WO2006057268A1 - Simulation apparatus and program - Google Patents

Simulation apparatus and program Download PDF

Info

Publication number
WO2006057268A1
WO2006057268A1 PCT/JP2005/021519 JP2005021519W WO2006057268A1 WO 2006057268 A1 WO2006057268 A1 WO 2006057268A1 JP 2005021519 W JP2005021519 W JP 2005021519W WO 2006057268 A1 WO2006057268 A1 WO 2006057268A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
drug
simulation
biological information
cell
Prior art date
Application number
PCT/JP2005/021519
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Noma
Fumiyoshi Yamashita
Ayako Takeuchi
Keisuke Terashima
Original Assignee
Kyoto University
Dainippon Sumitomo Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Dainippon Sumitomo Pharma Co., Ltd. filed Critical Kyoto University
Priority to JP2006547807A priority Critical patent/JPWO2006057268A1/en
Publication of WO2006057268A1 publication Critical patent/WO2006057268A1/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures

Definitions

  • the present invention relates to a simulation apparatus for simulating drug absorption or Z and excretion, a program thereof, and the like.
  • this simulation device calculates the time course of drug behavior (blood concentration) in the body as well as the drug-specific characteristics (solubility, fat solubility, membrane permeability, metabolic stability, etc.).
  • this simulation apparatus was designed to evaluate the drug absorption at the normal normal time only based on the properties of the drug.
  • the cell simulation device which calculates the transport of ions and water in the cell and the electric potential of the membrane surface, mainly focuses on analyzing and elucidating the intracellular activity.
  • Non-Patent Document 2 Non-Patent Document 3
  • Non-Patent Document 4 a technique for a simulation apparatus for epithelial cells inside an epithelial cell model is also disclosed (see Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4).
  • Non-Patent Document 1 M. Tomita, K. Hashimoto, K. Takahashi, T. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, JC Ven ter, and CA Hutchison III, ⁇ E- CEI: software environment for whole ⁇ cell simulationj in Bioinformatics, vol. 15, no. 1, pp. 72 -84, 1999
  • Non-Patent Document 2 A. M. Weinstein et al., 1990, J. Gen. Physiol., 96, 319-344.
  • Non-Patent Document 3 AM Weinstein, Am. J. Physiol., 1992, 263, F 748- 798,
  • Non-patent literature 4 Parent et al., J Membr. Biol. 125: 63- 79, 1992
  • Non-patent literature 5 Donald DF Loo, Ernest M. Wright and Thomas Zeuthen, Water pumps, Journal of Physiology (2002), 542 (pt. 1), pp. 53-60
  • the conventional simulation device for drug absorption, etc. is a simulation for drug absorption or excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, and pathological changes. could not.
  • the simulation apparatus is based on drug information, which is information about a drug to be simulated, and biological information about biological information.
  • a powerful simulation device can simulate drug absorption or Z and excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, or pathological changes.
  • the simulation device of the second invention is a simulation in which the pharmacokinetic information in the simulation device of the first invention includes at least part information indicating a part that absorbs the drug and state information indicating the state of the drug. Device.
  • the powerful simulation device can simulate for each part of a living body, drug absorption or Z and excretion taking into account individual differences, stimulation of a living body (cell) before and after drug administration, or pathological changes.
  • the biological information receiving unit is an output of a cell simulation apparatus capable of simulating intracellular movement. It is a simulation device that accepts certain biological information.
  • fine The vesicle is preferably an epithelial cell.
  • the simulation apparatus may accept biological information from the cell simulation apparatus indirectly.
  • the powerful simulation device can accurately simulate drug absorption or Z and excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, or pathological changes.
  • the present invention can simulate drug absorption or Z and excretion in consideration of individual differences, body (cell) stimulation before and after drug administration, or pathological changes.
  • FIG. 1 is a block diagram of the information processing system in the present embodiment.
  • the information processing system includes a simulation device 11, a cell simulation device 12, and a control device 13.
  • the simulation device 11 simulates drug absorption or Z and excretion.
  • the cell simulation device 12 performs simulation of biological functions (functions of organs, cells, tissues, etc.), but in this embodiment, the simulation device 11 mainly uses simulations of cell functions and operations. Therefore, the cell simulation device 12 will be referred to.
  • the cell is mainly an epithelial cell.
  • the control device 1 3 performs control for the functioning of the entire information processing system, such as passing information between the simulation device 11 and the cell simulation device 12, and giving a trigger for the operation of the simulation device 11 and the cell simulation device 12. Do.
  • the simulation apparatus 11 includes an instruction receiving unit 1101, a drug information receiving unit 1102, a biological information acquisition instruction unit 1103, a biological information receiving unit 1104, an arithmetic expression storage unit 1105, an arithmetic execution unit 1106, and an output unit 1107.
  • the cell simulation device 12 includes a second instruction receiving unit 1201, a functional element information storage unit 1202, a static structure management unit 1203, a parameter management unit 1204, a simulation command receiving unit 1 205, a functional element identifier acquisition unit 1206, Parameter acquisition unit 1207, execution unit 1208, living body An information transmission unit 1209 is provided.
  • the static structure management unit 1203 includes cell function management means 12031 and organ cell management means 12032. However, the static structure management unit 1203 includes the cell function management unit 12031 and the organ cell management unit 12032 is an example of the internal structure of the static structure management unit 1203.
  • the control device 13 includes an instruction unit 1301, a biological information acquisition instruction receiving unit 1302, a biological information acquisition unit 1303, a biological information adding unit 1304, an execution result acquisition unit 1305, and an execution result display unit 1306.
  • the instruction receiving unit 1101 receives a start instruction which is an instruction to start a drug absorption simulation.
  • the acceptance is usually reception from the control device 13, but may be acceptance of a start instruction by manual input by the user.
  • the instruction receiving unit 1101 can be realized by a wireless or wired communication unit, a device driver for an input unit such as a numeric keypad or a keyboard, a control software for a menu screen, and the like.
  • Drug information receiving section 1102 receives drug information that is information related to a drug to be simulated.
  • the drug information includes, for example, information for identifying a drug, drug solubility, dissolution rate constant, membrane permeability coefficient, and the like.
  • Drug information receiving section 1102 may receive only information for identifying a drug, or may accept drug solubility, dissolution rate constant, membrane permeability coefficient, and the like.
  • the drug information input means may be anything such as a numeric keypad, keyboard, mouse or menu screen.
  • the drug information receiving unit 1102 may perform processing for reading out drug information held in advance. In such a case, reading corresponds to acceptance.
  • the drug information receiving unit 1102 can be realized by a device driver for input means such as a numeric keypad or a keyboard, control software for a menu screen, or the like. Further, the reception in the drug information reception unit 1102 may be reception by the control device 13 as much as possible.
  • the biological information acquisition instruction unit 1103 transmits a biological information acquisition instruction for instructing acquisition of biological information to the control device 13.
  • Biological information is information related to biological information, for example, information indicating the movement of cell ions (for example, Na ions, Ka ions, etc.), information indicating the movement of water, membrane potential, pH, cell volume. And so on.
  • the information indicating the movement of water is, for example, the water absorption rate.
  • the biometric information acquisition instruction is, for example, transmission of a message for acquiring biometric information.
  • the structure of the biometric information acquisition instruction does not matter. Biometric information collection
  • the acquisition instruction unit 1103 can be realized by, for example, a wireless or wired communication unit.
  • the biometric information receiving unit 1104 receives biometric information related to biometric information.
  • the biological information receiving unit 1104 normally receives biological information related to biological information before the start of the drug absorption simulation and during the drug absorption simulation. However, the biometric information receiving unit 1104 may receive the biometric information once before the start of the drug absorption simulation, or may receive the biometric information only once during the drug absorption simulation. .
  • the reception of biometric information before the start of drug absorption simulation may be performed by reading out the recording medium force or reading out biometric information by a program when the biometric information is embedded in the program. That is, the biometric information receiving method in the biometric information receiving unit 1104 may change.
  • the simulation device 11 may store the drug absorption simulation based on the initial biometric information held in advance, for example! Will be done.
  • drug absorption simulation can be performed in consideration of individual differences in simulation targets and differences in individual states.
  • biological information is received during drug absorption simulation, drug absorption simulation according to dynamic biological information changes is possible.
  • the reception of biological information in the biological information reception unit 1104 is reception of biological information from the control device 13, for example.
  • the reception of biological information in the biological information reception unit 1104 may be, for example, reading of biological information having a power of a recording medium, manual input of biological information by a user, or a control device. It may be the reception of biometric information from an external device other than 13.
  • the biometric information receiving unit 1104 can be realized by, for example, a wireless or wired communication means.
  • the arithmetic expression storage unit 1105 stores a pharmacokinetic information output arithmetic expression that is an arithmetic expression for outputting pharmacokinetic information that is information related to absorption or excretion of the drug, using the drug information and biological information as parameters.
  • the pharmacokinetic information includes, for example, at least site information indicating a site where the drug is absorbed or excreted and state information indicating the state of the drug.
  • Pharmacokinetic information includes, for example, drug absorption rate, drug metabolism rate, drug urinary excretion rate, first-pass metabolic rate, drug blood concentration, drug absorption, drug renal excretion, drug Including the amount of accumulated metabolites.
  • An example of the pharmacokinetic information output calculation formula will be described later.
  • the part information includes, for example, “stomach”, “duodenum”, “jejunum”, “ileum”, “large intestine”, and the like.
  • the state information includes, for example, the drug dissolution state, dissociation state, drug absorption, metabolism, excretion rates, excretion amount, metabolite amount, absorption amount, and the like.
  • the arithmetic expression storage unit 1105 is preferably a non-volatile recording medium (including a hard disk or a non-rewritable optical disk), but can also be realized by a volatile recording medium.
  • the calculation execution unit 1106 passes the drug information received by the drug information reception unit 1102 and the parameter having the biological information received by the biological information reception unit 1104 to the pharmacokinetic information output calculation formula of the calculation formula storage unit 1105. Execute pharmacokinetic information output calculation formula.
  • the arithmetic execution unit 1106 can usually also realize an MPU, a memory and the like.
  • the processing procedure of the arithmetic execution unit 1106 is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
  • the output unit 1107 outputs pharmacokinetic information that is information based on the execution result of the calculation execution unit 1106.
  • the output here is normally a transmission to the control device 13. However, when the simulation device 11 operates alone, the output includes display on a display, printing on a printer, sound output, transmission to an external device, and the like.
  • the output unit 1107 can be realized by, for example, a wireless or wired communication unit.
  • the output unit 1107 can be realized by, for example, output device driver software, or output device driver software and an output device.
  • Second instruction receiving unit 1201 receives an instruction to transmit biological information from control device 13.
  • the second instruction receiving unit 1201 can be usually realized by a wireless or wired communication means.
  • the functional element information storage unit 1202 is a simulation realizing program for simulating a function element identifier for identifying a function of a molecule, an intracellular organelle, a cell, a tissue, or an organ that is an element constituting an organism, and the function.
  • the functional element information may include a functional element identifier, a program identifier for identifying a simulation realization program, and a simulation realization program.
  • the functional element information may include a functional element identifier and two or more simulation realization programs.
  • the function element identifier may be anything as long as it is information for identifying the function. Stain
  • the description language and format of the urease realization program are not limited.
  • the simulation realization program may be an execution format, a library format, or a program function.
  • the one or more simulation realization programs there is also a program that also outputs the simulation results.
  • output is a concept including display on a display, printing on a printer, sound output, transmission to an external device, storage on a recording medium, and the like.
  • the functional element information storage unit 1202 is preferably a non-volatile recording medium, but can also be realized by a volatile recording medium.
  • the static structure management unit 1203 has a component identifier that identifies a biological component or individual that is an intracellular organelle, cell, tissue, organ, and a function of the biological component that is identified by the component identifier. Corresponds to one or more functional element identifiers necessary for realization.
  • the static structure management unit 1203 is preferably a nonvolatile recording medium, but can also be realized by a volatile recording medium.
  • the parameter management unit 1204 holds parameter information having a component identifier and one or more parameters necessary for realizing the function of the component of the organism identified by the component identifier.
  • the parameter management unit 1204 can also be realized by a force volatile recording medium, which is preferably a non-volatile recording medium.
  • the simulation command receiving unit 1205 receives a simulation command having a component identifier for identifying a biological component or individual to be simulated. Any method may be used for inputting the simulation command, such as a numeric keypad, keyboard, mouse or menu screen.
  • the simulation command receiving unit 1205 can be realized by a device driver for input means such as a numeric keypad or a keyboard, or control software for a menu screen.
  • the functional element identifier acquisition unit 1206 acquires, from the static structure management unit 1203, one or more functional element identifiers that are associated with the component element identifiers included in the simulation command received by the simulation command reception unit 1205.
  • the functional element identifier acquisition unit 1206 can usually also be implemented with an MPU or memory power.
  • the processing procedure for the functional element identifier acquisition unit 1206 to acquire one or more functional element identifiers is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, with hardware (dedicated circuit) It may be realized.
  • the parameter acquisition unit 1207 acquires from the parameter management unit 1204 one or more parameters corresponding to the constituent element identifiers included in the simulation command received by the simulation command reception unit 1205.
  • the parameter acquisition unit 1207 can usually be realized from an MPU, a memory, or the like.
  • the processing procedure for the parameter acquisition unit 1207 to acquire one or more parameters is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
  • the execution unit 1208 passes a part or all of the parameters acquired by the meter acquisition unit 1207 to the simulation realization program paired with the functional element identifier acquired by the functional element identifier acquisition unit 1206, and performs the simulation. Run the realization program.
  • the simulation information program paired with the functional element identifier acquired by the functional element identifier acquisition unit 1206 can also determine the management information power in the functional element information storage unit 1202.
  • the execution unit 1 208 can usually also realize an MPU, a memory and the like.
  • the processing procedure of the execution unit 1208 is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
  • the biological information transmission unit 1209 transmits the biological information acquired by executing the simulation in the execution unit 1208 to the control device 13.
  • the biological information transmission unit 1209 can be realized by a wireless or wired communication means.
  • the cell function management means 12031 manages the correspondence between the cell identifier for identifying the cell or tissue of the organism and the function identifier!
  • the organ cell management means 12032 manages the correspondence between an organ identifier for identifying an organ or an organ and a cell identifier.
  • the cell function management means 12031 and the organ cell management means 120 32 are preferably non-volatile recording media, but can also be realized by volatile recording media.
  • the instruction unit 1301 sends a simulation start instruction to the simulation apparatus 11 and instructs the cell simulation apparatus 12 to send biological information.
  • the instruction unit 1301 can be realized by, for example, a wireless or wired communication unit.
  • the biological information acquisition instruction receiving unit 1302 acquires biological information from the simulation apparatus 11.
  • the instruction is accepted.
  • the reception is, for example, reception.
  • the biological information acquisition instruction receiving unit 1302 can be realized by, for example, a wireless or wired communication unit.
  • the biological information acquisition unit 1303 acquires biological information from the cell simulation device 12 in response to an instruction to send biological information.
  • the biological information acquisition unit 1303 receives biological information, for example.
  • the biological information acquisition unit 1303 can be realized by, for example, a wireless or wired communication unit.
  • the biometric information adding unit 1304 sends the biometric information acquired by the biometric information acquiring unit 1303 to the simulation apparatus 11. Sending is transmission, for example. However, the sending may be an operation for giving biological information to the simulation apparatus 11.
  • the biometric information providing unit 1304 can be realized by, for example, a wireless or wired communication unit.
  • the execution result acquisition unit 1305 acquires pharmacokinetic information that is a simulation execution result from the simulation apparatus 11. Acquisition is, for example, reception.
  • the execution result acquisition unit 1 305 can be realized by, for example, a wireless or wired communication unit.
  • the execution result display unit 1306 displays the pharmacokinetic information of the drug acquired by the execution result acquisition unit 1305.
  • the manner in which the execution result display unit 1306 displays the pharmacokinetic information is not limited.
  • the execution result display unit 1306 may display the pharmacokinetic information in a graph, a numerical string and a character string, or a moving image (such as an animation).
  • the execution result display unit 1306 may or may not include a display.
  • Execution Result Display Unit 1306 can be realized by display driver software or display driver software and a display.
  • Step S201 The instruction receiving unit 1101 determines whether or not a start instruction that is an instruction to start a drug absorption or Z and excretion simulation has been received. If the start instruction is accepted, the process goes to step S202. If the start instruction is not accepted, the process returns to step S201.
  • Step S202 The drug information receiving unit 1102 determines whether or not it has received the drug information, which is information on the drug to be simulated. If you accept drug information, Go to step S203, and if drug information is not accepted, return to step S202.
  • Step S203 The biological information receiving unit 1104 determines whether or not biological information related to biological information has been received. If biometric information is accepted, the process goes to step S204, and if biometric information is not accepted, the process returns to step S203.
  • Step S204 The calculation execution unit 1106 reads the pharmacokinetic information output calculation formula from the calculation formula storage unit 1105.
  • Step S205 The calculation execution unit 1106 executes the pharmacokinetic information output calculation formula acquired in step S204 using the drug information received in step S202 and the biological information received in step S203 as parameters.
  • Step S206 The output unit 1107 outputs pharmacokinetic information which is information on the execution result of the calculation execution unit 1106.
  • the biological information acquisition instruction unit 1103 transmits a biological information acquisition instruction to the control device 13 to indicate acquisition of biological information.
  • the simulation apparatus 11 may acquire biological information from the control apparatus 13 without transmitting the biological information acquisition instruction to the control apparatus 13.
  • the cell simulation device 12 voluntarily transmits the biological information to the control device 13, or the control device 13 voluntarily acquires the biological information from the cell simulation device 12.
  • the timing for acquiring the biological information from the control device 13 is periodic, but it is not essential to be periodic.
  • Step S301 The simulation command receiving unit 1205 determines whether or not a simulation command having a component identifier (here, for example, an organ identifier) has been received. If a simulation command is accepted, the process proceeds to step S302. If a simulation command is not accepted, the process proceeds to step S314.
  • the simulation command is a simulation start instruction received from the control device 13.
  • Step S302 An organ identifier included in the simulation command is acquired.
  • Step S303 The functional element identifier acquisition unit 1206 acquires one or more cell identifiers corresponding to the organ identifier acquired in step S302.
  • Step S304) 1 is assigned to the counter i.
  • Step S305 The execution unit 1208 determines whether or not the i-th cell identifier is present in the cell identifier acquired in step S303. If the cell identifier of the cell exists, the process goes to step S306, and if the i-th cell identifier does not exist, the process ends. Needless to say, even if the flowchart in Fig. 3 is completed, the simulation result output by the simulation realization program may continue.
  • Step S306 The functional element identifier acquisition unit 1206 acquires one or more functional element identifiers corresponding to the i-th cell identifier.
  • Step S307) 1 is assigned to the counter j.
  • Step S308 The execution unit 1208 determines whether or not the j-th functional element identifier exists in the functional element identifier acquired in step S306. If the jth functional element identifier exists, the process goes to step S309, and if the jth functional element identifier does not exist, the process jumps to step S313.
  • Step S309) The execution unit 1208 reads the simulation realization program corresponding to the j-th functional element identifier from the functional element information storage unit 1202.
  • Step S310 The parameter acquisition unit 1207 receives one or more parameters corresponding to the organ identifier included in the simulation command received by the simulation command receiving unit 1205.
  • Step S311) The execution unit 1208 passes the one or more parameters acquired in step S310 to the simulation implementation program acquired in step S309, and executes the simulation implementation program.
  • Step S312 The counter j is incremented by one. Return to step S308.
  • Step S313 The counter i is incremented by one. Return to step S305.
  • Step S 314) Second instruction accepting unit 1201 determines whether or not an instruction to transmit biometric information from control device 13 has been accepted. If an instruction to transmit biometric information is accepted, the process goes to step S315. If an instruction to transmit biometric information is not accepted, the process returns to step S301. (Step S315)
  • the biological information transmitting unit 1209 acquires biological information necessary for drug absorption or Z and excretion simulation from the biological information obtained by executing the simulation in the execution unit 1208. For example, information indicating biological information necessary for simulation of drug absorption or Z and excretion is included in an instruction to transmit biological information.
  • Step S316 The biological information transmitting unit 1209 transmits the biological information acquired in Step S315 to the control device 13. Return to step S301.
  • the execution order may be determined or may be arbitrary.
  • the simulation realization program may output the simulation result periodically or at an appropriate timing as time elapses beyond just an instruction from the control device 13, for example.
  • the function of the cell simulation device 12 used in the information processing system in the present embodiment is a simulation function for cells, mainly epithelial cells.
  • the epithelial cell simulation function is performed, for example, by executing an arithmetic expression (model) described in Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4 described above.
  • Non-Patent Document 2 discloses an arithmetic expression capable of calculating membrane potential, ion flow, water flow, and cell volume.
  • Non-Patent Document 3 discloses an arithmetic expression capable of calculating transporters involved in ion transport.
  • Non-Patent Document 4 discloses a technique for improving a glucose transporter. For example, necessary calculations and operations in the cell simulation device 12 can be realized from these three non-patent documents. Therefore, a detailed description of cell simulation is omitted. Next, the operation of the control device 13 will be described using the flowchart of FIG.
  • Step S 401 The instruction unit 1301 sends a simulation start instruction to the simulation apparatus 11 and the cell simulation apparatus 12. Normally, the simulations of the simulation apparatus 11 and the cell simulation apparatus 12 are synchronized, but there are cases where both may operate without synchronization.
  • Step S402 The biometric information acquisition instruction receiving unit 1302 starts from the simulation apparatus 11. It is determined whether or not the force of receiving an instruction to acquire biometric information is received. If the biometric information acquisition instruction is accepted, the process proceeds to step S403, and if the biometric information acquisition instruction is not accepted, the process jumps to step S406.
  • Step S403 The biological information acquisition unit 1303 gives an instruction to send the biological information to the cell simulation device 12 in accordance with the biological information acquisition instruction in step S402.
  • Step S404 The biological information acquisition unit 1303 acquires biological information from the cell simulation device 12 in response to the instruction to send biological information in step S403.
  • Step S405 The biometric information adding unit 1304 sends the biometric information acquired in step S404 to the simulation apparatus 11. Return to step S402.
  • Step S 406 The execution result acquisition unit 1305 determines whether or not it has acquired the pharmacokinetic information, which is the execution result of the simulation, from the simulation apparatus 11. If pharmacokinetic information is acquired, the process goes to step S407, and if pharmacokinetic information is not acquired, the process returns to step S402.
  • Step S407 The execution result display unit 1306 displays the pharmacokinetic information of the drug acquired in step S406. Return to step S402.
  • the biological information is notified from the cell simulation device 12 to the simulation device 11 via the control device 13.
  • the biological information may be directly notified from the cell simulation device 12 to the simulation device 11.
  • the cell simulation device 12 of the information processing system is a gastrointestinal epithelial cell simulation device that performs simulation of gastrointestinal epithelial cells.
  • the cell simulation device 12 receives information on functional abnormalities such as pathological changes and congenital abnormalities from the outside. It also calculates changes in biological information such as transporter drive, ion channel opening and closing, permeation pressure change, hydrostatic pressure change, potential change, and water ion movement. Get out and get. Examples of information such as pathological changes accepted by the cell simulation device 12 include information on SGLT1 activity reduction due to virus infection. When the cell simulation apparatus 12 receives information on SGLT1 activity decrease due to such virus infection, the main biological information change is diarrhea and a decrease in water absorption rate. The decrease in water absorption rate is the decrease in intracellular Na concentration.
  • variable values include pH, membrane potential, water absorption rate, and cell volume.
  • the values of variables such as pH, membrane potential, water absorption rate, and cell volume are also the above-described biological information. Further, the variable value is passed from the control device 13 to the simulation device 11.
  • the biological information receiving unit 1104 of the simulation apparatus 11 receives biological information such as pH, membrane potential, water absorption rate, and cell volume. Then, the calculation execution unit 1106 reads out the stored pharmacokinetic information output calculation formula. Then, the received biological information and pre-stored drug information are given to the read pharmacokinetic information output calculation formula, and the drug behavior information output calculation formula is executed.
  • biological information such as pH, membrane potential, water absorption rate, and cell volume.
  • the calculation execution unit 1106 reads out the stored pharmacokinetic information output calculation formula. Then, the received biological information and pre-stored drug information are given to the read pharmacokinetic information output calculation formula, and the drug behavior information output calculation formula is executed.
  • drug information includes solubility, dissolution rate constant, membrane permeability coefficient, acid dissociation constant (pKa), in vitro liver metabolic rate, plasma protein binding rate, animal data, and expected human renal clearance and distribution.
  • Km Michaelis-Menten constant for P-glycoprotein
  • Vmax maximum transport rate
  • the output unit 1107 of the simulation apparatus 11 outputs information based on the execution result of the pharmacokinetic information output arithmetic expression.
  • Information based on this execution result is pharmacokinetic information.
  • pharmacokinetic information include drug absorption rate, drug metabolism rate, drug urinary excretion rate, drug first-pass metabolic rate, drug blood concentration, drug absorption, drug accumulation renal excretion And cumulative metabolic rate of drugs.
  • the force cell simulation device 12 described in detail stops the simulation (calculation) when the value of the output variable reaches an equilibrium state, and finally obtains the value. Is held.
  • the simulation device 11 continues to calculate pharmacokinetic information while acquiring biological information from the cell simulation device 12 regardless of the state of operation of the cell simulation device 12 (operating or stopped).
  • the execution result of the pharmacokinetic information output calculation formula and the output pharmacokinetic information may be the same or different.
  • the cell simulation device 12 receives, for example, information indicating that SGLT1 activity is reduced due to virus infection and an organ identifier or cell identifier to be simulated. Then, the cell simulation device 12 reads the simulation identifier corresponding to the cell identifier included in the organ identified by the organ identifier or the received cell identifier. The cell simulation device 12 implements the program. Then, since SGLT1 activity falls, the cell simulation apparatus 12 calculates information that the inflow of Na and G1 ucose into cells is suppressed.
  • the cell simulation device 12 calculates a simulation result in which the difference in the concentration in the extinction lumen with respect to the intracellular concentrations of Na and Glucose becomes larger due to the decrease in SGLT1 activity. This means that an osmotic pressure difference between the lumen and the cell is larger than that in the normal state. This also means that the flow of water due to the osmotic pressure difference (from low to high osmotic pressure) becomes smaller and water accumulates in the lumen. Accumulation of water in the lumen can also cause diarrhea. Furthermore, the cell simulation device 12 calculates the inflow speed of water from the inside of the lumen. The inflow here means inflow into cells and inflow into cell gaps.
  • the cell simulation device 12 calculates a simulation result that both the inflow rate into the cell and the inflow rate into the cell gap decrease in a situation where the concentrations of Na and Glucose in the lumen increase.
  • Fig. 6 shows a conceptual diagram of the inflow of water into the cell and the inflow of water into the cell gap.
  • the instruction receiving unit 1101 of the simulation apparatus 11 receives a simulation start instruction from the control apparatus 13.
  • the drug information receiving unit 1102 stores the stored drug.
  • Drug information such as solubility (5.0 here) and dissolution rate constant.
  • the living body information receiving unit 1104 of the simulation apparatus 11 passes information about the inflow speed of water into the cell and the inflow speed of water into the cell gap from the cell simulation apparatus 12 via the control apparatus 13, and the membrane. Biological information such as potential is acquired.
  • the calculation execution unit 1106 of the simulation apparatus 11 reads the pharmacokinetic information output calculation formula shown in FIG. 7 from the calculation formula storage unit 1105 and executes it.
  • Pharmacokinetic information output The calculation formula is, for example, a differential equation.
  • n means the left force n of the compartment group in FIG. 19, and the upper, middle, and lower compartments respectively have drug amounts of Mn, Sn, and En.
  • the arrows between the compartments each have the value of the drug movement speed calculated in FIG. 7 and FIG.
  • the simulation apparatus 11 executes the pharmacokinetic information output calculation formula of FIG. Then, the simulation apparatus 11 obtains information on the time change of the solid drug amount.
  • “dM” is the amount of increase in the solid drug amount (Mn).
  • K is a moving speed constant of the lumen contents, and is a constant stored in advance in the arithmetic expression storage unit 1105 (recording medium).
  • “Dissolution” is the rate of elution by diffusion and can be calculated by the formula in FIG.
  • the arithmetic execution unit 1106 reads constants (K and the like) from the arithmetic expression storage unit 1105 together with the arithmetic expression and executes the arithmetic expression. Note that, when the calculation execution unit 1106 executes a differential equation, the calculation of dt at a predetermined interval (for example, 0.1 second) is the same in the execution of other differential equations. Since it is technology ⁇ processing, detailed explanation is omitted. From FIG. 7 (a), the calculation execution unit 1106 calculates a solid drug amount (Mn) by executing a function using the movement rate constant of the luminal contents and the dissolution rate as parameters.
  • Mn solid drug amount
  • the calculation execution unit 1106 is an increase function using the moving rate constant of the lumen contents as a parameter, and calculates the solid drug amount (Mn) by executing a decrease function using the dissolution rate as a parameter. That is, the calculation formula for calculating the solid drug amount (Mn) by the calculation execution unit 1106 is not limited to FIG. 7 (a).
  • the calculation execution unit 1106 of the simulation apparatus 11 receives the calculation formula storage unit 1105 from FIG. Read and execute the pharmacokinetic information output calculation formula in (b). Then, the simulation apparatus 11 obtains information on the time change of the dissolved drug amount.
  • the calculated "S” is the amount of liquid drug in the eleventh gastrointestinal compartment
  • “V” is the volume of water. Obtained by executing the first differential equation.
  • “C” is the drug concentration in the nth gastrointestinal compartment, and is obtained by executing the second differential equation in FIG. 7 (b).
  • Flux (para) is the rate at which the luminal side force is transported into the cell space by diffusion and / or volumetric flow transport based on the electrochemical potential gradient.
  • Flux (trans) is the rate at which the drug is transported into the luminal force cell by diffusion and / or active transport based on the electrochemical potential gradient.
  • P-gp is a drug return rate by P glycoprotein, and is calculated by, for example, constants, and V stored in the arithmetic expression storage unit 1105 in advance.
  • the execution section 1106 When executing the pharmacokinetic information output calculation formula of FIG. 7 (b), the execution section 1106 reads P-gp from the calculation formula storage section 1105 and gives it to the pharmacokinetic information output calculation formula.
  • waterflu X is the water absorption rate (intracellular, cell membrane), generated by the cell simulator device 12, sent via the control device 13, and stored in the arithmetic expression storage unit 1105 in advance as a variable value. is there.
  • the arithmetic execution unit 1106 When executing the pharmacokinetic information output arithmetic expression of FIG. 7B, the arithmetic execution unit 1106 reads out the waterflux from the arithmetic expression storage unit 1105 and gives it to the pharmacokinetic information output arithmetic expression. From Fig.
  • the calculation execution unit 1106 shows the volume of water, dissolution rate, drug cell void root velocity (flux (para)), drug intracellular route velocity (flux (trans)), P glycoprotein I that drug return speed (P- g p), the absorption rate of water by (intracellular, cell membranes) (waterflux) function to parameters one motor, and calculates the liquid amount of drug and drug concentrations.
  • the calculation execution unit 1106 is an increasing function using the dissolution rate and the drug return rate (P—gp) by the P-glycoprotein as parameters, and the drug cell gap root velocity (flux (para)), the drug intracellular route
  • the liquid drug amount (Sn) and drug concentration (Cn) are calculated using a decreasing function with the velocity (flux (tran s)) as a parameter. That is, the calculation formula for calculating the liquid drug amount (Sn) and the drug concentration (Cn) by the calculation execution unit 1106 is not limited to FIG. 7 (b).
  • the calculation execution unit 1106 of the simulation apparatus 11 receives the calculation formula storage unit 1105 from FIG. Read and execute the pharmacokinetic information output calculation formula of (c). Then, the simulation device 11 obtains information on the time change of the drug amount in the epithelial cells.
  • the absorption is the absorption rate from the epithelial cells, which is the same as “absorption” in FIG. 8, and is calculated by the arithmetic expression “absorption”.
  • Metabolism is the metabolic rate in the digestive tract, which is the same as “metabolic-rate” in FIG. 8, and is calculated by the “metabolic-rate” equation in FIG.
  • “Ce” is the intracellular drug concentration of the nth epithelial cell compartment, and “Ve” is the cell volume. From Fig. 7 (c), the operation execution unit 1106 shows that the intracellular route speed of the drug (fl ux (trans)), the absorption rate from the epithelial cells, the metabolic rate in the digestive tract, the drug return rate by P glycoprotein (P— The amount of drug in the epithelial cells is calculated by executing a function that calculates gp).
  • the calculation execution unit 1106 is an increasing function with the intracellular route velocity (flux (trans)) of the drug as a parameter, the absorption rate from the epithelial cells, the metabolic rate in the digestive tract, the drug return rate by the P-glycoprotein (
  • the amount of drug (En) in the epidermal cells is calculated by executing a decreasing function with P-gp) as a parameter. That is, the calculation formula for calculating the drug amount (En) in the epithelial cells by the calculation execution unit 1106 is not limited to FIG. 7 (c).
  • the calculation execution unit 1106 of the simulation apparatus 11 receives the calculation formula storage unit 1105 from FIG.
  • the rate at which the drug is metabolized by the first pass of the liver is expressed as absorption-rate '(1-Fh), and is integrated over time to calculate the cumulative first pass metabolic rate of the liver.
  • CLh liver clearance
  • CLr renal clearance
  • Vd a distribution volume (drug), which are constants stored in advance in the arithmetic expression storage unit 1105.
  • Liver metabolic rate and urinary excretion rate are CLh 'C
  • the calculation execution unit 1106 When executing the pharmacokinetic information output calculation formula in FIG. 7 (d), the calculation execution unit 1106 reads out each constant from the calculation formula storage unit 1105 and outputs the pharmacokinetic information output calculation formula. Give to the expression. From FIG. 7 (d), the operation execution unit 1106 shows that the liver availability is the highest (F), the epithelial cell h
  • Arithmetic execution unit 1106 has the highest liver availability (F), blood from the epithelial cell h
  • the calculation formula for calculating the drug concentration (C) is not limited to FIG. 7 (d).
  • Fig. 8 shows the equation for calculating the variables (double line values) in Fig. 7.
  • the expression force enclosed by a rectangle is an important expression for changing the simulation results.
  • the underlined variables (waterflux, Ve) are variables whose values are given from the cell simulation device 12 to the simulation device 11 via the control device 13.
  • dissolution is the rate of dissolution by diffusion.
  • Flux (para) is the rate at which the drug is transported by either diffusion or volumetric flow based on the electrochemical potential gradient, but not by any deviation.
  • Flux (trans) is the rate at which a drug is transported by diffusion and / or active transport based on an electrochemical potential gradient.
  • Absorption-rate is the rate of absorption from epithelial cells and cell space.
  • metabolic -rate is the metabolic rate expressed by enzyme reaction theory.
  • P is paracellular
  • the membrane permeability of route, pKa is the acid 'base dissociation constant. Also, in FIG. 8, all the calculation formulas including pKa show the case of a basic drug, and in the case of an acidic drug, it is based on the Henderson-Hasselbach formula at the bottom of FIG. — The term of pH is (pH -pKa).
  • the cell simulation device 12 controls the changing biological information shown in FIG. 9 and FIG. 3 to send to simulation device 11.
  • the changes in the biological information in FIGS. 9 and 10 are changes in the biological information after 60 minutes have elapsed since the start of the drug simulation of the simulation apparatus 11.
  • “0” on the horizontal axis (time) in FIG. 9 is when 60 minutes have elapsed since the start of the drug simulation.
  • Fig. 9 (a) is a graph showing the change in pH value, which is one of the biological information.
  • the vertical axis represents pH and the horizontal axis represents the time from 60 minutes after SGLTl activity begins to decrease ( min).
  • Fig. 9 (b) is a graph showing the time course (60-120min) of SGLT1 activity molGlcZsec)
  • Fig. 9 (c) shows the potential difference between the luminal cell surface and the intercellular space, that is, the membrane. It is a graph which shows the time transition (60-120min) of electric potential (mV).
  • Figure 10 is a graph showing changes in the water flow rate, with the horizontal axis representing the time (min) after 60 minutes when SGLT1 activity begins to decrease and the vertical axis representing the water flow rate (mlZsec). Yes.
  • the upper line in Fig. 10 is a graph showing changes in the water flow rate in both the intracellular route and the cell space route.
  • the lower line in Fig. 10 is a graph showing the change in the water flow rate of the cell space route.
  • the simulation apparatus 11 receives the biological information shown in FIGS. 9 and 10 from the cell simulation apparatus 12 via the control apparatus 13 at any time (regularly or irregularly).
  • the configuration may be such that the simulation apparatus 11 receives the biological information only when the biological information has changed.
  • the simulation apparatus 11 outputs a change in the moving speed of the drug shown in Fig. 11 (b).
  • the horizontal axis is the elapsed time (min) after taking the drug
  • the vertical axis is the drug movement speed (gZmin).
  • the display of FIG. 11B is performed by the control device 13. Needless to say, the control device 13 acquires the pharmacokinetic information necessary for the graph display of FIG. 11B from the simulation device 11.
  • the graph in Fig. 11 (b) shows the change in drug movement speed during virus infection. The change in drug movement speed during normal operation is shown in the graph in Fig. 11 (a).
  • the simulation device 11 uses the pharmacokinetics constituting the graph shown in FIG.
  • the information is output, and the control device 13 displays the graph shown in FIG. 11 (a).
  • the graphs (1) and (3) in Fig. 11 show the drug absorption rate.
  • the graphs (2) and (4) in Fig. 11 show the urinary excretion rate of the drug.
  • the simulation apparatus 11 outputs a change in the amount of drug shown in FIG. 12 (b).
  • the horizontal axis is the elapsed time (min) after taking the drug
  • the vertical axis is the drug amount ( ⁇ g).
  • the display of FIG. 12 (b) is performed by the control device 13. Needless to say, the control device 13 acquires the pharmacokinetic information necessary for the graph display in FIG. 12 (b) from the simulation device 11.
  • the graph in FIG. 12 (b) shows the change in drug amount during virus infection. The change in drug amount at normal time is shown in the graph in FIG. 12 (a). If the cell simulation device 12 does not accept information indicating that the SGLT1 activity is reduced due to virus infection (normal), the simulation device 11 outputs the pharmacokinetic information constituting the graph shown in Fig. 12 (a). Then, the control device 13 displays the graph shown in FIG.
  • the graphs (1) and (5) in Fig. 12 show the amount of drug in the circulating blood, (2) and (6) show the cumulative urinary excretion, and (3) and (7) show the cumulative liver metabolism of the circulating blood drug. , (4) and (8) show cumulative first-pass metabolism.
  • FIG. 12 (b) shows the following.
  • the amount of drug transported by volume flow decreases due to the inflow of water from the lumen into the cell gap.
  • the drug concentration in the lumen which is the driving force for drug diffusion, decreases, and the amount of drug that diffuses into cells and cell gaps also decreases.
  • the inflow rate (absorption rate) of the drug decreases and the absorption amount also decreases.
  • the moving speed of the drug in the intracellular route in FIG. 6 mainly depends on the concentration gradient.
  • the moving speed of the drug in the cell space route depends greatly on the water flow speed (Waterflux in the following Equation 1).
  • the intercellular route is dissociated, dissociated, dissociated, and the drug molecules in the dissociated state also pass through.
  • a drug that is easily dissociated in the intestinal pH region cannot be permeated through the intracellular route.
  • the ratio is large and the contribution through the intercellular space route is relatively high, and it is easily affected by the inflow rate of water.
  • the concentration gradient between the lumen and the cell becomes smaller and the absorption rate decreases. At this time, it is considered that the effect is greater when the solubility of the drug is higher than when the solubility of the drug is low.
  • the first term on the right side of Equation 1 is the inflow rate of the drug based on the constant field theory.
  • the second term on the right side in the above formula is the inflow rate of the drug based on the drug concentration difference between the digestive tract cavity and the cell gap.
  • the third term on the right side of the mathematical formula is the inflow rate of the drug that flows in along with the flow of water.
  • example 2 outputs the simulation results in a simulation system set to give water to the lumen at a constant rate by the secretion of saliva, compared to the experimental environment in example 1.
  • salivary flow is the salivary secretion rate.
  • the arithmetic execution unit 1106 reads the value of “salivary flow” stored in the arithmetic expression storage unit 1105 and executes the arithmetic expression.
  • the cell simulation device 12 For example, when SGLT1 activity is reduced due to virus infection (SGLT1 activity is reduced from 100% to 10% in 30 minutes for 40 minutes after taking the drug) and the organ identifier or cell to be simulated Accept identifiers. Then, the cell simulation device 12 reads a simulation identifier corresponding to the cell identifier included in the organ identified by the organ identifier or the received cell identifier. Then, the cell simulation device 12 realizes the program. Then, since the SGLT1 activity decreases, the cell simulation device 12 calculates information that suppresses the inflow of Na and Glucose into the cell.
  • Example 2 compared to the case in Example 1, increase the values of Kt, Pp and solubility, and decrease the values of pKa and renal clearance!
  • the cell simulation apparatus 12 is a graph showing the time transition of pH value (vertical axis is pH, horizontal axis is elapsed time (min) after taking a drug), which is one of the biological information shown in FIG. Is generated and sent to the simulation device 11 via the control device 13.
  • the cell simulation apparatus 12 shows a time chart of SGLT1 activity shown in FIG. 14 (the vertical axis is SGL T1 transport activity ( ⁇ molGlc / sec), and the horizontal axis is the elapsed time (min) after taking the drug).
  • a value is generated and sent to the simulation device 11 via the control device 13.
  • the cell simulation device 12 shows the time transition of the potential difference between the luminal cell surface and the interstitial space shown in FIG.
  • the vertical axis is the potential (mV)
  • the horizontal axis is the elapsed time after taking the drug (min)
  • a value of the indicated draft is generated and sent to the simulation device 11 via the control device 13.
  • the cell simulation device 12 generates a graph value indicating the time transition of the water flow rate of both the intracellular route and the cell space route shown in (1) of FIG. 16, and the simulation is performed via the control device 13.
  • the vertical axis in Fig. 16 is the water flow rate (mlZsec)
  • the horizontal axis is the elapsed time (min) after taking the drug.
  • the cell simulation device 12 generates a graph value indicating the time transition of the flow rate of the water in the cell gap route shown in (2) of FIG. 16 and sends it to the simulation device 11 via the control device 13.
  • the simulation apparatus 11 receives the biological information shown in FIGS. 13 to 16 from the cell simulation apparatus 12 via the control apparatus 13 at any time (regularly or irregularly). Note that the simulation device 11 performs simulation only when there is a change in biological information.
  • the device 11 may be configured to receive biological information! ,.
  • the simulation apparatus 11 outputs a graph showing the time transition of the drug moving speed shown in FIG. 17 (al).
  • the vertical axis in FIG. 17 is the drug movement speed (gZmin), and the horizontal axis is the elapsed time (min) after taking the drug. Further, the simulation apparatus 11 outputs a graph showing the time transition of the urinary excretion rate of the drug shown in FIG. 17 (bl).
  • FIGS. 17 (al) and (bl) are graphs showing the time transition of the drug absorption rate and the time transition of the urinary excretion rate of the drug when SGLT1 is inhibited, respectively.
  • FIGS. 17 (a2) and (b2) are graphs showing the time transition of the absorption rate of the drug and the time transition of the urinary excretion rate of the drug, respectively.
  • FIGS. 17 (a2) and 17 (b2) are simulation results of the simulation apparatus 11 when various information generated by the cell simulation apparatus 12 and sent via the control apparatus 13 is normal.
  • the simulation apparatus 11 outputs a graph showing the time transition of the amount of drug in the circulating blood shown in FIG. 18 (al).
  • the vertical axis in FIG. 18 is the drug amount g), and the horizontal axis is the elapsed time (min) after taking the drug.
  • the simulation apparatus 11 outputs a graph showing the time transition of the cumulative urinary excretion of the drug shown in FIG. 18 (bl).
  • the simulation apparatus 11 outputs a graph showing the time transition of the cumulative liver metabolic rate of the circulating blood drug shown in FIG. 18 (d) and the time transition of the cumulative liver first-pass metabolic rate shown in FIG. 18 (dl). .
  • Figures 18 (al), (bl), (cl), and (dl) show the time course of circulating drug amount, the time course of cumulative urinary excretion of drug, and the cumulative amount of circulating blood drug when SGLT1 is inhibited, respectively.
  • 2 is a graph showing the time course of liver metabolism and cumulative first-pass metabolism of liver.
  • Figure 18 (a2), (b2), (c2), and (d2) show the time course of the amount of drug in the circulating blood, the time course of the cumulative urinary excretion of the drug
  • 3 is a graph showing the time course of metabolic rate and cumulative hepatic first-pass metabolic rate.
  • Fig. 18 (a2), (b2), (c2), and (d2) are the simulation results of the simulation device 11 when various information generated by the cell simulation device 12 and sent via the control device 13 is normal. .
  • a simulation apparatus that simulates drug absorption or Z and excretion based on drug information that is information related to a drug to be simulated and biological information related to biological information
  • Drug absorption simulation It is possible to provide a simulation device that dynamically accepts biological information even while playing. Therefore, it is possible to simulate drug absorption or Z and excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, or pathological changes, etc.
  • the accuracy of cell simulation is high and the result of cell simulation can be used for simulation of drug absorption or z and excretion, drug absorption or Z and excretion, etc.
  • the accuracy of simulation is extremely high.
  • the biological information is a force applied to the simulation device via the cell simulation device force control device, and the biological information is applied directly to the simulation device from the cell simulation device. good. In such a case, a control device is unnecessary. Therefore, the simulation device accepts biological information that is output from the cell simulation device that simulates the movement in the cell (acceptance here includes direct and indirect), and based on the biological information and drug information.
  • a simulation apparatus that simulates drug absorption or Z and excretion, and that dynamically receives the biological information during the simulation.
  • the biological information is given to the cell simulation apparatus power simulation apparatus.
  • the biological information is not necessarily given from the cell simulation device.
  • the biological information may be given to the simulation apparatus dynamically.
  • the simulation apparatus may periodically display a panel for requesting input of biometric information to the user and accept input of biometric information from the user.
  • the simulation apparatus performs a drug simulation using the biological information.
  • the simulation apparatus may perform drug simulation by using a plurality of sets of biological information stored in advance while switching between simulations.
  • biological information may be periodically received from an apparatus other than the cell simulation apparatus.
  • the simulation apparatus is based on drug information that is information about a drug to be simulated and biological information about biological information. Accordingly, a simulation apparatus for simulating drug absorption or Z and excretion, which dynamically accepts the biological information during the simulation.
  • the movement and function of the cell simulation device in the present embodiment are not limited to those described above.
  • Biological information eg, membrane potential, ion flow, water flow, cell volume, transporter involved in ion transport, etc.
  • Biological information that is information about cells, especially epithelial cells, etc. can be acquired. It is sufficient if the biological information can be used.
  • the pharmacokinetic information is only the state information indicating the state of the drug, but may include region information indicating the region that absorbs the drug.
  • the output result of the simulation device 11 may be information indicating what state force (drug absorption rate, amount of absorption, etc.) the drug is in any part (for example, stomach, duodenum, etc.).
  • Figure 19 shows a conceptual diagram of such simulation. In FIG. 19, parts such as “stomach”, “duodenum”, “jejunum”, “ileum” and “large intestine” are on the horizontal axis (horizontal line). In addition, the state of the drug or the existing layer is the vertical axis (vertical line).
  • the drug state or existing layer is “solid state”, “dissolved state”, “epithelial cell”, “blood vessel”. “Solid state” means that the drug exists in the digestive tract cavity in a solid state, “dissolved state” means that the drug exists in the digestive tract cavity in a dissolved state, and “epithelial cell” means that the drug is in the epithelial cell. “Vessel” means that a drug is present in the blood vessel. In the “solid state”, “dissolved state”, and “epithelial cell” boxes, the amount of drug can be indicated. Moreover, the arrow of FIG. 19 shows the flow of the drug.
  • processing in the present embodiment may be realized by software.
  • This software may be distributed by software download or the like.
  • this software may be recorded and distributed on a recording medium such as a CD-ROM. This also applies to other embodiments in this specification.
  • the software that realizes the simulation device in the present embodiment is the following program.
  • this program has a drug information receiving step for receiving drug information, which is information about a drug to be simulated, a biological information receiving step for receiving biological information about biological information, the drug information, Using the biological information as a parameter
  • the pharmacokinetic information output calculation formula is passed to the stored pharmacokinetic information output calculation formula, and the pharmacokinetic information output calculation formula is executed, and the pharmacokinetic information that is information based on the execution result in the calculation execution step is output.
  • the drug information receiving step may be an operation of reading drug information.
  • the program receives biological information, which is a result of cell simulation simulating movement in a cell, in the biological information receiving step.
  • FIG. 20 shows the external appearance of a computer that executes the programs described in this specification and realizes the simulation apparatus of the various embodiments described above.
  • the above-described embodiments can be realized by computer hardware and a computer program executed thereon.
  • FIG. 20 is an overview diagram of the computer system 340
  • FIG. 21 is a block diagram of the computer system 340.
  • a computer system 340 includes a computer 341 including an FD (Flexible Disk) drive and a CD-ROM (Compact Disk Read Only Memory) drive, a keyboard 342, a mouse 343, and a monitor 344.
  • FD Flexible Disk
  • CD-ROM Compact Disk Read Only Memory
  • the computer 341 in addition to the FD drive 3411 and the CD-ROM drive 3412, the computer 341 includes a CPU (Central Processing Unit) 3413, a bus 3414 connected to the CPU 3413, the CD-ROM drive 3412 and the FD drive 3411, and a boot.
  • a ROM (Read-Only Memory) 3415 for storing programs such as up-programs and a RAM (Random) connected to the CPU 3413 for temporarily storing application program instructions and providing a temporary storage space Access Memory) 3416 and an application program, a system program, and a hard disk 3417 for storing data.
  • the computer 341 may further include a network card that provides connection to the LAN.
  • a program for causing the computer system 340 to execute the function of the simulation apparatus of the above-described embodiment is stored in the CD-ROM 3501 or FD 3502, inserted into the CD-ROM drive 3412 or FD drive 3411, and further stored in the hard disk 3417. May be forwarded. Instead, the program is executed via a network (not shown). It may be transmitted to the computer 341 and stored in the hard disk 3417. The program is loaded into RAM3416 when executed. The program may be loaded directly from CD-ROM3501, FD3502 or network.
  • the program does not necessarily include an operating system (OS) or a third-party program that causes the computer 341 to execute the functions of the simulation apparatus according to the above-described embodiment.
  • the program only needs to include an instruction part that calls an appropriate function (module) in a controlled manner and obtains a desired result. How the computer system 340 operates is well known and will not be described in detail.
  • each process may be realized by centralized processing by a single device (system), or by distributed processing by a plurality of devices. It will be realized.
  • the transmission step for transmitting information and the reception step for receiving information are performed by hardware, for example, a modem or an interface card in the transmission step. Does not include processing (processing that can only be done with software)! /.
  • the computer that executes this program may be a single computer or a plurality of computers. That is, centralized processing or distributed processing may be performed.
  • two or more communication means existing in one apparatus may be physically realized by one medium.
  • the simulation apparatus is a simulation of drug absorption or Z and excretion in consideration of individual differences, biological (cell) stimulation before or after drug administration, or pathological changes. It can be used for information processing equipment used for drug and food dynamics studies and toxicity studies.
  • FIG. 1 is a block diagram of a simulation apparatus according to an embodiment.
  • FIG. 2 is a flowchart for explaining the operation of the simulation apparatus.
  • FIG. 3 is a flowchart for explaining the operation of the cell simulation apparatus.
  • FIG. 4 is a flowchart for explaining the operation of the control device.
  • FIG. 12 is a diagram showing an example of output of the simulation apparatus
  • FIG. 17 is a diagram showing an output example of the simulation apparatus
  • FIG. 18 is a diagram showing an example of output of the simulation apparatus
  • FIG. 20 Overview of the computer system constituting the simulation apparatus.
  • FIG. 21 Block diagram of the computer constituting the simulation apparatus.

Abstract

[PROBLEMS] Conventional simulation apparatuses for drug absorption, etc. have been unable to simulate, for example, drug absorption or excretion taking into consideration any individual specificity and living organism (cell) stimulation and pathological change between before and after drug administration. [MEANS FOR SOLVING PROBLEMS] There is provided a simulation apparatus for simulating of drug absorption or/and excretion on the basis of drug information being information relating to a drug as simulation object and bioinformation relating to information on living organism, which simulation apparatus is adapted to accept bioinformation dynamically even during performing of the simulation. This biosimulation apparatus is able to simulate, for example, drug absorption or excretion taking into consideration any individual specificity and living organism (cell) stimulation and pathological change between before and after drug administration.

Description

明 細 書  Specification
シミュレーション装置およびプログラム  Simulation apparatus and program
技術分野  Technical field
[oooi] 本発明は、薬物の吸収または Zおよび排泄等についてシミュレーションするシミュレ ーシヨン装置およびそのプログラム等に関するものである。  [oooi] The present invention relates to a simulation apparatus for simulating drug absorption or Z and excretion, a program thereof, and the like.
背景技術  Background art
[0002] 従来の薬物の吸収等のシミュレーション装置として、以下のシミュレーション装置が ある。つまり、本シミュレーション装置は、薬物固有の特性 (溶解度、脂溶性、膜透過 性、代謝安定性など)力も体内の薬物挙動 (血中濃度)の時間推移を計算する。また 、本シミュレーション装置は、平均的な正常時における薬物吸収を薬物の性質のみ 力 評価するものであった。  There are the following simulation devices as conventional simulation devices for drug absorption and the like. In other words, this simulation device calculates the time course of drug behavior (blood concentration) in the body as well as the drug-specific characteristics (solubility, fat solubility, membrane permeability, metabolic stability, etc.). In addition, this simulation apparatus was designed to evaluate the drug absorption at the normal normal time only based on the properties of the drug.
[0003] 一方、細胞の動作や機能をシミュレーションする細胞シミュレーション装置が存在す る(非特許文献 1参照)。細胞シミュレーション装置は、細胞内のイオン、水の輸送や 膜表面の電位を計算する細胞シミュレーション装置は、主に、細胞内の活動を解析' 解明することが主眼とされて 、る。  [0003] On the other hand, there is a cell simulation apparatus that simulates the operation and function of cells (see Non-Patent Document 1). The cell simulation device, which calculates the transport of ions and water in the cell and the electric potential of the membrane surface, mainly focuses on analyzing and elucidating the intracellular activity.
また、上皮細胞モデル内部における上皮細胞のシミュレーション装置の技術も開示 されている (非特許文献 2、非特許文献 3、非特許文献 4参照)。  In addition, a technique for a simulation apparatus for epithelial cells inside an epithelial cell model is also disclosed (see Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4).
さらに、ヒトの SGLT1がグルコース 1モルを輸送する際に、 2モルの Na+イオンと 2 64モルの H O分子を同時に輸送することが解明されている (非特許文献 5参照)。  Furthermore, it has been elucidated that when human SGLT1 transports 1 mole of glucose, 2 moles of Na + ions and 264 moles of H 2 O molecule are transported simultaneously (see Non-Patent Document 5).
2  2
非特許文献 1 : M. Tomita, K. Hashimoto, K. Takahashi, T. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Ven ter, and C. A. Hutchison III, 「E— CEI : software environment for whole― cell simulationj in Bioinformatics, vol. 15, no. 1, pp. 72 -84, 1999  Non-Patent Document 1: M. Tomita, K. Hashimoto, K. Takahashi, T. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, JC Ven ter, and CA Hutchison III, 「E- CEI: software environment for whole― cell simulationj in Bioinformatics, vol. 15, no. 1, pp. 72 -84, 1999
非特許文献 2 : A. M. Weinstein et al. , 1990, J. Gen. Physiol. , 96, 319- 344.  Non-Patent Document 2: A. M. Weinstein et al., 1990, J. Gen. Physiol., 96, 319-344.
非特許文献 3 : A. M. Weinstein, Am. J. Physiol. , 1992, 263, F 748- 798, Non-Patent Document 3: AM Weinstein, Am. J. Physiol., 1992, 263, F 748- 798,
非特許文献 4: Parent et al. , J Membr. Biol. 125 : 63— 79, 1992 非特許文献 5 : Donald D. F. Loo, Ernest M. Wright and Thomas Z euthen, Water pumps, Journal of Physiology (2002) , 542 (pt. 1) , pp. 53-60  Non-patent literature 4: Parent et al., J Membr. Biol. 125: 63- 79, 1992 Non-patent literature 5: Donald DF Loo, Ernest M. Wright and Thomas Zeuthen, Water pumps, Journal of Physiology (2002), 542 (pt. 1), pp. 53-60
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、従来の薬物の吸収等のシミュレーション装置は、個体差や薬物投与 前後における生体 (細胞)の刺激、病態変化を考慮した薬物吸収または排泄等につ Vヽてはシミュレーションできなかった。 [0004] However, the conventional simulation device for drug absorption, etc. is a simulation for drug absorption or excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, and pathological changes. could not.
課題を解決するための手段  Means for solving the problem
[0005] 本第一の発明のシミュレーション装置は、シミュレーションの対象の薬物に関する情 報である薬物情報と、生体の情報に関する生体情報に基づいて、薬物の吸収または [0005] The simulation apparatus according to the first aspect of the present invention is based on drug information, which is information about a drug to be simulated, and biological information about biological information.
Zおよび排泄等をシミュレーションするシミュレーション装置であって、当該シミュレ一 シヨンを行っている間にも動的に、前記生体情報を受け付けるシミュレーション装置で ある。 This is a simulation apparatus that simulates Z, excretion, and the like, and that dynamically receives the biological information even during the simulation.
力かるシミュレーション装置は、個体差、または薬物投与前後における生体 (細胞) の刺激、または病態変化等を考慮した薬物吸収または Zおよび排泄等のシミュレ一 シヨンができる。  A powerful simulation device can simulate drug absorption or Z and excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, or pathological changes.
[0006] また、第二の発明のシミュレーション装置は、第一の発明のシミュレーション装置に おける薬物動態情報は、少なくとも薬物を吸収する部位を示す部位情報と、薬物の 状態を示す状態情報を有するシミュレーション装置である。  [0006] The simulation device of the second invention is a simulation in which the pharmacokinetic information in the simulation device of the first invention includes at least part information indicating a part that absorbs the drug and state information indicating the state of the drug. Device.
力かるシミュレーション装置は、個体差、または薬物投与前後における生体 (細胞) の刺激、または病態変化等を考慮した薬物吸収または Zおよび排泄等のシミュレ一 シヨンが、生体の部位毎にできる。  The powerful simulation device can simulate for each part of a living body, drug absorption or Z and excretion taking into account individual differences, stimulation of a living body (cell) before and after drug administration, or pathological changes.
[0007] また、第三の発明のシミュレーション装置は、第一、第二のシミュレーション装置に おいて、前記生体情報受付部は、細胞内の動きをシミュレートする細胞シミュレーショ ン装置力もの出力である生体情報を受け付けるシミュレーション装置である。なお、細 胞は、上皮細胞であることが好適である。また、シミュレーション装置は、間接的に細 胞シミュレーション装置から生体情報を受け付けても良い。 [0007] Further, in the simulation apparatus according to the third aspect of the invention, in the first and second simulation apparatuses, the biological information receiving unit is an output of a cell simulation apparatus capable of simulating intracellular movement. It is a simulation device that accepts certain biological information. In addition, fine The vesicle is preferably an epithelial cell. Further, the simulation apparatus may accept biological information from the cell simulation apparatus indirectly.
力かるシミュレーション装置は、個体差、または薬物投与前後における生体 (細胞) の刺激、または病態変化等を考慮した薬物吸収または Zおよび排泄等のシミュレ一 シヨンが精度良くできる。  The powerful simulation device can accurately simulate drug absorption or Z and excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, or pathological changes.
発明の効果  The invention's effect
[0008] 本発明は、個体差、または薬物投与前後における生体 (細胞)の刺激、または病態 変化等を考慮した薬物吸収または Zおよび排泄等のシミュレーションができる。 発明を実施するための最良の形態  [0008] The present invention can simulate drug absorption or Z and excretion in consideration of individual differences, body (cell) stimulation before and after drug administration, or pathological changes. BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、シミュレーション装置を含む情報処理システム等の実施形態について図面を 参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の 動作を行うので、再度の説明を省略する場合がある。  Hereinafter, embodiments of an information processing system including a simulation apparatus will be described with reference to the drawings. In addition, since the component which attached | subjected the same code | symbol in embodiment performs the same operation | movement, repeated description may be abbreviate | omitted.
[0010] 図 1は、本実施の形態における情報処理システムのブロック図である。本情報処理 システムは、シミュレーション装置 11と、細胞シミュレーション装置 12と、制御装置 13 を具備する。シミュレーション装置 11は、薬物の吸収または Zおよび排泄等をシミュ レーシヨンする。細胞シミュレーション装置 12は、ここでは、生体機能 (臓器、細胞、組 織などの機能)のシミュレーションを行うが、本実施の形態では、細胞の機能、動作の シミュレーションを主として、シミュレーション装置 11が利用するので、細胞シミュレ一 シヨン装置 12と言うこととする。また、細胞とは、主として上皮細胞である。制御装置 1 3は、シミュレーション装置 11と細胞シミュレーション装置 12の間での情報の受け渡し や、シミュレーション装置 11と細胞シミュレーション装置 12の動作のトリガーを与える 等、情報処理システム全体が機能するための制御を行う。  FIG. 1 is a block diagram of the information processing system in the present embodiment. The information processing system includes a simulation device 11, a cell simulation device 12, and a control device 13. The simulation device 11 simulates drug absorption or Z and excretion. Here, the cell simulation device 12 performs simulation of biological functions (functions of organs, cells, tissues, etc.), but in this embodiment, the simulation device 11 mainly uses simulations of cell functions and operations. Therefore, the cell simulation device 12 will be referred to. The cell is mainly an epithelial cell. The control device 1 3 performs control for the functioning of the entire information processing system, such as passing information between the simulation device 11 and the cell simulation device 12, and giving a trigger for the operation of the simulation device 11 and the cell simulation device 12. Do.
シミュレーション装置 11は、指示受付部 1101、薬物情報受付部 1102、生体情報 取得指示部 1103、生体情報受付部 1104、演算式格納部 1105、演算実行部 1106 、出力部 1107を具備する。  The simulation apparatus 11 includes an instruction receiving unit 1101, a drug information receiving unit 1102, a biological information acquisition instruction unit 1103, a biological information receiving unit 1104, an arithmetic expression storage unit 1105, an arithmetic execution unit 1106, and an output unit 1107.
[0011] 細胞シミュレーション装置 12は、第二指示受付部 1201、機能要素情報格納部 12 02、静的構造管理部 1203、パラメータ管理部 1204、シミュレーション命令受付部 1 205、機能要素識別子取得部 1206、パラメータ取得部 1207、実行部 1208、生体 情報送信部 1209を具備する。静的構造管理部 1203は、細胞機能管理手段 1203 1、臓器細胞管理手段 12032を具備する。ただし、静的構造管理部 1203が細胞機 能管理手段 12031、臓器細胞管理手段 12032を具備することは、静的構造管理部 1203の内部構造の一例である。 [0011] The cell simulation device 12 includes a second instruction receiving unit 1201, a functional element information storage unit 1202, a static structure management unit 1203, a parameter management unit 1204, a simulation command receiving unit 1 205, a functional element identifier acquisition unit 1206, Parameter acquisition unit 1207, execution unit 1208, living body An information transmission unit 1209 is provided. The static structure management unit 1203 includes cell function management means 12031 and organ cell management means 12032. However, the static structure management unit 1203 includes the cell function management unit 12031 and the organ cell management unit 12032 is an example of the internal structure of the static structure management unit 1203.
制御装置 13は、指示部 1301、生体情報取得指示受付部 1302、生体情報取得部 1303、生体情報付与部 1304、実行結果取得部 1305、実行結果表示部 1306を具 備する。  The control device 13 includes an instruction unit 1301, a biological information acquisition instruction receiving unit 1302, a biological information acquisition unit 1303, a biological information adding unit 1304, an execution result acquisition unit 1305, and an execution result display unit 1306.
[0012] 指示受付部 1101は、薬物の吸収のシミュレーションを開始する指示である開始指 示を受け付ける。受け付けとは、通常、制御装置 13からの受信であるが、ユーザの手 入力による開始指示の受け付け等でも良い。指示受付部 1101は、無線または有線 の通信手段等や、テンキーやキーボード等の入力手段のデバイスドライバーや、メ- ユー画面の制御ソフトウェア等で実現され得る。  [0012] The instruction receiving unit 1101 receives a start instruction which is an instruction to start a drug absorption simulation. The acceptance is usually reception from the control device 13, but may be acceptance of a start instruction by manual input by the user. The instruction receiving unit 1101 can be realized by a wireless or wired communication unit, a device driver for an input unit such as a numeric keypad or a keyboard, a control software for a menu screen, and the like.
[0013] 薬物情報受付部 1102は、シミュレーションの対象の薬物に関する情報である薬物 情報を受け付ける。薬物情報とは、例えば、薬物を識別する情報、薬物の溶解度、溶 解速度定数、膜透過係数などである。薬物情報受付部 1102は、薬物を識別する情 報だけを受け付けても良いし、薬物の溶解度、溶解速度定数、膜透過係数などを受 け付けても良い。薬物情報の入力手段は、テンキーやキーボードやマウスやメニュー 画面によるもの等、何でも良い。薬物情報受付部 1102は、予め保持している薬物情 報を読み出す処理を行っても良い。かかる場合、読み出しは、受け付けに該当する。 薬物情報受付部 1102は、テンキーやキーボード等の入力手段のデバイスドライバ 一や、メニュー画面の制御ソフトウェア等で実現され得る。また、薬物情報受付部 11 02における受け付けは、制御装置 13力もの受信であっても良い。  [0013] Drug information receiving section 1102 receives drug information that is information related to a drug to be simulated. The drug information includes, for example, information for identifying a drug, drug solubility, dissolution rate constant, membrane permeability coefficient, and the like. Drug information receiving section 1102 may receive only information for identifying a drug, or may accept drug solubility, dissolution rate constant, membrane permeability coefficient, and the like. The drug information input means may be anything such as a numeric keypad, keyboard, mouse or menu screen. The drug information receiving unit 1102 may perform processing for reading out drug information held in advance. In such a case, reading corresponds to acceptance. The drug information receiving unit 1102 can be realized by a device driver for input means such as a numeric keypad or a keyboard, control software for a menu screen, or the like. Further, the reception in the drug information reception unit 1102 may be reception by the control device 13 as much as possible.
[0014] 生体情報取得指示部 1103は、生体情報を取得することを指示する生体情報取得 指示を制御装置 13に送信する。生体情報とは、生体の情報に関する情報であり、例 えば、細胞のイオン (例えば、 Naイオン、 Kaイオンなど)の移動を示す情報、水の移 動を示す情報、膜電位、 pH、細胞容積などの値である。水の移動を示す情報とは、 例えば、水の吸収速度である。生体情報取得指示は、例えば、生体情報を取得する ためのメッセージの送信である。生体情報取得指示の構造は問わない。生体情報取 得指示部 1103は、例えば、無線または有線の通信手段等で実現され得る。 The biological information acquisition instruction unit 1103 transmits a biological information acquisition instruction for instructing acquisition of biological information to the control device 13. Biological information is information related to biological information, for example, information indicating the movement of cell ions (for example, Na ions, Ka ions, etc.), information indicating the movement of water, membrane potential, pH, cell volume. And so on. The information indicating the movement of water is, for example, the water absorption rate. The biometric information acquisition instruction is, for example, transmission of a message for acquiring biometric information. The structure of the biometric information acquisition instruction does not matter. Biometric information collection The acquisition instruction unit 1103 can be realized by, for example, a wireless or wired communication unit.
[0015] 生体情報受付部 1104は、生体の情報に関する生体情報を受け付ける。なお、生 体情報受付部 1104は、通常、薬物の吸収シミュレーションの開始前および薬物の吸 収シミュレーションを行っている間に、生体の情報に関する生体情報を受け付ける。 ただし、生体情報受付部 1104は、薬物の吸収シミュレーションの開始前に一度だけ 生体情報を受け付けても良いし、薬物の吸収シミュレーションを行っている間のみ、 1 回以上、生体情報を受け付けても良い。薬物の吸収シミュレーションの開始前の生 体情報の受付は、記録媒体力 の読み出しや、プログラム中に生体情報が埋め込ま れている場合のプログラムによる生体情報の読み出しでも良い。つまり、生体情報受 付部 1104における生体情報の受け付け方法が変化しても良い。薬物の吸収シミュ レーシヨンの開始前に生体情報を受け付けない場合は、シミュレーション装置 11は、 例えば、予め保持して!/、る初期状態の生体情報に基づ!、て薬物の吸収シミュレーシ ヨンを行うこととなる。薬物の吸収シミュレーションの開始前に生体情報を受け付ける 場合は、シミュレーション対象の個体の差、個体の状態の差を考慮した薬物の吸収 シミュレーションが可能となる。薬物の吸収シミュレーションを行っている間に生体情 報を受け付ける場合は、動的な生体情報の変化に応じた薬物の吸収シミュレーショ ンが可能となる。生体情報受付部 1104における生体情報の受付とは、例えば、制御 装置 13からの生体情報の受信である。また、生体情報受付部 1104における生体情 報の受付とは、例えば、記録媒体力もの生体情報の読み出しであっても良いし、ユー ザによる生体情報の手入力であっても良いし、制御装置 13以外の他の外部装置か らの生体情報の受信等であっても良い。生体情報受付部 1104は、例えば、無線ま たは有線の通信手段等で実現され得る。 The biometric information receiving unit 1104 receives biometric information related to biometric information. The biological information receiving unit 1104 normally receives biological information related to biological information before the start of the drug absorption simulation and during the drug absorption simulation. However, the biometric information receiving unit 1104 may receive the biometric information once before the start of the drug absorption simulation, or may receive the biometric information only once during the drug absorption simulation. . The reception of biometric information before the start of drug absorption simulation may be performed by reading out the recording medium force or reading out biometric information by a program when the biometric information is embedded in the program. That is, the biometric information receiving method in the biometric information receiving unit 1104 may change. If the biometric information is not received before the start of the drug absorption simulation, the simulation device 11 may store the drug absorption simulation based on the initial biometric information held in advance, for example! Will be done. When biometric information is received before the start of drug absorption simulation, drug absorption simulation can be performed in consideration of individual differences in simulation targets and differences in individual states. When biological information is received during drug absorption simulation, drug absorption simulation according to dynamic biological information changes is possible. The reception of biological information in the biological information reception unit 1104 is reception of biological information from the control device 13, for example. In addition, the reception of biological information in the biological information reception unit 1104 may be, for example, reading of biological information having a power of a recording medium, manual input of biological information by a user, or a control device. It may be the reception of biometric information from an external device other than 13. The biometric information receiving unit 1104 can be realized by, for example, a wireless or wired communication means.
[0016] 演算式格納部 1105は、薬物情報と生体情報をパラメータとして、当該薬物の吸収 や排泄等に関する情報である薬物動態情報を出力する演算式である薬物動態情報 出力演算式を格納している。薬物動態情報は、例えば、少なくとも薬物を吸収または 排泄する部位を示す部位情報と、薬物の状態を示す状態情報を有する。薬物動態 情報は、例えば、薬物の吸収速度、薬物の代謝速度、薬物の尿中排泄速度、初回 通過代謝速度、薬物の血中濃度、薬物の累積吸収量、薬物の累積腎排泄量、薬物 の累積代謝物量等を含む。薬物動態情報出力演算式の例は、後述する。部位情報 は、例えば、「胃」「十二指腸」「空腸」「回腸」「大腸」などである。状態情報は、例えば 、薬物の溶解状態、解離状態や、薬物の吸収、代謝、排泄の各速度や、排泄量、代 謝物量、吸収量などである。演算式格納部 1105は、不揮発性の記録媒体 (ハードデ イスクゃ書き換え不可の光ディスク等を含む)が好適であるが、揮発性の記録媒体で も実現可能である。 [0016] The arithmetic expression storage unit 1105 stores a pharmacokinetic information output arithmetic expression that is an arithmetic expression for outputting pharmacokinetic information that is information related to absorption or excretion of the drug, using the drug information and biological information as parameters. Yes. The pharmacokinetic information includes, for example, at least site information indicating a site where the drug is absorbed or excreted and state information indicating the state of the drug. Pharmacokinetic information includes, for example, drug absorption rate, drug metabolism rate, drug urinary excretion rate, first-pass metabolic rate, drug blood concentration, drug absorption, drug renal excretion, drug Including the amount of accumulated metabolites. An example of the pharmacokinetic information output calculation formula will be described later. The part information includes, for example, “stomach”, “duodenum”, “jejunum”, “ileum”, “large intestine”, and the like. The state information includes, for example, the drug dissolution state, dissociation state, drug absorption, metabolism, excretion rates, excretion amount, metabolite amount, absorption amount, and the like. The arithmetic expression storage unit 1105 is preferably a non-volatile recording medium (including a hard disk or a non-rewritable optical disk), but can also be realized by a volatile recording medium.
[0017] 演算実行部 1106は、薬物情報受付部 1102が受け付けた薬物情報と、生体情報 受付部 1104が受け付けた生体情報を有するパラメータを、演算式格納部 1105の 薬物動態情報出力演算式に渡し、薬物動態情報出力演算式を実行する。演算実行 部 1106は、通常、 MPUやメモリ等力も実現され得る。演算実行部 1106の処理手順 は、通常、ソフトウェアで実現され、当該ソフトウェアは ROM等の記録媒体に記録さ れている。但し、ハードウェア(専用回路)で実現しても良い。  The calculation execution unit 1106 passes the drug information received by the drug information reception unit 1102 and the parameter having the biological information received by the biological information reception unit 1104 to the pharmacokinetic information output calculation formula of the calculation formula storage unit 1105. Execute pharmacokinetic information output calculation formula. The arithmetic execution unit 1106 can usually also realize an MPU, a memory and the like. The processing procedure of the arithmetic execution unit 1106 is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
[0018] 出力部 1107は、演算実行部 1106の実行結果に基づく情報である薬物動態情報 を出力する。ここでの出力は、通常、制御装置 13への送信である。ただし、シミュレ一 シヨン装置 11が単独で動作する場合などは、出力とは、ディスプレイへの表示、プリ ンタへの印字、音出力、外部の装置への送信等を含む。出力部 1107は、例えば、 無線または有線の通信手段等で実現され得る。また、出力部 1107は、例えば、出力 デバイスのドライバーソフトまたは、出力デバイスのドライバーソフトと出力デバイス等 で実現され得る。  The output unit 1107 outputs pharmacokinetic information that is information based on the execution result of the calculation execution unit 1106. The output here is normally a transmission to the control device 13. However, when the simulation device 11 operates alone, the output includes display on a display, printing on a printer, sound output, transmission to an external device, and the like. The output unit 1107 can be realized by, for example, a wireless or wired communication unit. The output unit 1107 can be realized by, for example, output device driver software, or output device driver software and an output device.
第二指示受付部 1201は、制御装置 13から生体情報の送信の指示を受け付ける。 第二指示受付部 1201は、通常、無線または有線の通信手段等で実現され得る。  Second instruction receiving unit 1201 receives an instruction to transmit biological information from control device 13. The second instruction receiving unit 1201 can be usually realized by a wireless or wired communication means.
[0019] 機能要素情報格納部 1202は、生物を構成する要素である分子、細胞内小器官、 細胞、組織、もしくは臓器の機能を識別する機能要素識別子と当該機能をシミュレ一 シヨンするシミュレーション実現プログラムを有する機能要素情報を 1以上格納してい る。機能要素情報は、機能要素識別子と、シミュレーション実現プログラムを識別する プログラム識別子と、シミュレーション実現プログラムを有していても良い。また、機能 要素情報は、機能要素識別子と 2以上のシミュレーション実現プログラムを有して ヽ ても良い。機能要素識別子は、上記機能を識別する情報であれば何でも良い。シミ ユレーシヨン実現プログラムの記述言語や、形式は問わない。つまり、シミュレーション 実現プログラムは、実行形式であっても良いし、ライブラリ形式であっても良いし、プロ グラムの関数であっても良い。また、 1以上のシミュレーション実現プログラムの中に は、シミュレーション結果を出力する処理も行うプログラムがある。ここで、出力とは、 ディスプレイへの表示、プリンタへの印字、音出力、外部の装置への送信、記録媒体 への蓄積等を含む概念である。機能要素情報格納部 1202は、不揮発性の記録媒 体が好適であるが、揮発性の記録媒体でも実現可能である。 [0019] The functional element information storage unit 1202 is a simulation realizing program for simulating a function element identifier for identifying a function of a molecule, an intracellular organelle, a cell, a tissue, or an organ that is an element constituting an organism, and the function. Stores one or more pieces of functional element information with The functional element information may include a functional element identifier, a program identifier for identifying a simulation realization program, and a simulation realization program. Further, the functional element information may include a functional element identifier and two or more simulation realization programs. The function element identifier may be anything as long as it is information for identifying the function. Stain The description language and format of the urease realization program are not limited. In other words, the simulation realization program may be an execution format, a library format, or a program function. Among the one or more simulation realization programs, there is also a program that also outputs the simulation results. Here, output is a concept including display on a display, printing on a printer, sound output, transmission to an external device, storage on a recording medium, and the like. The functional element information storage unit 1202 is preferably a non-volatile recording medium, but can also be realized by a volatile recording medium.
[0020] 静的構造管理部 1203は、細胞内小器官、細胞、組織、臓器である生物構成要素 または個体を識別する構成要素識別子と当該構成要素識別子で識別される生物構 成要素の機能を実現するに必要な 1以上の機能要素識別子との対応を保持している 。静的構造管理部 1203は、不揮発性の記録媒体が好適であるが、揮発性の記録媒 体でも実現可能である。  [0020] The static structure management unit 1203 has a component identifier that identifies a biological component or individual that is an intracellular organelle, cell, tissue, organ, and a function of the biological component that is identified by the component identifier. Corresponds to one or more functional element identifiers necessary for realization. The static structure management unit 1203 is preferably a nonvolatile recording medium, but can also be realized by a volatile recording medium.
[0021] パラメータ管理部 1204は、構成要素識別子と当該構成要素識別子で識別される 生物の構成要素の機能を実現するに必要な 1以上のパラメータを有するパラメータ 情報を保持している。パラメータ管理部 1204は、不揮発性の記録媒体が好適である 力 揮発性の記録媒体でも実現可能である。  [0021] The parameter management unit 1204 holds parameter information having a component identifier and one or more parameters necessary for realizing the function of the component of the organism identified by the component identifier. The parameter management unit 1204 can also be realized by a force volatile recording medium, which is preferably a non-volatile recording medium.
[0022] シミュレーション命令受付部 1205は、シミュレーション対象の生体構成要素または 個体を識別する構成要素識別子を有するシミュレーション命令を受け付ける。シミュ レーシヨン命令の入力手段は、テンキーやキーボードやマウスやメニュー画面による もの等、何でも良い。シミュレーション命令受付部 1205は、テンキーやキーボード等 の入力手段のデバイスドライバーや、メニュー画面の制御ソフトウェア等で実現され 得る。  [0022] The simulation command receiving unit 1205 receives a simulation command having a component identifier for identifying a biological component or individual to be simulated. Any method may be used for inputting the simulation command, such as a numeric keypad, keyboard, mouse or menu screen. The simulation command receiving unit 1205 can be realized by a device driver for input means such as a numeric keypad or a keyboard, or control software for a menu screen.
[0023] 機能要素識別子取得部 1206は、シミュレーション命令受付部 1205が受け付けた シミュレーション命令が有する構成要素識別子と対応付けられる 1以上の機能要素 識別子を静的構造管理部 1203から取得する。機能要素識別子取得部 1206は、通 常、 MPUやメモリ等力も実現され得る。機能要素識別子取得部 1206が 1以上の機 能要素識別子を取得するための処理手順は、通常、ソフトウェアで実現され、当該ソ フトウェアは ROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で 実現しても良い。 The functional element identifier acquisition unit 1206 acquires, from the static structure management unit 1203, one or more functional element identifiers that are associated with the component element identifiers included in the simulation command received by the simulation command reception unit 1205. The functional element identifier acquisition unit 1206 can usually also be implemented with an MPU or memory power. The processing procedure for the functional element identifier acquisition unit 1206 to acquire one or more functional element identifiers is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, with hardware (dedicated circuit) It may be realized.
[0024] パラメータ取得部 1207は、シミュレーション命令受付部 1205が受け付けたシミュレ ーシヨン命令が有する構成要素識別子に対応する 1以上のパラメータをパラメータ管 理部 1204から取得する。パラメータ取得部 1207は、通常、 MPUやメモリ等から実 現され得る。パラメータ取得部 1207が 1以上のパラメータを取得するための処理手 順は、通常、ソフトウェアで実現され、当該ソフトウェアは ROM等の記録媒体に記録 されている。但し、ハードウェア(専用回路)で実現しても良い。  [0024] The parameter acquisition unit 1207 acquires from the parameter management unit 1204 one or more parameters corresponding to the constituent element identifiers included in the simulation command received by the simulation command reception unit 1205. The parameter acquisition unit 1207 can usually be realized from an MPU, a memory, or the like. The processing procedure for the parameter acquisition unit 1207 to acquire one or more parameters is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
[0025] 実行部 1208は、ノ メータ取得部 1207が取得したパラメータの一部または全部を 、機能要素識別子取得部 1206が取得した機能要素識別子と対になるシミュレーショ ン実現プログラムに渡し、当該シミュレーション実現プログラムを実行する。機能要素 識別子取得部 1206が取得した機能要素識別子と対になるシミュレーション実現プロ グラムは、機能要素情報格納部 1202における管理情報力も決定され得る。実行部 1 208は、通常、 MPUやメモリ等力も実現され得る。実行部 1208の処理手順は、通常 、ソフトウェアで実現され、当該ソフトウエアは ROM等の記録媒体に記録されている。 但し、ハードウェア(専用回路)で実現しても良い。  The execution unit 1208 passes a part or all of the parameters acquired by the meter acquisition unit 1207 to the simulation realization program paired with the functional element identifier acquired by the functional element identifier acquisition unit 1206, and performs the simulation. Run the realization program. The simulation information program paired with the functional element identifier acquired by the functional element identifier acquisition unit 1206 can also determine the management information power in the functional element information storage unit 1202. The execution unit 1 208 can usually also realize an MPU, a memory and the like. The processing procedure of the execution unit 1208 is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
生体情報送信部 1209は、実行部 1208におけるシミュレーションの実行により取得 した生体情報を制御装置 13に送信する。生体情報送信部 1209は、無線または有 線の通信手段等で実現され得る。  The biological information transmission unit 1209 transmits the biological information acquired by executing the simulation in the execution unit 1208 to the control device 13. The biological information transmission unit 1209 can be realized by a wireless or wired communication means.
細胞機能管理手段 12031は、生物の細胞または組織を識別する細胞識別子と機 能識別子の対応を管理して!/ヽる。  The cell function management means 12031 manages the correspondence between the cell identifier for identifying the cell or tissue of the organism and the function identifier!
[0026] 臓器細胞管理手段 12032は、臓器または器官を識別する臓器識別子と細胞識別 子の対応を管理して 、る。細胞機能管理手段 12031および臓器細胞管理手段 120 32は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能であ る。  [0026] The organ cell management means 12032 manages the correspondence between an organ identifier for identifying an organ or an organ and a cell identifier. The cell function management means 12031 and the organ cell management means 120 32 are preferably non-volatile recording media, but can also be realized by volatile recording media.
[0027] 指示部 1301は、シミュレーション装置 11に対して、シミュレーションの開始指示を 送付し、かつ細胞シミュレーション装置 12に対して、生体情報の送付を指示する。指 示部 1301は、例えば、無線または有線の通信手段等で実現され得る。  The instruction unit 1301 sends a simulation start instruction to the simulation apparatus 11 and instructs the cell simulation apparatus 12 to send biological information. The instruction unit 1301 can be realized by, for example, a wireless or wired communication unit.
[0028] 生体情報取得指示受付部 1302は、シミュレーション装置 11から生体情報の取得 の指示を受け付ける。受け付けとは、例えば、受信である。生体情報取得指示受付 部 1302は、例えば、無線または有線の通信手段等で実現され得る。 The biological information acquisition instruction receiving unit 1302 acquires biological information from the simulation apparatus 11. The instruction is accepted. The reception is, for example, reception. The biological information acquisition instruction receiving unit 1302 can be realized by, for example, a wireless or wired communication unit.
[0029] 生体情報取得部 1303は、生体情報の送付の指示に応じて、細胞シミュレーション 装置 12から生体情報を取得する。生体情報取得部 1303は、例えば、生体情報を受 信する。生体情報取得部 1303は、例えば、無線または有線の通信手段等で実現さ れ得る。 The biological information acquisition unit 1303 acquires biological information from the cell simulation device 12 in response to an instruction to send biological information. The biological information acquisition unit 1303 receives biological information, for example. The biological information acquisition unit 1303 can be realized by, for example, a wireless or wired communication unit.
[0030] 生体情報付与部 1304は、生体情報取得部 1303が取得した生体情報をシミュレ一 シヨン装置 11に送付する。送付とは、例えば、送信である。ただし、送付とは、シミュレ ーシヨン装置 11に生体情報を与える動作であれば良い。生体情報付与部 1304は、 例えば、無線または有線の通信手段等で実現され得る。  The biometric information adding unit 1304 sends the biometric information acquired by the biometric information acquiring unit 1303 to the simulation apparatus 11. Sending is transmission, for example. However, the sending may be an operation for giving biological information to the simulation apparatus 11. The biometric information providing unit 1304 can be realized by, for example, a wireless or wired communication unit.
[0031] 実行結果取得部 1305は、シミュレーション装置 11からシミュレーションの実行結果 である薬物動態情報を取得する。取得とは、例えば、受信である。実行結果取得部 1 305は、例えば、無線または有線の通信手段等で実現され得る。  The execution result acquisition unit 1305 acquires pharmacokinetic information that is a simulation execution result from the simulation apparatus 11. Acquisition is, for example, reception. The execution result acquisition unit 1 305 can be realized by, for example, a wireless or wired communication unit.
[0032] 実行結果表示部 1306は、実行結果取得部 1305が取得した薬物の薬物動態情報 を表示する。実行結果表示部 1306が薬物動態情報を表示する態様は問わない。実 行結果表示部 1306は、薬物動態情報をグラフで表示しても良いし、数字列と文字列 等で表示しても良いし、動画 (アニメーションなど)を用いて表示しても良い。実行結 果表示部 1306は、ディスプレイを含むと考えても含まないと考えても良い。実行結果 表示部 1306は、ディスプレイのドライバーソフトまたは、ディスプレイのドライバーソフ トとディスプレイ等で実現され得る。  The execution result display unit 1306 displays the pharmacokinetic information of the drug acquired by the execution result acquisition unit 1305. The manner in which the execution result display unit 1306 displays the pharmacokinetic information is not limited. The execution result display unit 1306 may display the pharmacokinetic information in a graph, a numerical string and a character string, or a moving image (such as an animation). The execution result display unit 1306 may or may not include a display. Execution Result Display Unit 1306 can be realized by display driver software or display driver software and a display.
以下、本情報処理システムの動作について説明する。まず、シミュレーション装置 1 1の動作について図 2のフローチャートを用いて説明する。  Hereinafter, the operation of the information processing system will be described. First, the operation of the simulation apparatus 11 will be described using the flowchart of FIG.
[0033] (ステップ S201)指示受付部 1101は、薬物の吸収または Zおよび排泄のシミュレ ーシヨンを開始する指示である開始指示を受け付けたか否かを判断する。開始指示 を受け付ければステップ S202に行き、開始指示を受け付けなければステップ S201 に戻る。  (Step S201) The instruction receiving unit 1101 determines whether or not a start instruction that is an instruction to start a drug absorption or Z and excretion simulation has been received. If the start instruction is accepted, the process goes to step S202. If the start instruction is not accepted, the process returns to step S201.
[0034] (ステップ S202)薬物情報受付部 1102は、シミュレーションの対象の薬物に関する 情報である薬物情報を受け付けた力否かを判断する。薬物情報を受け付ければステ ップ S203に行き、薬物情報を受け付けなければステップ S202に戻る。 [0034] (Step S202) The drug information receiving unit 1102 determines whether or not it has received the drug information, which is information on the drug to be simulated. If you accept drug information, Go to step S203, and if drug information is not accepted, return to step S202.
[0035] (ステップ S203)生体情報受付部 1104は、生体の情報に関する生体情報を受け 付けたか否かを判断する。生体情報を受け付ければステップ S204に行き、生体情 報を受け付けなければステップ S203に戻る。 (Step S203) The biological information receiving unit 1104 determines whether or not biological information related to biological information has been received. If biometric information is accepted, the process goes to step S204, and if biometric information is not accepted, the process returns to step S203.
(ステップ S204)演算実行部 1106は、演算式格納部 1105から薬物動態情報出力 演算式を読み出す。  (Step S204) The calculation execution unit 1106 reads the pharmacokinetic information output calculation formula from the calculation formula storage unit 1105.
[0036] (ステップ S205)演算実行部 1106は、ステップ S202で受け付けた薬物情報と、ス テツプ S203で受け付けた生体情報をパラメータとして、ステップ S204で取得した薬 物動態情報出力演算式を実行する。  (Step S205) The calculation execution unit 1106 executes the pharmacokinetic information output calculation formula acquired in step S204 using the drug information received in step S202 and the biological information received in step S203 as parameters.
(ステップ S206)出力部 1107は、演算実行部 1106の実行結果の情報である薬物 動態情報を出力する。  (Step S206) The output unit 1107 outputs pharmacokinetic information which is information on the execution result of the calculation execution unit 1106.
[0037] (ステップ S207)生体情報取得指示部 1103は、生体情報を取得することを指示す る生体情報取得指示を制御装置 13に送信する。なお、シミュレーション装置 11は、 生体情報取得指示を制御装置 13に送信せずに、制御装置 13から生体情報を取得 しても良い。かかる場合、細胞シミュレーション装置 12が自発的に生体情報を制御装 置 13に送信する、または制御装置 13が自発的に生体情報を細胞シミュレーション装 置 12から取得する等の動作となる。また、制御装置 13から生体情報を取得するタイミ ングは、定期的であることが望ましいが、定期的であることは必須ではない。  (Step S207) The biological information acquisition instruction unit 1103 transmits a biological information acquisition instruction to the control device 13 to indicate acquisition of biological information. Note that the simulation apparatus 11 may acquire biological information from the control apparatus 13 without transmitting the biological information acquisition instruction to the control apparatus 13. In such a case, the cell simulation device 12 voluntarily transmits the biological information to the control device 13, or the control device 13 voluntarily acquires the biological information from the cell simulation device 12. In addition, it is desirable that the timing for acquiring the biological information from the control device 13 is periodic, but it is not essential to be periodic.
なお、図 2のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は 終了する。  In the flowchart of FIG. 2, the process ends when the power is turned off or the process is terminated.
次に、細胞シミュレーション装置 12の動作について図 3のフローチャートを用いて 説明する。  Next, the operation of the cell simulation device 12 will be described using the flowchart of FIG.
[0038] (ステップ S301)シミュレーション命令受付部 1205は、構成要素識別子 (ここでは、 例えば、臓器識別子)を有するシミュレーション命令を受け付けたか否かを判断する 。シミュレーション命令を受け付ければステップ S302に行き、シミュレーション命令を 受け付けなければステップ S314に行く。なお、ここでは、シミュレーション命令は、制 御装置 13から受け付けるシミュレーションの開始指示である。  (Step S301) The simulation command receiving unit 1205 determines whether or not a simulation command having a component identifier (here, for example, an organ identifier) has been received. If a simulation command is accepted, the process proceeds to step S302. If a simulation command is not accepted, the process proceeds to step S314. Here, the simulation command is a simulation start instruction received from the control device 13.
(ステップ S302)シミュレーション命令が有する臓器識別子を取得する。 (ステップ S303)機能要素識別子取得部 1206は、ステップ S 302で取得した臓器 識別子に対応する 1以上の細胞識別子を取得する。 (Step S302) An organ identifier included in the simulation command is acquired. (Step S303) The functional element identifier acquisition unit 1206 acquires one or more cell identifiers corresponding to the organ identifier acquired in step S302.
(ステップ S304)カウンタ iに 1を代入する。  (Step S304) 1 is assigned to the counter i.
[0039] (ステップ S305)実行部 1208は、ステップ S303で取得した細胞識別子にお!、て、 i番目の細胞識別子が存在するカゝ否かを判断する。潘目の細胞識別子が存在すれ ばステップ S306に行き、 i番目の細胞識別子が存在しなければ処理を終了する。な お、図 3のフローチャートが終了した場合でも、シミュレーション実現プログラムによる シミュレーション結果の出力は継続しても良 、ことは言うまでもな 、。 (Step S305) The execution unit 1208 determines whether or not the i-th cell identifier is present in the cell identifier acquired in step S303. If the cell identifier of the cell exists, the process goes to step S306, and if the i-th cell identifier does not exist, the process ends. Needless to say, even if the flowchart in Fig. 3 is completed, the simulation result output by the simulation realization program may continue.
(ステップ S306)機能要素識別子取得部 1206は、 i番目の細胞識別子に対応する 1以上の機能要素識別子を取得する。  (Step S306) The functional element identifier acquisition unit 1206 acquires one or more functional element identifiers corresponding to the i-th cell identifier.
(ステップ S307)カウンタ jに 1を代入する。  (Step S307) 1 is assigned to the counter j.
[0040] (ステップ S308)実行部 1208は、ステップ S306で取得した機能要素識別子にお いて、 j番目の機能要素識別子が存在するカゝ否かを判断する。 j番目の機能要素識別 子が存在すればステップ S309に行き、 j番目の機能要素識別子が存在しなければス テツプ S313に飛ぶ。 (Step S308) The execution unit 1208 determines whether or not the j-th functional element identifier exists in the functional element identifier acquired in step S306. If the jth functional element identifier exists, the process goes to step S309, and if the jth functional element identifier does not exist, the process jumps to step S313.
(ステップ S309)実行部 1208は、 j番目の機能要素識別子に対応するシミュレーシ ヨン実現プログラムを機能要素情報格納部 1202から読み出す。  (Step S309) The execution unit 1208 reads the simulation realization program corresponding to the j-th functional element identifier from the functional element information storage unit 1202.
[0041] (ステップ S310)パラメータ取得部 1207は、シミュレーション命令受付部 1205が受 け付けたシミュレーション命令が有する臓器識別子に対応する 1以上のパラメータを[0041] (Step S310) The parameter acquisition unit 1207 receives one or more parameters corresponding to the organ identifier included in the simulation command received by the simulation command receiving unit 1205.
、パラメータ管理部 1204から取得する。 Obtained from the parameter management unit 1204.
[0042] (ステップ S311)実行部 1208は、ステップ S310で取得した 1以上のパラメータを、 ステップ S309で取得したシミュレーション実現プログラムに渡し、当該シミュレーショ ン実現プログラムを実行する。 (Step S311) The execution unit 1208 passes the one or more parameters acquired in step S310 to the simulation implementation program acquired in step S309, and executes the simulation implementation program.
(ステップ S312)カウンタ jを 1インクリメントする。ステップ S308に戻る。  (Step S312) The counter j is incremented by one. Return to step S308.
(ステップ S313)カウンタ iを 1インクリメントする。ステップ S305に戻る。  (Step S313) The counter i is incremented by one. Return to step S305.
[0043] (ステップ S314)第二指示受付部 1201は、制御装置 13から生体情報の送信の指 示を受け付けたカゝ否かを判断する。生体情報の送信の指示を受け付ければステップ S315に行き、生体情報の送信の指示を受け付けなければステップ S301に戻る。 [0044] (ステップ S315)生体情報送信部 1209は、実行部 1208におけるシミュレーション の実行により得られた生体情報のうちから、薬物の吸収または Zおよび排泄のシミュ レーシヨンに必要な生体情報を取得する。なお、例えば、生体情報の送信の指示の 中に、薬物の吸収または Zおよび排泄のシミュレーションに必要な生体情報を示す 情報が含まれている。 (Step S 314) Second instruction accepting unit 1201 determines whether or not an instruction to transmit biometric information from control device 13 has been accepted. If an instruction to transmit biometric information is accepted, the process goes to step S315. If an instruction to transmit biometric information is not accepted, the process returns to step S301. (Step S315) The biological information transmitting unit 1209 acquires biological information necessary for drug absorption or Z and excretion simulation from the biological information obtained by executing the simulation in the execution unit 1208. For example, information indicating biological information necessary for simulation of drug absorption or Z and excretion is included in an instruction to transmit biological information.
(ステップ S316)生体情報送信部 1209は、ステップ S315で取得した生体情報を 制御装置 13に送信する。ステップ S301に戻る。  (Step S316) The biological information transmitting unit 1209 transmits the biological information acquired in Step S315 to the control device 13. Return to step S301.
[0045] なお、図 3のフローチャートにおいて、実行されるシミュレーション実現プログラムが 2以上の場合、実行される順序が決まっていても良いし、任意でも良い。また、シミュ レーシヨン実現プログラムは、例えば、制御装置 13からの指示だけではなぐ時間の 経過に伴って、定期的にまたは適切なタイミングでシミュレーション結果を出力しても 良い。  In the flowchart of FIG. 3, when two or more simulation realization programs are executed, the execution order may be determined or may be arbitrary. In addition, the simulation realization program may output the simulation result periodically or at an appropriate timing as time elapses beyond just an instruction from the control device 13, for example.
[0046] さらに、本実施の形態における情報処理システムにおいて利用する細胞シミュレ一 シヨン装置 12の機能は、細胞、主として上皮細胞のシミュレーション機能である。上皮 細胞のシミュレーション機能については、例えば、上記の非特許文献 2、非特許文献 3、非特許文献 4で記載されて ヽる演算式 (モデル)を実行することにより行なわれる。  Furthermore, the function of the cell simulation device 12 used in the information processing system in the present embodiment is a simulation function for cells, mainly epithelial cells. The epithelial cell simulation function is performed, for example, by executing an arithmetic expression (model) described in Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4 described above.
[0047] 非特許文献 2においては、膜電位、イオンの流れ、水の流れ、細胞容積の算出が 可能な演算式が開示されている。非特許文献 3においては、イオンの輸送に関与す るトランスポータの算出が可能な演算式が開示されている。非特許文献 4においては 、グルコーストランスポータの改良についての技術が開示されている。例えば、本細 胞シミュレーション装置 12における必要な演算、動作は、かかる 3つの非特許文献か ら実現できる。したがって、細胞のシミュレーションに関する詳細な説明は省略する。 次に、制御装置 13の動作について図 4のフローチャートを用いて説明する。  [0047] Non-Patent Document 2 discloses an arithmetic expression capable of calculating membrane potential, ion flow, water flow, and cell volume. Non-Patent Document 3 discloses an arithmetic expression capable of calculating transporters involved in ion transport. Non-Patent Document 4 discloses a technique for improving a glucose transporter. For example, necessary calculations and operations in the cell simulation device 12 can be realized from these three non-patent documents. Therefore, a detailed description of cell simulation is omitted. Next, the operation of the control device 13 will be described using the flowchart of FIG.
[0048] (ステップ S401 )指示部 1301は、シミュレーション装置 11および細胞シミュレーショ ン装置 12に対して、シミュレーションの開始指示を送付する。なお、通常、シミュレ一 シヨン装置 11および細胞シミュレーション装置 12のシミュレーションの同期を取るが、 同期をとらずに両者が動作しても良い場合もある。  (Step S 401) The instruction unit 1301 sends a simulation start instruction to the simulation apparatus 11 and the cell simulation apparatus 12. Normally, the simulations of the simulation apparatus 11 and the cell simulation apparatus 12 are synchronized, but there are cases where both may operate without synchronization.
[0049] (ステップ S402)生体情報取得指示受付部 1302は、シミュレーション装置 11から 生体情報の取得の指示を受け付けた力否かを判断する。生体情報の取得の指示を 受け付ければステップ S403に行き、生体情報の取得の指示を受け付けなければス テツプ S406に飛ぶ。 (Step S402) The biometric information acquisition instruction receiving unit 1302 starts from the simulation apparatus 11. It is determined whether or not the force of receiving an instruction to acquire biometric information is received. If the biometric information acquisition instruction is accepted, the process proceeds to step S403, and if the biometric information acquisition instruction is not accepted, the process jumps to step S406.
(ステップ S403)生体情報取得部 1303は、ステップ S402における生体情報の取 得指示に応じて、細胞シミュレーション装置 12に生体情報を送付する指示を行なう。  (Step S403) The biological information acquisition unit 1303 gives an instruction to send the biological information to the cell simulation device 12 in accordance with the biological information acquisition instruction in step S402.
(ステップ S404)生体情報取得部 1303は、ステップ S403における生体情報の送 付の指示に応じて、細胞シミュレーション装置 12から生体情報を取得する。  (Step S404) The biological information acquisition unit 1303 acquires biological information from the cell simulation device 12 in response to the instruction to send biological information in step S403.
(ステップ S405)生体情報付与部 1304は、ステップ S404で取得した生体情報を シミュレーション装置 11に送付する。ステップ S402に戻る。  (Step S405) The biometric information adding unit 1304 sends the biometric information acquired in step S404 to the simulation apparatus 11. Return to step S402.
[0050] (ステップ S406)実行結果取得部 1305は、シミュレーション装置 11からシミュレ一 シヨンの実行結果である薬物動態情報を取得した力否かを判断する。薬物動態情報 を取得すればステップ S407に行き、薬物動態情報を取得しなければステップ S402 に戻る。 (Step S 406) The execution result acquisition unit 1305 determines whether or not it has acquired the pharmacokinetic information, which is the execution result of the simulation, from the simulation apparatus 11. If pharmacokinetic information is acquired, the process goes to step S407, and if pharmacokinetic information is not acquired, the process returns to step S402.
(ステップ S407)実行結果表示部 1306は、ステップ S406で取得した薬物の薬物 動態情報を表示する。ステップ S402に戻る。  (Step S407) The execution result display unit 1306 displays the pharmacokinetic information of the drug acquired in step S406. Return to step S402.
なお、図 4のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は 終了する。  In the flowchart of FIG. 4, the process ends when the power is turned off or the process is terminated.
[0051] また、上記のブロック図やフローチャートにおいて、生体情報は、制御装置 13を経 由して、細胞シミュレーション装置 12からシミュレーション装置 11に通知された。しか し、細胞シミュレーション装置 12からシミュレーション装置 11に、直接に生体情報を 通知しても良い。  [0051] In the above block diagram and flowchart, the biological information is notified from the cell simulation device 12 to the simulation device 11 via the control device 13. However, the biological information may be directly notified from the cell simulation device 12 to the simulation device 11.
[0052] 以下、本実施の形態における情報処理システムの具体的な動作について説明する 。情報処理システムの動作の概念について図 5を用いて説明する。本情報処理シス テムの細胞シミュレーション装置 12は、特に、消化管上皮細胞のシミュレーションを 行う消化管上皮細胞シミュレーション装置である。  Hereinafter, a specific operation of the information processing system in the present embodiment will be described. The concept of the operation of the information processing system will be described with reference to FIG. The cell simulation device 12 of the information processing system is a gastrointestinal epithelial cell simulation device that performs simulation of gastrointestinal epithelial cells.
[0053] まず、細胞シミュレーション装置 12は、外部から、病態変化や先天異常などの機能 異常の情報を受け付ける。そして、トランスポータの駆動、イオンチャネルの開閉、浸 透圧変化、静水圧変化、電位の変化、水'イオンの移動などの生体情報の変化を算 出し、取得する。細胞シミュレーション装置 12が受け付ける病態変化等の情報の例と して、ウィルス感染による SGLT1活性低下に関する情報がある。細胞シミュレーショ ン装置 12が、かかるウィルス感染による SGLT1活性低下に関する情報を受け付け た場合、主な生体情報の変化は、下痢であり、かつ水の吸収速度の低下である。水 の吸収速度の低下は、つまり、細胞内の Na濃度の低下である。 First, the cell simulation device 12 receives information on functional abnormalities such as pathological changes and congenital abnormalities from the outside. It also calculates changes in biological information such as transporter drive, ion channel opening and closing, permeation pressure change, hydrostatic pressure change, potential change, and water ion movement. Get out and get. Examples of information such as pathological changes accepted by the cell simulation device 12 include information on SGLT1 activity reduction due to virus infection. When the cell simulation apparatus 12 receives information on SGLT1 activity decrease due to such virus infection, the main biological information change is diarrhea and a decrease in water absorption rate. The decrease in water absorption rate is the decrease in intracellular Na concentration.
[0054] 次に、細胞シミュレーション装置 12から制御装置 13に変数の値が受け渡される。変 数の値は、 pH、膜電位、水の吸収速度、細胞容積等である。かかる pH、膜電位、水 の吸収速度、細胞容積等の変数の値も、上述の生体情報である。さらに、制御装置 1 3からシミュレーション装置 11に、変数の値が渡される。  Next, the value of the variable is transferred from the cell simulation device 12 to the control device 13. Variable values include pH, membrane potential, water absorption rate, and cell volume. The values of variables such as pH, membrane potential, water absorption rate, and cell volume are also the above-described biological information. Further, the variable value is passed from the control device 13 to the simulation device 11.
[0055] そして、シミュレーション装置 11の生体情報受付部 1104は、 pH、膜電位、水の吸 収速度、細胞容積等の生体情報を受け付ける。そして、演算実行部 1106は、格納し ている薬物動態情報出力演算式を読み出す。そして、受け付けた生体情報と、予め 保持している薬物情報を読み出した薬物動態情報出力演算式に与え、当該薬物動 態情報出力演算式を実行する。薬物動態情報出力演算式の実行により、消化管内 の薬物の移動や、薬物の溶解や、薬物の pH変化による解離や、経細胞透過による 薬物の吸収や、細胞間隙透過による薬物の吸収や、薬物の肝代謝や、薬物の腎排 泄ゃ、 P糖タンパクによる薬物の輸送や、初回通過代謝 (肝、小腸などによる)につい ての情報が取得される。かかる場合、薬物情報は、溶解度、溶解速度定数、膜透過 係数、酸解離定数 (pKa)、In Vitro 肝代謝速度、血漿タンパク結合率、動物デー タカゝら予想されるヒトでの腎クリアランス、分布容積値、 P糖タンパクに対するミカエリス メンテン定数 (Km)、最大輸送速度 (Vmax)などがある。  [0055] The biological information receiving unit 1104 of the simulation apparatus 11 receives biological information such as pH, membrane potential, water absorption rate, and cell volume. Then, the calculation execution unit 1106 reads out the stored pharmacokinetic information output calculation formula. Then, the received biological information and pre-stored drug information are given to the read pharmacokinetic information output calculation formula, and the drug behavior information output calculation formula is executed. By executing the pharmacokinetic information output calculation formula, the movement of the drug in the digestive tract, the dissolution of the drug, the dissociation due to the pH change of the drug, the absorption of the drug by transcellular permeation, the absorption of the drug by permeation of the cell gap, Information on liver metabolism, renal excretion of drugs, drug transport by P-glycoprotein, and first-pass metabolism (by liver, small intestine, etc.). In such cases, drug information includes solubility, dissolution rate constant, membrane permeability coefficient, acid dissociation constant (pKa), in vitro liver metabolic rate, plasma protein binding rate, animal data, and expected human renal clearance and distribution. There are volume values, Michaelis-Menten constant for P-glycoprotein (Km), and maximum transport rate (Vmax).
[0056] そして、シミュレーション装置 11の出力部 1107は、薬物動態情報出力演算式の実 行結果に基づく情報を出力する。この実行結果に基づく情報は、薬物動態情報であ る。薬物動態情報の例として、薬物の吸収速度、薬物の代謝速度、薬物の尿中排泄 速度、薬物の初回通過代謝速度、薬物の血中濃度、薬物の累積吸収量、薬物の累 積腎排泄量、薬物の累積代謝量等がある。  [0056] Then, the output unit 1107 of the simulation apparatus 11 outputs information based on the execution result of the pharmacokinetic information output arithmetic expression. Information based on this execution result is pharmacokinetic information. Examples of pharmacokinetic information include drug absorption rate, drug metabolism rate, drug urinary excretion rate, drug first-pass metabolic rate, drug blood concentration, drug absorption, drug accumulation renal excretion And cumulative metabolic rate of drugs.
[0057] また、上記では、詳細に述べな力つた力 細胞シミュレーション装置 12は、出力す る変数の値が平衡状態に達した場合は、シミュレーション (計算)を停止し、最後に得 られた値を保持している。一方、シミュレーション装置 11は、細胞シミュレーション装 置 12の動作の状態 (動作中または停止中など)に関わらず、細胞シミュレーション装 置 12から生体情報を取得しながら、薬物動態情報の算出を続ける。なお、薬物動態 情報出力演算式の実行結果と出力される薬物動態情報は、同一でも良いし、異なる ものでも良い。 [0057] In addition, in the above description, the force cell simulation device 12 described in detail stops the simulation (calculation) when the value of the output variable reaches an equilibrium state, and finally obtains the value. Is held. On the other hand, the simulation device 11 continues to calculate pharmacokinetic information while acquiring biological information from the cell simulation device 12 regardless of the state of operation of the cell simulation device 12 (operating or stopped). The execution result of the pharmacokinetic information output calculation formula and the output pharmacokinetic information may be the same or different.
次に、以下に、具体的なシミュレーション、およびその結果について、 2つの具体例 を用いて、さらに説明する。  Next, specific simulations and results will be further described below using two specific examples.
[0058] [具体例 1] [0058] [Specific Example 1]
細胞シミュレーション装置 12において、例えば、ウィルス感染による SGLT1活性が 低下する旨の情報と、シミュレーション対象の臓器識別子または細胞識別子を受け 付ける。そして、細胞シミュレーション装置 12は、臓器識別子で識別される臓器に含 まれる細胞識別子、または受け付けた細胞識別子に対応するシミュレーション実現プ ログラムを読み出す。そして、細胞シミュレーション装置 12は、当該プログラムを実現 する。すると、 SGLT1活性が低下するので、細胞シミュレーション装置 12は、 Naと G1 ucoseの細胞内への流入が抑制されるような情報を算出する。  The cell simulation device 12 receives, for example, information indicating that SGLT1 activity is reduced due to virus infection and an organ identifier or cell identifier to be simulated. Then, the cell simulation device 12 reads the simulation identifier corresponding to the cell identifier included in the organ identified by the organ identifier or the received cell identifier. The cell simulation device 12 implements the program. Then, since SGLT1 activity falls, the cell simulation apparatus 12 calculates information that the inflow of Na and G1 ucose into cells is suppressed.
[0059] 次に、細胞シミュレーション装置 12は、 Naと Glucoseの細胞内の濃度に対する消 化管腔内の濃度の差が SGLT1活性の低下により大きくなるシミュレーション結果を 算出する。これは、正常時に比べて、管腔内と細胞内との浸透圧差が大きい状態が 得られたこととなる。また、これは、浸透圧差による水の流れ (浸透圧の低いところから 高いところへ)が小さくなり、管腔内に水が溜まることを意味する。管腔内に水が溜ま ることは、下痢の要因にもなる。さらに、細胞シミュレーション装置 12は、管腔内から の水の流入速度を算出する。ここでの流入とは、細胞内への流入と細胞間隙への流 入をいう。細胞シミュレーション装置 12は、 Naと Glucoseの管腔内の濃度が高くなつ た状況において、細胞内への流入速度と細胞間隙への流入速度のいずれもが低下 する、というシミュレーション結果を算出する。かかる細胞内への水の流入と細胞間隙 への水の流入の概念図を図 6に示す。 [0059] Next, the cell simulation device 12 calculates a simulation result in which the difference in the concentration in the extinction lumen with respect to the intracellular concentrations of Na and Glucose becomes larger due to the decrease in SGLT1 activity. This means that an osmotic pressure difference between the lumen and the cell is larger than that in the normal state. This also means that the flow of water due to the osmotic pressure difference (from low to high osmotic pressure) becomes smaller and water accumulates in the lumen. Accumulation of water in the lumen can also cause diarrhea. Furthermore, the cell simulation device 12 calculates the inflow speed of water from the inside of the lumen. The inflow here means inflow into cells and inflow into cell gaps. The cell simulation device 12 calculates a simulation result that both the inflow rate into the cell and the inflow rate into the cell gap decrease in a situation where the concentrations of Na and Glucose in the lumen increase. Fig. 6 shows a conceptual diagram of the inflow of water into the cell and the inflow of water into the cell gap.
次に、シミュレーション装置 11の指示受付部 1101は、シミュレーションの開始指示 を制御装置 13から受け付ける。そして、薬物情報受付部 1102は、格納している薬物 の溶解度 (ここでは、 5.0)や溶解速度定数などの薬物情報を読み出す。 Next, the instruction receiving unit 1101 of the simulation apparatus 11 receives a simulation start instruction from the control apparatus 13. The drug information receiving unit 1102 stores the stored drug. Drug information such as solubility (5.0 here) and dissolution rate constant.
次に、シミュレーション装置 11の生体情報受付部 1104は、細胞シミュレーション装 置 12から制御装置 13を経由して、細胞内への水の流入速度と細胞間隙への水の流 入速度の情報、膜電位などの生体情報を取得する。  Next, the living body information receiving unit 1104 of the simulation apparatus 11 passes information about the inflow speed of water into the cell and the inflow speed of water into the cell gap from the cell simulation apparatus 12 via the control apparatus 13, and the membrane. Biological information such as potential is acquired.
そして、シミュレーション装置 11の演算実行部 1106は、図 7に示す薬物動態情報 出力演算式を演算式格納部 1105から読み出し、実行していく。薬物動態情報出力 演算式は、例えば、微分方程式である。図 7における nは図 19におけるコンパ一トメ ント群の左力 n番目を意味し、上段、中段、下段の各コンパートメントは各々 Mn, Sn, Enの薬物量の値を持っている。また、コンパートメント間の矢印は各々、図 7及 び図 8で計算される薬物の移動速度の値を持つ。まず、シミュレーション装置 11は、 図 7 (a)の薬物動態情報出力演算式を実行する。そして、シミュレーション装置 11は 、固体薬物量の時間変化の情報を得る。さらに具体的には、演算実行部 1106は、「 dM = (Κ ·Μ _ -Κ ·Μ -dissolution) X dt」を、 dtを所定間隔(例えば、 0. 1秒 )で計算し、 dtごとの n番目コンパートメントにおける固体薬物量 (Mn)を算出する。図 7 (a)の薬物動態情報出力演算式において、「dM」は、固体薬物量 (Mn)の増加量 である。 Kは、管腔内容物の移動速度定数であり、演算式格納部 1105 (記録媒体) に予め格納されている定数である。「dissolution」は、拡散によって溶出される速度 であり、図 8の式により算出され得る。演算実行部 1106は、演算式格納部 1105から 演算式とともに、定数 (Kなど)も読み出し、演算式を実行することは言うまでもない。 なお、演算実行部 1106が微分方程式を実行する場合に、 dtを所定間隔 (例えば、 0 . 1秒)で演算することは、他の微分方程式の実行においても同様であり、コンビユー タにおける公知の技術 ·処理であるので、詳細な説明は省略する。図 7 (a)より、演算 実行部 1106は、固体薬物量 (Mn)を算出する際に、管腔内容物の移動速度定数と 溶解速度をパラメータとする関数を実行して算出する。また、演算実行部 1106は、 管腔内容物の移動速度定数をパラメータとする増加関数であり、溶解速度をパラメ一 タとする減少関数の実行により固体薬物量 (Mn)を算出する。つまり、演算実行部 11 06が固体薬物量 (Mn)を算出する演算式は、図 7 (a)に限られない。 Then, the calculation execution unit 1106 of the simulation apparatus 11 reads the pharmacokinetic information output calculation formula shown in FIG. 7 from the calculation formula storage unit 1105 and executes it. Pharmacokinetic information output The calculation formula is, for example, a differential equation. In FIG. 7, n means the left force n of the compartment group in FIG. 19, and the upper, middle, and lower compartments respectively have drug amounts of Mn, Sn, and En. In addition, the arrows between the compartments each have the value of the drug movement speed calculated in FIG. 7 and FIG. First, the simulation apparatus 11 executes the pharmacokinetic information output calculation formula of FIG. Then, the simulation apparatus 11 obtains information on the time change of the solid drug amount. More specifically, the operation execution unit 1106 calculates “dM = (Κ · Μ _ -Κ · Μ -dissolution) X dt” at a predetermined interval (eg, 0.1 second), and every dt Calculate the amount of solid drug (Mn) in the nth compartment. In the pharmacokinetic information output calculation formula of FIG. 7 ( a ), “dM” is the amount of increase in the solid drug amount (Mn). K is a moving speed constant of the lumen contents, and is a constant stored in advance in the arithmetic expression storage unit 1105 (recording medium). “Dissolution” is the rate of elution by diffusion and can be calculated by the formula in FIG. It goes without saying that the arithmetic execution unit 1106 reads constants (K and the like) from the arithmetic expression storage unit 1105 together with the arithmetic expression and executes the arithmetic expression. Note that, when the calculation execution unit 1106 executes a differential equation, the calculation of dt at a predetermined interval (for example, 0.1 second) is the same in the execution of other differential equations. Since it is technology · processing, detailed explanation is omitted. From FIG. 7 (a), the calculation execution unit 1106 calculates a solid drug amount (Mn) by executing a function using the movement rate constant of the luminal contents and the dissolution rate as parameters. Further, the calculation execution unit 1106 is an increase function using the moving rate constant of the lumen contents as a parameter, and calculates the solid drug amount (Mn) by executing a decrease function using the dissolution rate as a parameter. That is, the calculation formula for calculating the solid drug amount (Mn) by the calculation execution unit 1106 is not limited to FIG. 7 (a).
次に、シミュレーション装置 11の演算実行部 1106は、演算式格納部 1105から図 7 (b)の薬物動態情報出力演算式を読み出し、実行する。そして、シミュレーション装 置 11は、溶解している薬物量の時間変化の情報を得る。図 7 (b)の薬物動態情報出 力演算式において、算出する「S」は11番目の消化管コンパートメントにおける液体の 薬物量、「V」は水の容積であり、図 7 (b)の 3つ目の微分方程式の実行により得られ る。「C」は、 n番目の消化管腔コンパートメント中の薬物濃度であり、図 7 (b)の 2つ目 の微分方程式の実行により得られる。 flux (para)は、電気化学ポテンシャル勾配に 基づく拡散と容積流輸送の両者ないしいずれかによつて薬物が管腔側力も細胞隙に 輸送される速度であり、図 8に示す演算式の実行により算出される。また、 flux (trans )は、電気化学ポテンシャル勾配に基づく拡散と能動的輸送の両者あるいはいずれ かによつて薬物が管腔側力 細胞内に輸送される速度であり、図 8に示す演算式の 実行により算出される。 P— gpは、 P糖タンパク質による薬物戻り速度であり、例えば 予め演算式格納部 1105に格納されている定数 Κ , V によって計算される。演算 Next, the calculation execution unit 1106 of the simulation apparatus 11 receives the calculation formula storage unit 1105 from FIG. Read and execute the pharmacokinetic information output calculation formula in (b). Then, the simulation apparatus 11 obtains information on the time change of the dissolved drug amount. In the pharmacokinetic information output formula of Fig. 7 (b), the calculated "S" is the amount of liquid drug in the eleventh gastrointestinal compartment, and "V" is the volume of water. Obtained by executing the first differential equation. “C” is the drug concentration in the nth gastrointestinal compartment, and is obtained by executing the second differential equation in FIG. 7 (b). Flux (para) is the rate at which the luminal side force is transported into the cell space by diffusion and / or volumetric flow transport based on the electrochemical potential gradient. Calculated. Flux (trans) is the rate at which the drug is transported into the luminal force cell by diffusion and / or active transport based on the electrochemical potential gradient. Calculated by execution. P-gp is a drug return rate by P glycoprotein, and is calculated by, for example, constants, and V stored in the arithmetic expression storage unit 1105 in advance. Calculation
m max  m max
実行部 1106は、図 7 (b)の薬物動態情報出力演算式を実行する際に、 P-gpを演算 式格納部 1105から読み出して、当該薬物動態情報出力演算式に与える。 waterflu Xは、水の吸収速度 (細胞内、細胞膜)であり、細胞シミュレータ装置 12が生成し、制 御装置 13経由で送付され、予め演算式格納部 1105に格納されて 、る変数の値で ある。演算実行部 1106は、図 7 (b)の薬物動態情報出力演算式を実行する際に、 w aterfluxを演算式格納部 1105から読み出して、当該薬物動態情報出力演算式に 与える。図 7 (b)より、演算実行部 1106は、水の容積、溶解速度、薬物の細胞隙ルー ト速度 (flux (para) )、薬物の細胞内ルート速度 (flux (trans) )、 P糖タンパク質によ る薬物戻り速度 (P— gp)、水の吸収速度 (細胞内、細胞膜)(waterflux)をパラメ一 タとする関数により、液体薬物量及び薬物濃度を算出する。演算実行部 1106は、溶 解速度と、 P糖タンパク質による薬物戻り速度 (P— gp)をパラメータとする増加関数で あり、薬物の細胞隙ルート速度(flux (para) )、薬物の細胞内ルート速度(flux (tran s) )をパラメータとする減少関数により、液体薬物量 (Sn)及び薬物濃度 (Cn)を算出 する。つまり、演算実行部 1106が液体薬物量 (Sn)及び薬物濃度 (Cn)を算出する 演算式は、図 7 (b)に限られない。 When executing the pharmacokinetic information output calculation formula of FIG. 7 (b), the execution section 1106 reads P-gp from the calculation formula storage section 1105 and gives it to the pharmacokinetic information output calculation formula. waterflu X is the water absorption rate (intracellular, cell membrane), generated by the cell simulator device 12, sent via the control device 13, and stored in the arithmetic expression storage unit 1105 in advance as a variable value. is there. When executing the pharmacokinetic information output arithmetic expression of FIG. 7B, the arithmetic execution unit 1106 reads out the waterflux from the arithmetic expression storage unit 1105 and gives it to the pharmacokinetic information output arithmetic expression. From Fig. 7 (b), the calculation execution unit 1106 shows the volume of water, dissolution rate, drug cell void root velocity (flux (para)), drug intracellular route velocity (flux (trans)), P glycoprotein I that drug return speed (P- g p), the absorption rate of water by (intracellular, cell membranes) (waterflux) function to parameters one motor, and calculates the liquid amount of drug and drug concentrations. The calculation execution unit 1106 is an increasing function using the dissolution rate and the drug return rate (P—gp) by the P-glycoprotein as parameters, and the drug cell gap root velocity (flux (para)), the drug intracellular route The liquid drug amount (Sn) and drug concentration (Cn) are calculated using a decreasing function with the velocity (flux (tran s)) as a parameter. That is, the calculation formula for calculating the liquid drug amount (Sn) and the drug concentration (Cn) by the calculation execution unit 1106 is not limited to FIG. 7 (b).
次に、シミュレーション装置 11の演算実行部 1106は、演算式格納部 1105から図 7 (c)の薬物動態情報出力演算式を読み出し、実行する。そして、シミュレーション装 置 11は、上皮細胞内の薬物量の時間変化の情報を得る。図 7 (c)の薬物動態情報 出力演算式において、算出する「E」は、上皮細胞内の薬物量である。 absorption は上皮細胞からの吸収速度であり、図 8の「absorption」と同じであり、「absorption 」の演算式により算出される。 metabolismは、消化管における代謝速度であり、図 8 の「metabolic— rate」と同じであり、図 8の「metabolic— rate」の演算式により算出 される。また、「Ce」は、 n番目の上皮細胞コンパートメントの細胞内薬物濃度、「Ve 」は細胞容積である。図 7 (c)より、演算実行部 1106は、薬物の細胞内ルート速度 (fl ux (trans) )、上皮細胞からの吸収速度、消化管における代謝速度、 P糖タンパク質 による薬物戻り速度 (P— gp)を計算する関数の実行により、上皮細胞内の薬物量を 算出する。演算実行部 1106は、薬物の細胞内ルート速度 (flux (trans) )をパラメ一 タとする増加関数であり、上皮細胞からの吸収速度、消化管における代謝速度、 P糖 タンパク質による薬物戻り速度 (P—gp)をパラメータとする減少関数の実行により、上 皮細胞内の薬物量 (En)を算出する。つまり、演算実行部 1106が上皮細胞内の薬 物量 (En)を算出する演算式は、図 7 (c)に限られない。 Next, the calculation execution unit 1106 of the simulation apparatus 11 receives the calculation formula storage unit 1105 from FIG. Read and execute the pharmacokinetic information output calculation formula of (c). Then, the simulation device 11 obtains information on the time change of the drug amount in the epithelial cells. Pharmacokinetic information in Fig. 7 (c) In the calculation formula, “E” is the amount of drug in the epithelial cells. The absorption is the absorption rate from the epithelial cells, which is the same as “absorption” in FIG. 8, and is calculated by the arithmetic expression “absorption”. Metabolism is the metabolic rate in the digestive tract, which is the same as “metabolic-rate” in FIG. 8, and is calculated by the “metabolic-rate” equation in FIG. “Ce” is the intracellular drug concentration of the nth epithelial cell compartment, and “Ve” is the cell volume. From Fig. 7 (c), the operation execution unit 1106 shows that the intracellular route speed of the drug (fl ux (trans)), the absorption rate from the epithelial cells, the metabolic rate in the digestive tract, the drug return rate by P glycoprotein (P— The amount of drug in the epithelial cells is calculated by executing a function that calculates gp). The calculation execution unit 1106 is an increasing function with the intracellular route velocity (flux (trans)) of the drug as a parameter, the absorption rate from the epithelial cells, the metabolic rate in the digestive tract, the drug return rate by the P-glycoprotein ( The amount of drug (En) in the epidermal cells is calculated by executing a decreasing function with P-gp) as a parameter. That is, the calculation formula for calculating the drug amount (En) in the epithelial cells by the calculation execution unit 1106 is not limited to FIG. 7 (c).
次に、シミュレーション装置 11の演算実行部 1106は、演算式格納部 1105から図 7 Next, the calculation execution unit 1106 of the simulation apparatus 11 receives the calculation formula storage unit 1105 from FIG.
(d)の薬物動態情報出力演算式を実行する。そして、シミュレーション装置 11は、血 漿中の薬物量の時間変化の情報を得る。図 7 (d)の薬物動態情報出力演算式にお いて、算出する「C 」は、血漿中薬物濃度である。また、 Fは、肝アベイラビリティ (d) The pharmacokinetic information output calculation formula is executed. Then, the simulation device 11 obtains information on the time change of the drug amount in the plasma. In the pharmacokinetic information output calculation formula in FIG. 7 (d), “C” to be calculated is the plasma drug concentration. F is the liver availability
plasma h  plasma h
一 (肝初回通過後に代謝されな力つた薬物の割合)であり、薬物の in vitro実験から 得られる代謝速度力も disparsion model式などによって算出される。一方、肝初回 通過によって薬物が代謝される速度は absorption— rate' (1— Fh)で表され、時間 に対して積分して累積肝初回通過代謝量が計算される。 CLhは肝クリアランス、 CLr は腎クリアランス、 Vdは分布容積 (薬物)であり、それぞれ予め演算式格納部 1105 に格納されている定数である。肝代謝速度、尿中排泄速度はそれぞれ CLh' C 1 (the ratio of the drug that has not been metabolized after the first pass through the liver), and the metabolic rate force obtained from the in vitro experiment of the drug is also calculated by the disparsion model equation. On the other hand, the rate at which the drug is metabolized by the first pass of the liver is expressed as absorption-rate '(1-Fh), and is integrated over time to calculate the cumulative first pass metabolic rate of the liver. CLh is liver clearance, CLr is renal clearance, and Vd is a distribution volume (drug), which are constants stored in advance in the arithmetic expression storage unit 1105. Liver metabolic rate and urinary excretion rate are CLh 'C
plasma plasma
, CLr-C で表され、時間に対して積分して累積肝代謝量、累積尿中排泄量が , CLr-C and integrated over time, cumulative liver metabolism and cumulative urinary excretion
plasma  plasma
計算される。演算実行部 1106は、図 7 (d)の薬物動態情報出力演算式を実行する 際に、各定数を演算式格納部 1105から読み出して、当該薬物動態情報出力演算 式に与える。図 7 (d)より、演算実行部 1106は、肝アベイラビリティ一 (F )、上皮細胞 h Calculated. When executing the pharmacokinetic information output calculation formula in FIG. 7 (d), the calculation execution unit 1106 reads out each constant from the calculation formula storage unit 1105 and outputs the pharmacokinetic information output calculation formula. Give to the expression. From FIG. 7 (d), the operation execution unit 1106 shows that the liver availability is the highest (F), the epithelial cell h
内から血液への吸収速度(absorption)、薬物の細胞隙ルート速度(flux (para) )、 肝クリアランス (CLh)による薬物消失速度、腎クリアランス (CLr)による尿中排泄速 度、分布容積 (Vd)をパラメータとする関数の実行により、血漿中薬物濃度 (C ) plasma を算出する。演算実行部 1106は、肝アベイラビリティ一 (F )、上皮細胞内から血液 h Absorption rate into the blood (absorption), drug cell root velocity (flux (para)), drug elimination rate due to liver clearance (CLh), urinary excretion rate due to renal clearance (CLr), distribution volume (Vd ) Is used as a parameter to calculate the plasma drug concentration (C) plasma. Arithmetic execution unit 1106 has the highest liver availability (F), blood from the epithelial cell h
への吸収速度(absorption)、薬物の細胞隙ルート速度 (flux (para) )力 なる増加 関数と、肝クリアランス (CLh)による薬物消失速度、腎クリアランス (CLr)による尿中 排泄速度力もなる減少関数の実行により体内薬物量を算出し、さらに分布容積 (Vd) で除して血漿中薬物濃度 (C )を算出する。つまり、演算実行部 1106が血漿中 plasma Absorption, drug space gap velocity (flux (para)) force increase function, liver clearance (CLh) drug disappearance rate, renal clearance (CLr) urinary excretion rate force decrease function The amount of drug in the body is calculated by performing the above, and the drug concentration in plasma (C) is calculated by dividing by the distribution volume (Vd). In other words, the calculation execution unit 1106
薬物濃度 (C )を算出する演算式は、図 7 (d)に限られない。 The calculation formula for calculating the drug concentration (C) is not limited to FIG. 7 (d).
plasma  plasma
なお、図 7中の変数(二重線の値)を求める演算式を図 8に示す。図 8において、矩 形で囲まれている式力 今回のシミュレーション結果に変化を及ぼすための重要な式 である。  Fig. 8 shows the equation for calculating the variables (double line values) in Fig. 7. In Fig. 8, the expression force enclosed by a rectangle is an important expression for changing the simulation results.
また、図 7において下線の変数 (waterflux、 Ve )は、細胞シミュレーション装置 12 から、制御装置 13経由で、シミュレーション装置 11に、その値が与えられる変数であ る。  In FIG. 7, the underlined variables (waterflux, Ve) are variables whose values are given from the cell simulation device 12 to the simulation device 11 via the control device 13.
図 8において、 dissolutionは、拡散によって溶出される速度である。 flux (para)は 、電気化学ポテンシャル勾配に基づく拡散と容積流輸送の両者な 、し 、ずれかによ つて薬物が輸送される速度である。 flux (trans)は、電気化学ポテンシャル勾配に基 づく拡散と能動的輸送の両者あるいはいずれかによつて薬物が輸送される速度であ る。 absorption— rateは、上皮細胞及び細胞隙からの吸収速度である。 metabolic —rateは、酵素反応理論によって表される代謝速度である。 Pは、 paracellular  In FIG. 8, dissolution is the rate of dissolution by diffusion. Flux (para) is the rate at which the drug is transported by either diffusion or volumetric flow based on the electrochemical potential gradient, but not by any deviation. Flux (trans) is the rate at which a drug is transported by diffusion and / or active transport based on an electrochemical potential gradient. Absorption-rate is the rate of absorption from epithelial cells and cell space. metabolic -rate is the metabolic rate expressed by enzyme reaction theory. P is paracellular
P  P
routeの膜透過性であり、 pKaは酸 '塩基解離定数である。また、図 8において、 pK aを含むすべての計算式は塩基性薬物の場合を示しており、酸性薬物の場合には図 8下段にある Henderson - Hasselbachの式に基づ!/、て(pKa— pH )の項が(pH -pKa)となる。  The membrane permeability of route, pKa is the acid 'base dissociation constant. Also, in FIG. 8, all the calculation formulas including pKa show the case of a basic drug, and in the case of an acidic drug, it is based on the Henderson-Hasselbach formula at the bottom of FIG. — The term of pH is (pH -pKa).
そして、細胞シミュレーション装置 12は、シミュレーション装置 11の薬物吸収または Z排泄等のシミュレーション中に、図 9、図 10に示す変化する生体情報を制御装置 1 3経由で、シミュレーション装置 11に送る。なお、図 9、図 10における生体情報の変 化は、シミュレーション装置 11の薬物シミュレーションが開始されてから 60分経過し た後からの生体情報の変化である。つまり、図 9において、横軸(時間)の「0」は、薬 物シミュレーションが開始されてから 60分経過した時である。 Then, during the simulation of drug absorption or Z excretion of the simulation device 11, the cell simulation device 12 controls the changing biological information shown in FIG. 9 and FIG. 3 to send to simulation device 11. The changes in the biological information in FIGS. 9 and 10 are changes in the biological information after 60 minutes have elapsed since the start of the drug simulation of the simulation apparatus 11. In other words, “0” on the horizontal axis (time) in FIG. 9 is when 60 minutes have elapsed since the start of the drug simulation.
[0062] 図 9において、(a)は、生体情報の一つである pH値の変化を示すグラフであり、縦 軸に pH、横軸に SGLTl活性が低下し始める 60分後からの時間(min)を示している 。同様に、図 9 (b)は、 SGLT1活性 molGlcZsec)の時間推移(60—120min) を示すグラフであり、図 9 (c)は、管腔側細胞表面と細胞間隙空間との電位差つまり、 膜電位 (mV)の時間推移(60— 120min)を示すグラフである。図 10は、水の流量速 度の変化を示すグラフであり、横軸に SGLT1活性が低下し始める 60分後からの時 間(min)、縦軸に水の流量速度 (mlZsec)を表している。図 10の上部の線は、細胞 内ルートと細胞隙ルートの双方の水の流量速度の変化を示すグラフである。図 10の 下部の線は、細胞隙ルートの水の流量速度の変化を示すグラフである。  [0062] In Fig. 9, (a) is a graph showing the change in pH value, which is one of the biological information. The vertical axis represents pH and the horizontal axis represents the time from 60 minutes after SGLTl activity begins to decrease ( min). Similarly, Fig. 9 (b) is a graph showing the time course (60-120min) of SGLT1 activity molGlcZsec), and Fig. 9 (c) shows the potential difference between the luminal cell surface and the intercellular space, that is, the membrane. It is a graph which shows the time transition (60-120min) of electric potential (mV). Figure 10 is a graph showing changes in the water flow rate, with the horizontal axis representing the time (min) after 60 minutes when SGLT1 activity begins to decrease and the vertical axis representing the water flow rate (mlZsec). Yes. The upper line in Fig. 10 is a graph showing changes in the water flow rate in both the intracellular route and the cell space route. The lower line in Fig. 10 is a graph showing the change in the water flow rate of the cell space route.
[0063] シミュレーション装置 11は、図 9、図 10に示す生体情報を随時 (定期的または不定 期に)、細胞シミュレーション装置 12から制御装置 13経由で受け取る。ただし、生体 情報の変化があった場合のみ、シミュレーション装置 11が生体情報を受け取る構成 でも良い。  The simulation apparatus 11 receives the biological information shown in FIGS. 9 and 10 from the cell simulation apparatus 12 via the control apparatus 13 at any time (regularly or irregularly). However, the configuration may be such that the simulation apparatus 11 receives the biological information only when the biological information has changed.
[0064] そして、シミュレーション装置 11は、図 11 (b)に示す薬物の移動速度の変化を出力 する。図 11 (a)及び (b)の横軸は薬物服用後の経過時間(min)、縦軸は薬物の移 動速度 gZmin)である。なお、ここでは、図 11 (b)の表示は、制御装置 13が行な う。制御装置 13は、図 11 (b)のグラフ表示に必要な薬物動態情報をシミュレーション 装置 11から取得することは言うまでもない。また、図 11 (b)のグラフは、ウィルス感染 時の薬物の移動速度の変化である。正常時の薬物の移動速度の変化は、図 11 (a) に示すグラフになる。細胞シミュレーション装置 12において、ウィルス感染による SGL T1活性が低下する旨の情報を受け付けな!/、場合 (正常な場合)、シミュレーション装 置 11は、図 11 (a)に示すグラフを構成する薬物動態情報を出力し、制御装置 13は 図 11 (a)に示すグラフを表示する。なお、図 11の(1)、 (3)のグラフは、薬物の吸収 速度を示す。図 11の(2)、 (4)のグラフは、薬物の尿中排泄速度を示す。 [0065] また、シミュレーション装置 11は、図 12 (b)に示す薬物量の変化を出力する。図 12 (a)及び (b)の横軸は薬物服用後の経過時間(min)、縦軸は薬物量( μ g)である。 なお、ここでは、図 12 (b)の表示は、制御装置 13が行なう。制御装置 13は、図 12 (b )のグラフ表示に必要な薬物動態情報をシミュレーション装置 11から取得することは 言うまでもない。また、図 12 (b)のグラフは、ウィルス感染時の薬物量の変化である。 正常時の薬物量の変化は、図 12 (a)に示すグラフになる。細胞シミュレーション装置 12において、ウィルス感染による SGLT1活性が低下する旨の情報を受け付けない 場合 (正常な場合)、シミュレーション装置 11は、図 12 (a)に示すグラフを構成する薬 物動態情報を出力し、制御装置 13は図 12 (a)に示すグラフを表示する。なお、図 12 の(1) (5)のグラフは循環血液中の薬物量、(2) (6)は累積尿中排泄量、(3) (7)は 循環血中薬物の累積肝代謝量、(4) (8)は累積初回通過代謝量を示す。 [0064] Then, the simulation apparatus 11 outputs a change in the moving speed of the drug shown in Fig. 11 (b). In Fig. 11 (a) and (b), the horizontal axis is the elapsed time (min) after taking the drug, and the vertical axis is the drug movement speed (gZmin). Here, the display of FIG. 11B is performed by the control device 13. Needless to say, the control device 13 acquires the pharmacokinetic information necessary for the graph display of FIG. 11B from the simulation device 11. In addition, the graph in Fig. 11 (b) shows the change in drug movement speed during virus infection. The change in drug movement speed during normal operation is shown in the graph in Fig. 11 (a). In the cell simulation device 12, information indicating that SGL T1 activity decreases due to virus infection is not accepted! / If (normal), the simulation device 11 uses the pharmacokinetics constituting the graph shown in FIG. The information is output, and the control device 13 displays the graph shown in FIG. 11 (a). The graphs (1) and (3) in Fig. 11 show the drug absorption rate. The graphs (2) and (4) in Fig. 11 show the urinary excretion rate of the drug. [0065] Further, the simulation apparatus 11 outputs a change in the amount of drug shown in FIG. 12 (b). In Fig. 12 (a) and (b), the horizontal axis is the elapsed time (min) after taking the drug, and the vertical axis is the drug amount (µg). Here, the display of FIG. 12 (b) is performed by the control device 13. Needless to say, the control device 13 acquires the pharmacokinetic information necessary for the graph display in FIG. 12 (b) from the simulation device 11. In addition, the graph in FIG. 12 (b) shows the change in drug amount during virus infection. The change in drug amount at normal time is shown in the graph in FIG. 12 (a). If the cell simulation device 12 does not accept information indicating that the SGLT1 activity is reduced due to virus infection (normal), the simulation device 11 outputs the pharmacokinetic information constituting the graph shown in Fig. 12 (a). Then, the control device 13 displays the graph shown in FIG. The graphs (1) and (5) in Fig. 12 show the amount of drug in the circulating blood, (2) and (6) show the cumulative urinary excretion, and (3) and (7) show the cumulative liver metabolism of the circulating blood drug. , (4) and (8) show cumulative first-pass metabolism.
[0066] また、図 12 (b)は、以下のことを示す。つまり、ウィルス感染時において、管腔内か らの細胞間隙への水の流入によって容積流輸送される薬物量が低下する。加えて、 管腔内に水が溜まるので、薬物拡散の駆動力である管腔内の薬物濃度が低下して、 細胞内および細胞間隙へ拡散する薬物量も低下する。以上の理由から、薬物の流 入速度(吸収速度)が低下し、吸収量も低下する。なお、図 6の細胞内ルートにおけ る薬物の移動速度は、主に濃度勾配に依存する。一方、細胞隙ルートにおける薬物 の移動速度は、水の流れる速度(以下の数式 1の Waterflux)に大きくに依存する。 細胞間隙ルートは、解離して 、る状態および解離して 、な 、状態の 、ずれの薬物分 子も通るが、腸管 pH領域で解離しやすい薬物では,細胞内ルートを透過できない解 離型の割合が多く,相対的に細胞間隙ルートを通過する寄与が高く,水の流入速度 の影響を受けやすい。また、管腔-細胞内間の濃度勾配 (管腔〉細胞内)が小さくな り、吸収速度が低下する。この際、薬物の溶解度が低い場合よりも、溶解度が高い場 合に影響が大きく出ると考えられる。  [0066] FIG. 12 (b) shows the following. In other words, during viral infection, the amount of drug transported by volume flow decreases due to the inflow of water from the lumen into the cell gap. In addition, since water accumulates in the lumen, the drug concentration in the lumen, which is the driving force for drug diffusion, decreases, and the amount of drug that diffuses into cells and cell gaps also decreases. For the above reasons, the inflow rate (absorption rate) of the drug decreases and the absorption amount also decreases. Note that the moving speed of the drug in the intracellular route in FIG. 6 mainly depends on the concentration gradient. On the other hand, the moving speed of the drug in the cell space route depends greatly on the water flow speed (Waterflux in the following Equation 1). The intercellular route is dissociated, dissociated, dissociated, and the drug molecules in the dissociated state also pass through. However, a drug that is easily dissociated in the intestinal pH region cannot be permeated through the intracellular route. The ratio is large and the contribution through the intercellular space route is relatively high, and it is easily affected by the inflow rate of water. In addition, the concentration gradient between the lumen and the cell (lumen> intracellular) becomes smaller and the absorption rate decreases. At this time, it is considered that the effect is greater when the solubility of the drug is higher than when the solubility of the drug is low.
[数 1]
Figure imgf000024_0001
[Number 1]
Figure imgf000024_0001
なお、数式 1における右辺の第 1項は、コンスタントフィールドセオリーに基づく薬物 の流入速度である。また、前記数式における右辺の第 2項は、消化管腔と細胞間隙 の薬物濃度差に基づく薬物の流入速度である。さらに、前記数式における右辺の第 3項は、水の流れに伴って流入する薬物の流入速度である。  The first term on the right side of Equation 1 is the inflow rate of the drug based on the constant field theory. In addition, the second term on the right side in the above formula is the inflow rate of the drug based on the drug concentration difference between the digestive tract cavity and the cell gap. Furthermore, the third term on the right side of the mathematical formula is the inflow rate of the drug that flows in along with the flow of water.
また、図 9、図 10、図 11における、正常時と比較した感染時の変化は、数式 1の第 3項における演算結果の変化によるところが大きい。  In addition, the changes during infection in Figure 9, Figure 10, and Figure 11 are largely due to the change in the calculation result in the third term of Equation 1.
[具体例 2]  [Specific example 2]
具体例 2は、具定例 1における実験環境と比較して、唾液の分泌によって管腔内に 一定速度で水を与えるように設定したシミュレーションシステムにおけるシミュレーショ ン結果を出力するものである。  Concrete example 2 outputs the simulation results in a simulation system set to give water to the lumen at a constant rate by the secretion of saliva, compared to the experimental environment in example 1.
この設定は、図 7 (a)式における n= 1の時の数式を数式 2の様に与えることで行われ る。数式 2において、「salivary flow」は唾液分泌速度である。演算実行部 1106は 、演算式格納部 1105に格納されている「salivary flow」の値を読み出して、演算式 を実行する。 This setting is done by giving the formula when n = 1 in Fig. 7 (a) as shown in formula 2. In Equation 2, “salivary flow” is the salivary secretion rate. The arithmetic execution unit 1106 reads the value of “salivary flow” stored in the arithmetic expression storage unit 1105 and executes the arithmetic expression.
[数 2] [Equation 2]
^ Τ- - salivary flow一 Kt- Vx 一 waterflux ^ Τ --salivary flow one K t -V x one waterflux
dt  dt
具体例 2において、具体例 1における場合と同様に、細胞シミュレーション装置 12 において、例えば、ウィルス感染による SGLT1活性が低下した場合 (SGLT1活性が 薬物服用後 10分力も 40分の 30分間に 100%から 10%に低下した場合)の情報と、 シミュレーション対象の臓器識別子または細胞識別子を受け付ける。そして、細胞シ ミュレーシヨン装置 12は、臓器識別子で識別される臓器に含まれる細胞識別子、また は受け付けた細胞識別子に対応するシミュレーション実現プログラムを読み出す。そ して、細胞シミュレーション装置 12は、当該プログラムを実現する。すると、 SGLT1活 性が低下するので、細胞シミュレーション装置 12は、 Naと Glucoseの細胞内への流 入が抑制されるような情報を算出する。 In Specific Example 2, as in Specific Example 1, the cell simulation device 12 For example, when SGLT1 activity is reduced due to virus infection (SGLT1 activity is reduced from 100% to 10% in 30 minutes for 40 minutes after taking the drug) and the organ identifier or cell to be simulated Accept identifiers. Then, the cell simulation device 12 reads a simulation identifier corresponding to the cell identifier included in the organ identified by the organ identifier or the received cell identifier. Then, the cell simulation device 12 realizes the program. Then, since the SGLT1 activity decreases, the cell simulation device 12 calculates information that suppresses the inflow of Na and Glucose into the cell.
なお、具体例 2においては、具体例 1における場合と比較して、 Kt, Pp及び溶解度 の値を増やし、 pKa及び腎クリアランスの値を低下させて!/、る。  In Example 2, compared to the case in Example 1, increase the values of Kt, Pp and solubility, and decrease the values of pKa and renal clearance!
さらに具体的には、細胞シミュレーション装置 12は、図 13に示す生体情報の一つ である pH値の時間推移 (縦軸は pH、横軸は薬物服用後の経過時間(min) )を示す グラフの値を生成し、制御装置 13経由でシミュレーション装置 11に送付する。また、 細胞シミュレーション装置 12は、図 14に示す SGLT1活性の時間推移 (縦軸は SGL T1輸送活性 ( μ molGlc/sec)、横軸は薬物服用後の経過時間(min) )を示すダラ フの値を生成し、制御装置 13経由でシミュレーション装置 11に送付する。また、細胞 シミュレーション装置 12は、図 15に示す管腔側細胞表面と細胞間隙空間との電位差 の時間推移 (縦軸は電位 (mV)、横軸は薬物服用後の経過時間 (min) )を示すダラ フの値を生成し、制御装置 13経由でシミュレーション装置 11に送付する。また、細胞 シミュレーション装置 12は、図 16の(1)に示す細胞内ルートと細胞隙ルートの双方の 水の流量速度の時間推移を示すグラフの値を生成し、制御装置 13経由でシミュレ一 シヨン装置 11に送付する。図 16の縦軸は水の流量速度 (mlZsec)、横軸は薬物服 用後の経過時間(min)である。さらに、細胞シミュレーション装置 12は、図 16の(2) に示す細胞隙ルートの水の流量速度の時間推移を示すグラフの値を生成し、制御装 置 13経由でシミュレーション装置 11に送付する。  More specifically, the cell simulation apparatus 12 is a graph showing the time transition of pH value (vertical axis is pH, horizontal axis is elapsed time (min) after taking a drug), which is one of the biological information shown in FIG. Is generated and sent to the simulation device 11 via the control device 13. In addition, the cell simulation apparatus 12 shows a time chart of SGLT1 activity shown in FIG. 14 (the vertical axis is SGL T1 transport activity (μmolGlc / sec), and the horizontal axis is the elapsed time (min) after taking the drug). A value is generated and sent to the simulation device 11 via the control device 13. In addition, the cell simulation device 12 shows the time transition of the potential difference between the luminal cell surface and the interstitial space shown in FIG. 15 (the vertical axis is the potential (mV), and the horizontal axis is the elapsed time after taking the drug (min)). A value of the indicated draft is generated and sent to the simulation device 11 via the control device 13. In addition, the cell simulation device 12 generates a graph value indicating the time transition of the water flow rate of both the intracellular route and the cell space route shown in (1) of FIG. 16, and the simulation is performed via the control device 13. Send to device 11. The vertical axis in Fig. 16 is the water flow rate (mlZsec), and the horizontal axis is the elapsed time (min) after taking the drug. Further, the cell simulation device 12 generates a graph value indicating the time transition of the flow rate of the water in the cell gap route shown in (2) of FIG. 16 and sends it to the simulation device 11 via the control device 13.
つまり、シミュレーション装置 11は、図 13から図 16に示す生体情報を随時 (定期的 または不定期に)、細胞シミュレーション装置 12から制御装置 13経由で受け取る。な お、シミュレーション装置 11は、生体情報の変化があった場合のみ、シミュレーション 装置 11が生体情報を受け取る構成でも良!、。 That is, the simulation apparatus 11 receives the biological information shown in FIGS. 13 to 16 from the cell simulation apparatus 12 via the control apparatus 13 at any time (regularly or irregularly). Note that the simulation device 11 performs simulation only when there is a change in biological information. The device 11 may be configured to receive biological information! ,.
そして、シミュレーション装置 11は、図 17 (al)に示す薬物の移動速度の時間推移 を示すグラフを出力する。図 17の縦軸は薬物の移動速度 gZmin)、横軸は薬物 服用後の経過時間(min)である。また、シミュレーション装置 11は、図 17 (bl)に示 す薬物の尿中排泄速度の時間推移を示すグラフを出力する。  Then, the simulation apparatus 11 outputs a graph showing the time transition of the drug moving speed shown in FIG. 17 (al). The vertical axis in FIG. 17 is the drug movement speed (gZmin), and the horizontal axis is the elapsed time (min) after taking the drug. Further, the simulation apparatus 11 outputs a graph showing the time transition of the urinary excretion rate of the drug shown in FIG. 17 (bl).
なお、図 17 (al) (bl)は、それぞれ SGLT1阻害時の薬物の吸収速度の時間推移 、薬物の尿中排泄速度の時間推移を示すグラフである。一方、図 17 (a2) (b2)は、 それぞれ正常時の薬物の吸収速度の時間推移、薬物の尿中排泄速度の時間推移 を示すグラフである。図 17 (a2) (b2)は、細胞シミュレーション装置 12が生成し、制 御装置 13経由で送付した各種情報が正常である場合の、シミュレーション装置 11の シミュレーション結果である。  FIGS. 17 (al) and (bl) are graphs showing the time transition of the drug absorption rate and the time transition of the urinary excretion rate of the drug when SGLT1 is inhibited, respectively. On the other hand, FIGS. 17 (a2) and (b2) are graphs showing the time transition of the absorption rate of the drug and the time transition of the urinary excretion rate of the drug, respectively. FIGS. 17 (a2) and 17 (b2) are simulation results of the simulation apparatus 11 when various information generated by the cell simulation apparatus 12 and sent via the control apparatus 13 is normal.
また、シミュレーション装置 11は、図 18 (al)に示す循環血中の薬物量の時間推移 を示すグラフを出力する。図 18の縦軸は薬物量 g)、横軸は薬物服用後の経過時 間(min)である。また、シミュレーション装置 11は、図 18 (bl)に示す薬物の累積尿 中排泄量の時間推移を示すグラフを出力する。さらに、シミュレーション装置 11は、 図 18 (d)に示す循環血中薬物の累積肝代謝量の時間推移、図 18 (dl)に示す累 積肝初回通過代謝量の時間推移を示すグラフを出力する。  In addition, the simulation apparatus 11 outputs a graph showing the time transition of the amount of drug in the circulating blood shown in FIG. 18 (al). The vertical axis in FIG. 18 is the drug amount g), and the horizontal axis is the elapsed time (min) after taking the drug. In addition, the simulation apparatus 11 outputs a graph showing the time transition of the cumulative urinary excretion of the drug shown in FIG. 18 (bl). Furthermore, the simulation apparatus 11 outputs a graph showing the time transition of the cumulative liver metabolic rate of the circulating blood drug shown in FIG. 18 (d) and the time transition of the cumulative liver first-pass metabolic rate shown in FIG. 18 (dl). .
なお、図 18 (al) (bl) (cl) (dl)は、それぞれ SGLT1阻害時の循環血中の薬物 量の時間推移、薬物の累積尿中排泄量の時間推移、循環血中薬物の累積肝代謝 量、累積肝初回通過代謝量の時間推移を示すグラフである。一方、図 18 (a2) (b2) (c2) (d2)は、それぞれ正常時の循環血中の薬物量の時間推移、薬物の累積尿中 排泄量の時間推移、循環血中薬物の累積肝代謝量、累積肝初回通過代謝量の時 間推移を示すグラフである。図 18 (a2) (b2) (c2) (d2)は、細胞シミュレーション装置 12が生成し、制御装置 13経由で送付した各種情報が正常である場合の、シミュレ一 シヨン装置 11のシミュレーション結果である。  Figures 18 (al), (bl), (cl), and (dl) show the time course of circulating drug amount, the time course of cumulative urinary excretion of drug, and the cumulative amount of circulating blood drug when SGLT1 is inhibited, respectively. 2 is a graph showing the time course of liver metabolism and cumulative first-pass metabolism of liver. On the other hand, Figure 18 (a2), (b2), (c2), and (d2) show the time course of the amount of drug in the circulating blood, the time course of the cumulative urinary excretion of the drug, 3 is a graph showing the time course of metabolic rate and cumulative hepatic first-pass metabolic rate. Fig. 18 (a2), (b2), (c2), and (d2) are the simulation results of the simulation device 11 when various information generated by the cell simulation device 12 and sent via the control device 13 is normal. .
以上、本実施の形態によれば、シミュレーションの対象の薬物に関する情報である 薬物情報と、生体の情報に関する生体情報に基づいて、薬物の吸収または Zおよび 排泄等をシミュレーションするシミュレーション装置であって、薬物の吸収シミュレーシ ヨンを行っている間にも動的に、生体情報を受け付けるシミュレーション装置が提供 できる。したがって、個体差、または薬物投与前後における生体 (細胞)の刺激、また は病態変化等を考慮した薬物吸収または Zおよび排泄等のシミュレーションができる As described above, according to the present embodiment, a simulation apparatus that simulates drug absorption or Z and excretion based on drug information that is information related to a drug to be simulated and biological information related to biological information, Drug absorption simulation It is possible to provide a simulation device that dynamically accepts biological information even while playing. Therefore, it is possible to simulate drug absorption or Z and excretion taking into account individual differences, biological (cell) stimulation before and after drug administration, or pathological changes, etc.
[0069] また、本実施の形態によれば、細胞シミュレーションの精度の高 、細胞のシミュレ一 シヨン結果を薬物吸収または zおよび排泄等のシミュレーションに利用できることによ り、薬物吸収または Zおよび排泄等のシミュレーションの精度が極めて高くなる。 [0069] Further, according to the present embodiment, since the accuracy of cell simulation is high and the result of cell simulation can be used for simulation of drug absorption or z and excretion, drug absorption or Z and excretion, etc. The accuracy of simulation is extremely high.
[0070] なお、本実施の形態によれば、生体情報は、細胞シミュレーション装置力 制御装 置を経由してシミュレーション装置に与えられた力 生体情報は細胞シミュレーション 装置から直接シミュレーション装置に与えられても良い。かかる場合、制御装置は不 要である。したがって、シミュレーション装置は、細胞内の動きをシミュレートする細胞 シミュレーション装置からの出力である生体情報を受け付け (ここでの受け付けは、直 接および間接を含む)、当該生体情報と薬物情報に基づいて、薬物の吸収または Z および排泄をシミュレーションするシミュレーション装置であって、当該シミュレーショ ンを行っている間にも動的に、前記生体情報を受け付けるシミュレーション装置であ る。  [0070] According to the present embodiment, the biological information is a force applied to the simulation device via the cell simulation device force control device, and the biological information is applied directly to the simulation device from the cell simulation device. good. In such a case, a control device is unnecessary. Therefore, the simulation device accepts biological information that is output from the cell simulation device that simulates the movement in the cell (acceptance here includes direct and indirect), and based on the biological information and drug information. A simulation apparatus that simulates drug absorption or Z and excretion, and that dynamically receives the biological information during the simulation.
[0071] また、本実施の形態によれば、生体情報は、細胞シミュレーション装置力 シミュレ ーシヨン装置に与えられた。しかし、本実施の形態において、生体情報は、細胞シミ ユレーシヨン装置から、必ずしも与えられる必要はない。本実施の形態において、生 体情報は、動的にシミュレーション装置に与えられれば良い。例えば、シミュレーショ ン装置は、定期的にユーザに、生体情報の入力を求めるパネルを表示し、ユーザか らの生体情報の入力を受け付けても良い。シミュレーション装置は、新しい生体情報 の入力を受け付けた場合に、当該生体情報を用いて薬物のシミュレーションを行う。 また、例えば、シミュレーション装置は、予め格納している複数の生体情報の組を、シ ミュレーシヨン中に切り換えながら用いて、薬物のシミュレーションを行っても良い。さ らに、細胞シミュレーション装置以外の装置から、例えば、定期的に生体情報を受信 しても良い。つまり、本実施の形態におけるシミュレーション装置は、シミュレーション の対象の薬物に関する情報である薬物情報と、生体の情報に関する生体情報に基 づいて、薬物の吸収または Zおよび排泄をシミュレーションするシミュレーション装置 であって、当該シミュレーションを行っている間にも動的に、前記生体情報を受け付 けるシミュレーション装置である。 [0071] Also, according to the present embodiment, the biological information is given to the cell simulation apparatus power simulation apparatus. However, in the present embodiment, the biological information is not necessarily given from the cell simulation device. In the present embodiment, the biological information may be given to the simulation apparatus dynamically. For example, the simulation apparatus may periodically display a panel for requesting input of biometric information to the user and accept input of biometric information from the user. When receiving an input of new biological information, the simulation apparatus performs a drug simulation using the biological information. Further, for example, the simulation apparatus may perform drug simulation by using a plurality of sets of biological information stored in advance while switching between simulations. Further, for example, biological information may be periodically received from an apparatus other than the cell simulation apparatus. In other words, the simulation apparatus according to the present embodiment is based on drug information that is information about a drug to be simulated and biological information about biological information. Accordingly, a simulation apparatus for simulating drug absorption or Z and excretion, which dynamically accepts the biological information during the simulation.
[0072] また、本実施の形態における細胞シミュレーション装置の動き、機能は、上記に説 明したものに限らない。細胞、特に上皮細胞等に関する情報である生体情報 (例え ば、膜電位、イオンの流れ、水の流れ、細胞容積、イオンの輸送に関与するトランス ポータなど)が取得でき、最終的にシミュレーション装置が当該生体情報を利用でき れば良い。  [0072] In addition, the movement and function of the cell simulation device in the present embodiment are not limited to those described above. Biological information (eg, membrane potential, ion flow, water flow, cell volume, transporter involved in ion transport, etc.) that is information about cells, especially epithelial cells, etc. can be acquired. It is sufficient if the biological information can be used.
[0073] また、本実施の形態によれば、薬物動態情報は、薬物の状態を示す状態情報だけ であったが、薬物を吸収する部位を示す部位情報を有しても良い。つまり、シミュレ一 シヨン装置 11の出力結果は、どの部位 (例えば、胃、十二指腸など)で、薬物がどの ような状況力 (薬物の吸収速度や、吸収量など)を示す情報であっても良い。かかる シミュレーションの概念図を図 19に示す。図 19において、「胃」「十二指腸」「空腸」「 回腸」「大腸」などの部位が横軸 (横ライン)である。また、薬物の状態または存在する 層が縦軸 (縦ライン)である。薬物の状態または存在する層とは、「固体状態」「溶解状 態」「上皮細胞」「血管」である。「固体状態」とは,薬物が固体状態で消化管腔に存在 すること, 「溶解状態」とは薬物が溶解状態で消化管腔に存在すること, 「上皮細胞」 とは、上皮細胞に薬物が存在すること、「血管」とは血管内に薬物が存在することを示 す。「固体状態」, 「溶解状態」, 「上皮細胞」のボックスには、薬物の量が示され得る。 また、図 19の矢印は、薬物の流れを示す。  [0073] Further, according to the present embodiment, the pharmacokinetic information is only the state information indicating the state of the drug, but may include region information indicating the region that absorbs the drug. In other words, the output result of the simulation device 11 may be information indicating what state force (drug absorption rate, amount of absorption, etc.) the drug is in any part (for example, stomach, duodenum, etc.). . Figure 19 shows a conceptual diagram of such simulation. In FIG. 19, parts such as “stomach”, “duodenum”, “jejunum”, “ileum” and “large intestine” are on the horizontal axis (horizontal line). In addition, the state of the drug or the existing layer is the vertical axis (vertical line). The drug state or existing layer is “solid state”, “dissolved state”, “epithelial cell”, “blood vessel”. “Solid state” means that the drug exists in the digestive tract cavity in a solid state, “dissolved state” means that the drug exists in the digestive tract cavity in a dissolved state, and “epithelial cell” means that the drug is in the epithelial cell. “Vessel” means that a drug is present in the blood vessel. In the “solid state”, “dissolved state”, and “epithelial cell” boxes, the amount of drug can be indicated. Moreover, the arrow of FIG. 19 shows the flow of the drug.
[0074] さらに、本実施の形態における処理は、ソフトウェアで実現しても良い。そして、この ソフトウェアをソフトウェアダウンロード等により配布しても良い。また、このソフトウェア を CD— ROMなどの記録媒体に記録して流布しても良い。なお、このことは、本明細 書における他の実施の形態においても該当する。なお、本実施の形態におけるシミ ユレーシヨン装置を実現するソフトウェアは、以下のようなプログラムである。つまり、こ のプログラムは、コンピュータに、シミュレーションの対象の薬物に関する情報である 薬物情報を受け付ける薬物情報受付ステップと、生体の情報に関する生体情報を受 け付ける生体情報受付ステップと、前記薬物情報と、前記生体情報をパラメータとし て、格納している薬物動態情報出力演算式に渡し、前記薬物動態情報出力演算式 を実行する演算実行ステップと、前記演算実行ステップにおける実行結果に基づく 情報である薬物動態情報を出力する出力ステップを実行させるためのプログラム、で ある。なお、薬物情報受付ステップは、薬物情報を読み込み動作でも良い。 Furthermore, the processing in the present embodiment may be realized by software. This software may be distributed by software download or the like. In addition, this software may be recorded and distributed on a recording medium such as a CD-ROM. This also applies to other embodiments in this specification. The software that realizes the simulation device in the present embodiment is the following program. In other words, this program has a drug information receiving step for receiving drug information, which is information about a drug to be simulated, a biological information receiving step for receiving biological information about biological information, the drug information, Using the biological information as a parameter The pharmacokinetic information output calculation formula is passed to the stored pharmacokinetic information output calculation formula, and the pharmacokinetic information output calculation formula is executed, and the pharmacokinetic information that is information based on the execution result in the calculation execution step is output. This is a program for executing The drug information receiving step may be an operation of reading drug information.
さらに、上記プログラムは、前記生体情報受付ステップにおいて、細胞内の動きを シミュレートした細胞シミュレーション結果である生体情報を受け付けることは好適で ある。  Furthermore, it is preferable that the program receives biological information, which is a result of cell simulation simulating movement in a cell, in the biological information receiving step.
また、図 20は、本明細書で述べたプログラムを実行して、上述した種々の実施の形 態のシミュレーション装置を実現するコンピュータの外観を示す。上述の実施の形態 は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムで実現 され得る。図 20は、このコンピュータシステム 340の概観図であり、図 21は、コンビュ ータシステム 340のブロック図である。  FIG. 20 shows the external appearance of a computer that executes the programs described in this specification and realizes the simulation apparatus of the various embodiments described above. The above-described embodiments can be realized by computer hardware and a computer program executed thereon. FIG. 20 is an overview diagram of the computer system 340, and FIG. 21 is a block diagram of the computer system 340.
図 20において、コンピュータシステム 340は、 FD (Flexible Disk)ドライブ、 CD -ROM (Compact Disk Read Only Memory)ドライブを含むコンピュータ 34 1と、キーボード 342と、マウス 343と、モニタ 344とを含む。  In FIG. 20, a computer system 340 includes a computer 341 including an FD (Flexible Disk) drive and a CD-ROM (Compact Disk Read Only Memory) drive, a keyboard 342, a mouse 343, and a monitor 344.
図 21において、コンピュータ 341は、 FDドライブ 3411、 CD— ROMドライブ 3412 に加えて、 CPU (Central Processing Unit) 3413と、 CPU3413、 CD— ROM ドライブ 3412及び FDドライブ 3411に接続されたバス 3414と、ブートアッププログラ ム等のプログラムを記憶するための ROM (Read-Only Memory) 3415と、 CPU 3413に接続され、アプリケーションプログラムの命令を一時的に記憶するとともに一 時記憶空間を提供するための RAM (Random Access Memory) 3416と、アプリ ケーシヨンプログラム、システムプログラム、及びデータを記憶するためのハードデイス ク 3417とを含む。ここでは、図示しないが、コンピュータ 341は、さらに、 LANへの接 続を提供するネットワークカードを含んでも良 、。  In FIG. 21, in addition to the FD drive 3411 and the CD-ROM drive 3412, the computer 341 includes a CPU (Central Processing Unit) 3413, a bus 3414 connected to the CPU 3413, the CD-ROM drive 3412 and the FD drive 3411, and a boot. A ROM (Read-Only Memory) 3415 for storing programs such as up-programs and a RAM (Random) connected to the CPU 3413 for temporarily storing application program instructions and providing a temporary storage space Access Memory) 3416 and an application program, a system program, and a hard disk 3417 for storing data. Although not shown here, the computer 341 may further include a network card that provides connection to the LAN.
コンピュータシステム 340に、上述した実施の形態のシミュレーション装置の機能を 実行させるプログラムは、 CD— ROM3501、または FD3502に記憶されて、 CD— R OMドライブ 3412または FDドライブ 3411に挿入され、さらにハードディスク 3417に 転送されても良い。これに代えて、プログラムは、図示しないネットワークを介してコン ピュータ 341に送信され、ハードディスク 3417に記憶されても良い。プログラムは実 行の際に RAM3416にロードされる。プログラムは、 CD— ROM3501、 FD3502ま たはネットワークから直接、ロードされても良い。 A program for causing the computer system 340 to execute the function of the simulation apparatus of the above-described embodiment is stored in the CD-ROM 3501 or FD 3502, inserted into the CD-ROM drive 3412 or FD drive 3411, and further stored in the hard disk 3417. May be forwarded. Instead, the program is executed via a network (not shown). It may be transmitted to the computer 341 and stored in the hard disk 3417. The program is loaded into RAM3416 when executed. The program may be loaded directly from CD-ROM3501, FD3502 or network.
プログラムは、コンピュータ 341に、上述した実施の形態のシミュレーション装置の 機能を実行させるオペレーティングシステム (OS)、またはサードパーティープロダラ ム等は、必ずしも含まなくても良い。プログラムは、制御された態様で適切な機能 (モ ジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んで ヽ れば良い。コンピュータシステム 340がどのように動作するかは周知であり、詳細な説 明は省略する。  The program does not necessarily include an operating system (OS) or a third-party program that causes the computer 341 to execute the functions of the simulation apparatus according to the above-described embodiment. The program only needs to include an instruction part that calls an appropriate function (module) in a controlled manner and obtains a desired result. How the computer system 340 operates is well known and will not be described in detail.
また、上記各実施の形態において、各処理 (各機能)は、単一の装置 (システム)に よって集中処理されることによって実現されてもよぐあるいは、複数の装置によって 分散処理されることによって実現されてもょ 、。  In each of the above embodiments, each process (each function) may be realized by centralized processing by a single device (system), or by distributed processing by a plurality of devices. It will be realized.
[0076] なお、上記プログラムにお 、て、情報を送信する送信ステップや、情報を受信する 受信ステップなどでは、ハードウェアによって行われる処理、例えば、送信ステップに おけるモデムやインターフェースカードなどで行われる処理 (ノヽ一ドウエアでしか行わ れな 、処理)は含まれな!/、。 [0076] In the above program, the transmission step for transmitting information and the reception step for receiving information are performed by hardware, for example, a modem or an interface card in the transmission step. Does not include processing (processing that can only be done with software)! /.
また、このプログラムを実行するコンピュータは、単数であってもよぐ複数であって もよい。すなわち、集中処理を行ってもよぐあるいは分散処理を行ってもよい。  Further, the computer that executes this program may be a single computer or a plurality of computers. That is, centralized processing or distributed processing may be performed.
また、上記各実施の形態において、一の装置に存在する 2以上の通信手段は、物 理的に一の媒体で実現されても良いことは言うまでもない。  Further, in each of the above embodiments, it goes without saying that two or more communication means existing in one apparatus may be physically realized by one medium.
本発明は、以上の実施の形態に限定されることなぐ種々の変更が可能であり、そ れらも本発明の範囲内に包含されるものであることは言うまでもない。  The present invention can be variously modified without being limited to the above-described embodiments, and it goes without saying that these are also included in the scope of the present invention.
産業上の利用可能性  Industrial applicability
[0077] 以上のように、本発明に力かるシミュレーション装置は、個体差、または薬物投与前 後における生体 (細胞)の刺激、または病態変化等を考慮した薬物吸収または Zお よび排泄等のシミュレーションができるという効果を有し、医薬物や食品の動態研究、 毒性研究等に使用する情報処理装置等に利用できる。 [0077] As described above, the simulation apparatus according to the present invention is a simulation of drug absorption or Z and excretion in consideration of individual differences, biological (cell) stimulation before or after drug administration, or pathological changes. It can be used for information processing equipment used for drug and food dynamics studies and toxicity studies.
図面の簡単な説明 [図 1]実施の形態におけるシミュレーション装置のブロック図 Brief Description of Drawings FIG. 1 is a block diagram of a simulation apparatus according to an embodiment.
[図 2]同シミュレーション装置の動作について説明するフローチャート FIG. 2 is a flowchart for explaining the operation of the simulation apparatus.
[図 3]同細胞シミュレーション装置の動作について説明するフローチャートFIG. 3 is a flowchart for explaining the operation of the cell simulation apparatus.
[図 4]同制御装置の動作について説明するフローチャート FIG. 4 is a flowchart for explaining the operation of the control device.
[図 5]同情報処理システムの動作の概念図  [Figure 5] Conceptual diagram of operation of the information processing system
[図 6]同細胞内への水の流入と細胞間隙への水の流入の概念図 圆 7]同薬物動態情報出力演算式を示す図  [Figure 6] Schematic diagram of water inflow into the cell and water inflow into the cell gap 圆 7] Diagram showing the pharmacokinetic information output calculation formula
[図 8]同薬物動態情報出力演算式を示す図  [Figure 8] Figure showing the pharmacokinetic information output formula
圆 9]同生体情報の変化を示す図 [9] Diagram showing changes in biometric information
圆 10]同生体情報の変化を示す図 [10] Diagram showing changes in biometric information
[図 11]同シミュレーション装置の出力例を示す図  [Fig. 11] Diagram showing an example of output of the simulation apparatus
[図 12]同シミュレーション装置の出力例を示す図  FIG. 12 is a diagram showing an example of output of the simulation apparatus
圆 13]同生体情報の変化を示す図 [13] Diagram showing changes in biometric information
圆 14]同生体情報の変化を示す図 [14] Diagram showing changes in biological information
圆 15]同生体情報の変化を示す図 [15] Diagram showing changes in biometric information
圆 16]同生体情報の変化を示す図 圆 16] Diagram showing changes in biological information
[図 17]同シミュレーション装置の出力例を示す図  FIG. 17 is a diagram showing an output example of the simulation apparatus
[図 18]同シミュレーション装置の出力例を示す図  FIG. 18 is a diagram showing an example of output of the simulation apparatus
[図 19]同シミュレーションの概念図  [Figure 19] Conceptual diagram of the simulation
[図 20]同シミュレーション装置を構成するコンピュータシステムの概観図 [図 21]同シミュレーション装置を構成するコンピュータのブロック図  [Fig. 20] Overview of the computer system constituting the simulation apparatus. [Fig. 21] Block diagram of the computer constituting the simulation apparatus.

Claims

請求の範囲 The scope of the claims
[1] シミュレーションの対象の薬物に関する情報である薬物情報と、生体の情報に関する 生体情報に基づ 、て、薬物の吸収または Zおよび排泄をシミュレーションするシミュ レーシヨン装置であって、  [1] A simulation device for simulating drug absorption or Z and excretion based on drug information, which is information about a drug to be simulated, and biological information about biological information,
当該シミュレーションを行っている間にも動的に、前記生体情報を受け付けるシミュレ ーシヨン装置。  A simulation apparatus that dynamically accepts the biological information while performing the simulation.
[2] 薬物の吸収または Zおよび排泄をシミュレーションするシミュレーション装置であって 当該シミュレーションの対象の薬物に関する情報である薬物情報を受け付ける薬物 情報受付部と、  [2] A simulation device that simulates absorption or Z and excretion of a drug, a drug information receiving unit that receives drug information that is information about the drug targeted for the simulation,
生体の情報に関する生体情報を 2回以上受け付ける生体情報受付部と、 薬物情報と生体情報をパラメータとして、当該薬物の吸収または Zおよび排泄に関 する情報である薬物動態情報を出力する演算式である薬物動態情報出力演算式を 格納して!/ヽる演算式格納部と、  A biological information receiving unit that receives biological information related to biological information more than once, and an arithmetic expression that outputs pharmacokinetic information that is information related to absorption or Z and excretion of the drug using drug information and biological information as parameters. Stores pharmacokinetic information output formulas!
前記薬物情報受付部が受け付けた薬物情報と、前記生体情報受付部が受け付けた 生体情報をパラメータとして前記薬物動態情報出力演算式に渡し、前記薬物動態情 報出力演算式を実行する演算実行部と、  A calculation execution unit that passes the drug information received by the drug information reception unit and the biological information received by the biological information reception unit as parameters to the pharmacokinetic information output calculation formula, and executes the pharmacokinetic information output calculation formula; ,
前記演算実行部の実行結果に基づく情報である薬物動態情報を出力する出力部を 具備するシミュレーション装置。  A simulation apparatus comprising: an output unit that outputs pharmacokinetic information that is information based on an execution result of the calculation execution unit.
[3] 前記生体情報受付部は、シミュレーションの開始前およびシミュレーションを行ってい る間に、生体の情報に関する生体情報を受け付け、 [3] The biological information receiving unit receives biological information related to biological information before the start of the simulation and during the simulation,
前記演算実行部は、  The calculation execution unit
前記薬物情報受付部が受け付けた薬物情報と、シミュレーション中に前記生体情報 受付部が受け付けた生体情報をパラメータとして前記薬物動態情報出力演算式に 渡し、前記薬物動態情報出力演算式を実行する処理も行う請求項 2記載のシミュレ ーシヨン装置。  The drug information received by the drug information receiving unit and the biological information received by the biological information receiving unit during the simulation are passed as parameters to the pharmacokinetic information output calculation formula, and the pharmacokinetic information output calculation formula is executed. The simulation device according to claim 2 to be performed.
[4] 前記薬物動態情報は、 [4] The pharmacokinetic information is
少なくとも薬物を吸収する部位を示す部位情報と、薬物の状態を示す状態情報を有 する請求項 1から請求項 3いずれか記載のシミュレーション装置。 It has at least site information indicating the site that absorbs the drug and status information indicating the state of the drug. The simulation device according to any one of claims 1 to 3.
[5] 前記生体情報受付部は、 [5] The biological information receiving unit
細胞内の動きをシミュレートする細胞シミュレーション装置からの出力である生体情報 を受け付ける請求項 1から請求項 4いずれか記載のシミュレーション装置。  5. The simulation apparatus according to claim 1, which receives biological information that is an output from a cell simulation apparatus that simulates movement in a cell.
[6] コンピュータに、 [6] On the computer,
シミュレーションの対象の薬物に関する情報である薬物情報を受け付ける薬物情報 受付ステップと、  A drug information receiving step for receiving drug information, which is information about a drug to be simulated;
生体の情報に関する生体情報を 2回以上受け付ける生体情報受付ステップと、 前記薬物情報と、前記生体情報をパラメータとして、格納している薬物動態情報出力 演算式に渡し、前記薬物動態情報出力演算式を実行する演算実行ステップと、 前記演算実行ステップにおける実行結果に基づく情報である薬物動態情報を出力 する出力ステップを実行させるためのプログラム。  A biological information receiving step for receiving biological information related to biological information more than once, the drug information, and passing the biological information as a parameter to a stored pharmacokinetic information output arithmetic expression, A program for executing a calculation execution step to be executed and an output step of outputting pharmacokinetic information that is information based on the execution result in the calculation execution step.
[7] 前記生体情報受付ステップにお!、て、 [7] In the biometric information receiving step!
シミュレーションの開始前およびシミュレーションを行っている間に、生体の情報に関 する生体情報を受け付け、  Receive biological information about biological information before starting simulation and during simulation,
前記演算実行ステップにお ヽて、  In the calculation execution step,
前記薬物情報受付ステップで受け付けた薬物情報と、シミュレーション中に前記生体 情報受付ステップで受け付けた生体情報をパラメータとして前記薬物動態情報出力 演算式に渡し、前記薬物動態情報出力演算式を実行する処理も行う請求項 6記載 のプログラム。  The drug information received in the drug information reception step and the biological information received in the biological information reception step during the simulation are passed as parameters to the pharmacokinetic information output calculation formula, and the pharmacokinetic information output calculation formula is executed. The program according to claim 6 to be performed.
[8] 前記薬物動態情報は、  [8] The pharmacokinetic information is
少なくとも薬物を吸収する部位を示す部位情報と、薬物の状態を示す状態情報を有 する請求項 6または請求項 7記載のプログラム。  8. The program according to claim 6 or claim 7, comprising at least site information indicating a site where the drug is absorbed and status information indicating the state of the drug.
[9] 前記生体情報受付ステップにお!、て、 [9] In the biometric information reception step!
細胞内の動きをシミュレートした細胞シミュレーション結果である生体情報を受け付け る請求項 6から請求項 8記載のプログラム。  9. The program according to claim 6, which receives biological information that is a result of cell simulation simulating movement in a cell.
PCT/JP2005/021519 2004-11-25 2005-11-24 Simulation apparatus and program WO2006057268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547807A JPWO2006057268A1 (en) 2004-11-25 2005-11-24 Simulation apparatus and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-339973 2004-11-25
JP2004339973 2004-11-25

Publications (1)

Publication Number Publication Date
WO2006057268A1 true WO2006057268A1 (en) 2006-06-01

Family

ID=36498004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021519 WO2006057268A1 (en) 2004-11-25 2005-11-24 Simulation apparatus and program

Country Status (2)

Country Link
JP (1) JPWO2006057268A1 (en)
WO (1) WO2006057268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210792A (en) * 2014-04-30 2015-11-24 富士通株式会社 Program, calculation method, and calculation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082214A2 (en) * 2002-03-29 2003-10-09 Genomatica, Inc. Human metabolic models and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082214A2 (en) * 2002-03-29 2003-10-09 Genomatica, Inc. Human metabolic models and methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HORI KENTA ET AL.: "DynaBioS Architecture ni Motozuku Bunsangata Kino Simulator no Kauhatsu (Design of DynaBioS Architecture for Distributed Biodynamics Simulator)", DAI 49 KAI PROCEEDINGS OF THE ANNUAL CONFERENCE OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS., vol. 49, 18 May 2005 (2005-05-18), pages 237 - 238, XP002997566 *
SHIMAYOHI T. ET AL.: "A software environment for simulators suitable for complex biological analysis.", IEEE, ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, 2004. EMBC 2004. CONFERENCE PROCEEDINGS, 26TH ANNUAL INTERNATIONAL CONFERENCE., vol. 2, 5 September 2004 (2004-09-05), pages 3047 - 3050, XP010775782 *
SHIMAYOSHI T. ET AL.: "Multipysics Saibo Seitai kino Simulation no tameno Togo Simulation Kankyo (Simulation Environment for Multi-Physics Biological Simulation)", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU., vol. 103, no. 730, 10 March 2004 (2004-03-10), pages 97 - 102, XP002997565 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210792A (en) * 2014-04-30 2015-11-24 富士通株式会社 Program, calculation method, and calculation device

Also Published As

Publication number Publication date
JPWO2006057268A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
Garner et al. Nurse executives' perceptions of end-of-life care provided in hospitals
Abbott et al. Table-top role-playing games as a therapeutic intervention with adults to increase social connectedness
EP1707248A1 (en) Method of displaying multiple kinds of independently processed display data
Chinnock Virtual reality in surgery and medicine.
CN1886170B (en) System for providing a personalized experience to a person in a medical environment
WO2003082214A3 (en) Human metabolic models and methods
EP1669932A4 (en) Three-dimensional virtual space simulator, three-dimensional virtual space simulation program, and computer readable recording medium where the program is recorded
CN104820542B (en) The display methods and equipment at mobile terminal game operation interface
Won et al. Early experience with a patient‐specific virtual surgical simulation for rehearsal of endoscopic skull‐base surgery
Henry et al. A randomised control trial for measuring student engagement through the Internet of Things and serious games
JP2005027886A (en) Method and equipment for planning combined use of peritoneal dialysis and hemo dialysis
Thiele et al. When metabolism meets physiology: Harvey and Harvetta
CN108511083A (en) Intelligent doctors and patients' interactive demonstration method and system based on 3D
Gonzales et al. Augmentative and alternative communication technologies
WO2017152278A1 (en) Patient simulation system adapted for interacting with a medical apparatus
Toroghi et al. A multi-scale model of the whole human body based on dynamic parsimonious flux balance analysis
WO2006057268A1 (en) Simulation apparatus and program
KR20180043866A (en) Method and system to consume content using wearable device
US20070192075A1 (en) Organism stimulation device and program
Dana Cross-cultural-multicultural use of the Thematic Apperception Test.
Jones et al. A virtual-reality training simulator for cochlear implant surgery
Gomez-Cabrero et al. Guidelines for developing successful short advanced courses in systems medicine and systems biology
Narayan et al. A Strategic Research Framework for Defeating Diabetes in India: A 21st-Century Agenda
Nickerson et al. A tool for multi-scale modelling of the renal nephron
CN112309213A (en) Drug administration simulation training system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547807

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809592

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5809592

Country of ref document: EP