WO2006061491A1 - Procede pour decider de la valeur d'un signal reçu et recepteur associe - Google Patents

Procede pour decider de la valeur d'un signal reçu et recepteur associe Download PDF

Info

Publication number
WO2006061491A1
WO2006061491A1 PCT/FR2005/002998 FR2005002998W WO2006061491A1 WO 2006061491 A1 WO2006061491 A1 WO 2006061491A1 FR 2005002998 W FR2005002998 W FR 2005002998W WO 2006061491 A1 WO2006061491 A1 WO 2006061491A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
noise
ref
equalized
Prior art date
Application number
PCT/FR2005/002998
Other languages
English (en)
Inventor
Julien Poirrier
Michel Joindot
Benoît CHARBONNIER
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Publication of WO2006061491A1 publication Critical patent/WO2006061491A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03477Tapped delay lines not time-recursive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03617Time recursive algorithms

Definitions

  • the present invention relates to the decision of the value of a received signal.
  • Some transmission or communication channels are altered by time-varying distortions. This is the case, for example, with optical fibers and radio channels.
  • an adaptive equalization of the signals received on such channels This equalization consists, for example, in filtering the signals received using a transversal filter.
  • the transverse linear equalizer (“Feedforward Equalizer” or FFE) and the recursive decision-equalizer (DFE) are classic examples for implementing equalization.
  • Equalization generally consists of summing several copies of a received signal, shifted in time and weighted by respective coefficients. The redundancy of information included in such a sum thus makes it possible to reduce intersymbol interference (ISI).
  • ISI intersymbol interference
  • LMS least mean square
  • Transmission channels are generally degraded by additive noise, typically thermal noise. There are, however, channels where the dominant noise is not additive but multiplicative.
  • Such channels are in particular the optical type channels, where the noise Spontaneous Emission ("ASE”) is the main source of noise.
  • ASE noise Spontaneous Emission
  • the detection of the received signal implementing an optoelectronic conversion, causes a beat ("beating") of the noise ASE with itself and with the signal.
  • the ASE-ASE beat can be approximated by an additive noise.
  • the ASE-signal beat constitutes a noise dependent on the signal, which can not be assimilated to an additive noise.
  • the total noise is therefore not an additive noise, but a noise comprising an additive part and a multiplicative part (that is to say noise multiplied to the received signal).
  • the multiplicative part the variance of the noise is proportional to the power of the received signal.
  • the LMS algorithm is no longer optimal. This is also the case for channels with crosstalk ("coherent crosstalk").
  • the equalization adapted by the LMS does not make it possible to preserve the asymmetry of the noise on the transmission channels, in the presence of multiplicative noise in particular.
  • the asymmetry of the noise is therefore reduced by the equalizer according to the LMS criterion, which leads to a degradation of the performance of the equalization.
  • An object of the present invention is to overcome the disadvantages above.
  • a more particular object of the invention is to obtain better performances than with the LMS algorithm for the channels having a noise depending on the signal, seen from a receiver ensuring the detection of a signal transmitted on such channels.
  • the invention thus proposes a method for deciding the value of a received signal, comprising the following steps:
  • the error signal comprises a weighting of the difference between the equalized signal and the value decided by at least one of a function of the equalized signal and a function of the decided value.
  • the invention also makes it possible to favor the equalization of one level rather than the other.
  • the function of the equalized signal, respectively of the decided value comprises a difference between a reference level and the equalized signal, respectively the decided value.
  • the reference level can be chosen according to a distribution of noise affecting the transmission channel.
  • a ratio between one part and the other is determined.
  • additive and a multiplicative part of the noise affecting the transmission channel from the bit error rate and the reference level. This makes it possible to characterize the nature of the noise affecting the transmission channel and thus to identify the main source that generates it.
  • the invention is advantageously used when the transmission channel is an optical channel, or more generally a channel such that the noise that affects this channel depends on the signal. This is the case for example when the noise comprises an additive part and a multiplicative part.
  • the invention further provides a receiver arranged to decide the value of a received signal.
  • the receiver in question comprises means for implementing the method mentioned above.
  • the invention also proposes a computer program product comprising instructions adapted to the implementation of the method mentioned above, when said program is loaded and executed by computer means of a receiver.
  • FIG. 1 is a diagram showing a functional architecture of a receiver capable of implementing the invention
  • FIG. 2a is an example of a white Gaussian additive noise distribution
  • FIG. 2b is an example of a noise distribution affecting an optical transmission channel
  • FIGS. 3a, 3b and 3c each show an example of calculating an error signal according to the invention.
  • FIG. 1 shows a signal x (t) received at a receiver 5.
  • This signal x (t) is for example received from an optical transmission channel.
  • the signal x (t) is then equalized in a manner known per se with the aid of an equalizer 6.
  • the signal x (t) undergoes an integer n of successive delays T, so that we have n + 1 copies of the signal x (t) shifted in time.
  • These different copies are then weighted by coefficients Co, c- t , ..., C n respectively, then summed in a summation module 2.
  • the operation of equalization takes advantage of the information redundancy existing between the different copies of the signal x (t) shifted in time, so that there is then an equalized signal y (t) whose inter-symbol interference ISI is reduced.
  • the equalized signal y (t) is introduced into a decision module 4, which consists, for example, of a decision gate comparing the value of the signal y (t) with a decision threshold Uth.
  • a decision signal d (t) Since the signals considered are generally digital, the decision signal d (t) advantageously consists of a sequence of bits.
  • the signals mentioned above are generally sampled so that the samples are considered separately thereafter.
  • y a given sample obtained from the equalized signal y (t) and a corresponding sample of the decision signal
  • a module 3 calculates an error signal e.
  • This error signal aims at estimating the differences between the equalized signal y and the signal actually transmitted and which would have been received as such at the receiver 5 in the absence of noise and distortions on the transmission channel.
  • the transmitted signal is generally unknown to the receiver 5
  • the error signal is determined from the equalized signal y on the one hand and the decision signal d on the other hand. Such an approximation is considered reliable as long as the bit error rate is low.
  • the error signal e is also used to update the coefficients Co, ci, ..., C n of the equalizer 6.
  • the LMS algorithm uses this mode of operation.
  • the error signal is calculated as a difference between the equalized signal and the decision signal, ie y-d.
  • the module 3 implements a different calculation of the LMS algorithm which makes it possible to preserve a possible asymmetry in the noise affecting the transmission channel from which the signal x (t) is received.
  • This calculation weights the difference between the equalized signal and the decision signal by a function of the equalized signal y and / or a function of the decision signal d.
  • FIGS. 3a, 3b and 3c give three examples of calculation implemented by the module 3 of FIG. 1 in the context of the present invention.
  • the difference yd is weighted by a function fi of y.
  • Such a calculation mode is particularly advantageous when the noise affecting the transmission channel from which x (t) is received is asymmetrical and depends on the signal itself.
  • a distribution of such noise is illustrated in Figure 2b.
  • the transmission channel is an optical channel affected by a noise that can be decomposed into an additive part and a multiplicative part, after detection.
  • the transmitted signal is binary so that it only takes the values '0' or '1'.
  • the received signal values are therefore between 0 and 1 (we have in fact an eye diagram with 4 states 0, ⁇ , 1- ⁇ and 1, where ⁇ represents the ISI level for the channel considered). It can be seen in this example that the noise is particularly strong around the binary value 1 and the value 1- ⁇ . The noise is lower around the values 0 and ⁇ .
  • FIG. 2a illustrates a noise distribution in the case of an additive noise transmission channel. This shows a perfect symmetry of the noise (which is AWGN in this case), which results in an equality of the noise variances for the four states at the value IV, where r th represents a thermal noise.
  • the reference threshold Refi is advantageously chosen as a function of the maximum power in reception and the ratio between the multiplicative noise and the additive noise on the transmission channel considered. It may also depend on channel characteristics that determine the amount of continuous noise versus signal-dependent noise.
  • the value of the threshold is acquired by learning during the establishment of the channel. The threshold value can be further modified over time.
  • BER bit error rate
  • FIG. 3b shows a second example of calculating the error signal implemented by the module 3 of FIG. 1.
  • the difference yd is weighted by a function f 2 that depends on the decision signal d and possibly on a reference threshold Ref 2 .
  • f 2 f 2 (d, Ref 2 ). (Yd).
  • a value of Ref 2 close to 1, 5 can be used in this case, to take into account the two types of noise, additive and multiplicative.
  • FIG. 3c A third example is given in Figure 3c.
  • a function f 3 and a function U are respectively applied to the signals y and d, before weighting the difference yd.
  • the invention can be implemented by a receiver such as the receiver 5 of Figure 1. It can also be implemented using a computer program including instructions adapted for this purpose . In the latter case, the program is then loaded and executed by computer means for example the receiver 5 itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

L'invention concerne un procédé pour décider de la valeur d'un signal reçu, comprenant les étapes suivantes : - recevoir un signal (x(t)) depuis un canal de transmission ; - égaliser le signal reçu en sommant plusieurs exemplaires du signal décalés dans le temps et pondérés par des coefficients respectifs (C0, C1…, Cn) ; - décider de la valeur du signal reçu à partir du signal égalisé ; - déterminer un signal d'erreur (e) dépendant d'une différence entre le signal égalisé (y) et la valeur décidée (d) ; et - mettre à jour lesdits coefficients en fonction du signal d'erreur déterminé. Selon l'invention, le signal d'erreur comprend une pondération de la différence entre le signal égalisé et la valeur décidée par l'une au moins parmi une fonction (f1, f3) du signal égalisé et une fonction (f2, f4) de la valeur décidée.

Description

PROCEDE POUR DECIDER DE LA VALEUR D'UN SIGNAL REÇU ET
RECEPTEUR ASSOCIE
La présente invention concerne la décision de la valeur d'un signal reçu. Certains canaux de transmission ou de communication sont altérés par des distorsions variant dans le temps. C'est le cas par exemple des fibres optiques et des canaux radio. Afin de limiter ces altérations, il est connu d'effectuer une égalisation adaptative des signaux reçus sur de tels canaux. Cette égalisation consiste par exemple à filtrer les signaux reçus à l'aide d'un filtre transversal. Ainsi, l'égaliseur linéaire transverse ("Feedforward Equalizer" ou FFE) et l'égaliseur récursif à décision dans la boucle ("Décision Feedback Equalizer" ou DFE) sont des exemples classiques pour mettre en œuvre l'égalisation.
L'égalisation consiste généralement à sommer plusieurs exemplaires d'un signal reçu, décalés dans le temps et pondérés par des coefficients respectifs. La redondance d'information comprise dans une telle somme permet ainsi de réduire l'interférence inter-symboles (ISI).
En outre, il est connu de mettre à jour les coefficients de pondération à l'aide d'un algorithme des moindres carrés moyens ("Least Mean Square" ou LMS). L'algorithme LMS vise à limiter les mauvaises décisions en minimisant l'erreur quadratique moyenne basée sur la différence entre le signal égalisé et la valeur décidée pour le signal reçu considéré. Un tel algorithme offre de très bonnes performances lorsque les canaux de transmission utilisés présentent un bruit additif blanc gaussien ("Additive White Gaussian Noise" ou AWGN). Il réalise en effet un bon compromis entre l'augmentation du bruit résultant de la sommation des différents exemplaires du signal reçu décalés dans le temps et la réduction de I1ISI.
Les canaux de transmission sont généralement dégradés par un bruit additif, typiquement le bruit thermique. Il existe cependant des canaux où le bruit dominant n'est pas de nature additive mais multiplicative.
De tels canaux sont notamment les canaux de type optique, où le bruit d'émission spontané ("Amplified Spontaneous Emission" ou ASE) constitue la source principale du bruit. Même si ce bruit ASE peut être assimilé à un bruit additif, la détection du signal reçu, mettant en œuvre une conversion optoélectronique, provoque un battement ("beating") du bruit ASE avec lui-même et avec le signai. Le battement ASE-ASE peut être approximé par un bruit additif. En revanche, le battement ASE-signal constitue un bruit dépendant du signal, non assimilable à un bruit additif. Dans le cas optique, le bruit total n'est donc pas un bruit additif, mais un bruit comprenant une partie additive et une partie multiplicative (c'est-à-dire du bruit multiplié au signal reçu). Pour la partie multiplicative, la variance du bruit est proportionnelle à la puissance du signal reçu.
Pour de tels canaux de transmission présentant un bruit dépendant du signal et donc non assimilable à un bruit additif, l'algorithme LMS n'est plus optimal. C'est également le cas pour les canaux qui présentent de la diaphonie ("cohérent crosstalk"). En effet, l'égalisation adaptée par ie LMS ne permet pas de préserver l'asymétrie du bruit sur les canaux de transmission, en présence de bruit multiplicatif notamment. L'asymétrie du bruit est donc réduite par l'égaliseur selon le critère LMS, ce qui conduit à une dégradation de la performance de l'égalisation. Pour surmonter ce problème, il a été proposé de remplacer le LMS par des algorithmes basés sur un tramage ("dithering"). Ces algorithmes utilisent des paramètres de contre-réaction liés aux performances, tels qu'une ouverture d'œil, un facteur de qualité, une estimation de taux d'erreur binaire, etc. Toutefois, ces solutions se sont révélées très lentes par rapport au LMS. II a été également proposé d'utiliser des algorithmes de type LMS mais d'ordre supérieur à 2. Cette solution a été décrite dans l'article "Adaptive Electronic Equalization Using Higher-Order Statistics for PMD compensation in Long-Haul Fiber-Optic Systems" de Ut-Va Koc, Kun-Yii Tu ry Noriaki Kaneda (Proc. ECOC 2002). Cependant, ces algorithmes permettent de ne préserver l'asymétrie du bruit que partiellement et ils ne peuvent pas s'adapter selon la répartition entre le bruit additif et le bruit multiplicatif.
Un but de la présente invention est de pallier les inconvénients susmentionnés.
Un but plus particulier de l'invention est d'obtenir des performances meilleures qu'avec l'algorithme LMS pour les canaux présentant un bruit dépendant du signal, vu d'un récepteur assurant la détection d'un signal transmis sur de tels canaux.
L'invention propose ainsi un procédé pour décider de la valeur d'un signal reçu, comprenant les étapes suivantes :
- recevoir un signal depuis un canal de transmission ;
- égaliser le signal reçu en sommant plusieurs exemplaires du signal décalés dans le temps et pondérés par des coefficients respectifs ;
- décider de la valeur du signal reçu à partir du signal égalisé ;
- déterminer un signal d'erreur dépendant d'une différence entre le signal égalisé et la valeur décidée ; et
- mettre à jour lesdits coefficients en fonction du signal d'erreur déterminé. Selon l'invention, le signal d'erreur comprend une pondération de la différence entre le signal égalisé et la valeur décidée par l'une au moins parmi une fonction du signal égalisé et une fonction de la valeur décidée.
Cette prise en compte d'une fonction de pondération de la différence entre le signal égalisé et la valeur décidée dans le signal d'erreur permet d'améliorer le contrôle de i'augmentation du bruit, en réalisant simultanément un contrôle de l'asymétrie du bruit.
L'invention permet en outre de privilégier l'égalisation d'un niveau plutôt que l'autre.
De façon avantageuse, la fonction du signal égalisé, respectivement de Ia valeur décidée, comprend une différence entre un niveau de référence et le signal égalisé, respectivement la valeur décidée.
Le niveau de référence peut être choisi en fonction d'une distribution du bruit affectant le canal de transmission.
Avantageusement, lorsqu'on dispose d'un taux d'erreur binaire en sortie du canal de transmission, on détermine un rapport entre une partie additive et une partie multiplicative du bruit affectant le canal de transmission à partir du taux d'erreur binaire et du niveau de référence. Cela permet de caractériser la nature du bruit affectant le canal de transmission et donc d'identifier la source principale qui le génère. L'invention est avantageusement utilisée lorsque le canal de transmission est un canal optique, ou plus généralement un canal tel que le bruit qui affecte ce canal dépend du signal. C'est le cas par exemple lorsque le bruit comprend une partie additive et une partie multiplicative.
. L'invention propose en outre un récepteur agencé pour décider de la valeur d'un signal reçu. Le récepteur en question comprend des moyens pour mettre en œuvre le procédé mentionné ci-dessus.
L'invention propose également un produit programme d'ordinateur comprenant des instructions adaptées à la mise en œuvre du procédé mentionné ci-dessus, lorsque ledit programme est chargé et exécuté par des moyens informatiques d'un récepteur.
D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de réalisation non limitatifs, en référence aux dessins annexés, dans lesquels :
- la figure 1 est un schéma montrant une architecture fonctionnelle d'un récepteur apte à mettre en œuvre l'invention ;
- la figure 2a est un exemple de distribution de bruit additif blanc gaussien ;
- la figure 2b est un exemple de distribution de bruit affectant un canal de transmission de type optique ;
- les figures 3a, 3b et 3c montrent chacun un exemple de calcul d'un signal d'erreur conforme à l'invention.
La figure 1 montre un signal x(t) reçu au niveau d'un récepteur 5. Ce signal x(t) est par exemple reçu d'un canal de transmission optique. Le signal x(t) est ensuite égalisé de façon connue en soi à l'aide d'un égaliseur 6. A cet effet, le signal x(t) subit un nombre entier n de retards T successifs, de façon à ce qu'on dispose de n+1 exemplaires du signal x(t) décalés dans le temps. Ces différents exemplaires sont ensuite pondérés par des coefficients Co, c-t,..., Cn respectifs, puis additionnés dans un module de sommation 2. L'opération d'égalisation tire profit de la redondance d'information existante entre les différents exemplaires du signal x(t) décalés dans le temps, de sorte qu'on dispose alors d'un signal égalisé y(t) dont l'interférence inter-symboles ISI est réduite. Par la suite, le signal égalisé y(t) est introduit dans un module de décision 4, qui consiste par exemple en une porte de décision comparant la valeur du signal y(t) à un seuil de décision Uth- Cette opération résulte en un signal de décision d(t). Les signaux considérés étant généralement numériques, le signal de décision d(t) consiste avantageusement en une séquence d'éléments binaires.
On notera que les signaux mentionnés ci-dessus sont généralement échantillonnés si bien qu'on considère les échantillons séparément par la suite. On note alors y un échantillon donné obtenu à partir du signal égalisé y(t) et d un échantillon correspondant du signal de décision Un module 3 calcule un signal d'erreur e. Ce signal d'erreur vise à estimer les différences entre le signal égalisé y et le signal réellement transmis et qui aurait été reçu tel quel au récepteur 5 en l'absence de bruit et de distorsions sur le canal de transmission. Le signal transmis étant généralement inconnu du récepteur 5, le signal d'erreur est déterminé à partir du signal égalisé y d'une part et du signal de décision d d'autre part. Une telle approximation est considérée comme fiable tant que le taux d'erreur binaire est faible. Le signal d'erreur e est par ailleurs utilisé pour mettre à jour les coefficients Co, ci,..., Cn de l'égaliseur 6.
On notera que l'algorithme LMS utilise ce mode de fonctionnement. Dans le cas du LMS, le signal d'erreur est calculé comme une différence entre le signal égalisé et le signal de décision, soit y-d.
Selon Ia présente invention, le module 3 met en œuvre un calcul différent de l'algorithme LMS qui permet de préserver une asymétrie éventuelle dans le bruit affectant le canal de transmission depuis lequel le signal x(t) est reçu. Ce calcul pondère la différence entre le signal égalisé et le signal de décision par une fonction du signal égalisé y et/ou une fonction du signal de décision d. Les figures 3a, 3b et 3c donnent trois exemples de calcul mis en œuvre par le module 3 de la figure 1 dans le cadre de la présente invention. Dans l'exemple de la figure 3a, la différence y-d est pondérée par une fonction fi de y. A titre d'exemple, la fonction f| peut comprendre la différence entre un seuil de référence Refi et y. Dans ce cas, on obtient donc e=(Refry).(y-d).
Un tel mode de calcul est particulièrement avantageux lorsque le bruit affectant le canal de transmission depuis lequel x(t) est reçu est asymétrique et dépend du signal lui-même. Une distribution d'un tel bruit est illustrée sur la figure 2b. Dans cet exemple, le canal de transmission est un canal optique affecté par un bruit pouvant être décomposé en une partie additive et une partie multiplicative, après détection. Le signal transmis est binaire si bien qu'il prend uniquement les valeurs '0' ou '1'. Les valeurs de signal reçu sont donc comprises entre 0 et 1 (on a en fait un diagramme d'œil à 4 états 0, α, 1-α et 1 , où α représente le niveau d'ISI pour le canal considéré). On constate, dans cet exemple, que le bruit est particulièrement fort autour de la valeur binaire 1 et de la valeur 1-α. Le bruit est plus faible autour des valeurs 0 et α.
Les variances σ-i2, σ-i 2, σα 2, σo2 du bruit pour chaque état de signal ont été indiquées sur la figure 2b, où T0 représente la contribution au bruit de nature additive et Ti représente la contribution au bruit de nature multiplicative. II ressort ainsi clairement de cet exemple que le bruit total est asymétrique, c'est-à-dire qu'il affecte davantage les valeurs binaires '1' que les valeurs binaires '0' transmises sur le canal optique. Par comparaison, la figure 2a illustre une distribution du bruit dans le cas d'un canal de transmission à bruit additif. Celle-ci montre une symétrie parfaite du bruit (qui est AWGN dans ce cas), ce qui se traduit par une égalité des variances du bruit pour les quatre états à la valeur IV, où rth représente un bruit thermique.
On comprend ainsi que, dans le cas illustré sur la figure 2b qui représente la distribution avant égalisation, une décision consistant en une comparaison entre un seuil intermédiaire et la valeur de signal détectée favoriserait les mauvaises décisions. A l'inverse, si le seuil de décision est choisi pour être plus proche de la valeur 0 que de la valeur 1 , on augmente ainsi les chances de bonnes décisions lorsqu'un '0' est transmis. Ceci est du au fait que les 1O1 (contrairement aux '1') sont peu impactés par le bruit. On a donc intérêt à conserver l'asymétrie du bruit pour améliorer la prise de décision.
Le calcul de signal d'erreur réalisé par le module 6 du récepteur 5 et illustré sur la figure 3a permet de mieux préserver l'asymétrie du bruit. En effet, le fait de calculer le signal d'erreur tel que e=(Refry).(y-d) permet d'atténuer l'importance des erreurs de décision liées au fort niveau de bruit impactant les
'1 '. La mise à jour des coefficients de pondération de l'égaliseur sur cette base permet ainsi de préserver l'asymétrie du bruit, notamment en limitant le bruit ajouté lors de l'égalisation des 1O'. Cela conduit donc à des performances meilleures que dans le cas où l'algorithme LMS est utilisé.
Le seuil de référence Refi est avantageusement choisi en fonction de la puissance maximale en réception et du rapport entre le bruit multiplicatif et le bruit additif sur le canal de transmission considéré. Il peut également dépendre de caractéristiques du canal qui déterminent la quantité de bruit continu par rapport au bruit dépendant du signal. De façon avantageuse, la valeur du seuil est acquise par apprentissage lors de la mise en place du canal. La valeur du seuil peut en outre être modifiée au cours du temps.
Lorsqu'une estimation de taux d'erreur binaire (BER) est disponible au niveau du récepteur 5, on peut en outre déduire des valeurs de BER et de Refi un rapport entre les bruits additif et multiplicatif. Cela permet de savoir quelle source de bruit est prépondérante sur le canal considéré.
La figure 3b montre un second exemple de calcul du signal d'erreur mis en œuvre par le module 3 de la figure 1. Dans cet exemple, la différence y-d est pondérée par une fonction f2 dépendant du signal de décision d et éventuellement d'un seuil de référence Ref2. Sous forme mathématique, on peut par exemple écrire : e=f2(d,Ref2).(y-d).
Dans un exemple de réalisation où f2(d,Ref2)=Ref2-d et où les signaux considérés sont normalisés, de façon à ce que la puissance maximale en réception soit égale à 1 , on peut alors choisir Ref2 égal à 1. Cela revient alors à ne pas tenir compte de l'égalisation des '1 ' et à ne réduire I1ISI, tout en contrôlant le niveau de bruit, que pour les '0' transmis (puisque dans ce cas, on a : e=(1-d).(y-d), soit e=0 si d=1 et e=y si d=0). Il s'agit cependant ici d'un exemple théorique. De préférence, une valeur de Ref2 proche de 1 ,5 peut être utilisée dans ce cas, pour prendre en compte les deux types de bruit, additif et multiplicatif.
Un troisième exemple est donné par la figure 3c. Dans ce cas, une fonction f3 et une fonction U sont respectivement appliquées aux signaux y et d, avant de pondérer la différence y-d. Des seuils de référence Ref3 et Ref4 respectifs peuvent également être utilisés, de sorte que e=f3(y>Ref3).f4(d,Ref4).(y-d).
Les remarques qui précèdent concernant Refi peuvent bien sûr s'appliquer aux seuils de référence Ref2, Ref3 et Ref4.
On notera que l'invention peut être mise en œuvre par un récepteur tel que le récepteur 5 de la figure 1. Elle peut par ailleurs être mise en œuvre à l'aide d'un programme d'ordinateur comprenant des instructions adaptées à cet effet. Dans ce dernier cas, le programme est alors chargé et exécuté par des moyens informatiques par exemple du récepteur 5 lui-même.

Claims

R E V E N D i C A T I O N S
1. Procédé pour décider de la valeur d'un signal reçu, comprenant les étapes suivantes :
- recevoir un signal (x(t)) depuis un canal de transmission ; - égaliser le signal reçu en sommant plusieurs exemplaires du signal décalés dans le temps et pondérés par des coefficients respectifs (co, ci, ..., Cn) ;
- décider de la valeur du signal reçu à partir du signal égalisé ;
- déterminer un signal d'erreur (e) dépendant d'une différence entre le signal égalisé (y) et la valeur décidée (d) ; et
- mettre à jour lesdits coefficients en fonction du signal d'erreur déterminé ; caractérisé en ce que le signal d'erreur comprend une pondération de la différence entre le signal égalisé et la valeur décidée par l'une au moins parmi une fonction (fi, fβ) du signal égalisé et une fonction (f2, U) de la valeur décidée.
2. Procédé selon la revendication 1 , dans lequel la fonction (fi, f3 ; f2, f4) du signal égalisé (y), respectivement de la valeur décidée (d), comprend une différence entre un niveau de référence (Ref-i, Refβ ; Ref2, Ref4) et Ie signal égalisé, respectivement la valeur décidée.
3. Procédé selon la revendication 2, dans lequel le niveau de référence
(Ref-i, Ref2, Ref3, Ref4) dépend du bruit affectant le canal de transmission.
4. Procédé selon la revendication 3, dans lequel on dispose d'un taux d'erreur binaire pour le canal de transmission et on détermine un rapport entre une partie additive et une partie multiplicative du bruit affectant le canal de transmission à partir du taux d'erreur binaire et du niveau de référence (Refi, Ref2, Rθf3, Ref4).
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le canal de transmission est un canal optique.
6. Récepteur (5) agencé pour décider de la valeur d'un signal reçu (x(t)), le récepteur comprenant des moyens pour mettre en œuvre le procédé selon l'une quelconque des revendications précédentes.
7. Produit programme d'ordinateur comprenant des instructions adaptées à la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 5, lorsque ledit programme est chargé et exécuté par des moyens informatiques d'un récepteur (5).
PCT/FR2005/002998 2004-12-08 2005-12-01 Procede pour decider de la valeur d'un signal reçu et recepteur associe WO2006061491A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413075 2004-12-08
FR0413075 2004-12-08

Publications (1)

Publication Number Publication Date
WO2006061491A1 true WO2006061491A1 (fr) 2006-06-15

Family

ID=34952306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/002998 WO2006061491A1 (fr) 2004-12-08 2005-12-01 Procede pour decider de la valeur d'un signal reçu et recepteur associe

Country Status (1)

Country Link
WO (1) WO2006061491A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906656A1 (fr) * 2006-10-03 2008-04-04 France Telecom Procede et dispositif de decodage a l'aide de codes correcteurs d'erreurs.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453201A1 (fr) * 1990-04-16 1991-10-23 Matsushita Electric Industrial Co., Ltd. Commande d'un égaliseur adaptif
US20030099316A1 (en) * 2000-05-17 2003-05-29 Citta Richard W. Code enhanced equalization based upon a reliability factor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453201A1 (fr) * 1990-04-16 1991-10-23 Matsushita Electric Industrial Co., Ltd. Commande d'un égaliseur adaptif
US20030099316A1 (en) * 2000-05-17 2003-05-29 Citta Richard W. Code enhanced equalization based upon a reliability factor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906656A1 (fr) * 2006-10-03 2008-04-04 France Telecom Procede et dispositif de decodage a l'aide de codes correcteurs d'erreurs.
EP1909396A2 (fr) * 2006-10-03 2008-04-09 France Telecom Procédé et dispositif de decodage à l'aide de codes correcteurs d'erreurs
US8307257B2 (en) 2006-10-03 2012-11-06 France Telecom Decoding method and device using error correction codes
EP1909396A3 (fr) * 2006-10-03 2013-07-03 France Telecom Procédé et dispositif de decodage à l'aide de codes correcteurs d'erreurs

Similar Documents

Publication Publication Date Title
WO1997010664A1 (fr) Dispositif multimode d'egalisation adaptive
FR2866167A1 (fr) Egaliseur et procede d'actualisation de coefficients de filtre
FR2915840A1 (fr) Decodage de symboles d'un signal repartis suivant des dimensions frequentielle et temporelle
FR2730370A1 (fr) Dispositif de reception de signaux numeriques a structure iterative, module et procede correspondants
EP1189370A1 (fr) Puissance d'émission des symboles pilotes
EP1603264B1 (fr) Procédé et dispositif de réception d'un signal ayant subi un précodage linéaire et un codage de canal
CA2201387A1 (fr) Estimateur et recuperateur de phase robuste pour signaux numeriques affectes notamment de gigue de phase
EP1024631A1 (fr) Egaliseur à retour de décisions pondérées, et procédé d'égalisation correspondant
CA2074277C (fr) Procede d'egalisation adaptative reduisant l'interference intersymbole, et dispositif de reception et application correspondants
EP0981881B1 (fr) Dispositif d'egalisation et de decodage pour un canal de transmission numerique selectif en frequence
WO2006061491A1 (fr) Procede pour decider de la valeur d'un signal reçu et recepteur associe
EP1303071B1 (fr) Procédé et dispositif de sélection automatique du débit dans des transmissions haute fréquence
FR2832275A1 (fr) Procede d'ecretage de signaux a plusieurs porteuses transmis par un meme amplificateur non-lineaire
WO2006024712A1 (fr) Procede de conception d'un filtre de reception numerique et dispositif de reception correspondant
Yamamoto et al. Evaluation of NGMI in 128-gbuad PAM4 O-band 10-km transmission using MLSE based on nonlinear channel estimation and decision feedback
EP0511698A1 (fr) Egaliseur adaptatif semi-récursif
EP1162802B1 (fr) Egalisateur utilisant un canal transformé.
EP1206045A1 (fr) Procédé de correction de l'erreur de frequence
CA2342725C (fr) Procede d'estimation du rapport signal a bruit dans un recepteur de telecommunications et application de ce procede au controle d'un emetteur
EP1107528B1 (fr) Méthode de détection de blocs pour canal soumis à évanouissement
EP1582041A1 (fr) Recepteur a estimation iterative de canal utilisant une boucle de retour (turbo-estimation)
WO2023110792A1 (fr) Recepteur, systeme d'emission/reception et procede de reception associe
FR3131144A1 (fr) Procédé de réception de signaux radiofréquences non étalés spectralement
FR2734433A1 (fr) Procede et egaliseur adaptatif pour egaliser un signal numerique transmis par liaisons hertzienne
Argon et al. Spatially resolved equalization and decision feedback equalization for multimode fiber links

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05824580

Country of ref document: EP

Kind code of ref document: A1