WO2006063115A2 - A method and apparatus for monitoring and determining the moisture content of a substance in a container - Google Patents

A method and apparatus for monitoring and determining the moisture content of a substance in a container Download PDF

Info

Publication number
WO2006063115A2
WO2006063115A2 PCT/US2005/044391 US2005044391W WO2006063115A2 WO 2006063115 A2 WO2006063115 A2 WO 2006063115A2 US 2005044391 W US2005044391 W US 2005044391W WO 2006063115 A2 WO2006063115 A2 WO 2006063115A2
Authority
WO
WIPO (PCT)
Prior art keywords
container
substance
sample
moisture
moisture content
Prior art date
Application number
PCT/US2005/044391
Other languages
French (fr)
Other versions
WO2006063115A3 (en
Inventor
Thomas A. Jennings
Original Assignee
Jennings Thomas A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jennings Thomas A filed Critical Jennings Thomas A
Priority to EP05853335A priority Critical patent/EP1834185A2/en
Publication of WO2006063115A2 publication Critical patent/WO2006063115A2/en
Publication of WO2006063115A3 publication Critical patent/WO2006063115A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Definitions

  • This invention relates generally to an apparatus and method for monitoring and determining the moisture content of a substance in a container and, specifically, to an apparatus or method for monitoring and determining the moisture content of a substance in a container without direct sample use or destruction of the sample.
  • the amount of moisture in a substance is one of the most important factors in determining the useful life of a material.
  • a wide variety of materials used as foods or healthcare products are dried to extend the length of time for which they can be stored. While in most cases excessive moisture shortens the storage time, or shelf life, of a product, there are some substances containing proteins for which the stability, and therefore, the storage time, is actually reduced by over-drying or the removal of too much water.
  • the moisture content must be controlled within certain defined limits to achieve the desired stability and storage time. This can be accomplished by controlling the humidity and temperature of the container holding the substance during the drying process. Once an acceptable moisture content has been attained, this value must be maintained during storage.
  • U.S. Patent No. 4,549,134 issued to Weiss on October 22, 1985, describes a method and device for measuring the moisture content of various fluids.
  • the device comprises a membrane immersed directly in the fluid for which the moisture content is to be measured.
  • the '134 invention may operate in either D. C. or A.C. mode, and in the A.C. mode a pair of capacitor plates are pressed in contact with each side of the membrane to measure changes in capacitance of the fluid, thereby allowing a determination of the moisture content of the subject fluid.
  • This invention has several drawbacks, namely that the device must be inserted directly into the liquid so that the container must be opened, and also the technique described by the '134 invention is effective for measuring the moisture content of fluids but not of substances in other phases, such as solids.
  • U.S. Patent No. 6,114,863 issued to Krahn et al., on September 5, 2000, describes a method for determining the presence of water in a material in which a set of electrodes are placed on the surface of a layer of the material being monitored with an electric field established between said electrodes.
  • the phase angle for the electric field is measured at a predetermined frequency and is compared with a predetermined phase angle for a dry portion of the same material. A difference between the predetermined and the measured phase angles indicates the presence of water in the subject material.
  • the '863 invention is most useful for determining the moisture content of insulating material surrounding an electrical generator. This invention requires that the electrodes be in direct contact with the material for which the presence of water is to be determined.
  • the '863 invention is also not useful for determining the moisture content of a substance in a closed container.
  • This invention includes a sensor housing that has an electrically-insulating wall with a pair of electrodes disposed on its surface and a circuit unit including a capacitance- detecting circuit.
  • One of the electrodes is positioned on the inner surface of the electrically-insulating wall while the outer surface of said wall faces a space in which the moisture content is to be measured.
  • the electric field between the two electrodes forms the moisture-detecting region of the capacitance-detecting circuit.
  • An output circuit produces an electrical signal that corresponds to the amounts of water based upon the capacitance value determined by the capacitance-detecting circuit.
  • the '793 invention is particularly well-adapted for measuring the moisture content of garbage contained in a garbage vessel.
  • This invention requires placement inside the container holding the material for which the moisture content is to be measured, and thus, is not effective for determining the moisture content of a substance within a closed container that is either in storage or undergoing a drying process.
  • U.S. Patent No. 6,348,809 issued to Hirota et al., on February 19, 2002, describes a microscopic capacitance measurement system that includes a prober, a signal line, and a capacitance measurement circuit.
  • the prober comprises a box into which the sample substance to be tested is placed.
  • a detection terminal within said prober box must be placed in contact with the sample for which the capacitance is to be measured. Therefore, this invention is also ineffective for determining the moisture content of a substance within a closed container because the detection terminal of the signal line must be in direct contact with the sample substance.
  • U.S. Patent No. 5,898,309 issued to Becker et al., on April 27, 1999, describes an apparatus and method for determining specific material characteristics of plastics, such as impedance, where the plastic material is placed between the electrodes of a capacitive sensor located inside a container. Again, this invention is not effective for determining the moisture content of a substance inside a closed container without opening said container, and moreover, is directed toward the measurement of the impedance of plastics rather than to determining moisture content of a substance.
  • U.S. Patent No. 5,445,178 issued to Feuer on August 29, 1995, describes a soil moisture sensor comprising a pair of elongated conductive sensor elements coupled as part of an LC oscillator circuit.
  • the probe-like sensor elements must be buried or pushed into the ground to obtain accurate readings of soil moisture content.
  • the '178 invention cannot be used to determine the moisture content of a sample substance in a closed container without the need to penetrate said container in some way and for some period of time.
  • This invention relates to an apparatus and method for determining the moisture content of a substance in a container, comprising a sample container, a reference container, a desiccant, a capacitance meter that provides a known frequency of AC voltage, a plurality of electrical contacts used to supply the AC voltage from said capacitance meter simultaneously to said sample and said reference containers, an inverting circuit, and a resistor in the output of said sample container.
  • a parallel capacitance circuit is created by the connection of said sample container and a reference container to a source of AC voltage using wires and electrical contacts.
  • the percentage of moisture in a substance stored in a container is related to the number of monolayers of moisture on the interior surface of the container at a given temperature and is independent of the dimensions of said container or the mass of the substance.
  • the reference container may have no adsorbed moisture on the interior surface or may contain a known number of adsorbed monolayers of moisture.
  • the reference container must contain either a desiccant, or a known quantity of water sealed therein, which can be substituted in place of the desiccant.
  • the inverting circuit amplifies the output of the reference container by a factor of 1 and changes the sign of the output signal.
  • the resistor in the output of said sample container ensures that the time constants of the output of the sample container circuit and the reference container circuit match.
  • the changing moisture content of said sample substance can be monitored during the drying process by measuring the effect of changes in the number of monolayers of adsorbed moisture on the interior surface of a sample container on the dielectric properties of said container.
  • This measurement is accomplished by determining the difference in electrical properties of a dielectric sample container, such as the capacitance, capacitive reactance, and/or the quality factor, with respect to the reference container.
  • the drying process is defined in terms of a difference in electrical properties of the dielectric containers.
  • the number of monolayers of moisture adsorbed on the interior surface of a container is related to the amount of residual moisture in a substance contained in the container.
  • a change in the number of monolayers of moisture adsorbed on the interior surface of a container is related, under given operating conditions, to the temperature of the substance.
  • a significant number of samples of a substance can be examined and monitored during the drying process, thereby allowing the determination of the completion of a given segment of the drying process with a higher degree of confidence than has previously been possible using current conventional methods, such as temperature probes which can contaminate the product or a pressure rise test.
  • the relative amount of residual moisture in a substance can be determined based on a sample that does not require pooling from various containers in a batch to obtain a sufficient amount of substance as can be required when using a conventional method to determine the moisture content. Using this method, all of the substance produced can be inspected for moisture content without destruction of the sample.
  • Another advantage of this invention is that a change in the moisture content of a substance in a sample container can be determined under normal storage conditions or at elevated or lower temperatures.
  • the invention can be used to determine the residual moisture content of a substance within a storage container.
  • the moisture content of a substance in storage is determined by measuring the number of monolayers of adsorbed moisture on the interior surface of a sample container on the dielectric properties of said container.
  • the number of monolayers of moisture adsorbed on the interior surface of a container in storage is related to the amount of residual moisture in a substance contained in the container.
  • An object of this invention is to provide an apparatus and method for monitoring determining the moisture content in a sample container containing a pharmaceutical or other sample substance or systems without requiring penetration or opening of the closed container.
  • Another object of this invention is to provide a faster and more economical method for repetitive determinations of the moisture content of a sample substance within a container that is either in storage or to monitor the moisture content of a substance undergoing a drying process.
  • Yet another object of this invention is to provide a method for determining the moisture content within a container containing a pharmaceutical or other sample substance and/or system without destroying said sample or system.
  • Still another object of this invention is to provide a method and apparatus that permits determining the moisture content of a sealed container under both elevated and lower temperatures.
  • An additional object of this invention is to provide a method for determining the moisture content of a substance that does not require that the sample substance be soluble in methanol.
  • Figure 1 shows a schematic diagram of the invention and its parallel capacitance circuit.
  • Figure 1 illustrates the invention 10 for monitoring and determining the moisture content of a substance in a container, comprising a sample container 11 containing a substance 15 for which the moisture content is to be determined, a reference container 20, a capacitance meter 14 that provides a known frequency of AC voltage, a plurality of electrical contacts 23 and 24 used to apply the AC voltage from said capacitance meter 14 simultaneously to said sample container 11 and said reference container 20, an inverting circuit, and a source of resistance 12 in the output of said sample container.
  • Both the sample and reference containers are constructed from a dielectric material such as glass and certain plastics.
  • said reference container 20 will have no adsorbed moisture on the interior surface.
  • a desiccant 19, and preferably the desiccant P 4 Oi O will be placed into the reference container 20 to ensure that all adsorbed moisture is removed from the interior surface.
  • a known quantity of liquid water or water vapor may be sealed within said reference container in place of the desiccant.
  • the apparatus can record accurate measurements when a known number of adsorbed monolayers of moisture are present in the reference container 20.
  • a plurality of wires connects the capacitance meter 14 to the electrical contacts 23 and 24 which are attached to the exterior surface of the sample container 11 and reference container 20.
  • This arrangement creates a parallel capacitance circuit.
  • Each electrical contact has a known area and may be constructed from any known electrical conductor, including stainless steel.
  • the wires connecting said electrical contacts 23 and 24 to form the circuit may also be constructed from any known electrical conductor.
  • the sign inverting circuit comprises an operational amplifier 13 and two resistors 21 and 22. The inverting circuit amplifies the output of the reference container 20 by a factor (gain) of 1 and changes the sign of the input signal.
  • a resistor 12 connected in series with the parallel capacitance circuit of the apparatus receives capacitance output from the sample container 11.
  • the resistance provided by this resistor 12 in the output of the sample container 11 matches the time constant of the output of the reference container 20 with the output of the sample container 11 to ensure that the time constants of the two outputs are equal.
  • the invention 10 provides a novel and convenient method to accurately and quickly determine the moisture content within a sample container 11 containing substance such as a pharmaceutical substance 15.
  • the invention will also be useful for measuring the moisture content of containers holding foods, cosmetics, electrical devices, and other substances with which moisture content or infiltration into a storage container might be of particular concern.
  • sample container 15 is placed into the sample container 11, said sample container is sealed with a standard elastomer closure 16.
  • the reference container 20 is sealed with a special glass plate 17 that is fused to form a glass seal 18 over the opening of said reference container.
  • the special glass seal 18 is not a part of this invention and will be known to those skilled in the art.
  • a known quantity of water or, more preferably, a desiccant 19, is placed into the reference container 20.
  • the present invention also has the benefit that measurements taken using this method do not require penetration or opening of the container, pooling of samples from several containers to acquire a sample great enough for the moisture content to be measured, nor the destruction of any of the sample substance during the measuring process.
  • Moisture adsorbed on the inside surface of said sample container 11 is produced by humidity generated by the desorption of water from the surface of the substance 15 in said sample container 11.
  • the residual moisture of a substance is chemically related to the relative humidity and temperature as well as the amount of water adsorbed on the surface of the material in the container.
  • the amount of moisture adsorbed on the surface of the material in the container is inversely related to the temperature, such that a decrease in temperature of the container would be accompanied by a corresponding increase in the amount of water adsorbed to the surface of the container. Therefore, the number of adsorbed monolayers of water, at a given temperature, is directly related to the amount of residual moisture adsorbed on the surface of the substance.
  • the ratio of the partial pressure of water to the vapor pressure at a given temperature equals or falls below 0.70, only one monolayer or less of water will adsorb to the surface of the container. However, when this ratio exceeds 0.70, the number of monolayers of adsorbed moisture may increase many-fold.
  • the moisture content of the sample and reference containers can be determined by measuring and comparing the capacitance of the moisture layer adsorbed to the interior surfaces of said containers. This measurement accepts that the thickness of each container are similar and that the gases in the container will have a negligible effect on electrical measurements.
  • the capacitance of the adsorbed moisture layer is determined by the equation:
  • C 0 represents the capacitance of a container in the absence of any adsorbed moisture or where a known quantity of water is adsorbed to the container surface
  • C n represents the capacitance of the container with "n" (n > 0) adsorbed layers of water
  • C a represents the capacitance of the adsorbed moisture layer.
  • the difference in capacitance obtained using the equation above is used to determine the presence of water adsorbed on the interior surface of the container.
  • the presence of a layer of water adsorbed on the inside surface of a container may result in an increase in the quality factor (Q), which is defined as an inverse function of the energy that is dissipated by the capacitor.
  • Q can be expressed as:
  • Q C x V, where V is the voltage applied by the capacitance meter 14.
  • the electrical contacts 23 are attached to the exterior surface of the sample container 11, said contacts 23 can be positioned so as to monitor several sample containers in a batch undergoing a drying process. In this way, a frequency distribution is established to allow the operator to ascertain the probability that a given sample container has not completed a particular step of the drying process or the probability that a substance in a sealed container has moisture values outside of the defined limits for that particular substance.
  • the method and apparatus can also be used to determine the moisture content of products under storage to ascertain whether moisture is entering the storage container under normal storage conditions. This method could be beneficial to test for either a random failure or a general failure of a particular storage container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A method and apparatus for monitoring and determining the moisture content of a sample substance inside a closed container (11), containing substance (15) for which the moisture content is to be determined, a reference container (20), a capacitance meter (14) that provide a known frequency of AC voltage, a plurality of electrical contacts (23) and (24) used to apply the AC voltage from said capacitance meter (14) simultaneously to the sample container (11) the reference container (20), an inverting circuit and a resistance (12) in the output of the sample container (11). The method does not require penetration or opening of the sealed sample container (11) nor the destruction of the sample, and can be used to rapidly determine moisture content under normal storage conditions or at elevated or lower temperatures that may be used in a drying process.

Description

A METHOD AND APPARATUS FOR MONITORING AND DETERMINING THE MOISTURE CONTENT OF A SUBSTANCE IN A CONTAINER
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to an apparatus and method for monitoring and determining the moisture content of a substance in a container and, specifically, to an apparatus or method for monitoring and determining the moisture content of a substance in a container without direct sample use or destruction of the sample.
2. Description of Related Art
The amount of moisture in a substance is one of the most important factors in determining the useful life of a material. A wide variety of materials used as foods or healthcare products are dried to extend the length of time for which they can be stored. While in most cases excessive moisture shortens the storage time, or shelf life, of a product, there are some substances containing proteins for which the stability, and therefore, the storage time, is actually reduced by over-drying or the removal of too much water. Thus, when producing such substances, the moisture content must be controlled within certain defined limits to achieve the desired stability and storage time. This can be accomplished by controlling the humidity and temperature of the container holding the substance during the drying process. Once an acceptable moisture content has been attained, this value must be maintained during storage. Therefore, a means of measuring the moisture content, both during the drying process and during subsequent storage, is imperative to ensuring the quality of the substance. Current methods for determining the moisture content of a substance during the drying process and while in storage include measuring the loss in weight of a given mass of a substance after the drying process is completed, as well as the Karl Fischer method in which a sample of the subject substance is dissolved in methanol or other suitable solvent and then by measuring the quantity of hydrogen iodide that forms in the presence of water still remaining in the sample of the substance. Both of these methods require that a portion of the sample substance be removed for destructive testing during the drying process. Until now, there have been no known non-destructive, non-invasive methods for determining the moisture content of a substance during a drying process. Numerous shortcomings are inherent in both of these testing methods. The methods destroy the samples used so that they are unavailable for use or repeat testing. Moisture content cannot be tracked under high humidity and high temperature conditions. Additionally, the Karl Fischer method can only be used to test the moisture content of substances that are soluble in methanol or other suitable solvent, which excludes proteins from being tested with this method (proteins are not soluble in methanol). Pooling of the samples also results in false high or false low moisture content values depending on the difference between the relative humidity of the samples and the environment.
U.S. Patent No. 4,549,134, issued to Weiss on October 22, 1985, describes a method and device for measuring the moisture content of various fluids. The device comprises a membrane immersed directly in the fluid for which the moisture content is to be measured. The '134 invention may operate in either D. C. or A.C. mode, and in the A.C. mode a pair of capacitor plates are pressed in contact with each side of the membrane to measure changes in capacitance of the fluid, thereby allowing a determination of the moisture content of the subject fluid. This invention has several drawbacks, namely that the device must be inserted directly into the liquid so that the container must be opened, and also the technique described by the '134 invention is effective for measuring the moisture content of fluids but not of substances in other phases, such as solids.
U.S. Patent No. 6,114,863, issued to Krahn et al., on September 5, 2000, describes a method for determining the presence of water in a material in which a set of electrodes are placed on the surface of a layer of the material being monitored with an electric field established between said electrodes. The phase angle for the electric field is measured at a predetermined frequency and is compared with a predetermined phase angle for a dry portion of the same material. A difference between the predetermined and the measured phase angles indicates the presence of water in the subject material. The '863 invention is most useful for determining the moisture content of insulating material surrounding an electrical generator. This invention requires that the electrodes be in direct contact with the material for which the presence of water is to be determined. The '863 invention is also not useful for determining the moisture content of a substance in a closed container.
In United States Patent No. 6,756,793, issued to Hirono et al., on June 29, 2004, a capacitance type moisture sensor and method for constructing said sensor is described. This invention includes a sensor housing that has an electrically-insulating wall with a pair of electrodes disposed on its surface and a circuit unit including a capacitance- detecting circuit. One of the electrodes is positioned on the inner surface of the electrically-insulating wall while the outer surface of said wall faces a space in which the moisture content is to be measured. The electric field between the two electrodes forms the moisture-detecting region of the capacitance-detecting circuit. An output circuit produces an electrical signal that corresponds to the amounts of water based upon the capacitance value determined by the capacitance-detecting circuit. The '793 invention is particularly well-adapted for measuring the moisture content of garbage contained in a garbage vessel. This invention requires placement inside the container holding the material for which the moisture content is to be measured, and thus, is not effective for determining the moisture content of a substance within a closed container that is either in storage or undergoing a drying process.
U.S. Patent No. 6,348,809, issued to Hirota et al., on February 19, 2002, describes a microscopic capacitance measurement system that includes a prober, a signal line, and a capacitance measurement circuit. The prober comprises a box into which the sample substance to be tested is placed. A detection terminal within said prober box must be placed in contact with the sample for which the capacitance is to be measured. Therefore, this invention is also ineffective for determining the moisture content of a substance within a closed container because the detection terminal of the signal line must be in direct contact with the sample substance.
Similarly, U.S. Patent No. 5,898,309, issued to Becker et al., on April 27, 1999, describes an apparatus and method for determining specific material characteristics of plastics, such as impedance, where the plastic material is placed between the electrodes of a capacitive sensor located inside a container. Again, this invention is not effective for determining the moisture content of a substance inside a closed container without opening said container, and moreover, is directed toward the measurement of the impedance of plastics rather than to determining moisture content of a substance. Finally, U.S. Patent No. 5,445,178, issued to Feuer on August 29, 1995, describes a soil moisture sensor comprising a pair of elongated conductive sensor elements coupled as part of an LC oscillator circuit. In this invention, the probe-like sensor elements must be buried or pushed into the ground to obtain accurate readings of soil moisture content. As with the previously discussed patents found in the prior art, the '178 invention cannot be used to determine the moisture content of a sample substance in a closed container without the need to penetrate said container in some way and for some period of time.
SUMMARY OF THE INVENTION
This invention relates to an apparatus and method for determining the moisture content of a substance in a container, comprising a sample container, a reference container, a desiccant, a capacitance meter that provides a known frequency of AC voltage, a plurality of electrical contacts used to supply the AC voltage from said capacitance meter simultaneously to said sample and said reference containers, an inverting circuit, and a resistor in the output of said sample container. A parallel capacitance circuit is created by the connection of said sample container and a reference container to a source of AC voltage using wires and electrical contacts.
The percentage of moisture in a substance stored in a container is related to the number of monolayers of moisture on the interior surface of the container at a given temperature and is independent of the dimensions of said container or the mass of the substance. The reference container may have no adsorbed moisture on the interior surface or may contain a known number of adsorbed monolayers of moisture. Thus, the reference container must contain either a desiccant, or a known quantity of water sealed therein, which can be substituted in place of the desiccant.
The inverting circuit amplifies the output of the reference container by a factor of 1 and changes the sign of the output signal. The resistor in the output of said sample container ensures that the time constants of the output of the sample container circuit and the reference container circuit match.
By creating the parallel capacitance circuit using the reference container and the sample container, which contains the sample substance, such as a food, electrical, or pharmaceutical product, the changing moisture content of said sample substance can be monitored during the drying process by measuring the effect of changes in the number of monolayers of adsorbed moisture on the interior surface of a sample container on the dielectric properties of said container. This measurement is accomplished by determining the difference in electrical properties of a dielectric sample container, such as the capacitance, capacitive reactance, and/or the quality factor, with respect to the reference container. (The drying process is defined in terms of a difference in electrical properties of the dielectric containers.) The number of monolayers of moisture adsorbed on the interior surface of a container is related to the amount of residual moisture in a substance contained in the container. A change in the number of monolayers of moisture adsorbed on the interior surface of a container is related, under given operating conditions, to the temperature of the substance.
A significant number of samples of a substance can be examined and monitored during the drying process, thereby allowing the determination of the completion of a given segment of the drying process with a higher degree of confidence than has previously been possible using current conventional methods, such as temperature probes which can contaminate the product or a pressure rise test. The relative amount of residual moisture in a substance can be determined based on a sample that does not require pooling from various containers in a batch to obtain a sufficient amount of substance as can be required when using a conventional method to determine the moisture content. Using this method, all of the substance produced can be inspected for moisture content without destruction of the sample.
Another advantage of this invention is that a change in the moisture content of a substance in a sample container can be determined under normal storage conditions or at elevated or lower temperatures. During storage, the invention can be used to determine the residual moisture content of a substance within a storage container. The moisture content of a substance in storage is determined by measuring the number of monolayers of adsorbed moisture on the interior surface of a sample container on the dielectric properties of said container. As with monitoring the moisture content of a substance undergoing a drying process, the number of monolayers of moisture adsorbed on the interior surface of a container in storage is related to the amount of residual moisture in a substance contained in the container.
An object of this invention is to provide an apparatus and method for monitoring determining the moisture content in a sample container containing a pharmaceutical or other sample substance or systems without requiring penetration or opening of the closed container.
Another object of this invention is to provide a faster and more economical method for repetitive determinations of the moisture content of a sample substance within a container that is either in storage or to monitor the moisture content of a substance undergoing a drying process.
Yet another object of this invention is to provide a method for determining the moisture content within a container containing a pharmaceutical or other sample substance and/or system without destroying said sample or system.
Still another object of this invention is to provide a method and apparatus that permits determining the moisture content of a sealed container under both elevated and lower temperatures.
An additional object of this invention is to provide a method for determining the moisture content of a substance that does not require that the sample substance be soluble in methanol. hi accordance with these and other objects which will become apparent hereinafter, the instant invention will now be described with particular reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a schematic diagram of the invention and its parallel capacitance circuit.
DETAILED DESCRIPTION
Figure 1 illustrates the invention 10 for monitoring and determining the moisture content of a substance in a container, comprising a sample container 11 containing a substance 15 for which the moisture content is to be determined, a reference container 20, a capacitance meter 14 that provides a known frequency of AC voltage, a plurality of electrical contacts 23 and 24 used to apply the AC voltage from said capacitance meter 14 simultaneously to said sample container 11 and said reference container 20, an inverting circuit, and a source of resistance 12 in the output of said sample container. Both the sample and reference containers are constructed from a dielectric material such as glass and certain plastics. Preferably, said reference container 20 will have no adsorbed moisture on the interior surface. A desiccant 19, and preferably the desiccant P4OiO, will be placed into the reference container 20 to ensure that all adsorbed moisture is removed from the interior surface. However, a known quantity of liquid water or water vapor may be sealed within said reference container in place of the desiccant. The apparatus can record accurate measurements when a known number of adsorbed monolayers of moisture are present in the reference container 20.
A plurality of wires connects the capacitance meter 14 to the electrical contacts 23 and 24 which are attached to the exterior surface of the sample container 11 and reference container 20. This arrangement creates a parallel capacitance circuit. Each electrical contact has a known area and may be constructed from any known electrical conductor, including stainless steel. The wires connecting said electrical contacts 23 and 24 to form the circuit may also be constructed from any known electrical conductor. The sign inverting circuit comprises an operational amplifier 13 and two resistors 21 and 22. The inverting circuit amplifies the output of the reference container 20 by a factor (gain) of 1 and changes the sign of the input signal.
A resistor 12 connected in series with the parallel capacitance circuit of the apparatus receives capacitance output from the sample container 11. The resistance provided by this resistor 12 in the output of the sample container 11 matches the time constant of the output of the reference container 20 with the output of the sample container 11 to ensure that the time constants of the two outputs are equal.
The invention 10 provides a novel and convenient method to accurately and quickly determine the moisture content within a sample container 11 containing substance such as a pharmaceutical substance 15. The invention will also be useful for measuring the moisture content of containers holding foods, cosmetics, electrical devices, and other substances with which moisture content or infiltration into a storage container might be of particular concern.
Once the sample substance 15 is placed into the sample container 11, said sample container is sealed with a standard elastomer closure 16. The reference container 20 is sealed with a special glass plate 17 that is fused to form a glass seal 18 over the opening of said reference container. The special glass seal 18 is not a part of this invention and will be known to those skilled in the art. A known quantity of water or, more preferably, a desiccant 19, is placed into the reference container 20. The present invention also has the benefit that measurements taken using this method do not require penetration or opening of the container, pooling of samples from several containers to acquire a sample great enough for the moisture content to be measured, nor the destruction of any of the sample substance during the measuring process.
Moisture adsorbed on the inside surface of said sample container 11 is produced by humidity generated by the desorption of water from the surface of the substance 15 in said sample container 11. The residual moisture of a substance is chemically related to the relative humidity and temperature as well as the amount of water adsorbed on the surface of the material in the container. For example, the amount of moisture adsorbed on the surface of the material in the container is inversely related to the temperature, such that a decrease in temperature of the container would be accompanied by a corresponding increase in the amount of water adsorbed to the surface of the container. Therefore, the number of adsorbed monolayers of water, at a given temperature, is directly related to the amount of residual moisture adsorbed on the surface of the substance. As the ratio of the partial pressure of water to the vapor pressure at a given temperature equals or falls below 0.70, only one monolayer or less of water will adsorb to the surface of the container. However, when this ratio exceeds 0.70, the number of monolayers of adsorbed moisture may increase many-fold.
The moisture content of the sample and reference containers can be determined by measuring and comparing the capacitance of the moisture layer adsorbed to the interior surfaces of said containers. This measurement accepts that the thickness of each container are similar and that the gases in the container will have a negligible effect on electrical measurements. For example, the capacitance of the adsorbed moisture layer is determined by the equation:
^a — Cn — Co? where C0 represents the capacitance of a container in the absence of any adsorbed moisture or where a known quantity of water is adsorbed to the container surface, Cn represents the capacitance of the container with "n" (n > 0) adsorbed layers of water, and Ca represents the capacitance of the adsorbed moisture layer. The difference in capacitance obtained using the equation above is used to determine the presence of water adsorbed on the interior surface of the container. The presence of a layer of water adsorbed on the inside surface of a container may result in an increase in the quality factor (Q), which is defined as an inverse function of the energy that is dissipated by the capacitor. Q can be expressed as:
Q = C x V, where V is the voltage applied by the capacitance meter 14. When a layer of adsorbed water is present, Q0 < Qn, where Q0 is the quality factor for the container's surface in the absence of moisture and Qn is the quality factor in the presence of "n" layers of water. Therefore, a difference in Qn may also be used to determine the number of monolayers of water adsorbed to the surface of a container.
Because the electrical contacts 23 are attached to the exterior surface of the sample container 11, said contacts 23 can be positioned so as to monitor several sample containers in a batch undergoing a drying process. In this way, a frequency distribution is established to allow the operator to ascertain the probability that a given sample container has not completed a particular step of the drying process or the probability that a substance in a sealed container has moisture values outside of the defined limits for that particular substance.
The method and apparatus can also be used to determine the moisture content of products under storage to ascertain whether moisture is entering the storage container under normal storage conditions. This method could be beneficial to test for either a random failure or a general failure of a particular storage container.
The instant invention has been shown and described herein in what is considered to be the most practical and preferred embodiment. It is recognized, however, that departures may be made therefrom within the scope of the invention and that obvious modifications will occur to a person skilled in the art.

Claims

CLAIMSWhat is claimed is:
1. An apparatus for monitoring and determining the moisture content of a substance, comprising: a sample container; a reference container; a desiccant placed in said reference container to eliminate moisture; a capacitance meter that provides a known frequency of AC voltage; a plurality of electrical contacts connected to said sample container, said reference container and said capacitance meter to apply the AC voltage from said capacitance meter simultaneously to said sample and said reference containers, each electrical contact having a known surface area; an output circuit connected to said electrical contacts mounted to said sample container; an inverting circuit connected to said capacitance meter and said output circuit; and a source of electrical resistance in said output circuit of said sample container, whereby electrical differences between the sample container and the reference container can be used to determine the moisture content of a sample in the sample container without opening the sample container.
2. The invention according to claim 1 , wherein the connection of said sample container and a reference container to a source of AC voltage forms a parallel capacitance circuit.
3. The invention according to claim 1, wherein said inverting circuit amplifies the output of the reference container by a factor of 1 and changes the sign of the output signal.
4. The invention according to claim 1, wherein said resistance in the output of said sample container matches the time constant of the output of the reference container circuit.
5. The invention according to claim 1, wherein said reference container may have no adsorbed moisture on the interior surface or a given amount of adsorbed moisture on the interior surface.
6. The invention according to claim 1, wherein a desiccant, preferably P4Oi0, is sealed inside said reference container.
7. The invention according to claim 1, wherein a known quantity of water, sealed within said reference container, can be substituted in place of the desiccant.
8. A method for monitoring and determining the moisture content of a substance in which the adsorbed moisture on the interior surface of a sample container is measured by determining the electrical properties of the dielectric containers with respect to a reference container having no adsorbed moisture or a known quantity of adsorbed moisture on the inside surface of the substance's container.
9. The method according to claim 8, wherein the quantity of adsorbed moisture on the interior surface of a container is related to the amount of residual moisture in a substance contained in the container.
10. The method according to claim 8, wherein the quantity of adsorbed moisture on the interior surface of a container is related, under given operating conditions, to the temperature of the substance.
11. The method according to claim 8, wherein a drying process is defined in terms of a difference in the electrical properties of the dielectric sample container and reference container.
12. The method according to claim 8, wherein a statistically significant number of samples of a substance can be examined during the drying process to allow the determination of the completion of a given segment of the drying process with a high degree of confidence.
13. The method according to claim 8, wherein a statistically significant number of sealed samples of a substance are tested using the method described in claim 8 to ascertain with a high degree of confidence that the moisture content in a given lot of samples is within acceptable limits for the particular substance being tested.
14. The method according to claim 8, wherein the relative amount of residual moisture can be based on a sample that does not require pooling to obtain a sufficient amount of substance as is often required with conventional methods used to determine moisture content.
15. The method according to claim 8, wherein the percentage of moisture in a sample is based on the moisture adsorbed on the surface of the container and is independent of the dimensions of the container or the mass of the substance.
16. The method according to claim 8, wherein all of the substance produced can be inspected without destruction of the sample.
17. The method according to claim 8, wherein a change in the moisture content of a substance in a sample container can be measured under normal storage conditions or at elevated or lower temperatures.
PCT/US2005/044391 2004-12-10 2005-12-08 A method and apparatus for monitoring and determining the moisture content of a substance in a container WO2006063115A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05853335A EP1834185A2 (en) 2004-12-10 2005-12-08 A method and apparatus for monitoring and determining the moisture content of a substance in a container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/905,019 US7030631B1 (en) 2004-12-10 2004-12-10 Method and apparatus for monitoring and determining the moisture content of a substance in a container
US10/905,019 2004-12-10

Publications (2)

Publication Number Publication Date
WO2006063115A2 true WO2006063115A2 (en) 2006-06-15
WO2006063115A3 WO2006063115A3 (en) 2006-10-05

Family

ID=36147406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/044391 WO2006063115A2 (en) 2004-12-10 2005-12-08 A method and apparatus for monitoring and determining the moisture content of a substance in a container

Country Status (3)

Country Link
US (1) US7030631B1 (en)
EP (1) EP1834185A2 (en)
WO (1) WO2006063115A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200401209A (en) * 2004-08-09 2006-02-10 Viking Life Saving Equip As Container for storage of inflatable life raft
US11079340B2 (en) 2014-12-23 2021-08-03 3M Innovative Properties Company Methods of monitoring wetness utilizing a resonant circuit
US10161895B2 (en) 2014-12-23 2018-12-25 3M Innovative Properties Company Electronic moisture sensor
CN109916971B (en) * 2019-04-25 2022-05-17 云南中烟工业有限责任公司 Rapid nondestructive testing method for fresh tobacco moisture based on capacitor
CN110702737B (en) * 2019-08-28 2021-10-26 惠而浦(中国)股份有限公司 Calibration and heat preservation method of intelligent cooking appliance and intelligent cooking appliance with probe
CN110507209B (en) * 2019-08-28 2021-11-12 惠而浦(中国)股份有限公司 Intelligent cooking method and intelligent cooking appliance with probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282480A (en) * 1978-05-02 1981-08-04 Matsushita Electric Industrial Co., Ltd. Apparatus for humidity detection
US6462562B1 (en) * 2000-11-28 2002-10-08 Bechtel Bwxt Idaho, Llc Differential capacitance probe for process control involving aqueous dielectric fluids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2016699A (en) 1978-03-15 1979-09-26 Dow Chemical Co Determining quantitatively the concentration of chemical compounds in afluid
US5445178A (en) 1994-02-18 1995-08-29 Feuer; Lenny Soil moisture sensor
DE19536766A1 (en) 1995-10-02 1997-04-03 Somos Gmbh Procedure for the determination of specific material characteristics
US6114863A (en) 1998-04-29 2000-09-05 General Electric Company Method for determining the presence of water in materials
JP3474111B2 (en) 1998-08-11 2003-12-08 住友金属工業株式会社 Microcapacity measurement system and probing system
DE60114318T2 (en) 2000-07-03 2006-07-13 Matsushita Electric Works, Ltd., Kadoma Capacitive moisture sensor and method for its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282480A (en) * 1978-05-02 1981-08-04 Matsushita Electric Industrial Co., Ltd. Apparatus for humidity detection
US6462562B1 (en) * 2000-11-28 2002-10-08 Bechtel Bwxt Idaho, Llc Differential capacitance probe for process control involving aqueous dielectric fluids

Also Published As

Publication number Publication date
WO2006063115A3 (en) 2006-10-05
EP1834185A2 (en) 2007-09-19
US7030631B1 (en) 2006-04-18

Similar Documents

Publication Publication Date Title
Seyfried et al. Measurement of soil water content with a 50‐MHz soil dielectric sensor
US6204670B1 (en) Process and instrument for moisture measurement
US7239155B2 (en) Electrochemical impedance measurement system and method for use thereof
WO2006063115A2 (en) A method and apparatus for monitoring and determining the moisture content of a substance in a container
EP0312623A1 (en) Dielectric probe, method and apparatus including its use
US7205779B2 (en) Apparatus and method for monitoring and determining the moisture content in elastomer materials
US6874357B2 (en) Method for studying liquid and device for carrying out said method
EP0971227A1 (en) Process and instrument for moisture measurement
Amrani et al. Multi-frequency measurements of organic conducting polymers for sensing of gases and vapours
KR20060127275A (en) Method for producing unleaky liquid content-filled container
MXPA06014867A (en) Method and apparatus for monitoring the purity and/or quality of stem.
Rukavina Hand-held unit for liquid-type recognition, based on interdigital capacitor
JP4418887B2 (en) Nondestructive measurement method for moisture content of dried product
JPH11506838A (en) Monitoring polymer resistance
CA1233513A (en) Non-destructive detection of voids in plastic materials
Heidari et al. Conductivity effect on the capacitance measurement of a parallel-plate capacitive sensor system
US7223608B2 (en) Resonance-enhanced dielectric sensing of chemical and biological species
KR100376775B1 (en) Method and apparatus for measuring charge carrying capacity in nonconductive materials
Du et al. Dielectrometry measurements of effects of moisture and anti-static additive on transformer board
Washabaugh et al. Dielectric measurements of semi-insulating liquids and solids
Ghodinde et al. Quantification of urea adulteration with impedance spectroscopy in cow milk
JP2946843B2 (en) A method for judging the degree of ripening of fruits and the like and a sensor for judging the degree of ripening
Hazarika et al. PC-based instrumentation system for the detection of moisture content of tea leaves at its final stage
US9683954B2 (en) System and method for non-contact assessment of changes in critical material properties
CN112730540A (en) Interdigital capacitor-based sandstone water content measurement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005853335

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005853335

Country of ref document: EP