WO2006062159A1 - Video data processing device, liquid crystal display device using the same, display device drive device, display device drive method, program thereof, and recording medium - Google Patents

Video data processing device, liquid crystal display device using the same, display device drive device, display device drive method, program thereof, and recording medium Download PDF

Info

Publication number
WO2006062159A1
WO2006062159A1 PCT/JP2005/022553 JP2005022553W WO2006062159A1 WO 2006062159 A1 WO2006062159 A1 WO 2006062159A1 JP 2005022553 W JP2005022553 W JP 2005022553W WO 2006062159 A1 WO2006062159 A1 WO 2006062159A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
gradation
parameter
correction
display device
Prior art date
Application number
PCT/JP2005/022553
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Shiomi
Mitsuhiro Shigeta
Kazunari Tomizawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/792,590 priority Critical patent/US8493299B2/en
Priority to JP2006546751A priority patent/JP4234178B2/en
Publication of WO2006062159A1 publication Critical patent/WO2006062159A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • VIDEO DATA PROCESSING DEVICE LIQUID CRYSTAL DISPLAY DEVICE INCLUDING THE SAME, DISPLAY DEVICE DRIVE DEVICE, DISPLAY DEVICE DRIVE METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM
  • the present invention relates to a video data processing apparatus for processing video data indicating a gradation of a pixel.
  • a video data processing device capable of balancing reduction in circuit scale and improvement in display quality at a higher level, a liquid crystal display device including the same, a drive device for the display device, a drive method for the display device, and a program and
  • the present invention relates to a recording medium.
  • liquid crystal display devices In addition to space-saving 'power saving features, liquid crystal display devices have recently been improved in performance such as viewing angle' contrast 'color reproducibility' response speed, etc., and are now becoming image display devices that surpass cathode ray tubes. . Therefore, the application of liquid crystal display devices to TVs and OA monitors (computer monitors) is expected to continue to expand.
  • the major axis direction (director) of the liquid crystal material (liquid crystal molecules) in the liquid crystal cell is changed by its dielectric anisotropy. Since the liquid crystal material has optical anisotropy, when the direction is changed, the polarization direction of the light transmitted through the liquid crystal cell also changes.
  • the amount of light transmitted through the liquid crystal cell is controlled by an applied voltage (applied voltage) applied to the liquid crystal cell with the action of a polarizing plate provided in the liquid crystal cell. As a result, the luminance of each pixel can be set to the gradation luminance to be displayed, and image display can be performed.
  • the response speed of the liquid crystal material is slow.
  • the response speed of the liquid crystal material is , 30msec ⁇ 50msec between slow gradations. Therefore, the response speed corresponding to 60 Hz (about 16.6 msec) of NTSC (National Television System Committee) signal or 50 Hz (20.0 msec) of PAL (Phase Alteration by Line) signal cannot be realized. Therefore, higher performance is needed to meet the demand for further market expansion.
  • liquid crystal display devices have been developed in which liquid crystal materials and display driving methods are devised to increase the response speed.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-39837; publication date: February 13, 1998)
  • a voltage larger than the voltage difference corresponding to the gradation change is applied.
  • a liquid crystal display device using “overshoot driving” in which a liquid crystal material is sharply moved to a target gradation is disclosed.
  • overshoot drive the applied gradation value to be applied to the liquid crystal material in correspondence with the start gradation (current gradation) and the target gradation (desired gradation) (or the applied voltage that realizes the applied gradation)
  • LUT look-up table
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-4629; published date: January 8, 2004
  • a liquid crystal display device including an applied gradation value acquisition unit 113 that calculates gradation data is disclosed.
  • high-accuracy target gradation data can be obtained by interpolation using local coordinates while taking into account various additional conditions.
  • Patent Document 2 achieves a significant reduction in the circuit scale as compared with a configuration storing all patterns, but compared with a configuration storing all patterns. Then, the display quality resulting from the interpolation calculation will occur to some extent. Therefore, it is required to further improve the display quality within a range that does not increase the circuit scale so much. Disclosure of the Invention
  • An object of the present invention is to reduce the circuit scale and improve the display quality at a higher level. It is to realize a display device.
  • a video data processing apparatus repeatedly stores video data indicating the gradation of a certain pixel, and stores the video data storage apparatus until the next time. Based on the previous video data read from the video data storage device and the current video data, correction is made to emphasize gradation transition from the gray level indicated by the previous video data to the gray level indicated by the current video data. Correction means capable of outputting the corrected video data, wherein the correction means corresponds to a predetermined combination of possible combinations of the previous and current video data. The difference between the gradations indicated by the parameter storage device storing the meter for determining the corrected video data corresponding to the combination and the input video data is determined in advance.
  • a parameter corresponding to an input combination that is a combination of the values of both video data is not stored in the parameter storage device, a plurality of parameters are read from the parameter storage device. The parameters are read, and the parameters corresponding to the input combinations are calculated by interpolation based on these parameters to generate the corrected video data. If the threshold is not exceeded, the current video data is not corrected.
  • the parameter storage device corresponds to a specific combination in which the gradations indicated by the values constituting the combination are the same among the predetermined combinations described above. As a parameter, the gradation indicated by the corrected video data determined by the parameter is the specific set.
  • the parameter corresponding to the input combination is determined by the interpolation calculation. It is characterized by memorizing parameters for calculation.
  • the video data processing apparatus corrects the corrected video in which the gradation transition is emphasized. Since the data can be output, the response speed of the pixel of the display device that displays the video data can be improved.
  • the interpolation means performs the gradation transition when the amount of gradation transition does not exceed the threshold value. Since emphasis is not performed, the following malfunctions, that is, when a still image is displayed, for example, the gradation transition that slightly occurs due to the influence of noise or the like is emphasized, and an unwanted gradation transition is generated by the user. It is possible to prevent the occurrence of a problem of being visually recognized.
  • the parameter storage device stores only parameters corresponding to a part of the combinations of values that can be taken by the current and previous video data, and the parameters corresponding to the remaining combinations are interpolated. Therefore, the circuit size can be greatly reduced compared to storing parameters corresponding to all combinations in the parameter storage device.
  • the following parameters that is, the gradations indicated by the corrected video data determined by the parameters constitute the specific combination corresponding to the specific combination.
  • the parameters are stored. Therefore, corresponding to a specific combination in which no gradation transition occurs, it is caused by approximation using an interpolation operation as compared with a configuration in which the shift of the gradation indicated by the value constituting the specific combination is stored. The error can be reduced, and the display quality when displayed on the display device can be improved.
  • the interpolation means does not perform gradation transition enhancement when the amount of gradation transition does not exceed the threshold value. Therefore, when the amount of gradation transition is less than or equal to the threshold value, the error does not occur, and the deterioration in display quality due to the error can be prevented.
  • the display device driving device includes a correction unit that corrects and outputs video data indicating gradation of a certain pixel that is repeatedly input, Outputs the signal corresponding to the later video data to the data signal line connected to the pixel Driving means for the display device including the output means for performing the input repeatedly
  • D2 (n) a + k ′ as the corrected video data D2 (n)
  • D2 (n) D (n) is output, and ⁇ is set to a value different from D ( ⁇ ).
  • any of the following configurations that is, no gradation transition occurs !, any of the gradations indicated by the values constituting the specific combination corresponding to the specific combination:
  • a configuration that stores information errors caused by approximation using interpolation calculation can be reduced, and display quality when displayed on a display device can be improved.
  • FIG. 1, showing an embodiment of the present invention is a block diagram showing a main configuration of a modulation drive processing unit.
  • FIG. 2 is a block diagram showing a main configuration of an image display device including the modulation drive processing unit.
  • FIG. 3 is a circuit diagram showing a configuration example of a pixel of the image display device.
  • FIG. 4 is a diagram showing output video data stored in a lookup table of the modulation drive processing unit.
  • FIG. 5 is a diagram showing a combination of previous and current frame video data in which corresponding output video data is stored in the lookup table.
  • FIG. 6 is a graph showing the relationship between the ideal characteristics of the output video data and the output video data generated by the interpolation calculation.
  • FIG. 7, showing another embodiment of the present invention is a diagram showing output video data stored in a lookup table of the modulation drive processing unit.
  • FIG. 8 showing still another embodiment of the present invention, is a block diagram showing a main configuration of a modulation drive processing unit.
  • FIG. 9 is a block diagram showing a conventional technique and showing a configuration of a liquid crystal display device. Explanation of symbols
  • V video data value (parameter)
  • VI -V2 video data value (first and second parameters)
  • the image display apparatus interpolates the values stored in the look-up table (LUT) when the gradation transition amount from the previous time to the current time is larger than a predetermined threshold value, and When the tone transition is emphasized and is equal to or less than a predetermined threshold, the image display device emphasizes the tone transition, and can interpolate more appropriately without increasing the circuit scale of the lookup table. As shown in FIG.
  • the panel 11 of the image display device 1 includes a pixel array 2 having pixels PIX (1,1) to PIX (n, m) arranged in a matrix, and a pixel array 2 Are provided with a data signal line driving circuit 3 for driving the data signal lines SL1 to SLn and a scanning signal line driving circuit 4 for driving the scanning signal lines GLl to GLm of the pixel array 2.
  • the image display device 1 includes a control circuit 12 that supplies control signals to the two drive circuits 3 and 4, and the control circuit 12 that emphasizes the gradation transition based on the input video signal.
  • a modulation drive processing unit (video data processing device) 21 for modulating the video signal to be supplied to. These circuits are operated by supplying power from the power supply circuit 13.
  • the pixel array 2 includes a plurality (in this case, n) of data signal lines SLl to SLn and a plurality of data signal lines SLl to SLn (in this case, m).
  • Scanning signal lines GLl to GLm where j is an arbitrary integer up to 1 force n and any integer from 1 to m is j, an image for each combination of data signal line SLi and scanning signal line GLj.
  • Element PIX (i, j) is provided.
  • each pixel PIX (U) includes two adjacent data signal lines SLG-1) 'SLi and two adjacent scanning signal lines GL (j-1)' GLj. Arranged in the part surrounded by! Speak.
  • the image display device 1 is a liquid crystal display device, and the pixel PIX (i, j) has a gate serving as a switching signal line GLj, for example, as shown in FIG.
  • the pixel capacitance Cp (i, j) whose one electrode is connected to the source of the field effect transistor SW (i, j).
  • the other end of the pixel capacitor Cp (i, j) is connected to a common electrode line common to all the pixels PIX.
  • the pixel capacitor Cp (i, j) includes a liquid crystal capacitor CL (i, j) and an auxiliary capacitor Cs (i, j) that is added as necessary.
  • the scanning signal line GLj is selected and a voltage corresponding to the video data D to the pixel PIX (i, j) is applied to the data signal line SLi, the display state of the pixel PlX (iJ) is It can be changed according to data D.
  • the image display device 1 is a vertical alignment mode liquid crystal cell as a liquid crystal cell used for the pixel array 2, that is, when no voltage is applied, the liquid crystal molecules are aligned substantially perpendicular to the substrate.
  • a liquid crystal cell in which the liquid crystal molecules tilt from the vertical alignment state according to the voltage applied to the liquid crystal capacitance CL (i, j) of the pixel ⁇ ( ⁇ , ⁇ ) is used, and the liquid crystal cell is normally black mode (voltage When no voltage is applied, the mode is black.
  • the scanning signal line drive circuit 4 shown in FIG. 2 outputs a signal indicating whether or not the selection period is valid, such as a voltage signal, to each of the scanning signal lines GL1 to GLm. Further, the scanning signal line drive circuit 4 changes the scanning signal line GLj that outputs a signal indicating the selection period based on timing signals such as a clock signal GCK and a start pulse signal GSP supplied from the control circuit 12, for example. ing. Thus, the scanning signal lines GLl to GLm are sequentially selected at a predetermined timing.
  • the data signal line driving circuit 3 extracts the video data D ... to each pixel PIX ... inputted in time division as the video signal DAT by sampling at a predetermined timing, respectively. . Further, the data signal line driving circuit 3 sends each data signal line SL l to each pixel PIX (l, j) to PIX (n, j) corresponding to the scanning signal line GLj selected by the scanning signal line driving circuit 4. Through ⁇ SLn, output signals corresponding to the video data D to each are output.
  • the data signal line drive circuit 3 determines the output timing of the sampling timing output signal based on timing signals such as the clock signal SCK and the start pulse signal SSP input from the control circuit 12. Decide.
  • each of the pixels PIX (l, j) to PIX (n, j) is given to the data signal lines SL1 to SLn corresponding to the pixels PIX (l, j) to PIX (n, j) while the scanning signal line GLj corresponding to the pixels PIX (l, j) to PIX (n, j) is selected.
  • the transmittance and determine your own brightness are selected.
  • the scanning signal line driving circuit 4 sequentially selects the scanning signal lines GLl to GLm.
  • all the pixels PIX (1,1) to PIX (n, m) of the pixel array 2 can be set to the brightness (gradation) indicated by the video data D to each image, and the image displayed on the pixel array 2 Can be updated.
  • the video data D may be the gradation level itself or a parameter for calculating the gradation level as long as the gradation level of the pixel PIX (i, j) can be specified.
  • the video data is the gradation level of the pixel PIX (U) will be described as an example.
  • the video signal DAT given to the modulation drive processing unit 21 from the video signal source VSO to the image display device 1 may be transmitted in frame units (whole screen units). However, one frame may be divided into a plurality of fields and may be transmitted in units of the field. In the following, the case of transmission in units of fields will be described as an example.
  • the video signal DAT supplied from the video signal source VSO to the modulation drive processing unit 21 divides one frame into a plurality of fields (for example, two fields) and It is transmitted in field units.
  • the video signal source VSO transmits the video signal DAT to the modulation drive processing unit 21 of the image display device 1 via the video signal line VL.
  • all video data for a certain field is transmitted.
  • video data for each field is transmitted in a time-sharing manner, such as by transmitting video data for the next field.
  • the field is composed of a plurality of horizontal lines.
  • the field is transmitted next.
  • the video data for each horizontal line is transmitted in a time-sharing manner, such as by transmitting video data for the horizontal line.
  • one frame is composed of two fields, and in the even field, the video data of the horizontal line of the even-numbered row among the horizontal lines constituting one frame is transmitted. . In the odd field, the video data of the odd horizontal line is transmitted. Sarako, the above video signal source VSO transmits video data for one horizontal line. In this case, the video signal line VL is time-division driven, and each video data is sequentially transmitted in a predetermined order.
  • the modulation drive processing unit 21 includes a frame memory (video data storage device) 31 for storing video data for one frame up to the next frame, and a basic Specifically, the video data D (i, j, k) of the current frame FR (k) input to the input terminal T1 is written to the frame memory 31 and the video of the previous frame FR (k-1) is written from the frame memory 31.
  • a frame memory video data storage device
  • the decision processing unit 33 for determining whether or not gradation transition enhancement is necessary. Based on (i, j, k) -DOG.jk-l), the current frame FR (k) power at the pixel PIX (i, j) is emphasized to the gradation transition to the previous frame FR (kl).
  • the signal output from the modulation processing unit 34 is referred to as an output video signal DAT2 regardless of the presence or absence of correction
  • the video data D out of the output video data D2 constituting the output video signal DAT2 Data corresponding to (i, j, k) and D0 (i, j, k-1) is referred to as output video data D2 (i, j, k).
  • the output video data D2 (i, j, k) is included in the output video data D2 (i, j, k) regardless of whether the signal, data, voltage, or luminance exists at the same time.
  • the LUT 35 basically includes the values (gradations) of the video data D (i, j, k-1) of the previous frame FR (k-1) and the current frame FR (k ) Of video data D (i, j, k) with possible values (gradation), for each of the predetermined combinations, a corrected value to be output when the combination is input Output video data D2 (i, j, k) is stored.
  • the value stored in the LUT 35 is determined by the characteristics of the pixel array 2.
  • the voltage when a voltage corresponding to the second gradation is applied to the pixel PIX (U) in a state where the brightness of the pixel PIX (U) is at the brightness indicated by the first gradation, the voltage is applied.
  • the LUT 35 When the pixel PIX (i, j) reaches the luminance indicated by the third gradation at the end of the frame, the LUT 35 basically has a combination of the first gradation and the third gradation.
  • data indicating the second gradation is stored.
  • the values that can be taken by the video data DO and the video data D of the previous frame are 0 to 255, respectively, and the LUT 35 is a combination of both as shown in FIG.
  • the LUT 35 is a combination of both as shown in FIG.
  • the above area is a two-dimensional space from (0, 0) to (255, 255), so when divided into 8 X 8 small areas, each small area has 32 gradations X It becomes a 32 gradation area. Therefore, in this case, 9 ⁇ 9 points that are the combination power of gradations every 32 gradations are stored in the LUT 35.
  • the modulation processing unit 34 performs linear interpolation between the video data D2 corresponding to each combination stored in the LUT 35, and actually performs the interpolation.
  • the video data D2 corresponding to the combination of the input previous frame representative value DO (i, j, kl) and video data D (i, j, k) can be calculated and output.
  • the modulation processing unit 34 receives the combination (S, E) of both the video data DO (i, j, kl) and D (i, j, k). Then, it is specified to which of the above small areas as the combination force calculation area. Further, the modulation processing unit 34 sets the arrival gradations at the four corners of the calculation area as A, B, C, and D in the order of the upper left corner, the upper right corner, the lower right corner, and the lower left corner, respectively.
  • the modulation processing unit 34 reads each of the reached gradations A, J and D from the LUT 35, and, as shown in the following equation (2),
  • the LUT 35 basically has data indicating the second gradation corresponding to the combination of the first gradation and the third gradation.
  • An exception is a combination of gradations that are stored but do not cause gradation transition (a combination in which the values of both video data D (i, j, k) -DOG.jk-l) are equal to each other).
  • the LUT35 uses the interpolation calculation to calculate the video data D2 (i, j, k) in the correction range instead of the second gradation value (D (i, j, k) value itself)
  • the value V that is larger than the value of the 2nd gradation is stored as the value that is set so that the error in minimizing the error is minimized.
  • the error is set to be the smallest in a range where there is no region in which correction is too strong in the correction range.
  • the value when the gradation indicated by the video data D (i, j, k) of the current frame FR (k) is 32 gradations is the value after V, such as V (32).
  • V such as V (32).
  • a value indicating the value of the video data D (i, j, k) of the current frame FR (k) is attached.
  • the LUT 35 stores the video data D itself of the current frame FR (k) corresponding to the combination of gradations in which no gradation transition occurs, and the modulation processing unit
  • the characteristic of the video data D2 is the characteristic C2 shown by the broken line in FIG.
  • the characteristic of the video data D2 output from the modulation processing unit is the characteristic C3 indicated by the solid line in FIG.
  • the LUT 35 stores a value larger than the video data D of the current frame FR (k) corresponding to the combination of gradations in which no gradation transition occurs. Yes. Therefore, the modulation processing unit 34 can output the video data D2 having the characteristic C4 shown by the solid broken line in FIG.
  • the video data before correction is D (n—1) and D (n)
  • the corresponding video data after correction is D2 (n—1) and D2 (n).
  • the modulation processing unit 34 can output video data D2 that is closer to the ideal characteristic C1.
  • the video data DO of the previous frame FR (k-1) is set to a certain value as an example.
  • the modulation processing unit 34 is closer to the ideal characteristic C1 than the configuration of the second comparative example. It is generally true that “the video data D2 can be output”.
  • the case where the gradation transition is “rise” means that the luminance increases due to the gradation transition, and the video data D of the current frame FR (k) is more than the video data DO of the previous frame FR (kl). Is larger (more precisely, the luminance indicated by the video data D is greater than the luminance indicated by the video data DO).
  • the force with which the pixel array 2 according to the present embodiment is a liquid crystal display panel.
  • the larger the gradation difference the torque that must be applied to the liquid crystal molecules for response, or the liquid crystal molecules that are applied to the response. Increased torque. Therefore, as the moving distance increases, the observed response time becomes shorter.
  • the modulation processing unit 34 is configured to generate the video data D2 by linear interpolation, the correction becomes insufficient as the gradation difference becomes smaller, and the video data D2 generated by the interpolation with respect to the gradation transition amount The ratio of the difference from the ideal video data D2 value tends to increase.
  • the modulation processing unit 34 outputs a linearly interpolated value even when gradation transition does not occur as described above, the modulation processing unit 34 of the current frame FR (k) Linear interpolation is performed so that a larger value than the video data D can be output. Therefore, the identification of the video data D2 output from the modulation processing unit 34 is as indicated by C4 in the figure, and the modulation processing unit 34 outputs video data D2 that is closer to the ideal characteristic C1. Can do.
  • the value V referred to when outputting the C4 is calculated as follows, for example. Specifically, when the point where the gradation transition amount is maximum is P1, and the point where the gradation transition amount is L is P2, P1 and P2 are connected by a straight line.
  • the linear interpolation by the modulation processing unit 34 is set as described above, assuming that the linearly interpolated value is output even when no gradation transition occurs, the video data A value larger than D is output.
  • the brightness of the pixel PIX is controlled to the correct brightness (the brightness indicated by the video data D of the current frame FR (k)) when there is no gradation transition, such as when a still image is displayed. As a result, the display quality of the image display device 1 deteriorates.
  • the modulation processing unit 34 when the gradation transition amount (S ⁇ E) is smaller than the predetermined threshold L, the modulation processing unit 34 according to the present embodiment does not perform gradation transition enhancement and does not perform the current frame FR ( The video data D of k) is output. Therefore, even if the linear interpolation by the modulation processing unit 34 is set as described above, the image display apparatus 1 can control the luminance of the pixel PIX that has no problem at the time of still image display to the correct luminance. , Display quality can be prevented from deteriorating.
  • the principle can be considered in the same manner as the different forces. That is, In the case of decay, the response is based on the relaxation of the elastic body, but the greater the gradation difference, the greater the torque that must be applied to the liquid crystal molecules for response, or the torque that is applied to the liquid crystal molecules during response. Therefore, the longer the moving distance, the faster the response speed of the liquid crystal molecules, and the response time can be further shortened when the correction amount is the same.
  • the modulation processing unit 34 is configured to generate the video data D2 by linear interpolation, the correction is insufficient as the gradation difference becomes smaller, and the video generated by the interpolation with respect to the gradation transition amount is reduced.
  • the ratio of the difference between the data D2 and the ideal video data D2 tends to increase.
  • the response characteristic to the gradation transition in the decay direction is the response to the gradation transition in the rise direction. Compared with the characteristics, it is less affected by the level of the gradation transition amount, and the above-described insufficient correction does not occur much.
  • the response characteristic in the rise direction is particularly susceptible to the amount of gradation transition. Furthermore, especially at the time of gradation transition starting from the 0th gradation, the response is very slow, so a large amount of correction is required (the difference between the uncorrected video data D and the corrected video data D2 is large).
  • the following configuration that is, not only storing values for correcting the video data D at the time of gradation transition in the rise direction with high accuracy, but also image data D at the time of gradation transition in the decay direction.
  • the circuit scale can be reduced without degrading the display quality much more than the value stored in the LUT 35.
  • the modulation drive processing unit 21a according to the present embodiment has substantially the same configuration as the modulation drive processing unit 21 according to the first embodiment, but the modulation processing unit 34 Instead of the LUT 35, a modulation processing unit 34a and a LUT 35a are provided.
  • the LUT 35a has substantially the same force as the LUT 35 shown in FIG. 5. As shown in FIG. 7, no tone transition occurs, and the tone transition in the rise direction is emphasized corresponding to the combination.
  • the value V2 is substantially the same as in the first embodiment.For example, when the point where the gradation transition amount is maximum is P1, and the point when the gradation transition amount force is P2, P1 and P2 And V is the video data D2 at point P3 when the current video data D is minimized. As with the rise method, when selecting P2, the error in the correction value is minimized in such a range that the correction amount in the correction interval does not exceed the ideal value (because it is a decay, it is less than the correction value). It is preferable to select such that
  • the modulation processing unit 34a when reading from the LUT 35a a value corresponding to a combination that is substantially the same as the modulation processing unit 34 and does not cause a power gradation transition, reads the video data of the current frame FR (k) Based on D and the video data DO of the previous frame FR (kl), it is determined whether the gradation transition is the rise direction or the decay direction, and if it is in the decay direction, it is stored in the LUT35a corresponding to the combination! Two values V 1 and V2 for decay direction Value V2 can be read. On the other hand, in the rise direction, the value VI for the rise direction can be read out of the both values VI and V2.
  • the values VI and V2 may be stored as they are. However, in the present embodiment, in order to reduce the storage capacity, the values VI and V2 are stored in the current frame FR (k). Is stored in the form of a difference value with respect to the video data D (or video data DO of the previous frame FR (kl)), and the value Via or V2a read from the LUT 35 is added to the video data D (or DO). Or subtract to restore the pre-difference values VI and V2
  • the modulation processing unit 34a when the gradation transition amount falls below the threshold L, the modulation processing unit 34a does not emphasize the gradation transition, so Display quality can be prevented from degrading.
  • the video data DO and D are each represented by 8 bits, and the value corresponding to one combination of the video data DO and D is stored on the LUT 35a.
  • an 8-bit storage area is provided as an area, if both the values VIa and V2a are stored in the storage area, the size of the storage area that can be occupied by the values Via and V2a, respectively. For example, it is limited to 4 bits each. Therefore, the range of values that can be taken by the value VO stored in the LUT 35a corresponding to the combination that causes gradation transition is the range of values that can be expressed in 8 bits (0 to 255). The range of values Via and V2a is limited to the range of values (0 to 16) that can be expressed with 4 bits.
  • the modulation drive processing unit increases the necessary storage capacity in the following cases, that is, when an appropriate value is stored in the LUT 35a having a large correction amount.
  • the LUT 35 is used.
  • the LUT 35a can be used to output video data D2 closer to the ideal characteristic C1 without increasing the circuit scale.
  • the modulation drive processing unit differs from the configuration in which the same LUT is used regardless of the temperature as in the first and second embodiments. Depending on which temperature range the current temperature belongs to, the modulation processing unit can switch the LUT that is referenced when emphasizing gradation transition.
  • the modulation drive processing unit 21 according to the present embodiment has a force substantially the same as that of the modulation drive processing unit 21 according to the first embodiment.
  • a LUT group 37 consisting of LUTs corresponding to the above temperature ranges is provided.
  • the plurality of LUTs constituting the LU T37 are LUT35 force or LUT35a.
  • the number of LUTs 35 and 35a may be set to any one, but one of the LUTs is LUT35, and the other of the LUTs is LUT35a.
  • the LUT 35 is made to correspond to the following temperature range T1, that is, the temperature range T2 in which the necessary storage capacity increases if an appropriate value is stored in the LUT 35a having a large correction amount. ,Excluding that The temperature range corresponds to LUT35a.
  • the modulation drive processing unit 21b is provided with a temperature sensor 36 that detects the temperature of the panel 11 shown in FIG. 2, in addition to the configuration of the modulation drive processing unit 21.
  • the temperature sensor 36 may be arranged at any position as long as it can detect the temperature of the pixel PIX. However, it can detect the temperature of the pixel PIX more accurately even if it has an influence on the display. In order to estimate, it is preferable that the pixel electrode of the pixel PIX is provided and is provided on the non-display area among the substrate, the opposite substrate, or the color filter.
  • the modulation processing unit 34b provided in place of the modulation processing unit 34 is based on the detection result of the temperature sensor 36, and at the present time among the plurality of LUTs (35, 35a, ). It is possible to select the LUT to be referred to during gradation transition enhancement and output the corrected video data D2 based on the value stored in the LUT.
  • the modulation processing unit 34b operates in the same manner as the modulation processing unit 34a according to the second embodiment, and can output the video data D2.
  • the video data D2 can be output by operating in the same manner as the modulation processing unit 34 according to the first embodiment.
  • the modulation processing unit 34b when the detection result force temperature range T1 of the temperature sensor 36 is indicated, the modulation processing unit 34b generates the corrected video data D2 with reference to the LUT 35.
  • the following temperature range that is, a temperature range that increases the amount of correction and attempts to store an appropriate value in the LUT35a increases the required storage capacity.
  • the video data D2 closer to the ideal characteristic C1 can be output compared to the case where all of the LUTs are the LUT 35a.
  • the force described using the case where a liquid crystal cell of vertical alignment mode and normally black mode is used as a display element is not limited to this.
  • the larger the gradation difference the greater the torque that must be applied to the liquid crystal molecules for response, or the torque that is applied to the liquid crystal molecules during response, and the greater the travel distance.
  • the observed response time is shortened. Therefore, if the modulation processing unit generates the above video data by linear interpolation, the gradation difference will be small.Therefore, the correction will be insufficient, and the video data D2 generated by interpolation with respect to the gradation transition amount will be ideal.
  • the ratio of difference from the value of typical video data D2 tends to increase. As a result, if it is a liquid crystal display device, the same effects as those of the above embodiments can be obtained.
  • the force described by taking as an example the case where each member constituting the modulation drive processing unit is realized only by hardware is not limited to this.
  • the computer connected to the image display device 1 may realize the modulation drive processing unit (21 to 21b) as a device driver used when driving the image display device 1.
  • a modulation drive processing unit is realized as a conversion board built in or externally attached to the image display device 1, and the operation of a circuit that realizes the modulation drive processing unit can be changed by rewriting a program such as firmware. For example, by distributing a recording medium on which the software is recorded or transmitting the software via a communication path, the software is distributed to the hardware and the software is executed.
  • the hardware may be operated as the modulation drive processing unit in each of the above embodiments.
  • the modulation drive processing unit according to each of the above embodiments is realized by causing the hardware to execute the program. it can.
  • the program code itself that can be directly executed by the computing means, or a program as data that can generate the program code by a process such as unzipping described later, is stored in the recording medium. And the recording medium is distributed, or the program is transmitted by a communication means for transmitting via a wired or wireless communication path, and is executed by the arithmetic means.
  • each transmission medium constituting the communication path propagates a signal sequence indicating a program, whereby the program is transmitted via the communication path.
  • the transmission device may superimpose the signal sequence on the carrier by modulating the carrier with the signal sequence indicating the program. In this case, the signal sequence is restored by the receiving apparatus demodulating the carrier wave.
  • the transmission device may divide the signal sequence as a digital data sequence and transmit it. In this case, the receiving apparatus concatenates the received packet groups and restores the signal sequence.
  • the transmission device may multiplex and transmit the signal sequence with another signal sequence by a method such as time division Z frequency division Z code division.
  • the receiving apparatus extracts and restores individual signal sequences from the multiplexed signal sequence. In either case, the same effect can be obtained if the program can be transmitted via the communication channel.
  • the recording medium when the program is distributed be removable, but it does not matter whether the recording medium after the program is distributed is removable.
  • the above As long as the program is stored in the recording medium, it does not matter whether it is rewritable (writeable), volatile, recording method and shape.
  • Examples of recording media include magnetic tapes, force set tapes, etc., floppy disks (registered trademark), magnetic disks, such as node disks, CD-ROMs, magneto-optical disks (MO), and mini disks (MD). And digital video disc (DVD) discs.
  • the recording medium may be a card such as an IC card or an optical card, or a semiconductor memory such as a mask ROM, EPROM, EEPROM, or flash ROM. Alternatively, it may be a memory formed in a calculation means such as a CPU.
  • the program code may be a code for instructing the arithmetic means of all procedures of the processes, or a part or all of the processes may be executed by calling according to a predetermined procedure. If a possible basic program (for example, operating system or library) already exists, replace all or part of the above procedure with code or pointers that instruct the arithmetic means to call the basic program. Otherwise.
  • a possible basic program for example, operating system or library
  • the format for storing the program in the recording medium may be a storage format that can be accessed and executed by the arithmetic means, for example, in a state where the program is stored in the real memory. From the storage format after installation on a local recording medium that is always accessible by the computing means (for example, real memory or a node disk) before being placed in the memory, or from a network or transportable recording medium. It may be the storage format before installing on a local recording medium.
  • the program may be stored as source code that is not limited to the object code after con- taining, or as intermediate code generated during interpretation or compilation.
  • the above calculation is performed by a process such as decompression of compressed information, decoding of encoded information, interpretation, compilation, linking, allocation to real memory, or a combination of processes. If the means can be converted into an executable format, the same effect can be obtained regardless of the format in which the program is stored in the recording medium.
  • the video data processing apparatus (for example, the signal processing units 21 '21a to 21b) according to any of the above-described embodiments shows the gradation of a certain pixel that is repeatedly input.
  • Video data storage device that stores video data until next time (for example, frame memory 31 Etc.) and the above video data storage device power
  • the gradation transition from the gradation indicated by the previous video data to the gradation indicated by the current video data is based on the read previous video data and the current video data.
  • Correction means capable of outputting corrected video data corrected to be emphasized, and the correction means includes a predetermined part of a combination of values that can be taken by the previous and current video data.
  • a parameter storage device for example, LUT35'35a, etc.
  • a parameter for determining the corrected video data corresponding to the combination and both of the input video data
  • the parameter force corresponding to the input combination that is a combination of the values of the two video data, and the difference between the gradations to be displayed exceeds a predetermined threshold value. If it is not stored, a plurality of parameters are read from the parameter storage device, parameters corresponding to the input combination are calculated by interpolation based on these parameters, and the corrected video data is generated.
  • an interpolation means for example, the modulation processing units 34 ′ 34a to 34b etc.
  • the parameter storage device stores the above-described predetermined value.
  • the gradation indicated by the corrected video data determined by the parameter is a parameter corresponding to a specific combination in which the gradations indicated by the values constituting the combination are the same.
  • Nagashi Kaji is also the level indicated by the values that make up the input combination.
  • Difference in the mechanic have a feature that the parameters for calculating the parameters corresponding to the input combination by the interpolation operation when it exceeds the threshold value are stored.
  • the video data processing device corrects the corrected video in which the gray level transition is emphasized. Since the data can be output, the response speed of the pixel of the display device that displays the video data can be improved.
  • the interpolation means does not perform gradation transition emphasis when the amount of gradation transition does not exceed the threshold, the following problem, that is, when displaying a still image, For example, tones that slightly change due to noise or other effects are emphasized, Generation
  • the parameter storage device stores only the parameters corresponding to a part of the combinations of values that can be taken by the current and previous video data, and the parameters corresponding to the remaining combinations are interpolated. Therefore, the circuit size can be greatly reduced compared to storing parameters corresponding to all combinations in the parameter storage device.
  • the following parameters that is, the gradations indicated by the corrected video data determined by the parameters constitute the specific combination corresponding to the specific combination.
  • the parameters are stored. Therefore, corresponding to a specific combination in which no gradation transition occurs, it is caused by approximation using an interpolation operation as compared with a configuration in which the shift of the gradation indicated by the value constituting the specific combination is stored. The error can be reduced, and the display quality when displayed on the display device can be improved.
  • the interpolation means does not perform gradation transition enhancement when the amount of gradation transition does not exceed the threshold value. Therefore, when the amount of gradation transition is less than or equal to the threshold value, the error does not occur, and the deterioration in display quality due to the error can be prevented.
  • the parameter storage device may input the current input as a parameter corresponding to the specific combination rather than the first gradation indicated by the input previous video data.
  • the above first gradation If the second gradation is brighter, the first parameter may be read. If it is darker, the second parameter may be read.
  • each of the parameters indicates the gradation of the corrected video data
  • the first and second parameters include the gradation indicated by the current video data and the parameters.
  • the interpolation means reads the first or second parameter and the current video data and Based on the above, the parameter corresponding to the specific combination may be restored.
  • each parameter indicates the gradation of the corrected video data
  • the first and second parameters are stored as difference values.
  • the first and second parameters are stored, that is, when a slight amount of gradation transition occurs and no color is generated, it is compared with the case where a larger amount of gradation transition occurs.
  • the difference between the corrected video data and the previous and current video data is getting smaller. Therefore, by storing a parameter indicating the difference between the corrected video data and the previous or current video data, not the parameters indicating the corrected video data, the memory necessary for storing the first and second parameters is stored.
  • the size of the area can be reduced.
  • the circuit size of the video data processing apparatus can be reduced as compared with the case where the corrected video data itself is stored as the first and second parameters.
  • each of the parameters indicates the gradation of the video data after the correction.
  • the parameter storage device includes the specific data As a parameter corresponding to the combination, the second gradation indicated by the inputted current video data is more than the first gradation indicated by the inputted previous video data. Only the parameters for the predetermined case between the brighter case and the darker case are stored, and the interpolation means obtains the parameter corresponding to the specific combination when the predetermined case is obtained. Is characterized in that the parameter storage device power parameter is read, and if not, the current video data is used as a parameter corresponding to the specific combination.
  • the current video data is It is used as a parameter corresponding to the specific combination. Therefore, in both cases, the appropriate parameters are different from each other.
  • the other parameter is used as one parameter, the display quality is higher than when the value indicating the current video data is used as the parameter.
  • the degree of display quality degradation corresponds to the following configuration, that is, the gray level indicated by the value constituting the specific combination corresponding to the specific combination in which no gray level transition occurs. Any of the above can be maintained in the same manner as the configuration for storing any of the above. As a result, it is possible to improve the display quality in the other while suppressing the deterioration of the display quality in one of the above cases.
  • the display device driving device (for example, the image display device 1 ⁇ la ⁇ : Lb or the like) according to any one of the above-described embodiments has a pixel level repeatedly input as described above.
  • Correcting means for correcting and outputting video data indicating a key for example, signal processing units 21 ⁇ 21a to 21b) and outputting a signal corresponding to the corrected video data to the data signal line connected to the pixel
  • a display device including output means for example, the data signal line driving circuit 3
  • the video data before correction which has been repeatedly input, is defined as D (n-1) and D (n).
  • a is characterized in that it is set to a value different from D (n).
  • the gradation transition amount of the video data before correction is more than a predetermined threshold value.
  • D2 (n) D (n) is output as the corrected video data D2 (n)
  • is a value different from D ( ⁇ ).
  • any of the following configurations that is, gradation transition does not occur !, any of the gradations indicated by the values constituting the specific combination corresponding to the specific combination:
  • a configuration that stores information errors caused by approximation using interpolation calculation can be reduced, and display quality when displayed on a display device can be improved.
  • the liquid crystal display device includes the video data processing device having the above-described configuration and the video data processing. It is characterized by having a liquid crystal display panel (for example, panel 11 etc.) driven by video data after correcting the device power. Therefore, similar to the above video data processing apparatus, the display quality can be improved without increasing the circuit scale so much, and the liquid crystal display that balances the reduction of the circuit scale and the improvement of the display quality at a higher level. An apparatus can be realized.
  • the liquid crystal display device may be a television broadcast receiver or a liquid crystal monitor device.
  • the liquid crystal display device having the video data processing device can balance the reduction in circuit scale and the improvement in display quality at a higher level. Therefore, it can be suitably used as a television broadcast receiver or a liquid crystal monitor device.
  • the video data processing device may be realized by hardware! /, Or may be realized by causing a computer to execute a program.
  • a program according to the present invention is a program that causes a computer having each storage device that constitutes one of the above video data processing devices to operate as each means that constitutes the video data processing device.
  • the program is recorded on the recording medium according to the present invention.
  • the computer When these programs are executed by a computer, the computer Operates as a video data processing device. Therefore, similar to the above video data processing device, the display quality can be improved without significantly increasing the circuit scale, and a display device that balances the reduction of the circuit scale and the improvement of the display quality at a higher level. It can be realized.
  • the present invention it is possible to reduce errors caused by approximation using interpolation calculation in the case where there is almost no gradation transition without excessively increasing the circuit scale, so that the circuit scale can be reduced and the display quality can be reduced.
  • a display device in which improvement is balanced at a higher level can be realized. Therefore, for example, it can be widely used as a video data processing device for various display devices including a video data processing device provided in a liquid crystal television receiver or a liquid crystal monitor device.

Abstract

When a gradation transition amount exceeds a threshold value, a modulation unit (34) executes an interpolation calculation by referencing a lookup table (35), corrects video data D (i, j, k) of the current frame, and outputs it. When the gradation transition amount is lower than the threshold value, the modulation unit (34) outputs the video data D (i, j, k) of the current frame itself. Furthermore, the lookup table stores values used for calculating D2 (i, j, k) by the interpolation corresponding to the previous frame video data D0 (i, j, k-1) and the current frame D (i, j, k), if the gradation shift is above the threshold, which values are neither D (i, j, k) nor D0 (i, j, k-1). Thus, it is possible to realize an image display device capable of reducing the circuit size and the improving the display quality with a preferable balance.

Description

明 細 書  Specification
映像データ処理装置、それを備える液晶表示装置、表示装置の駆動装 置、表示装置の駆動方法、並びに、そのプログラムおよび記録媒体  VIDEO DATA PROCESSING DEVICE, LIQUID CRYSTAL DISPLAY DEVICE INCLUDING THE SAME, DISPLAY DEVICE DRIVE DEVICE, DISPLAY DEVICE DRIVE METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM
技術分野  Technical field
[0001] 本発明は、画素の階調を示す映像データを処理する映像データ処理装置であって [0001] The present invention relates to a video data processing apparatus for processing video data indicating a gradation of a pixel.
、回路規模の縮小と表示品質の向上とを、より高いレベルでバランス可能な映像デー タ処理装置、それを備える液晶表示装置、表示装置の駆動装置、表示装置の駆動 方法、並びに、そのプログラムおよび記録媒体に関するものである。 A video data processing device capable of balancing reduction in circuit scale and improvement in display quality at a higher level, a liquid crystal display device including the same, a drive device for the display device, a drive method for the display device, and a program and The present invention relates to a recording medium.
背景技術  Background art
[0002] 液晶表示装置は、省スペース '省電力の特徴に加え、近年、視野角'コントラスト' 色再現性'応答速度等の性能が向上してきたため、今やブラウン管を凌駕する画像 表示装置となりつつある。そのため、テレビや OA用のモニタ(コンピュータのモニタ) 等への液晶表示装置の適用は、今後も拡大の一途を迪ると予測される。  [0002] In addition to space-saving 'power saving features, liquid crystal display devices have recently been improved in performance such as viewing angle' contrast 'color reproducibility' response speed, etc., and are now becoming image display devices that surpass cathode ray tubes. . Therefore, the application of liquid crystal display devices to TVs and OA monitors (computer monitors) is expected to continue to expand.
[0003] 通常、液晶セルに電圧が印加されると、液晶セル内の液晶材料 (液晶分子)は、そ の誘電異方性により長軸方向(ダイレクタ)が変化される。液晶材料は、光学異方性 を有するため、その方向が変化されると液晶セルを透過する光の偏光方向も変化す る。そして、液晶セルに設けられた偏光板などの作用を伴って、液晶セルに印加され た印加電圧(印加電圧)によって該液晶セルを透過する光の光量が制御される。これ により、各画素の輝度を表示させたい階調輝度にすることができ、画像表示を行うこと ができる。  [0003] Normally, when a voltage is applied to a liquid crystal cell, the major axis direction (director) of the liquid crystal material (liquid crystal molecules) in the liquid crystal cell is changed by its dielectric anisotropy. Since the liquid crystal material has optical anisotropy, when the direction is changed, the polarization direction of the light transmitted through the liquid crystal cell also changes. The amount of light transmitted through the liquid crystal cell is controlled by an applied voltage (applied voltage) applied to the liquid crystal cell with the action of a polarizing plate provided in the liquid crystal cell. As a result, the luminance of each pixel can be set to the gradation luminance to be displayed, and image display can be performed.
[0004] しかし、液晶材料が印加電圧の変化に応答するためには、ある程度の時間が必要 となる (液晶材料の応答速度が遅い)。例えば、現在広く用いられている液晶表示方 式(液晶表示モード)における TN (Twisted Nematic)、 IPS (In— Plane— Switc hing)、または VA (Vertically Aligned)等の場合、液晶材料の応答速度は、遅い 階調間で 30msec〜50msecとなる。そのため、 NTSC (National Television Sy stem Committee)信号の 60Hz (約 16. 6msec)、あるいは PAL (Phase Altera tion by Line)信号の 50Hz (20. 0msec)に対応する応答速度を実現できない。 したがって、さらなる市場拡大の要求に答えるためには、さらに高い性能が必要とさ れている。 However, a certain amount of time is required for the liquid crystal material to respond to changes in the applied voltage (the response speed of the liquid crystal material is slow). For example, in the case of TN (Twisted Nematic), IPS (In- Plane—Switc hing), or VA (Vertically Aligned) in the currently widely used liquid crystal display method (liquid crystal display mode), the response speed of the liquid crystal material is , 30msec ~ 50msec between slow gradations. Therefore, the response speed corresponding to 60 Hz (about 16.6 msec) of NTSC (National Television System Committee) signal or 50 Hz (20.0 msec) of PAL (Phase Alteration by Line) signal cannot be realized. Therefore, higher performance is needed to meet the demand for further market expansion.
[0005] そこで、従来、液晶材料や表示の駆動方法に工夫を施して、応答速度を早くした液 晶表示装置が開発されている。  [0005] Therefore, conventionally, liquid crystal display devices have been developed in which liquid crystal materials and display driving methods are devised to increase the response speed.
[0006] 例えば、特許文献 1 (特開平 10— 39837号公報;公開日:平成 10年 2月 13日)に は、階調変化の際に対応する電圧差より、大きな電圧を印加することで、液晶材料を 急峻に目標階調へと動かす"オーバーシュート駆動"を用いた液晶表示装置が開示 されている。オーバーシュート駆動では、開始階調 (現在の階調)と目標階調 (所望の 階調)とに対応つけて液晶材料に印加すべき印加階調値 (或いは該印加諧調を実 現する印加電圧値)を定めたルックアップテーブル (LUT)を予め用意しておき、これ に基づき電圧印加を行うようになって!/、る。  [0006] For example, in Patent Document 1 (Japanese Patent Laid-Open No. 10-39837; publication date: February 13, 1998), a voltage larger than the voltage difference corresponding to the gradation change is applied. In addition, a liquid crystal display device using “overshoot driving” in which a liquid crystal material is sharply moved to a target gradation is disclosed. In overshoot drive, the applied gradation value to be applied to the liquid crystal material in correspondence with the start gradation (current gradation) and the target gradation (desired gradation) (or the applied voltage that realizes the applied gradation) Prepare a look-up table (LUT) that defines (value) in advance and apply voltage based on this.
[0007] ここで、階調変化の全パターンに対応する印加電圧値に対応する値が格納された LUTを用意しょうとすると該 LUTを記憶するメモリの容量が著しく大きくなつてしまうと いう問題を招来する。  [0007] Here, there is a problem that if an LUT storing a value corresponding to an applied voltage value corresponding to all patterns of gradation change is prepared, the capacity of a memory storing the LUT is significantly increased. Invite you.
[0008] この問題を解決するために、特許文献 2 (特開 2004— 4629号公報;公開日:平成 16年 1月 8日)では、図 9に示すように、後階調データと、前階調データと、温度セン サ 108からの測定データとを受信するとともに、 LUTメモリ 112に記憶した複数個の LUTを参照しながら補間演算することで、階調表示に必要な階調データを目標階調 データとして算出する印加階調値取得部 113を含む液晶表示装置が開示されてい る。当該構成では、種々の付加的条件を考慮しながら、局所座標を用いた補間演算 によって高精度の目標階調データ (補間値)を求めることができる。  [0008] In order to solve this problem, Patent Document 2 (Japanese Patent Laid-Open No. 2004-4629; published date: January 8, 2004), as shown in FIG. Receives gradation data and measurement data from the temperature sensor 108, and performs interpolation calculation while referring to multiple LUTs stored in the LUT memory 112 to target gradation data required for gradation display. A liquid crystal display device including an applied gradation value acquisition unit 113 that calculates gradation data is disclosed. In this configuration, high-accuracy target gradation data (interpolated values) can be obtained by interpolation using local coordinates while taking into account various additional conditions.
[0009] し力しながら、上記特許文献 2の構成では、全パターンを記憶する構成と比較する と、回路規模を大幅な削減を達成している一方で、全パターンを記憶する場合と比 較すると、補間演算に起因する表示品質がある程度は発生してしまう。したがって、 回路規模を余り増大させない範囲で表示品質をさらに向上することが求められている 発明の開示  [0009] However, the configuration of Patent Document 2 described above achieves a significant reduction in the circuit scale as compared with a configuration storing all patterns, but compared with a configuration storing all patterns. Then, the display quality resulting from the interpolation calculation will occur to some extent. Therefore, it is required to further improve the display quality within a range that does not increase the circuit scale so much. Disclosure of the Invention
[0010] 本発明の目的は、回路規模の縮小と表示品質の向上とを、より高いレベルでバラン スさせた表示装置を実現することにある。 [0010] An object of the present invention is to reduce the circuit scale and improve the display quality at a higher level. It is to realize a display device.
[0011] 本発明に係る映像データ処理装置は、上記目的を達成するために、繰り返し入力 されている、ある画素の階調を示す映像データを、次回まで記憶する映像データ記 憶装置と、上記映像データ記憶装置から読み出した前回の映像データと今回の映像 データとに基づいて、前回の映像データの示す階調から、今回の映像データの示す 階調への階調遷移を強調するように補正された補正後映像データを出力可能な補 正手段とを備え、上記補正手段は、上記前回および今回の映像データの取り得る値 の組み合わせのうち、予め定められた一部の組み合わせに対応して、当該組み合わ せに対応する補正後映像データを決定するためのノ メータが格納されたパラメ一 タ記憶装置と、入力された上記両映像データの示す階調同士の差が予め定められ た閾値を超えており、し力も、当該両映像データの値の組み合わせである入力組み 合わせに対応するパラメータが、上記パラメータ記憶装置に格納されていない場合 は、上記パラメータ記憶装置から、複数のパラメータを読み出し、これらのパラメータ に基づく補間演算によって、上記入力組み合わせに対応するパラメータを算出して 上記補正後映像データを生成すると共に、閾値を超えていない場合は、今回の映像 データを補正せずに出力する補間手段とを備え、上記パラメータ記憶装置には、上 記予め定められた一部の組み合わせのうち、組み合わせを構成する値の示す階調 同士が互いに同じである特定の組み合わせに対応するパラメータとして、当該パラメ ータによって決定される補正後映像データの示す階調が当該特定の組み合わせを 構成する値の示す階調のいずれでもなぐしかも、上記入力組み合わせを構成する 値の示す階調同士の差が上記閾値を超えている場合に上記補間演算によって当該 入力組み合わせに対応するパラメータを算出するためのパラメータが記憶されている ことを特徴としている。  [0011] In order to achieve the above object, a video data processing apparatus according to the present invention repeatedly stores video data indicating the gradation of a certain pixel, and stores the video data storage apparatus until the next time. Based on the previous video data read from the video data storage device and the current video data, correction is made to emphasize gradation transition from the gray level indicated by the previous video data to the gray level indicated by the current video data. Correction means capable of outputting the corrected video data, wherein the correction means corresponds to a predetermined combination of possible combinations of the previous and current video data. The difference between the gradations indicated by the parameter storage device storing the meter for determining the corrected video data corresponding to the combination and the input video data is determined in advance. If a parameter corresponding to an input combination that is a combination of the values of both video data is not stored in the parameter storage device, a plurality of parameters are read from the parameter storage device. The parameters are read, and the parameters corresponding to the input combinations are calculated by interpolation based on these parameters to generate the corrected video data. If the threshold is not exceeded, the current video data is not corrected. The parameter storage device corresponds to a specific combination in which the gradations indicated by the values constituting the combination are the same among the predetermined combinations described above. As a parameter, the gradation indicated by the corrected video data determined by the parameter is the specific set. In addition to any of the gradations indicated by the values constituting the combination, and when the difference between the gradations indicated by the values constituting the input combination exceeds the threshold value, the parameter corresponding to the input combination is determined by the interpolation calculation. It is characterized by memorizing parameters for calculation.
[0012] 上記構成では、入力された上記両映像データの示す階調同士の差が予め定めら れた閾値を超えている場合、映像データ処理装置は、階調遷移が強調された補正 後映像データを出力できるので、映像データを表示する表示装置の画素の応答速 度を向上できる。  [0012] In the above configuration, when the difference between the gradations indicated by the input video data exceeds a predetermined threshold, the video data processing apparatus corrects the corrected video in which the gradation transition is emphasized. Since the data can be output, the response speed of the pixel of the display device that displays the video data can be improved.
[0013] また、上記補間手段は、階調遷移の量が閾値を超えていない場合には、階調遷移 強調を行わないので、以下の不具合、すなわち、静止画を表示している場合に、例 えば、ノイズなどの影響によって僅かに発生する階調遷移を強調して、不所望な階調 遷移がユーザに視認されてしまうという不具合の発生を防止できる。 [0013] Further, the interpolation means performs the gradation transition when the amount of gradation transition does not exceed the threshold value. Since emphasis is not performed, the following malfunctions, that is, when a still image is displayed, for example, the gradation transition that slightly occurs due to the influence of noise or the like is emphasized, and an unwanted gradation transition is generated by the user. It is possible to prevent the occurrence of a problem of being visually recognized.
[0014] さらに、上記パラメータ記憶装置には、今回および前回の映像データの取り得る値 の組み合わせのうち、一部分の組み合わせに対応するパラメータのみが記憶され、 残余の組み合わせに対応するパラメータは、補間演算によって算出されるので、全て の組み合わせに対応するパラメータをパラメータ記憶装置に格納するよりも、回路規 模を大幅に削減できる。  [0014] Further, the parameter storage device stores only parameters corresponding to a part of the combinations of values that can be taken by the current and previous video data, and the parameters corresponding to the remaining combinations are interpolated. Therefore, the circuit size can be greatly reduced compared to storing parameters corresponding to all combinations in the parameter storage device.
[0015] また、上記パラメータ記憶装置には、上記特定の組み合わせに対応して、以下のパ ラメータ、すなわち、当該パラメータによって決定される補正後映像データの示す階 調が当該特定の組み合わせを構成する値の示す階調のいずれでもなぐしかも、上 記入力組み合わせを構成する値の示す階調同士の差が上記閾値を超えている場合 に上記補間演算によって当該入力組み合わせに対応するパラメータを算出するため のパラメータが格納されている。したがって、階調遷移が発生しない特定の組み合わ せに対応して、特定の組み合わせを構成する値の示す階調の 、ずれかを記憶する 構成と比較して、補間演算を用いた近似に起因する誤差を低減でき、表示装置に表 示した場合の表示品質を向上できる。  [0015] Further, in the parameter storage device, the following parameters, that is, the gradations indicated by the corrected video data determined by the parameters constitute the specific combination corresponding to the specific combination. In order to calculate the parameter corresponding to the input combination by the interpolation operation when the difference between the gradations indicated by the values constituting the input combination exceeds the threshold value in addition to any of the gradations indicated by the value. The parameters are stored. Therefore, corresponding to a specific combination in which no gradation transition occurs, it is caused by approximation using an interpolation operation as compared with a configuration in which the shift of the gradation indicated by the value constituting the specific combination is stored. The error can be reduced, and the display quality when displayed on the display device can be improved.
[0016] これらの結果、回路規模の縮小と表示品質の向上とを、より高いレベルでバランスさ せた表示装置を実現することができる。  As a result, it is possible to realize a display device in which the reduction in circuit scale and the improvement in display quality are balanced at a higher level.
[0017] なお、上記特定の組み合わせに対応して、上記のようなパラメータを記憶している 場合、階調遷移の量が閾値以下のときに補間演算を用いると、補間演算を用いた近 似に起因する誤差が大きくなる可能性がある。ただし、上記補間手段は、階調遷移 の量が閾値を超えていない場合には、階調遷移強調を行わない。したがって、階調 遷移の量が閾値以下の場合には、当該誤差が発生せず、当該誤差に起因する表示 品質の低下を防止できる。  [0017] When the parameters as described above are stored corresponding to the specific combination, if the interpolation calculation is used when the amount of gradation transition is equal to or less than the threshold value, the approximation using the interpolation calculation is used. There is a possibility that an error caused by the error becomes large. However, the interpolation means does not perform gradation transition enhancement when the amount of gradation transition does not exceed the threshold value. Therefore, when the amount of gradation transition is less than or equal to the threshold value, the error does not occur, and the deterioration in display quality due to the error can be prevented.
[0018] また、本発明に係る表示装置の駆動装置は、上記目的を達成するために、繰り返し 入力されている、ある画素の階調を示す映像データを補正して出力する補正手段と 、補正後の映像データに応じた信号を上記画素に接続されたデータ信号線へ出力 する出力手段とを含む表示装置の駆動装置であって、上記繰り返し入力されている[0018] Further, in order to achieve the above object, the display device driving device according to the present invention includes a correction unit that corrects and outputs video data indicating gradation of a certain pixel that is repeatedly input, Outputs the signal corresponding to the later video data to the data signal line connected to the pixel Driving means for the display device including the output means for performing the input repeatedly
、補正前の映像データを D (n— 1)、 D (n)とし、それに対応する補正後の映像データ を、 D2 (n—1)、 D2 (n)とする場合、上記補正手段は、補正前の映像データの階調 遷移量が予め定められた閾値 Lよりも大きいとき、上記補正後の映像データ D2 (n)と して、 D2 (n) = a + k'〔(D (n— 1)— D (n)〕を出力し、上記補正手段は、補正前 の映像データの階調遷移量が上記閾値 Lに満たないとき、上記補正後の映像データ D2 (n)として、 D2 (n) =D (n)を出力すると共に、上記 aは、 D (n)と異なる値に設定 されて 、ることを特徴として!/、る。 When the video data before correction is D (n-1), D (n) and the corresponding video data after correction is D2 (n-1), D2 (n), the correction means When the gradation transition amount of the video data before correction is larger than a predetermined threshold L, the corrected video data D2 (n) is D2 (n) = a + k '[(D (n — 1) — D (n)] is output, and the correction means outputs D2 (n) as the corrected video data D2 (n) when the gradation transition amount of the video data before correction is less than the threshold L. (n) = D (n) is output, and a is set to a value different from D (n).
[0019] 当該構成では、補正前の映像データの階調遷移量が予め定められた閾値しよりも 大きいとき、上記補正後の映像データ D2 (n)として、 D2 (n) = a + k'〔(D (n— 1 )一 D (n)〕が出力され、補正前の映像データの階調遷移量が上記閾値 Lに満たない とき、上記補正後の映像データ D2 (n)として、 D2 (n) =D (n)が出力される。また、 上記 αは、 D (η)と異なる値に設定されて 、る。 In this configuration, when the gradation transition amount of the video data before correction is larger than a predetermined threshold value, D2 (n) = a + k ′ as the corrected video data D2 (n) When ((D (n-1)-1 D (n)) is output and the gradation transition amount of the uncorrected video data is less than the threshold L, the corrected video data D2 (n) is D2 (n) = D (n) is output, and α is set to a value different from D (η).
[0020] したがって、上記映像データ処理装置と同様、以下の構成、すなわち、階調遷移が 発生しな!、特定の組み合わせに対応して、特定の組み合わせを構成する値の示す 階調のいずれかを記憶する構成と比較して、補間演算を用いた近似に起因する誤 差を低減でき、表示装置に表示した場合の表示品質を向上できる。この結果、回路 規模の縮小と表示品質の向上とを、より高いレベルでバランスさせた表示装置を実現 することができる。  [0020] Therefore, as with the video data processing device, any of the following configurations, that is, no gradation transition occurs !, any of the gradations indicated by the values constituting the specific combination corresponding to the specific combination: Compared with a configuration that stores information, errors caused by approximation using interpolation calculation can be reduced, and display quality when displayed on a display device can be improved. As a result, it is possible to realize a display device that balances reduction in circuit scale and improvement in display quality at a higher level.
[0021] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利点は、添付図面を参照した次の説明で明白にな るであろう。  [0021] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の実施形態を示すものであり、変調駆動処理部の要部構成を示すプロ ック図である。  FIG. 1, showing an embodiment of the present invention, is a block diagram showing a main configuration of a modulation drive processing unit.
[図 2]上記変調駆動処理部を備える画像表示装置の要部構成を示すブロック図であ る。  FIG. 2 is a block diagram showing a main configuration of an image display device including the modulation drive processing unit.
[図 3]上記画像表示装置の画素の構成例を示す回路図である。 [図 4]上記変調駆動処理部のルックアップテーブルに格納されて 、る出力映像デー タを示す図面である。 FIG. 3 is a circuit diagram showing a configuration example of a pixel of the image display device. FIG. 4 is a diagram showing output video data stored in a lookup table of the modulation drive processing unit.
[図 5]それに対応する出力映像データが上記ルックアップテーブルに格納されている 、前および現フレームの映像データの組み合わせを示す図面である。  FIG. 5 is a diagram showing a combination of previous and current frame video data in which corresponding output video data is stored in the lookup table.
[図 6]上記出力映像データの理想的な特性と、補間演算によって生成した出力映像 データとの関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the ideal characteristics of the output video data and the output video data generated by the interpolation calculation.
[図 7]本発明の他の実施形態を示すものであり、上記変調駆動処理部のルックアップ テーブルに格納されている出力映像データを示す図面である。  FIG. 7, showing another embodiment of the present invention, is a diagram showing output video data stored in a lookup table of the modulation drive processing unit.
[図 8]本発明のさらに他の実施形態を示すものであり、変調駆動処理部の要部構成 を示すブロック図である。  FIG. 8, showing still another embodiment of the present invention, is a block diagram showing a main configuration of a modulation drive processing unit.
[図 9]従来技術を示すものであり、液晶表示装置の構成を示すブロック図である。 符号の説明  FIG. 9 is a block diagram showing a conventional technique and showing a configuration of a liquid crystal display device. Explanation of symbols
[0023] 1 · la〜: Lb 画像表示装置 (液晶表示装置)  [0023] 1 · la ~: Lb image display device (liquid crystal display device)
21 · 21a〜21b 変調駆動処理部(映像データ処理装置)  21 · 21a-21b Modulation drive processing unit (video data processing device)
31 フレームメモリ(映像データ記憶装置)  31 Frame memory (video data storage device)
35 · 35a ルックアップテーブル (パラメータ記憶装置)  35 · 35a Look-up table (parameter storage device)
34 ' 34a〜34b 変調処理部 (補間手段)  34 '34a to 34b Modulation processing unit (interpolation means)
V 映像データの値 (パラメータ)  V video data value (parameter)
VI -V2 映像データの値 (第 1および第 2パラメータ)  VI -V2 video data value (first and second parameters)
VI -V2a 映像データの値の差分値 (第 1および第 2パラメータ)  VI -V2a Video data value difference (first and second parameters)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 〔第 1の実施形態〕 [First Embodiment]
本発明の一実施形態について図 1ないし図 6に基づいて説明すると以下の通りで ある。すなわち、本実施形態に係る画像表示装置は、前回から今回への階調遷移量 が予め定められた閾値よりも大きい場合は、ルックアップテーブル (LUT)に格納され た値を補間して、階調遷移を強調し、予め定められた閾値以下の場合は、階調遷移 を強調する画像表示装置であって、ルックアップテーブルの回路規模を増大させるこ となぐより適切に補間することができる。 [0025] 図 2に示すように、当該画像表示装置 1のパネル 11は、マトリクス状に配された画素 PIX(1,1) 〜PIX(n,m)を有する画素アレイ 2と、画素アレイ 2のデータ信号線 SL1〜S Lnを駆動するデータ信号線駆動回路 3と、画素アレイ 2の走査信号線 GLl〜GLm を駆動する走査信号線駆動回路 4とを備えている。また、画像表示装置 1には、両駆 動回路 3 ·4へ制御信号を供給する制御回路 12と、入力される映像信号に基づいて 、上記階調遷移を強調するように、上記制御回路 12へ与える映像信号を変調する変 調駆動処理部(映像データ処理装置) 21とが設けられている。なお、これらの回路は 、電源回路 13からの電力供給によって動作している。 One embodiment of the present invention is described below with reference to FIGS. That is, the image display apparatus according to the present embodiment interpolates the values stored in the look-up table (LUT) when the gradation transition amount from the previous time to the current time is larger than a predetermined threshold value, and When the tone transition is emphasized and is equal to or less than a predetermined threshold, the image display device emphasizes the tone transition, and can interpolate more appropriately without increasing the circuit scale of the lookup table. As shown in FIG. 2, the panel 11 of the image display device 1 includes a pixel array 2 having pixels PIX (1,1) to PIX (n, m) arranged in a matrix, and a pixel array 2 Are provided with a data signal line driving circuit 3 for driving the data signal lines SL1 to SLn and a scanning signal line driving circuit 4 for driving the scanning signal lines GLl to GLm of the pixel array 2. Further, the image display device 1 includes a control circuit 12 that supplies control signals to the two drive circuits 3 and 4, and the control circuit 12 that emphasizes the gradation transition based on the input video signal. And a modulation drive processing unit (video data processing device) 21 for modulating the video signal to be supplied to. These circuits are operated by supplying power from the power supply circuit 13.
[0026] 以下では、表示装置の駆動装置としての変調駆動処理部 21の詳細構成について 説明する前に、画像表示装置 (液晶表示装置) 1全体の概略構成および動作を説明 する。また、説明の便宜上、例えば、潘目のデータ信号線 SLiのように、位置を特定 する必要がある場合にのみ、位置を示す数字または英字を付して参照し、位置を特 定する必要がな!ヽ場合や総称する場合には、位置を示す文字を省略して参照する。  [0026] Hereinafter, before explaining the detailed configuration of the modulation drive processing unit 21 as a drive device of the display device, the overall configuration and operation of the entire image display device (liquid crystal display device) 1 will be described. In addition, for convenience of explanation, it is necessary to specify the position by referring to the position with a numeral or alphabetic character only when it is necessary to specify the position, for example, the data signal line SLi of the square. In cases such as “!” Or generically, reference is made by omitting the characters indicating the position.
[0027] 上記画素アレイ 2は、複数 (この場合は、 n本)のデータ信号線 SLl〜SLnと、各デ ータ信号線 SLl〜SLnに、それぞれ交差する複数 (この場合は、 m本)の走査信号 線 GLl〜GLmとを備えており、 1力 nまでの任意の整数および 1から mまでの任意 の整数を jとすると、データ信号線 SLiおよび走査信号線 GLjの組み合わせ毎に、画 素 PIX(i,j)が設けられている。なお、本実施形態の場合、各画素 PIX(U)は、隣接す る 2本のデータ信号線 SLG- 1) ' SLiと、隣接する 2本の走査信号線 GL(j- 1) 'GLjと で囲まれた部分に配されて!ヽる。  [0027] The pixel array 2 includes a plurality (in this case, n) of data signal lines SLl to SLn and a plurality of data signal lines SLl to SLn (in this case, m). Scanning signal lines GLl to GLm, where j is an arbitrary integer up to 1 force n and any integer from 1 to m is j, an image for each combination of data signal line SLi and scanning signal line GLj. Element PIX (i, j) is provided. In this embodiment, each pixel PIX (U) includes two adjacent data signal lines SLG-1) 'SLi and two adjacent scanning signal lines GL (j-1)' GLj. Arranged in the part surrounded by! Speak.
[0028] 本実施形態に係る画像表示装置 1は、液晶表示装置であって、上記画素 PIX(i,j) は、例えば、図 3に示すように、スイッチング素子として、ゲートが走査信号線 GLjへ、 ドレインがデータ信号線 SLiに接続された電界効果トランジスタ SW(i,j)と、当該電界 効果トランジスタ SW(i,j)のソースに、一方電極が接続された画素容量 Cp(i,j)とを備 えている。また、画素容量 Cp(i,j)の他端は、全画素 PIX…に共通の共通電極線に接 続されている。上記画素容量 Cp(i,j)は、液晶容量 CL(i,j)と、必要に応じて付加され る補助容量 Cs(i,j)とから構成されている。  [0028] The image display device 1 according to the present embodiment is a liquid crystal display device, and the pixel PIX (i, j) has a gate serving as a switching signal line GLj, for example, as shown in FIG. To the field effect transistor SW (i, j) whose drain is connected to the data signal line SLi, and the pixel capacitance Cp (i, j) whose one electrode is connected to the source of the field effect transistor SW (i, j). ). The other end of the pixel capacitor Cp (i, j) is connected to a common electrode line common to all the pixels PIX. The pixel capacitor Cp (i, j) includes a liquid crystal capacitor CL (i, j) and an auxiliary capacitor Cs (i, j) that is added as necessary.
[0029] 上記画素 PIXGJ)において、走査信号線 GLjが選択されると、電界効果トランジスタ SW(i,j)が導通し、データ信号線 SLiに印加された電圧が画素容量 Cp(i,j)へ印加さ れる。一方、当該走査信号線 GLjの選択期間が終了して、電界効果トランジスタ SW( i,j)が遮断されている間、画素容量 Cp(i,j)は、遮断時の電圧を保持し続ける。ここで 、液晶の透過率あるいは反射率は、液晶容量 CL(i,j)に印加される電圧によって変化 する。したがって、走査信号線 GLjを選択し、当該画素 PIX(i,j)への映像データ Dに 応じた電圧をデータ信号線 SLiへ印加すれば、当該画素 PlX(iJ)の表示状態を、映 像データ Dに合わせて変化させることができる。 [0029] In the pixel PIXGJ), when the scanning signal line GLj is selected, a field effect transistor SW (i, j) becomes conductive, and the voltage applied to the data signal line SLi is applied to the pixel capacitor Cp (i, j). On the other hand, while the selection period of the scanning signal line GLj ends and the field effect transistor SW (i, j) is cut off, the pixel capacitor Cp (i, j) continues to hold the voltage at the cut-off. Here, the transmittance or reflectance of the liquid crystal varies depending on the voltage applied to the liquid crystal capacitance CL (i, j). Therefore, if the scanning signal line GLj is selected and a voltage corresponding to the video data D to the pixel PIX (i, j) is applied to the data signal line SLi, the display state of the pixel PlX (iJ) is It can be changed according to data D.
[0030] 本実施形態に係る画像表示装置 1は、画素アレイ 2に用いる液晶セルとして、垂直 配向モードの液晶セル、すなわち、電圧無印加時には、液晶分子が基板に対して略 垂直に配向し、画素 ΡΙΧ(ί,χ)の液晶容量 CL(i,j)への印加電圧に応じて、液晶分子 が垂直配向状態から傾斜する液晶セルを採用しており、当該液晶セルをノーマリー ブラックモード (電圧無印加時には、黒表示となるモード)で使用している。  The image display device 1 according to the present embodiment is a vertical alignment mode liquid crystal cell as a liquid crystal cell used for the pixel array 2, that is, when no voltage is applied, the liquid crystal molecules are aligned substantially perpendicular to the substrate. A liquid crystal cell in which the liquid crystal molecules tilt from the vertical alignment state according to the voltage applied to the liquid crystal capacitance CL (i, j) of the pixel ΡΙΧ (ί, χ) is used, and the liquid crystal cell is normally black mode (voltage When no voltage is applied, the mode is black.
[0031] 上記構成において、図 2に示す走査信号線駆動回路 4は、各走査信号線 GL1〜G Lmへ、例えば、電圧信号など、選択期間カゝ否かを示す信号を出力している。また、 走査信号線駆動回路 4は、選択期間を示す信号を出力する走査信号線 GLjを、例え ば、制御回路 12から与えられるクロック信号 GCKやスタートパルス信号 GSPなどの タイミング信号に基づいて変更している。これにより、各走査信号線 GLl〜GLmは、 予め定められたタイミングで、順次選択される。  In the above configuration, the scanning signal line drive circuit 4 shown in FIG. 2 outputs a signal indicating whether or not the selection period is valid, such as a voltage signal, to each of the scanning signal lines GL1 to GLm. Further, the scanning signal line drive circuit 4 changes the scanning signal line GLj that outputs a signal indicating the selection period based on timing signals such as a clock signal GCK and a start pulse signal GSP supplied from the control circuit 12, for example. ing. Thus, the scanning signal lines GLl to GLm are sequentially selected at a predetermined timing.
[0032] さらに、データ信号線駆動回路 3は、映像信号 DATとして、時分割で入力される各 画素 PIX…への映像データ D…を、所定のタイミングでサンプリングすることで、それ ぞれ抽出する。さらに、データ信号線駆動回路 3は、走査信号線駆動回路 4が選択 中の走査信号線 GLjに対応する各画素 PIX(l,j) 〜PIX(n,j) へ、各データ信号線 SL l〜SLnを介して、それぞれへの映像データ D…に応じた出力信号を出力する。  [0032] Further, the data signal line driving circuit 3 extracts the video data D ... to each pixel PIX ... inputted in time division as the video signal DAT by sampling at a predetermined timing, respectively. . Further, the data signal line driving circuit 3 sends each data signal line SL l to each pixel PIX (l, j) to PIX (n, j) corresponding to the scanning signal line GLj selected by the scanning signal line driving circuit 4. Through ~ SLn, output signals corresponding to the video data D to each are output.
[0033] なお、データ信号線駆動回路 3は、制御回路 12から入力される、クロック信号 SCK およびスタートパルス信号 SSPなどのタイミング信号に基づ 、て、上記サンプリングタ イミングゃ出力信号の出力タイミングを決定して 、る。  Note that the data signal line drive circuit 3 determines the output timing of the sampling timing output signal based on timing signals such as the clock signal SCK and the start pulse signal SSP input from the control circuit 12. Decide.
[0034] 一方、各画素 PIX(l,j) 〜PIX(n,j)は、自らに対応する走査信号線 GLjが選択され ている間に、自らに対応するデータ信号線 SLl〜SLnに与えられた出力信号に応じ て、透過率などを調整して、自らの明るさを決定する。 On the other hand, each of the pixels PIX (l, j) to PIX (n, j) is given to the data signal lines SL1 to SLn corresponding to the pixels PIX (l, j) to PIX (n, j) while the scanning signal line GLj corresponding to the pixels PIX (l, j) to PIX (n, j) is selected. Depending on the output signal Then, adjust the transmittance and determine your own brightness.
[0035] ここで、走査信号線駆動回路 4は、走査信号線 GLl〜GLmを順次選択している。  Here, the scanning signal line driving circuit 4 sequentially selects the scanning signal lines GLl to GLm.
したがって、画素アレイ 2の全画素 PIX(1,1)〜PIX(n,m)を、それぞれへの映像デー タ Dが示す明るさ(階調)に設定でき、画素アレイ 2へ表示される画像を更新できる。  Therefore, all the pixels PIX (1,1) to PIX (n, m) of the pixel array 2 can be set to the brightness (gradation) indicated by the video data D to each image, and the image displayed on the pixel array 2 Can be updated.
[0036] なお、映像データ Dは、画素 PIX(i,j)の階調レベルを特定できれば、階調レベル自 体であってもよいし、階調レベルを算出するためのパラメータであってもよいが、以下 では、一例として、映像データが画素 PIX(U)の階調レベル自体である場合につい て説明する。  Note that the video data D may be the gradation level itself or a parameter for calculating the gradation level as long as the gradation level of the pixel PIX (i, j) can be specified. In the following, a case where the video data is the gradation level of the pixel PIX (U) will be described as an example.
[0037] また、上記画像表示装置 1にお!/ヽて、映像信号源 VSOから変調駆動処理部 21へ 与えられる映像信号 DATは、フレーム単位 (画面全体単位)で伝送されて 、てもよ ヽ し、 1フレームを複数のフィールドに分割すると共に、当該フィールド単位で伝送され ていてもよいが、以下では、一例として、フィールド単位で伝送される場合について説 明する。  [0037] Further, the video signal DAT given to the modulation drive processing unit 21 from the video signal source VSO to the image display device 1 may be transmitted in frame units (whole screen units). However, one frame may be divided into a plurality of fields and may be transmitted in units of the field. In the following, the case of transmission in units of fields will be described as an example.
[0038] すなわち、本実施形態にぉ 、て、映像信号源 VSOから変調駆動処理部 21へ与え られる映像信号 DATは、 1フレームを複数のフィールド (例えば、 2フィールド)に分 割すると共に、当該フィールド単位で伝送されて 、る。  That is, according to this embodiment, the video signal DAT supplied from the video signal source VSO to the modulation drive processing unit 21 divides one frame into a plurality of fields (for example, two fields) and It is transmitted in field units.
[0039] より詳細には、映像信号源 VSOは、映像信号線 VLを介して、画像表示装置 1の変 調駆動処理部 21に映像信号 DATを伝送する際、あるフィールド用の映像データを 全て伝送した後に、次のフィールド用の映像データを伝送するなどして、各フィール ド用の映像データを時分割伝送して 、る。  More specifically, when the video signal source VSO transmits the video signal DAT to the modulation drive processing unit 21 of the image display device 1 via the video signal line VL, all video data for a certain field is transmitted. After transmission, video data for each field is transmitted in a time-sharing manner, such as by transmitting video data for the next field.
[0040] また、上記フィールドは、複数の水平ラインから構成されており、上記映像信号線 V Lでは、例えば、あるフィールドにおいて、ある水平ライン用の映像データ全てが伝送 された後に、次に伝送する水平ライン用の映像データを伝送するなどして、各水平ラ イン用の映像データが時分割伝送されて 、る。  [0040] Further, the field is composed of a plurality of horizontal lines. For example, in the video signal line VL, after all video data for a certain horizontal line is transmitted in a certain field, the field is transmitted next. The video data for each horizontal line is transmitted in a time-sharing manner, such as by transmitting video data for the horizontal line.
[0041] なお、本実施形態では、 2フィールドから 1フレームを構成しており、偶数フィールド では、 1フレームを構成する各水平ラインのうち、偶数行目の水平ラインの映像デー タが伝送される。また、奇数フィールドでは、奇数行目の水平ラインの映像データが 伝送される。さら〖こ、上記映像信号源 VSOは、 1水平ライン分の映像データを伝送す る際も上記映像信号線 VLを時分割駆動しており、予め定められた順番で、各映像 データが順次伝送される。 In this embodiment, one frame is composed of two fields, and in the even field, the video data of the horizontal line of the even-numbered row among the horizontal lines constituting one frame is transmitted. . In the odd field, the video data of the odd horizontal line is transmitted. Sarako, the above video signal source VSO transmits video data for one horizontal line. In this case, the video signal line VL is time-division driven, and each video data is sequentially transmitted in a predetermined order.
[0042] ここで、図 1に示すように、本実施形態に係る変調駆動処理部 21は、 1フレーム分 の映像データを次のフレームまで記憶するフレームメモリ(映像データ記憶装置) 31 と、基本的には、入力端子 T1に入力された現フレーム FR(k)の映像データ D(i,j,k) をフレームメモリ 31へ書き込むと共に、フレームメモリ 31から前フレーム FR(k- 1)の 映像データ DO(i,j,k-l)を読み出して出力するメモリ制御回路 32と、上記両映像デー タ D(i,j,k) -DOG.j.k-l)に基づいて、上記両映像データ D(i,j,k) -DOG.j.k-l)に基づ いて、階調遷移強調の要否を判定する判定処理部 33と、階調遷移強調が必要な場 合は、上記両映像データ D(i,j,k) -DOG.j.k-l)に基づいて、画素 PIX(i,j)における現 フレーム FR(k)力 前フレーム FR(k-l)への階調遷移を強調するように、現フレーム FR(k)の映像データ D(i,j,k)を補正して出力し、不要であれば、上記映像データ D(i, j,k)自体を出力する変調処理部 (補間手段) 34と、上記変調処理部 34が補正する際 に参照されるルックアップテーブル (LUT;パラメータ記憶装置) 35とを備えている。  Here, as shown in FIG. 1, the modulation drive processing unit 21 according to the present embodiment includes a frame memory (video data storage device) 31 for storing video data for one frame up to the next frame, and a basic Specifically, the video data D (i, j, k) of the current frame FR (k) input to the input terminal T1 is written to the frame memory 31 and the video of the previous frame FR (k-1) is written from the frame memory 31. Based on the memory control circuit 32 that reads out and outputs the data DO (i, j, kl) and the both video data D (i, j, k) -DOG.jk-l), the both video data D ( i, j, k) -DOG.jk-l), the decision processing unit 33 for determining whether or not gradation transition enhancement is necessary. Based on (i, j, k) -DOG.jk-l), the current frame FR (k) power at the pixel PIX (i, j) is emphasized to the gradation transition to the previous frame FR (kl). Current frame FR (k) video data D ( i, j, k) is corrected and output.If not required, the modulation processing unit (interpolation means) 34 for outputting the video data D (i, j, k) itself and the modulation processing unit 34 correct the output. And a look-up table (LUT; parameter storage device) 35 to be referred to when performing the process.
[0043] なお、以下では、補正の有無に拘わらず、変調処理部 34の出力する信号を、出力 映像信号 DAT2と称し、当該出力映像信号 DAT2を構成する出力映像データ D2の うち、映像データ D(i,j,k)および D0(i,j,k- 1)に対応するデータを、出力映像データ D 2(i,j,k)と称する。また、画像表示装置 1の各部において、互いに同じ時点に、その信 号、データ、電圧あるいは輝度が存在しているか否かに拘わらず、当該出力映像デ ータ D2(i,j,k)に基づいて画素 PIX(i,j)へ印加される電圧を現フレーム FR(k)の電圧 、当該電圧が印加されるフレームを、現フレーム FR(k)、当該電圧によって、画素 PI X(i,j)が現フレーム FR(k)の終了時点に到達する輝度を、現フレーム FR(k)の輝度と 称する。  [0043] In the following, the signal output from the modulation processing unit 34 is referred to as an output video signal DAT2 regardless of the presence or absence of correction, and the video data D out of the output video data D2 constituting the output video signal DAT2 Data corresponding to (i, j, k) and D0 (i, j, k-1) is referred to as output video data D2 (i, j, k). Further, in each part of the image display device 1, the output video data D2 (i, j, k) is included in the output video data D2 (i, j, k) regardless of whether the signal, data, voltage, or luminance exists at the same time. On the basis of the voltage applied to the pixel PIX (i, j) as the voltage of the current frame FR (k) and the frame to which the voltage is applied as the current frame FR (k). The luminance at which j) reaches the end of the current frame FR (k) is called the luminance of the current frame FR (k).
[0044] 上記 LUT35には、基本的には、前フレーム FR(k- 1)の映像データ D(i,j,k-1)の取 り得る値(階調)と、現フレーム FR(k)の映像データ D(i,j,k)の取り得る値(階調)との 組み合わせのうち、予め定められた組み合わせのそれぞれについて、当該組み合わ せが入力された場合に出力すべき補正後の出力映像データ D2(i,j,k)が格納されて いる。ここで、 LUT35に格納される値は、画素アレイ 2の特性によって決定されてい る。本実施形態では、画素 PIX(U)の輝度が第 1階調の示す輝度にある状態におい て、第 2階調に対応する電圧を画素 PIX(U)に印加した場合に、当該電圧を印加し たフレームの終了時点に、画素 PIX(i,j)が第 3階調の示す輝度に到達するとするとき 、上記 LUT35には、基本的に、第 1階調と第 3階調との組み合わせに対応して、第 2 階調を示すデータが格納されて ヽる。 [0044] The LUT 35 basically includes the values (gradations) of the video data D (i, j, k-1) of the previous frame FR (k-1) and the current frame FR (k ) Of video data D (i, j, k) with possible values (gradation), for each of the predetermined combinations, a corrected value to be output when the combination is input Output video data D2 (i, j, k) is stored. Here, the value stored in the LUT 35 is determined by the characteristics of the pixel array 2. The In the present embodiment, when a voltage corresponding to the second gradation is applied to the pixel PIX (U) in a state where the brightness of the pixel PIX (U) is at the brightness indicated by the first gradation, the voltage is applied. When the pixel PIX (i, j) reaches the luminance indicated by the third gradation at the end of the frame, the LUT 35 basically has a combination of the first gradation and the third gradation. Corresponding to, data indicating the second gradation is stored.
[0045] 一例として、本実施形態では、上記前フレームの映像データ DOおよび映像データ Dが取り得る値は、それぞれ 0〜255であり、上記 LUT35は、図 4に示すように、両 者の組み合わせで特定される領域を 8 X 8個の小領域に区分したとき、図 5に示すよ うに、各小領域の 4隅となる点に対応する映像データ D2を記憶している。なお、この 例の場合、上記領域は、 (0, 0)から(255, 255)の 2次元空間になるので、 8 X 8個 の小領域に区分すると、各小領域は、 32階調 X 32階調の領域になる。したがって、 この場合、上記 LUT35には、 32階調おきの階調同士の組み合わせ力 なる 9 X 9 個の点が記憶される。 As an example, in the present embodiment, the values that can be taken by the video data DO and the video data D of the previous frame are 0 to 255, respectively, and the LUT 35 is a combination of both as shown in FIG. As shown in FIG. 5, when the area specified in is divided into 8 × 8 small areas, video data D2 corresponding to the four corner points of each small area is stored. In this example, the above area is a two-dimensional space from (0, 0) to (255, 255), so when divided into 8 X 8 small areas, each small area has 32 gradations X It becomes a 32 gradation area. Therefore, in this case, 9 × 9 points that are the combination power of gradations every 32 gradations are stored in the LUT 35.
[0046] また、上記変調処理部 34は、上記判定処理部 33から補正が指示された場合、 LU T35に記憶された各組み合わせに対応する映像データ D2同士の間を線形補間して 、実際に入力される前フレーム代表値 DO(i,j,k-l)および映像データ D(i,j,k)の組み 合わせに対応する映像データ D2を算出して出力することができる。  [0046] When the correction is instructed from the determination processing unit 33, the modulation processing unit 34 performs linear interpolation between the video data D2 corresponding to each combination stored in the LUT 35, and actually performs the interpolation. The video data D2 corresponding to the combination of the input previous frame representative value DO (i, j, kl) and video data D (i, j, k) can be calculated and output.
[0047] より詳細には、本実施形態に係る変調処理部 34は、上記両映像データ DO(i,j,k-l) および D(i,j,k)の組み合わせ (S, E)が入力されたとき、当該組み合わせ力 計算ェ リアとしての上記小領域のいずれに属しているかを特定する。さらに、変調処理部 34 は、当該計算エリアの 4隅の到達階調を、左上隅、右上隅、右下隅、左下隅の順に、 それぞれ、 A、 B、 C、 Dとし、当該計算エリアの広さを Y XX、左上隅の組み合わせ( SO, E0)と上記両組み合わせ (S, E)との差を(1, 1)に正規ィ匕した値を(Ay, Δ χ) = ( (S -S0) /Y, (E— E0)ZX)とするとき、演算回路 72は、 Δ χ> = Δγの場合、 LUT35から、上記各到達階調 Α、 Βおよび Cを読み出し、以下の式(1)に示すように  More specifically, the modulation processing unit 34 according to the present embodiment receives the combination (S, E) of both the video data DO (i, j, kl) and D (i, j, k). Then, it is specified to which of the above small areas as the combination force calculation area. Further, the modulation processing unit 34 sets the arrival gradations at the four corners of the calculation area as A, B, C, and D in the order of the upper left corner, the upper right corner, the lower right corner, and the lower left corner, respectively. Y XX, and the difference between the combination of the upper left corner (SO, E0) and the above combination (S, E) to (1, 1) is (Ay, Δχ) = ((S- S0) / Y, (E—E0) ZX), when Δχ> = Δγ, the arithmetic circuit 72 reads out each of the reached gradations Α, Β, and C from the LUT 35, and uses the following formula (1 As shown in
D2(i,j,k) =Α+ Δ χ· (Β-Α) + Δγ· (C-B) · '· (1) D2 (i, j, k) = Α + Δ χ · (Β-Α) + Δγ · (C-B) '' (1)
によって、 D2(i,j,k)を算出する。 [0048] 一方、 Δ χく Ayの場合、変調処理部 34は、 LUT35から上記各到達階調 A、じお よび Dを読み出し、以下の式(2)に示すように、 To calculate D2 (i, j, k). On the other hand, in the case of Δχ ΔAy, the modulation processing unit 34 reads each of the reached gradations A, J and D from the LUT 35, and, as shown in the following equation (2),
D2(i,j,k) =C+ Δ χ· (C-D) + (1 - Δγ) - (D-A) · '· (2)  D2 (i, j, k) = C + Δ χ (C-D) + (1-Δγ)-(D-A) '(2)
によって、 D2(i,j,k)を算出する。  To calculate D2 (i, j, k).
[0049] 例えば、図 4および図 5の例では、 (S, E)が(144, 48)の場合、 (128, 32)、 (12 8, 64)、 (160, 64)および(160, 32)で囲まれた計算エリアが特定され、補正後の 映像データ D2(i,j,k)力 S60となる。  [0049] For example, in the example of FIGS. 4 and 5, when (S, E) is (144, 48), (128, 32), (12 8, 64), (160, 64) and (160, The calculation area surrounded by 32) is specified, and the corrected video data D2 (i, j, k) force S60 is obtained.
[0050] ところで、上述したように、本実施形態に係る LUT35には、基本的に、上記第 1階 調と第 3階調との組み合わせに対応して、上記第 2階調を示すデータが格納されて いるが、例外として、階調遷移が発生しない階調の組み合わせ (上記両映像データ D(i,j,k) -DOG.j.k-l)の値が互いに等しくなる組み合わせ)に対しては、 LUT35は、 上記第 2階調の値 (D(i,j,k)の値自体)に代えて、補正を行う範囲における映像デー タ D2(i,j,k)を補間演算によって算出する際の誤差が最も小さくなるように設定された 値として、第 2階調の値よりも大きな値 Vを格納している。さらに、本実施形態では、よ り好ましい設定として、補正を行う範囲で補正が強くなりすぎる領域が生じない範囲 で誤差が最も小さくなるように設定されている。なお、図 6では、例えば、現フレーム F R(k)の映像データ D(i,j,k)の示す階調が 32階調の場合の値を V(32)のように、 Vの 後に、現フレーム FR(k)の映像データ D(i,j,k)の値を示す値を付している。  By the way, as described above, the LUT 35 according to the present embodiment basically has data indicating the second gradation corresponding to the combination of the first gradation and the third gradation. An exception is a combination of gradations that are stored but do not cause gradation transition (a combination in which the values of both video data D (i, j, k) -DOG.jk-l) are equal to each other). The LUT35 uses the interpolation calculation to calculate the video data D2 (i, j, k) in the correction range instead of the second gradation value (D (i, j, k) value itself) The value V that is larger than the value of the 2nd gradation is stored as the value that is set so that the error in minimizing the error is minimized. Furthermore, in the present embodiment, as a more preferable setting, the error is set to be the smallest in a range where there is no region in which correction is too strong in the correction range. In FIG. 6, for example, the value when the gradation indicated by the video data D (i, j, k) of the current frame FR (k) is 32 gradations is the value after V, such as V (32). A value indicating the value of the video data D (i, j, k) of the current frame FR (k) is attached.
[0051] さらに、本実施形態に係る変調処理部 34は、ディケイの階調遷移の場合で、しカゝも 、 LUT35から読み出すべき値の中に、階調遷移が発生しない組み合わせ (DO = D の組み合わせ)に対応する値が含まれている場合は、当該組み合わせに対応する値 を、上記 LUT35から読み出す代わりに、前フレーム FR(k-l)の映像データ DO自体 、または、現フレーム FR(k)の映像データ Dを用いて補間演算できる。なお、階調遷 移がディケイの場合とは、階調遷移によって輝度が減少する場合であって、前フレー ム FR(k-l)の映像データ DOよりも、現フレーム FR(k)の映像データ Dの方が小さい 場合である。  [0051] Further, the modulation processing unit 34 according to the present embodiment is a combination in which gradation transition does not occur in the value to be read from the LUT 35 in the case of decay gradation transition (DO = D If the value corresponding to the combination is included, instead of reading the value corresponding to the combination from the LUT35, the video data DO of the previous frame FR (kl) or the current frame FR (k) Can be interpolated using video data D. Note that the gradation transition is decay when the brightness decreases due to the gradation transition, and the video data D of the current frame FR (k) rather than the video data DO of the previous frame FR (kl). This is the case when is smaller.
[0052] 以下では、図 6を参照しながら、階調遷移が発生しない点を 4隅の 1つに持つ小領 域として、 (S, E)の座標(0, 32)、 (0, 64)、 (32, 64)および(32, 32)を 4隅とする 小領域 Alを例にして、 LUT35に格納された値について説明する。 [0052] In the following, referring to FIG. 6, the coordinates of (S, E) (0, 32), (0, 64) are defined as a small area having a point where gradation transition does not occur in one of the four corners. ), (32, 64) and (32, 32) as 4 corners The value stored in the LUT 35 will be described using the small area Al as an example.
[0053] ここで、座標(32, 32)から(32, 64)へと、現フレーム FR(k)の映像データ Dのみを 変化させた場合に、最適な映像データ D2がどのように変化するかを、 S— Eを横軸に 、最適な映像データ D2の値を縦軸にして図示すると、図 6中、二点鎖線の曲線に示 す特性 C1となる。なお、最適な映像データ D2の値は、上述した LUT35の他の値( 階調遷移が発生しない場合の値)を決定する場合と同様にして決定できる。 [0053] Here, when only the video data D of the current frame FR (k) is changed from the coordinates (32, 32) to (32, 64), how the optimal video data D2 changes. When S—E is plotted on the horizontal axis and the optimal value of the video data D2 is plotted on the vertical axis, the characteristic C1 shown by the two-dot chain curve in FIG. 6 is obtained. Note that the optimum value of the video data D2 can be determined in the same manner as when determining other values of the LUT 35 described above (values when no gradation transition occurs).
[0054] 一方、第 1の比較例として、 LUT35が、階調遷移が発生しない階調の組み合わせ に対応して、現フレーム FR(k)の映像データ D自体を記憶しており、変調処理部が 常に線形補間する構成では、映像データ D2の特性は、図 6中、破線の直線に示す 特性 C2となる。 On the other hand, as a first comparative example, the LUT 35 stores the video data D itself of the current frame FR (k) corresponding to the combination of gradations in which no gradation transition occurs, and the modulation processing unit In the configuration in which linear interpolation is always performed, the characteristic of the video data D2 is the characteristic C2 shown by the broken line in FIG.
[0055] さらに、第 2の比較例として、本実施形態に係る変調処理部 34と同様に、階調遷移 量 (E— S)が予め定められた閾値 Lに満たない場合は、階調遷移を強調しない構成 では、変調処理部から出力される映像データ D2の特性は、図 6中、実線の折れ線に 示す特性 C3となる。  Furthermore, as a second comparative example, as in the modulation processing unit 34 according to the present embodiment, when the gradation transition amount (E−S) is less than the predetermined threshold L, the gradation transition In the configuration without emphasizing, the characteristic of the video data D2 output from the modulation processing unit is the characteristic C3 indicated by the solid line in FIG.
[0056] ただし、当該第 2の比較例の構成では、階調遷移が発生しない階調の組み合わせ に対応して、現フレーム FR(k)の映像データ D自体が格納されているので、 S— Eが 閾値 Lよりも大きな箇所において、上記出力される映像データ D2は、上述した理想 的な特性 C1よりも大きく下回った値になっている。  [0056] However, in the configuration of the second comparative example, since the video data D itself of the current frame FR (k) is stored corresponding to the combination of gradations in which no gradation transition occurs, S— At a location where E is larger than the threshold value L, the output video data D2 has a value significantly lower than the ideal characteristic C1 described above.
[0057] これに対して、本実施形態に係る LUT35は、階調遷移が発生しない階調の組み 合わせに対応して、現フレーム FR(k)の映像データ Dよりも大きな値を格納している 。したがって、変調処理部 34は、図 6中、実線の折れ線に示す特性 C4をもった映像 データ D2を出力できる。  On the other hand, the LUT 35 according to the present embodiment stores a value larger than the video data D of the current frame FR (k) corresponding to the combination of gradations in which no gradation transition occurs. Yes. Therefore, the modulation processing unit 34 can output the video data D2 having the characteristic C4 shown by the solid broken line in FIG.
[0058] より詳細には、補正前の映像データを D (n—1)、 D (n)とし、それに対応する補正 後の映像データを、 D2 (n— 1)、 D2 (n)とする場合、上記折れ線の特性 C4は、補正 前の補正前の映像データの階調遷移量が上記閾値 Lに満たないとき、 D2 (n) =D ( n)であり、当該階調遷移量が上記閾値 Lよりも大きいとき、 D2 (n) = a + k- [ (D ( n)—D (n—l)〕になる。なお、図 6の例では、 D2 (n) =D2、 D (n) =D、 D (n—1) = 32なので、上記階調遷移量が上記閾値 Lよりも大きいとき、 D2= a +k- (D— 32)と なり、上記階調遷移量が上記閾値 Lに満たないとき、 D2 = Dとなる。 More specifically, the video data before correction is D (n—1) and D (n), and the corresponding video data after correction is D2 (n—1) and D2 (n). In this case, the broken line characteristic C4 is D2 (n) = D (n) when the gradation transition amount of the video data before correction is less than the threshold L, and the gradation transition amount is When it is larger than the threshold L, D2 (n) = a + k- [(D (n) -D (n-l)]. In the example of Fig. 6, D2 (n) = D2, D ( n) = D, D (n—1) = 32, so when the amount of gradation transition is larger than the threshold L, D2 = a + k- (D—32) Thus, when the gradation transition amount is less than the threshold value L, D2 = D.
[0059] ここで、本実施形態では、階調遷移が発生しな 、階調の組み合わせに対応して、 現フレーム FR(k)の映像データ Dよりも大きな値が格納されているので、上記第 2の 比較例の構成に比べて、線形補間後の映像データ D2は、より大きな値になる。した がって、変調処理部 34は、上記理想的な特性 C1に、より近い映像データ D2を出力 することができる。 [0059] Here, in this embodiment, since no gradation transition occurs, a value larger than the video data D of the current frame FR (k) is stored corresponding to the combination of gradations. Compared to the configuration of the second comparative example, the video data D2 after linear interpolation has a larger value. Therefore, the modulation processing unit 34 can output video data D2 that is closer to the ideal characteristic C1.
[0060] なお、上記図 6では、一例として、前フレーム FR(k- 1)の映像データ DOを一定の値  [0060] In FIG. 6, the video data DO of the previous frame FR (k-1) is set to a certain value as an example.
(図 6では、 32階調)に固定し、現フレーム FR(k)の映像データ Dのみを、映像デー タ DOと同じ値力も増加させた場合における、補正後の映像データ D2の特性につい て説明したが、以下に示すように、「ライズの階調遷移の場合、第 2の比較例の構成 に比べて本実施形態に係る変調処理部 34の方が、より理想的な特性 C1に近 ヽ映 像データ D2を出力できる」ことは、一般に成立する。なお、階調遷移がライズの場合 とは、階調遷移によって輝度が増大する場合であって、前フレーム FR(k-l)の映像 データ DOよりも、現フレーム FR(k)の映像データ Dの方が大きい場合 (より正確には 、映像データ DOの示す輝度よりも映像データ Dの示す輝度の方が大き 、場合)であ る。  (Figure 6: 32 gradations) About the characteristics of the corrected video data D2 when only the video data D of the current frame FR (k) is increased by the same value as the video data DO As described below, as described below, in the case of rise gradation transition, the modulation processing unit 34 according to the present embodiment is closer to the ideal characteristic C1 than the configuration of the second comparative example. It is generally true that “the video data D2 can be output”. The case where the gradation transition is “rise” means that the luminance increases due to the gradation transition, and the video data D of the current frame FR (k) is more than the video data DO of the previous frame FR (kl). Is larger (more precisely, the luminance indicated by the video data D is greater than the luminance indicated by the video data DO).
[0061] すなわち、本実施形態に係る画素アレイ 2が液晶表示パネルである力 一般に、階 調差が大きい程、応答のために液晶分子に与える必要のあるトルク、あるいは、応答 時に液晶分子に与えられるトルクが大きくなる。したがって、移動距離が大きくなる程 、観察される応答時間は、短くなる。この結果、変調処理部 34が直線補間によって上 記映像データ D2を生成する構成の場合、階調差が小さくなるに従って、補正が不足 し、階調遷移量に対する、補間によって生成した映像データ D2と、理想的な映像デ ータ D2の値との差の比率が大きくなる傾向にある。  That is, the force with which the pixel array 2 according to the present embodiment is a liquid crystal display panel. Generally, the larger the gradation difference, the torque that must be applied to the liquid crystal molecules for response, or the liquid crystal molecules that are applied to the response. Increased torque. Therefore, as the moving distance increases, the observed response time becomes shorter. As a result, when the modulation processing unit 34 is configured to generate the video data D2 by linear interpolation, the correction becomes insufficient as the gradation difference becomes smaller, and the video data D2 generated by the interpolation with respect to the gradation transition amount The ratio of the difference from the ideal video data D2 value tends to increase.
[0062] 言い換えると、階調遷移がライズのときは、前フレーム FR(k-l)の映像データ DOと 、現フレーム FR(k)の映像データ Dとの組み合わせを、どのように変化させながら、図 6と同様に、階調遷移量 (E— S)に対する、理想的な映像データ D2の特性 C1を描 画したとしても、階調遷移強調を必要とする範囲では、当該特性 C1は、上に凸の曲 線になる。 [0063] この結果、上記第 2の比較例のように、階調遷移が発生しな!、場合に、現フレーム FR(k)の映像データ D自体を出力できるように直線補間すると、上記階調遷移強調 を必要とする場合には、常に、理想的な値よりも小さな映像データ D2しか出力するこ とができない。 [0062] In other words, when the gradation transition is rise, how the combination of the video data DO of the previous frame FR (kl) and the video data D of the current frame FR (k) is changed Similar to Fig. 6, even if the characteristic C1 of the ideal video data D2 with respect to the gradation transition amount (E-S) is drawn, the characteristic C1 is It becomes a convex curve. [0063] As a result, as in the second comparative example, gradation transition does not occur! When linear interpolation is performed so that the video data D itself of the current frame FR (k) can be output, When tone transition emphasis is required, only video data D2 smaller than the ideal value can always be output.
[0064] これに対して、本実施形態に係る変調処理部 34は、上述したように、仮に階調遷移 が発生しない場合にも直線補間した値を出力するとすると、現フレーム FR(k)の映像 データ Dよりも大きな値を出力できるように直線補間している。したがって、変調処理 部 34の出力する映像データ D2の特定は、図中、 C4に示すようになり、変調処理部 3 4は、上記理想的な特性 C1に、より近い映像データ D2を出力することができる。  [0064] On the other hand, if the modulation processing unit 34 according to the present embodiment outputs a linearly interpolated value even when gradation transition does not occur as described above, the modulation processing unit 34 of the current frame FR (k) Linear interpolation is performed so that a larger value than the video data D can be output. Therefore, the identification of the video data D2 output from the modulation processing unit 34 is as indicated by C4 in the figure, and the modulation processing unit 34 outputs video data D2 that is closer to the ideal characteristic C1. Can do.
[0065] ここで、上記 C4を出力する際に参照した値 Vは、例えば、以下のようにして算出さ れる。具体的には、階調遷移量が最大となる場合の点を P1とし、階調遷移量が Lとな る場合の点を P2とするとき、 P1と P2とを直線で結び、当該直線が S = 32の直線(映 像データ Dが最小値である直線)に交わった点 P3の映像データ D2を Vとして 、る。 より好ましくは、 P2の選定に当たり、補正区間における補正量が理想値を上回らない (すなわち補正し過ぎがな 、)ような範囲で、 P2を選定することが望ま 、。  [0065] Here, the value V referred to when outputting the C4 is calculated as follows, for example. Specifically, when the point where the gradation transition amount is maximum is P1, and the point where the gradation transition amount is L is P2, P1 and P2 are connected by a straight line. The video data D2 at point P3 that intersects the straight line with S = 32 (the straight line where video data D is the minimum value) is V. More preferably, when selecting P2, it is desirable to select P2 within a range in which the correction amount in the correction interval does not exceed the ideal value (that is, it is not overcorrected).
[0066] なお、上記変調処理部 34による直線補間は、上記のように設定されているので、仮 に、階調遷移が発生しない場合にも直線補間された値を出力したとすると、映像デー タ Dよりも大きな値を出力してしまう。この場合は、静止画を表示しているときのように 、階調遷移がないときに、画素 PIXの輝度を、正しい輝度 (現フレーム FR(k)の映像 データ Dの示す輝度)に制御することができず、画像表示装置 1の表示品質が低下し てしまう。  [0066] Since the linear interpolation by the modulation processing unit 34 is set as described above, assuming that the linearly interpolated value is output even when no gradation transition occurs, the video data A value larger than D is output. In this case, the brightness of the pixel PIX is controlled to the correct brightness (the brightness indicated by the video data D of the current frame FR (k)) when there is no gradation transition, such as when a still image is displayed. As a result, the display quality of the image display device 1 deteriorates.
[0067] ところが、本実施形態に係る変調処理部 34は、階調遷移量 (S— E)が予め定めら れた閾値 Lよりも小さい場合、階調遷移強調を行わず、現フレーム FR(k)の映像デー タ D自体を出力している。したがって、変調処理部 34による直線補間が上記のように 設定されていたとしても、画像表示装置 1は、静止画表示時にも、何ら支障なぐ画素 PIXの輝度を、正しい輝度に制御することができ、表示品質の低下を防止できる。  However, when the gradation transition amount (S−E) is smaller than the predetermined threshold L, the modulation processing unit 34 according to the present embodiment does not perform gradation transition enhancement and does not perform the current frame FR ( The video data D of k) is output. Therefore, even if the linear interpolation by the modulation processing unit 34 is set as described above, the image display apparatus 1 can control the luminance of the pixel PIX that has no problem at the time of still image display to the correct luminance. , Display quality can be prevented from deteriorating.
[0068] ところで、上記では、ライズの階調遷移の場合を例にして説明した力 ディケイの階 調遷移の場合であっても、原理は異なる力 略同様に考えることができる。すなわち、 ディケイの場合、弾性体の緩和に基づく応答であるが、階調差が大きい程、応答のた めに液晶分子に与える必要のあるトルク、あるいは、応答時に液晶分子に与えられる トルクが大きくなる。したがって、移動距離が大きくなる程、液晶分子の応答速度その ものが速くなり、補正量が同一の場合には、より応答時間を短縮することができる。 By the way, in the above, even in the case of the force decay gradation transition described by taking the case of the rise gradation transition as an example, the principle can be considered in the same manner as the different forces. That is, In the case of decay, the response is based on the relaxation of the elastic body, but the greater the gradation difference, the greater the torque that must be applied to the liquid crystal molecules for response, or the torque that is applied to the liquid crystal molecules during response. Therefore, the longer the moving distance, the faster the response speed of the liquid crystal molecules, and the response time can be further shortened when the correction amount is the same.
[0069] 同様に、階調差が大き 、程、応答のために液晶分子に与える必要のあるトルク、あ るいは、応答時に液晶分子に与えられるトルクが大きくなるので、移動距離が大きくな る程、観察される応答時間は、短くなる。  [0069] Similarly, the greater the gradation difference, the greater the torque that must be applied to the liquid crystal molecules for response, or the torque that is applied to the liquid crystal molecules during response, and thus the moving distance increases. The shorter the observed response time.
[0070] この結果、変調処理部 34が直線補間によって上記映像データ D2を生成する構成 の場合、階調差が小さくなるに従って、補正が不足し、階調遷移量に対する、補間に よって生成した映像データ D2と、理想的な映像データ D2の値との差の比率が大きく なる傾向にある。  As a result, when the modulation processing unit 34 is configured to generate the video data D2 by linear interpolation, the correction is insufficient as the gradation difference becomes smaller, and the video generated by the interpolation with respect to the gradation transition amount is reduced. The ratio of the difference between the data D2 and the ideal video data D2 tends to increase.
[0071] したがって、階調遷移がディケイのときは、前フレーム FR(k- 1)の映像データ DOと、 現フレーム FR(k)の映像データ Dとの組み合わせを、どのように変化させながら、図 6 と同様に、階調遷移量 (E— S)に対する、理想的な映像データ D2の特性 C1を描画 したとしても、階調遷移強調を必要とする範囲では、当該特性 C1は、下に凸の曲線 になる。  [0071] Therefore, when the gradation transition is decaying, changing the combination of the video data DO of the previous frame FR (k-1) and the video data D of the current frame FR (k) Similar to Fig. 6, even if the characteristic C1 of the ideal video data D2 is drawn with respect to the gradation transition amount (E-S), the characteristic C1 is below in the range where gradation transition emphasis is required. It becomes a convex curve.
[0072] この結果、上記第 2の比較例のように、階調遷移が発生しな!、場合に、現フレーム FR(k)の映像データ D自体を出力できるように直線補間すると、上記階調遷移強調 を必要とする場合には、常に、理想的な値よりも大きな映像データ D2しか出力するこ とができない。  As a result, as in the second comparative example, gradation transition does not occur! In this case, if linear interpolation is performed so that the video data D itself of the current frame FR (k) can be output, When tone transition emphasis is required, only video data D2 larger than the ideal value can always be output.
[0073] ところが、本実施形態のように、垂直配向モードの液晶セルをノーマリーブラックモ ードで使用している場合、ディケイ方向の階調遷移に対する応答特性は、ライズ方向 の階調遷移に対する応答特性と比較して、階調遷移量のレベルの影響を受けにくく 、上述した補正不足が余り発生しない。  However, when the vertical alignment mode liquid crystal cell is used in the normally black mode as in the present embodiment, the response characteristic to the gradation transition in the decay direction is the response to the gradation transition in the rise direction. Compared with the characteristics, it is less affected by the level of the gradation transition amount, and the above-described insufficient correction does not occur much.
[0074] また、垂直配向モードの液晶セルをノーマリーブラックモードで使用している場合、 特に、ライズ方向の応答特性が階調遷移の量に影響を受けやすい。さらに、特に 0階 調からスタートする階調遷移の時は、非常に応答が遅いため、大きな量の補正が必 要になる(補正前の映像データ Dと補正後の映像データ D2との差が大きい)。 [0075] したがって、以下の構成、すなわち、ライズ方向の階調遷移時の映像データ Dを高 精度に補正するための値を記憶するだけではなく、ディケイ方向の階調遷移時の映 像データ Dを高精度に補正するための値も、 LUT35に記憶する構成と比較して、余 り表示品質を低下させることなく回路規模を削減できる。 In addition, when the vertical alignment mode liquid crystal cell is used in a normally black mode, the response characteristic in the rise direction is particularly susceptible to the amount of gradation transition. Furthermore, especially at the time of gradation transition starting from the 0th gradation, the response is very slow, so a large amount of correction is required (the difference between the uncorrected video data D and the corrected video data D2 is large). [0075] Accordingly, the following configuration, that is, not only storing values for correcting the video data D at the time of gradation transition in the rise direction with high accuracy, but also image data D at the time of gradation transition in the decay direction. Compared with the configuration stored in the LUT 35, the circuit scale can be reduced without degrading the display quality much more than the value stored in the LUT 35.
[0076] 〔第 2の実施形態〕  [Second Embodiment]
本実施形態では、ライズ方向の階調遷移だけではなぐディケイ方向の階調遷移に ついても、上述した補正不足を抑制するための構成について、図 7を参照しながら説 明する。  In the present embodiment, a configuration for suppressing the above-mentioned correction insufficiency will be described with reference to FIG. 7 for gradation transition in the decay direction as well as gradation transition in the rise direction.
[0077] すなわち、図 1に示すように、本実施形態に係る変調駆動処理部 21aは、第 1の実 施形態に係る変調駆動処理部 21と略同様の構成であるが、変調処理部 34および L UT35に代えて、変調処理部 34aおよび LUT35aが設けられている。  That is, as shown in FIG. 1, the modulation drive processing unit 21a according to the present embodiment has substantially the same configuration as the modulation drive processing unit 21 according to the first embodiment, but the modulation processing unit 34 Instead of the LUT 35, a modulation processing unit 34a and a LUT 35a are provided.
[0078] 上記 LUT35aは、図 5に示す LUT35と略同様である力 図 7に示すように、階調遷 移が発生しな 、組み合わせに対応して、ライズ方向の階調遷移を強調するための値 VIだけではなぐディケイ方向の階調遷移を強調するための値 V2も格納されて ヽる 。なお、これらの値 VIおよび V2が、特許請求の範囲に記載の第 1および第 2パラメ ータに対応する。  [0078] The LUT 35a has substantially the same force as the LUT 35 shown in FIG. 5. As shown in FIG. 7, no tone transition occurs, and the tone transition in the rise direction is emphasized corresponding to the combination. The value V2 for emphasizing the gradation transition in the decay direction, which is not just the value VI, is also stored. These values VI and V2 correspond to the first and second parameters described in the claims.
[0079] ここで、ディケイ方向用の値 V2は、映像データ D2 = DO = Dよりも小さな値を示して いる。当該値 V2は、第 1の実施形態と略同様に、例えば、階調遷移量が最大となる 場合の点を P1とし、階調遷移量力 となる場合の点を P2とするとき、 P1と P2とを直線 で結び、当該直線が現映像データ Dが最小となったときの点 P3の映像データ D2を、 Vとしている。なお、ライズにおける方法と同様に P2の選定に当たっては、補正区間 の補正量が理想値を上回る(ディケイなので補正値としては下回る)ことがな 、ような 範囲で、理想値との誤差が最小になるよう選定することが好ましい。  Here, the decay direction value V2 is smaller than the video data D2 = DO = D. The value V2 is substantially the same as in the first embodiment.For example, when the point where the gradation transition amount is maximum is P1, and the point when the gradation transition amount force is P2, P1 and P2 And V is the video data D2 at point P3 when the current video data D is minimized. As with the rise method, when selecting P2, the error in the correction value is minimized in such a range that the correction amount in the correction interval does not exceed the ideal value (because it is a decay, it is less than the correction value). It is preferable to select such that
[0080] また、上記変調処理部 34aは、上記変調処理部 34と略同様である力 階調遷移が 発生しない組み合わせに対応する値を、 LUT35aから読み出す場合、現フレーム F R(k)の映像データ Dと前フレーム FR(k-l)の映像データ DOとに基づいて、階調遷 移がライズ方向かディケイ方向かを判定し、ディケイ方向のときは、当該組み合わせ に対応して LUT35aに記憶されて!ヽる 2つの値 V 1および V2のうち、ディケイ方向用 の値 V2を読み出すことができる。上記一方、ライズ方向のときは、上記両値 VIおよ び V2のうち、ライズ方向用の値 VIを読み出すことができる。 [0080] Further, the modulation processing unit 34a, when reading from the LUT 35a a value corresponding to a combination that is substantially the same as the modulation processing unit 34 and does not cause a power gradation transition, reads the video data of the current frame FR (k) Based on D and the video data DO of the previous frame FR (kl), it is determined whether the gradation transition is the rise direction or the decay direction, and if it is in the decay direction, it is stored in the LUT35a corresponding to the combination! Two values V 1 and V2 for decay direction Value V2 can be read. On the other hand, in the rise direction, the value VI for the rise direction can be read out of the both values VI and V2.
[0081] ここで、上記値 VIおよび V2を、そのまま記憶して 、てもよ 、が、本実施形態では、 記憶容量を削減するために、上記値 VIおよび V2は、現フレーム FR(k)の映像デー タ D (または前フレーム FR(k-l)の映像データ DO)に対する差分値の形態で格納さ れており、上記映像データ D (または DO)に、 LUT35から読み出した値 Viaあるいは V2aを加算したり、減算したりして、差分前の値 VIおよび V2を復元することができる Here, the values VI and V2 may be stored as they are. However, in the present embodiment, in order to reduce the storage capacity, the values VI and V2 are stored in the current frame FR (k). Is stored in the form of a difference value with respect to the video data D (or video data DO of the previous frame FR (kl)), and the value Via or V2a read from the LUT 35 is added to the video data D (or DO). Or subtract to restore the pre-difference values VI and V2
[0082] 上記構成では、第 1の実施形態と同様にライズ方向の階調遷移時の補正不足を抑 制できるだけではなぐディケイ方向の階調遷移についても、上述した補正不足を抑 制でき、上述した第 2の比較例の構成と比較して、より理想的な特性 C1に近ぐより 大きな映像データ D2を出力することができる。 [0082] With the above configuration, as described in the first embodiment, it is possible to suppress the above-described undercorrection for the gradation transition in the decay direction, which is not only possible to suppress the undercorrection at the time of the transition in the rise direction. Compared with the configuration of the second comparative example, it is possible to output larger video data D2 that is closer to the ideal characteristic C1.
[0083] なお、本実施形態でも、第 1の実施形態と同様に、階調遷移量が閾値 Lを下回った 場合、変調処理部 34aは、階調遷移を強調しないので、静止画表示時の表示品質 の低下を防止できる。  Note that in this embodiment as well, as in the first embodiment, when the gradation transition amount falls below the threshold L, the modulation processing unit 34a does not emphasize the gradation transition, so Display quality can be prevented from degrading.
[0084] 〔第 3の実施形態〕  [Third Embodiment]
本実施形態では、第 1の実施形態の LUT35と、第 2の実施形態の LUT35aとを状 況に応じて切り換え可能な構成について、図 8を参照しながら説明する。なお、 LUT に格納すべき値 (階調遷移強調の程度)を変更するトリガとしては、例えば、温度や、 表示すべき画像の種類 (動きの多 、映像か否かなど)をはじめとして、種々のトリガが 考えられるが、以下では、これらのトリガのうち、温度をトリガにして、 LUTを切り換え る場合について説明する。  In the present embodiment, a configuration capable of switching between the LUT 35 of the first embodiment and the LUT 35a of the second embodiment according to the situation will be described with reference to FIG. Note that there are various triggers for changing the value to be stored in the LUT (the degree of gradation transition emphasis), such as temperature and the type of image to be displayed (many motions, whether it is a video, etc.). In the following, we will explain the case of switching the LUT using temperature as a trigger.
[0085] より詳細には、第 2の実施形態のように、ライズ方向用の値 Viaとディケイ方向用の 値 V2aとを LUT35aに記憶すると、より理想的な特性 C1に近い映像データ D2を出 力できる一方で、 LUT35aの記憶容量を増大させることなく記憶可能な Viaおよび V 2aの値の範囲が限定されてしまう。  More specifically, when the rise direction value Via and the decay direction value V2a are stored in the LUT 35a as in the second embodiment, video data D2 closer to the ideal characteristic C1 is output. On the other hand, the range of Via and V 2a values that can be stored without increasing the storage capacity of the LUT 35a is limited.
[0086] 例えば、映像データ DOおよび Dがそれぞれ 8ビットで表現されており、し力も、 LUT 35a上に、両映像データ DOおよび Dの 1つの組み合わせに対応する値を記憶する 領域として、 8ビットの記憶領域を設けている場合に、当該記憶領域内に、上記値 VI aおよび V2aの双方を格納しょうとすると、上記値 Viaおよび V2aがそれぞれ占有可 能な記憶領域の大きさは、例えば、 4ビットずつに制限されてしまう。したがって、階調 遷移が発生する組み合わせに対応して、 LUT35aに記憶されている値 VOが取り得 る値の範囲は、 8ビットで表現可能な値の範囲(0〜255)であるのに対して、上記値 Viaおよび V2aの取り得る範囲は、 4ビットで表現可能な値の範囲(0〜16)に制限さ れてしまう。 [0086] For example, the video data DO and D are each represented by 8 bits, and the value corresponding to one combination of the video data DO and D is stored on the LUT 35a. When an 8-bit storage area is provided as an area, if both the values VIa and V2a are stored in the storage area, the size of the storage area that can be occupied by the values Via and V2a, respectively. For example, it is limited to 4 bits each. Therefore, the range of values that can be taken by the value VO stored in the LUT 35a corresponding to the combination that causes gradation transition is the range of values that can be expressed in 8 bits (0 to 255). The range of values Via and V2a is limited to the range of values (0 to 16) that can be expressed with 4 bits.
[0087] したがって、例えば、温度が比較的低い場合のように、補正量が大きい場合 (階調 遷移強調の程度が大きい場合)には、上記 LUT35aに適切な値を格納しょうとすると 、必要な記憶容量が増大し、それに伴なつて、変調駆動処理部の回路規模も増大し てしまう。  Therefore, for example, when the correction amount is large (when the degree of gradation transition emphasis is large), such as when the temperature is relatively low, it is necessary to store an appropriate value in the LUT 35a. As the storage capacity increases, the circuit scale of the modulation drive processing unit also increases.
[0088] これに対して、本実施形態に係る変調駆動処理部は、以下の場合、すなわち、補 正量が大きぐ上記 LUT35aに適切な値を格納しょうとすると、必要な記憶容量が増 大する場合には、 LUT35を用い、それ以外の場合は、 LUT35aを用いることによつ て、回路規模を余り増大させることなぐより理想的な特性 C1に近い映像データ D2を 出力できる。  On the other hand, the modulation drive processing unit according to the present embodiment increases the necessary storage capacity in the following cases, that is, when an appropriate value is stored in the LUT 35a having a large correction amount. In this case, the LUT 35 is used. In other cases, the LUT 35a can be used to output video data D2 closer to the ideal characteristic C1 without increasing the circuit scale.
[0089] 具体的には、本実施形態に係る変調駆動処理部は、第 1および第 2の実施形態の ように、温度に拘わらず、同じ LUTを用いる構成とは異なり、温度を複数の温度範囲 に区分し、現在の温度がいずれの温度範囲に属しているかによって、変調処理部が 階調遷移強調時に参照する LUTを切り換えることができる。  [0089] Specifically, the modulation drive processing unit according to this embodiment differs from the configuration in which the same LUT is used regardless of the temperature as in the first and second embodiments. Depending on which temperature range the current temperature belongs to, the modulation processing unit can switch the LUT that is referenced when emphasizing gradation transition.
[0090] より詳細には、本実施形態に係る変調駆動処理部 21は、図 8に示すように、第 1の 実施形態に係る変調駆動処理部 21と略同様の構成である力 上記 LUT35の代わり に、上記各温度範囲に対応する LUTからなる LUT群 37が設けられている。当該 LU T37を構成する複数の LUTは、 LUT35力、または、 LUT35aである。なお、 LUT3 5および 35aの個数は、いずれに設定してもよいが、 LUTのいずれかは、 LUT35で あり、 LUTの他のいずれかは、 LUT35aである。本実施形態では、以下の温度範囲 Tl、すなわち、補正量が大きぐ上記 LUT35aに適切な値を格納しょうとすると、必 要な記憶容量が増大するような温度範囲 T2には、 LUT35を対応させ、それ以外の 温度範囲には、 LUT35aを対応させている。 More specifically, as shown in FIG. 8, the modulation drive processing unit 21 according to the present embodiment has a force substantially the same as that of the modulation drive processing unit 21 according to the first embodiment. Instead, a LUT group 37 consisting of LUTs corresponding to the above temperature ranges is provided. The plurality of LUTs constituting the LU T37 are LUT35 force or LUT35a. The number of LUTs 35 and 35a may be set to any one, but one of the LUTs is LUT35, and the other of the LUTs is LUT35a. In the present embodiment, the LUT 35 is made to correspond to the following temperature range T1, that is, the temperature range T2 in which the necessary storage capacity increases if an appropriate value is stored in the LUT 35a having a large correction amount. ,Excluding that The temperature range corresponds to LUT35a.
[0091] また、本実施形態に係る変調駆動処理部 21bには、変調駆動処理部 21の構成に カロえて、図 2に示すパネル 11の温度を検出する温度センサ 36が設けられている。な お、上記温度センサ 36は、画素 PIXの温度を検出 Z推測できれば、どの位置に配 置されていてもよいが、表示に影響することなぐし力も、より正確に画素 PIXの温度 を検出 Z推測するために、画素 PIXの画素電極が設けられて 、る基板またはその対 向基板上、あるいは、カラーフィルタ上のうち、非表示領域上に設けられている方が 好ましい。 In addition, the modulation drive processing unit 21b according to the present embodiment is provided with a temperature sensor 36 that detects the temperature of the panel 11 shown in FIG. 2, in addition to the configuration of the modulation drive processing unit 21. The temperature sensor 36 may be arranged at any position as long as it can detect the temperature of the pixel PIX. However, it can detect the temperature of the pixel PIX more accurately even if it has an influence on the display. In order to estimate, it is preferable that the pixel electrode of the pixel PIX is provided and is provided on the non-display area among the substrate, the opposite substrate, or the color filter.
[0092] さらに、変調処理部 34に代えて設けられた変調処理部 34bは、温度センサ 36の検 出結果に基づいて、上記複数の LUT(35、 35a, ···)のうち、現時点で、階調遷移強 調時に参照する LUTを選択し、当該 LUTに格納されている値に基づいて、補正後 の映像データ D2を出力することができる。  [0092] Further, the modulation processing unit 34b provided in place of the modulation processing unit 34 is based on the detection result of the temperature sensor 36, and at the present time among the plurality of LUTs (35, 35a, ...). It is possible to select the LUT to be referred to during gradation transition enhancement and output the corrected video data D2 based on the value stored in the LUT.
[0093] また、変調処理部 34bは、選択した LUT力 SLUT35aの場合は、第 2の実施形態に 係る変調処理部 34aと同様に動作して、映像データ D2を出力できる。一方、選択し た LUT力LUT35の場合は、第 1の実施形態に係る変調処理部 34と同様に動作し て、映像データ D2を出力できる。  [0093] Further, in the case of the selected LUT force SLUT 35a, the modulation processing unit 34b operates in the same manner as the modulation processing unit 34a according to the second embodiment, and can output the video data D2. On the other hand, in the case of the selected LUT force LUT 35, the video data D2 can be output by operating in the same manner as the modulation processing unit 34 according to the first embodiment.
[0094] 上記構成では、温度センサ 36の検出結果力 温度範囲 T1を示している場合、変 調処理部 34bは、 LUT35を参照して、補正後の映像データ D2を生成しているので 、複数の LUTの全てが LUT35aである場合と異なって、以下の温度範囲、すなわち 、補正量が大きく上記 LUT35aに適切な値を格納しょうとすると、必要な記憶容量が 増大するような温度範囲であっても、 LUTに必要な記憶容量を増大させることなぐ ライズ方向の階調遷移時の補正不足を抑制できる。一方、本実施形態では、 LUTの うち、少なくとも 1つが LUT35aなので、全てが LUT35の場合と比較して、より理想 的な特性 C1に近い映像データ D2を出力できる。この結果、回路規模を余り増大さ せることなぐより理想的な特性 C1に近い映像データ D2を出力でき、表示品質を向 上させることができる。  [0094] In the above configuration, when the detection result force temperature range T1 of the temperature sensor 36 is indicated, the modulation processing unit 34b generates the corrected video data D2 with reference to the LUT 35. Unlike the case where all of the LUTs are LUT35a, the following temperature range, that is, a temperature range that increases the amount of correction and attempts to store an appropriate value in the LUT35a increases the required storage capacity. However, it is possible to suppress insufficient correction at the time of gradation transition in the rise direction without increasing the storage capacity required for the LUT. On the other hand, in this embodiment, since at least one of the LUTs is the LUT 35a, the video data D2 closer to the ideal characteristic C1 can be output compared to the case where all of the LUTs are the LUT 35a. As a result, it is possible to output video data D2, which is closer to the ideal characteristic C1, without increasing the circuit scale, and to improve the display quality.
[0095] なお、上記各実施形態では、垂直配向モードかつノーマリーブラックモードの液晶 セルを表示素子として用いた場合を例にして説明した力 これに限るものではない。 液晶表示装置であれば、一般に、階調差が大きい程、応答のために液晶分子に与 える必要のあるトルク、あるいは、応答時に液晶分子に与えられるトルクが大きくなり、 移動距離が大きくなる程、観察される応答時間は、短くなる。したがって、変調処理部 が直線補間によって上記映像データを生成する構成の場合、階調差が小さくなる〖こ 従って、補正が不足し、階調遷移量に対する、補間によって生成した映像データ D2 と、理想的な映像データ D2の値との差の比率が大きくなる傾向にある。この結果、液 晶表示装置であれば、上記各実施形態と同様の効果が得られる。 In each of the above embodiments, the force described using the case where a liquid crystal cell of vertical alignment mode and normally black mode is used as a display element is not limited to this. In the case of a liquid crystal display device, in general, the larger the gradation difference, the greater the torque that must be applied to the liquid crystal molecules for response, or the torque that is applied to the liquid crystal molecules during response, and the greater the travel distance. The observed response time is shortened. Therefore, if the modulation processing unit generates the above video data by linear interpolation, the gradation difference will be small.Therefore, the correction will be insufficient, and the video data D2 generated by interpolation with respect to the gradation transition amount will be ideal. The ratio of difference from the value of typical video data D2 tends to increase. As a result, if it is a liquid crystal display device, the same effects as those of the above embodiments can be obtained.
[0096] また、液晶表示素子でなくても、画素の応答速度が比較的遅!、ために、大きな補正 が必要であり、し力も、補正値 (補正前の映像データ Dの値と補正後の映像データ D 2の値との差)が階調遷移量に依存して大きく変化する表示素子であれば、略同様の 効果が得られる。 [0096] Even if it is not a liquid crystal display device, the response speed of the pixels is relatively slow, so a large correction is required, and the force is also a correction value (the value of video data D before correction and the value after correction). If the display element has a large difference depending on the gradation transition amount, the same effect can be obtained.
[0097] なお、上記各実施形態では、変調駆動処理部を構成する各部材がハードウェアの みで実現されている場合を例にして説明した力 これに限るものではない。各部材の 全部または一部を、上述した機能を実現するためのプログラムと、そのプログラムを実 行するハードウェア (コンピュータ)との組み合わせで実現してもよい。一例として、画 像表示装置 1に接続されたコンピュータが、画像表示装置 1を駆動する際に使用され るデバイスドライバとして、変調駆動処理部(21〜21b)を実現してもよい。また、画像 表示装置 1に内蔵あるいは外付けされる変換基板として、変調駆動処理部が実現さ れ、ファームウェアなどのプログラムの書き換えによって、当該変調駆動処理部を実 現する回路の動作を変更できる場合には、当該ソフトウェアが記録された記録媒体を 配布したり、当該ソフトウェアを通信路を介して伝送するなどして、当該ソフトウェアを 配布し、上記ハードウェアに、そのソフトウェアを実行させることによって、当該ハード ウェアを、上記各実施形態の変調駆動処理部として動作させてもょ 、。  In the above embodiments, the force described by taking as an example the case where each member constituting the modulation drive processing unit is realized only by hardware is not limited to this. You may implement | achieve all or one part of each member with the combination of the program for implement | achieving the function mentioned above, and the hardware (computer) which performs the program. As an example, the computer connected to the image display device 1 may realize the modulation drive processing unit (21 to 21b) as a device driver used when driving the image display device 1. In addition, when a modulation drive processing unit is realized as a conversion board built in or externally attached to the image display device 1, and the operation of a circuit that realizes the modulation drive processing unit can be changed by rewriting a program such as firmware. For example, by distributing a recording medium on which the software is recorded or transmitting the software via a communication path, the software is distributed to the hardware and the software is executed. The hardware may be operated as the modulation drive processing unit in each of the above embodiments.
[0098] これらの場合は、上述した機能を実行可能なハードウェアが用意されていれば、当 該ハードウェアに、上記プログラムを実行させるだけで、上記各実施形態に係る変調 駆動処理部を実現できる。  [0098] In these cases, if hardware capable of executing the functions described above is prepared, the modulation drive processing unit according to each of the above embodiments is realized by causing the hardware to execute the program. it can.
[0099] より詳細に説明すると、ソフトウェアを用いて実現する場合、 CPU,あるいは、上述 した機能を実行可能なハードウェアなど力 なる演算手段力 ROMや RAMなどの 記憶装置に格納されたプログラムコードを実行し、図示しない入出力回路などの周辺 回路を制御することによって上記各実施形態に係る変調駆動処理部 21〜21bを実 現できる。 [0099] In more detail, when implemented using software, a powerful computing means such as a CPU or hardware capable of executing the functions described above, such as ROM and RAM By executing the program code stored in the storage device and controlling peripheral circuits such as an input / output circuit (not shown), the modulation drive processing units 21 to 21b according to the above embodiments can be realized.
[0100] この場合、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処 理を行うプログラムコードを実行する上記演算手段とを組み合わせても実現すること もできる。さらに、上記各部材のうち、ハードウ アとして説明した部材であっても、処 理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプロダラ ムコードを実行する上記演算手段とを組み合わせても実現することもできる。なお、上 記演算手段は、単体であってもよいし、装置内部のノ スや種々の通信路を介して接 続された複数の演算手段が共同してプログラムコードを実行してもよい。  [0100] In this case, it can also be realized by combining hardware that performs a part of the processing and the above-described arithmetic means that executes the program code for controlling the hardware and the remaining processing. Further, among the above-described members, even the members described as hardware, the hardware for performing a part of the processing, and the arithmetic means for executing the program code for controlling the hardware and the remaining processing It can also be realized by combining. The arithmetic means may be a single unit, or a plurality of arithmetic means connected via a nose inside the apparatus or various communication paths may execute the program code jointly.
[0101] 上記演算手段によって直接実行可能なプログラムコード自体、または、後述する解 凍などの処理によってプログラムコードを生成可能なデータとしてのプログラムは、当 該プログラム(プログラムコードまたは上記データ)を記録媒体に格納し、当該記録媒 体を配付したり、あるいは、上記プログラムを、有線または無線の通信路を介して伝 送するための通信手段で送信したりして配付され、上記演算手段で実行される。  [0101] The program code itself that can be directly executed by the computing means, or a program as data that can generate the program code by a process such as unzipping described later, is stored in the recording medium. And the recording medium is distributed, or the program is transmitted by a communication means for transmitting via a wired or wireless communication path, and is executed by the arithmetic means. The
[0102] なお、通信路を介して伝送する場合、通信路を構成する各伝送媒体が、プログラム を示す信号列を伝搬し合うことによって、当該通信路を介して、上記プログラムが伝 送される。また、信号列を伝送する際、送信装置が、プログラムを示す信号列により 搬送波を変調することによって、上記信号列を搬送波に重畳してもよい。この場合、 受信装置が搬送波を復調することによって信号列が復元される。一方、上記信号列 を伝送する際、送信装置が、デジタルデータ列としての信号列をパケット分割して伝 送してもよい。この場合、受信装置は、受信したパケット群を連結して、上記信号列を 復元する。また、送信装置が、信号列を送信する際、時分割 Z周波数分割 Z符号分 割などの方法で、信号列を他の信号列と多重化して伝送してもよい。この場合、受信 装置は、多重化された信号列から、個々の信号列を抽出して復元する。いずれの場 合であっても、通信路を介してプログラムを伝送できれば、同様の効果が得られる。  [0102] In the case of transmission via a communication path, each transmission medium constituting the communication path propagates a signal sequence indicating a program, whereby the program is transmitted via the communication path. . Further, when transmitting the signal sequence, the transmission device may superimpose the signal sequence on the carrier by modulating the carrier with the signal sequence indicating the program. In this case, the signal sequence is restored by the receiving apparatus demodulating the carrier wave. On the other hand, when transmitting the signal sequence, the transmission device may divide the signal sequence as a digital data sequence and transmit it. In this case, the receiving apparatus concatenates the received packet groups and restores the signal sequence. Further, when transmitting a signal sequence, the transmission device may multiplex and transmit the signal sequence with another signal sequence by a method such as time division Z frequency division Z code division. In this case, the receiving apparatus extracts and restores individual signal sequences from the multiplexed signal sequence. In either case, the same effect can be obtained if the program can be transmitted via the communication channel.
[0103] ここで、プログラムを配付する際の記録媒体は、取外し可能である方が好ましいが、 プログラムを配付した後の記録媒体は、取外し可能か否かを問わない。また、上記記 録媒体は、プログラムが記憶されていれば、書換え (書き込み)可能か否か、揮発性 か否か、記録方法および形状を問わない。記録媒体の一例として、磁気テープや力 セットテープなどのテープ、あるいは、フロッピー(登録商標)ディスクゃノヽードディスク などの磁気ディスク、または、 CD— ROMや光磁気ディスク(MO)、ミニディスク(MD )やデジタルビデオディスク(DVD)などのディスクが挙げられる。また、記録媒体は、 ICカードや光カードのようなカード、あるいは、マスク ROMや EPROM、 EEPROM またはフラッシュ ROMなどのような半導体メモリであってもよい。あるいは、 CPUなど の演算手段内に形成されたメモリであってもよい。 Here, it is preferable that the recording medium when the program is distributed be removable, but it does not matter whether the recording medium after the program is distributed is removable. In addition, the above As long as the program is stored in the recording medium, it does not matter whether it is rewritable (writeable), volatile, recording method and shape. Examples of recording media include magnetic tapes, force set tapes, etc., floppy disks (registered trademark), magnetic disks, such as node disks, CD-ROMs, magneto-optical disks (MO), and mini disks (MD). And digital video disc (DVD) discs. The recording medium may be a card such as an IC card or an optical card, or a semiconductor memory such as a mask ROM, EPROM, EEPROM, or flash ROM. Alternatively, it may be a memory formed in a calculation means such as a CPU.
[0104] なお、上記プログラムコードは、上記各処理の全手順を上記演算手段へ指示する コードであってもよいし、所定の手順で呼び出すことで、上記各処理の一部または全 部を実行可能な基本プログラム (例えば、オペレーティングシステムやライブラリなど) が既に存在して 、れば、当該基本プログラムの呼び出しを上記演算手段へ指示する コードやポインタなどで、上記全手順の一部または全部を置き換えてもよ 、。  [0104] The program code may be a code for instructing the arithmetic means of all procedures of the processes, or a part or all of the processes may be executed by calling according to a predetermined procedure. If a possible basic program (for example, operating system or library) already exists, replace all or part of the above procedure with code or pointers that instruct the arithmetic means to call the basic program. Anyway.
[0105] また、上記記録媒体にプログラムを格納する際の形式は、例えば、実メモリに配置 した状態のように、演算手段がアクセスして実行可能な格納形式であってもよ 、し、 実メモリに配置する前で、演算手段が常時アクセス可能なローカルな記録媒体 (例え ば、実メモリゃノヽードディスクなど)にインストールした後の格納形式、あるいは、ネット ワークや搬送可能な記録媒体などから上記ローカルな記録媒体にインストールする 前の格納形式などであってもよい。また、プログラムは、コンノィル後のオブジェクトコ ードに限るものではなぐソースコードや、インタプリトまたはコンパイルの途中で生成 される中間コードとして格納されていてもよい。いずれの場合であっても、圧縮された 情報の解凍、符号化された情報の復号、インタプリト、コンパイル、リンク、または、実 メモリへの配置などの処理、あるいは、各処理の組み合わせによって、上記演算手段 が実行可能な形式に変換可能であれば、プログラムを記録媒体に格納する際の形 式に拘わらず、同様の効果を得ることができる。  [0105] Further, the format for storing the program in the recording medium may be a storage format that can be accessed and executed by the arithmetic means, for example, in a state where the program is stored in the real memory. From the storage format after installation on a local recording medium that is always accessible by the computing means (for example, real memory or a node disk) before being placed in the memory, or from a network or transportable recording medium. It may be the storage format before installing on a local recording medium. In addition, the program may be stored as source code that is not limited to the object code after con- taining, or as intermediate code generated during interpretation or compilation. In any case, the above calculation is performed by a process such as decompression of compressed information, decoding of encoded information, interpretation, compilation, linking, allocation to real memory, or a combination of processes. If the means can be converted into an executable format, the same effect can be obtained regardless of the format in which the program is stored in the recording medium.
[0106] 以上のように、上記各実施形態のいずれかに係る映像データ処理装置 (例えば、 信号処理部 21 ' 21a〜21bなど)は、繰り返し入力されている、ある画素の階調を示 す映像データを、次回まで記憶する映像データ記憶装置 (例えば、フレームメモリ 31 など)と、上記映像データ記憶装置力 読み出した前回の映像データと今回の映像 データとに基づいて、前回の映像データの示す階調から、今回の映像データの示す 階調への階調遷移を強調するように補正された補正後映像データを出力可能な補 正手段とを備え、上記補正手段は、上記前回および今回の映像データの取り得る値 の組み合わせのうち、予め定められた一部の組み合わせに対応して、当該組み合わ せに対応する補正後映像データを決定するためのノ メータが格納されたパラメ一 タ記憶装置 (例えば、 LUT35 ' 35aなど)と、入力された上記両映像データの示す階 調同士の差が予め定められた閾値を超えており、しかも、当該両映像データの値の 組み合わせである入力組み合わせに対応するパラメータ力 上記パラメータ記憶装 置に格納されていない場合は、上記パラメータ記憶装置から、複数のパラメータを読 み出し、これらのパラメータに基づく補間演算によって、上記入力組み合わせに対応 するパラメータを算出して上記補正後映像データを生成すると共に、閾値を超えてい ない場合は、今回の映像データを補正せずに出力する補間手段 (例えば、変調処理 部 34 ' 34a〜34bなど)とを備え、上記パラメータ記憶装置には、上記予め定められ た一部の組み合わせのうち、組み合わせを構成する値の示す階調同士が互いに同 じである特定の組み合わせに対応するパラメータとして、当該パラメータによって決 定される補正後映像データの示す階調が当該特定の組み合わせを構成する値の示 す階調のいずれでもなぐしカゝも、上記入力組み合わせを構成する値の示す階調同 士の差が上記閾値を超えている場合に上記補間演算によって当該入力組み合わせ に対応するパラメータを算出するためのパラメータが記憶されていることを特徴として いる。 [0106] As described above, the video data processing apparatus (for example, the signal processing units 21 '21a to 21b) according to any of the above-described embodiments shows the gradation of a certain pixel that is repeatedly input. Video data storage device that stores video data until next time (for example, frame memory 31 Etc.) and the above video data storage device power The gradation transition from the gradation indicated by the previous video data to the gradation indicated by the current video data is based on the read previous video data and the current video data. Correction means capable of outputting corrected video data corrected to be emphasized, and the correction means includes a predetermined part of a combination of values that can be taken by the previous and current video data. Corresponding to the combination, a parameter storage device (for example, LUT35'35a, etc.) that stores a parameter for determining the corrected video data corresponding to the combination, and both of the input video data The parameter force corresponding to the input combination that is a combination of the values of the two video data, and the difference between the gradations to be displayed exceeds a predetermined threshold value. If it is not stored, a plurality of parameters are read from the parameter storage device, parameters corresponding to the input combination are calculated by interpolation based on these parameters, and the corrected video data is generated. When the threshold value is not exceeded, an interpolation means (for example, the modulation processing units 34 ′ 34a to 34b etc.) that outputs the current video data without correction is provided, and the parameter storage device stores the above-described predetermined value. Among the combinations, the gradation indicated by the corrected video data determined by the parameter is a parameter corresponding to a specific combination in which the gradations indicated by the values constituting the combination are the same. In any of the gradations indicated by the values that make up a particular combination, Nagashi Kaji is also the level indicated by the values that make up the input combination. Difference in the mechanic have a feature that the parameters for calculating the parameters corresponding to the input combination by the interpolation operation when it exceeds the threshold value are stored.
[0107] 上記構成では、入力された上記両映像データの示す階調同士の差が予め定めら れた閾値を超えている場合、映像データ処理装置は、階調遷移が強調された補正 後映像データを出力できるので、映像データを表示する表示装置の画素の応答速 度を向上できる。  [0107] In the above configuration, when the difference between the gray levels indicated by the input video data exceeds a predetermined threshold value, the video data processing device corrects the corrected video in which the gray level transition is emphasized. Since the data can be output, the response speed of the pixel of the display device that displays the video data can be improved.
[0108] また、上記補間手段は、階調遷移の量が閾値を超えていない場合には、階調遷移 強調を行わないので、以下の不具合、すなわち、静止画を表示している場合に、例 えば、ノイズなどの影響によって僅かに発生する階調遷移を強調して、不所望な階調 遷移がユーザに視認されてしまうという不具合の発生を防止できる。 [0108] Further, since the interpolation means does not perform gradation transition emphasis when the amount of gradation transition does not exceed the threshold, the following problem, that is, when displaying a still image, For example, tones that slightly change due to noise or other effects are emphasized, Generation | occurrence | production of the malfunction that a transition will be visually recognized by the user can be prevented.
[0109] さらに、上記パラメータ記憶装置には、今回および前回の映像データの取り得る値 の組み合わせのうち、一部分の組み合わせに対応するパラメータのみが記憶され、 残余の組み合わせに対応するパラメータは、補間演算によって算出されるので、全て の組み合わせに対応するパラメータをパラメータ記憶装置に格納するよりも、回路規 模を大幅に削減できる。  [0109] Furthermore, the parameter storage device stores only the parameters corresponding to a part of the combinations of values that can be taken by the current and previous video data, and the parameters corresponding to the remaining combinations are interpolated. Therefore, the circuit size can be greatly reduced compared to storing parameters corresponding to all combinations in the parameter storage device.
[0110] また、上記パラメータ記憶装置には、上記特定の組み合わせに対応して、以下のパ ラメータ、すなわち、当該パラメータによって決定される補正後映像データの示す階 調が当該特定の組み合わせを構成する値の示す階調のいずれでもなぐしかも、上 記入力組み合わせを構成する値の示す階調同士の差が上記閾値を超えている場合 に上記補間演算によって当該入力組み合わせに対応するパラメータを算出するため のパラメータが格納されている。したがって、階調遷移が発生しない特定の組み合わ せに対応して、特定の組み合わせを構成する値の示す階調の 、ずれかを記憶する 構成と比較して、補間演算を用いた近似に起因する誤差を低減でき、表示装置に表 示した場合の表示品質を向上できる。  [0110] Further, in the parameter storage device, the following parameters, that is, the gradations indicated by the corrected video data determined by the parameters constitute the specific combination corresponding to the specific combination. In order to calculate the parameter corresponding to the input combination by the interpolation operation when the difference between the gradations indicated by the values constituting the input combination exceeds the threshold value in addition to any of the gradations indicated by the value. The parameters are stored. Therefore, corresponding to a specific combination in which no gradation transition occurs, it is caused by approximation using an interpolation operation as compared with a configuration in which the shift of the gradation indicated by the value constituting the specific combination is stored. The error can be reduced, and the display quality when displayed on the display device can be improved.
[0111] これらの結果、回路規模の縮小と表示品質の向上とを、より高いレベルでバランスさ せた表示装置を実現することができる。  [0111] As a result, it is possible to realize a display device that balances reduction in circuit scale and improvement in display quality at a higher level.
[0112] なお、上記特定の組み合わせに対応して、上記のようなパラメータを記憶している 場合、階調遷移の量が閾値以下のときに補間演算を用いると、補間演算を用いた近 似に起因する誤差が大きくなる可能性がある。ただし、上記補間手段は、階調遷移 の量が閾値を超えていない場合には、階調遷移強調を行わない。したがって、階調 遷移の量が閾値以下の場合には、当該誤差が発生せず、当該誤差に起因する表示 品質の低下を防止できる。  [0112] When the parameters as described above are stored corresponding to the specific combination, if the interpolation calculation is used when the amount of gradation transition is equal to or less than the threshold value, the approximation using the interpolation calculation is used. There is a possibility that an error caused by the error becomes large. However, the interpolation means does not perform gradation transition enhancement when the amount of gradation transition does not exceed the threshold value. Therefore, when the amount of gradation transition is less than or equal to the threshold value, the error does not occur, and the deterioration in display quality due to the error can be prevented.
[0113] また、上記構成に加えて、上記パラメータ記憶装置は、上記特定の組み合わせに 対応するパラメータとして、上記入力された前回の映像データの示す第 1階調よりも、 上記入力された今回の映像データの示す第 2階調の方が明るい場合の第 1パラメ一 タと、暗い場合の第 2パラメータとを備え、上記補間手段は、上記特定の組み合わせ に対応するパラメータを上記パラメータ記憶装置から読み出す場合、上記第 1階調よ りも第 2階調が明るい場合は、上記第 1パラメータを読み出し、暗い場合は、上記第 2 ノラメータを読み出してもよ ヽ。 [0113] Further, in addition to the configuration described above, the parameter storage device may input the current input as a parameter corresponding to the specific combination rather than the first gradation indicated by the input previous video data. A first parameter when the second gradation indicated by the video data is brighter, and a second parameter when the second gradation is dark, and the interpolation means sends a parameter corresponding to the specific combination from the parameter storage device. When reading, the above first gradation If the second gradation is brighter, the first parameter may be read. If it is darker, the second parameter may be read.
[0114] 当該構成では、上記特定の組み合わせに対応して、 2つのパラメータが格納されて いるので、画素の輝度が増加する階調遷移の場合と、画素の輝度が低下する階調 遷移の場合との双方において、以下の構成、すなわち、階調遷移が発生しない特定 の組み合わせに対応して、特定の組み合わせを構成する値の示す階調の!、ずれか を記憶する構成と比較して、補間演算を用いた近似に起因する誤差を低減でき、表 示品質を向上できる。  [0114] In this configuration, two parameters are stored corresponding to the above specific combination, so that the gradation transition in which the pixel brightness increases and the gradation transition in which the pixel brightness decreases In comparison with the following configuration, that is, the configuration storing the gradations indicated by the values constituting the specific combination corresponding to the specific combination in which the gradation transition does not occur! Errors due to approximation using interpolation operations can be reduced, and display quality can be improved.
[0115] さらに、上記構成に加え、上記各パラメータは、上記補正後の映像データの階調を 示し、上記第 1および第 2パラメータは、今回の映像データの示す階調と、上記パラメ ータとしての補正後映像データの示す階調との差分を示すものであって、上記補間 手段は、第 1または第 2パラメータを読み出した場合、当該第 1または第 2パラメータと 上記今回の映像データとに基づいて、上記特定の組み合わせに対応するパラメータ を復元してもよい。  [0115] Further, in addition to the above configuration, each of the parameters indicates the gradation of the corrected video data, and the first and second parameters include the gradation indicated by the current video data and the parameters. When the first or second parameter is read out, the interpolation means reads the first or second parameter and the current video data and Based on the above, the parameter corresponding to the specific combination may be restored.
[0116] 当該構成では、上記各パラメータは、上記補正後の映像データの階調を示し、第 1 および第 2パラメータが差分値として格納されている。ここで、第 1および第 2パラメ一 タを記憶する場合、すなわち、僅かな量の階調遷移しカゝ発生しない場合には、他の、 より大きな量の階調遷移が発生する場合と比較して、補正後の映像データと、前回お よび今回の映像データとの差が小さくなつている。したがって、補正後の映像データ を示すパラメータではなぐ補正後の映像データと、前回または今回の映像データと の差を示すパラメータを記憶することによって、第 1および第 2パラメータの格納に必 要な記憶領域の大きさを削減できる。この結果、第 1および第 2パラメータとして、補 正後の映像データ自体を記憶する場合と比較して、映像データ処理装置の回路規 模を削減できる。  [0116] In this configuration, each parameter indicates the gradation of the corrected video data, and the first and second parameters are stored as difference values. Here, when the first and second parameters are stored, that is, when a slight amount of gradation transition occurs and no color is generated, it is compared with the case where a larger amount of gradation transition occurs. Thus, the difference between the corrected video data and the previous and current video data is getting smaller. Therefore, by storing a parameter indicating the difference between the corrected video data and the previous or current video data, not the parameters indicating the corrected video data, the memory necessary for storing the first and second parameters is stored. The size of the area can be reduced. As a result, the circuit size of the video data processing apparatus can be reduced as compared with the case where the corrected video data itself is stored as the first and second parameters.
[0117] 一方、本発明に係る映像データ処理装置は、上記構成に加え、上記各パラメータ は、上記補正後の映像データの階調を示すものであり、上記パラメータ記憶装置に は、上記特定の組み合わせに対応するパラメータとして、上記入力された前回の映 像データの示す第 1階調よりも、上記入力された今回の映像データの示す第 2階調 の方が明るい場合と暗い場合とのうち、予め定められた場合のパラメータのみが記憶 されており、上記補間手段は、上記特定の組み合わせに対応するパラメータを取得 する際、上記予め定められた場合は、上記パラメータ記憶装置力 パラメータを読み 出し、そうでない場合は、今回の映像データを当該特定の組み合わせに対応するパ ラメータとして使用することを特徴として 、る。 [0117] On the other hand, in the video data processing device according to the present invention, in addition to the above configuration, each of the parameters indicates the gradation of the video data after the correction. The parameter storage device includes the specific data As a parameter corresponding to the combination, the second gradation indicated by the inputted current video data is more than the first gradation indicated by the inputted previous video data. Only the parameters for the predetermined case between the brighter case and the darker case are stored, and the interpolation means obtains the parameter corresponding to the specific combination when the predetermined case is obtained. Is characterized in that the parameter storage device power parameter is read, and if not, the current video data is used as a parameter corresponding to the specific combination.
[0118] 当該構成では、上記入力された今回の映像データの示す第 2階調の方が明るい場 合と暗い場合とのうち、予め定められた方ではない場合は、今回の映像データが、当 該特定の組み合わせに対応するパラメータとして使用される。したがって、双方の場 合で、適切なパラメータが互いに異なっており、一方のパラメータとして他方のパラメ ータを使用すると、ノ ラメータとして、今回の映像データを示す値を使用した場合より も、表示品質が低下するときであっても、表示品質の低下の程度を、以下の構成、す なわち、階調遷移が発生しない特定の組み合わせに対応して、特定の組み合わせを 構成する値の示す階調のいずれかを記憶する構成と同様に維持することができる。 この結果、上記双方の場合の一方における表示品質の低下を抑制しながら、他方に おける表示品質を向上できる。  [0118] In this configuration, if the second gradation indicated by the input current video data is brighter or darker than the predetermined one, the current video data is It is used as a parameter corresponding to the specific combination. Therefore, in both cases, the appropriate parameters are different from each other. When the other parameter is used as one parameter, the display quality is higher than when the value indicating the current video data is used as the parameter. Even when the image quality is reduced, the degree of display quality degradation corresponds to the following configuration, that is, the gray level indicated by the value constituting the specific combination corresponding to the specific combination in which no gray level transition occurs. Any of the above can be maintained in the same manner as the configuration for storing any of the above. As a result, it is possible to improve the display quality in the other while suppressing the deterioration of the display quality in one of the above cases.
[0119] また、上記各実施形態のいずれかに係る表示装置の駆動装置 (例えば、画像表示 装置 1 · la〜: Lbなど)は、以上のように、繰り返し入力されている、ある画素の階調を 示す映像データを補正して出力する補正手段 (例えば、信号処理部 21 · 21a〜21b など)と、補正後の映像データに応じた信号を上記画素に接続されたデータ信号線 へ出力する出力手段 (例えば、データ信号線駆動回路 3など)とを含む表示装置であ つて、上記繰り返し入力されている、補正前の映像データを D (n— 1)、 D (n)とし、そ れに対応する補正後の映像データを、 D2 (n— 1)、 D2 (n)とする場合、上記補正手 段は、補正前の映像データの階調遷移量が予め定められた閾値 Lよりも大きいとき、 上記補正後の映像データ D2 (n)として、 D2 (n) = a + k'〔(D (n— 1) D (n)〕 を出力し、上記補正手段は、補正前の映像データの階調遷移量が上記閾値 Lに満 たないとき、上記補正後の映像データ D2 (n)として、 D2 (n) =D (n)を出力すると共 に、上記 aは、 D (n)と異なる値に設定されていることを特徴としている。 In addition, the display device driving device (for example, the image display device 1 · la˜: Lb or the like) according to any one of the above-described embodiments has a pixel level repeatedly input as described above. Correcting means for correcting and outputting video data indicating a key (for example, signal processing units 21 · 21a to 21b) and outputting a signal corresponding to the corrected video data to the data signal line connected to the pixel A display device including output means (for example, the data signal line driving circuit 3), and the video data before correction, which has been repeatedly input, is defined as D (n-1) and D (n). Is D2 (n-1) and D2 (n), the above correction means allows the amount of gradation transition of the video data before correction to be greater than a predetermined threshold L. is greater, as the video data D2 (n) of the corrected, D2 a (n) = a + k '[(D (n- 1) D ( n) ] When the gradation transition amount of the video data before correction does not reach the threshold value L, the correction means sets D2 (n) = D (n) as the corrected video data D2 (n). In addition to output, a is characterized in that it is set to a value different from D (n).
[0120] 当該構成では、補正前の映像データの階調遷移量が予め定められた閾値しよりも 大きいとき、上記補正後の映像データ D2 (n)として、 D2 (n) = a + k'〔(D (n— 1 )一 D (n)〕が出力され、補正前の映像データの階調遷移量が上記閾値 Lに満たない とき、上記補正後の映像データ D2 (n)として、 D2 (n) =D (n)が出力される。また、 上記 αは、 D (η)と異なる値に設定されて 、る。 [0120] In this configuration, the gradation transition amount of the video data before correction is more than a predetermined threshold value. When it is large, D2 (n) = a + k '[(D (n-1) 1 D (n)] is output as the corrected video data D2 (n), and the gradation of the video data before correction is output. When the transition amount is less than the threshold value L, D2 (n) = D (n) is output as the corrected video data D2 (n), and α is a value different from D (η). Is set to
[0121] したがって、上記映像データ処理装置と同様、以下の構成、すなわち、階調遷移が 発生しな!、特定の組み合わせに対応して、特定の組み合わせを構成する値の示す 階調のいずれかを記憶する構成と比較して、補間演算を用いた近似に起因する誤 差を低減でき、表示装置に表示した場合の表示品質を向上できる。この結果、回路 規模の縮小と表示品質の向上とを、より高いレベルでバランスさせた表示装置を実現 することができる。 [0121] Therefore, as with the video data processing apparatus, any of the following configurations, that is, gradation transition does not occur !, any of the gradations indicated by the values constituting the specific combination corresponding to the specific combination: Compared with a configuration that stores information, errors caused by approximation using interpolation calculation can be reduced, and display quality when displayed on a display device can be improved. As a result, it is possible to realize a display device that balances reduction in circuit scale and improvement in display quality at a higher level.
[0122] さらに、上記各実施形態のいずれかに係る液晶表示装置 (例えば、画像表示装置 1 · la〜: Lbなど)は、上記構成のいずれかの映像データ処理装置と、当該映像デー タ処理装置力 の補正後映像データによって駆動される液晶表示パネル (例えば、 パネル 11など)とを備えていることを特徴としている。したがって、上記映像データ処 理装置と同様に、回路規模を余り増加させることなく表示品質を向上させることができ 、回路規模の縮小と表示品質の向上とを、より高いレベルでバランスさせた液晶表示 装置を実現することができる。  Furthermore, the liquid crystal display device according to any of the above embodiments (for example, the image display device 1 · la˜: Lb, etc.) includes the video data processing device having the above-described configuration and the video data processing. It is characterized by having a liquid crystal display panel (for example, panel 11 etc.) driven by video data after correcting the device power. Therefore, similar to the above video data processing apparatus, the display quality can be improved without increasing the circuit scale so much, and the liquid crystal display that balances the reduction of the circuit scale and the improvement of the display quality at a higher level. An apparatus can be realized.
[0123] また、上記構成に加えて、上記液晶表示装置は、テレビジョン放送の受像機であつ てもよいし、液晶モニタ装置であってもよい。上述したように、上記映像データ処理装 置を有する液晶表示装置は、回路規模の縮小と表示品質の向上とを、より高いレべ ルでバランスさせることができる。したがって、テレビジョン放送の受像機、あるいは、 液晶モニタ装置として、好適に使用できる。  [0123] In addition to the above configuration, the liquid crystal display device may be a television broadcast receiver or a liquid crystal monitor device. As described above, the liquid crystal display device having the video data processing device can balance the reduction in circuit scale and the improvement in display quality at a higher level. Therefore, it can be suitably used as a television broadcast receiver or a liquid crystal monitor device.
[0124] ところで、上記映像データ処理装置は、ハードウェアで実現してもよ!/、し、プロダラ ムをコンピュータに実行させることによって実現してもよい。具体的には、本発明に係 るプログラムは、上記 、ずれかの映像データ処理装置を構成する各記憶装置を有す るコンピュータを、当該映像データ処理装置を構成する各手段として動作させるプロ グラムであり、本発明に係る記録媒体には、当該プログラムが記録されている。  Incidentally, the video data processing device may be realized by hardware! /, Or may be realized by causing a computer to execute a program. Specifically, a program according to the present invention is a program that causes a computer having each storage device that constitutes one of the above video data processing devices to operate as each means that constitutes the video data processing device. The program is recorded on the recording medium according to the present invention.
[0125] これらのプログラムがコンピュータによって実行されると、当該コンピュータは、上記 映像データ処理装置として動作する。したがって、上記映像データ処理装置と同様 に、回路規模を余り増加させることなく表示品質を向上させることができ、回路規模の 縮小と表示品質の向上とを、より高いレベルでバランスさせた表示装置を実現するこ とがでさる。 [0125] When these programs are executed by a computer, the computer Operates as a video data processing device. Therefore, similar to the above video data processing device, the display quality can be improved without significantly increasing the circuit scale, and a display device that balances the reduction of the circuit scale and the improvement of the display quality at a higher level. It can be realized.
[0126] なお、発明の詳細な説明の項においてなされた具体的な実施態様または実施例は 、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にの み限定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する特許 請求事項の範囲内で、いろいろと変更して実施することができるものである。 産業上の利用の可能性  It should be noted that the specific embodiments or examples made in the detailed description of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples. Accordingly, various modifications may be made within the spirit of the present invention and the scope of the following claims, which should not be interpreted in a narrow sense. Industrial applicability
[0127] 本発明によれば、回路規模を余り増大させることなぐ階調遷移が殆どない場合に おいて補間演算を用いた近似に起因する誤差を低減できるので、回路規模の縮小と 表示品質の向上とを、より高いレベルでバランスさせた表示装置を実現することがで きる。したがって、例えば、液晶テレビジョン受像機や液晶モニタ装置に設けられる映 像データ処理装置をはじめとして、種々の表示装置のための映像データ処理装置と して、広く使用できる。 [0127] According to the present invention, it is possible to reduce errors caused by approximation using interpolation calculation in the case where there is almost no gradation transition without excessively increasing the circuit scale, so that the circuit scale can be reduced and the display quality can be reduced. A display device in which improvement is balanced at a higher level can be realized. Therefore, for example, it can be widely used as a video data processing device for various display devices including a video data processing device provided in a liquid crystal television receiver or a liquid crystal monitor device.

Claims

請求の範囲 The scope of the claims
[1] 繰り返し入力されている、ある画素の階調を示す映像データを、次回まで記憶する 映像データ記憶装置と、  [1] A video data storage device that repeatedly stores video data indicating the gradation of a certain pixel until the next time;
上記映像データ記憶装置から読み出した前回の映像データと今回の映像データと に基づいて、前回の映像データの示す階調から、今回の映像データの示す階調へ の階調遷移を強調するように補正された補正後映像データを出力可能な補正手段と を備え、  Based on the previous video data read from the video data storage device and the current video data, the gradation transition from the gray level indicated by the previous video data to the gray level indicated by the current video data is emphasized. Correction means capable of outputting corrected video data after correction, and
上記補正手段は、上記前回および今回の映像データの取り得る値の組み合わせ のうち、予め定められた一部の組み合わせに対応して、当該組み合わせに対応する 補正後映像データを決定するためのパラメータが格納されたパラメータ記憶装置と、 入力された上記両映像データの示す階調同士の差が予め定められた閾値を超え ており、し力も、当該両映像データの値の組み合わせである入力組み合わせに対応 するパラメータが、上記パラメータ記憶装置に格納されていない場合は、上記パラメ ータ記憶装置から、複数のパラメータを読み出し、これらのノラメータに基づく補間演 算によって、上記入力組み合わせに対応するパラメータを算出して上記補正後映像 データを生成すると共に、閾値を超えていない場合は、今回の映像データを補正せ ずに出力する補間手段とを備え、  The correction means has a parameter for determining corrected video data corresponding to a predetermined combination among the combinations of values that the previous and current video data can take. The difference between the gradations indicated by the stored parameter storage device and the input video data above both exceeds a predetermined threshold, and the force also corresponds to the input combination that is a combination of the values of both video data. If the parameter to be processed is not stored in the parameter storage device, a plurality of parameters are read from the parameter storage device, and the parameter corresponding to the input combination is calculated by interpolation based on these parameters. If the above corrected video data is generated and the threshold is not exceeded, the current video data is And a interpolating means for outputting without Tadase,
上記パラメータ記憶装置には、上記予め定められた一部の組み合わせのうち、組 み合わせを構成する値の示す階調同士が互いに同じである特定の組み合わせに対 応するパラメータとして、当該パラメータによって決定される補正後映像データの示 す階調が当該特定の組み合わせを構成する値の示す階調の ヽずれでもなく、しかも 、上記入力組み合わせを構成する値の示す階調同士の差が上記閾値を超えている 場合に上記補間演算によって当該入力組み合わせに対応するパラメータを算出す るためのパラメータが記憶されていることを特徴とする映像データ処理装置。  In the parameter storage device, a parameter corresponding to a specific combination in which the gradations indicated by the values constituting the combination are the same among the predetermined combinations is determined by the parameter. The gradation indicated by the corrected video data is not the difference between the gradations indicated by the values constituting the specific combination, and the difference between the gradations indicated by the values constituting the input combination exceeds the threshold value. A video data processing apparatus, wherein a parameter for calculating a parameter corresponding to the input combination is stored by the interpolation operation when the number exceeds.
[2] 上記パラメータ記憶装置は、上記特定の組み合わせに対応するパラメータとして、 上記入力された前回の映像データの示す第 1階調よりも、上記入力された今回の映 像データの示す第 2階調の方が明るい場合の第 1パラメータと、暗い場合の第 2パラ メータとを備え、 上記補間手段は、上記特定の組み合わせに対応するパラメータを上記パラメータ 記憶装置から読み出す場合、上記第 1階調よりも第 2階調が明るい場合は、上記第 1 ノ メータを読み出し、暗い場合は、上記第 2パラメータを読み出すことを特徴とする 請求項 1記載の映像データ処理装置。 [2] The parameter storage device, as a parameter corresponding to the specific combination, has a second level indicated by the input current video data rather than the first gray level indicated by the input previous video data. With a first parameter when the key is brighter and a second parameter when the key is darker. When the interpolation means reads out the parameter corresponding to the specific combination from the parameter storage device, it reads out the first meter when the second gradation is brighter than the first gradation, and reads out the parameter when dark. 2. The video data processing apparatus according to claim 1, wherein the second parameter is read out.
[3] 上記各パラメータは、上記補正後の映像データの階調を示し、上記第 1および第 2 ノ ラメータは、今回の映像データの示す階調と、上記パラメータとしての補正後映像 データの示す階調との差分を示すものであって、  [3] Each parameter indicates the gradation of the corrected video data, and the first and second parameters indicate the gradation indicated by the current video data and the corrected video data as the parameter. It shows the difference from the gradation,
上記補間手段は、第 1または第 2パラメータを読み出した場合、当該第 1または第 2 パラメータと上記今回の映像データとに基づいて、上記特定の組み合わせに対応す るパラメータを復元することを特徴とする請求項 2記載の映像データ処理装置。  When the first or second parameter is read, the interpolation means restores the parameter corresponding to the specific combination based on the first or second parameter and the current video data. The video data processing apparatus according to claim 2.
[4] 上記各パラメータは、上記補正後の映像データの階調を示すものであり、  [4] Each parameter indicates the gradation of the corrected video data.
上記パラメータ記憶装置には、上記特定の組み合わせに対応するパラメータとして 、上記入力された前回の映像データの示す第 1階調よりも、上記入力された今回の 映像データの示す第 2階調の方が明るい場合と暗い場合とのうち、予め定められた 場合のパラメータのみが記憶されており、  In the parameter storage device, as a parameter corresponding to the specific combination, the second gradation indicated by the inputted current video data is more than the first gradation indicated by the inputted previous video data. Only the preset parameters are stored between when the light is bright and dark,
上記補間手段は、上記特定の組み合わせに対応するパラメータを取得する際、上 記予め定められた場合は、上記パラメータ記憶装置力 パラメータを読み出し、そう でな 、場合は、今回の映像データを当該特定の組み合わせに対応するパラメータと して使用することを特徴とする請求項 1記載の映像データ処理装置。  When obtaining the parameters corresponding to the specific combination, the interpolation means reads the parameter storage device power parameter if it is determined in advance, and if not, identifies the video data of this time in the specific case. The video data processing apparatus according to claim 1, wherein the video data processing apparatus is used as a parameter corresponding to a combination of the two.
[5] 繰り返し入力されている、ある画素の階調を示す映像データを補正して出力する補 正手段と、  [5] correction means for correcting and outputting video data indicating the gradation of a certain pixel that is repeatedly input;
補正後の映像データに応じた信号を上記画素に接続されたデータ信号線へ出力 する出力手段とを含む表示装置の駆動装置であって、  An output means for outputting a signal corresponding to the corrected video data to a data signal line connected to the pixel;
上記繰り返し入力されている、補正前の映像データを D (n— 1)、 D (n)とし、それに 対応する補正後の映像データを、 D2 (n— 1)、 D2 (n)とする場合、  When the video data before correction that is repeatedly input is D (n— 1), D (n) and the corresponding video data after correction is D 2 (n— 1), D 2 (n) ,
上記補正手段は、補正前の映像データの階調遷移量が予め定められた閾値しょり も大き 、とき、上記補正後の映像データ D2 (n)として、  The correction means, when the gradation transition amount of the video data before correction is larger than a predetermined threshold, when the corrected video data D2 (n),
D2 (n) = a + k'〔(D (n)— D (n— 1)〕を出力し、 上記補正手段は、補正前の映像データの階調遷移量が上記閾値 Lに満たないとき 、上記補正後の映像データ D2 (n)として、 D2 (n) = a + k '[(D (n) — D (n— 1)] When the gradation transition amount of the video data before correction is less than the threshold value L, the correction means, as the corrected video data D2 (n),
D2 (n) =D (n)を出力すると共に、  D2 (n) = D (n) is output and
上記 (Xは、 D (n)と異なる値に設定されて 、ることを特徴とする表示装置の駆動装 置。  (X is set to a value different from D (n), and the display device driving device is characterized in that:
[6] 繰り返し入力されている、ある画素の階調を示す映像データを補正して出力する補 正工程と、  [6] A correction process for correcting and outputting video data indicating the gradation of a certain pixel that has been repeatedly input,
補正後の映像データに応じた信号を上記画素に接続されたデータ信号線へ出力 する出力工程とを含む表示装置の駆動方法であって、  An output step of outputting a signal corresponding to the corrected video data to a data signal line connected to the pixel,
上記繰り返し入力されている、補正前の映像データを D (n— 1)、 D (n)とし、それに 対応する補正後の映像データを、 D2 (n— 1)、 D2 (n)とする場合、  When the video data before correction that is repeatedly input is D (n— 1), D (n) and the corresponding video data after correction is D 2 (n— 1), D 2 (n) ,
上記補正工程における補正後の映像データ D2 (n)は、補正前の映像データの階 調遷移量が予め定められた閾値 Lよりも大きいとき、  When the video data D2 (n) after correction in the correction step is larger than the predetermined threshold L, the gradation transition amount of the video data before correction is
D2 (n) = a + k.〔(D (n)— D (n— 1)〕であり、  D2 (n) = a + k. [(D (n) — D (n— 1)],
補正前の映像データの階調遷移量が上記閾値 Lに満たないとき、  When the gradation transition amount of the video data before correction is less than the above threshold L,
D2 (n) =D (n)であり、  D2 (n) = D (n)
上記 ocは、 D (n)と異なる値に設定されて 、ることを特徴とする表示装置の駆動方 法。  The above-mentioned oc is set to a value different from D (n), and the display device driving method is characterized in that:
[7] 請求項 1〜5のいずれか 1項に記載の映像データ処理装置と、  [7] The video data processing device according to any one of claims 1 to 5,
当該映像データ処理装置力 の補正後映像データによって駆動される液晶表示パ ネルとを備えて 、ることを特徴とする液晶表示装置。  A liquid crystal display device comprising: a liquid crystal display panel driven by the video data after the correction of the video data processing device power.
[8] 上記液晶表示装置は、液晶テレビジョン受像機または液晶モニタ装置であることを 特徴とする請求項 7記載の液晶表示装置。 8. The liquid crystal display device according to claim 7, wherein the liquid crystal display device is a liquid crystal television receiver or a liquid crystal monitor device.
[9] 請求項 1〜5のいずれか 1つの請求項に記載の各記憶装置を有するコンピュータを[9] A computer having each storage device according to any one of claims 1 to 5.
、当該請求項に記載の各手段として動作させるプログラム。 , A program to be operated as each means described in the claim.
[10] 請求項 9記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。 [10] A computer-readable recording medium on which the program according to claim 9 is recorded.
PCT/JP2005/022553 2004-12-09 2005-12-08 Video data processing device, liquid crystal display device using the same, display device drive device, display device drive method, program thereof, and recording medium WO2006062159A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/792,590 US8493299B2 (en) 2004-12-09 2005-12-08 Image data processing device, liquid crystal display apparatus including same, display apparatus driving device, display apparatus driving method, program therefor, and storage medium
JP2006546751A JP4234178B2 (en) 2004-12-09 2005-12-08 VIDEO DATA PROCESSING DEVICE, LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME, DISPLAY DEVICE DRIVE DEVICE, DISPLAY DEVICE DRIVE METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-357405 2004-12-09
JP2004357405 2004-12-09

Publications (1)

Publication Number Publication Date
WO2006062159A1 true WO2006062159A1 (en) 2006-06-15

Family

ID=36577982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022553 WO2006062159A1 (en) 2004-12-09 2005-12-08 Video data processing device, liquid crystal display device using the same, display device drive device, display device drive method, program thereof, and recording medium

Country Status (2)

Country Link
JP (1) JP4234178B2 (en)
WO (1) WO2006062159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551981B (en) * 2008-04-03 2011-10-19 北京京东方光电科技有限公司 Dynamic contrast processing method and processing device for liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036055A (en) * 2000-09-19 2003-02-07 Sharp Corp Liquid crystal display and its driving method
JP2004220022A (en) * 2002-12-27 2004-08-05 Sharp Corp Method of driving display device, display device, its program, recording medium with the program recorded thereon and computer program products including recording medium
JP2004318131A (en) * 2003-04-02 2004-11-11 Sharp Corp Driving device of image display device, image display device, television receiver, driving method of image display device, image display method, and program and re cording medium therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036055A (en) * 2000-09-19 2003-02-07 Sharp Corp Liquid crystal display and its driving method
JP2004220022A (en) * 2002-12-27 2004-08-05 Sharp Corp Method of driving display device, display device, its program, recording medium with the program recorded thereon and computer program products including recording medium
JP2004318131A (en) * 2003-04-02 2004-11-11 Sharp Corp Driving device of image display device, image display device, television receiver, driving method of image display device, image display method, and program and re cording medium therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551981B (en) * 2008-04-03 2011-10-19 北京京东方光电科技有限公司 Dynamic contrast processing method and processing device for liquid crystal display device
US9007295B2 (en) 2008-04-03 2015-04-14 Beijing Boe Optoelectronics Technology Co., Ltd. Dynamic contrast ratio processing method and apparatus of liquid crystal displaying apparatus

Also Published As

Publication number Publication date
JP4234178B2 (en) 2009-03-04
JPWO2006062159A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4658057B2 (en) Display control method, display device drive device, display device, program, and recording medium
US8345071B2 (en) Display control circuit, liquid crystal display device including the same, and display control method
US7382383B2 (en) Driving device of image display device, program and storage medium thereof, image display device, and television receiver
JP5148580B2 (en) Liquid crystal display device driving method, liquid crystal display device driving apparatus, liquid crystal television, program, and recording medium
KR100613759B1 (en) Method of driving a display and display
US8493299B2 (en) Image data processing device, liquid crystal display apparatus including same, display apparatus driving device, display apparatus driving method, program therefor, and storage medium
WO2006030842A1 (en) Display apparatus driving method, driving apparatus, program thereof, recording medium and display apparatus
WO2006098194A1 (en) Display device driving method, display device driving apparatus, program thereof, recording medium thereof, and display device equipped with the same
JPH1039837A (en) Liquid crystal display device
US7023414B2 (en) Method and apparatus for driving liquid crystal display
WO2006098246A1 (en) Liquid crystal display device drive method, liquid crystal display device drive device, program thereof, recording medium, and liquid crystal display device
WO2006098328A1 (en) Drive device of display device, and display device
KR100627865B1 (en) Liquid crystal display
US20070195040A1 (en) Display device and driving apparatus thereof
JP4451057B2 (en) Display device driving method, display device, and program thereof
JP4515503B2 (en) Driving method of liquid crystal display device
JP4601949B2 (en) Display device driving method, display device, program thereof, and recording medium storing program
WO2008032480A1 (en) Liquid crystal driving circuit, driving method, and liquid crystal display apparatus
JP2009058684A (en) Liquid crystal display device
JP4425676B2 (en) Liquid crystal display device driving method, liquid crystal display device driving apparatus, liquid crystal television, program, and recording medium
JP4498804B2 (en) Image display device drive device, image display device, television receiver, image display device drive method, image display method, program thereof, and recording medium
JP4234178B2 (en) VIDEO DATA PROCESSING DEVICE, LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME, DISPLAY DEVICE DRIVE DEVICE, DISPLAY DEVICE DRIVE METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM
EP1520267A1 (en) Color re-mapping for color sequential displays
JP2008096791A (en) Gray-scale correcting circuit and display device with the same
JP2006292973A (en) Drive unit of display device, and the display device provided with the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006546751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11792590

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814601

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11792590

Country of ref document: US