、加温処理効果が判り易いように、あえてアミノ酸変異により安定性が損なわれた PQ Q依存型 GDH変異体を用いている力 野生型の PQQ依存型 GDHを用いても、カロ 温処理にて安定性が向上することは確認できている。特に変異体は構造の歪みによ り、 PQQの保持能が低下しており、加温処理を施すことによりホロ型酵素の構造が校 正され、ホロ型酵素自体の安定性が向上しているものと推測する。加温処理以外でも 、該酵素に何らかのエネルギーを加えることにより、同様の効果が得られる可能性が あると思われる。 Next, the heat treatment conditions were extensively studied using the same operation method as in FIG. 9 (FIG. 10). Even when a treatment temperature of 35 ° C was applied for about 30 minutes, the effect of improving stability was observed although it was weak. However, at a treatment temperature of 35 ° C, a sufficient effect was not seen even if the treatment was performed for a long time. In addition, the stability of GDH, which does not impair the stability even when heated at 50 ° C for 16 hours, is stabilized for a long time at a slightly lower temperature than the enzyme denatures. Seemed to be most effective. In this experiment, the ability to use PQQ-dependent GDH mutants that had been destabilized due to amino acid mutations, even if wild-type PQQ-dependent GDH was used, so that the effect of heating treatment could be easily understood. It has been confirmed that the stability is improved by the caloric temperature treatment. In particular, mutants have reduced PQQ retention capacity due to structural distortion, and the structure of the holo-type enzyme can be determined by heating treatment. It is assumed that the stability of the holo-type enzyme itself is improved. In addition to the heating treatment, the same effect may be obtained by adding some energy to the enzyme.
図 10は、加温処理条件の検討 (温度 X時間)結果である。加温処理後に 4°Cにて保 存したサンプルの活性値を 100 %として残存活性を算出した。  Figure 10 shows the results of the examination of the heat treatment conditions (temperature X time). The residual activity was calculated by setting the activity value of the sample stored at 4 ° C after heating to 100%.
[0122] また、加温処理(50°C、 16時間)後に、再度加温処理(50°C、 16時間)を施すこと により、熱安定性(55°C、 1時間熱処理)がどのように推移するのか検討した (図 11)。 加温処理が不十分な場合、再度、加温処理をすることにより熱安定性が増大すること が確認できた。これらの検討から、加温処理の効果は温度と時間に比例するが、一 定以上は増大しないことが明らかとなった。  [0122] What is the thermal stability (heat treatment at 55 ° C for 1 hour) by applying the heat treatment (50 ° C, 16 hours) again after the heating treatment (50 ° C, 16 hours)? (Figure 11). When the heating treatment was insufficient, it was confirmed that the thermal stability was increased by heating again. From these studies, it became clear that the effect of heating treatment is proportional to temperature and time, but does not increase beyond a certain level.
図 11は、加温処理後の再加温処理における効果の検討結果である。加温処理後 に 4°Cにて保存したサンプルの活性値を 100 %として残存活性を算出した。  Fig. 11 shows the results of studying the effects of rewarming after warming. The residual activity was calculated with the activity value of the sample stored at 4 ° C after the heating treatment as 100%.
[0123] 本発明の組成物は、可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む 組成物において、該組成物に加温処理を施す工程を含む方法により製造された、熱 安定性が向上した可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含む組成 物であり、その製造過程に特徴を持つ発明である。  [0123] The composition of the present invention is a composition comprising a soluble coenzyme-linked glucose dehydrogenase, which is produced by a method comprising a step of subjecting the composition to a heating treatment, and having improved heat stability. A composition comprising a coenzyme-linked glucose dehydrogenase, which is characterized by its production process.
一般に、ある組成物についてそれが加温処理工程を経たものであるかを判別する ことは困難である力 本発明の組成物においては上記図 11の結果から、 50°C、 16 時間で 2回目の加温処理を行ったときに、(1回目 55°C、 1時間熱処理後の活性残存 率) ÷ (2回目 55°C、 1時間熱処理後の活性残存率)の値が 60%を越えるときは、加 温処理したと推定できる目安となる。  In general, it is difficult to determine whether a composition has undergone a heating treatment step. In the composition of the present invention, from the result of FIG. 11 above, it is the second time at 50 ° C. for 16 hours. When heat treatment was performed, the value of (activity remaining after heat treatment for the first time at 55 ° C for 1 hour) ÷ (activity remaining after heat treatment for the second time at 55 ° C for 1 hour) exceeded 60% If this is the case, it can be estimated that the heat treatment has been performed.
[0124] 実施例 15 : PQQ依存性グノレコース脱水素酵素遺伝子の発現プラスミドの構築 野生型 PQQ依存性グノレコース脱水素酵素の発現プラスミド PNPG5は、ベクター pBluescript SK (-)のマルチクローニング部位にァシネトパクタ^ ~ ·バウマンニ(A cinetobacter baumannii) NCIMB11517株由来の PQQ依存性グルコース脱 水素酵素をコードする構造遺伝子を揷入したものである。その塩基配列を配列表の 配列番号 2に、また該塩基配列から推定される PQQ依存性グルコース脱水素酵素 のアミノ酸配列を配列表の配列番号 1に示す。 [0125] 実施例 16:シユードモナス属細菌で複製できる発現ベクターの構築 実施例 15で得た組換えプラスミド pNPG5の DNA5 μ gを制限酵素 BamHIおよび XHoI (東洋紡績製)で切断して、 PQQ依存性グノレコース脱水素酵素の構造遺伝子 部分を単離した。単離した DNAと BamHIおよび XHoIで切断した pTS 1 137 ( 1 μ g) とを T4DNAリガーゼ 1単位で 16°C、 16時間反応させ、 DNAを連結した。連結した DNAはェシエリヒア'コリ DH5 aのコンビテントセルを用いて形質転換を行った。得ら れた発現プラスミドを PNPG6と命名した。 Example 15: Construction of expression plasmid for PQQ-dependent gnolecose dehydrogenase gene Wild-type PQQ-dependent gnolecose dehydrogenase expression plasmid PNPG5 is a cinetopactor ^ ~ · at the multiple cloning site of the vector pBluescript SK (-). A structural gene encoding a PQQ-dependent glucose dehydrogenase derived from Acinetobacter baumannii NCIMB11517 strain was inserted. The base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing. [0125] Example 16: Construction of an expression vector capable of replicating in Pseudomonas bacteria DNA 5 µg of the recombinant plasmid pNPG5 obtained in Example 15 was cleaved with restriction enzymes BamHI and XHoI (Toyobo Co., Ltd.) to depend on PQQ. The structural gene portion of gnolecose dehydrogenase was isolated. The isolated DNA and pTS 1 137 (1 μg) cleaved with BamHI and XHoI were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA. The ligated DNA was transformed using Escherichia coli DH5a competent cells. The resulting expression plasmid was named PNPG6.
[0126] 実施例 17 :シユードモナス属細菌の形質転換体の作製  Example 17: Preparation of transformants of Pseudomonas bacteria
シユードモナス 'プチダ TE3493 (微ェ研寄 12298号)を LBG培地(LB培地 + 0. 3%グリセロール)で 30°C、 16時間培養し、遠心分離(12, 000rpm、 10分間)により 菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK—リン酸 緩衝液(PH7. 0) 8mlを加え、菌体を懸濁した。再度遠心分離(12, 000rpm、 10分 間)により菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK —リン酸緩衝液(ρΗ7· 0) 0. 4mlをカ卩え、菌体を懸濁した。  Pseudomonas' Putida TE3493 (Microeken No. 12298) was cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and the cells were collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (PH7.0) containing 300 mM sucrose cooled on ice was added to the cells to suspend the cells. The cells are collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer (ρΗ7.0) containing 300 mM sucrose ice-cooled is added to the cells. The body was suspended.
該懸濁液に実施例 16で得た発現プラスミド pNPG6を 0. カロえ、エレクトロボレ ーシヨン法により形質転換した。 100 μ g/mlのストレプトマイシンを含む LB寒天培 地に生育したコロニーより、 目的とする形質転換体を得た。  To this suspension, the expression plasmid pNPG6 obtained in Example 16 was transformed to 0. 0, and transformed by the electrovolution method. The desired transformant was obtained from a colony grown on LB agar medium containing 100 μg / ml streptomycin.
[0127] 試験例 4  [0127] Test Example 4
ホロ型 PQQGDHの活性測定方法  Holo-type PQQGDH activity measurement method
測定原理  Measurement principle
D—グルコース + PMS + PQQGDH → D—ダルコノ一 1, 5—ラタトン + PMS (red)  D—Glucose + PMS + PQQGDH → D—Dalcono 1,5—Lataton + PMS (red)
2PMS (red) + NTB → 2PMS + ジホルマザン  2PMS (red) + NTB → 2PMS + diformazan
フエナジンメトサルフェート(PMS) (red)によるニトロテトラゾリゥムブルー(NTB)の 還元により形成されたジホルマザンの存在は、 570nmで分光光度法により測定した 単位の定義  The presence of diformazan formed by the reduction of nitrotetrazolium blue (NTB) with phenazine methosulfate (PMS) (red) was measured spectrophotometrically at 570 nm
1単位は、以下に記載の条件下で 1分当たりジホルマザンを 0. 5ミリモル形成させる PQQGDHの酵素量をレ、う。 One unit forms 0.5 mmol of diformazan per minute under the conditions described below Check the amount of PQQGDH enzyme.
(3)方法  (3) Method
試薬 Reagent
A. D—グルコース溶液: 0. 5M (0. 9g D—グルコース(分子量 180. 16) /l0ml H O)  A. D—glucose solution: 0.5M (0.9 g D—glucose (molecular weight 180. 16) / l0ml H 2 O)
2  2
B. PIPES— NaOH緩衝液, pH6. 5 : 50mM (60mLの水中に懸濁した 1. 51g の PIPES (分子量 302. 36)を、 5N Na〇Hに溶解し、 2. 2mlの 10% Triton X 100をカロ免る。 5N NaOHを用レヽて 25。Cで pHを 6. 5 ± 0. 05に調整し、水をカロ えて 100mlとした。)  B. PIPES—NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302. 36) suspended in 60 mL of water, dissolved in 5N NaOH, 2. 2 ml of 10% Triton X Calorie free 100. Use 5N NaOH 25. Adjust the pH to 6.5 ± 0.05 with C and add 100 ml with water.)
C. PMS溶 ί夜: 3. 0mM (9. 19mgのフエナジンメトサノレフェート(分子量 817. 65) /10mlH O)  C. PMS dissolved at night: 3.0 mM (9. 19 mg phenazine methosanolate (molecular weight 817. 65) / 10 ml H 2 O)
2  2
D. NTB溶液: 6. 6mM (53. 96mgのニトロテトラゾリゥムブルー(分子量 817. 65) /10mlH O)  D. NTB solution: 6.6 mM (53. 96 mg of nitrotetrazolium blue (molecular weight 817. 65) / 10 ml H 2 O)
2  2
Ε·酵素希釈液: ImM CaCl , 0. 1% Triton X—100, 0. 1 % BSAを含む  酵素 Enzyme Diluent: ImM CaCl, 0.1% Triton X—100, 0.1% BSA included
2  2
50mM PIPES— NaOH緩衝液(ρΗ6· 5)  50mM PIPES—NaOH buffer (ρΗ6 · 5)
手順 Steps
遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製) Prepare the following reaction mixture in a light-proof bottle and store on ice (prepared at the time of use)
1. 8ml D—グルコース溶液 (A) 1. 8ml D-glucose solution (A)
24. 6ml PIPES _Na〇H緩衝液(pH6. 5) (B)  24. 6ml PIPES _Na 0H buffer (pH 6.5) (B)
2. 0ml PMS溶液 (C)  2. 0ml PMS solution (C)
1. 0ml NTB溶液 (D) 上記アツセィ混合物の反応液中の濃度は次の通り。  1. 0ml NTB solution (D) The concentration of the above mixture in the reaction solution is as follows.
PIPES緩衝液 42mM  PIPES buffer 42 mM
D_グノレコース 30mM  D_Gnore Course 30mM
PMS 0. 20mM  PMS 0.20mM
NTB 0. 22mM  NTB 0.22mM
3. 0mlの反応混合液を試験管(プラスチック製)に入れ、 37°Cで 5分間予備加温した 0. 1mlの酵素溶液をカ卩え、穏やかに反転して混合した。 3. Put 0ml reaction mixture into a test tube (plastic) and preheat at 37 ° C for 5 minutes 0.1 ml of enzyme solution was added and gently inverted to mix.
570nmでの水に対する吸光度の増加を 37°Cに維持しながら分光光度計で 4〜5分 間記録し、曲線の初期直線部分からの 1分当たりの A〇Dを計算した(〇Dテスト)。 同時に、酵素溶液に代えて酵素希釈液 (E)加えることを除いては同一の方法を繰 り返し、ブランク( Δ〇Dブランク)を測定した。  Record the increase in absorbance for water at 570 nm at 37 ° C for 4-5 minutes with a spectrophotometer, and calculate AOD per minute from the initial linear part of the curve (OD test) . At the same time, the same method was repeated except that the enzyme diluent (E) was added instead of the enzyme solution, and a blank (ΔD blank) was measured.
アツセィの直前に氷冷した酵素希釈液 (E)で酵素粉末を溶解し、同一の緩衝液で 0. 1 -0. 8U/mlに希釈した (該酵素の接着性のためにプラスチックチューブの使 用が好ましい)。  The enzyme powder was dissolved in ice-cold enzyme diluent (E) immediately before the assembly and diluted to 0.1 -0.8 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
計算  Calculation
活性を以下の式を用いて計算する:  Activity is calculated using the following formula:
U/ml= { A〇D/min ( A〇Dテスト Δ ODブランク) X Vt X df }/ (20· 1 X 1. O X Vs) U / ml = {A〇D / min (A〇D test Δ OD blank) X Vt X df} / (20 · 1 X 1. O X Vs)
Figure imgf000047_0001
Figure imgf000047_0001
Vt :総体積(3. lml)  Vt: Total volume (3. lml)
Vs :サンプル体積(1. 0ml)  Vs: Sample volume (1.0 ml)
20. 1:ジホルマザンの 1/2ミリモル分子吸光係数  20. 1: 1/2 mmol molecular extinction coefficient of diformazan
1. 0 :光路長(cm)  1. 0: Optical path length (cm)
df :希釈係数  df: dilution factor
C :溶液中の酵素濃度(c mg/ml)  C: Enzyme concentration in solution (c mg / ml)
[0129] 試験例 5 [0129] Test Example 5
全 PQQGDHの活件測定方法  Activity measurement method for all PQQGDH
試験例 4において、酵素希釈液 (E)の代わりに酵素希釈液 (F): ImM CaCl ,  In Test Example 4, instead of enzyme diluent (E), enzyme diluent (F): ImM CaCl,
2 2
0. 1% Triton X— 100, 0. 1 % BSA, Ι μ Μ PQQを含む 50mM PIPES 一 Na〇H緩衝液 (pH6. 5)を用いて酵素を希釈後、同様に測定を実施した。 The measurement was carried out in the same manner after the enzyme was diluted with 50 mM PIPES NaOH buffer (pH 6.5) containing 0.1% Triton X—100, 0.1% BSA and 測定 μΜ PQQ.
[0130] 実施例 18 PQQGDHの発現と粗酵素液の回収 Example 18 Expression of PQQGDH and recovery of crude enzyme solution
25mlの GDH生産培地(1. 5%グリセロール, 4%酵母エキス, 1. 25%K2HP04 , 0. 23%KH2P04, pH6. 8)を 500ml坂口フラスコに分注し、 121。C、 20分間ォ 一トクレーブを行い、培地を滅菌した。放冷後、別途無菌濾過したストレプトマイシン を 100 μ g/mlになるように添加し、さらにエタノールを 1% (V/V)となるように添カロ した。実施例 17で得た形質転換体を本培地中で、 33°C、 24時間培養後、遠心分離 (12000rpm、 5分間)により菌体を回収した。該菌体を 20mMリン酸緩衝液(pH7. 0)に懸濁した後、超音波処理により破砕し、更に遠心分離を行い、上清液を粗酵素 液として得、試験例 4, 5に従い PQQGDH活性を測定した。 Dispense 25 ml of GDH production medium (1.5% glycerol, 4% yeast extract, 1.25% K2HP04, 0.23% KH2P04, pH 6.8) into a 500 ml Sakaguchi flask. C, 20 minutes A one-clave was performed and the medium was sterilized. After standing to cool, separately sterile filtered streptomycin was added to 100 μg / ml, and ethanol was further added to 1% (V / V). The transformant obtained in Example 17 was cultured in this medium at 33 ° C for 24 hours, and the cells were collected by centrifugation (12000 rpm, 5 minutes). The cells are suspended in 20 mM phosphate buffer (pH 7.0), crushed by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. According to Test Examples 4 and 5, PQQGDH Activity was measured.
ホロ型 PQQGDHの発現量の割合は、単位液量あたりに発現したホロ型 PQQGD H活性 (U/ml)を全 PQQGDH活性 (U/ml)で割ることで算出した。測定結果を図 12に示す。  The ratio of the expression level of holo PQQGDH was calculated by dividing the holo PQQGD H activity (U / ml) expressed per unit volume by the total PQQGDH activity (U / ml). Figure 12 shows the measurement results.
実施例 19 PQQGDHの精製と加熱処理によるホロ型 PQQGDHの割合向上の確 実施例 18の粗酵素液を 20mMリン酸緩衝液 (pH7. 0)で緩衝ィ匕した HiTrap— S P (アマシャム一フアルマシア)イオン交換カラムクロマトグラフィーにチャージし、樹脂 に GDHタンパク質を吸着させた。カラム樹脂量の 2倍量の 20mMリン酸緩衝液 (pH 7. 0)で樹脂を洗浄した後、同じく 2倍量の 0. 3MNaClの入った 20mMリン酸緩衝 液 (pH7. 0)を用いて樹脂から GDHタンパク質を溶出し、溶出画分を回収した。次 いで 10mM PIPES— NaOH緩衝液(pH6. 5)中で透析し、脱塩した後に、終濃度 力 SlmMになるように塩化カルシウムを添加した。 Example 19 Purification of PQQGDH and confirmation of improvement in proportion of holo-type PQQGDH by heat treatment HiTrap— SP (Amersham-Falmacia) ion buffered with 20 mM phosphate buffer (pH 7.0) The exchange column chromatography was charged and the GDH protein was adsorbed on the resin. After washing the resin with 20 mM phosphate buffer (pH 7.0), which is twice the amount of column resin, use 20 mM phosphate buffer (pH 7.0) containing twice the same amount of 0.3 M NaCl. GDH protein was eluted from the resin, and the eluted fraction was collected. Next, after dialyzing in 10 mM PIPES-NaOH buffer (pH 6.5) and desalting, calcium chloride was added to a final concentration of SlmM.
以下、本透析液を 2分して、(A)加熱処理を施した後に精製酵素標品を得る方法、 (B)加熱処理を実施せずに精製酵素標品を得る方法、それぞれで精製を実施した。  Hereinafter, the dialysate is divided into 2 minutes, (A) a method for obtaining a purified enzyme preparation after heat treatment, and (B) a method for obtaining a purified enzyme preparation without heat treatment, respectively. Carried out.
(A)加熱処理を施した後に精製酵素標品を得る方法  (A) Method for obtaining a purified enzyme preparation after heat treatment
透析液の半量を 35°Cで管理された温水につけ、 16時間加熱処理を実施した。遠 心分離による除濁後、 10mM PIPES _Na〇H緩衝液(pH6. 5)で緩衝化した Hi Trap— DEAE (アマシャム一フアルマシア)イオン交換カラムクロマトグラフィーにチヤ ージし、非吸着画分を回収することにより、精製酵素標品を得た。  Half of the dialysate was placed in warm water controlled at 35 ° C and heat-treated for 16 hours. After clarification by centrifuge separation, charge to Hi Trap—DEAE (Amersham-Falmacia) ion exchange column chromatography buffered with 10 mM PIPES _Na 0H buffer (pH 6.5), and collect the non-adsorbed fraction. As a result, a purified enzyme preparation was obtained.
(B)加熱処理を実施せずに精製酵素標品を得る方法  (B) A method for obtaining a purified enzyme preparation without carrying out heat treatment
残りの透析液を 10mM PIPES— NaOH緩衝液(pH6. 5)で緩衝化した HiTrap — DEAE (アマシャム一フアルマシア)イオン交換カラムクロマトグラフィーにチャージ し、非吸着画分を回収することにより、精製酵素標品を得た。 Charge remaining dialysate to HiTrap DEAE (Amersham-Falmacia) ion exchange column chromatography buffered with 10 mM PIPES—NaOH buffer (pH 6.5) The non-adsorbed fraction was collected to obtain a purified enzyme preparation.
(A) (B)それぞれより得られた各標品は、 SDS— PAGE的にほぼ単一なバンドを 示した。  (A) Each specimen obtained from (B) showed an almost single band on SDS-PAGE.
実施例 18と同様にして各酵素液のホロ型 PQQGDHの割合を求めた。測定結果を 図 13に記載する。  In the same manner as in Example 18, the ratio of holo-type PQQGDH in each enzyme solution was determined. The measurement results are shown in Fig. 13.
[0132] まず、透析液を加熱処理することにより、ホロ型 PQQGDHの割合が著しく向上して レ、ることが確認出来た。仮に粗酵素液の段階で GDHタンパク質に非結合の PQQが 存在するとしても、 PQQは低分子であるため、遊離の PQQは透析により除去される。 よって、加熱処理によりホロ型 PQQGDHの割合が向上した結果は、 GDHタンパク 質と結合はしているものの、結合状態が不完全であるために非活性型となっていた G DH酵素タンパク質が存在していたことを意味する。また、それらが加熱処理によるコ ンフオメーシヨンの変化により、 PQQとの結合状態が改善され、活性型となったという ことも強く示唆する。  [0132] First, it was confirmed that the ratio of holo-type PQQGDH was significantly improved by heat treatment of the dialysate. Even if unbound PQQ is present in the GDH protein at the stage of the crude enzyme solution, PQQ is a small molecule, so free PQQ is removed by dialysis. Therefore, the result of the increase in the proportion of holo-type PQQGDH by heat treatment is that there is a GDH enzyme protein that is inactive due to imperfect binding state, although it is bound to GDH protein. It means that it was. In addition, it strongly suggests that the state of binding with PQQ has been improved by the change of the conformation due to heat treatment, and they have become active.
また、この活性型への変化、言い換えればコンフオメーシヨンの変化は、加熱処理 液 (A)とさらに精製を継続した精製酵素標品 (A)とでホロ型 PQQGDHの割合が変 化しないことから、 1過性のものではなぐ恒常的なものであることがわかる。  This change to the active form, in other words, the change in conformation, is because the ratio of holo-type PQQGDH does not change between the heat-treated solution (A) and the purified enzyme preparation (A) that has been further purified. 1 It turns out that it is permanent rather than transient.
さらに、精製酵素標品(B)の結果力も明らかなように、単に精製を継続するだけで はホロ型 PQQGDHの割合が向上しないことから、結合状態が不完全であるために 非活性型となっている GDH酵素タンパク質を活性型にするためには加熱処理が必 要であること  Furthermore, as the results of the purified enzyme preparation (B) are clear, simply continuing the purification does not increase the proportion of holo-type PQQGDH, so the binding state is incomplete and the inactive form becomes inactive. Heat treatment is necessary to make the GDH enzyme protein active.
が分かる。  I understand.
結合状態が不完全な GDH酵素タンパク質が存在するとレ、う事実、また加熱処理を 施すだけで活性型へと変換可能であるという事実は、本当に意外であり、また驚きで あった。加熱処理を実施することにより、全体の 1割以上にもなるこのような GDH酵素 タンパク質を有用に利用することが可能になることから、産業上有用な手段であると 判断した。  The fact that there is a GDH enzyme protein in an incompletely bound state, and the fact that it can be converted into an active form simply by heat treatment was surprising and surprising. By carrying out the heat treatment, it becomes possible to effectively use such GDH enzyme protein, which accounts for more than 10% of the total, so it was judged as an industrially useful means.
産業上の利用可能性  Industrial applicability
[0133] 本発明によれば、 GDH組成物を加温処理することにより、 GDH自体の安定性を增 大でき、グルコース測定試薬の製作時に加温処理を施すことにより、保存安定性の 高い試薬を提供することが可能になる。 [0133] According to the present invention, the stability of GDH itself is increased by heating the GDH composition. It is possible to provide a reagent with high storage stability by performing a heating process at the time of production of the glucose measuring reagent.
また、本発明によるホロ型比率あるいは保存安定性の改良は、グルコース測定試薬 、グルコースアツセィキット及びグルコースセンサでの測定精度を向上することができ る。 また、本発明によれば、ホロ型 PQQGDHとしての生産性の向上を図ることができ、 PQQGDHを廉価に製造することを可能にする。また、さらにはグノレコースアツセィキ ット及びグルコースセンサを廉価で提供することも可能にする。一方、ホロ型 PQQG DHの割合が向上することにより PQQGDHの単位タンパク質重量あたりの活性値が 向上する。グルコースアツセィキット及びグルコースセンサへのタンパク質添加量の減 少を可能にすることから、用途上、好ましい PQQGDHである。  Further, the improvement of the holo-type ratio or the storage stability according to the present invention can improve the measurement accuracy with a glucose measuring reagent, a glucose assay kit and a glucose sensor. In addition, according to the present invention, productivity as a holo type PQQGDH can be improved, and PQQGDH can be manufactured at low cost. Furthermore, it is also possible to provide a gnolecose assembly kit and a glucose sensor at low cost. On the other hand, the activity value per unit protein weight of PQQGDH is improved by increasing the proportion of holo-type PQQG DH. PQQGDH is preferred for use because it allows a reduction in the amount of protein added to the glucose assembly kit and glucose sensor.

Claims

請求の範囲 The scope of the claims
[1] 可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含有する組成物において [1] In a composition containing a soluble coenzyme-linked glucose dehydrogenase
、該組成物に加温処理を施す工程を含む、該酵素の熱安定性を向上させる方法。 A method for improving the thermal stability of the enzyme, comprising a step of heating the composition.
[2] 補酵素がピロロキノンキノリンまたはフラビン化合物である、請求項 1に記載の熱安 定性を向上させる方法。 [2] The method for improving thermostability according to claim 1, wherein the coenzyme is pyrroloquinone quinoline or a flavin compound.
[3] 加温処理温度が酵素の大きな熱失活が発生する温度が発生する温度以下である[3] The heat treatment temperature is lower than the temperature at which a large heat inactivation of the enzyme occurs
、請求項 1に記載の熱安定性を向上させる方法。 The method for improving thermal stability according to claim 1.
[4] 可溶性の補酵素結合型のグルコースデヒドロゲナーゼを含有する組成物にぉレ、て[4] A composition containing a soluble coenzyme-linked glucose dehydrogenase is prepared.
、該組成物に加温処理を施す工程を含む、熱安定性が向上した、可溶性の補酵素 結合型グルコースデヒドロゲナーゼを含有する組成物を製造する方法。 A method for producing a composition containing a soluble coenzyme-linked glucose dehydrogenase having improved thermal stability, comprising a step of heating the composition.
[5] 請求項 4に記載の方法で製造された、可溶性の補酵素結合型のグノレコースデヒドロ ゲナーゼを含有する組成物において、熱安定性が向上した、可溶性の補酵素結合 型グルコースデヒドロゲナーゼを含有する組成物。 [5] A composition containing a soluble coenzyme-linked gnolecose dehydrogenase produced by the method according to claim 4, wherein a soluble coenzyme-linked glucose dehydrogenase having improved thermal stability is used. Containing composition.
[6] 請求項 5に記載の組成物を含むグルコースアツセィキット  [6] A glucose assembly kit comprising the composition according to claim 5
[7] 請求項 5に記載の組成物を含むグルコースセンサ。  [7] A glucose sensor comprising the composition according to claim 5.
[8] 請求項 5に記載の組成物を用いるグルコース濃度の測定方法。  [8] A method for measuring glucose concentration using the composition according to claim 5.
PCT/JP2005/023468 2004-12-22 2005-12-21 Method for improvement of heat stability of glucose dehydrogenase WO2006068170A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-371277 2004-12-22
JP2004371277A JP4591074B2 (en) 2004-12-22 2004-12-22 Heat-treated dehydrogenase
JP2005327281A JP2007129966A (en) 2005-11-11 2005-11-11 Method for improvement of heat stability of glucose dehydrogenase
JP2005-327281 2005-11-11

Publications (2)

Publication Number Publication Date
WO2006068170A1 WO2006068170A1 (en) 2006-06-29
WO2006068170A9 true WO2006068170A9 (en) 2006-10-19

Family

ID=36601768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023468 WO2006068170A1 (en) 2004-12-22 2005-12-21 Method for improvement of heat stability of glucose dehydrogenase

Country Status (1)

Country Link
WO (1) WO2006068170A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083074B1 (en) * 2006-11-14 2011-01-19 Toyo Boseki Kabushiki Kaisha Modified flavine-adenine-dinucleotide-dependent glucose dehydrogenase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344145A (en) * 2002-05-27 2004-12-09 Toyobo Co Ltd Pyrroloquinoline quinone (pqq) dependent modified glucosedehydrogenase substance excellent in substrate specificity and stability
JP4332794B2 (en) * 2003-03-24 2009-09-16 東洋紡績株式会社 Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
JP2004236665A (en) * 2004-03-29 2004-08-26 Toyobo Co Ltd Pqq-dependent glucose dehydrogenase composition and reagent composition for glucose measurement
JP2006081407A (en) * 2004-09-14 2006-03-30 Toyobo Co Ltd Method for producing pqq-dependent glucose dehydrogenase

Also Published As

Publication number Publication date
WO2006068170A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5169991B2 (en) Modified flavin adenine dinucleotide-dependent glucose dehydrogenase
EP2003199B1 (en) Glucose dehydrogenase
JP5176045B2 (en) Method for improving the stability of a composition comprising soluble glucose dehydrogenase (GDH)
US8569004B2 (en) Method for improving heat stability of composition containing water-soluble coenzyme-bound glucose dehydrogenase (GDH)
JP4381369B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
JP4332794B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
JP4381463B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
WO2006085509A1 (en) Modified pyrroloquinolinequinone-dependent glucose dehydrogenase having excellent substrate-specificity
WO2006068170A9 (en) Method for improvement of heat stability of glucose dehydrogenase
JP5114756B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
JP2007116936A (en) Method for improving thermal stability of soluble coenzyme-binding glucose dehydrogenase (gdh)
JP2007043983A (en) Modified type pyrroloquinoline quinone-dependent glucose dehydrogenase excellent in substrate specificity
JP4591074B2 (en) Heat-treated dehydrogenase
JP2006217811A (en) Modified product of pqq (pyrroloquinoline quinone)-dependent glucose dehydrogenase having excellent substrate specificity
JP2006034165A (en) Method for producing pqqgdh
JP2006081407A (en) Method for producing pqq-dependent glucose dehydrogenase
JP4452988B2 (en) Method for improving specific activity of pyrroloquinoline quinone-dependent glucose dehydrogenase, and pyrroloquinoline quinone-dependent glucose dehydrogenase with improved specific activity
JP4770911B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
JP2007129966A (en) Method for improvement of heat stability of glucose dehydrogenase
JP2006217810A (en) Modified product of pqq (pyrroloquinoline quinone)-dependent glucose dehydrogenase having excellent substrate specificity
JP2009189375A (en) Method for improving thermal stability of composition containing soluble coenzyme bonded type glucose dehydrogenase (gdh)
JP4415283B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
JP2007166953A (en) Method for increasing holo type rate or stability of enzyme
JP2007000020A (en) Modified pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase having excellent substrate specificity
JP2005328793A (en) Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modifier excellent in substrate specificity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820162

Country of ref document: EP

Kind code of ref document: A1