WO2006057391A1 - Method of detecting interaction between proteins - Google Patents

Method of detecting interaction between proteins Download PDF

Info

Publication number
WO2006057391A1
WO2006057391A1 PCT/JP2005/021824 JP2005021824W WO2006057391A1 WO 2006057391 A1 WO2006057391 A1 WO 2006057391A1 JP 2005021824 W JP2005021824 W JP 2005021824W WO 2006057391 A1 WO2006057391 A1 WO 2006057391A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
interaction
detecting
cross
Prior art date
Application number
PCT/JP2005/021824
Other languages
French (fr)
Japanese (ja)
Inventor
Nobumasa Hino
Kensaku Sakamoto
Shigeyuki Yokoyama
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2006057391A1 publication Critical patent/WO2006057391A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/485Epidermal growth factor [EGF] (urogastrone)

Definitions

  • the present invention relates to a method for detecting protein-protein interactions in animal cells using a cross-link method.
  • Non-natural amino acid-incorporated proteins (hereinafter referred to as "aromatic amino acids”) in which an amino acid residue at a desired position in a protein is substituted with other than 20 amino acids (non-natural amino acids) involved in normal protein synthesis. Protein ”) can be an effective means for protein function analysis
  • aaRS RNA synthase
  • the immunoprecipitation method has the following problems. (1) When the protein-protein interaction is based on weak binding force, when an antibody is allowed to act on any protein, the protein-protein interaction may break and dissociate. (2) When the interaction between proteins in cells is detected by immunoprecipitation, it is necessary to first extract the proteins from the cells. Proteins are different competencies in the cell Even if the interaction is not present, the interaction may occur for the first time outside the cell by performing the extraction operation. Therefore, immunoprecipitation may interact within the cell and possibly detect it. For this reason, the accuracy in detecting protein-protein interactions using the immunoprecipitation method is not necessarily high.
  • the cross-linking method is a method in which a protein interacting in a cell and a cross-linking agent are covalently bonded by irradiating the cell with ultraviolet rays. Therefore, even if the protein-protein interaction is based on a weak binding force, the protein is bound by a strong or binding force called a covalent bond. Will not dissociate. In addition, since it is covalently bound within the cell, it is possible to detect only the protein that interacts within the cell even after extraction from the cell.
  • TyrRS tyrosyl-tRNA synthetase of Methanococcus jannaschii that specifically recognizes p-benzoyl-L-fe-lualanin
  • pBpa p-benzoyl-L-fe-lualanin
  • pBpa is assigned to the amber codon of Escherichia coli, and pBpa is transferred into the medium and exposed to 365 nm light for 30 minutes, whereby pBpa is covalently bound as a cross-linking agent.
  • GST t
  • a dimer was produced (Non-patent Document 1). In this way, pBpa, a non-natural amino acid, can be incorporated into prokaryotic E. coli, and its protein interaction can be detected by the cross-linking method.
  • the cross-linking method can be used as an alternative to immunoprecipitation. It became possible.
  • Patent Document 1 International Publication 2004Z039989 Pamphlet
  • Non-patent literature l Chin, JW, Martin, AB, King, DS, Wang, L "& Schultz, PG Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli.Proc Natl Acad Sci USA 99, 11020-11024 (2002) Disclosure of the invention
  • the cross-linking method can be applied to animal cells, for example, the analysis of the signal transduction system such as the interaction of the receptor for epidermal growth factor (hereinafter referred to as “EGF”) (hereinafter referred to as “EGFR”) can be performed. It becomes possible and its usefulness is high.
  • EGF epidermal growth factor
  • Non-Patent Document 1 is a method used for prokaryotes and cannot be applied to animal cells as it is.
  • an object of the present invention is to provide means for detecting an interaction in an animal cell using a cross-link method.
  • the present invention provides:
  • a desired protein gene having a nonsense mutation at a position thereof is expressed in an animal cell, and the non-natural amino acid is incorporated at the position of the nonsense mutation of the protein to express a non-natural amino acid-incorporating protein.
  • a non-natural amino acid that can serve as a cross-linking agent is preferred.
  • the non-natural amino acid that can serve as a cross-linking agent is preferably pBpa.
  • the protein-protein interaction is preferably an EGFR interaction.
  • the prokaryotic cell from which the tyrosyl tRNA synthetase variant is derived is preferably E. coli.
  • Prokaryotic force from which suppressor tRNA is derived Bacillus stearothermophilus.
  • the present invention makes it possible to easily and reliably detect protein-protein interactions in animal cells.
  • Fig. 1 is a schematic diagram showing the state of aloprotein expression.
  • FIG. 2 shows the results of site-specific binding of pBpa to Grb2 in CHO cells.
  • FIG. 3 shows the analysis results of the binding between Grb2 and EGFR by coprecipitation method.
  • FIG. 4 shows the analysis results of the crosslink between Grb2 and EGFR.
  • the non-natural amino acid used in the method of the present invention can be a cross-linking agent. Specifically, it is particularly preferably pBpa, which is preferably an amino acid having a benzophenone skeleton.
  • a non-natural amino acid that can be a cross-linking agent is a non-natural amino acid that has physiological activity by itself, and also serves as a target site for a site-specific label of a protein. ⁇ It is useful as a material for structural analysis and may be a target for drug discovery.
  • the TyrRS mutant used in the present invention specifically recognizes a non-natural amino acid that can be a cross-linking agent as an amino acid, and specifically recognizes a suppressor tRNA to be used in combination as a tRNA.
  • TyrRS wild type derived from prokaryotes such as E. coli is resistant to tyrosine tRNA in animal cells. Similarly, prokaryotic tyrosine tRNAs do not react with TyrRS in animal cells
  • SEQ ID NO: 1 shows the amino acid sequence of TyrRS (wild type) of Escherichia coli.
  • TyrRS mutants used in the present invention include, for example, 3D structure data of other known TyrRS complexes with tyrosyl AMP (for example, Brick et al., J. Mol. Biol., No. 208 ( 1988) 3-D structure data described in p. 83) Forces After referring to the position where tyrosyl AMP is recognized, the unnatural amino acid that can be a cross-linking agent in the sequence of SEQ ID NO: 1 It can be obtained by estimating the position to be recognized, that is, the position where the mutation is to be introduced, and introducing the mutation in a well-known site-specific manner.
  • TyrRS mutants include at least a tyrosine at position 37, an aspartic acid at position 182 and a phenotype at position 183 in this sequence. Examples include mutants in which specificity for pBpa is conferred by site-specific substitution of luranin and leucine at position 186 with other amino acids.
  • the tyrosine at position 37 and the aspartic acid at position 182 are replaced with glycine, and the phalanin at position 183 is replaced with tyrosine, or the leucine at position 186 is replaced with alanine or methionine.
  • the DNA substituted with the base sequence encoding the amino acid to be modified is amplified and amplified.
  • the DNA fragment can be ligated to obtain DNA encoding the full-length aaRS mutant, which can be easily produced by expressing it in a host cell such as E. coli.
  • the primer used in this method is 20 to 70 bases, preferably about 20 to 50 bases. Since this primer has a mismatch of 1 to 3 bases with the original base sequence before modification, it is preferable to use a relatively long one, for example, 20 bases or more.
  • the suppressor tRNA used in combination with the above TyrRS mutant It is assigned to a nonsense codon that is not a codon assigned to a type of amino acid, and is strongly recognized only by a TyrRS variant specific to the above-mentioned non-natural amino acid and not recognized by the host's normal aaRS (orthogonal tRNA) It must have the requirements and be expressed in animal cells.
  • UAG (amber) codon such as UAG (amber), UAA (ocal), and UGA (opal).
  • Bacillus stearothermophilus suppressor synthase tRNA is derived from prokaryotes, but has a box B and box A inside it (M. Sblul et al., Nucleic Acids Research 17 , 1-172 (1989)), we thought that it could be expressed in animal cells without any modification.
  • a prokaryotic suppressor tRNA having a box A sequence and a box B sequence and capable of retaining suppressor activity must have a suppressor activity in animal cells in combination with the TyrRS mutant derived from E. coli. I found out that I can.
  • the suppressor tRNA used in the present invention includes a mycoplasma genus or a staphylococcus genus authenticity that uses only a suppressor tRNA derived from the genus Bacillus that can bind to an unnatural amino acid in the presence of the tyrosyl tRNA synthetase variant. There is also a sub-lesser tRNA derived from bacteria. For the sequence of these tRNAs, see http: ⁇ medlib.med.utah.e du / RNAmoas / trnabase / 3;
  • suppressor tRNA sequence that functions in prokaryotes, and two internal promoter consensus sequences that are recognized in animal cells. It is a subletter tRNA capable of binding to a non-natural amino acid that can be a cross-linking agent in the presence of yrRS mutant.
  • ⁇ having a suppressor tRNA sequence that functions in prokaryotes '' is a prokaryotic suppressor tRNA that is a nonsense codon (usually an amber codon (UAG)) for functioning as a suppressor tRNA. It means that it retains complementary anticodon and three-dimensional structure (L-shaped structure part).
  • “having two internal promoter sequences recognized by animal cells inside” means that the consensus sequence of Box A and the consensus sequence of Box B are contained inside.
  • “can bind to a non-natural amino acid that can be a cross-linking agent in the presence of the TyrRS mutant” means that it binds to a non-natural amino acid that can be specifically recognized by the TyrRS mutant and become a cross-linking agent.
  • suppressor tRNAs derived from Bacillus, Mycoplasma, or Staphylococcus true bacterial tyrosine tRNAs include batinoles stearothermophilus tyrosin tRNA-derived suppressor tRNA, Bacillus subtilis tyros Suppressor tRNA (http: t medlib.med.utah.edu/RNAmods/trnab ase 8 registration number 0 ⁇ 1540. ⁇ ⁇ & ⁇ ⁇ 0 ⁇ 61 ⁇ et al. (1984) J. Biol. Chem.
  • tyrosine tRNA-derived suppressor tRNA from Mycoplasma capricolum (http: ⁇ medlib.med.utah.edu/RNAmods/trnabase eight registration number DY1 140; Y. Andachi et al., (1987 ) Proc. Natl. Acd. Sci. USA 84, 7398— 7402), suppressor tRNA from tyrosine tRNA of Staphylococus aureus tRNA (http://medlib.med.utah.edu/RNAmods/trnabase/ Registration number DY1480; C.Green, (1993) J.Bac teriol. 175, 5091-5096), and a suppressor tRNA derived from tyrosine tRNA of Bacillus steer mouth thermophilus is preferably used.
  • any known expression system can be used.
  • commercially available pcDNA3.1 manufactured by Invitrogen
  • pAGE107 Cellufactured by Invitrogen
  • PAGE103 J. Biochem. L01, 1307 (1987)] and the like
  • suppressor tRNA can be any known vector for Escherichia coli cloning. Even if one is used, it can be expressed in animal cells.
  • pBR322 Proc. Natl. Acad. Sci. USA 75, 3737-3741 (1978)
  • pBR322 Proc. Natl. Acad. Sci. USA 75, 3737-3741 (1978)
  • a vector capable of inducible expression can be used if necessary, and for example, a tetracycline responsive promoter commercially available from Clontech, Invitrogene, etc. can be used.
  • Examples of methods for introducing a vector into cells include electroporation (Nucleic, Acids Res. 15, 1311-1326 (1987)), calcium phosphate method (Mol. Cell Biol. 7,2745- 2752 (1987)), Exclusion method (Cell 7,1025-1037 (1994); Lamb, Nature Genetics 5, 22-30 (1993)).
  • protein into which the unnatural amino acid is incorporated in the present invention is not limited, and any protein that can be expressed may be any heterologous recombinant protein.
  • protein types include so-called signal transduction related proteins, receptors, growth factors, cell cycle related factors, transcription factors, translation factors, transport related proteins, secreted proteins, cell skeleton related proteins, enzymes, chaperones or Examples include disease-related proteins including cancer, diabetes or genetic diseases. These proteins fulfill their functions through interaction and can be used in the present invention.
  • a well-known method can be used, and is not particularly limited. Gene 152, 271-275 (1995), Methods Enzymol. 100, 468-500 (1983), Nucleic Acids Res. 12,9441-9456 (1984), Proc. Natl. Acad. Sci. USA 82, 4 88-492 (1985), "Cell engineering separate volume” New cell engineering experiment protocol ", Shujunsha, 241— 248 (1993) "or the method using” QuickChange Site-Directed Mutagenesis Kit “(Stratagene), etc.
  • the present invention can be expressed in animal cells, Escherichia coli and cell-free proteins have been used so far.
  • unnatural amino acids can be incorporated into proteins that are not expressed, are low in expression, or cannot be post-translationally modified to become active.
  • proteins are known to those skilled in the art, for example, the extracellular domain of a tyrosine kinase receptor such as human EGFR (Cell, 110,775-787 (2002)), human Groucho / TLEl protein (Structure 10,751-761 (2002)), rat muscle-specific kinase (Structure 10.1187-1196 (2002)), etc.
  • the ability to synthesize aloproteins is not limited to these.
  • the aloprotein since the aloprotein is expressed in animal cells, a non-natural amino acid can be incorporated into a glycoprotein bound to a sugar chain.
  • the system in the animal cell of the present invention has the target (original) pattern of sugar. It is considered to be an effective means for obtaining an aloprotein with a chain added.
  • the host animal cell used in the present invention is preferably a mammalian cell in which a gene recombination system has been established.
  • useful mammalian host cell lines include Chinese, Muster ovary (CHO) and COS cells. More specific examples are monkey kidney CV1 line transformed with SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, J. Gen Virol , 36:59 (1977)); Chinese nomster ovary cells / -DHFR (CHO, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)); Mouse Sertoli cells (TM4, Biol.
  • the frame in Fig. 1 represents the cell membrane of animal cells (eg CHO cells). Within the cell (inside the frame), prokaryotic suppressor tRNA and TyrRS mutant are expressed in their respective expression systems.
  • Crosslin A non-natural amino acid (eg pBpa) that can serve as a chelating agent is added to the medium (outside the frame).
  • Non-natural amino acids that can serve as a cross-linking agent in the medium are taken into the cell by the action of the cell itself, and bind to the suppressor tRNA by the action of the TyrRS mutant.
  • the unnatural amino acid that can be a cross-linking agent is then carried on the ribosome by the suppressor tRNA and used to translate the nonsense 'codon (here, the UAG codon).
  • the codon at the corresponding position of the protein gene is substituted with UAG, and then this gene is expressed in the cell.
  • the target alloprotein in which the non-natural amino acid that can be a cross-linking agent is incorporated at the target position can be expressed in the animal cell.
  • (C) an animal cell having a desired protein gene having a nonsense mutation at a desired position, and a medium suitable for the growth of the animal cell for example, Opti-MEM I (Gibco Incubate under appropriate conditions in a medium supplemented with a non-natural amino acid that can be used as a target cross-linking agent.
  • CHO cells incubate at a temperature of about 37 ° C for about 24 hours.
  • the amount of unnatural amino acid added as a cross-linking agent in the medium is about 0.1 to 3 mM, preferably about 0.3 mM.
  • Aroprotein strength expressed in animal cells by the above When interacting with other proteins in the animal cell, the animal cell is incorporated into the protein by irradiating the animal cell with light of a specific wavelength.
  • a non-natural amino acid that can be a cross-linking agent forms a covalent bond with the other protein.
  • the cross-linking agent has a benzophenone skeleton
  • the carbonyl bond in the benzophenone is cleaved by irradiation with light of a specific wavelength, and the carbon atoms constituting the carbonyl bond are covalently bonded to other interacting proteins. .
  • the aloprotein and the other protein form a strong covalent bond, so that both proteins do not dissociate even after cell extraction operation. Can be easily detected. For this reason, in animal cells having a very complex cell structure compared to prokaryotes, it is easy to detect, for example, tyrosine kinase type receptor interactions, more specifically EGFR interaction, etc. that are peculiar to animal cells. be able to.
  • the wavelength of light to be irradiated has a force of 300 to 450 nm that varies depending on the cross-linking agent. S It is more preferable that the wavelength be in the preferred ultraviolet region (for example, 300 to 400 nm).
  • the force is preferably 350 to 380 nm.
  • the force is particularly preferably 360 to 370 nm.
  • the irradiation time is not particularly limited, but for example, 30 seconds to 1 hour is preferable. The irradiation is preferably performed, for example, on an ice bath after washing the cells with an appropriate buffer.
  • the third step is a step of detecting the presence or absence of protein-protein interaction, and a known detection method such as a Western plot method can be used.
  • the cells can be lysed with a buffer solution, subjected to SDS-PAGE, transferred to a PVDF membrane or the like, and then detected using an appropriate primary antibody or secondary antibody.
  • Intracellular signaling involved in proliferation can be triggered by administration of EGF.
  • EGF specifically binds to EGFR located in the cell membrane.
  • EGF-bound receptors activate their tyrosine (autophosphorylation). This state is a so-called excitement state for cells, and signals that lead to cell proliferation are relayed at once.
  • the relay from EGFR to proliferation typically goes through EGF ⁇ EGFR ⁇ Grb2 ⁇ SOS ⁇ Ras ⁇ MEK ⁇ MAPK ⁇ cell proliferation, t, and so on.
  • Grb2 represents a protein and grb2 represents a nucleobase.
  • pBpa is from Bachem AG
  • anti-FLAG M2 antibody is from Sigma
  • anti-HA antibody is from Diagnostica
  • anti-EGFR antibody is from Santa Cruz Biotechnology.
  • Antibodies against tyrosine were purchased from Cell Signaling Technology.
  • HRP Haseradish Peroxidase
  • HRP Haseradish Peroxidase
  • E. coli TyrRS mutant that specifically recognizes pBpa was constructed by site-specific mutation of wild-type TyrRS derived from Escherichia coli, and amplified by PCR using mutant primers. Based on the binding structure of Grb2 SH2 domain and ligand peptide, select the position (Leul 11) that is close to the ligand binding site and that is not expected to inhibit binding, as the pBpa introduction position. Replaced by amber codon. More specifically, the leucine codon at position 111 of human grb2 was converted to an amber codon using a Quick Change site-directed mutagenesis kit (Stratagene) (grb2 (Ami 11)).
  • a Quick Change site-directed mutagenesis kit Stratagene
  • HA tag (Y PYDVPDYA) was attached to the C-terminus of wild type E. coli TyrRS and EcpBpaRS.
  • a FLAG sequence (DYKDDDK) was added to the C-terminus of the wild-type grb2 and grb2 (Ami 11) genes. Wild-type and mutant grb2, TyrRS gene, and EGFR gene were each cloned with pcDNA4 / TO vector (Invitrogen) for expression in cells.
  • the plasmid of the suppressor tRNA was prepared by a known method (Patent Document 1).
  • T-REX-CHO cells that structurally produce tetracycline ribules grow to 90% confluence in a 90mm dish, and pcDNA4 / TO plasmid and suppressor tRNA expression plasmid can be transferred to Gibco Opti—MEMI medium ( Invitrogen Co., Ltd.) was transferred using LipofectAMINE2000 reagent. 4 hours after transfer, 20 mM HEPES-NaOH (pH 7.2) and 1 g / ml tetra The medium was changed to Salem-free Gibco D-MEM / F-12 medium containing cyclin. pBpa was added to the medium at a concentration of ImM. After an additional 12 hours of incubation, the cells were treated with lOOngZml EGF for 5 minutes at 37 ° C.
  • the Western blot was performed according to the following procedure.
  • Cells are diluted with buffer A (30 mM Tris-HCl buffer (pH 7.4), 10% glycerol, 1% saline X-100, 5 mM EDTA, 0.05% deoxycholate sodium, 100% protease inhibitor cocktail. (Nacalai Tesque)), and SDS-PAGE was performed and transferred to a PVDF membrane.
  • Proteins were probed with antibodies and then detected with ECL plus immunodetection system (Amersham Biosciences). If the membrane is to be detected with two different antibodies, use 62.5 mM Tris-HCl buffer (pH 6.8) containing 2% SDS and 0.7% 2-mercaptoethanol for 30 minutes at 55 ° C. The first antibody was peeled off after treatment with, and the other antibody was allowed to act to detect. The band intensity was measured using an image analyzer LAS-1000 plus (Fuji Photo Film Co.).
  • Grb2 is an adapter protein that binds to EGFR and mediates extracellular signals to Ras protein.
  • the interaction between the receptor and this Grb2 involves the SH2 region of Grb2, This region binds directly to receptor Y1068, which is phosphorylated upon EGF stimulation.
  • the tertiary structure of the SH2 region of Grb2 forms a complex with the ligand peptide and has been determined by X-ray crystallography and NMR.
  • the amino acid residue substituted by pBpa is a residue that is near the binding ligand but does not inhibit binding. Based on the crystal structure, we selected leucine 111 as the substitution position.
  • FIG. 2 shows the results of site-specific binding of pBpa to Grb2 in CHO cells.
  • Grb2 pBpalll
  • TyrRS was expressed with an anti-HA antibody.
  • WTTyrRS wild type TyrRS
  • suppressor tRNA and grb2 Ami 11
  • Grb2 pBpalll
  • FIG. 3 shows the analysis results of the binding between Grb2 and EGFR by the coprecipitation method.
  • the obtained cell extract ie, whole cell lysate (WCL) was detected by Western plot (FIG. 3a).
  • the primary antibody was an anti-EGFR antibody.
  • Fig. 3a two bands with different molecular weights of 150 kDa and 170 kDa were detected (Fig. 3a, lanes 1 to 4), but the 150 kDa molecular weight band was derived from being overexpressed in CHO cells. Is a by-product.
  • the results of immunoprecipitation of this extract and detection by Western plot are shown in FIGS. 3b, c and d.
  • Fig. 4 shows the results of cross-linking analysis between Grb2 and EGFR.
  • a single band was detected at a position of about 200 kDa ( Figure 4a, b, lanes 8 and 9), and in the cells that expressed wild-type Grb2, the band was detected. ( Figures 4a, b, lanes 1-5). It was concluded that this band is a cross-linked complex of Grb2 (pBpal l) and EGFR for the following reasons.
  • the molecular mass force corresponds to the sum of the masses of GFR (170 kDa) and Grb2 (25 kDa).
  • this band depends on the light irradiation (irradiation time: 0, 5, 15 and 30 minutes) and the presence of pBpa.
  • this product was detected not only by anti-FLAG antibody but also by anti-EGFR antibody.
  • the by-product 150 kDa EGFR did not crosslink with Grb2 (pBpal l l). This by-product is not expressed properly on the cell surface, and even if EGF-independent Y1068 is phosphorylated, it appears that it was unable to bind to Grb2.
  • the co-immunoprecipitation of this by-product with Grb 2 is thought to be due to non-physiological binding that occurred during cell extract preparation or antibody incubation. Therefore, this method is useful for specifically detecting natural complexes formed in the cellular environment.
  • the interaction between EGFR and Grb2 is EGF-dependent. That is, EGFR and Grb2 do not form a structure from the beginning, but specific sites of EGFR are phosphorylated upon stimulation of EGF, and Grb2 binds to it. Without EGF stimulation, no cross-linking occurs and the cells
  • cross-linking does not occur until there is a series of signal transductions within. This is because the cross-links often reflect the correctness of the cells.
  • a pair of suppressor tRNAs and processed aaRS mutants having amino acid specificity were expressed in Escherichia coli cells, yeast, and mammalian cells, and a liver tree of amino acids binding to proteins was expanded.
  • This technique has already been used to photocrosslink in E. coli between GST molecules containing pBpa.
  • the results of this example relate to cellular signal proteins that interact with each other depending on tyrosine phosphorylation, and the in vivo cross-linking associated with genetic code expansion is applied to various protein-protein interactions in mammalian cells. If possible, suggest that you.
  • Cross-linked protein complexes are stable due to covalent bonds, and dissociation during cell extraction is not possible. This advantage allows separation of complexes formed by instantaneous or weak interactions between proteins that are not detected by coimmunoprecipitation. In addition, covalent bonds are formed in cells exposed to light, eliminating false interactions that occur during cell extraction or during antibody-incubation (eg, a 150 kDa EGFR by-product). These advantages are useful in studying cell signaling pathways.
  • Protein cross-linking has been used to determine the position of a protein within a macromolecular complex relative to the position of other proteins.
  • the cross-linking shape of the two proteins indicates direct contact between these proteins in the complex without any intervening factors.
  • Site-specific binding of an amino acid that serves as a cross-linking agent can accurately identify that site in a protein near the interacting protein. It has been reported that cross-linking does not occur when pBpa is bound to a certain GST position away from the dimer boundary.
  • the position of Grb2 to which pBpa binds was selected based on the crystal structure of Grb2 having a ligand peptide.
  • the cross-link between Grb2 and EGFR confirmed that the residue at position 111 of Grb2 is located at the boundary where it interacts with the receptor.
  • the detection method of the present invention solves the problems of immunoprecipitation and can detect protein-protein interactions in animal cells with high accuracy. For example, it is useful for detecting interactions unique to animal cells, such as interactions in signal transduction systems and interactions with oncogene products.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method of detecting an interaction between proteins comprising: the first step wherein a prokaryote-origin TyrRS mutant which is specific to an unnatural amino acid capable of serving as a crosslinking agent, a prokaryote-origin suppressor tRNA which is capable of binding to the above-described unnatural amino acid in the presence of the above-described TyrRS mutant, and a desired protein gene having a nonsense mutation at a desired site are expressed in an animal cell so that the above-described unnatural amino acid is incorporated into the nonsense mutation site of the above-described protein and the protein having the unnatural amino acid integrated thereinto is expressed; the second step wherein the above-described animal cell is irradiated with light having a specific wavelength; and the third step wherein the presence or absence of the interaction between the proteins is detected.

Description

明 細 書  Specification
蛋白質間相互作用の検出方法  Method for detecting protein-protein interaction
技術分野  Technical field
[0001] 本発明は、クロスリンク法を用いた動物細胞内の蛋白質間相互作用の検出方法に 関する。  The present invention relates to a method for detecting protein-protein interactions in animal cells using a cross-link method.
本願は、 2004年 11月 26日に出願された特願 2004— 342914号に基づき優先権 を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2004-342914 filed on November 26, 2004, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 蛋白質中の所望の位置のアミノ酸残基を、通常の蛋白質合成に関わる 20種類以 外のアミノ酸 (非天然型アミノ酸)で置換した、非天然型アミノ酸組み込み蛋白質 (以 下、「ァロ蛋白質」という)は、蛋白質の機能'構造解析のための有効な手段となり得る  [0002] Non-natural amino acid-incorporated proteins (hereinafter referred to as "aromatic amino acids") in which an amino acid residue at a desired position in a protein is substituted with other than 20 amino acids (non-natural amino acids) involved in normal protein synthesis. Protein ”) can be an effective means for protein function analysis
[0003] 本発明者らは、近年、大腸菌や無細胞蛋白質合成系で開発されてきたァロ蛋白質 の生産を、動物細胞内で可能にすることに成功した (特許文献 1)。すなわち、本発明 者らは、ナンセンスコドンに割り当てられ、非天然型アミノ酸に特異的なアミノアシル t[0003] In recent years, the present inventors have succeeded in enabling the production of aroprotein, which has been developed in E. coli and cell-free protein synthesis systems, in animal cells (Patent Document 1). That is, the present inventors assigned an aminoacyl t which is assigned to a nonsense codon and is specific for an unnatural amino acid.
RNA合成酵素(以下、「aaRS」という)変異体にのみ認識され、宿主の動物細胞内 の aaRSには認識されない(orthogonal tRNA)サプレッサー tRNAを開発し、かかる サプレッサー tRNAと非天然型チロシン誘導体に特異的な変異チロシル tRNA合成 酵素と所望の位置にナンセンス変異を受けた所望の蛋白質遺伝子を動物細胞中で 発現させることによって、非天然型アミノ酸組み込み蛋白質の生産を、動物細胞内で 可能にすることに成功した。 Developed suppressor tRNAs that are recognized only by mutants of RNA synthase (hereinafter referred to as “aaRS”) but not aaRS in the host animal cells (specific to these suppressor tRNAs and unnatural tyrosine derivatives) Mutated tyrosyl-tRNA synthesis Enzyme and the production of unnatural amino acid-incorporated protein in animal cells by expressing the desired protein gene with nonsense mutation at the desired position in animal cells Successful.
[0004] ところで、蛋白質 蛋白質相互作用の存在を検出する手段としては、従来免疫沈 澱法が用いられてきた。し力しながら、免疫沈澱法には、以下のような問題点があつ た。(1)蛋白質間相互作用が弱い結合力に基づくものである場合、いずれかの蛋白 質に対して抗体を作用させた場合、蛋白質間の相互作用が切れて解離してしまう場 合がある。(2)細胞内での蛋白質間の相互作用を免疫沈澱法により検出する場合、 まず細胞から蛋白質を抽出する必要がある。蛋白質が細胞内の異なったコンパ一トメ ント内に存在していて、相互作用が実際には生じていない場合であっても、抽出操作 をすることによって細胞外で初めて相互作用をする場合がある。したがって、免疫沈 澱法では細胞内で相互作用して 、な 、場合にっ 、ても検出してしまう可能性がある 。このため、蛋白質間相互作用を免疫沈澱法を用いて検出する場合の精度は、必ず しも高 、ものではなかった。 [0004] By the way, as a means for detecting the presence of protein-protein interaction, immunoprecipitation has been conventionally used. However, the immunoprecipitation method has the following problems. (1) When the protein-protein interaction is based on weak binding force, when an antibody is allowed to act on any protein, the protein-protein interaction may break and dissociate. (2) When the interaction between proteins in cells is detected by immunoprecipitation, it is necessary to first extract the proteins from the cells. Proteins are different competencies in the cell Even if the interaction is not present, the interaction may occur for the first time outside the cell by performing the extraction operation. Therefore, immunoprecipitation may interact within the cell and possibly detect it. For this reason, the accuracy in detecting protein-protein interactions using the immunoprecipitation method is not necessarily high.
[0005] 蛋白質間相互作用を検出するために免疫沈澱法を用いる問題点を解消するため に、クロスリンク法がある。クロスリンク法は、細胞内で相互作用をしている蛋白質とク ロスリンク剤とを、細胞に紫外線を照射することによって共有結合させる方法である。 したがって、蛋白質間相互作用が弱い結合力に基づくものであっても、共有結合とい う強 、結合力で蛋白質を結合させるため、 、ずれかの蛋白質に対して抗体を作用さ せたときに蛋白質が解離してしまうことがない。また、細胞内で共有結合させるため、 細胞からの抽出操作を行った後でも、細胞内で相互作用をしている蛋白質のみを検 出することができる。  [0005] In order to solve the problem of using immunoprecipitation to detect protein-protein interactions, there is a cross-linking method. The cross-linking method is a method in which a protein interacting in a cell and a cross-linking agent are covalently bonded by irradiating the cell with ultraviolet rays. Therefore, even if the protein-protein interaction is based on a weak binding force, the protein is bound by a strong or binding force called a covalent bond. Will not dissociate. In addition, since it is covalently bound within the cell, it is possible to detect only the protein that interacts within the cell even after extraction from the cell.
[0006] Schultzらは、 p—ベンゾィル— L—フエ-ルァラニン(以下、「pBpa」という)を特異 的に認識するメタノコッカス ャナシ一(Methanococcus jannaschii)のチロシル tRNA 合成酵素(以下、「TyrRS」という)の変異体を、メタノコッカス ャナシ一由来のサプ レツサーチロシル tRNAとともに、大腸菌内で発現させた。この TyrRS変異体はこの t RNAのみをアミノアシル化し、この tRNAは内因性 aaRSによっては認識されない。 このように、 pBpaは大腸菌のアンバーコドンに割り当てられ、培地中に pBpaをカロえ、 該大腸菌を 365nmの光に 30分間晒すことにより、 pBpaがクロスリンク剤として共有 結合したダルタチオン Sトランスフェラーゼ (以下、「GST」 t 、う) 2量体が生成した( 非特許文献 1)。このように、非天然型アミノ酸である pBpaを原核生物である大腸菌 に組み込み、クロスリンク法によってその蛋白質の相互作用を検出することができ、ク ロスリンク法は免疫沈殿法に代わる手段として利用することが可能となった。  [0006] Schultz et al. Described a tyrosyl-tRNA synthetase (hereinafter referred to as “TyrRS”) of Methanococcus jannaschii that specifically recognizes p-benzoyl-L-fe-lualanin (hereinafter referred to as “pBpa”). ) Mutant was expressed in Escherichia coli together with a supple search rosyl tRNA derived from Methanococcus yanasi. This TyrRS variant aminoacylates only this tRNA, which is not recognized by endogenous aaRS. Thus, pBpa is assigned to the amber codon of Escherichia coli, and pBpa is transferred into the medium and exposed to 365 nm light for 30 minutes, whereby pBpa is covalently bound as a cross-linking agent. “GST” t) A dimer was produced (Non-patent Document 1). In this way, pBpa, a non-natural amino acid, can be incorporated into prokaryotic E. coli, and its protein interaction can be detected by the cross-linking method. The cross-linking method can be used as an alternative to immunoprecipitation. It became possible.
特許文献 1:国際公開 2004Z039989号パンフレット  Patent Document 1: International Publication 2004Z039989 Pamphlet
非特許文献 l : Chin, J.W., Martin, A.B., King, D.S., Wang, L" & Schultz, P.G. Addi tion of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 99, 11020-11024 (2002) 発明の開示 Non-patent literature l: Chin, JW, Martin, AB, King, DS, Wang, L "& Schultz, PG Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli.Proc Natl Acad Sci USA 99, 11020-11024 (2002) Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] ところで、動物細胞にクロスリンク法を適用できれば、たとえば上皮成長因子(以下 、「EGF」という)の受容体(以下、「EGFR」という)の相互作用等のシグナル伝達系 等の解析が可能となり、その有用性は高い。  [0007] By the way, if the cross-linking method can be applied to animal cells, for example, the analysis of the signal transduction system such as the interaction of the receptor for epidermal growth factor (hereinafter referred to as "EGF") (hereinafter referred to as "EGFR") can be performed. It becomes possible and its usefulness is high.
し力しながら、動物細胞は、原核生物と比べて細胞内がきわめて複雑であり、免疫 沈滅法等の既存の手法では、上記 (2)等の問題点が強く現れてしまう。さらに、非特 許文献 1に記述されて 、る Schultzらの方法は、原核生物に用いられる方法であり、 動物細胞にそのまま適用することはできな 、。  However, animal cells are extremely complex in the cells compared to prokaryotes, and problems such as the above (2) appear strongly in existing methods such as immunoprecipitation. Furthermore, the method of Schultz et al. Described in Non-Patent Document 1 is a method used for prokaryotes and cannot be applied to animal cells as it is.
[0008] したがって、本発明は、動物細胞内での相互作用をクロスリンク法を用いて検出す る手段を提供することを目的とする。  [0008] Accordingly, an object of the present invention is to provide means for detecting an interaction in an animal cell using a cross-link method.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、本発明は、 In order to solve the above problems, the present invention provides:
クロスリンク剤となりうる非天然型アミノ酸に特異的な原核生物由来の TyrRS変異 体と、前記 TyrRS変異体の存在下で前記非天然型アミノ酸と結合可能な原核生物 由来のサブレッサー tRNAと、所望の位置にナンセンス変異を受けた所望の蛋白質 遺伝子と、を動物細胞中で発現させ、前記蛋白質のナンセンス変異の位置に前記非 天然型アミノ酸を取り込ませて非天然型アミノ酸組み込み蛋白質を発現させる第 1ェ 程、  A prokaryotic-derived TyrRS variant specific to a non-natural amino acid that can be a cross-linking agent, a prokaryotic-derived sub-tRNA capable of binding to the non-natural amino acid in the presence of the TyrRS variant, and a desired tRNA A desired protein gene having a nonsense mutation at a position thereof is expressed in an animal cell, and the non-natural amino acid is incorporated at the position of the nonsense mutation of the protein to express a non-natural amino acid-incorporating protein. About
前記動物細胞に特定波長の光を照射する第 2工程、及び  A second step of irradiating the animal cell with light of a specific wavelength; and
蛋白質間相互作用の有無を検出する第 3工程、  The third step of detecting the presence or absence of protein-protein interactions,
を有することを特徴とする蛋白質間相互作用の検出方法である。  It is a detection method of protein-protein interaction characterized by having.
クロスリンク剤となりうる非天然型アミノ酸力 ベンゾフエノン骨格を有するものである ことが好ましい。  A non-natural amino acid that can serve as a cross-linking agent is preferred.
クロスリンク剤となりうる非天然型アミノ酸が、 pBpaであることが好ましい。 蛋白質間相互作用力 チロシンキナーゼ型レセプターの相互作用であることが好ま しい。  The non-natural amino acid that can serve as a cross-linking agent is preferably pBpa. Interaction force between proteins It is preferable that the interaction is a tyrosine kinase type receptor.
蛋白質間相互作用が、 EGFRの相互作用であることが好ましい。 チロシル tRNA合成酵素変異体が由来する原核細胞が大腸菌であることが好まし い。 The protein-protein interaction is preferably an EGFR interaction. The prokaryotic cell from which the tyrosyl tRNA synthetase variant is derived is preferably E. coli.
サプレッサー tRNAが由来する原核細胞力 バチルス ステアロサーモフィラス(Ba cillus stearothermophilus)であることカ 十 し ヽ。  Prokaryotic force from which suppressor tRNA is derived. Bacillus stearothermophilus.
発明の効果  The invention's effect
[0010] 本発明により、動物細胞内での蛋白質間相互作用を、容易かつ確実に検出するこ とが可能となった。  [0010] The present invention makes it possible to easily and reliably detect protein-protein interactions in animal cells.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]ァロ蛋白質が発現する様子を示す模式図である。  [0011] Fig. 1 is a schematic diagram showing the state of aloprotein expression.
[図 2]CHO細胞における Grb2への pBpaの部位特異的結合の結果を示す。  FIG. 2 shows the results of site-specific binding of pBpa to Grb2 in CHO cells.
[図 3]共沈澱法による Grb2と EGFRとの結合の解析結果を示す。  FIG. 3 shows the analysis results of the binding between Grb2 and EGFR by coprecipitation method.
[図 4]Grb2と EGFRとのクロスリンクの解析結果を示す。  FIG. 4 shows the analysis results of the crosslink between Grb2 and EGFR.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] まず、第 1工程について説明する。 [0012] First, the first step will be described.
(非天然型アミノ酸)  (Non-natural amino acid)
本発明の方法に用いられる非天然型アミノ酸は、クロスリンク剤となり得るものであり 、具体的には、ベンゾフエノン骨格を有するアミノ酸であることが好ましぐ pBpaである ことが特に好ま 、。クロスリンク剤となり得る非天然型アミノ酸はそれ自体で生理活 性を有する非天然型アミノ酸であり、蛋白質の部位特異的ラベルの標的部位ともなる ので、クロスリンク剤となり得るァロ蛋白質は、蛋白質機能 ·構造解析の材料として有 用であり、また創薬のターゲットともなる可能性がある。  The non-natural amino acid used in the method of the present invention can be a cross-linking agent. Specifically, it is particularly preferably pBpa, which is preferably an amino acid having a benzophenone skeleton. A non-natural amino acid that can be a cross-linking agent is a non-natural amino acid that has physiological activity by itself, and also serves as a target site for a site-specific label of a protein. · It is useful as a material for structural analysis and may be a target for drug discovery.
[0013] (TyrRS変異体) [0013] (TyrRS mutant)
本発明で用いられる TyrRS変異体は、アミノ酸として、クロスリンク剤となり得る非天 然型アミノ酸を特異的に認識し、かつ tRNAとして、併用するサプレッサー tRNAを 特異的に認識して、該非天然型アミノ酸が結合したサブレッサー tRNAを生成させる ことができる原核生物由来の TyrRSの変異体である。原核生物としては、大腸菌等 を挙げることができ、そのなかでも K12株、 B株が好ましい。  The TyrRS mutant used in the present invention specifically recognizes a non-natural amino acid that can be a cross-linking agent as an amino acid, and specifically recognizes a suppressor tRNA to be used in combination as a tRNA. Is a prokaryotic-derived TyrRS variant capable of generating a sub-repressor tRNA bound to. Examples of prokaryotes include Escherichia coli and the like, and K12 and B strains are preferable among them.
大腸菌等の原核生物由来の TyrRS (野生型)は、動物細胞のチロシン tRNAと反 応せず、同様に、原核生物由来のチロシン tRNAは動物細胞の TyrRSと反応しない TyrRS (wild type) derived from prokaryotes such as E. coli is resistant to tyrosine tRNA in animal cells. Similarly, prokaryotic tyrosine tRNAs do not react with TyrRS in animal cells
[0014] 大腸菌の TyrRS (野生型)のアミノ酸配列を配列番号 1に示す。 [0014] SEQ ID NO: 1 shows the amino acid sequence of TyrRS (wild type) of Escherichia coli.
本発明に用いられる TyrRS変異体は、例えば、すでに知られている他の TyrRSと チロシル AMPの複合体との 3— D構造データ(例えば、 Brickら、 J.Mol.Biol.、第 208 卷(1988) p. 83に記載されている 3— D構造データ)力 得られるチロシル AMPを 認識する位置を参照した上で、配列番号 1の配列の中で、クロスリンク剤となり得る非 天然型アミノ酸を認識する位置、すなわち変異を導入すべき位置を推定して、周知 の部位特異的に変異を導入する方法により、得ることができる。  TyrRS mutants used in the present invention include, for example, 3D structure data of other known TyrRS complexes with tyrosyl AMP (for example, Brick et al., J. Mol. Biol., No. 208 ( 1988) 3-D structure data described in p. 83) Forces After referring to the position where tyrosyl AMP is recognized, the unnatural amino acid that can be a cross-linking agent in the sequence of SEQ ID NO: 1 It can be obtained by estimating the position to be recognized, that is, the position where the mutation is to be introduced, and introducing the mutation in a well-known site-specific manner.
そして、クロスリンク剤となり得る非天然型アミノ酸力 ¾Bpaである場合には、 TyrRS 変異体としては、この配列の中で、少なくとも、 37位のチロシン、 182位のァスパラギ ン酸、 183位のフ -ルァラニンと 186位のロイシンを他のアミノ酸で部位特異的に 置換して、 pBpaへの特異性を付与した変異体が挙げられる。  In the case of an unnatural amino acid power ¾ Bpa that can serve as a cross-linking agent, TyrRS mutants include at least a tyrosine at position 37, an aspartic acid at position 182 and a phenotype at position 183 in this sequence. Examples include mutants in which specificity for pBpa is conferred by site-specific substitution of luranin and leucine at position 186 with other amino acids.
[0015] さらに好ましくは、 37位のチロシン及び 182位のァスパラギン酸がグリシンに置換さ れ、かつ 183位のフエ-ルァラニンがチロシンに置換されているか又は 186位のロイ シンがァラニンもしくはメチォニンに置換されたものを用いることができる。これらの変 異により pBpaへの特異性が高められる。  [0015] More preferably, the tyrosine at position 37 and the aspartic acid at position 182 are replaced with glycine, and the phalanin at position 183 is replaced with tyrosine, or the leucine at position 186 is replaced with alanine or methionine. Can be used. These variations increase the specificity for pBpa.
[0016] 次に、これらの変異体を製造する方法としては、公知の遺伝子操作技術により行な うのが好ましい。例えば、目的のアミノ酸の位置をコードする塩基配列を改変すべき アミノ酸をコードする塩基配列に置換したプライマーを用いて、改変すべきアミノ酸を コードする塩基配列に置換した DNAを増幅させて、増幅させた DNA断片を結合さ せて、全長の aaRS変異体をコードする DNAを得て、これを大腸菌などの宿主細胞 を用いて発現させることにより簡便に製造することができる。この方法において使用す るプライマーとしては 20〜70塩基、好ましくは 20〜50塩基程度である。このプライマ 一は改変前の元の塩基配列とは 1〜3塩基がミスマッチとなるので、比較的長いもの 、例えば 20塩基以上のものを使用するのが好ましい。  Next, as a method for producing these mutants, it is preferable to carry out by a known gene manipulation technique. For example, using a primer in which the base sequence encoding the target amino acid position is replaced with the base sequence encoding the amino acid to be modified, the DNA substituted with the base sequence encoding the amino acid to be modified is amplified and amplified. The DNA fragment can be ligated to obtain DNA encoding the full-length aaRS mutant, which can be easily produced by expressing it in a host cell such as E. coli. The primer used in this method is 20 to 70 bases, preferably about 20 to 50 bases. Since this primer has a mismatch of 1 to 3 bases with the original base sequence before modification, it is preferable to use a relatively long one, for example, 20 bases or more.
[0017] (サプレッサー tRNA)  [0017] (suppressor tRNA)
上記 TyrRS変異体と組み合わせて使用される、サプレッサー tRNAは、通常の 20 種類のアミノ酸に割り当てられたコドンではないナンセンスコドンに割り当てられ、力 つ、上記非天然型アミノ酸に特異的な TyrRS変異体にのみ認識され、宿主の通常 の aaRSには認識されない(orthogonal tRNA)という要件を備え、かつ動物細胞中で 発現しなければならない。 The suppressor tRNA used in combination with the above TyrRS mutant It is assigned to a nonsense codon that is not a codon assigned to a type of amino acid, and is strongly recognized only by a TyrRS variant specific to the above-mentioned non-natural amino acid and not recognized by the host's normal aaRS (orthogonal tRNA) It must have the requirements and be expressed in animal cells.
ここで、ナンセンスコドンとしては、 UAG (アンバー)、 UAA (オーカ一)、 UGA (ォ パール)が挙げられる力 UAG (アンバー)コドンを用いることが好まし 、。  Here, as the nonsense codon, it is preferable to use a UAG (amber) codon, such as UAG (amber), UAA (ocal), and UGA (opal).
[0018] 一般に、真核細胞での tRNAの発現は、 tRNAコーディング配列内の 2つの内部 プロモーターを必要とし、そのコンセンサス配列は、ボックス A、ボックス Bとして知られ ている。 [0018] In general, the expression of tRNA in eukaryotic cells requires two internal promoters within the tRNA coding sequence, and the consensus sequences are known as Box A and Box B.
バチルス ステアロサーモフィラスのサプレツサーチ口シン tRNAは、原核生物由来 であるが、そのサプレツサーチ口シン tRNA配列内にボックス Bとボックス Aを内部に 有しており(M.Sprinzlら、 Nucleic Acids Research 17, 1-172(1989))、なんら改変をカロ えなくても動物細胞内で発現させることができると考えた。  The Bacillus stearothermophilus suppressor synthase tRNA is derived from prokaryotes, but has a box B and box A inside it (M. Sprinzl et al., Nucleic Acids Research 17 , 1-172 (1989)), we thought that it could be expressed in animal cells without any modification.
[0019] そして実際に、バチルス ステアロサーモフィラス由来のサプレツサーチ口シン tRN Aを改変せずに動物細胞で導入するためのベクターにクローンィヒして動物細胞に導 入したところ、動物細胞中での発現が確認された。そして、上記大腸菌の TyrRS変 異体と組み合わせて、サブレッシヨン活性を示すことを確認した。  [0019] And, when the suppressor search synthase tRNA derived from Bacillus stearothermophilus was actually cloned into a vector for introduction into animal cells without modification, it was introduced into animal cells. Expression was confirmed. Then, it was confirmed that it exhibited a substituting activity in combination with the TyrRS mutant of E. coli.
すなわち、ボックス A配列とボックス B配列を有した形で、サプレッサー活性を保持 できる原核生物のサブレッサー tRNAは、上記大腸菌由来の TyrRS変異体と組み 合わせて、動物細胞内でサブレッサー活性を有することができることを見出した。  That is, a prokaryotic suppressor tRNA having a box A sequence and a box B sequence and capable of retaining suppressor activity must have a suppressor activity in animal cells in combination with the TyrRS mutant derived from E. coli. I found out that I can.
[0020] 本発明に用いられるサプレッサー tRNAとしては、上記チロシル tRNA合成酵素変 異体の存在下で非天然型アミノ酸と結合可能なバチルス属由来のサプレッサー tRN Aだけでなぐマイコプラズマ属又はスタフイロコッカス属真性細菌由来のサブレッサ 一 tRNAも挙げられる。これらの tRNAの配列については、 http:〃 medlib.med.utah.e du/RNAmoas/ trnabase/ 3;たは  [0020] The suppressor tRNA used in the present invention includes a mycoplasma genus or a staphylococcus genus authenticity that uses only a suppressor tRNA derived from the genus Bacillus that can bind to an unnatural amino acid in the presence of the tyrosyl tRNA synthetase variant. There is also a sub-lesser tRNA derived from bacteria. For the sequence of these tRNAs, see http: 〃 medlib.med.utah.e du / RNAmoas / trnabase / 3;
http://www.stalf.uni-bayreuth.ae/ btc914/searcn/に己载されて 、る。  http://www.stalf.uni-bayreuth.ae/ btc914 / searcn /
これらは、原核生物中で機能するサプレッサー tRNAの配列を有し、かつ内部に動 物細胞において認識される 2つの内部プロモーターコンセンサス配列を有し、上記 T yrRS変異体の存在下でクロスリンク剤となり得る非天然型アミノ酸と結合可能なサブ レッサー tRNAである。ここで、「原核生物中で機能するサプレッサー tRNAの配列を 有する」とは、原核生物由来のサプレッサー tRNAであって、サプレッサー tRNAとし て機能するための、ナンセンスコドン (通常アンバーコドン (UAG) )に相補的なアン チコドン及び立体構造 (L型構造部分)を保持していることを意味する。また、「内部に 動物細胞において認識される 2つの内部プロモーター配列を有する」とは、ボックス A のコンセンサス配列とボックス Bのコンセンサス配列を内部に含むことを意味する。ま た、「上記 TyrRS変異体の存在下でクロスリンク剤となり得る非天然型アミノ酸と結合 可能」とは、 TyrRS変異体により特異的に認識されてクロスリンク剤となり得る非天然 型アミノ酸と結合することができるサプレッサー tRNAであり、通常チロシンと結合す るチロシン tRNA由来のサプレッサー変異体である。 These have a suppressor tRNA sequence that functions in prokaryotes, and two internal promoter consensus sequences that are recognized in animal cells. It is a subletter tRNA capable of binding to a non-natural amino acid that can be a cross-linking agent in the presence of yrRS mutant. Here, `` having a suppressor tRNA sequence that functions in prokaryotes '' is a prokaryotic suppressor tRNA that is a nonsense codon (usually an amber codon (UAG)) for functioning as a suppressor tRNA. It means that it retains complementary anticodon and three-dimensional structure (L-shaped structure part). Further, “having two internal promoter sequences recognized by animal cells inside” means that the consensus sequence of Box A and the consensus sequence of Box B are contained inside. In addition, “can bind to a non-natural amino acid that can be a cross-linking agent in the presence of the TyrRS mutant” means that it binds to a non-natural amino acid that can be specifically recognized by the TyrRS mutant and become a cross-linking agent. Suppressor tRNA that can be expressed, a suppressor mutant derived from tyrosine tRNA that normally binds tyrosine.
[0021] バチルス属、マイコプラズマ属、又はスタフイロコッカス属真性細菌チロシン tRNA 由来のサプレッサー tRNAの例としては、バチノレス ステアロサーモフィラスのチロシ ン tRNA由来のサプレッサー tRNA、バチノレス ズブチリス(Bacillus subtilis)のチロ シン tRNA由来のサプレッサー tRNA (http:〃 medlib.med.utah.edu/RNAmods/trnab ase八登録番号0丫1540 .\^&\^0^61^ら、 (1984)J.Biol.Chem. 259,3694- 3702参照 )、マイコプラズマ カプリコラム(Mycoplasma capricolum)のチロシン tRNA由来のサ プレッサー tRNA (http:〃 medlib.med.utah.edu/RNAmods/trnabase八登録番号 DY1 140 ;Y.Andachiら、 (1987) Proc. Natl. Acd. Sci. USA 84, 7398— 7402参照)、スタフイロ コッカス ァゥレウス(Staphylococus aureus)のチロシン tRNA由来のサプレッサー tR NA (http://medlib.med.utah.edu/RNAmods/trnabase/,登録番号 DY1480; C.Green 、 (1993)J.Bacteriol. 175, 5091-5096参照)が挙げられ、好ましくはバチルス ステア口 サーモフィラスのチロシン tRNA由来のサプレッサー tRNAが用いられる。  [0021] Examples of suppressor tRNAs derived from Bacillus, Mycoplasma, or Staphylococcus true bacterial tyrosine tRNAs include batinoles stearothermophilus tyrosin tRNA-derived suppressor tRNA, Bacillus subtilis tyros Suppressor tRNA (http: t medlib.med.utah.edu/RNAmods/trnab ase 8 registration number 0 丫 1540. \ ^ & \ ^ 0 ^ 61 ^ et al. (1984) J. Biol. Chem. 259 , 3694- 3702), tyrosine tRNA-derived suppressor tRNA from Mycoplasma capricolum (http: 〃 medlib.med.utah.edu/RNAmods/trnabase eight registration number DY1 140; Y. Andachi et al., (1987 ) Proc. Natl. Acd. Sci. USA 84, 7398— 7402), suppressor tRNA from tyrosine tRNA of Staphylococus aureus tRNA (http://medlib.med.utah.edu/RNAmods/trnabase/ Registration number DY1480; C.Green, (1993) J.Bac teriol. 175, 5091-5096), and a suppressor tRNA derived from tyrosine tRNA of Bacillus steer mouth thermophilus is preferably used.
[0022] (TyrRS変異体、サプレッサー tRNAの動物細胞中での発現)  [0022] (TyrRS mutant, suppressor tRNA expression in animal cells)
TyrRS変異体を動物細胞中で発現させるためには、いかなる公知の発現系でも用 いることができ、例えば市販の pcDNA3. 1 (インビトロジェン社製)、 pAGE107 (Cyt otechnology,3, 133(1990))、 pAGE103[J.Biochem.l01, 1307(1987)]などを用いること ができる。また、サプレッサー tRNAはいかなる公知の大腸菌クローユング用べクタ 一を用いても動物細胞内で発現させることができる。例えば、 pBR322 (Proc.Natl.Ac ad.Sci.U.S.A. 75,3737-3741(1978))などを用いることができる。 In order to express the TyrRS mutant in animal cells, any known expression system can be used. For example, commercially available pcDNA3.1 (manufactured by Invitrogen), pAGE107 (Cytotechnology, 3, 133 (1990)) PAGE103 [J. Biochem. L01, 1307 (1987)] and the like can be used. In addition, suppressor tRNA can be any known vector for Escherichia coli cloning. Even if one is used, it can be expressed in animal cells. For example, pBR322 (Proc. Natl. Acad. Sci. USA 75, 3737-3741 (1978)) can be used.
[0023] TyrRS変異体については、必要に応じて、誘導発現可能なベクターを用いることが でき、たとえば、クロンテック社、インビトロジヱン社などから市販されている、テトラサイ クリン応答プロモーターを用いることができる。 [0023] For the TyrRS mutant, a vector capable of inducible expression can be used if necessary, and for example, a tetracycline responsive promoter commercially available from Clontech, Invitrogene, etc. can be used.
細胞へのベクターの導入方法としては、例えば、電気穿孔法(Nucleic,Acids Res.15 , 1311- 1326(1987))、リン酸カルシウム法(Mol.Cell Biol. 7,2745- 2752(1987))、リボフ ェクシヨン法(Cell 7,1025-1037(1994);Lamb,Nature Genetics 5,22- 30(1993))などが 挙げられる。  Examples of methods for introducing a vector into cells include electroporation (Nucleic, Acids Res. 15, 1311-1326 (1987)), calcium phosphate method (Mol. Cell Biol. 7,2745- 2752 (1987)), Exclusion method (Cell 7,1025-1037 (1994); Lamb, Nature Genetics 5, 22-30 (1993)).
[0024] (非天然型アミノ酸を組み込ませるための蛋白質)  [0024] (Protein for incorporating unnatural amino acid)
本発明で非天然型アミノ酸を組み込ませる蛋白質の種類は、限定されるものではな ぐ発現可能ないかなる蛋白質でもよぐ異種の組換え蛋白質でもよい。例えば、タン パク質の種類として、いわゆるシグナル伝達関連タンパク質、受容体、増殖因子、細 胞周期関連因子、転写因子、翻訳因子、輸送関連タンパク質、分泌タンパク質、細 胞骨格関連タンパク質、酵素、シャペロン又は癌、糖尿病若しくは遺伝病等を含む疾 患関連タンパク質などが挙げられる。これらタンパク質は相互作用によってその機能 を果たすものであり、本発明に用いることができる。  The type of protein into which the unnatural amino acid is incorporated in the present invention is not limited, and any protein that can be expressed may be any heterologous recombinant protein. For example, protein types include so-called signal transduction related proteins, receptors, growth factors, cell cycle related factors, transcription factors, translation factors, transport related proteins, secreted proteins, cell skeleton related proteins, enzymes, chaperones or Examples include disease-related proteins including cancer, diabetes or genetic diseases. These proteins fulfill their functions through interaction and can be used in the present invention.
[0025] 本発明にお 、て非天然型アミノ酸を組み込ませる位置にナンセンスコドン (サブレツ サー tRNAがアンバーサプレッサーのときはアンバーコドン)を導入することが必要で あり、これによりこのナンセンスコドン (アンバーコドン)部位に特異的に非天然型アミ ノ酸を組み込むことができる。  [0025] In the present invention, it is necessary to introduce a nonsense codon (an amber codon when the subletter tRNA is an amber suppressor) at a position where an unnatural amino acid is incorporated. ) Unnatural amino acid can be specifically incorporated into the site.
[0026] 蛋白質に部位特異的に変異を導入する方法としては、周知の方法を用いることが でき、特に限定されないが、 Gene 152,271-275(1995)、 Methods Enzymol.100,468- 5 00(1983)、 Nucleic Acids Res.12,9441—9456(1984)、 Proc. Natl. Acad. Sci. USA 82, 4 88-492(1985)、「細胞工学別冊「新細胞工学実験プロトコール」、秀潤社、 241— 248 頁(1993)」に記載の方法、または「QuickChange Site-Directed Mutagenesis Kit」( ストラタジーン社製)を利用する方法などに準じて、適宜実施することができる。  [0026] As a method for introducing a site-specific mutation into a protein, a well-known method can be used, and is not particularly limited. Gene 152, 271-275 (1995), Methods Enzymol. 100, 468-500 (1983), Nucleic Acids Res. 12,9441-9456 (1984), Proc. Natl. Acad. Sci. USA 82, 4 88-492 (1985), "Cell engineering separate volume" New cell engineering experiment protocol ", Shujunsha, 241— 248 (1993) "or the method using" QuickChange Site-Directed Mutagenesis Kit "(Stratagene), etc.
[0027] 本発明は動物細胞内で発現させることができるので、これまで、大腸菌や無細胞蛋 白質系では、発現しない、あるいは発現量が低い、または活性型となるための翻訳後 の修飾を受けることができないような蛋白質へ、非天然型アミノ酸を取りこませることが できる。このような蛋白質としては、当業者には種々のものが知られている力 例えば 、ヒト EGFR等のチロシンキナーゼ型レセプターの細胞外ドメイン(Cell, 110,775-787( 2002))、ヒト Groucho/TLEl蛋白質(Structure 10,751- 761(2002))、ラット筋肉特異的 キナーゼ(Structure 10.1187-1196(2002))などについて、ァロ蛋白質を合成すること ができる力 これらに限定されるものではない。 [0027] Since the present invention can be expressed in animal cells, Escherichia coli and cell-free proteins have been used so far. In the white matter system, unnatural amino acids can be incorporated into proteins that are not expressed, are low in expression, or cannot be post-translationally modified to become active. Such proteins are known to those skilled in the art, for example, the extracellular domain of a tyrosine kinase receptor such as human EGFR (Cell, 110,775-787 (2002)), human Groucho / TLEl protein (Structure 10,751-761 (2002)), rat muscle-specific kinase (Structure 10.1187-1196 (2002)), etc. The ability to synthesize aloproteins is not limited to these.
また、本発明の方法においては、動物細胞内でァロ蛋白質を発現させるので、糖 鎖と結合した糖蛋白質に非天然型アミノ酸を組みこませることもできる。特に、無細胞 蛋白質系における糖鎖付加のパターンが、本来のパターンと異なるようなタイプの糖 蛋白質の場合には、本発明の動物細胞内での系は、 目的の (本来の)パターンの糖 鎖が付加されたァロ蛋白質を得るための有効な手段と考えられる。  In the method of the present invention, since the aloprotein is expressed in animal cells, a non-natural amino acid can be incorporated into a glycoprotein bound to a sugar chain. In particular, in the case of a glycoprotein of a type in which the glycosylation pattern in the cell-free protein system is different from the original pattern, the system in the animal cell of the present invention has the target (original) pattern of sugar. It is considered to be an effective means for obtaining an aloprotein with a chain added.
[0028] (宿主) [0028] (Host)
本発明に用いられる、宿主の動物細胞としては、遺伝子組換え系が確立されてい る、哺乳類細胞が好ましい。有用な哺乳動物宿主細胞系の実例は、チャイニーズノ、 ムスター卵巣 (CHO)と COS細胞を含む。より特有な例は、 SV40によって形質転換 したサル腎臓 CV1系 (COS-7,ATCC CRL 1651) ;ヒト胚腎臓系 (293又は懸濁培養 での増殖用にサブクローンした 293細胞、 J.Gen Virol., 36:59(1977)) ;チャイニーズノヽ ムスター卵巣細胞/- DHFR(CHO、 Proc.Natl.Acad.Sci.USA,77:4216(1980)) ;マウス セルトーリ細胞 (TM4, Biol.Reprod.,23:243- 251(1980》;ヒト肺細胞 (W138, ATCC C CL 75) ;ヒト肝臓細胞 (Hep G2, HB 8065) ;及びマウス乳癌 (MMT 060562, ATCC CC L51)を含む。これらの宿主は、各々発現系が確立されており、適切な宿主細胞の選 択は、当業者の技術範囲内である。  The host animal cell used in the present invention is preferably a mammalian cell in which a gene recombination system has been established. Examples of useful mammalian host cell lines include Chinese, Muster ovary (CHO) and COS cells. More specific examples are monkey kidney CV1 line transformed with SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, J. Gen Virol , 36:59 (1977)); Chinese nomster ovary cells / -DHFR (CHO, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)); Mouse Sertoli cells (TM4, Biol. 23: 243-251 (1980); human lung cells (W138, ATCC C CL 75); human liver cells (Hep G2, HB 8065); and mouse breast cancer (MMT 060562, ATCC CC L51). Each has established an expression system and selection of an appropriate host cell is within the skill of the artisan.
これりは、 f列 ば、 Molecular Cloning第 d|iR、 し old Spring Harbor Laboratory Pres s(2001)などに記載された方法に準じて行なうことができる。  This can be carried out according to the method described in Molecular Cloning d | iR, Old Spring Harbor Laboratory Press (2001), etc. for column f.
[0029] 次に、ァロ蛋白質が発現する様子を、図 1に従って説明する。図 1の枠は、動物細 胞 (例えば CHO細胞)の細胞膜を表している。細胞内(枠の内側)では、原核生物型 サプレッサー tRNAと TyrRS変異体がそれぞれの発現系力 発現して 、る。クロスリン ク剤となり得る非天然型アミノ酸 (たとえば pBpa)は培地 (枠の外側)中に加えられる。 培地中のクロスリンク剤となり得る非天然型アミノ酸は、細胞自身の働きで細胞内に 取り込まれ、 TyrRS変異体の働きによってサプレッサー tRNAに結合する。その後、 クロスリンク剤となり得る非天然型アミノ酸は、サプレッサー tRNAによってリボソーム 上に運ばれて、ナンセンス'コドン(ここでは, UAGコドン)の翻訳に用いられる。所望 の位置にクロスリンク剤となり得る非天然型アミノ酸を含有する蛋白質を生産するため には、蛋白質の遺伝子の該当位置のコドンを UAGに置換した後に、この遺伝子を細 胞内で発現させる。 [0029] Next, the state in which the aloprotein is expressed will be described with reference to FIG. The frame in Fig. 1 represents the cell membrane of animal cells (eg CHO cells). Within the cell (inside the frame), prokaryotic suppressor tRNA and TyrRS mutant are expressed in their respective expression systems. Crosslin A non-natural amino acid (eg pBpa) that can serve as a chelating agent is added to the medium (outside the frame). Non-natural amino acids that can serve as a cross-linking agent in the medium are taken into the cell by the action of the cell itself, and bind to the suppressor tRNA by the action of the TyrRS mutant. The unnatural amino acid that can be a cross-linking agent is then carried on the ribosome by the suppressor tRNA and used to translate the nonsense 'codon (here, the UAG codon). In order to produce a protein containing an unnatural amino acid that can serve as a cross-linking agent at a desired position, the codon at the corresponding position of the protein gene is substituted with UAG, and then this gene is expressed in the cell.
[0030] こうして、動物細胞内において、目的の位置にクロスリンク剤となり得る非天然型アミ ノ酸が組み込まれた目的のァロ蛋白質を発現させることができる。  [0030] In this way, the target alloprotein in which the non-natural amino acid that can be a cross-linking agent is incorporated at the target position can be expressed in the animal cell.
すなわち、(A) TyrRS変異体であって、クロスリンク剤となり得る非天然型アミノ酸 に対する特異性が高められた TyrRS変異体を動物細胞内で発現させる発現べクタ 一と、 (B)上記 TyrRS変異体の存在下で上記クロスリンク剤となり得る非天然型ァミノ 酸と結合可能な、バチルス属、マイコプラズマ属、又はスタフイロコッカス属真性細菌 由来のサブレッサー tRNAを、上記動物細胞内で発現させる発現ベクターと、(C)所 望の位置にナンセンス変異を受けた所望の蛋白質遺伝子とを有する動物細胞を、そ の動物細胞の増殖に適した培地(例えば、 CHO細胞の場合、 Opti-MEM I (Gibco B RL社)など)に目的のクロスリンク剤となり得る非天然型アミノ酸を添加した培地で、適 当な条件でインキュベートする。例えば、 CHO細胞の場合は、 37°C程度の温度で、 24時間程度、インキュベートする。培地内のクロスリンク剤となり得る非天然型ァミノ 酸の添カ卩量は、 0. l— 3mM程度、好ましくは 0. 3mM程度とする。  Specifically, (A) a TyrRS mutant that expresses a TyrRS mutant with increased specificity for a non-natural amino acid that can be a cross-linking agent in animal cells, and (B) the TyrRS mutation described above. An expression vector for expressing a subletter tRNA derived from a Bacillus genus, Mycoplasma genus, or Staphylococcus spp. And (C) an animal cell having a desired protein gene having a nonsense mutation at a desired position, and a medium suitable for the growth of the animal cell (for example, Opti-MEM I (Gibco Incubate under appropriate conditions in a medium supplemented with a non-natural amino acid that can be used as a target cross-linking agent. For example, in the case of CHO cells, incubate at a temperature of about 37 ° C for about 24 hours. The amount of unnatural amino acid added as a cross-linking agent in the medium is about 0.1 to 3 mM, preferably about 0.3 mM.
[0031] 次に第 2工程について説明する。  [0031] Next, the second step will be described.
上記により動物細胞内で発現したァロ蛋白質力 その動物細胞内で他の蛋白質と 相互作用をしている場合、その動物細胞に特定波長の光を照射することにより、該ァ 口蛋白質に取り込まれたクロスリンク剤となり得る非天然型アミノ酸力 該他の蛋白質 と共有結合を形成する。例えば、クロスリンク剤がベンゾフヱノン骨格を有する場合、 特定波長の光の照射により、ベンゾフヱノン中のカルボニル結合が開裂して、カルボ ニル結合を構成する炭素原子が、相互作用する他の蛋白質と共有結合する。このよ うに、クロスリンク法を用いることにより、ァロ蛋白質と該他の蛋白質とが強固な共有結 合を形成するため、細胞抽出操作を行った後も、両タンパク質が解離することがなぐ 両蛋白質間の相互作用を容易に検出することができる。このため、原核生物と比べ てきわめて複雑な細胞構造を有する動物細胞において、動物細胞に特有な、例えば チロシンキナーゼ型レセプターの相互作用、より具体的には EGFRの相互作用等の 検出を容易に行うことができる。 Aroprotein strength expressed in animal cells by the above When interacting with other proteins in the animal cell, the animal cell is incorporated into the protein by irradiating the animal cell with light of a specific wavelength. A non-natural amino acid that can be a cross-linking agent forms a covalent bond with the other protein. For example, when the cross-linking agent has a benzophenone skeleton, the carbonyl bond in the benzophenone is cleaved by irradiation with light of a specific wavelength, and the carbon atoms constituting the carbonyl bond are covalently bonded to other interacting proteins. . This In other words, by using the cross-linking method, the aloprotein and the other protein form a strong covalent bond, so that both proteins do not dissociate even after cell extraction operation. Can be easily detected. For this reason, in animal cells having a very complex cell structure compared to prokaryotes, it is easy to detect, for example, tyrosine kinase type receptor interactions, more specifically EGFR interaction, etc. that are peculiar to animal cells. be able to.
[0032] 照射する光の波長は、クロスリンク剤によって異なる力 300〜450nmであること力 S 好ましぐ紫外領域の波長(例えば 300〜400nm)であることがさらに好ましい。クロ スリンク剤がベンゾフエノン骨格を有するものである場合、 350〜380nmであること力 S より好ましぐさらにクロスリンク剤が pBpaである場合、 360〜370nmであること力特 に好ましい。照射時間に特に制限はないが、たとえば 30秒〜 1時間が好ましい。照 射は、たとえば、細胞を適当な緩衝液で洗浄した後、氷浴上で行うことが好ましい。  [0032] The wavelength of light to be irradiated has a force of 300 to 450 nm that varies depending on the cross-linking agent. S It is more preferable that the wavelength be in the preferred ultraviolet region (for example, 300 to 400 nm). When the cross-linking agent has a benzophenone skeleton, the force is preferably 350 to 380 nm. Further, when the cross-linking agent is pBpa, the force is particularly preferably 360 to 370 nm. The irradiation time is not particularly limited, but for example, 30 seconds to 1 hour is preferable. The irradiation is preferably performed, for example, on an ice bath after washing the cells with an appropriate buffer.
[0033] 第 3工程は、蛋白質間相互作用の有無を検出する工程であり、ウェスタンプロット法 等公知の検出方法を用いることができる。例えば、細胞を緩衝液で溶解した後、 SD S— PAGEを行い、 PVDF膜等に移した後、適当な一次抗体、二次抗体を用いて検 出することができる。  [0033] The third step is a step of detecting the presence or absence of protein-protein interaction, and a known detection method such as a Western plot method can be used. For example, the cells can be lysed with a buffer solution, subjected to SDS-PAGE, transferred to a PVDF membrane or the like, and then detected using an appropriate primary antibody or secondary antibody.
[0034] 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に 限定されるものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
実施例 1  Example 1
[0035] (EGFによるシグナル伝達機構中の EGFRと Grb 2の相互作用の検出)  [0035] (Detection of interaction between EGFR and Grb 2 in signal transduction mechanism by EGF)
増殖に関わる細胞内シグナル伝達は、 EGFの投与によって引き起こすことができる 。 EGFは、細胞膜に局在する EGFRに特異的に結合する。 EGFが結合した受容体 は、自身のチロシンを活性化(自己リン酸化)する。この状態は、細胞にとっていわゆ る興奮状態であり、細胞の増殖へとつながる信号が一気にリレーされていく。通常、 E GFRから増殖までのリレーは、 1段階ではなぐ代表的には、 EGF→EGFR→Grb2 →SOS→Ras→MEK→MAPK→細胞増殖、 t 、う段階を経る。  Intracellular signaling involved in proliferation can be triggered by administration of EGF. EGF specifically binds to EGFR located in the cell membrane. EGF-bound receptors activate their tyrosine (autophosphorylation). This state is a so-called excitement state for cells, and signals that lead to cell proliferation are relayed at once. In general, the relay from EGFR to proliferation typically goes through EGF → EGFR → Grb2 → SOS → Ras → MEK → MAPK → cell proliferation, t, and so on.
本実施例では、 EGFRと Grb2の相互作用の検出を行った。  In this example, the interaction between EGFR and Grb2 was detected.
なお、本発明においては、 Grb2がタンパク質を、 grb2が核酸塩基を表す。 [0036] (方法) In the present invention, Grb2 represents a protein and grb2 represents a nucleobase. [0036] (Method)
材料  Material
pBpaは Bachem AG力 、抗 FLAG M2抗体はシグマ社から、抗 HA抗体は口 シュ 'ダイァグノステイタス社から、抗 EGFR抗体はサンタクルズバイオテクノロジー(S anta Cruz Biotechnology)社から、 EGFR1068位のリン酸化チロシンに対する抗体 はセルシグナリングテクノロジー(cell signaling technology)社から購入した。また、 二次抗体として、 HRP (Horseradish Peroxidase)標識抗マウス抗体及び抗ゥサギ Ig G抗体を、アマシャム バイオサイエンス社から購入した。  pBpa is from Bachem AG, anti-FLAG M2 antibody is from Sigma, anti-HA antibody is from Diagnostica, and anti-EGFR antibody is from Santa Cruz Biotechnology. Antibodies against tyrosine were purchased from Cell Signaling Technology. In addition, HRP (Horseradish Peroxidase) -labeled anti-mouse antibody and anti-rabbit Ig G antibody were purchased from Amersham Biosciences as secondary antibodies.
[0037] 部位特異的変異導入とプラスミド構築 [0037] Site-directed mutagenesis and plasmid construction
pBpaを特異的に認識する大腸菌 TyrRS変異体 (EcpBpaRS)の遺伝子は、大腸 菌由来の野生型 TyrRSの部位特異的変異によって構築し、変異プライマーを使つ た PCR法で増幅した。 Grb2の SH2ドメインとリガンドペプチドの結合構造に基づ!/ヽ て、 pBpaの導入位置として、リガンド結合部位に近接し、かつ結合を阻害しないと予 想される位置 (Leul 11)を選択し、アンバーコドンに置換した。より具体的には、ヒト の grb2の 111位のロイシンコドンを、 Quick Change site-directed mutagenesis kit (ス トラタジーン社)を用いて、アンバーコドンに変換した (grb2 (Ami 11) )。 HAタグ (Y PYDVPDYA)を野生型大腸菌 TyrRS及び EcpBpaRSの C末端に付カ卩した。一方 、野生型 grb2及び grb2 (Ami 11)遺伝子の C末端には FLAG配列(DYKDDDD K)を付加した。野生型、変異型の grb2、 TyrRS遺伝子、及び EGFR遺伝子は、細 胞中で発現させるため、それぞれ pcDNA4/TOベクター(インビトロジェン社)でク ローンされた。サブレッサー tRNAのプラスミドは既知の方法により調製した (特許文 献 1)。  The gene of E. coli TyrRS mutant (EcpBpaRS) that specifically recognizes pBpa was constructed by site-specific mutation of wild-type TyrRS derived from Escherichia coli, and amplified by PCR using mutant primers. Based on the binding structure of Grb2 SH2 domain and ligand peptide, select the position (Leul 11) that is close to the ligand binding site and that is not expected to inhibit binding, as the pBpa introduction position. Replaced by amber codon. More specifically, the leucine codon at position 111 of human grb2 was converted to an amber codon using a Quick Change site-directed mutagenesis kit (Stratagene) (grb2 (Ami 11)). HA tag (Y PYDVPDYA) was attached to the C-terminus of wild type E. coli TyrRS and EcpBpaRS. On the other hand, a FLAG sequence (DYKDDDK) was added to the C-terminus of the wild-type grb2 and grb2 (Ami 11) genes. Wild-type and mutant grb2, TyrRS gene, and EGFR gene were each cloned with pcDNA4 / TO vector (Invitrogen) for expression in cells. The plasmid of the suppressor tRNA was prepared by a known method (Patent Document 1).
[0038] トランスフエクシヨン  [0038] Transfusion
テトラサイクリンリブレッサーを構造的に生産する T—REX—CHO細胞 (インビトロ ジェン社)は、 90mmディッシュ中で 90%コンフルエンスに増殖し、 pcDNA4/TO プラスミドとサプレッサー tRNA発現プラスミドを、 Gibco Opti— MEMI培地(インビ トロジェン社)中 LipofectAMINE2000試薬を用いて、トランスフエタトした。トランス フエクシヨンから 4時間後に、 20mMHEPES -NaOH (pH7. 2)と 1 g/mlテトラ サイクリンを含むセーラムフリーの Gibco D— MEM/F— 12培地に培地交換した。 pBpaは、 ImMの濃度で培地に加えた。さらに 12時間インキュベーションした後、細 胞を lOOngZmlの EGFで 37°Cで 5分間処理した。 T-REX-CHO cells (Invitrogen) that structurally produce tetracycline ribules grow to 90% confluence in a 90mm dish, and pcDNA4 / TO plasmid and suppressor tRNA expression plasmid can be transferred to Gibco Opti—MEMI medium ( Invitrogen Co., Ltd.) was transferred using LipofectAMINE2000 reagent. 4 hours after transfer, 20 mM HEPES-NaOH (pH 7.2) and 1 g / ml tetra The medium was changed to Salem-free Gibco D-MEM / F-12 medium containing cyclin. pBpa was added to the medium at a concentration of ImM. After an additional 12 hours of incubation, the cells were treated with lOOngZml EGF for 5 minutes at 37 ° C.
[0039] ウェスタンブロット  [0039] Western blot
ウェスタンブロットは、以下の手順で行った。細胞を、緩衝液 A(30mMトリス塩酸緩 衝液(pH7. 4)、 10%グリセロール、 1%卜リ卜ン X— 100、 5mMEDTA、 0. 05%デ ォキシコレートナトリウム、プロテアーゼインヒビターカクテル 100倍希釈 (ナカライテス ク社))中で溶解し、 SDS— PAGEを行い、 PVDF膜に移した。蛋白質を、抗体でプ ロービングした後、 ECL plus immunodetection system (アマシャム バイオサイエンス 社)で検出した。膜を 2種類の抗体で検出する場合には、 2%の SDS及び 0. 7%の 2 —メルカプトエタノールを含む 62. 5mMのトリス塩酸緩衝液(pH6. 8)で、 30分間 5 5°Cで処理して最初の抗体をはがした後、もう一方の抗体を作用させて検出した。バ ンド強度は、イメージアナライザー LAS— 1000プラス(富士写真フィルム社)を用い て測定した。  The Western blot was performed according to the following procedure. Cells are diluted with buffer A (30 mM Tris-HCl buffer (pH 7.4), 10% glycerol, 1% saline X-100, 5 mM EDTA, 0.05% deoxycholate sodium, 100% protease inhibitor cocktail. (Nacalai Tesque)), and SDS-PAGE was performed and transferred to a PVDF membrane. Proteins were probed with antibodies and then detected with ECL plus immunodetection system (Amersham Biosciences). If the membrane is to be detected with two different antibodies, use 62.5 mM Tris-HCl buffer (pH 6.8) containing 2% SDS and 0.7% 2-mercaptoethanol for 30 minutes at 55 ° C. The first antibody was peeled off after treatment with, and the other antibody was allowed to act to detect. The band intensity was measured using an image analyzer LAS-1000 plus (Fuji Photo Film Co.).
[0040] 免疫沈殿とクロスリンク  [0040] Immunoprecipitation and cross-linking
免疫沈澱では、細胞を、 EGF処理後、 pH7. 2の phosphate- buffered saline (PBS) で 2回洗浄し、 ImMのオルトバナデートを含む緩衝液 Aに溶解させた。得られた抽 出物を、抗 FLAG M2抗体 (シグマ社)にリンクしたァフィ-ティゲルとともに 4°Cで 2 時間インキュベートし、ゲル上でトラップされた蛋白質を、 FLAGペプチド (シグマ社) によって溶出させた。光クロスリンクでは、 PBS中のこれらの細胞を培養皿を氷上に 置き、ハンディ型の 8W—ランプ、 UVP (アップランド社)を用いて 2. 5cmの距離から 、 365nmの光を照射した。照射後すぐに、細胞溶解物を緩衝液 Aに懸濁し、 PTP1 Bフォスファターゼ(カルビオケム社、 EMD Bioscience)で、 30°Cで 30分間処理した  In immunoprecipitation, cells were washed twice with phosphate-buffered saline (PBS) at pH 7.2 after EGF treatment and dissolved in buffer A containing ImM orthovanadate. The obtained extract is incubated with a affinity gel linked to anti-FLAG M2 antibody (Sigma) at 4 ° C for 2 hours, and the protein trapped on the gel is eluted with FLAG peptide (Sigma). It was. In the optical cross-link, these cells in PBS were placed on a culture dish on ice, and irradiated with 365 nm light from a distance of 2.5 cm using a handy 8W-lamp, UVP (Upland). Immediately after irradiation, the cell lysate was suspended in buffer A and treated with PTP1 B phosphatase (Calbiochem, EMD Bioscience) at 30 ° C for 30 minutes.
[0041] (結果) [0041] (Result)
Grb2への pBpaの部位特異的結合  Site-specific binding of pBpa to Grb2
Grb2はアダプター蛋白質であり、 EGFRに結合し、 Ras蛋白質に細胞外シグナル を仲介する。レセプターとこの Grb2との相互作用には、 Grb2の SH2領域が関係し、 この領域は EGF刺激でリン酸ィ匕されるレセプター Y1068に直接結合する。 Grb2の SH2領域の 3次構造は、リガンドペプチドと複合体を形成しており、 X線結晶解析及 び NMRで決定されている。 pBpaにより置換されるアミノ酸残基は、結合リガンドの近 くにあるが、結合を阻害しない残基である。結晶構造に基づいて、我々は置換位置と してロイシン 111位を選択した。 Grb2 is an adapter protein that binds to EGFR and mediates extracellular signals to Ras protein. The interaction between the receptor and this Grb2 involves the SH2 region of Grb2, This region binds directly to receptor Y1068, which is phosphorylated upon EGF stimulation. The tertiary structure of the SH2 region of Grb2 forms a complex with the ligand peptide and has been determined by X-ray crystallography and NMR. The amino acid residue substituted by pBpa is a residue that is near the binding ligand but does not inhibit binding. Based on the crystal structure, we selected leucine 111 as the substitution position.
CHO細胞における Grb2への pBpaの部位特異的結合の結果を図 2に示す。 Grb2 (pBpal l l)の発現は抗 FLAG抗体、 TyrRSの発現は抗 HA抗体で行った。野生型 TyrRS (WTTyrRS)、サプレッサー tRNA及び grb2 (Ami 11)を導入したレーン 2 では Grb2 (pBpal l l)が生成された力 その発現量は野生型 Grb2 (Grb2WT) (レ ーン 1)に比べ低いものであった。また、このアンバーサプレツシヨンは、 TyrRSとサプ レッサー tRNAの発現に依存していた(レーン 2、 3)。 pBpaの培地中への添カ卩ととも に、野生型 TyrRSにかえて EcpBpaRSを細胞で発現させたときには、 Grb2 (pBpal 11)の発現が確認された(レーン 7)。なお、レーン 4、 5、 6より、 Grb2 (pBpal l l)の 発現は、 EcpBpaRSとサプレッサー tRNAに加えて、培地中への pBpaの供給にも 依存することが確認された。これらの知見から、 pBpa力Grb2 (pBpal l l)のアンバ 一の位置に導入されたことが示された。  Figure 2 shows the results of site-specific binding of pBpa to Grb2 in CHO cells. Grb2 (pBpalll) was expressed with an anti-FLAG antibody, and TyrRS was expressed with an anti-HA antibody. In Lane 2 where wild type TyrRS (WTTyrRS), suppressor tRNA and grb2 (Ami 11) were introduced, Grb2 (pBpalll) was generated.The expression level was lower than that of wild type Grb2 (Grb2WT) (lane 1). It was a thing. This amber suppression was dependent on the expression of TyrRS and suppressor tRNA (lanes 2 and 3). When EcpBpaRS was expressed in cells instead of wild-type TyrRS, along with the addition of pBpa to the medium, the expression of Grb2 (pBpal 11) was confirmed (lane 7). From lanes 4, 5, and 6, it was confirmed that the expression of Grb2 (pBpalll) depends on the supply of pBpa into the medium in addition to EcpBpaRS and suppressor tRNA. From these findings, it was shown that the pBpa force Grb2 (pBpal l) was introduced at the position of the amber.
(EGFRに結合する Grb2) (Grb2 binding to EGFR)
共沈澱法による Grb2と EGFRとの結合の解析結果を図 3に示す。まず、得られた 細胞抽出液、すなわち全細胞溶解物 (WCL)をウェスタンプロットで検出した(図 3a) 。なお、一次抗体は抗 EGFR抗体を使用した。図 3aより、 150kDa、 170kDaの 2つ の異なる分子量をもつバンドが検出されたが(図 3a、レーン 1〜4)、 150kDaの分子 量のバンドは、 CHO細胞内で過剰発現されることに由来する副産物である。また、こ の抽出液を免疫沈澱した後、ウェスタンプロットで検出した結果を図 3b、 c、 dに示す 。 EGF処理によって 170kDaの EGFRと Grb2の共沈澱が促進され、共沈澱産物に おいて EGFRの Tyr 1068がリン酸化されていることが確認された。一方、 150kDaの 副産物は、 FLAGタグで免疫沈澱され、 Tyrl068がリン酸化されるものの、 EGFの 処理とは無関係に生じている(図 3b、 c、レーン 1、 2)。 Grb2 (pBpal l l)を発現させ たときも、野生型 Grb2と同様に、 Grb2 (pBpal l l)と EGFRの共沈澱及び EGFRの Tyrl068のリン酸ィ匕カ S確認された(図 3b、 c、レーン 3、 4)。以上力ら、 Grb2 (pBpal 11)は、 EGFR上のリン酸化 Tyrl068との結合能力を保持し得ることが確認された。 Figure 3 shows the analysis results of the binding between Grb2 and EGFR by the coprecipitation method. First, the obtained cell extract, ie, whole cell lysate (WCL) was detected by Western plot (FIG. 3a). The primary antibody was an anti-EGFR antibody. From Fig. 3a, two bands with different molecular weights of 150 kDa and 170 kDa were detected (Fig. 3a, lanes 1 to 4), but the 150 kDa molecular weight band was derived from being overexpressed in CHO cells. Is a by-product. The results of immunoprecipitation of this extract and detection by Western plot are shown in FIGS. 3b, c and d. The co-precipitation of 170kDa EGFR and Grb2 was promoted by EGF treatment, and it was confirmed that Tyr 1068 of EGFR was phosphorylated in the co-precipitated product. On the other hand, a 150 kDa by-product is immunoprecipitated with the FLAG tag and phosphorylated Tyrl068, but is generated independently of EGF treatment (Figure 3b, c, lanes 1 and 2). When Grb2 (pBpal ll) was expressed, co-precipitation of Grb2 (pBpal ll) and EGFR and EGFR Tyrl068 phosphoric acid S was confirmed (FIGS. 3b and c, lanes 3 and 4). As described above, it was confirmed that Grb2 (pBpal 11) can retain the binding ability to phosphorylated Tyrl068 on EGFR.
[0043] (Grb2 (pBpal l 1)と EGFRとのクロスリンク)  [0043] (Grb2 (pBpal l 1) and EGFR cross-link)
Grb2と EGFRとのクロスリンクの解析結果を図 4に示す。 Grb2 (pBpal 11)を発現 させた細胞では約 200kDaの位置に単一のバンドが検出された力 (図 4a、 b、レーン 8、 9)、野生型の Grb2を発現させた細胞ではバンドは検出されな力つた(図 4a、 b、 レーン 1〜5)。このバンドは、次の理由から、 Grb2 (pBpal l l)と EGFRのクロスリン ク複合体であると結論された。第 1に、分子質量力 ¾GFR(170kDa)と Grb2 (25kD a)の質量の合計に相当する。第 2に、このバンドの検出が光照射 (照射時間 : 0, 5, 1 5, 30分)と pBpaの存在に依存している。第 3に、この産物は抗 FLAG抗体のみなら ず、抗 EGFR抗体によっても検出された。  Fig. 4 shows the results of cross-linking analysis between Grb2 and EGFR. In the cells that expressed Grb2 (pBpal 11), a single band was detected at a position of about 200 kDa (Figure 4a, b, lanes 8 and 9), and in the cells that expressed wild-type Grb2, the band was detected. (Figures 4a, b, lanes 1-5). It was concluded that this band is a cross-linked complex of Grb2 (pBpal l) and EGFR for the following reasons. First, the molecular mass force corresponds to the sum of the masses of GFR (170 kDa) and Grb2 (25 kDa). Second, the detection of this band depends on the light irradiation (irradiation time: 0, 5, 15 and 30 minutes) and the presence of pBpa. Thirdly, this product was detected not only by anti-FLAG antibody but also by anti-EGFR antibody.
副産物である 150kDaEGFRは、 Grb2 (pBpal l l)とクロスリンクしなかった。この 副産物は細胞表面で適切に発現せず、たとえ EGF独立性の Y1068がリン酸ィ匕され ていても Grb2と結合することはできな力つたと考えられる。そして、この副産物と Grb 2との共免疫沈澱は、細胞抽出物の調製又は抗体とのインキュベーションの間に起き た非生理的結合によるものであったと考えられる。したがって、本方法は、細胞環境 で形成された天然複合体を特異的に検出するのに有用である。 EGFRと Grb2との 相互作用は、 EGF依存的である。すなわち、 EGFRと Grb2は、最初から構造体を形 成しているのではなぐ EGFの刺激に対して EGFRの特定部位がリン酸ィ匕され、これ に Grb2が結合する。 EGF刺激がないときにはクロスリンクは生じず、細胞  The by-product 150 kDa EGFR did not crosslink with Grb2 (pBpal l l). This by-product is not expressed properly on the cell surface, and even if EGF-independent Y1068 is phosphorylated, it appears that it was unable to bind to Grb2. The co-immunoprecipitation of this by-product with Grb 2 is thought to be due to non-physiological binding that occurred during cell extract preparation or antibody incubation. Therefore, this method is useful for specifically detecting natural complexes formed in the cellular environment. The interaction between EGFR and Grb2 is EGF-dependent. That is, EGFR and Grb2 do not form a structure from the beginning, but specific sites of EGFR are phosphorylated upon stimulation of EGF, and Grb2 binds to it. Without EGF stimulation, no cross-linking occurs and the cells
内の一連のシグナル伝達があって初めてクロスリンクが生じるのである。このこと力 、 クロスリンクが細胞内の正し ヽ現象をよく反映して ヽることがゎカゝる。  The cross-linking does not occur until there is a series of signal transductions within. This is because the cross-links often reflect the correctness of the cells.
[0044] サプレッサー tRNAと加工されたアミノ酸特異性を有する aaRS変異体のペアは、 大腸菌細胞、酵母、哺乳動物細胞中で発現し、蛋白質に結合するアミノ酸のレバー トリーが広がった。この技術は、 pBpaを含む GST分子の間を大腸菌中で光クロスリン クするためにすでに用いられている。本実施例の結果は、チロシンリン酸化に依存し て互いに相互作用する細胞シグナル蛋白質に関係し、そして遺伝コード拡張に伴う 生体内クロスリンクが哺乳動物細胞内のいろいろな蛋白質 蛋白質相互作用に適用 し得ると 、うことを示唆して 、る。 [0044] A pair of suppressor tRNAs and processed aaRS mutants having amino acid specificity were expressed in Escherichia coli cells, yeast, and mammalian cells, and a liver tree of amino acids binding to proteins was expanded. This technique has already been used to photocrosslink in E. coli between GST molecules containing pBpa. The results of this example relate to cellular signal proteins that interact with each other depending on tyrosine phosphorylation, and the in vivo cross-linking associated with genetic code expansion is applied to various protein-protein interactions in mammalian cells. If possible, suggest that you.
クロスリンク蛋白質複合体は共有結合のため安定であり、細胞抽出中の解離はあり えない。この利点により、共免疫沈澱によっては検出されないような、蛋白質間の一 瞬の又は弱い相互作用によって形成された複合体を分離することができる。さらに、 共有結合は光に晒した細胞中で形成されるため、細胞抽出中又は抗体とインキュべ ーシヨン中に起こる間違った相互作用が排除できる(例えば 150kDaの EGFR副産 物)。これらの利点は、細胞シグナル伝達経路を研究する上で有用である。  Cross-linked protein complexes are stable due to covalent bonds, and dissociation during cell extraction is not possible. This advantage allows separation of complexes formed by instantaneous or weak interactions between proteins that are not detected by coimmunoprecipitation. In addition, covalent bonds are formed in cells exposed to light, eliminating false interactions that occur during cell extraction or during antibody-incubation (eg, a 150 kDa EGFR by-product). These advantages are useful in studying cell signaling pathways.
蛋白質クロスリンクは、巨大分子複合体内である蛋白質の位置を他の蛋白質の位 置に対して決定するのに利用されてきている。 2つの蛋白質のクロスリンクの形は、介 在的要因なしで、複合体中のこれらの蛋白質間の直接的な接触を示す。クロスリンク 剤となるアミノ酸の部位特異的結合は、相互作用する蛋白質の近くにある蛋白質の その部位を正確に特定することができる。 2量体の境界から離れて 、る GSTのある位 置に pBpaが結合していると、クロスリンクは起こらないという報告がされてきた。本実 施例によれば、リガンドペプチドを持つ Grb2の結晶構造に基づ 、て pBpaが結合す るための Grb2の位置を選択した。 Grb2と EGFRとの間のクロスリンクは、 Grb2の 11 1位の残基がレセプターと相互作用する境界に位置することを確証した。  Protein cross-linking has been used to determine the position of a protein within a macromolecular complex relative to the position of other proteins. The cross-linking shape of the two proteins indicates direct contact between these proteins in the complex without any intervening factors. Site-specific binding of an amino acid that serves as a cross-linking agent can accurately identify that site in a protein near the interacting protein. It has been reported that cross-linking does not occur when pBpa is bound to a certain GST position away from the dimer boundary. According to this example, the position of Grb2 to which pBpa binds was selected based on the crystal structure of Grb2 having a ligand peptide. The cross-link between Grb2 and EGFR confirmed that the residue at position 111 of Grb2 is located at the boundary where it interacts with the receptor.
産業上の利用可能性 Industrial applicability
本発明の検出方法は、免疫沈殿法が有する問題点を解消し、動物細胞内での蛋 白質間相互作用の検出を高精度で行うことができる。例えば、シグナル伝達系の相 互作用やガン遺伝子産物に対する相互作用等動物細胞特有の相互作用の検出に 有用である。  The detection method of the present invention solves the problems of immunoprecipitation and can detect protein-protein interactions in animal cells with high accuracy. For example, it is useful for detecting interactions unique to animal cells, such as interactions in signal transduction systems and interactions with oncogene products.

Claims

請求の範囲 The scope of the claims
[1] クロスリンク剤となりうる非天然型アミノ酸に特異的な原核生物由来のチロシル tRN A合成酵素変異体と、前記チロシル tRNA合成酵素変異体の存在下で前記非天然 型アミノ酸と結合可能な原核生物由来のサプレッサー tRNAと、所望の位置にナン センス変異を受けた所望の蛋白質遺伝子と、を動物細胞中で発現させ、前記蛋白質 のナンセンス変異の位置に前記非天然型アミノ酸を取り込ませて非天然型アミノ酸組 み込み蛋白質を発現させる第 1工程、  [1] A prokaryotic-derived tyrosyl tRNA synthetase variant specific to a non-natural amino acid that can be a cross-linking agent, and a prokaryotic that can bind to the non-natural amino acid in the presence of the tyrosyl tRNA synthetase variant A biological suppressor tRNA and a desired protein gene that has undergone a nonsense mutation at a desired position are expressed in animal cells, and the non-natural amino acid is incorporated at the position of the nonsense mutation in the protein so that it is non-natural. The first step of expressing the amino acid-embedded protein,
前記動物細胞に特定波長の光を照射する第 2工程、及び  A second step of irradiating the animal cell with light of a specific wavelength; and
蛋白質間相互作用の有無を検出する第 3工程、  The third step of detecting the presence or absence of protein-protein interactions,
を有することを特徴とする蛋白質間相互作用の検出方法。  A method for detecting an interaction between proteins, comprising:
[2] クロスリンク剤となりうる非天然型アミノ酸力 ベンゾフエノン骨格を有するものである 請求項 1に記載の蛋白質間相互作用の検出方法。  [2] The method for detecting a protein-protein interaction according to [1], wherein the protein has a non-natural amino acid benzophenone skeleton that can be a cross-linking agent.
[3] クロスリンク剤となりうる非天然型アミノ酸力 p ベンゾィル L フエ-ルァラニン である請求項 1に記載の蛋白質間相互作用の検出方法。  [3] The method for detecting a protein-protein interaction according to [1], wherein the non-natural amino acid power p-benzoyl L-feralanin which can be a cross-linking agent is used.
[4] 蛋白質間相互作用が、チロシンキナーゼ型レセプターの相互作用である請求項 1 に記載の蛋白質間相互作用の検出方法。  4. The method for detecting a protein-protein interaction according to claim 1, wherein the protein-protein interaction is an interaction of a tyrosine kinase type receptor.
[5] 蛋白質間相互作用が、上皮成長因子受容体の相互作用である請求項 1に記載の 蛋白質間相互作用の検出方法。  5. The method for detecting a protein-protein interaction according to claim 1, wherein the protein-protein interaction is an epidermal growth factor receptor interaction.
[6] チロシル tRNA合成酵素変異体が由来する原核生物が大腸菌である請求項 1に記 載の蛋白質間相互作用の検出方法。  6. The method for detecting protein-protein interaction according to claim 1, wherein the prokaryotic organism from which the tyrosyl tRNA synthetase mutant is derived is Escherichia coli.
[7] サプレッサー tRNAが由来する原核生物力 バチルス ステアロサーモフィラス(Ba cillus stearothermophilus)である請求項 1に記載の蛋白質間相互作用の検出方法。  [7] The method for detecting a protein-protein interaction according to [1], wherein the suppressor tRNA is a prokaryotic force Bacillus stearothermophilus.
PCT/JP2005/021824 2004-11-26 2005-11-28 Method of detecting interaction between proteins WO2006057391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-342914 2004-11-26
JP2004342914A JP2008035702A (en) 2004-11-26 2004-11-26 Method for detecting interaction between proteins

Publications (1)

Publication Number Publication Date
WO2006057391A1 true WO2006057391A1 (en) 2006-06-01

Family

ID=36498124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021824 WO2006057391A1 (en) 2004-11-26 2005-11-28 Method of detecting interaction between proteins

Country Status (2)

Country Link
JP (1) JP2008035702A (en)
WO (1) WO2006057391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245591A (en) * 2007-03-30 2008-10-16 Institute Of Physical & Chemical Research Method for synthesizing protein having non-natural type amino acid with photoreactive functional group integrated therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039989A1 (en) * 2002-10-31 2004-05-13 Riken Method of expressing protein having unnatural amino acid integrated thereinto
WO2004094593A2 (en) * 2003-04-17 2004-11-04 The Scripps Research Institute Expanding the eukaryotic genetic code

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039989A1 (en) * 2002-10-31 2004-05-13 Riken Method of expressing protein having unnatural amino acid integrated thereinto
WO2004094593A2 (en) * 2003-04-17 2004-11-04 The Scripps Research Institute Expanding the eukaryotic genetic code

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHIN J.W. ET AL.: "Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli", PROC. NATL. ACAD. SCI. USA, vol. 99, no. 17, 20 August 2002 (2002-08-20), pages 11020 - 11024, XP003006832 *
HINO N. ET AL: "Dobutsu Saibonai ni okeru Hi Tennengata Amino-san no Tanpakushitsu heno Bui Tokuiteki Donyu ni yoru in vivo Hikari Cross-linking-ho no Kaihatsu", DAI 27 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SCIENTY OF JAPAN PROGRAM KOEN YOSHISHU (1PB-551), 25 November 2004 (2004-11-25), pages 609, XP003006831 *
HINO N. ET AL: "Jinkoteki na Amino-san o Tanpakushitsu ni Donyusuru koto niyoru Dobutsu Saibonai deno Hikari Cross-linking-ho", EXPERIMENTAL MEDICINE, vol. 23, no. 1, 1 August 2005 (2005-08-01), pages 2047 - 2051, XP003006834 *
HINO N. ET AL: "Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid", NAT. METHODS, no. 3, 2 March 2005 (2005-03-02), pages 201 - 206, XP003006833 *
OGISO H. ET AL.: "Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains", CELL, vol. 110, no. 6, 20 September 2002 (2002-09-20), pages 775 - 787, XP002961395 *
RAHUEL J. ET AL.: "Structural basis for the high affinity of amino-aromatic SH2 phosphopeptide ligands", J. MOL. BIOL., vol. 279, no. 4, 19 June 1998 (1998-06-19), pages 1013 - 1022, XP004466356 *
SAKAMOTO K. ET AL: "Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells", NUCLEIC ACIDS RES., vol. 30, no. 21, 1 November 2002 (2002-11-01), pages 4692 - 4699, XP002976283 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245591A (en) * 2007-03-30 2008-10-16 Institute Of Physical & Chemical Research Method for synthesizing protein having non-natural type amino acid with photoreactive functional group integrated therein

Also Published As

Publication number Publication date
JP2008035702A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
Arnold et al. Two homologues encoding human UDP-glucose: glycoprotein glucosyltransferase differ in mRNA expression and enzymatic activity
Ali et al. MLL/WDR5 complex regulates Kif2A localization to ensure chromosome congression and proper spindle assembly during mitosis
Milojević et al. The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor
Kabeya et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
Shimizu et al. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids
Vonderstein et al. Viperin targets flavivirus virulence by inducing assembly of noninfectious capsid particles
Gomes et al. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA
US7666640B2 (en) DNA sequences for the expression of alloproteins
Gulbranson et al. AAGAB controls AP2 adaptor assembly in clathrin-mediated endocytosis
Hughes et al. Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity
EP2096174A1 (en) Ubiquitin binding polypeptides
Duellman et al. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion
Fan et al. PCIF1, a novel human WW domain-containing protein, interacts with the phosphorylated RNA polymerase II
Güngör et al. The ER membrane complex (EMC) can functionally replace the Oxa1 insertase in mitochondria
Arsenijevic et al. A novel partner for D-type cyclins: protein kinase A-anchoring protein AKAP95
Dierker et al. Heparan sulfate and transglutaminase activity are required for the formation of covalently cross-linked hedgehog oligomers
Kern et al. UBXD1 binds p97 through two independent binding sites
Kasu et al. BAG6 prevents the aggregation of neurodegeneration-associated fragments of TDP43
WO2006057391A1 (en) Method of detecting interaction between proteins
Lühn et al. Identification and molecular cloning of a functional GDP-fucose transporter in Drosophila melanogaster
Tajima et al. Barttin binds to the outer lateral surface of the ClC-K2 chloride channel
KR101966246B1 (en) Composition for regulating cell division comprising FCHo1 regulator and method for regulating cell division using the same
KR101667023B1 (en) Method for simply analyzing uptake into cytoplasm of antibody produced by cell-free protein synthesis
Hayne et al. MEK inhibition and phosphorylation of serine 4 on B23 are two coincident events in mitosis
Westermann et al. Identification of CfNek, a novel member of the NIMA family of cell cycle regulators, as a polypeptide copurifying with tubulin polyglutamylation activity in Crithidia

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05809533

Country of ref document: EP

Kind code of ref document: A1