WO2006059433A1 - Novel anthocyanidin glucosyltransferase gene - Google Patents

Novel anthocyanidin glucosyltransferase gene Download PDF

Info

Publication number
WO2006059433A1
WO2006059433A1 PCT/JP2005/019294 JP2005019294W WO2006059433A1 WO 2006059433 A1 WO2006059433 A1 WO 2006059433A1 JP 2005019294 W JP2005019294 W JP 2005019294W WO 2006059433 A1 WO2006059433 A1 WO 2006059433A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
plant
protein
group
anthocyanin
Prior art date
Application number
PCT/JP2005/019294
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Ogata
Yoshiaki Kanno
Hidehito Tsugawa
Masahiko Suzuki
Original Assignee
Aomori Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Prefecture filed Critical Aomori Prefecture
Publication of WO2006059433A1 publication Critical patent/WO2006059433A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)

Definitions

  • the present invention encodes a protein having an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. It relates to genes and their use.
  • Anthocyanins are the most common among plant pigments, and anthocyanins exhibit many colors from light blue to deep red. Industrially, plant color is one of the most important traits, and as seen in the diversification of flower color, good color development of fruits, and stabilization of coloration, it is uniform. It is a big economic factor in vegetables. Color development by anthocyanins, a directly identifiable trait, has been the subject of many genetic, biochemical and molecular biological studies, and today there are genes involved in flavonoid biosynthesis systems, including flavonoids containing anthocyanins. Flowers such as petunia, goldfish, arabidopsis, fruits such as apples and grapes, and vegetables such as eggplant and perilla are also crawling. In addition, the mechanism of anthocyanin expression is being elucidated by natural product chemistry and physiological analysis.
  • anthocyanidin is an aglycone that forms the skeleton of anthocyanin, but it does not exist in the plant body as it is, but it always exists in a glycosylated form (anthocyanin).
  • anthocyanins become non-toxic anthocyanins and become stable, and they become soluble in water and become soluble in the vacuole of cells.
  • Anthocyanins form complex pigment macromolecules by forming intramolecular associations, intermolecular associations, and coordination bonds with auxiliaries such as flavones / flavonols and metal ions in the vacuole, and exhibit unique colors of each plant. . Therefore, anthocyanin glycosides are important as the first reaction to form anthocyanins and are essential chemical reactions for the subsequent color development.
  • the sugar residue that binds to the hydroxyl group of anthocyanin is the 3-position of the C ring, the 5-position, 7-position of the A-ring, and the 3 ' Forces found at the 5 'position, etc.
  • the order in which these sugar residues bind is considered to be a common reaction pathway across plants, as reported by various plant species. It is known in many plants that the glycoside of the hydroxyl group of anthocyanin begins the 3-position force of the C ring, and this is generally recognized as the first reaction process of the glycoside. The It is thought that sugar residues bind to the hydroxyl groups at the 3rd and 5th positions, and glycosides are generated in the order of 3rd to 5th positions. Glycosyltransferases are still found both enzymatically and molecularly.
  • glycosyltransferase glycoside enzyme
  • Patent Document 1 International Publication No. 99/05287 Pamphlet
  • Patent Document 2 International Publication No. 01/92509 Pamphlet
  • Patent Document 3 JP-A-10-113184
  • the present invention relates to a gene encoding a protein having an activity of transferring a darcosyl group, preferably an activity of transferring a darcosyl group to the hydroxyl groups at the 5-position and 3-position of anthocyanin in an order different from the known order. It was an object to obtain a gene encoding a protein having a protein.
  • a gene encoding a protein having a dalcosyl group transfer activity obtained in the present invention or a similar gene is introduced into a plant and expressed to modify the type of flavonoid compound to be accumulated, so that flower color, fruit, etc. It is possible to change the color of the plant body. In rose, gene expression control by RNAi method, gene disruption method, etc.
  • the present inventor has found an enzyme that catalyzes the reaction of transferring the darcosyl group to the hydroxyl group at the 3-position after transferring the darcosyl group to the hydroxyl group at the 5-position of anthocyanin.
  • the gene was clawed.
  • RT-PCR was performed using degenerate primers synthesized based on the nucleotide sequence that is common to glycosyltransferases.
  • the cDNA fragment was amplified and its nucleotide sequence was determined.
  • the protein coding region of the gene was cloned by RT-PCR.
  • the enzyme activity was analyzed using a protein obtained by utilizing a recombinant protein synthesis system of Escherichia coli.
  • the present invention has been completed based on the above findings.
  • the present invention provides the following [1] to [16].
  • the first aspect of the present invention is the activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and the activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. It is a gene that encodes a protein it has.
  • a second aspect of the present invention is the gene according to [1], which encodes the following proteins (a) to (:
  • the third aspect of the present invention is that stringent conditions are applied to a part or all of the nucleic acid represented by the nucleotide sequence set forth in SEQ ID NO: 1 or the nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 2.
  • the fourth aspect of the present invention is that both the activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and the activity of transferring the darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside It is a gene according to any one of [1] to [3] that encodes a protein having [5]
  • a fifth aspect of the present invention is a vector comprising the gene according to any one of [1] to [3].
  • a sixth aspect of the present invention is a vector containing the gene according to [4].
  • a seventh aspect of the present invention is a host cell transformed with the vector according to [5] or [6].
  • An eighth aspect of the present invention is a protein encoded by the gene according to any one of [1] to [4].
  • a ninth aspect of the present invention is that the host cell according to [7] is cultured or grown, and then the host cell force darcosyl group is transferred to the hydroxyl group at the 5-position of anthocyanin.
  • a method for producing a protein comprising collecting a protein having an activity and an activity of transferring Z or a dalcosyl group to a hydroxyl group at the 3-position of anthocyanin 5-darcoside.
  • a tenth aspect of the present invention is a method for producing the protein by a cell-free protein synthesis system using the gene according to any one of [1] to [4].
  • An eleventh aspect of the present invention is a plant transformed by introducing the gene according to any one of [1] to [4] or the vector according to [5] or [6] It is.
  • a twelfth aspect of the present invention is a progeny of the plant having the same properties as the plant according to [11].
  • the thirteenth aspect of the present invention is the plant according to [11] or the progeny tissue of the plant according to [12].
  • a fourteenth aspect of the present invention is a cut flower of the plant according to [11] or the progeny of the plant according to [12].
  • the fifteenth aspect of the present invention is an anthocyanin by introducing the gene according to [4] or the vector according to [6] into a plant or plant cell and expressing the gene. This is a method in which the darcosyl group is transferred to the hydroxyl group at the 5-position of gin and then transferred to the hydroxyl group at the 3-position.
  • the gene according to any one of [1] to [4] or the vector according to [5] or [6] is introduced into a plant or plant cell, By expressing the gene, It is a method of adjusting the flower color of a plant body.
  • the flower color of the plant body is regulated by suppressing the expression of the gene. It is a method to do.
  • the gene of the present invention encodes a protein having an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. is there.
  • Examples of the gene of the present invention include the following genes (A) to (D).
  • “having the amino acid sequence described in SEQ ID NO: 2” means that a plurality of amino acids are added to the N-terminal or C-terminal side of such a protein that includes only the protein having only the amino acid sequence described in SEQ ID NO: 2.
  • the purpose is to include the purified protein.
  • the number of amino acids to be added is not particularly limited as long as the above darcosyl group transfer activity is not lost, but it is usually within 400, preferably within 50.
  • one or more amino acids in the amino acid sequence set forth in SEQ ID NO: 2 have an amino acid sequence added, deleted, and substituted with Z or other amino acids, and the two enzyme activities
  • a gene encoding a protein having either one or both of the above proteins having an amino acid sequence that has been added, deleted, or substituted may be natural or artificial.
  • the number of amino acids to be added, deleted or substituted is not particularly limited as long as the above darcosyl group transfer activity is not lost, but is usually within 20 and preferably within 5.
  • (C) encodes a protein having an amino acid sequence exhibiting a certain homology to the amino acid sequence of SEQ ID NO: 2 and having either one or both of the two enzyme activities Gene
  • a certain degree of homology usually means a homology of 20% or more, preferably 50% or more, more preferably 60% or more, most preferably 70% or more. Intention Taste.
  • part of the nucleic acid means, for example, a portion encoding 6 or more amino acid sequences in the consensus sequence region.
  • the "stringent condition” refers to a condition in which only specific hybridization occurs and non-specific hybridization does not occur.
  • the temperature is 50 °. C
  • salt concentration is 5 X SSC (or equivalent salt concentration).
  • the appropriate hybridization temperature depends on the base sequence of the nucleic acid and the length of the nucleic acid.For example, when a DNA fragment of 18 bases encoding 6 amino acids is used as a probe, the temperature is 50 ° C. The following temperatures are preferred.
  • Examples of the gene selected by such hybridization include natural genes, for example, plant-derived genes, particularly rose-derived genes. Further, the gene selected by hybridization may be cDNA or genomic DNA.
  • the vector of the present invention can be produced by inserting the gene (1) into a known expression vector.
  • the known expression vector used here is not particularly limited as long as it contains an appropriate promoter, terminator, replication origin and the like.
  • the trc promoter, tac promoter, lac promoter, etc. can be used if the promoter is expressed in bacteria, and if expressed in yeast, the dalyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter, etc. can be used.
  • Can be used and expressed in filamentous fungi If present, the amylase promoter, trpC promoter, etc. can be used, and if expressed in animal cells, the SV40 early promoter, SV40 rate promoter, etc. can be used.
  • the transformed host cell in the present invention is a host cell transformed with the vector (2).
  • the host cell may be either prokaryotic or eukaryotic.
  • prokaryotes for example, Escherichia coli, Bacillus subtilis, etc. can be used.
  • eukaryotes include yeast and filamentous fungi, as well as animal and plant cultured cells.
  • yeasts include Saccharomvces cerevisk (Saccharomvces cerevi Sk ⁇ ) and the like.
  • filamentous fungi include Aspergillus orvzae and Aspergillus nkgi.
  • Animal cells include: Examples thereof include cultured cells such as mouse, mouse, muster, monkey, human and silkworm.
  • the method of transforming with the vector of (2) is not particularly limited, and can be performed according to a conventional method.
  • Proteins encoded by the gene (1) are also included in the present invention. This protein can be produced, for example, by the method (5) described later.
  • the method for producing a protein of the present invention comprises culturing or growing the host cell of (3), and then transferring the host cell force darcosyl group to the hydroxyl group at the 5-position of anthocyanin and Z or dalcosyl. It is characterized by collecting a protein having an activity of transferring a group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside, or by producing a protein using a cell-free protein synthesis system or the like.
  • the culture or growth of the host cell can be performed according to a method according to the type of the host cell.
  • protein production by a cell-free protein synthesis system can be performed according to a conventional method.
  • the protein can be collected according to a conventional method.
  • the protein can be filtered and removed from the culture.
  • the target protein can be obtained by collecting and purifying by heart separation, cell disruption, gel filtration, ion exchange chromatography and the like.
  • the plant of the present invention is transformed by introducing the gene (1) or the vector (2).
  • Plants to which genes and the like are to be introduced are not particularly limited. Gelaum, petunia, tulip, rice, barley, wheat, rapeseed, potato, tomato, poplar, banana, eucalyptus, sweet potato, soybean, alfalfa, lupine, corn, cauliflower, lobelia, apple, bud, peach, oyster, Plums, citrus fruits, etc. can be mentioned.
  • the progeny of the plant of the above (6) is also included in the present invention.
  • Tissues of the plant of the above (6) or the progeny of the plant of (7) are also included in the present invention.
  • Cut flowers of the plant of the above (6) or the progeny of the plant of (7) are also included in the present invention.
  • the method for transferring a darcosyl group of the present invention comprises the activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin in the gene of (1) above and the hydroxyl group at the 3-position of anthocyanin 5-glucoside.
  • the vector (2) which encodes a protein having both the activity of transferring to aldose, or the activity of transferring the dalcosyl group to the hydroxyl group at the 5-position of anthocyanin and the darcosyl group of anthocyanin 5-darcoside
  • the darcosyl group is transferred to the hydroxyl group at the 3-position.
  • the method for regulating flower color of the present invention comprises introducing the gene (1) or the vector (2) into a plant or a plant cell and expressing the gene, or a plant having the gene (1).
  • the color of the flower or fruit of the plant body is regulated by suppressing the expression of the gene.
  • the plant targeted for gene transfer is not particularly limited, and for example, the plant exemplified in (6) above can be used. Further, the plant to be suppressed by the gene (1) is not particularly limited as long as it is a plant having the gene (1).
  • the introduction and expression of the gene of (1) can be performed according to a conventional method.
  • suppression of gene expression in (1) can also be carried out according to conventional methods (for example, the antisense method, the cosuppression method, and the RNAi method).
  • a darcosyl group can be transferred to the hydroxyl group at the 5-position of anthocyanin, and then the darcosyl group can be transferred to the hydroxyl group at the 3-position. This makes it possible to modify plant tissues that are colored by the accumulation of anthocyanins such as flowers and fruits.
  • FIG. 1 The results of the reactions of [A. Cy (Cyanidin), B. Cy5G (Cyanidin 5-Og lucoside), C. Cy3G (Cyanidin 3-Q-glucoside)] by the rose petal extract enzyme solution. Show.
  • Rose dried petals HPLC (described later as a result of 520 analysis, containing 95% or more of ciazine 3,5-diglucoside in the crude extract: raw weight 100 g) in 1 L of 0.05% hydrochloric acid aqueous solution-left at room temperature
  • fractionation was performed with petroleum ether, black mouth form, and ethyl acetate, a glass column (30 mm id X 600 mm) packed with Amberlite XAD-7 Organo Co., Ltd. After equilibrating with 0.01% aqueous hydrochloric acid, the aqueous layer fraction diluted twice was passed through the column to adsorb the dye. After washing the unadsorbed material, the dye was eluted with 80% aqueous methanol solution containing 0.01% hydrochloric acid. The eluate was dried and solidified.
  • the dried and solidified pigment powder was redissolved in 0.05% aqueous hydrochloric acid solution, and an equal amount of 12% aqueous hydrochloric acid solution was added thereto, followed by heating at 80 ° C for 20 minutes for acid hydrolysis. After heating, an equal amount of isoamyl alcohol was added to the solution, and the mixture was vigorously stirred and centrifuged to remove the isoamyl alcohol layer. After this was performed three times, an equal amount of ethyl acetate was added, stirred, centrifuged, and the aqueous layer was fractionated. Paper chromatography (Whatman 3MM) was performed twice from the aqueous layer obtained by the above-mentioned method. 5-Dalcoside was isolated.
  • Reversed column WakosiHI5C18AR column (4.6 mm id) for HPLC analysis and fractionation X 250 mm) at a column temperature of 35 ° C.
  • a flow rate of lml / min an aqueous solution containing 0.5% TFA and 5% acetonitrile (A) with a linear concentration gradient of 20% of acetonitrile solution (B) containing 0.5% TFA at 5% force for 20 minutes
  • the elution time was detected using PDA.
  • PVPP polyvinylpolypyrrolidone
  • buffer A 100 mM potassium phosphate buffer (pHLO), 14 mM 2-mercaptoethanol, 1% polybutylpyrrolidone K-30 (PVP), lOOmM sodium chloride, 5 mM EDTA, 5 mM sodium ascorbate, 10% glycerol , 0.1% Triton X-100
  • the enzyme activity was measured using the above crude enzyme solution. HPLC analysis was performed according to the method described in Examples 1 and 2. As a result, when siadine was used as a substrate, the reaction products were siadine 5-darcoside, siadine 3,5-didalcoside, and trace amounts of siadine 3-darcoside. As a substrate, cyadin 3,5-diglucoside was not obtained. Furthermore, sheadin 3,5-didarcoside was obtained when sheadin 5-darcoside was used as a substrate. Figure 1 shows the reaction results for each substrate. In other words, it was thought that glycosylation at the 3rd position of anthocyanin, followed by glycosylation at the 5th position!
  • Total RNA was prepared from petals of rose cultivar, Krimson Erasmus by the modified CTAB method (Chang et al., 1993, Mukai 'Yamamoto Plant Cell Engineering Series 7 pp.57-62). using poly (A) + RNA Yoko total RNA (2 5 0 / zg) Power et Oligotex- dT30 super (Takara), was prepared in the manufacturer's recommended ways.
  • RNA was treated at 99 ° C for 2 minutes, cooled on ice, and then cDNA was synthesized using the first strand cDNA synthesis kit (Pharmacia) by the method indicated by the manufacturer.
  • Pharmacia the first strand cDNA synthesis kit
  • GTSPFd [WCICAYTGYGGIT GGAAYTC: SEQ ID NO: 3] designed based on the amino acid sequence and the sequence present in Not Id (T) used for cDNA synthesis.
  • PCR was performed using the designed NotlRl [AACTGGAAGAATTCGCGGC: SEQ ID NO: 4] as a primer.
  • the PCR reaction solution was 2 ⁇ 1 cDNA, lx Expand HF buffer (BOEHRINGE R MANNHEIM), 0.2 mM dNTPs ⁇ primer 1.6 pmol / ⁇ 1 each, Expand High Fidelity P CR system enzyme mix 1.75 unit total volume 50 ⁇ 1 Prepared.
  • the reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 48 ° C for 30 seconds, 72 ° C and 30 seconds, and finally treated at 72 ° C for 1 minute. did.
  • PCR reaction was performed using CAGGAAT: SEQ ID NO: 5) as a primer.
  • the PCR reaction solution was 2 1 cD NA, lx Expand HF buffer (BOEHRINGER MANNHEIM), 0.2 mM dNTPs ⁇ Primer 1.6 pmol / ⁇ 1 each, Expand High Fidelity PCR system Enzyme mix 1.75 unit total volume 50 / zl Prepared.
  • the reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 48 ° C for -30 seconds, 72 ° C for .30 seconds, and finally treated at 72 ° C for 1 minute. did.
  • the obtained reaction product was subjected to 0.8% agarose gel electrophoresis, and a DNA fragment of the expected size was recovered.
  • the recovered DNA product was cloned into pGEM Easy T vector (Promega). in this way The ABI TM BigDye TM Terminator cycle sequencing reaction ver.3.1 (Applied Biosystem) was used to determine the total nucleotide sequence using DNA sequencer model 3100.
  • a BLASTX search was performed, and a clone RhGT fra.42 that was found to be homologous to the glycosyltransferase gene was found.
  • CDNA for mRNA having 5 ′ end used for 5 ′ RACE was synthesized using GeneRacer kit (Invitrogen) according to the method indicated by the manufacturer. 1st-PCR using the GeneRacer 5 'primer (CGACTGGAGCACGAGGACACTGA: SEQ ID NO: 6) and primer 42R1 (TTATGCGGGCCCAACAT GCC: SEQ ID NO: 7) set to the internal sequence of RhGT Fra. went.
  • PCR reaction solution 1 ⁇ 1 cDNA, lx LA PCR Buffer II (Takara), 0.2 mM dNTPs ⁇ 3 ⁇ 1 GeneRacer 5 ′ primer (10 M), 2 1 42R1 (5 ⁇ M), 2 mM MgCl, Takara LA Taq The total volume of 2.5 units was adjusted to 50 ⁇ 1.
  • the reaction is
  • PCR reaction solution is 1 1 cDNA, lx LA PCR Buffer II (Takara), 0.2 mM dNTPs, 1 ⁇ 1 GeneRacer 5 'primer (10 M), 2 1 42R1 (5 ⁇ M), 2 mM MgCl, Takara LA Taq 2.5 The total volume of unit was adjusted to 50 ⁇ 1
  • the reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 58 ° C for 30 seconds and 72 ° C for 2 minutes, and finally treated at 72 ° C for 2 minutes. did.
  • the reaction solution was subjected to 0.8% agarose electrophoresis, and the amplified product band was cut out.
  • the amplified product was recovered using the Qiagen Gel Extraction kit (Qiagen).
  • the obtained PCR product was cloned into pGEM Easy T vector (Promega).
  • the protein coding region predicted from the base sequence of the clone obtained in Example 5 was amplified by PCR and cloned into a pET vector for expression of E. coli.
  • CDNA for total RNA was synthesized using a first strand cDNA synthesis kit (Pharmacia) and reverse transcription reaction using Not I dT primer according to the method recommended by the manufacturer.
  • Primer RhGTFd (GACGACGACAAG ATGGGTGGTGATGCTATAGTTTG: SEQ ID NO: 9) and termination codon including the sequence for cloning into pET30 Ek / LIC (Novagen) for expression of E. coli and the start codon of the protein predicted from the base sequence obtained in Example 5
  • the PCR reaction solution is 2 ⁇ 1 cDNA, lx Expand HF Knoffer (BOEHRINGER MANNHEIM), 0.2 mM dNTPs, each primer 1.6 pmol / ⁇ 1, Expand High Fidelity PCR system Enzyme mix 1.75 units total volume 50 1 ⁇ did.
  • the reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C-2 minutes, and finally treated at 72 ° C for 2 minutes. did.
  • the obtained reaction product was subjected to 0.8% agarose gel electrophoresis, and the amplified product was purified from the gel using QIAquick Gel Extraction Kit (Qiagen). After ligating the obtained DNA to pET30Ek / LIC (Novagen) according to the method recommended by the manufacturer, it was transformed into E. coli JM109, and several clones were used with BigDye Terminator Ver. 3 using T7 promoter and T7 terminator primer. After performing Cycle Sequencing Reaction using 1., the base sequence was determined using ABI3100 Genetic Analyzer.
  • pETRhGTl consists of 1,422 base pairs (this nucleotide sequence is shown in SEQ ID NO: 1) and 473 amino acid residues (this amino acid sequence is shown in SEQ ID NO: 2).
  • Functional analysis was performed using this pETRh GT1.
  • pETRhGTl was transformed into E. coli BL21 (DE3) (Novagen).
  • the transformed strain was cultured at 37 ° C with shaking in 3 ml of LB medium containing 30 ⁇ g / ml kanamycin. 500 ⁇ l of this culture Add to LB medium containing 30 g / ml kanamycin and shake culture until the absorbance at 600 nm reaches 0.4, then add isopropyl- ⁇ -D-thiogalatatoside (IPTG) to a final concentration of 0.4 mM, 22 ° C After culturing for 12 hours, the cells were recovered by centrifuging (8000 rpm, 4 ° C, 20 minutes).
  • IPTG isopropyl- ⁇ -D-thiogalatatoside
  • the bacterial cell pellet was added to 1 ml of lysis buffer (pH 8.0) (100 mM Tris-HCl, 300 mM sodium chloride, 14 mM 2-mercaptoethanol 0.1% Protease and
  • Phosphatase Inhibitor Cocktails manufactured by SIGMA
  • SIGMA Stimulated GAA
  • the supernatant was used as a recombinant protein solution and used for enzyme activity measurement.
  • Enzymatic reaction was performed using recombinant pETRhGTl protein.
  • the recombinant protein solution 30 1 was used in the same manner as in [Example 2].
  • a reverse layer column Wakosil-II5C18AR column (4.6 mm id ⁇ 250 mm) was used and the column temperature was 35 ° C.
  • Detection using PDA with an elution time of 20 minutes in a linear concentration gradient with a 20% 0.5% TFA solution containing 0.5% TFA and an aqueous solution containing 0.5% TFA and 5% acetonitrile at a flow rate of lml / min. did.
  • Figure 2 shows the reaction results for each substrate.
  • reaction products were identified as cyadin 3,5-didarcoside and cyadin 5-darcoside, respectively. Furthermore, when shia-zin 3-darcoside was used as a substrate, the reaction product was unable to be obtained.
  • the elution time of each compound under these conditions is as follows. Shea-jin 3,5-didarcoside: 6.31 minutes, Shea-jin 3-darcoside: 9.85 minutes, Shea-gin 5-darcoside: 10.68 minutes, Shea-jin: 16.34 minutes.
  • the recombinant enzyme of the pETRhGTl clone has both UDP-glucose: cyanidin 5-Q-glucosyltransferase and UDP-glucose: cyaniain 5-O-glucoside 3-Q-glucosyltransferase activities. It was. Therefore, the RhGTl gene encodes UDP—glucose: anthocyanidin 5,3—glucosyltransferase, which sequentially shifts the glycosyl group to the hydroxyl groups at the 5- and 3-positions of anthocyanin. ! /, Confirmed that.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A gene which is obtained from a rose and codes for a protein having 473 amino acid residues. The gene cords for a protein having such activity that it transfers a glucosyl group to the 5-position hydroxy group of anthocyanidin and then transfers a glucosyl group to the 3-positon hydroxy group.

Description

明 細 書  Specification
新規アントシァニジンダルコシル基転移酵素遺伝子  A novel anthocyanidin darcosyltransferase gene
技術分野  Technical field
[0001] 本発明は、ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる活性及び Z又はダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移させる活 性を有するタンパク質をコードする遺伝子及びその利用に関するものである。  [0001] The present invention encodes a protein having an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. It relates to genes and their use.
背景技術  Background art
[0002] 植物色素の中で最も多く見られるものがアントシァニンであり、アントシァニンは淡 青色から濃赤色まで多くの色を呈する。産業的にも植物の色は最も重要な形質の一 つであり、花色の多様化や果実の発色の良さ、着色の安定化'均一化などに見られ るように花卉類、果榭類、野菜類において大きな経済的要因となっている。直接、 目 で確認できる形質であるアントシァニンによる発色は多くの遺伝学、生化学、分子生 物学的研究の対象となり、今日ではアントシァニンを含むフラボノイドを含めて、フラ ボノイド生合成系に関わる遺伝子がペチュニア、キンギヨソゥ、ァラビドプシス等の花 卉類ゃリンゴ、ブドウなどの果実類、ナス、シソ等の野菜類力もクローユングされてい る。また、アントシァニン発現の仕組みが天然物化学及び生理学的解析によって解 明されつつある。  [0002] Anthocyanins are the most common among plant pigments, and anthocyanins exhibit many colors from light blue to deep red. Industrially, plant color is one of the most important traits, and as seen in the diversification of flower color, good color development of fruits, and stabilization of coloration, it is uniform. It is a big economic factor in vegetables. Color development by anthocyanins, a directly identifiable trait, has been the subject of many genetic, biochemical and molecular biological studies, and today there are genes involved in flavonoid biosynthesis systems, including flavonoids containing anthocyanins. Flowers such as petunia, goldfish, arabidopsis, fruits such as apples and grapes, and vegetables such as eggplant and perilla are also crawling. In addition, the mechanism of anthocyanin expression is being elucidated by natural product chemistry and physiological analysis.
[0003] これまでに 500種近くのアントシァニンが様々な植物種から報告されている。アント シァニジンはアントシァニンの骨格を成すァグリコンであるが、そのままでは植物体内 に存在せず、必ず配糖体化された形 (アントシァニン)で存在する。配糖体化されるこ とによりアントシァ-ジンは無毒なアントシァニンになって安定ィ匕し、また、水溶性にな るので細胞の液胞内に溶けるようになる。アントシァニンは液胞内でフラボン/フラボノ ールなどの補助色素や金属イオンと分子内会合や分子間会合、金属イオンとの配位 結合によって複雑な色素高分子を形成し各植物固有の色を呈する。それ故、アント シァ-ジンの配糖体ィ匕はアントシァニンを形成する最初の反応として重要であり、そ の後の発色にとって必須の化学反応である。  [0003] To date, nearly 500 anthocyanins have been reported from various plant species. Anthocyanidin is an aglycone that forms the skeleton of anthocyanin, but it does not exist in the plant body as it is, but it always exists in a glycosylated form (anthocyanin). As a result of glycosylation, anthocyanins become non-toxic anthocyanins and become stable, and they become soluble in water and become soluble in the vacuole of cells. Anthocyanins form complex pigment macromolecules by forming intramolecular associations, intermolecular associations, and coordination bonds with auxiliaries such as flavones / flavonols and metal ions in the vacuole, and exhibit unique colors of each plant. . Therefore, anthocyanin glycosides are important as the first reaction to form anthocyanins and are essential chemical reactions for the subsequent color development.
[0004] アントシァニンの水酸基に結合する糖残基は C環の 3位、 A環の 5位、 7位、 B環の 3' 位、 5 '位などに見られる力 これらの糖残基が結合する順序は様々な植物種による 報告によって種を越えた植物共通の反応経路であると考えられて 、る。アントシァ- ジンの水酸基の配糖体ィ匕は C環の 3位力 始まることは多くの植物で知られており、こ のことから配糖体ィ匕の最初の反応過程として一般に認識されて 、る。バラにぉ 、ては 3位と 5位の水酸基に糖残基が結合し、 3位から 5位の順序で配糖体ィ匕が起こると考え られているが、バラの配糖体ィ匕を行う糖転移酵素は酵素学的にも分子生物学的にも 未だ見つけられて ヽな ヽ。 [0004] The sugar residue that binds to the hydroxyl group of anthocyanin is the 3-position of the C ring, the 5-position, 7-position of the A-ring, and the 3 ' Forces found at the 5 'position, etc. The order in which these sugar residues bind is considered to be a common reaction pathway across plants, as reported by various plant species. It is known in many plants that the glycoside of the hydroxyl group of anthocyanin begins the 3-position force of the C ring, and this is generally recognized as the first reaction process of the glycoside. The It is thought that sugar residues bind to the hydroxyl groups at the 3rd and 5th positions, and glycosides are generated in the order of 3rd to 5th positions. Glycosyltransferases are still found both enzymatically and molecularly.
アントシァ-ジンの 3位水酸基へ糖残基を転移させる反応を触媒する酵素 (糖転移酵 素 (配糖体ィ匕酵素))の遺伝子はトウモロコシからトランスポゾンを用いて始めて単離さ れた(Fedoroff et al.ズ 1984) Proc. Natl. Acad. Sci. USA 81: 3825-3829)。その後、こ の遺伝子をプローブとして他の植物種から、同種の糖転移酵素の遺伝子が単離され ている(Wise et al" (1990) Plant Mol. Biol. 14: 277-279, Ford et al" (1998) J. Biol. Chem. 273: 9224-9233, Yamazaki et al" (2002) Plant Mol. Biol. 48: 401—411)。また 、アントシァニンの 5位水酸基にグルコース残基を転移させる反応を触媒する酵素の 遺伝子は赤シソ力 ディファレンシャル 'ディスプレイ法を用いて始めて単離された( 特許文献 1, Yamazaki et al., (1999) J. Biol. Chem. 274: 7405-7411)。また、この遺 伝子を用いてペチュニアからも見つけられた(Yamazaki et al., (2002) Plant Mol. Biol . 48: 401-411)。他のフラボノイドの糖転移酵素がクローンィ匕された例も幾つか報告 がある。フラボノールの 3位水酸基へガラクトース残基を転移させる反応を触媒する酵 素の遺伝子(Mato et al., (1998) Plant Cell Physiol. 39: 1145-1155, Miller et al., (19 99) J. Biol. Chem. 274: 34011-34019)、フラボンの 7位水酸基にグルコース残基を転 移させる反応を触媒する酵素の遺伝子(Hirotani et al., (2000) Planta 210: 1006-101 3)、そして、フラボノールの 4'位または 7位にグルコース残基を転移させる反応を触媒 するベタ-ジン 5位糖転移酵素の遺伝子(Vogt et al., (1997) Planta 203: 349-361, V ogt, (1999) Plant J. 19: 509- 519)が挙げられる。また、 B環の 3,位にグルコース残基 を転移させる反応を触媒する酵素の遺伝子がリンドウ (特許文献 2)から見出されてい る。アントシァニジンの異なる二力所の水酸基へ逐次的にグルコース残基を転移させ る反応を触媒する酵素の遺伝子としては、 3位から 5位の水酸基へ逐次的に糖残基を 転移させる反応を触媒する酵素の遺伝子がリンドウから単離されている(特許文献 3) 。バラでは糖残基を転移させる反応を触媒する酵素は今まで知られておらず、酵素 の活性が測定されたことも、酵素が精製されたことも、遺伝子がクローン化されたこと もない。その大きな原因としてバラの花弁にはタン-ン類ゃ他の二次代謝物質が多く 存在しており、他の植物で成功した方法を用いても単離が困難であったことがあげら れる。また、現在までに約 7,000種以上のバラが作出されている力 その赤色のバラ 花弁にはアントシァニンであるシァ-ジンの 3位と 5位がグルコース残基により配糖体 化されたシァ-ジン 3,5-ジダルコシドが普遍的に含まれており、逆に 3位のみが配糖 体化されたシァ-ジン 3-ダルコシドのみを有するバラは報告されて!、な!/、。 The gene for an enzyme that catalyzes the transfer of a sugar residue to the hydroxyl group at the 3-position of anthocyanin (a glycosyltransferase (glycoside enzyme)) was first isolated from maize using a transposon (Fedoroff et al. al., 1984) Proc. Natl. Acad. Sci. USA 81: 3825-3829). Subsequently, the same glycosyltransferase gene has been isolated from other plant species using this gene as a probe (Wise et al "(1990) Plant Mol. Biol. 14: 277-279, Ford et al" (1998) J. Biol. Chem. 273: 9224-9233, Yamazaki et al "(2002) Plant Mol. Biol. 48: 401-411). Also, a reaction to transfer a glucose residue to the 5-position hydroxyl group of anthocyanin. The gene for the catalyzing enzyme was isolated for the first time using the red perilla force differential 'display method (Patent Document 1, Yamazaki et al., (1999) J. Biol. Chem. 274: 7405-7411). The gene was also found in Petunia (Yamazaki et al., (2002) Plant Mol. Biol. 48: 401-411) .Several other cases in which other flavonoid glycosyltransferases were cloned were also reported. The gene of an enzyme that catalyzes the reaction of transferring a galactose residue to the 3-position hydroxyl group of flavonol (Mato et al., (1998) Plant C ell Physiol. 39: 1145-1155, Miller et al., (19 99) J. Biol. Chem. 274: 34011-34019), an enzyme that catalyzes the reaction of transferring a glucose residue to the 7-position hydroxyl group of flavone. The gene (Hirotani et al., (2000) Planta 210: 1006-101 3), and betadine 5-glycotransferase gene that catalyzes the reaction of transferring the glucose residue to the 4 'or 7 position of flavonol. (Vogt et al., (1997) Planta 203: 349-361, Vogt, (1999) Plant J. 19: 509-519), and transferring the glucose residue to position 3 of the B ring. The gene for the enzyme that catalyzes the reaction has been found in Gentian (patent document 2) The gene for the enzyme that catalyzes the reaction of sequentially transferring glucose residues to the hydroxyl groups at two different sites in anthocyanidin Sequential sugar residues from the 3-position to the 5-position hydroxyl group An enzyme gene that catalyzes a transfer reaction has been isolated from gentian (Patent Document 3). In rose, the enzyme that catalyzes the reaction of transferring sugar residues has not been known so far, and the activity of the enzyme has not been measured, the enzyme has not been purified, or the gene has not been cloned. The main reason for this is that rose petals are rich in tannins and other secondary metabolites, which were difficult to isolate using methods that were successful in other plants. . In addition, the power of over 7,000 roses produced so far The red rose petals have Shiaxin, which is glycosylated with glucose residues at the 3rd and 5th positions of the anthocyanin shiaxin. Roses containing only 3,5-didarcoside, and conversely only sialidin 3-dalcoside, in which only the 3-position is glycosylated have been reported!
[0006] 特許文献 1:国際公開第 99/05287号パンフレット [0006] Patent Document 1: International Publication No. 99/05287 Pamphlet
特許文献 2:国際公開第 01/92509号パンフレット  Patent Document 2: International Publication No. 01/92509 Pamphlet
特許文献 3 :特開平 10-113184  Patent Document 3: JP-A-10-113184
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、ダルコシル基を転移させる活性を有するタンパク質をコードする遺伝子 、好ましくは、既知の順序とは異なる順序でアントシァ-ジンの 5位及び 3位の水酸基 にダルコシル基を転移させる活性を有するタンパク質をコードする遺伝子を得ること を課題とした。本発明で得られたダルコシル基転移活性を有するタンパク質をコード する遺伝子あるいは同様の遺伝子を植物に導入して、発現させることにより、蓄積す るフラボノイド化合物の種類を改変して、花色や果実などの植物体の発色変換をする ことが可能になる。また、バラにおいては本遺伝子を用いた RNAi法、遺伝子破壊法 等による遺伝子発現制御と、これまでに報告のあるアントシァニンにおける既知の修 飾酵素 (糖転移酵素 (配糖体化酵素)、ァシル化酵素)を遺伝子導入することで、本 来バラには存在し得な力つたアントシァニンをバラ花弁中で生産させ、これまでにな Vヽ花色のバラを作出することができる。 [0007] The present invention relates to a gene encoding a protein having an activity of transferring a darcosyl group, preferably an activity of transferring a darcosyl group to the hydroxyl groups at the 5-position and 3-position of anthocyanin in an order different from the known order. It was an object to obtain a gene encoding a protein having a protein. A gene encoding a protein having a dalcosyl group transfer activity obtained in the present invention or a similar gene is introduced into a plant and expressed to modify the type of flavonoid compound to be accumulated, so that flower color, fruit, etc. It is possible to change the color of the plant body. In rose, gene expression control by RNAi method, gene disruption method, etc. using this gene and known modification enzymes (glycosyltransferase (glycosylation enzyme), acylation) in anthocyanins reported so far. By introducing the enzyme) into the rose petals, the anthocyanins that cannot exist in roses can be produced in the rose petals, and V-flower-colored roses can be produced.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者は、アントシァ-ジンの 5位の水酸基へダルコシル基を転移させた後、 3位 の水酸基へダルコシル基を転移させる反応を触媒する酵素をバラの花弁力 見出し 、その遺伝子をクローユングした。糖転移酵素に共通して存在する塩基配列に基づ き合成した縮重プライマーを用いた RT-PCRを行 ヽ cDNA断片の増幅し、その塩基配 列を決定した。得られた塩基配列情報を基に遺伝子のタンパク質コード領域を RT-P CRによってクローンィ匕した。得られたクローンの機能解析は大腸菌の組換えタンパク 質合成系を利用して得られたタンパク質を用い、その酵素活性を解析した。本発明 は、以上の知見に基づき完成されたものである。 [0008] The present inventor has found an enzyme that catalyzes the reaction of transferring the darcosyl group to the hydroxyl group at the 3-position after transferring the darcosyl group to the hydroxyl group at the 5-position of anthocyanin. The gene was clawed. RT-PCR was performed using degenerate primers synthesized based on the nucleotide sequence that is common to glycosyltransferases. The cDNA fragment was amplified and its nucleotide sequence was determined. Based on the obtained base sequence information, the protein coding region of the gene was cloned by RT-PCR. For the functional analysis of the obtained clone, the enzyme activity was analyzed using a protein obtained by utilizing a recombinant protein synthesis system of Escherichia coli. The present invention has been completed based on the above findings.
[0009] 即ち、本発明は、以下の〔1〕〜〔16〕を提供するものである。 [0009] That is, the present invention provides the following [1] to [16].
[0010] 〔1〕本発明の第一は、ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる 活性及び Z又はダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移 させる活性を有するタンパク質をコードする遺伝子である。 [1] The first aspect of the present invention is the activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and the activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. It is a gene that encodes a protein it has.
[0011] 〔2〕本発明の第二は、以下の (a)〜( のタンパク質をコードする〔1〕記載の遺伝子で ある。 [2] A second aspect of the present invention is the gene according to [1], which encodes the following proteins (a) to (:
[0012] (a)配列番号 2に記載のアミノ酸配列を有するタンパク質、  (A) a protein having the amino acid sequence set forth in SEQ ID NO: 2,
(b)配列番号 2に記載のアミノ酸配列において一個又は複数個のアミノ酸が付加、欠 失及び Z又は他のアミノ酸により置換されているアミノ酸配列を有するタンパク質、 (b) a protein having an amino acid sequence in which one or more amino acids are added, deleted and substituted with Z or other amino acids in the amino acid sequence shown in SEQ ID NO: 2;
(c)配列番号 2に記載のアミノ酸配列に対して 20%以上の相同性を示すアミノ酸配列を 有するタンパク質、 (c) a protein having an amino acid sequence showing 20% or more homology to the amino acid sequence set forth in SEQ ID NO: 2,
(d)配列番号 2に記載のアミノ酸配列に対して 70%以上の相同性を示すアミノ酸配列を 有するタンパク質、  (d) a protein having an amino acid sequence showing 70% or more homology to the amino acid sequence set forth in SEQ ID NO: 2,
〔3〕本発明の第三は、配列番号 1に記載の塩基配列で表される核酸、又は配列番号 2に記載のアミノ酸配列をコードする核酸の一部又は全部に対して、ストリンジェント な条件下でハイブリダィズする遺伝子であって、ダルコシル基をアントシァ-ジンの 5 位の水酸基へ転移させる活性及び Z又はダルコシル基をアントシァ-ジン 5-ダルコ シドの 3位の水酸基へ転移させる活性を有するタンパク質をコードする遺伝子である  [3] The third aspect of the present invention is that stringent conditions are applied to a part or all of the nucleic acid represented by the nucleotide sequence set forth in SEQ ID NO: 1 or the nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 2. A protein that hybridizes below and has the activity of transferring the darcosyl group to the hydroxyl group at the 5-position of anthocyanin and the activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-dalcoside It is a gene that encodes
[0013] 〔4〕本発明の第四は、ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる 活性とダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移させる活 性の両者を有するタンパク質をコードする〔1〕〜〔3〕のいずれか記載の遺伝子である [0014] 〔5〕本発明の第五は、〔1〕〜〔3〕のいずれかに記載の遺伝子を含んでいるベクター である。 [4] The fourth aspect of the present invention is that both the activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and the activity of transferring the darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside It is a gene according to any one of [1] to [3] that encodes a protein having [5] A fifth aspect of the present invention is a vector comprising the gene according to any one of [1] to [3].
[0015] 〔6〕本発明の第六は、〔4〕に記載の遺伝子を含んでいるベクターである。  [6] A sixth aspect of the present invention is a vector containing the gene according to [4].
[0016] 〔7〕本発明の第七は、〔5〕又は〔6〕に記載のベクターにより形質転換された宿主細胞 である。 [7] A seventh aspect of the present invention is a host cell transformed with the vector according to [5] or [6].
[0017] 〔8〕本発明の第八は、〔1〕〜〔4〕のいずれか 1項に記載の遺伝子によってコードされ るタンノ ク質である。  [8] An eighth aspect of the present invention is a protein encoded by the gene according to any one of [1] to [4].
[0018] 〔9〕本発明の第九は、〔7〕に記載の宿主細胞を培養し、又は生育させ、その後、該宿 主細胞力 ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる活性及び Z 又はダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移させる活性 を有するタンパク質を採取することを特徴とする該タンパク質の製造方法である。  [9] A ninth aspect of the present invention is that the host cell according to [7] is cultured or grown, and then the host cell force darcosyl group is transferred to the hydroxyl group at the 5-position of anthocyanin. A method for producing a protein comprising collecting a protein having an activity and an activity of transferring Z or a dalcosyl group to a hydroxyl group at the 3-position of anthocyanin 5-darcoside.
[0019] 〔10〕本発明の第十は、〔1〕〜〔4〕のいずれかに記載の遺伝子を用いた無細胞タン パク質合成系による該タンパク質の製造方法である。  [10] A tenth aspect of the present invention is a method for producing the protein by a cell-free protein synthesis system using the gene according to any one of [1] to [4].
[0020] 〔11〕本発明の第十一は、〔1〕〜〔4〕のいずれかに記載の遺伝子、又は〔5〕又は〔6〕 に記載のベクターが導入され、形質転換された植物である。  [11] An eleventh aspect of the present invention is a plant transformed by introducing the gene according to any one of [1] to [4] or the vector according to [5] or [6] It is.
[0021] 〔12〕本発明の第十二は、〔11〕に記載の植物と同じ性質を有する該植物の子孫であ る。  [12] A twelfth aspect of the present invention is a progeny of the plant having the same properties as the plant according to [11].
[0022] 〔13〕本発明の第十三は、〔11〕に記載の植物又は〔12〕に記載の該植物の子孫の 組織である。  [13] The thirteenth aspect of the present invention is the plant according to [11] or the progeny tissue of the plant according to [12].
[0023] 〔14〕本発明の第十四は、〔11〕に記載の植物又は〔12〕に記載の該植物の子孫の 切り花である。  [14] A fourteenth aspect of the present invention is a cut flower of the plant according to [11] or the progeny of the plant according to [12].
[0024] 〔15〕本発明の第十五は、〔4〕に記載の遺伝子、又は〔6〕に記載のベクターを植物又 は植物細胞に導入し、該遺伝子を発現させることによる、アントシァ-ジンの 5位の水 酸基へダルコシル基を転移させた後、 3位の水酸基へダルコシル基を転移させる方 法である。  [15] The fifteenth aspect of the present invention is an anthocyanin by introducing the gene according to [4] or the vector according to [6] into a plant or plant cell and expressing the gene. This is a method in which the darcosyl group is transferred to the hydroxyl group at the 5-position of gin and then transferred to the hydroxyl group at the 3-position.
[0025] 〔16〕本発明の第十六は、〔1〕〜〔4〕のいずれかに記載の遺伝子、又は〔5〕又は〔6〕 に記載のベクターを植物又は植物細胞に導入し、該遺伝子を発現させることにより、 植物体の花色を調節する方法である。 [16] In the sixteenth aspect of the present invention, the gene according to any one of [1] to [4] or the vector according to [5] or [6] is introduced into a plant or plant cell, By expressing the gene, It is a method of adjusting the flower color of a plant body.
[0026] 〔17〕本発明の第十七は、〔1〕〜〔4〕のいずれかに記載の遺伝子を持つ植物におい て、該遺伝子の発現を抑制することにより、植物体の花色を調節する方法である。  [17] In the seventeenth aspect of the present invention, in the plant having the gene according to any one of [1] to [4], the flower color of the plant body is regulated by suppressing the expression of the gene. It is a method to do.
[0027] 以下、本発明を詳細に説明する。 [0027] Hereinafter, the present invention will be described in detail.
[0028] (1)遺伝子 [0028] (1) Gene
本発明の遺伝子は、ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる 活性及び Z又はダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移 させる活性を有するタンパク質をコードするものである。  The gene of the present invention encodes a protein having an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. is there.
[0029] 本発明の遺伝子としては、例えば、以下の (A)〜(D)の遺伝子を例示できる。  [0029] Examples of the gene of the present invention include the following genes (A) to (D).
[0030] (A)配列番号 2に記載のアミノ酸配列を有し、前記二つの酵素活性の!/、ずれか一方 又は両方を有するタンパク質をコードする遺伝子  [0030] (A) a gene encoding a protein having the amino acid sequence set forth in SEQ ID NO: 2 and having! /, One or both of the two enzyme activities
ここで「配列番号 2に記載のアミノ酸配列を有する」とは、配列番号 2に記載のァミノ 酸配列のみ力もなるタンパク質だけでなぐこのようなタンパク質の N末端又は C末端 側に複数のアミノ酸が付加したタンパク質をも含む趣旨である。付加するアミノ酸の個 数は、上記ダルコシル基転移活性を失わせな 、範囲であれば特に限定されな ヽが、 通常は 400個以内であり、好ましくは 50個以内である。  Here, “having the amino acid sequence described in SEQ ID NO: 2” means that a plurality of amino acids are added to the N-terminal or C-terminal side of such a protein that includes only the protein having only the amino acid sequence described in SEQ ID NO: 2. The purpose is to include the purified protein. The number of amino acids to be added is not particularly limited as long as the above darcosyl group transfer activity is not lost, but it is usually within 400, preferably within 50.
[0031] (B)配列番号 2に記載のアミノ酸配列において一個又は複数個のアミノ酸が付加、 欠失及び Z又は他のアミノ酸により置換されて 、るアミノ酸配列を有し、かつ前記二 つの酵素活性のいずれか一方又は両方を有するタンパク質をコードする遺伝子 このような付加、欠失、置換されているアミノ酸配列を有するタンパク質は、天然のも のでもよく、また、人工的なものであってもよい。付加、欠失、置換するアミノ酸の個数 は上記ダルコシル基転移活性を失わせな 、範囲であれば特に限定されな ヽが、通 常は 20個以内であり、好ましくは 5個以内である。  [0031] (B) one or more amino acids in the amino acid sequence set forth in SEQ ID NO: 2 have an amino acid sequence added, deleted, and substituted with Z or other amino acids, and the two enzyme activities A gene encoding a protein having either one or both of the above proteins having an amino acid sequence that has been added, deleted, or substituted may be natural or artificial. . The number of amino acids to be added, deleted or substituted is not particularly limited as long as the above darcosyl group transfer activity is not lost, but is usually within 20 and preferably within 5.
[0032] (C)配列番号 2に記載のアミノ酸配列に対して一定以上の相同性を示すアミノ酸配 列を有し、かつ前記二つの酵素活性の 、ずれか一方又は両方を有するタンパク質を コードする遺伝子  [0032] (C) encodes a protein having an amino acid sequence exhibiting a certain homology to the amino acid sequence of SEQ ID NO: 2 and having either one or both of the two enzyme activities Gene
ここで「一定以上の相同性」とは、通常は 20%以上の相同性、好ましくは 50%以上 の相同性、より好ましくは 60%以上の相同性、最も好ましくは 70%以上の相同性を意 味する。 As used herein, “a certain degree of homology” usually means a homology of 20% or more, preferably 50% or more, more preferably 60% or more, most preferably 70% or more. Intention Taste.
[0033] (D)配列番号 1に記載の塩基配列で表される核酸、又は配列番号 2に記載のァミノ 酸配列をコードする核酸の一部又は全部に対して、ストリンジヱントな条件下でハイブ リダィズする遺伝子であって、かつ前記二つの酵素活性の 、ずれか一方又は両方を 有するタンパク質をコードする遺伝子  [0033] (D) Hybridization under stringent conditions for part or all of the nucleic acid represented by the nucleotide sequence set forth in SEQ ID NO: 1 or the amino acid sequence encoding the amino acid sequence set forth in SEQ ID NO: 2. A gene encoding a protein having one or both of the two enzyme activities
ここで「核酸の一部」とは、例えば、コンセンサス配列領域の 6個以上のアミノ酸配列 をコードする部分などを意味する。  Here, “part of the nucleic acid” means, for example, a portion encoding 6 or more amino acid sequences in the consensus sequence region.
[0034] 「ストリンジェントな条件」とは、特異的なハイブリダィゼーシヨンのみが起き、非特異 的なノ、イブリダィゼーシヨンが起きないような条件をいい、例えば、温度が 50°C、塩濃 度が 5 X SSC (又はこれと同等の塩濃度)といった条件である。なお、適切なノ、イブリダ ィゼーシヨン温度は、核酸の塩基配列やその核酸の長さによって異なり、例えば、ァ ミノ酸 6個をコードする 18塩基力 なる DNAフラグメントをプローブとした場合には 50°C 以下の温度が好ましい。  [0034] The "stringent condition" refers to a condition in which only specific hybridization occurs and non-specific hybridization does not occur. For example, the temperature is 50 °. C, salt concentration is 5 X SSC (or equivalent salt concentration). The appropriate hybridization temperature depends on the base sequence of the nucleic acid and the length of the nucleic acid.For example, when a DNA fragment of 18 bases encoding 6 amino acids is used as a probe, the temperature is 50 ° C. The following temperatures are preferred.
[0035] この様なハイブリダィゼーシヨンによって選択される遺伝子としては、天然の遺伝子 、例えば、植物由来の遺伝子、特にバラ由来の遺伝子が挙げられる。また、ハイプリ ダイゼーションによって選択される遺伝子は cDNAであつてもよく、ゲノム DNAであつ ても良い。  [0035] Examples of the gene selected by such hybridization include natural genes, for example, plant-derived genes, particularly rose-derived genes. Further, the gene selected by hybridization may be cDNA or genomic DNA.
[0036] 上記遺伝子のうち、天然に存在するものは、後述する実施例に示すように、 cDNAラ イブラリーのスクリーニング等により得ることができる。また、天然には存在しない遺伝 子も部位特異的変異誘発法や PCR法などを利用することにより得ることができる。  [0036] Among the above genes, naturally occurring ones can be obtained by screening a cDNA library or the like, as shown in the Examples described later. In addition, non-naturally occurring genes can be obtained by using site-directed mutagenesis or PCR.
[0037] (2)ベクター  [0037] (2) Vector
本発明のベクターは、既知の発現ベクターに(1)の遺伝子を挿入することにより作 製できる。  The vector of the present invention can be produced by inserting the gene (1) into a known expression vector.
[0038] ここで使用する既知の発現ベクターは、適当なプロモーター、ターミネータ一、複製 起点等を含有するものであれば特に限定されない。プロモーターは、例えば、細菌 中で発現させるのであれば、 trcプロモーター、 tacプロモーター、 lacプロモーター等 が使用でき、酵母中で発現させるのであれば、ダリセルアルデヒド 3リン酸デヒドロゲ ナーゼプロモーター、 PH05プロモーター等が使用でき、糸状菌中で発現させるので あれば、アミラーゼプロモーター、 trpCプロモーター等が使用でき、動物細胞中で発 現させるのであれば、 SV40アーリープロモーター、 SV40レートプロモーター等が使用 できる。 [0038] The known expression vector used here is not particularly limited as long as it contains an appropriate promoter, terminator, replication origin and the like. For example, the trc promoter, tac promoter, lac promoter, etc. can be used if the promoter is expressed in bacteria, and if expressed in yeast, the dalyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter, etc. can be used. Can be used and expressed in filamentous fungi If present, the amylase promoter, trpC promoter, etc. can be used, and if expressed in animal cells, the SV40 early promoter, SV40 rate promoter, etc. can be used.
[0039] (3)形質転換された宿主細胞  [0039] (3) transformed host cell
本発明における形質転換された宿主細胞とは、(2)のベクターにより形質転換され た宿主細胞である。  The transformed host cell in the present invention is a host cell transformed with the vector (2).
[0040] 宿主細胞は、原核生物、真核生物のいずれでもよい。原核生物としては、例えば、 大腸菌 (Escherichia coli)、バチルス'スブチリス (Bacillus subtilis)等を用いることがで きる。真核生物としては、酵母、糸状菌などのほか、動物及び植物の培養細胞を使 用することができる。酵母としては、サッカロミセス ·セレピシェ(Saccharomvces cerevi Sk§)等を例示でき、糸状菌としては、ァスペルギルス ·ォリゼ (AsDerrillus orvzae)、ァ スペルギルス ·-ガー (Aspergillus nkgi)等を例示でき、動物細胞としては、マウス、 ノ、ムスター、サル、ヒト、カイコ等の培養細胞を例示できる。  [0040] The host cell may be either prokaryotic or eukaryotic. As prokaryotes, for example, Escherichia coli, Bacillus subtilis, etc. can be used. Examples of eukaryotes include yeast and filamentous fungi, as well as animal and plant cultured cells. Examples of yeasts include Saccharomvces cerevisk (Saccharomvces cerevi Sk§) and the like. Examples of filamentous fungi include Aspergillus orvzae and Aspergillus nkgi. Animal cells include: Examples thereof include cultured cells such as mouse, mouse, muster, monkey, human and silkworm.
[0041] (2)のベクターにより形質転換する方法は特に限定されず、常法に従って行うこと ができる。  [0041] The method of transforming with the vector of (2) is not particularly limited, and can be performed according to a conventional method.
[0042] (4)タンパク質  [0042] (4) Protein
上記(1)の遺伝子によってコードされるタンパク質も本発明に含まれる。このタンパ ク質は、例えば、後述する(5)の方法によって製造することができる。  Proteins encoded by the gene (1) are also included in the present invention. This protein can be produced, for example, by the method (5) described later.
[0043] (5)タンパク質の製造方法  [0043] (5) Protein production method
本発明のタンパク質の製造方法は、(3)の宿主細胞を培養し、又は生育させ、その 後、該宿主細胞力 ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる活 性及び Z又はダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移さ せる活性を有するタンパク質を採取すること、もしくは無細胞タンパク質合成系などに よるタンパク質の製造を特徴とするものである。  The method for producing a protein of the present invention comprises culturing or growing the host cell of (3), and then transferring the host cell force darcosyl group to the hydroxyl group at the 5-position of anthocyanin and Z or dalcosyl. It is characterized by collecting a protein having an activity of transferring a group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside, or by producing a protein using a cell-free protein synthesis system or the like.
[0044] 宿主細胞の培養又は生育は、その宿主細胞の種類に応じた方法に従って行うこと ができる。また、無細胞タンパク質合成系によるタンパク質の製造は常法に従って行 うことができる。  [0044] The culture or growth of the host cell can be performed according to a method according to the type of the host cell. In addition, protein production by a cell-free protein synthesis system can be performed according to a conventional method.
[0045] タンパク質の採取は常法に従って行うことができ、例えば、培養物等から濾過、遠 心分離、細胞の破砕、ゲル濾過、イオン交換クロマトグラフィー等により回収、精製す ることにより、 目的のタンノ ク質を得ることができる。 [0045] The protein can be collected according to a conventional method. For example, the protein can be filtered and removed from the culture. The target protein can be obtained by collecting and purifying by heart separation, cell disruption, gel filtration, ion exchange chromatography and the like.
[0046] (6)植物  [0046] (6) Plant
本発明の植物は、上記(1)の遺伝子又は(2)のベクターが導入され形質転換され たものである。  The plant of the present invention is transformed by introducing the gene (1) or the vector (2).
[0047] 遺伝子等の導入対象とする植物は特に限定されず、例えば、バラ、キク、シネラリア 、キンギヨソゥ、シクラメン、ラン、トルコギキヨウ、フリージア、ガーベラ、グラジオラス、 カスミソゥ、カランコェ、ユリ、ペラルゴ-ゥム、ゼラ-ゥム、ペチュニア、チューリップ、 イネ、ォォムギ、コムギ、ナタネ、ポテト、トマト、ポプラ、バナナ、ユーカリ、サツマィモ 、ダイズ、アルファルファ、ルーピン、トウモロコシ、カリフラワー、ロベリア、リンゴ、ブド ゥ、モモ、カキ、スモモ、柑橘類、などを挙げることができる。  [0047] Plants to which genes and the like are to be introduced are not particularly limited. Gelaum, petunia, tulip, rice, barley, wheat, rapeseed, potato, tomato, poplar, banana, eucalyptus, sweet potato, soybean, alfalfa, lupine, corn, cauliflower, lobelia, apple, bud, peach, oyster, Plums, citrus fruits, etc. can be mentioned.
[0048] (7)植物の子孫  [0048] (7) Plant offspring
上記 (6)の植物の子孫も本発明に含まれる。  The progeny of the plant of the above (6) is also included in the present invention.
[0049] (8)植物等の組織  [0049] (8) Tissues such as plants
上記(6)の植物又は(7)の植物の子孫の組織も本発明に含まれる。  Tissues of the plant of the above (6) or the progeny of the plant of (7) are also included in the present invention.
[0050] (9)植物等の切り花  [0050] (9) Cut flowers such as plants
上記(6)の植物又は(7)の植物の子孫の切り花も本発明に含まれる。  Cut flowers of the plant of the above (6) or the progeny of the plant of (7) are also included in the present invention.
[0051] (10)ダルコシル基の転移方法  [0051] (10) Method for transferring darcosyl group
本発明のダルコシル基の転移方法は、上記(1)の遺伝子のうちダルコシル基をアン トシァ-ジンの 5位の水酸基へ転移させる活性とダルコシル基をアントシァ-ジン 5-グ ルコシドの 3位の水酸基へ転移させる活性の両者を有するタンパク質をコードするも の、又は上記(2)のベクターのうちダルコシル基をアントシァ-ジンの 5位の水酸基へ 転移させる活性とダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転 移させる活性の両者を有するタンパク質をコードする遺伝子を含んで 、るものを、植 物又は植物細胞に導入し、該遺伝子を発現させることによる、アントシァ-ジンの 5位 の水酸基へダルコシル基を転移させた後、 3位の水酸基へダルコシル基を転移させ るものである。  The method for transferring a darcosyl group of the present invention comprises the activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin in the gene of (1) above and the hydroxyl group at the 3-position of anthocyanin 5-glucoside. Of the vector (2), which encodes a protein having both the activity of transferring to aldose, or the activity of transferring the dalcosyl group to the hydroxyl group at the 5-position of anthocyanin and the darcosyl group of anthocyanin 5-darcoside Introducing a gene encoding a protein having both activities to be transferred to the hydroxyl group at position 3 into a plant or plant cell and expressing the gene results in the 5th position of anthocyanin. After the darcosyl group is transferred to the hydroxyl group, the darcosyl group is transferred to the hydroxyl group at the 3-position.
[0052] (11)花色の調節方法 本発明の花色の調節方法は、上記(1)の遺伝子又は(2)のベクターを植物又は植 物細胞に導入し、該遺伝子を発現させることにより、あるいは、上記(1)の遺伝子を 持つ植物において、該遺伝子の発現を抑制することにより、植物体の花や果実の色 を調節するものである。遺伝子導入の対象とする植物は特に限定されず、例えば、上 記(6)で例示した植物を使用できる。また、(1)の遺伝子の抑制対象とする植物は(1 )の遺伝子を持つ植物であれば特に限定されな 、。 [0052] (11) Flower color adjustment method The method for regulating flower color of the present invention comprises introducing the gene (1) or the vector (2) into a plant or a plant cell and expressing the gene, or a plant having the gene (1). In this method, the color of the flower or fruit of the plant body is regulated by suppressing the expression of the gene. The plant targeted for gene transfer is not particularly limited, and for example, the plant exemplified in (6) above can be used. Further, the plant to be suppressed by the gene (1) is not particularly limited as long as it is a plant having the gene (1).
[0053] (1)の遺伝子の導入及び発現は常法に従って行うことができる。また、(1)の遺伝 子の発現抑制も常法 (例えば、アンチセンス法やコサプレツシヨン法や RNAi法)に従 つて行うことができる。 [0053] The introduction and expression of the gene of (1) can be performed according to a conventional method. In addition, suppression of gene expression in (1) can also be carried out according to conventional methods (for example, the antisense method, the cosuppression method, and the RNAi method).
発明の効果  The invention's effect
[0054] 本発明により得られた遺伝子の発現産物を用いることにより、アントシァ-ジンの 5 位の水酸基へダルコシル基を転移させた後、 3位の水酸基へダルコシル基を転移さ せることができる。これにより、花や果実などアントシァニンの蓄積により発色している 植物組織の改変を行うことが可能になる。  [0054] By using the gene expression product obtained by the present invention, a darcosyl group can be transferred to the hydroxyl group at the 5-position of anthocyanin, and then the darcosyl group can be transferred to the hydroxyl group at the 3-position. This makes it possible to modify plant tissues that are colored by the accumulation of anthocyanins such as flowers and fruits.
図面の簡単な説明  Brief Description of Drawings
[0055] [図 1]バラ花弁抽出酵素液による基質別 [A. Cy(Cyanidin), B. Cy5G(Cyanidin 5-O-g lucoside), C. Cy3G(Cyanidin 3- Q- glucoside)]の反応結果を示す。  [0055] [Fig. 1] The results of the reactions of [A. Cy (Cyanidin), B. Cy5G (Cyanidin 5-Og lucoside), C. Cy3G (Cyanidin 3-Q-glucoside)] by the rose petal extract enzyme solution. Show.
[図 2]糖転移酵素活性の認められた 1クローンの基質別 [D. Cy(Cyanidin), E. Cy5G(C yanidin 5-O-glucoside), F. Cy3u(Cyanidin 3— gmcosideノ]の反心ホ吉果 不す。 発明を実施するための最良の形態  [Figure 2] One clone of glycosyltransferase activity recognized by substrate [D. Cy (Cyanidin), E. Cy5G (Cyanidin 5-O-glucoside), F. Cy3u (Cyanidin 3-gmcoside)] The best mode for carrying out the invention
[0056] 以下実施例に従って、本発明をさらに詳細に説明する。 [0056] The present invention will be described in more detail below with reference to examples.
〔実施例 1〕 酵素反応の基質及び標準化合物の調製  [Example 1] Preparation of enzyme reaction substrate and standard compound
(1)植物材料の調製  (1) Preparation of plant material
バラ'クリムソングローリー, (Rosa hvbrida cv. Crimson Glory) (広島バラ園)の苗を、 10号ポリポットに移植してガラス温室にて育苗した。その後、アントシァニン抽出に用 いた'クリムソングローリー,の開花花弁は 35°Cで通風乾燥した後、アントシァニン抽 出に用いるまで真空デシケーター内で保存した。  The seedlings of Rose 'Crimson Lory, (Rosa hvbrida cv. Crimson Glory) (Hiroshima Rose Garden) were transplanted to No. 10 polypot and raised in a glass greenhouse. After that, the flower petals of 'Crimson Laurie' used for anthocyanin extraction were dried by ventilation at 35 ° C and then stored in a vacuum desiccator until used for extraction of anthocyanins.
(2)基質および反応産物の決定 酵素反応基質および反応産物の同定は、薄層クロマトグラフィー (TLC)、高速液体 クロマトグラフィー (HPLC)分析による標準物質とのコクロマトグラフィーおよび分光学 的手法により行った。シァ-ジン、シァ-ジン 3-ダルコシド、シァ-ジン 3, 5-ダルコシド は市販品 (フナコシ (株)製)を用いた。 (2) Determination of substrate and reaction product Enzyme reaction substrates and reaction products were identified by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) analysis with co-chromatography with standards and spectroscopic techniques. Commercially-available products (manufactured by Funakoshi Co., Ltd.) were used for shia-zin, shia-zin 3-darcoside, and shia-zin 3,5-darcoside.
(3)シァニジン 5-ダルコシドの単離 (3) Isolation of cyanidin 5-darcoside
バラ乾燥花弁 (後述の HPLC (520 分析の結果、粗抽出液でシァ-ジン 3,5-ジグ ルコシドを 95%以上含む:生重量 100g)を 1Lの 0.05%塩酸水溶液にてー晚常温で 放置し粗抽出液を得た後、石油エーテル、クロ口ホルム及び酢酸ェチルにより分画 操作を行った。アンバーライト XAD- 7オルガノ (株)製)を充填したガラスカラム(30 m m i.d. X 600 mm)を 0.01%塩酸水溶液にて平衡化したのち 2倍に希釈した水層画分 をカラムに通し、色素を吸着させた。未吸着物質を洗浄した後、 0.01%塩酸を含む 80 %メタノール水溶液にて色素を溶出した。溶出液は乾燥固化させた。  Rose dried petals (HPLC (described later as a result of 520 analysis, containing 95% or more of ciazine 3,5-diglucoside in the crude extract: raw weight 100 g) in 1 L of 0.05% hydrochloric acid aqueous solution-left at room temperature After the crude extract was obtained, fractionation was performed with petroleum ether, black mouth form, and ethyl acetate, a glass column (30 mm id X 600 mm) packed with Amberlite XAD-7 Organo Co., Ltd. After equilibrating with 0.01% aqueous hydrochloric acid, the aqueous layer fraction diluted twice was passed through the column to adsorb the dye. After washing the unadsorbed material, the dye was eluted with 80% aqueous methanol solution containing 0.01% hydrochloric acid. The eluate was dried and solidified.
乾燥固化させた色素粉末を 0.05%塩酸水溶液に再溶解させ、そこに 12%塩酸水 溶液を等量加え 80°Cで 20分間加熱し酸加水分解を行った。加熱後、その溶液に等 量のイソアミルアルコールを加え激しく攪拌後遠心し、イソアミルアルコール層を取り 除いた。これを 3回行った後、酢酸ェチルを等量加え攪拌後、遠心し水層を分画した 上述の方法で得られた水層から 2回のペーパークロマトグラフィー(ワットマン 3MM) を行うことでシァニジン 5-ダルコシドを単離した。有隅の方法 (有隅 山口大学農学部 学術報告 第 18号 1967年)を一部改変し、展開溶媒 2メチル -1-プロパノール:塩酸 :水 = 5: 2: 4の上清を用い 1回目のクロマトを行 、3種類(シァ二ジン 3-ダルコシド、シ ァ-ジン 5-ダルコシド、シァ-ジン 3,5-ジダルコシド)の色素画分を得た。展開後風乾 させ、 320nmの UV下で強!ヽ蛍光を示す画分(シァ-ジン 5-ダルコシド)を 2回目のぺ 一パークロマトグラフィーに用いた。展開溶媒 塩酸:酢酸:水 = 15 : 3 : 82を用い展開 精製した。 1種類の色素画分を得、溶出後、 HPLC分析により単一に精製されたことを 確認し、その後の酵素反応の基質とした。また、単一でない場合は HPLCによる分取 を行った。  The dried and solidified pigment powder was redissolved in 0.05% aqueous hydrochloric acid solution, and an equal amount of 12% aqueous hydrochloric acid solution was added thereto, followed by heating at 80 ° C for 20 minutes for acid hydrolysis. After heating, an equal amount of isoamyl alcohol was added to the solution, and the mixture was vigorously stirred and centrifuged to remove the isoamyl alcohol layer. After this was performed three times, an equal amount of ethyl acetate was added, stirred, centrifuged, and the aqueous layer was fractionated. Paper chromatography (Whatman 3MM) was performed twice from the aqueous layer obtained by the above-mentioned method. 5-Dalcoside was isolated. First modification using Arisumi's method (Arisumi Yamaguchi University Faculty of Agriculture, Scientific Report No.18, 1967), developing solvent 2 methyl-1-propanol: hydrochloric acid: water = 5: 2: 4 supernatant Chromatography was performed to obtain three types of dye fractions (cyanidine 3-darcoside, cyadin 5-darcoside, and cyadin 3,5-didarcoside). After the development, it was air-dried, and a fraction (Shiajin 5-Dalcoside) showing strong fluorescence under 320 nm UV was used for the second paper chromatography. Developing solvent: Purified using hydrochloric acid: acetic acid: water = 15: 3: 82. One type of dye fraction was obtained, and after elution, it was confirmed that it had been purified by HPLC analysis, and used as a substrate for the subsequent enzyme reaction. If it was not single, fractionation by HPLC was performed.
HPLCによる分析および分取には逆層カラム WakosiHI5C18ARカラム(4.6 mm i.d . X 250 mm)を用い、カラム温度 35°Cで行った。流速 lml/minにて 0.5%TFA、 5%ァセ トニトリルを含む水溶液 (A)に対して 5%力も 25%の 0.5%TFAを含むァセトニトリル溶 液 (B)による直線的濃度勾配で 20分間の溶出時間で PDAを用いて検出した。 Reversed column WakosiHI5C18AR column (4.6 mm id) for HPLC analysis and fractionation X 250 mm) at a column temperature of 35 ° C. At a flow rate of lml / min, an aqueous solution containing 0.5% TFA and 5% acetonitrile (A) with a linear concentration gradient of 20% of acetonitrile solution (B) containing 0.5% TFA at 5% force for 20 minutes The elution time was detected using PDA.
〔実施例 2〕 ノ ラ花弁でのアントシァニンの 5位及び 3位にダルコシル基を転移する酵 素活性の測定 [Example 2] Measurement of enzyme activity for transferring a darcosyl group to 5- and 3-positions of anthocyanins in nora petals
0.1Mトリス-塩酸緩衝液(pH8.0)、 0.5mMシァ-ジンまたはシァ-ジン 5 -ダルコシド またはシァ-ジン 3-ダルコシド、 ImM UDP-グルコース及び粗酵素液 30 1を含む反 応液 50 μ 1を 30°Cで反応させた。 1M塩酸水溶液 10 μ 1を加えて反応を停止させ、ク ロロホルム:メタノール =2 : 1を等量加え攪拌後遠心し、上清を凍結乾燥機にて乾燥 させ HPLC溶媒 Α/Β=95:5を 10 /ζ 1加え再溶解後遠心し上清を分析サンプルとした。 酵素反応産物の HPLC分析は、上述の方法で行った。本条件による各化合物の溶 出時間は以下のとおりである。シァニジン 3,5-ジダルコシド: 6.12分、シァニジン 3-グ ルコシド:9.34分、シァ-ジン 5 -ダルコシド: 9.72分、シァ-ジン: 14.17分。  Reaction solution containing 0.1 M Tris-HCl buffer (pH 8.0), 0.5 mM thiazine or thiazine 5-darcoside or thiazine 3-darcoside, ImM UDP-glucose and crude enzyme solution 30 1 50 μ 1 was reacted at 30 ° C. Stop the reaction by adding 10 μl of 1M aqueous hydrochloric acid, add an equal volume of chloroform: methanol = 2: 1, stir, centrifuge, dry the supernatant in a freeze dryer, and HPLC solvent Α / Β = 95: 5 10 / ζ 1 was added, redissolved and centrifuged, and the supernatant was used as an analysis sample. The HPLC analysis of the enzyme reaction product was performed by the method described above. The dissolution time of each compound under these conditions is as follows. Cyanidine 3,5-didarcoside: 6.12 minutes, cyanidin 3-glucose: 9.34 minutes, sheadin 5 -darcoside: 9.72 minutes, sheadin: 14.17 minutes.
〔実施例 3〕 アントシァ-ジン 5位ダルコシル基転移酵素及びアントシァ-ジン 5-ダル コシドの 3位ダルコシル基転移酵素の活性の検出 [Example 3] Detection of activity of anthocyanin 5-position darcosyltransferase and anthocyanin 5-dalcoside 3-position darcosyltransferase
ノ ラ 'クリムソングローリー, (Rosa hvbrida cv. Crimson Glory) 'ローテローゼ (cv. Ro te Roze) 'カールレッド,(cv. Carl Red)の花弁をそれぞれ用い、シァ-ジン、シァ-ジ ン 5-ダルコシドおよびシァ-ジン 3-ダルコシドを基質に用いて活性測定を行った。以 下の実験は 0〜4°Cで行った。  Nora 'Crimson Glory' (Rosa hvbrida cv. Crimson Glory) 'Croton Roze' (cv. Carl Red) petals, respectively The activity was measured using siadin 3-darcoside as a substrate. The following experiments were performed at 0-4 ° C.
( 1)粗酵素液の調製  (1) Preparation of crude enzyme solution
ノ の凍結花弁 10gをポリビニルポリピロリドン (PVPP) 5gと共に液体窒素存在下で 乳鉢及び乳棒で磨砕した。 100mlの緩衝液 A(100mMリン酸カリウム緩衝液 (pHLO)、 14mM 2-メルカプトエタノール、 1%ポリビュルピロリドン K- 30 (PVP)、 lOOmM塩化ナト リウム、 5mM EDTA、 5mMァスコルビン酸ナトリウム、 10%グリセロール、 0.1% Triton X -100)をカ卩え、攪拌溶出した。抽出懸濁液を四重のガーゼにて濾過後 12,000 rpmで 2 0分間遠心した。  10 g of frozen petals were ground with a mortar and pestle in the presence of liquid nitrogen together with 5 g of polyvinylpolypyrrolidone (PVPP). 100 ml of buffer A (100 mM potassium phosphate buffer (pHLO), 14 mM 2-mercaptoethanol, 1% polybutylpyrrolidone K-30 (PVP), lOOmM sodium chloride, 5 mM EDTA, 5 mM sodium ascorbate, 10% glycerol , 0.1% Triton X-100) was stirred and eluted. The extracted suspension was filtered through quadruple gauze and then centrifuged at 12,000 rpm for 20 minutes.
(2)硫安分画  (2) Ammonium sulfate fraction
濾液 (約 100ml)を 10%飽和硫安で 40分間塩析を行った後、不溶物を 12,000 rpmで 20分間遠心することにより除去した。 70%飽和硫安で再び塩析を行い、 12,000 rpm で 20分間遠心することにより沈殿を得た。沈殿を最少量の緩衝液 B (50mMトリス塩酸 ( pH 8.0)、 14mM 2-メルカプトエタノール)に再溶解した後、緩衝液 Bで平衡化した Sep hadex G— 25 Fine (30 mm i.d. X 500 mm ;Amersham Bioscience)カフムを用いて脱塩 した。タンパク質画分 (約 20ml)を回収して以下のクロマトグラフィーに供した。 After salting out the filtrate (about 100 ml) with 10% saturated ammonium sulfate for 40 minutes, insoluble matter was removed at 12,000 rpm. Removed by centrifugation for 20 minutes. Salting out was performed again with 70% saturated ammonium sulfate, and a precipitate was obtained by centrifuging at 12,000 rpm for 20 minutes. The precipitate was redissolved in a minimum amount of buffer B (50 mM Tris-HCl (pH 8.0), 14 mM 2-mercaptoethanol) and then equilibrated with buffer B. Sep hadex G-25 Fine (30 mm id X 500 mm; Amersham Bioscience) was used for desalting. The protein fraction (about 20 ml) was collected and subjected to the following chromatography.
(3)オープンカラムよる陰イオン交換樹脂の吸脱着 (3) Adsorption / desorption of anion exchange resin by open column
陰イオン交換榭脂である DE52(ワットマン製)をカラム(30 mm i.d. X 50 mm)に充填し て、緩衝液 Bで平衡ィ匕した。カラムへ 2倍希釈した酵素溶液を添加し、緩衝液 Bで洗 浄後、塩ィ匕ナトリウム 0.3Mを含む緩衝液 Bにより溶出し、粗酵素液とした。  DE52 (manufactured by Whatman), an anion exchange resin, was packed in a column (30 mm i.d. X 50 mm) and equilibrated with buffer B. A 2-fold diluted enzyme solution was added to the column, washed with buffer B, and then eluted with buffer B containing 0.3 M sodium chloride to obtain a crude enzyme solution.
〔実施例 4〕 粗酵素液の反応特性 [Example 4] Reaction characteristics of crude enzyme solution
上述の粗酵素液を用い酵素活性測定を行った。 HPLC分析は、実施例 1および 2に 記載の方法に従って行った。その結果、シァ-ジンを基質とした場合、その反応産物 はシァ-ジン 5-ダルコシド、シァ-ジン 3,5-ジダルコシドおよび極微量のシァ-ジン 3 -ダルコシドであり、シァ-ジン 3-ダルコシドを基質とした場合、シァ-ジン 3,5-ジグル コシドは得られなかった。さらに、シァ-ジン 5-ダルコシドを基質とした時シァ-ジン 3, 5-ジダルコシドが得られた。基質別の反応結果を図 1に示す。つまり、これまで考えら れて 、たアントシァ-ジンの 3位への配糖体化、その後の 5位への配糖体化と!/、う生 合成 (Tanaka et al, (1998) Plant Cell Physiol. 39: 1119-1126、 Forkmann, (2003) in: Encyclopedia of rose science Vol.1. 256-262, Elsevier academic press, Oxford).とは 逆の、最初に 5位の配糖体化、そして 3位の配糖体化がバラ粗酵素液で検出された。 さらにバラ花弁に含まれるペラルゴ-ジン 3,5-ジダルコシドのァグリコンであるペラル ゴ-ジンを基質とした場合もシァ-ジンと同様の配糖体ィ匕反応が起こり、ペラルゴ- ジン 3-ダルコシドを基質とした場合はシァ-ジン 3-ダルコシド同様、反応産物は得ら れなかった。  The enzyme activity was measured using the above crude enzyme solution. HPLC analysis was performed according to the method described in Examples 1 and 2. As a result, when siadine was used as a substrate, the reaction products were siadine 5-darcoside, siadine 3,5-didalcoside, and trace amounts of siadine 3-darcoside. As a substrate, cyadin 3,5-diglucoside was not obtained. Furthermore, sheadin 3,5-didarcoside was obtained when sheadin 5-darcoside was used as a substrate. Figure 1 shows the reaction results for each substrate. In other words, it was thought that glycosylation at the 3rd position of anthocyanin, followed by glycosylation at the 5th position! /, Biosynthesis (Tanaka et al, (1998) Plant Cell Physiol. 39: 1119-1126, Forkmann, (2003) in: Encyclopedia of rose science Vol.1 256-262, Elsevier academic press, Oxford). Glycosylation at position 3 was detected in the crude enzyme solution. Furthermore, when pelargogin, a glycon of pelargogin 3,5-zidarcoside contained in rose petals, is used as a substrate, a glycoside reaction similar to that of siadine occurs, and pelargogin 3-dalcoside is converted. When used as a substrate, no reaction product was obtained, as was Cyadin 3-Dalcoside.
これらの結果から、アントシァ-ジンの 5位の水酸基に対するダルコシルトランスフエ ラーゼ活性を有する酵素およびアントシァ-ジン 5-ダルコシドの 3位の水酸基に対す るダルコシルトランスフェラーゼ活性を有する酵素がバラ花弁中には存在することが 強く示唆された。なお、これらの知見はこれまで一切報告されていない。 〔実施例 5〕 ノ《ラフラボノイド糖転移酵素遺伝子の遺伝子断片の増幅 These results indicate that an enzyme having darcosyltransferase activity for the 5-position hydroxyl group of anthocyanin and an enzyme having darcosyltransferase activity for the 3-position hydroxyl group of anthocyanin 5-darcoside are present in rose petals. Was strongly suggested to exist. These findings have never been reported so far. Example 5 Amplification of a gene fragment of a gene of rough labronoid glycosyltransferase
(1) RNAの調製  (1) RNA preparation
バラ品種、クリムソングローリーの花弁から改変 CTAB法(Chang et al., 1993,向井' 山本 植物細胞工学シリーズ 7 pp.57-62)により全 RNAを調製した。 poly(A)+RNAはこ の全 RNA(250 /z g)力ら Oligotex- dT30 super (Takara)を用い、製造者の推奨する方 法にて調製した。 Total RNA was prepared from petals of rose cultivar, Krimson Laurie by the modified CTAB method (Chang et al., 1993, Mukai 'Yamamoto Plant Cell Engineering Series 7 pp.57-62). using poly (A) + RNA Yoko total RNA (2 5 0 / zg) Power et Oligotex- dT30 super (Takara), was prepared in the manufacturer's recommended ways.
(2) 3 ' RACE  (2) 3 'RACE
調製した全 RNAを 99°Cで 2分間処理し、氷冷後、 First strand cDNA synthesis kit ( Pharmacia)を用い、製造者の示した方法により cDNAを合成した。合成した cDNAを铸 型として、植物二次代謝産物配糖ィ匕酵素(Plant Secondary Product Glycosyltransfer ase)に高度に保存されている領域 PSPG-box(Huges and Huges (1994) DNA Seq., 5: The prepared total RNA was treated at 99 ° C for 2 minutes, cooled on ice, and then cDNA was synthesized using the first strand cDNA synthesis kit (Pharmacia) by the method indicated by the manufacturer. A highly conserved region in plant secondary metabolite glycosylation enzyme using the synthesized cDNA as a model PSPG-box (Huges and Huges (1994) DNA Seq., 5:
41-49)のアミノ酸配列を基に設計した縮重プライマー GTSPFd[WCICAYTGYGGIT GGAAYTC :配列番号 3]及び cDNA合成に用いた Not Id(T) に存在する配列を基に 41-49) based on the degenerate primer GTSPFd [WCICAYTGYGGIT GGAAYTC: SEQ ID NO: 3] designed based on the amino acid sequence and the sequence present in Not Id (T) used for cDNA synthesis.
18  18
設計した NotlRl [AACTGGAAGAATTCGCGGC:配列番号 4]をプライマーとし、 PCR 反応を行った。 PCR反応液は、 2 μ 1 cDNA, lx Expand HFバッファー(BOEHRINGE R MANNHEIM) , 0.2mM dNTPsゝプライマー各 1.6pmol/ μ 1、 Expand High Fidelity P CR system酵素ミックス 1.75 unitからなる総体積 50 μ 1に調製した。反応は、 94°Cで 2 分反応させた後、 94°C '30秒、 48°C '30秒、 72°C, 30秒の反応を 40サイクル行い、最 後に 72°Cで 1分間処理した。得られた反応産物を 0.8%ァガロースゲル電気泳動し、予 想されるサイズの DNA断片を回収した。回収した DNA断片を铸型に、 GTSPFd及び N ot Id(T) に存在する配列を基に NotlRlの 3'側に設計した NotR2(GAACGCGGCCGPCR was performed using the designed NotlRl [AACTGGAAGAATTCGCGGC: SEQ ID NO: 4] as a primer. The PCR reaction solution was 2 μ 1 cDNA, lx Expand HF buffer (BOEHRINGE R MANNHEIM), 0.2 mM dNTPs ゝ primer 1.6 pmol / μ 1 each, Expand High Fidelity P CR system enzyme mix 1.75 unit total volume 50 μ 1 Prepared. The reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 48 ° C for 30 seconds, 72 ° C and 30 seconds, and finally treated at 72 ° C for 1 minute. did. The obtained reaction product was subjected to 0.8% agarose gel electrophoresis, and a DNA fragment having the expected size was recovered. NotR2 (GAACGCGGCCG) designed on the 3 'side of NotlRl based on the sequences present in GTSPFd and Not Id (T)
18 18
CAGGAAT:配列番号 5)をプライマーとし PCR反応を行った。 PCR反応液は、 2 1 cD NA, lx Expand HFバッファー(BOEHRINGER MANNHEIM) , 0.2mM dNTPsゝプラ イマ一各 1.6pmol/ μ 1、 Expand High Fidelity PCR system酵素ミックス 1.75 unitからな る総体積 50 /z lに調製した。反応は、 94°Cで 2分反応させた後、 94°C '30秒、 48°C -30 秒、 72°C .30秒の反応を 40サイクル行い、最後に 72°Cで 1分間処理した。得られた反 応産物を 0.8%ァガロースゲル電気泳動し、予想されるサイズの DNA断片を回収した。 回収した DNA産物を pGEM Easy Tベクター(Promega)にクローユングした。このように して得られたプラスミドのいくつかのクローンを ABI™ BigDye™Terminator cycle sequ encing reaction ver.3.1 (Applied Biosystem 用 ヽて iji心し、 DNA sequencer model 3100を用いて、全塩基配列を決定した後、 BLASTX検索を行い、糖転移酵素遺伝 子に相同性の認められるクローン RhGT fra.42を見出した。 PCR reaction was performed using CAGGAAT: SEQ ID NO: 5) as a primer. The PCR reaction solution was 2 1 cD NA, lx Expand HF buffer (BOEHRINGER MANNHEIM), 0.2 mM dNTPs ゝ Primer 1.6 pmol / μ1 each, Expand High Fidelity PCR system Enzyme mix 1.75 unit total volume 50 / zl Prepared. The reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 48 ° C for -30 seconds, 72 ° C for .30 seconds, and finally treated at 72 ° C for 1 minute. did. The obtained reaction product was subjected to 0.8% agarose gel electrophoresis, and a DNA fragment of the expected size was recovered. The recovered DNA product was cloned into pGEM Easy T vector (Promega). in this way The ABI ™ BigDye ™ Terminator cycle sequencing reaction ver.3.1 (Applied Biosystem) was used to determine the total nucleotide sequence using DNA sequencer model 3100. A BLASTX search was performed, and a clone RhGT fra.42 that was found to be homologous to the glycosyltransferase gene was found.
(3) 5 ' RACE (3) 5 'RACE
5 ' RACEに用ぃた5 '末端を有するmRNAに対するcDNAはGeneRacer kit (Invitroge n)を用い、製造者の示した方法に従って合成した。合成した cDNAを铸型に GeneRac er kitの GeneRacer 5 ' primer (CGACTGGAGCACGAGGACACTGA:配列番号 6)及 び RhGT Fra.42の内部配列に設定したプライマー 42R1(TTATGCGGGCCCAACAT GCC :配列番号 7)を用い 1st- PCRを行った。 PCR反応液は、 1 μ 1 cDNA、 lx LA PCR Buffer II (Takara) , 0.2mM dNTPsゝ 3 μ 1 GeneRacer 5 ' primer (10 M)、 2 1 42R1(5 μ M)、 2mM MgCl、 Takara LA Taq 2.5 unitからなる総体積 50 μ 1に調製した。反応は  CDNA for mRNA having 5 ′ end used for 5 ′ RACE was synthesized using GeneRacer kit (Invitrogen) according to the method indicated by the manufacturer. 1st-PCR using the GeneRacer 5 'primer (CGACTGGAGCACGAGGACACTGA: SEQ ID NO: 6) and primer 42R1 (TTATGCGGGCCCAACAT GCC: SEQ ID NO: 7) set to the internal sequence of RhGT Fra. went. PCR reaction solution: 1 μ 1 cDNA, lx LA PCR Buffer II (Takara), 0.2 mM dNTPs ゝ 3 μ 1 GeneRacer 5 ′ primer (10 M), 2 1 42R1 (5 μ M), 2 mM MgCl, Takara LA Taq The total volume of 2.5 units was adjusted to 50 μ1. The reaction is
2  2
、 94°Cで 2分反応させた後、 94°C ' 30秒、 58°C ' 30秒、 72°C · 2分の反応を 40サイクル 行い、最後に 72°Cで 2分間処理した。この反応液を 0.8%ァガロース電気泳動にかけ 、増幅産物のバンドを切り出し、 Qiagen Gel Extraction kit (Qiagen)により増幅産物を 回収した。回収した増幅産物を铸型に GeneRacer kitの GeneRacer 5 ' Nested primer 及び RhGT Fra.42の内部配列に設定したプライマー 42R2 (CCACAGCTGAGCCAA CTTGG :配列番号 8)を用い Neated- PCRを行った。 PCR反応液は、 1 1 cDNA, lx LA PCR Buffer II (Takara) , 0.2mM dNTPs, 1 μ 1 GeneRacer 5 ' primer (10 M)、 2 1 42R1(5 μ M)、 2mM MgCl、 Takara LA Taq 2.5 unitからなる総体積 50 μ 1に調製した  After reacting at 94 ° C for 2 minutes, 40 cycles of 94 ° C for 30 seconds, 58 ° C for 30 seconds and 72 ° C for 2 minutes were performed, and finally, treatment was performed at 72 ° C for 2 minutes. This reaction solution was subjected to 0.8% agarose electrophoresis, the amplification product band was cut out, and the amplification product was recovered using a Qiagen Gel Extraction kit (Qiagen). Neat-PCR was performed using the recovered amplification product in a cage shape using GeneRacer 5 ′ Nested primer of GeneRacer kit and primer 42R2 (CCACAGCTGAGCCAA CTTGG: SEQ ID NO: 8) set to the internal sequence of RhGT Fra.42. PCR reaction solution is 1 1 cDNA, lx LA PCR Buffer II (Takara), 0.2 mM dNTPs, 1 μ 1 GeneRacer 5 'primer (10 M), 2 1 42R1 (5 μM), 2 mM MgCl, Takara LA Taq 2.5 The total volume of unit was adjusted to 50 μ 1
2  2
。反応は、 94°Cで 2分反応させた後、 94°C ' 30秒、 58°C ' 30秒、 72°C · 2分の反応を 40 サイクル行い、最後に 72°Cで 2分間処理した。この反応液を 0.8%ァガロース電気泳 動に力 4ナ、増幅産物のバンドを切り出し、 Qiagen Gel Extraction kit (Qiagen)により増 幅産物を回収した。得られた PCR産物を pGEM Easy Tベクター(Promega)にクロー- ングした。このようにして得られたプラスミドのいくつかのクローンを ABI™ BigDye™T erminator cycle sequencing reaction ver.3.1 (.Applied Biosystem)を用いて反/心'し、 NA Sequencer model 3100を用いて、全塩基配列を決定した後、 DNASISを用い、コ ードされるアミノ酸配列を推定した。 〔実施例 6〕 RhGT Fra.42の全タンパク質コード領域のクローユング及び大腸菌におけ る組換えタンパク質の発現 . The reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 58 ° C for 30 seconds and 72 ° C for 2 minutes, and finally treated at 72 ° C for 2 minutes. did. The reaction solution was subjected to 0.8% agarose electrophoresis, and the amplified product band was cut out. The amplified product was recovered using the Qiagen Gel Extraction kit (Qiagen). The obtained PCR product was cloned into pGEM Easy T vector (Promega). Several clones of the plasmids obtained in this way were anti-centered using ABI ™ BigDye ™ Terminator cycle sequencing reaction ver.3.1 (.Applied Biosystem) and all bases using NA Sequencer model 3100. After sequencing, DNASIS was used to estimate the amino acid sequence to be coded. [Example 6] Cloning of the entire protein coding region of RhGT Fra.42 and expression of recombinant protein in E. coli
(1) RhGT Fra.42の全タンパク質コード領域のクローユング  (1) Cloning of the entire protein coding region of RhGT Fra.42
実施例 5によって得られたクローンの塩基配列から予想されるタンパク質コード領域 を PCRにより増幅後、大腸菌発現用 pETベクターにクローユングした。全 RNAに対す る cDNAを First strand cDNA synthesis kit (Pharmacia)を用い、製造者の推奨する方 法にて Not I dTプライマーを用い逆転写反応を行い合成した。大腸菌発現用 pET30 Ek/LIC (Novagen)にクローユングするための配列と実施例 5で得られた塩基配列か ら予想されるタンパク質の開始コドンを含むプライマー RhGTFd (GACGACGACAAG ATGGGTGGTGATGCTATAGTTTG:配列番号 9)及び終始コドンを含むプライマー  The protein coding region predicted from the base sequence of the clone obtained in Example 5 was amplified by PCR and cloned into a pET vector for expression of E. coli. CDNA for total RNA was synthesized using a first strand cDNA synthesis kit (Pharmacia) and reverse transcription reaction using Not I dT primer according to the method recommended by the manufacturer. Primer RhGTFd (GACGACGACAAG ATGGGTGGTGATGCTATAGTTTG: SEQ ID NO: 9) and termination codon including the sequence for cloning into pET30 Ek / LIC (Novagen) for expression of E. coli and the start codon of the protein predicted from the base sequence obtained in Example 5 Primer containing
10)を製造者の推奨する方法に従って合成した。 PCR反応液は 2 μ 1 cDNA, lx Expa nd HFノッファー(BOEHRINGER MANNHEIM) , 0.2mM dNTPs、プライマー各 1.6p mol/ μ 1、 Expand High Fidelity PCR system酵素ミックス 1.75 unitからなる総体積 50 1〖こ調製した。反応は、 94°Cで 2分反応させた後、 94°C '30秒、 55°C '30秒、 72°C - 2 分の反応を 40サイクル行い、最後に 72°Cで 2分間処理した。得られた反応産物を 0.8 %ァガロースゲル電気泳動し、増幅産物を QIAquick Gel Extraction Kit (Qiagen)を用 いてゲルから DNAを精製した。得られた DNAを pET30Ek/LIC (Novagen)に製造者の 推奨する方法に従って連結した後、大腸菌 JM109に形質転換して幾つかのクローン を T7プロモーター、 T7ターミネータ一プライマーを用い、 BigDye Terminator Ver. 3. 1を用いた Cycle Sequencing Reactionを行った後、 ABI3100 Genetic Analyserを用い て塩基配列の決定を行った。塩基配列の決定を行った pETクローンのうち pETRhGTl は 1,422塩基対 (この塩基配列を配列番号 1に示す。)からなり、 473アミノ酸残基 (この アミノ酸配列を配列番号 2に示す。)からなるタンパク質をコードしていた。この pETRh GT1を用いて機能解析を行った。 10) was synthesized according to the method recommended by the manufacturer. The PCR reaction solution is 2 μ 1 cDNA, lx Expand HF Knoffer (BOEHRINGER MANNHEIM), 0.2 mM dNTPs, each primer 1.6 pmol / μ 1, Expand High Fidelity PCR system Enzyme mix 1.75 units total volume 50 1 〖 did. The reaction was performed at 94 ° C for 2 minutes, followed by 40 cycles of 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C-2 minutes, and finally treated at 72 ° C for 2 minutes. did. The obtained reaction product was subjected to 0.8% agarose gel electrophoresis, and the amplified product was purified from the gel using QIAquick Gel Extraction Kit (Qiagen). After ligating the obtained DNA to pET30Ek / LIC (Novagen) according to the method recommended by the manufacturer, it was transformed into E. coli JM109, and several clones were used with BigDye Terminator Ver. 3 using T7 promoter and T7 terminator primer. After performing Cycle Sequencing Reaction using 1., the base sequence was determined using ABI3100 Genetic Analyzer. Among the pET clones whose nucleotide sequence was determined, pETRhGTl consists of 1,422 base pairs (this nucleotide sequence is shown in SEQ ID NO: 1) and 473 amino acid residues (this amino acid sequence is shown in SEQ ID NO: 2). Was coded. Functional analysis was performed using this pETRh GT1.
(2)組換えタンパク質の発現  (2) Recombinant protein expression
pETRhGTlを大腸菌 BL21(DE3) (Novagen)に形質転換した。形質転換株はカナマ イシン 30 μ g/mlを含む LB培地 3mlで 37°Cでー晚振盪培養した。この培養液 500 μ 1を カナマイシン 30 g/mlを含む LB培地に加え、 600nmにおける吸光度が 0.4に達する まで振盪培養した後、イソプロピル- β -D-チォガラタトシド (IPTG)を最終濃度 0.4mM になるように添加し、 22°Cで 12時間振盪培養した後、冷却遠心 (8000rpm, 4°C, 20分 間)して菌体を回収した。 pETRhGTl was transformed into E. coli BL21 (DE3) (Novagen). The transformed strain was cultured at 37 ° C with shaking in 3 ml of LB medium containing 30 μg / ml kanamycin. 500 μl of this culture Add to LB medium containing 30 g / ml kanamycin and shake culture until the absorbance at 600 nm reaches 0.4, then add isopropyl-β-D-thiogalatatoside (IPTG) to a final concentration of 0.4 mM, 22 ° C After culturing for 12 hours, the cells were recovered by centrifuging (8000 rpm, 4 ° C, 20 minutes).
〔実施例 7〕 pETRhGTl cDNAがコードするタンパク質の酵素活性測定  [Example 7] Measurement of enzyme activity of protein encoded by pETRhGTl cDNA
(1)組換えタンパク質の抽出  (1) Extraction of recombinant protein
組換えタンパク質の抽出には、菌体のペレットを、 1mlの溶解緩衝液 (pH8.0) (100m Mトリス塩酸、 300mM塩化ナトリウム、 14mM 2-メルカプトエタノール 0.1% Protease and For extraction of recombinant protein, the bacterial cell pellet was added to 1 ml of lysis buffer (pH 8.0) (100 mM Tris-HCl, 300 mM sodium chloride, 14 mM 2-mercaptoethanol 0.1% Protease and
Phosphatase Inhibitor Cocktails (SIGMA社製))に再懸濁し、超音波破砕機により破 壊し、冷却遠心機で分離した。上清を組換えタンパク質液とし、酵素活性測定に用い た。 Phosphatase Inhibitor Cocktails (manufactured by SIGMA)), suspended in an ultrasonic crusher, and separated in a cooling centrifuge. The supernatant was used as a recombinant protein solution and used for enzyme activity measurement.
(2)組換えタンパク質の酵素活性測定と酵素反応産物の同定  (2) Enzyme activity measurement of recombinant proteins and identification of enzyme reaction products
組換え pETRhGTlタンパク質を用い酵素反応を行った。組換えタンパク質液 30 1 を用い〔実施例 2〕と同様の方法で行った。 HPLCによる分析には逆層カラム Wakosil -II5C18ARカラム(4.6 mm i.d. X 250 mm)を用い、カラム温度 35°Cで行った。流速 lml /minにて 0.5%TFA、 5%ァセトニトリルを含む水溶液に対して 5%力も 20%の 0.5%TF Aを含むァセトニトリル溶液による直線的濃度勾配で 20分間の溶出時間で PDAを用 いて検出した。基質別の反応結果を図 2に示す。標準物質とのコクロマトグラフィー分 析〖こより、反応産物をそれぞれシァ-ジン 3, 5-ジダルコシド及びシァ-ジン 5-ダルコ シドと同定した。さらにシァ-ジン 3-ダルコシドを基質とした場合、その反応産物は得 られな力つた。本条件による各化合物の溶出時間は以下のとおりである。シァ-ジン 3, 5-ジダルコシド: 6.31分、シァ-ジン 3-ダルコシド: 9.85分、シァ-ジン 5-ダルコシ ド: 10.68分、シァ-ジン: 16.34分。以上の結果より、 pETRhGTlクローンの組換え酵 素 ίま UDP— glucose: cyanidin 5— Q—glucosyltransferase及び UDP— glucose: cyaniain 5— O-glucoside 3- Q- glucosyltransferase活性の両方を持つことがあきらかになった。従 つて、 RhGTl遺伝子はアントシァ-ジンの 5位及び 3位の水酸基に逐次グリコシル基 を |s移する 7舌'性力 Sめる、 UDP— glucose :anthocyanidin 5,3— glucosyltransferaseをコ ードして!/、ることが確認された。 本明細書は、本願の優先権の基礎である日本国特許出願 (特願 2004-345322号) の明細書および Zまたは図面に記載されている内容を包含する。また、本発明で引 用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入 れるものとする。 Enzymatic reaction was performed using recombinant pETRhGTl protein. The recombinant protein solution 30 1 was used in the same manner as in [Example 2]. For the analysis by HPLC, a reverse layer column Wakosil-II5C18AR column (4.6 mm id × 250 mm) was used and the column temperature was 35 ° C. Detection using PDA with an elution time of 20 minutes in a linear concentration gradient with a 20% 0.5% TFA solution containing 0.5% TFA and an aqueous solution containing 0.5% TFA and 5% acetonitrile at a flow rate of lml / min. did. Figure 2 shows the reaction results for each substrate. From the results of co-chromatography analysis with a standard substance, the reaction products were identified as cyadin 3,5-didarcoside and cyadin 5-darcoside, respectively. Furthermore, when shia-zin 3-darcoside was used as a substrate, the reaction product was unable to be obtained. The elution time of each compound under these conditions is as follows. Shea-jin 3,5-didarcoside: 6.31 minutes, Shea-jin 3-darcoside: 9.85 minutes, Shea-gin 5-darcoside: 10.68 minutes, Shea-jin: 16.34 minutes. From the above results, it is clear that the recombinant enzyme of the pETRhGTl clone has both UDP-glucose: cyanidin 5-Q-glucosyltransferase and UDP-glucose: cyaniain 5-O-glucoside 3-Q-glucosyltransferase activities. It was. Therefore, the RhGTl gene encodes UDP—glucose: anthocyanidin 5,3—glucosyltransferase, which sequentially shifts the glycosyl group to the hydroxyl groups at the 5- and 3-positions of anthocyanin. ! /, Confirmed that. This specification includes the contents described in the specification and Z or drawings of the Japanese patent application (Japanese Patent Application No. 2004-345322) which is the basis of the priority of the present application. In addition, all publications, patents, and patent applications cited in the present invention are incorporated herein by reference as they are.

Claims

請求の範囲 The scope of the claims
[1] ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる活性及び Z又はダル コシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移させる活性を有する タンパク質をコードする遺伝子。  [1] A gene encoding a protein having an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside.
[2] 以下の (a)〜( のタンパク質をコードする請求項 1記載の遺伝子、  [2] The gene according to claim 1, which encodes the following proteins (a) to (
(a)配列番号 2に記載のアミノ酸配列を有するタンパク質、  (a) a protein having the amino acid sequence of SEQ ID NO: 2,
(b)配列番号 2に記載のアミノ酸配列において一個又は複数個のアミノ酸が付加、欠 失及び Z又は他のアミノ酸により置換されているアミノ酸配列を有するタンパク質、 (b) a protein having an amino acid sequence in which one or more amino acids are added, deleted and substituted with Z or other amino acids in the amino acid sequence shown in SEQ ID NO: 2;
(c)配列番号 2に記載のアミノ酸配列に対して 20%以上の相同性を示すアミノ酸配列を 有するタンパク質、 (c) a protein having an amino acid sequence showing 20% or more homology to the amino acid sequence set forth in SEQ ID NO: 2,
(d)配列番号 2に記載のアミノ酸配列に対して 70%以上の相同性を示すアミノ酸配列を 有するタンパク質。  (d) a protein having an amino acid sequence showing 70% or more homology to the amino acid sequence set forth in SEQ ID NO: 2.
[3] 配列番号 1に記載の塩基配列で表される核酸、又は配列番号 2に記載のアミノ酸 配列をコードする核酸の一部又は全部に対して、ストリンジェントな条件下でハイプリ ダイズする遺伝子であって、ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移 させる活性及び Z又はダルコシル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基 へ転移させる活性を有するタンパク質をコードする遺伝子。  [3] A gene that hybridizes under stringent conditions to part or all of the nucleic acid represented by the nucleotide sequence set forth in SEQ ID NO: 1 or the nucleic acid encoding the amino acid sequence set forth in SEQ ID NO: 2. A gene encoding a protein having an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring Z or darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside.
[4] ダルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる活性とダルコシル基を アントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移させる活性の両者を有するタン パク質をコードする請求項 1〜3のいずれか 1項に記載の遺伝子。 [4] The invention encodes a protein having both an activity of transferring a darcosyl group to the hydroxyl group at the 5-position of anthocyanin and an activity of transferring a darcosyl group to the hydroxyl group at the 3-position of anthocyanin 5-darcoside. The gene according to any one of -3.
[5] 請求項 1〜3のいずれか 1項に記載の遺伝子を含んでいるベクター。 [5] A vector comprising the gene according to any one of claims 1 to 3.
[6] 請求項 4に記載の遺伝子を含んで ヽるベクター。 [6] A vector comprising the gene according to claim 4.
[7] 請求項 5又は 6に記載のベクターにより形質転換された宿主細胞。 [7] A host cell transformed with the vector according to claim 5 or 6.
[8] 請求項 1〜4のいずれか 1項に記載の遺伝子によってコードされるタンパク質。 [8] A protein encoded by the gene according to any one of claims 1 to 4.
[9] 請求項 7に記載の宿主細胞を培養し、又は生育させ、その後、該宿主細胞からグ ルコシル基をアントシァ-ジンの 5位の水酸基へ転移させる活性及び Z又はダルコシ ル基をアントシァ-ジン 5-ダルコシドの 3位の水酸基へ転移させる活性を有するタン パク質を採取することを特徴とする該タンパク質の製造方法。 [9] The host cell according to claim 7 is cultured or grown, and then the activity of transferring a glucosyl group from the host cell to the hydroxyl group at the 5-position of anthocyanin and the Z or dalcosyl group is converted to an anthocyanic acid. A method for producing the protein, comprising collecting a protein having an activity of transferring to a hydroxyl group at the 3-position of gin 5-darcoside.
[10] 請求項 1〜4のいずれか 1項に記載の遺伝子を用いた無細胞タンパク質合成系に よる該タンパク質の製造方法。 [10] A method for producing the protein by a cell-free protein synthesis system using the gene according to any one of claims 1 to 4.
[11] 請求項 1〜4のいずれか 1項に記載の遺伝子、又は請求項 5又は 6に記載のベクタ 一が導入され、形質転換された植物。 [11] A plant transformed by introducing the gene according to any one of claims 1 to 4 or the vector according to claim 5 or 6.
[12] 請求項 11に記載の植物と同じ性質を有する該植物の子孫。 [12] A progeny of the plant having the same properties as the plant of claim 11.
[13] 請求項 11に記載の植物又は請求項 12に記載の該植物の子孫の組織。 [13] The tissue of the plant according to claim 11 or the progeny of the plant according to claim 12.
[14] 請求項 11に記載の植物又は請求項 12に記載の該植物の子孫の切り花。 [14] A cut flower of the plant according to claim 11 or a progeny of the plant according to claim 12.
[15] 請求項 4に記載の遺伝子、又は請求項 6に記載のベクターを植物又は植物細胞に 導入し、該遺伝子を発現させることによる、アントシァ-ジンの 5位の水酸基へダルコ シル基を転移させた後、 3位の水酸基へダルコシル基を転移させる方法。 [15] The gene according to claim 4 or the vector according to claim 6 is introduced into a plant or plant cell, and the gene is expressed to transfer the dalcosyl group to the hydroxyl group at the 5-position of anthocyanin. And then transferring the darcosyl group to the hydroxyl group at the 3-position.
[16] 請求項 1〜4のいずれか 1項に記載の遺伝子、又は請求項 5又は 6に記載のベクタ 一を植物又は植物細胞に導入し、該遺伝子を発現させることにより、植物体の花色を 調節する方法。 [16] The flower color of the plant body by introducing the gene according to any one of claims 1 to 4 or the vector according to claim 5 or 6 into a plant or plant cell and expressing the gene. How to adjust.
[17] 請求項 1〜4のいずれか 1項に記載の遺伝子を持つ植物において、該遺伝子の発 現を抑制することにより、植物体の花色を調節する方法。  [17] A method for controlling the flower color of a plant body by suppressing the expression of the gene in a plant having the gene according to any one of claims 1 to 4.
PCT/JP2005/019294 2004-11-30 2005-10-20 Novel anthocyanidin glucosyltransferase gene WO2006059433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-345322 2004-11-30
JP2004345322A JP4691720B2 (en) 2004-11-30 2004-11-30 Novel anthocyanidin glucosyltransferase gene

Publications (1)

Publication Number Publication Date
WO2006059433A1 true WO2006059433A1 (en) 2006-06-08

Family

ID=36564872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019294 WO2006059433A1 (en) 2004-11-30 2005-10-20 Novel anthocyanidin glucosyltransferase gene

Country Status (2)

Country Link
JP (1) JP4691720B2 (en)
WO (1) WO2006059433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094521A1 (en) * 2006-02-17 2007-08-23 International Flower Developments Proprietary Limited Flavonoid glycosyltransferase and utilization thereof
CN114807160A (en) * 2022-03-10 2022-07-29 上海师范大学 Gene RcGT for regulating and controlling color of Chinese rose petals, protein, recombinant vector, recombinant transformant, application and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048612A (en) * 2006-08-22 2008-03-06 Bio Taxol:Kk Glycosyltransferase gene
JP5279304B2 (en) * 2008-03-11 2013-09-04 岩手県 3-Deoxyanthocyanidin saccharifying enzyme gene and use thereof
WO2012096307A1 (en) 2011-01-14 2012-07-19 サントリーホールディングス株式会社 Novel glycosyltransferase gene and use thereof
EP2818547B1 (en) 2012-01-17 2016-09-07 Suntory Holdings Limited Glycosyltransferase gene and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUTERMAN I. ET AL: "Rose scent: Genomics approach to discovering novel floral fragrance-related genes", PLANT CELL, vol. 4, 2002, pages 2325 - 2338, XP002995217 *
YABUYA T. ET AL: "Anthocyanin 5-O-glucosyltransferase in flowers of Iris ensata", PLANT SCI., vol. 162, 2002, pages 779 - 784, XP002995218 *
YAMAZAKI M. ET AL: "Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin", J. BIOL. CHEM., vol. 274, no. 11, 1999, pages 7405 - 7411, XP002276050 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094521A1 (en) * 2006-02-17 2007-08-23 International Flower Developments Proprietary Limited Flavonoid glycosyltransferase and utilization thereof
CN114807160A (en) * 2022-03-10 2022-07-29 上海师范大学 Gene RcGT for regulating and controlling color of Chinese rose petals, protein, recombinant vector, recombinant transformant, application and method
CN114807160B (en) * 2022-03-10 2023-11-14 上海师范大学 Gene RcGT for regulating and controlling petal color of China rose, protein, recombinant vector, recombinant transformant, application and method

Also Published As

Publication number Publication date
JP4691720B2 (en) 2011-06-01
JP2006149293A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
CA2537065C (en) Method for producing rose with altered petal colors
JP5598830B2 (en) Stabilization and bluening of anthocyanin dyes using a gene encoding an aromatic acyltransferase at the 3 'position of anthocyanins
JP3950986B2 (en) Genes encoding proteins with acyl transfer activity
US20050257291A1 (en) Genes coding for a protein having a glycoside transfer activity
JP6147195B2 (en) Novel glycosyltransferase genes and uses thereof
JP4853853B2 (en) Novel aromatic acyltransferase gene
ES2322770T3 (en) GENES THAT CODIFY FLAVONAS SYNTHESES.
WO2006059433A1 (en) Novel anthocyanidin glucosyltransferase gene
US10087427B2 (en) Glycosyltransferase gene and use thereof
JP5936553B2 (en) Novel glycosyltransferase genes and uses thereof
JPWO2007094521A1 (en) Flavonoid glycosyltransferase and use thereof
JP4418865B2 (en) Novel glucosyltransferase gene
JP5279304B2 (en) 3-Deoxyanthocyanidin saccharifying enzyme gene and use thereof
JP5477619B2 (en) Glycosylation enzyme isolated from Delphinium spp. And use thereof
US20200123555A1 (en) Use of malonyltransferase gene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795581

Country of ref document: EP

Kind code of ref document: A1