WO2006054773A1 - Activation of caspase in the cell division stage of cancer cells and utilization of caspase inhibitor in anticancer agent and so on - Google Patents

Activation of caspase in the cell division stage of cancer cells and utilization of caspase inhibitor in anticancer agent and so on Download PDF

Info

Publication number
WO2006054773A1
WO2006054773A1 PCT/JP2005/021470 JP2005021470W WO2006054773A1 WO 2006054773 A1 WO2006054773 A1 WO 2006054773A1 JP 2005021470 W JP2005021470 W JP 2005021470W WO 2006054773 A1 WO2006054773 A1 WO 2006054773A1
Authority
WO
WIPO (PCT)
Prior art keywords
caspase
cancer
cells
inhibitor
cancer cells
Prior art date
Application number
PCT/JP2005/021470
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Kamada
Ushio Kikkawa
Toshiaki Hashimoto
Original Assignee
Shinji Kamada
Ushio Kikkawa
Toshiaki Hashimoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinji Kamada, Ushio Kikkawa, Toshiaki Hashimoto filed Critical Shinji Kamada
Publication of WO2006054773A1 publication Critical patent/WO2006054773A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/27Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • caspase inhibitors Activation of caspases during cancer cell division and use of caspase inhibitors as anticancer agents
  • the present invention relates to the use of a caspase inhibitor as an anticancer agent. More specifically, the present invention has found a cancer cell growth inhibitory effect as a new effect of a caspase inhibitor. It is used as an agent, functional food with anti-cancer effect, or supplement.
  • Apoptosis is a major mechanism for eliminating cells that are no longer necessary for a living body.
  • Apoptosis dysregulation i.e., excessive apoptosis, or failure to apoptose, is associated with many diseases such as acute inflammation, autoimmune diseases, ischemic diseases, and neurodegenerative diseases (see below).
  • Caspase is a cysteine protease having a cysteine residue at the active center and has the activity of cleaving the C-terminal side of aspartate.
  • Caspase is synthesized as an inactive proenzyme (pr oform) and is composed of three regions. Prodomain, large subunit, and small subunit are called prodomain, large subunit, and small subunit from the N-terminal side, and proteolytic processing occurs between the domains, and the large and small subunits form heterodimers and become tetramers. (Active form) (non-patent documents 1 and 3 described later).
  • caspases 14 types have been identified from mammals, and they are roughly classified into those involved in the execution of apoptosis and those involved in the inflammatory response. Further, those involved in apoptosis are classified into an initiator-caspase that functions upstream and an effector-caspase that functions downstream.
  • the initiator-caspase has a long prodomain, and is activated by binding to an adapter molecule in this region, and includes caspases 2, 8, 9, and 10.
  • the effector caspase has a short prodomain, and is cleaved at the C-terminal side of aspartic acid by the cytheter caspase. It is divided into groups and activated. Effector caspases include caspases 3, 6, and 7. An activated effector caspase performs apoptosis by cleaving various substrates (Non-patent Documents 1, 3, 4 described later).
  • caspase inhibitors have been developed and identified.
  • Substances that inhibit caspase enzyme activity include naturally occurring inhibitory proteins and artificially chemically synthesized peptide inhibitors.
  • Naturally occurring inhibitory proteins include IAP family proteins (for example, cIAPl, cIAP2, XIAP, survivin, etc.), p35 protein derived from baculovirus, and crmA protein derived from cowpox virus.
  • the peptide inhibitor rz-Asp-CH2-DCBj described later is described in Patent Document 14 described later.
  • caspase inhibitors suppress liver-myocardium, kidney, intestine, and brain ischemia-induced apoptosis caused by reperfusion, and preserve the function of these organs.
  • Non-patent document 5-9 described later caspase inhibitors suppress neuronal apoptosis due to traumatic brain injury, atrophic lateral sclerosis, Parkinson's disease, etc. in preclinical studies using animal models.
  • caspase is considered to be a major factor in the execution of apoptosis, and research and development have been conducted for the treatment of various diseases caused by abnormal apoptosis by negatively controlling its activity.
  • new functions of caspases have been reported. For example, cell proliferation, cell motility, cell cycle control, cell differentiation, etc., but the detailed mechanism remains unclear (Non-patent Documents 13-17 below).
  • Patent Document 1 US Patent No. 5985838
  • Patent Document 2 US Patent No. 6576614
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-025865
  • Patent Document 4 Japanese Patent Laid-Open No. 7-069894
  • Non-patent literature l Thornberry et al., Science, 281, 1312-1316 (1998)
  • Non-Patent Document 2 Nicholson et al., Nature, 407, 810-816 (2000)
  • Non-Patent Document 3 Earnshaw et al., Annu. Rev. Biochem., 68, 383-424 (1999)
  • Non-Patent Document 4 Fischer et al., Cell Death Differ., 10, 76-100 (2003)
  • Non-Patent Document 5 Cursio et al "FASEB J., 13, 253-261 (1999)
  • Non-Patent Document 6 Mocanu et al., Br. J. Pharmacol, 130, 197-200 (2000)
  • Non-Patent Document 7 Farber et al., J. Vase. Surg., 30, 752-760 (1999)
  • Non-Patent Document 8 Daemen et al., J. Clin. Invest., 104, 541-549 (1999)
  • Non-patent document 9 Endres et al., J. Cereb. Blood Flow Metab., 18, 238-247 (1998)
  • Non-patent document 10 Yakovlev et al., J. Neurosci., 17, 7415-7424 (1997)
  • Non-patent literature ll Li et al "Science, 288, 335-339 (2000)
  • Non-Patent Document 12 Schierle et al., Nature Med., 5, 97-100 (1999)
  • Non-Patent Document 13 Los et al., Trends Immunol. 22, 31-34 (2001)
  • Non-Patent Document 14 Algeciras- Schimnich et al., Curr. Opin. Cell Biol. 14, 721-726 (200
  • Non-patent document 15 Schwerk et al., Biochem. Pharmacol. 66, 1453-1458 (2003)
  • Non-patent document 16 Newton et al., Genes Dev. 17, 819-825 (2003)
  • Non-Patent Document 17 Woo et al, Nature Immunol. 4, 1016-1022 (2003)
  • Non-Patent Document 18 Yang et al., Cancer Res., 63, 6815-6824 (2003)
  • Non-Patent Document 19 Satoh et al., Cancer, 92, 271-278 (2001)
  • Non-Patent Document 20 Ambrosini et al., Nat. Med. 3, 917-921 (1997)
  • Non-Patent Document 21 Serela et al., Ann. Surg. Oncol, 8, 305-310 (2001)
  • Non-Patent Document 22 Tanaka et al., Clin. Cancer Res., 6, 127-134 (2000)
  • Non-Patent Document 23 Ferreira et al., Ann. Oncol, 12, 799-805 (2001)
  • Non-Patent Document 24 Li et al., Endocrinology, 142, 370-380 (2001)
  • Non-Patent Document 25 Sasaki et al., Cancer Res., 60, 5659-5666 (2000)
  • Non-Patent Document 26 Liston et al., Nat. Cell Biol, 3, 128-133 (2001)
  • Non-Patent Document 27 Mesri et al "J. Clin. Investig., 108, 981-990 (2001)
  • Non-Patent Document 28 Schimmer et al., Cancer Cell, 5, 25-35 (2004)
  • the present invention has been made in view of the above-described circumstances, and the object thereof is the physiological role of caspase in cancer cells, and the availability of caspase inhibitors as anticancer agents.
  • the aim is to provide new anti-cancer drugs targeting caspases based on the findings.
  • the present inventor has (1) that an active form of caspase is detected specifically in the cell division stage of cancer cells, and (2) a caspase inhibitor. Administration of this drug causes delay in cell division in cancer cells, inhibits normal chromosomal segregation during mitosis, and (3) administers a caspase inhibitor.
  • a caspase inhibitor For cancer cells derived from liver cancer, cervical cancer, and acute T-cell leukemia
  • the inventors have found that a growth inhibitory effect has been recognized, and have completed the present invention.
  • the present invention includes the following inventions as medically and industrially useful inventions.
  • a pile cancer agent containing a caspase inhibitor as an active ingredient includes (1) substances that have a substrate-like structure, etc., that bind to the active site of caspase, thereby inhibiting the activity of force spurase, and (2) interact with sites other than the active site. , A substance that inhibits caspase activity, (3) a substance that inhibits caspase activity and inhibits force spase, and (4) a substance that inhibits and inhibits caspase expression. Substances that directly or indirectly inhibit caspases, such as substances, are widely included.
  • An anticancer agent comprising as an active ingredient any one or more of caspases 1, 3, 4, 7, 8, and 9.
  • H A method for suppressing the growth of cancer cells by introducing RNA that specifically suppresses the expression of caspase protein into the cancer cells.
  • RNA may be a siRNA (short interference RNA: also referred to as “short interfering RNA”, “small interfering RNA”, etc.) or an RNAi expression vector (“siRNA expression vector”). ). siRNA and RNAi expression vectors can be designed according to known methods based on the gene sequence of the caspase to be suppressed (for example, Ambion TechNotes 9 (1): 3-5 (2002), Proc. Natl. Acad. Sci. USA 99 (8): 5515-5520 (2002), Proc. Natl. Acad. Sci. USA 99 (9): 6047-6052 (2 002), Nature Biotechnology 20: 505-508 (2002) )).
  • the RNAi expression vector (1) is designed to express dsRNA having a hairpin structure of an appropriate length with a single RNA in the target cell, (2) sense strand, antisense strand Any of those designed to express and associate with each other in the target cell may be used.
  • RNA can be introduced into cancer cells according to a conventional method (see, for example, Nature 411: 494-498 (2001), Science 296: 550-553 (2002)). It is also possible to use the method developed in (1).
  • Stake cancer agent consisting of RNA that specifically suppresses caspase protein expression, or RNAi expression vector constructed to express the RNA in target cancer cells.
  • RNAi expression vector a viral vector, plasmid, phage, cosmid or the like can be used, and a promoter that functions in the target cancer cell (for example, an RNA polymerase III promoter such as U6 or H1 promoter, or RNA polymerase II promoters etc.) may be used that are incorporated upstream of the siRNA sequence that expresses it.
  • a promoter that functions in the target cancer cell for example, an RNA polymerase III promoter such as U6 or H1 promoter, or RNA polymerase II promoters etc.
  • caspase protein expression is sufficient if it substantially reduces the expression level of caspase protein in the target cancer cell. Caspase protein expression is completely suppressed. It does not have to be.
  • the invention's effect utilizes a caspase inhibitor as an anticancer agent or a functional food having an anticancer effect.
  • caspase inhibitors have been researched and developed from the viewpoint of suppressing / preventing apoptosis (for example, treatment of neurodegenerative diseases caused by abnormal apoptosis).
  • the present invention has been found that caspases are activated during the cell division phase of cancer cells and are involved in the control thereof. Further, based on this finding, a new use of suppressing the growth of cancer cells by caspase inhibitors is provided. It is to provide.
  • the growth of cancer cells can be suppressed by inhibiting caspases that are thought to play an important role in the execution of apoptosis.
  • caspase activity is increased, and caspase inhibitors are likely to act specifically on cancer cells.
  • Conventional acupuncture, radiation therapy, etc. used for cancer treatment are aimed at inducing apoptosis in cells, and have a great influence on normal cells other than cancer cells. The effect is a big problem.
  • the anticancer agent of the present invention that targets a caspase that specifically activates cancer cells, the establishment of a new type of cancer treatment method that has extremely low side effects and is unprecedented can be expected.
  • FIG. 1 is a diagram showing the activity of caspase 3 specific to cell division phase by immunofluorescence staining.
  • (a) is the result of using an antibody that recognizes the large subunit of caspase 3 (pi 7)
  • (b) is the result of using an antibody that recognizes the small subunit of caspase 3 (pi 2)
  • FIG. 2 is a diagram showing the results of examining caspase activity during cell division by treating hepatoma-derived HepG2 cells with nocodazole.
  • A shows the results of cell cycle analysis by flow cytometry
  • b shows the results of examining the activity of caspase by Western blotting and the presence or absence of substrate cleavage by caspase.
  • FIG. 3 shows the results of examining caspase activity during cell division by treating cervical cancer-derived HeLa cells with thymidine.
  • A shows the results of cell cycle analysis by flow cytometry.
  • B shows the activity of caspase and caspase by Western blotting. The result of having investigated the presence or absence of the substrate cleavage by a case is shown.
  • FIG. 4 is a graph showing the delay in cell cycle progression by caspase inhibitors.
  • FIG. 5 is a graph showing an increase in the number of cells having condensed nuclei by caspase inhibitors.
  • FIG. 6 is a diagram showing inhibition of progression of chromosome segregation during cell division by caspase inhibitors.
  • FIG. 7 is a graph showing the effect of suppressing proliferation of cancer cells by a general-purpose caspase inhibitor.
  • FIG. 8 is a graph showing the growth inhibitory effect of each caspase-specific inhibitor on HepG2 cells.
  • the anticancer agent of the present invention comprises a caspase inhibitor, that is, a caspase inhibitor as an active ingredient.
  • a caspase inhibitor that is, a caspase inhibitor as an active ingredient.
  • administration of several caspase inhibitors actually suppressed and inhibited the growth of hepatoma-derived HepG2 cells and cervical cancer-derived HeLa cells. ( Figures 7 and 8).
  • caspases are active during apoptosis and positively control apoptosis, so inhibitors have been used to suppress apoptosis.
  • the present inventor newly discovered that caspases are activated specifically in the cell division phase in cancer cells such as HepG2 cells and HeLa cells in the process of elucidating the various physiological roles of caspases. ( Figure 1-3).
  • administration of caspase inhibitors slowed cell cycle progression in cancer cells and inhibited normal chromosome segregation during mitosis (Figure 46). Details will be described later.
  • the present invention confirms the growth inhibitory effect of caspase inhibitors against cancer cells derived from liver cancer and cervical cancer, and provides anticancer drugs against caspase inhibitors. It provides a novel method of use as an agent.
  • the caspase inhibitor also suppressed the proliferation of urkat cells due to acute T cell leukemia (FIG. 7)
  • the anticancer agent of the present invention can also be used for the treatment of cancer such as leukemia.
  • caspase activity in a non-apoptotic state in cancer cells has been reported in prostate cancer, breast cancer, colon cancer, etc., and therefore caspase inhibitors can also be used against these cancer cells. May suppress proliferation.
  • caspase activity in cancer cells in a non-apoptotic state is widely recognized, it becomes possible to use caspase inhibitors as anticancer agents by inhibiting growth for all cancers. .
  • the anticancer agent of the present invention can be applied to cancer cells in which caspase activation is observed in the cell division phase.
  • examples include use in various solid cancers such as cervical cancer and squamous cell carcinomas such as cervical cancer.
  • the type of caspase to be inhibited by the caspase inhibitor is not particularly limited, but the caspase 1, 3, 4, 7, 8, and 9 inhibitors were actually observed to have a growth inhibitory effect. Therefore (FIG. 8), it is preferable to use a caspase inhibitor that inhibits one or more of caspases 1, 3, 4, 7, 8, and 9.
  • activity in the mitotic phase has been confirmed in liver cancer, cervical cancer, etc., where the use of inhibitors of caspases 1, 3, 4, and 7 that have a high growth inhibitory effect is preferred.
  • Particularly preferred is the use of inhibitors against caspases 3,7.
  • a general-purpose caspase inhibitor that inhibits multiple types of caspases may be used, or a caspase inhibitor that controls upstream activity of caspase 3 and the like may be used.
  • the caspase inhibitor may be any of a peptide compound, a non-peptide compound, or a biological protein.
  • peptidic compounds include artificially chemically synthesized peptidic compounds (1) to (8) below.
  • Z-Asp-CH2-DCB in (1) is the official name Benzyloxycarbo-Lu L-Spartau 1-Lu [(2, 6-Dichloro-benzo Noreno 3- r)] methane (Benzyloxycarbonyl— L— Aspart— 1— y ([2,6—Dichlorobenzoyl) oxy ”me thane).
  • Boc-Asp (OMe) -FMK is the official name N— (tert-butoxycarbo-nore) aspanoretinore (O-methinore)- Fnorolelomethinoleketone (N- (tert-butoxycarbonyl) aspartyl (0-methyl) -fluoromethylketone).
  • Boc- Asp (OBzl) -CMK is the official name N ⁇ (tert-butoxycarbo -L) Aspartyl (O-benzyl) Chloromethylketone (N- (tert-Dutoxycarbonyl) aspartyl (0-benzyl)-chioromethylketone) & Z- Asp- CH2- DCB ⁇ Boc- Asp (OMe)-FMK ⁇ Boc- Asp (OBzl) -CMK inhibited the growth of HepG2 cells, HeLa cells, and Jurkat cells in a concentration-dependent manner (Fig. 7). CMK, Z-Asp-CH2-DCB, and Boc-Asp (OMe) -FMK were favorable in this order.
  • the above (4) is a caspase 1 inhibitor, and cell membrane permeability is present on the N-terminal side of the 4 amino acids of YVAD (ie, tyrosine monoparin / alanine / aspartate) involved in caspase 1 inhibition.
  • YVAD tyrosine monoparin / alanine / aspartate
  • a hydrophobic region of force-positive fibroblast growth factor (Kaposi fibroblast growth factor) having the following amino acid sequence ability is added.
  • Amino acid ⁇ ⁇ ⁇ U AAVALLPAVLLALLAP (ie, Alanine, Alanine, Parin, Lanin, Leucine, Leucine, Proline, Alanine, and Parin, Leucine, Leucine, Alanine, Leucine, Leucine, Alanine, Proline)
  • the above (5) is a caspase 3 and 7 inhibitor, and permeates through the cell membrane on the N-terminal side of the 4 amino acids of DEVD (ie, aspartate glutamate monoparin aspartate) involved in the inhibition of caspase 3 and 7. In order to enhance the properties, a hydrophobic region of the force positive fibroblast growth factor is added.
  • the above (6) is a caspase 4 inhibitor. Cell membrane permeability is increased on the N-terminal side of the 4 amino acids of LEVD (ie, leucine monoglutamate monoparin monoaspartate) involved in the inhibition of caspase 4. To enhance, a hydrophobic region of the force positive fibroblast growth factor is given.
  • the above (7) is a caspase 8 inhibitor, and it has cell membrane permeability on the N-terminal side of 4 amino acids of IETD (ie isoleucine glutamate 1 threonine 1 aspartate) involved in caspase 8 inhibition. In order to enhance, a hydrophobic region of the force positive fibroblast growth factor is added.
  • IETD ie isoleucine glutamate 1 threonine 1 aspartate
  • the above (8) is a caspase 9 inhibitor, in order to enhance cell membrane permeability on the N-terminal side of the 4 amino acids of LEHD (ie, leucine glutamate histidine aspartate) involved in caspase 9 inhibition.
  • LEHD leucine glutamate histidine aspartate
  • the hydrophobic region of the force positive fibroblast growth factor is given.
  • the compounds of (4) to (8) above have an acetyl group (Ac) on the N-terminal side and an aldehyde group (CHO) on the C-terminal side of the oligopeptide having a total of 20 amino acids.
  • Ac acetyl group
  • CHO aldehyde group
  • the compounds (1) to (8) can be easily produced by using known chemical synthesis methods such as various existing peptide synthesis methods.
  • peptide compounds are not limited to these compounds, and other peptide compounds that can suppress / inhibit caspase activity may be used in the anticancer agent of the present invention. Oh ,.
  • Non-peptide compound caspase inhibitors include (1) anlinoqu inazolines (AQZs) -AstraZeneca Pharmaceuticals (Scott et al "J. Pnarmacol. Exp. Ther. 304, 433-440 ( 2003)), (2) M826-Merck Frosst (Han et al., J. Biol. Chem. 277, 30128-30136 (2002)), (3) M867-Merck Frosst (Methot et al., J. Exp. Med. 199, 199-207 (2004)), (4) Nicotinyl aspartyl ketones-Merck Frosst (Isabel et al., Bioorg. Med. Chem. Lett. 13, 2137-2140 (2003) )), Etc.
  • Biologically derived proteins include IAP family proteins (eg cIAPl, cIAP2, XIAP, survivin, etc.) that are caspase activity-inhibiting proteins, p35 protein derived from vaccinia virus, crmA protein derived from cowpox virus, etc. Can be illustrated. By expressing these proteins specifically for cancer cells, it is possible to suppress the growth of cancer cells. Examples of a method for expressing a protein in cancer cells include use of a gene expression vector encoding the protein. In the case of this method, the modified protein may be expressed artificially by substituting, deleting, inserting, and Z or adding one or several bases in the base sequence of the gene expression vector according to a conventional method. Good.
  • caspase inhibitors include RNA that specifically suppresses caspase protein expression, and RNAi expression vectors constructed to express the RNA in target cancer cells, as described above.
  • siRNA that suppresses the expression of caspase protein can be used for cancer treatment.
  • vectors and nucleic acids can be used to transfer specific vectors or nucleic acids in order to efficiently and selectively introduce siRNA into target cancer cells.
  • Known carriers and drug delivery systems proposed to be transported to specific cells can be used.
  • siRNA and RNAi expression vectors can be designed based on the caspase gene sequence as described above.
  • the cDNA sequence and amino acid sequence of human caspase 3 are disclosed in DDBJ / EMBL / GenBank databases, such as accession numbers “NM_004346” and “NM_032991,” and the target sequence is determined based on these sequence information. It is possible to design and prepare siRNA and RNAi expression vectors that can be determined and suppress caspase protein expression.
  • the anticancer agent of the present invention is a caspase inhibitor, that is, a caspase inhibitory substance as an active ingredient. Not only a known caspase inhibitor but also a caspase inhibitor found in the future. May be used.
  • Caspase inhibitors include (1) substances that have a substrate-like structure, etc., that bind to the active site of caspase, thereby inhibiting the activity of force spurase, and (2) interact with sites other than the active site. , A substance that inhibits caspase activity, (3) a substance that inhibits caspase activity and inhibits force spase, and (4) a substance that inhibits and inhibits caspase expression.
  • Substances that directly or indirectly inhibit caspases are widely included.
  • a substance that suppresses apoptosis can also be said to be a substance that directly or indirectly inhibits caspase, and as a caspase inhibitor of the present invention. Can be used.
  • the degree of inhibition is not particularly limited, but in a normal enzyme activity assay performed in vivo or in vitro, a 50% inhibitory concentration is used. It is preferable to have a high inhibitory activity of several picomoles (pM) to several tens of micromoles M), in vivo several micromoles M) or less, and in vitro, several hundred nanomoles (nM) or less. More preferred,
  • a caspase inhibitor is used as an anticancer agent (anticancer agent).
  • a caspase inhibitor is a food such as a functional food or a supplement (edible composition). Food with anti-cancer and cancer-preventing effects It can also be used for product development. Alternatively, it can be used as a raw material for cosmetics, and can be used to develop cosmetics that have anticancer effects and cancer prevention effects.
  • the caspase inhibitor can be administered to humans (or animals) as it is or as a pharmaceutical composition together with a conventional pharmaceutical preparation carrier.
  • the dosage form of the pharmaceutical composition is not particularly limited and may be appropriately selected as necessary.
  • oral preparations such as tablets, capsules, granules, fine granules, powders, injections, etc.
  • Parenterals such as suppositories, suppositories, and coating agents.
  • Oral preparations such as tablets, capsules, granules, fine granules, powders and the like are commonly used, for example, starch, lactose, sucrose, trenorose, mannitol, carboxymethylcellulose, corn starch, inorganic salts, etc. Manufactured according to.
  • the amount of caspase inhibitor in these preparations is not particularly limited and can be set as appropriate.
  • binders, disintegrants, surfactants, lubricants, fluidity promoters, corrigents, colorants, flavors, and the like can be appropriately used.
  • parenteral agents the dosage is adjusted according to the patient's age, weight, disease severity, etc., for example, intravenous injection, intravenous infusion, subcutaneous injection, intraperitoneal injection, intramuscular injection, intratumoral injection For example, systemically or locally.
  • This parenteral preparation is produced according to a conventional method, and distilled water for injection, physiological saline and the like can be generally used as a diluent. Further, if necessary, bactericides, preservatives and stabilizers may be added.
  • this parenteral preparation can be frozen after filling in a vial or the like, water can be removed by ordinary freeze-drying treatment, and the liquid preparation can be re-prepared from the freeze-dried product immediately before use.
  • an isotonic agent, stabilizer, preservative, and soothing agent may be added as necessary.
  • the compounding amount of the caspase inhibitor in these preparations is not particularly limited and can be arbitrarily set.
  • parenteral agents include liquid preparations for external use, coating agents such as ointments, suppositories for rectal administration, etc., and these are also produced according to conventional methods.
  • a caspase inhibitor or a gene expression vector encoding a protein acting as an inhibitor is enclosed in a carrier such as a ribosome. It may be administered. At this time, the target site (cancer cell) is specific If a carrier that recognizes the target is used, the caspase inhibitor can be efficiently transported to the target site.
  • the caspase inhibitor can be used in foods (edible compositions) such as supplements and functional foods.
  • foods edible compositions
  • it is added to caspase inhibitors as raw materials for various beverages and various processed foods, and if necessary, it can be added to pellets, tablets, granules, etc. together with excipients such as dextrin, lactose, starch, flavorings, pigments, etc. It can be processed, or coated with gelatin and molded into capsules for use as health food or health food.
  • foods edible compositions
  • excipients such as dextrin, lactose, starch, flavorings, pigments, etc.
  • It can be processed, or coated with gelatin and molded into capsules for use as health food or health food.
  • HepG2 cells derived from hepatoma cells were seeded at 2 x 10 5 cells per well in a 6-well dish with a cover glass in the bottom and cultured for 24 hours. 3. After fixing with phosphate buffer containing 7% formaldehyde for 10 minutes, wash twice with phosphate buffer, treat with phosphate buffer containing 0.5% Triton X-100 for 10 minutes, Washed twice with phosphate buffer.
  • the cells treated in this manner were subjected to 4 ° overnight in a phosphate buffer (containing 1% ushi serum albumin) containing anti-active caspase 3 antibody and anti-tubulin antibody as primary antibodies. Incubation with C. After washing twice with phosphate buffer, it was incubated for 10 minutes in a phosphate buffer containing a secondary antibody labeled with TXRD or FITC, and then washed twice with phosphate buffer. Nuclei were stained with 10 i u M Hoechst 33342 (Calbiochem) and then examined with a fluorescence microscope (product name Laborlux, Leitz).
  • a fluorescence microscope product name Laborlux, Leitz
  • Fig. 1 (a) shows the result of using an antibody that recognizes the C terminus of the large subunit (pl7) of active caspase 3 as the primary antibody.
  • cells other than the interphase show tubulin polymerization and chromosome condensation, and are considered to be in the cell division phase. It can be seen that caspase 3 is active in the early, early, middle, late, and late stages of cell division.
  • HepG2 cells (1 X 10 6 / 6cm dish) were cultured in nocodazole (0. 8 ⁇ g / ml) in the presence, over time the cells were harvested and subjected to Western blotting, activity I spoon We detected caspase 3 (and caspase 8 ⁇ 9) active fragments as a result of cleavage by the above method.
  • the accumulation of mitotic cells by nocodazole treatment was confirmed by flow cytometry c
  • FIG. 2 (b) the active form fragment of caspase 3 was detected 12 hours after nocodazole treatment and increased with time.
  • caspase 8 and caspase 9 active form fragments were detected in the same time course, and the caspase 3 substrates poly ADP ribose polymerase (PARP), lamin Bl (LaminBl), protein kinase C ⁇ (PKC ⁇ ) cleavage (cleav age fragment) was also detected.
  • Lane A in the figure is a cell in which apoptosis was induced with an anti-Fas antibody as a control.
  • HeLa cells (4 ⁇ 10 5 Z6 cm dishes) were cultured for 24 hours and then cultured for 18 hours in the presence of 2.5 mM thymidine. After washing 3 times with phosphate buffer, a new medium was added and the cells were cultured for 10 hours, and again cultured in the presence of 2.5 mM thymidine for 14 hours. After washing 3 times with phosphate buffer, the cells are cultured in a new medium from which thymidine has been removed. The cells are collected over time, and fragments of caspases 3/8, 9 cleaved by active protein by Western blotting are collected. Detected. Progression of the cell cycle at each recovery was confirmed by flow cytometry.
  • the cells can be stopped at the boundary between almost 100% G1 phase and S phase.
  • Figure 3 (a) when thymidine is removed from the culture (release), the cells Begins around the cell cycle again, and after thymidine removal, the cells are in the G2ZM phase approximately 8-12 hours and reenter the G1 phase approximately 14 hours later.
  • caspase 3, caspase 8 and caspase 9 active form fragments were detected 10-14 hours after thymidine removal.
  • cleavage of the caspase 3 substrates poly ADP ribose polymerase (PARP), lamin Bl (LaminBl), and protein kinase C ⁇ (PKC ⁇ ) was also detected at the same time.
  • PARP poly ADP ribose polymerase
  • LaminBl lamin Bl
  • PKC ⁇ protein kinase C ⁇
  • lane N is the result of HeLa cells cultured under normal conditions
  • lane A is the result of cells in which apoptosis was induced with anti-Fas antibody.
  • caspase activation was confirmed specifically in the cell division phase of cancer cells. Next, its role was examined.
  • control medium was supplemented with 0.5% DMSO in the same manner as when the inhibitor was added.
  • Cells with inhibitor and control cells were both in G2ZM phase after 8 hours.
  • Example 3 Prevention of normal chromosome segregation during cell division by caspase inhibitor
  • HepG2 cells and HaLa cells were cultured in the presence of the caspase inhibitors to examine changes in the morphology of the nucleus.
  • HepG2 cells or HeLa cells were seeded at 2 ⁇ 10 5 cells per lwell in a 6-well dish with a cover glass at the bottom.
  • Z-Asp-CH2-DCB (final concentration 200 ⁇ ) or DMSO as a control was covered, and each day, the nuclei were stained with 10 ⁇ Hoechst 33342. The proportion was examined.
  • HeLa-GFP-H2B HeLa-GFP-H2B
  • histone H2B was fused with GFP and highly expressed were used.
  • Z-Asp-CH2-DCB final concentration 300 ⁇
  • DMSO final concentration 300 ⁇
  • the morphological changes of the nucleus were observed for 1 to 2 hours at 1 minute intervals using a confocal laser microscope.
  • Figure 6 shows typical nuclear morphology of cells treated with control and caspase inhibitors.
  • control cells with DMSO cell division progressed normally, and chromosome condensing power progressed to separation in about 90 to 120 minutes (Figs. 6a and b).
  • caspase was activated during the cell division stage of cancer cells, and caspase inhibitor was It has been shown to inhibit cancer cell division, especially chromosome segregation.
  • caspase 3 activity increases despite being in a non-apoptotic state, suggesting that some functions specific to cancer cells are occurring.
  • the possibility of functioning as a cell-specific cell growth inhibitor was considered. Therefore, in order to investigate this possibility, the following experiment was conducted.
  • WST-1 reagent (Roche) was used for the cell proliferation assay. HepG2 cells derived from liver cancer, HeLa cells derived from cervical cancer, or urkat cells derived from acute T cell leukemia were seeded in 96 well dishes at 4 ⁇ 10 3 cells per well and cultured for 24 hours. After each caspase inhibitor is prepared at each concentration, WST-1 reagent is prepared every day, and the dehydrogenase activity localized in mitochondria is measured by measuring the absorbance at 450 nm and 690 nm. And used as an index of cell proliferation.
  • caspase inhibitors the following compounds (1) to (8) were used.
  • the above (1) to (3) are cell membrane permeation-type versatile inhibitors.
  • a hydrophobic region of force-positive fibroblast growth factor is added to the N-terminal side of each of the caspase-specific inhibitors (4) to (8) above in order to enhance cell membrane permeability.
  • (1) is an inhibitor made by Peptide Institute
  • (2) to (8) are inhibitors made by Calbiochem. All inhibitors were dissolved in DMSO, and a portion of it was added to the culture medium, so the control burned DMSO at the same concentration as the inhibitor was added.
  • Z-Asp-CH2-DC is a cell membrane permeation inhibitor B, Boc-Asp (OMe) -FMK and Boc-Asp (OBzl) -CMK all inhibited the growth of HepG2, HeLa, and Jurkat cells in a concentration-dependent manner (FIG. 7).
  • Each caspase-specific inhibitor showed cytostatic activity against HepG2 cells, although there was a difference in the inhibitory effect (Fig. 8).
  • the anticancer agent of the present invention comprises a caspase inhibitor that has been shown to be effective in inhibiting the growth of cancer cells as an active ingredient, and solids such as liver cancer and cervical cancer It can be used as an anticancer agent against cancer.
  • the present invention can also be used as functional foods, supplements and the like having an anticancer effect and a cancer prevention effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

It is newly found out that caspase is activated in the cell division stage of cancer cells. By administering a caspase inhibitor, the progress of cell division is retarded in cancer cells and normal chromosome partition is inhibited in the division stage. Moreover, it is observed that the administration of a caspase inhibitor brings about an effect of inhibiting the proliferation of liver cancer origin-cells, cervical cancer-origin cells, etc. An anticancer agent, which comprises as the active ingredient a caspase inhibitor having the effect of inhibiting cancer cell proliferation as described above, is usable an agent against solid cancer such as liver cancer and cervical cancer.

Description

明 細 書  Specification
がん細胞の細胞分裂期におけるカスパーゼの活性化と、カスパーゼ阻害 物質の抗がん剤などへの利用  Activation of caspases during cancer cell division and use of caspase inhibitors as anticancer agents
技術分野  Technical field
[0001] 本発明は、カスパーゼ阻害剤の抗がん剤などへの利用に関し、より詳細には、カス パーゼ阻害剤の新たな効能としてがん細胞の増殖抑制効果を見出し、これを抗がん 剤、あるいは、抗がん効果のある機能性食品、サプリメントなどとして利用するもので ある。  [0001] The present invention relates to the use of a caspase inhibitor as an anticancer agent. More specifically, the present invention has found a cancer cell growth inhibitory effect as a new effect of a caspase inhibitor. It is used as an agent, functional food with anti-cancer effect, or supplement.
背景技術  Background art
[0002] アポトーシスは、生体にとって不要となった細胞を排除する主要機構である。アポト 一シスの制御不良、すなわち、過度のアポトーシス、またはアポトーシスの不履行は いずれも、急性炎症、 自己免疫疾患、虚血性疾患、並びに神経変性疾患といったよ うな多数の疾患に関与して 、る(後記の非特許文献 1 · 2)。  [0002] Apoptosis is a major mechanism for eliminating cells that are no longer necessary for a living body. Apoptosis dysregulation, i.e., excessive apoptosis, or failure to apoptose, is associated with many diseases such as acute inflammation, autoimmune diseases, ischemic diseases, and neurodegenerative diseases (see below). Non-patent literature 1 · 2).
[0003] アポトーシスを実行する主要分子として、カスパーゼ(caspase)が同定されて!、る。  [0003] Caspase has been identified as a major molecule that executes apoptosis!
カスパーゼは、活性中心にシスティン残基を持つシスティンプロテアーゼであり、ァス ノ ラギン酸の C末端側を切断する活性を持つ。カスパーゼは、不活性なプロ酵素 (pr oform)として合成され、三つの領域から構成されている。 N末端側から、プロドメイン、 大サブユニット、小サブユニットと呼ばれ、各ドメインの間で蛋白分解によるプロセッシ ングが起こり、大小サブユニットがヘテロダイマーを作りさらに 4量体となって活性型 酵素(active form)となる(後記の非特許文献 1 · 3)。  Caspase is a cysteine protease having a cysteine residue at the active center and has the activity of cleaving the C-terminal side of aspartate. Caspase is synthesized as an inactive proenzyme (pr oform) and is composed of three regions. Prodomain, large subunit, and small subunit are called prodomain, large subunit, and small subunit from the N-terminal side, and proteolytic processing occurs between the domains, and the large and small subunits form heterodimers and become tetramers. (Active form) (non-patent documents 1 and 3 described later).
[0004] カスパーゼは、これまでに哺乳動物から 14種類同定されており、アポトーシス実行 に関与するものと炎症反応に関与するものに大別されている。さらにアポトーシスに 関与するものは、上流で機能するイニシエータ一カスパーゼと下流で機能するェフエ クタ一カスパーゼに分類される。イニシエータ一カスパーゼは、長いプロドメインを持 つており、この領域でアダプター分子と結合することにより活性ィ匕し、カスパーゼ 2、 8 、 9、 10が含まれる。エフェクターカスパーゼは、短いプロドメインをもっており、ィ-シ エーターカスパーゼによってァスパラギン酸の C末端側で切断され、大小サブュ-ッ トに分かれ活性ィ匕する。エフェクターカスパーゼにはカスパーゼ 3、 6、 7が含まれる。 活性ィ匕したエフェクターカスパーゼが種々の基質を切断することによりアポトーシスの 実行を行う (後記の非特許文献 1 · 3 · 4)。 [0004] So far, 14 types of caspases have been identified from mammals, and they are roughly classified into those involved in the execution of apoptosis and those involved in the inflammatory response. Further, those involved in apoptosis are classified into an initiator-caspase that functions upstream and an effector-caspase that functions downstream. The initiator-caspase has a long prodomain, and is activated by binding to an adapter molecule in this region, and includes caspases 2, 8, 9, and 10. The effector caspase has a short prodomain, and is cleaved at the C-terminal side of aspartic acid by the cytheter caspase. It is divided into groups and activated. Effector caspases include caspases 3, 6, and 7. An activated effector caspase performs apoptosis by cleaving various substrates (Non-patent Documents 1, 3, 4 described later).
[0005] 近年、カスパーゼの活性を抑制することによりアポトーシスの異常で引き起こされる 疾患の治療ができるのではないかと考えられ、種々のカスパーゼ阻害剤が開発、同 定されている。カスパーゼの酵素活性を阻害する物質としては天然に存在する阻害 蛋白質と人工的に化学合成されたペプチド性阻害剤がある。天然に存在する阻害蛋 白質としては IAPファミリー蛋白質(例えば、 cIAPl, cIAP2, XIAP, survivin等)、バキ ュロウィルス由来の p35蛋白質、牛痘ウィルス由来の crmA蛋白質があり、ペプチド 性阻害剤はカスパーゼがァスパラギン酸の C末端側を切断するという性質を利用して 、そのペプチドの中にァスパラギン酸を含んだ阻害剤であり、可逆的、或いは不可逆 的にカスパーゼに結合してその活性を阻害する。例えば、後述のペプチド性阻害剤 rz-Asp-CH2-DCBjについては、後記の特許文献 1 4に記載されている。  [0005] In recent years, it is thought that by suppressing caspase activity, it is possible to treat diseases caused by abnormal apoptosis, and various caspase inhibitors have been developed and identified. Substances that inhibit caspase enzyme activity include naturally occurring inhibitory proteins and artificially chemically synthesized peptide inhibitors. Naturally occurring inhibitory proteins include IAP family proteins (for example, cIAPl, cIAP2, XIAP, survivin, etc.), p35 protein derived from baculovirus, and crmA protein derived from cowpox virus. Utilizing the property of cleaving the C-terminal side of the peptide, it is an inhibitor containing aspartic acid in its peptide, and reversibly or irreversibly binds to caspase to inhibit its activity. For example, the peptide inhibitor rz-Asp-CH2-DCBj described later is described in Patent Document 14 described later.
[0006] これまでにアポトーシスの増加と関連のある、様々な哺乳動物の疾患状態を処置す るためのカスパーゼ阻害剤の有用性が示されている。例えば、動物モデルを用いた 前臨床試験において、カスパーゼ阻害剤により肝臓、心筋、腎臓、腸、及び、脳の虚 血 再灌流で引き起こされる損傷によるアポトーシスが抑制され、これら臓器の機能 が保持される (後記の非特許文献 5— 9)。また、カスパーゼ阻害剤は動物モデルを 用いた前臨床試験において、外傷性脳障害、筋委縮性側索硬化症、パーキンソン 病などによる神経細胞のアポトーシスを抑制する(後記の非特許文献 10— 12)。  [0006] To date, the usefulness of caspase inhibitors to treat various mammalian disease states associated with increased apoptosis has been shown. For example, in preclinical studies using animal models, caspase inhibitors suppress liver-myocardium, kidney, intestine, and brain ischemia-induced apoptosis caused by reperfusion, and preserve the function of these organs. (Non-patent document 5-9 described later). In addition, caspase inhibitors suppress neuronal apoptosis due to traumatic brain injury, atrophic lateral sclerosis, Parkinson's disease, etc. in preclinical studies using animal models (Non-patent Documents 10-12 below) .
[0007] 以上のように、カスパーゼをアポトーシス実行の主要因子と考え、その活性を負に 制御することによってアポトーシスの異常で引き起こされる種々の疾患の治療に向け た研究、開発が行われているが、近年になりカスパーゼの新たな機能が報告されつ つある。例えば、細胞増殖、細胞運動、細胞周期制御、細胞分化などであるが、その 詳細な機構は不明なままである(下記の非特許文献 13— 17)。これらカスパーゼの 新たな機能とその作用点を明らかにすることによって、カスパーゼ阻害剤の疾患治療 に向けた新しい使用方法が見出される可能性がある。  [0007] As described above, caspase is considered to be a major factor in the execution of apoptosis, and research and development have been conducted for the treatment of various diseases caused by abnormal apoptosis by negatively controlling its activity. In recent years, new functions of caspases have been reported. For example, cell proliferation, cell motility, cell cycle control, cell differentiation, etc., but the detailed mechanism remains unclear (Non-patent Documents 13-17 below). By elucidating the new functions of these caspases and their points of action, new uses of caspase inhibitors for the treatment of diseases may be found.
[0008] ところで最近になり、ある種のがん細胞 (前立腺がん、乳がん、大腸がんなど)でァ ポトーシスと関連しな ヽカスパーゼの活性上昇が報告されて ヽる(下記の非特許文献[0008] Recently, some types of cancer cells (prostate cancer, breast cancer, colon cancer, etc.) An increase in caspase activity not related to potosis has been reported (see the following non-patent literature)
18)。これらのがん細胞では同時にカスパーゼの阻害蛋白質である IAPファミリー蛋 白質の発現上昇も観察されており、カスパーゼ活性上昇により高まったアポトーシス に陥る危険性をカスパーゼ阻害蛋白質の発現を上げることで回避していると考えら れている(下記の非特許文献 19— 25)。また、これら阻害蛋白質の機能を阻害する ことによってがん細胞特異的にアポトーシスを誘導してがん治療を行おうという試みも なされている(下記の非特許文献 26— 28)。 18). In these cancer cells, an increase in the expression of IAP family proteins, which are caspase inhibitory proteins, was observed at the same time, and the risk of falling into apoptosis due to increased caspase activity was avoided by increasing the expression of caspase inhibitory proteins. (Non-Patent Documents 19-25 below). In addition, attempts have been made to treat cancer by inducing apoptosis specifically in cancer cells by inhibiting the function of these inhibitory proteins (Non-patent Documents 26-28 below).
特許文献 1:米国特許第 5985838号公報 Patent Document 1: US Patent No. 5985838
特許文献 2:米国特許第 6576614号公報 Patent Document 2: US Patent No. 6576614
特許文献 3:特開平 7— 025865号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 7-025865
特許文献 4:特開平 7— 069894号公報 Patent Document 4: Japanese Patent Laid-Open No. 7-069894
非特許文献 l:Thornberry et al., Science, 281, 1312-1316 (1998) Non-patent literature l: Thornberry et al., Science, 281, 1312-1316 (1998)
非特許文献 2: Nicholson et al., Nature, 407, 810-816 (2000) Non-Patent Document 2: Nicholson et al., Nature, 407, 810-816 (2000)
非特許文献 3:Earnshaw et al., Annu. Rev. Biochem., 68, 383-424 (1999) 非特許文献 4: Fischer et al., Cell Death Differ., 10, 76-100 (2003) Non-Patent Document 3: Earnshaw et al., Annu. Rev. Biochem., 68, 383-424 (1999) Non-Patent Document 4: Fischer et al., Cell Death Differ., 10, 76-100 (2003)
非特許文献 5:Cursio et al" FASEB J., 13, 253-261 (1999) Non-Patent Document 5: Cursio et al "FASEB J., 13, 253-261 (1999)
非特許文献 6:Mocanu et al., Br. J. Pharmacol, 130, 197-200 (2000) Non-Patent Document 6: Mocanu et al., Br. J. Pharmacol, 130, 197-200 (2000)
非特許文献 7:Farber et al., J. Vase. Surg., 30, 752-760 (1999) Non-Patent Document 7: Farber et al., J. Vase. Surg., 30, 752-760 (1999)
非特許文献 8:Daemen et al., J. Clin. Invest., 104, 541-549 (1999) Non-Patent Document 8: Daemen et al., J. Clin. Invest., 104, 541-549 (1999)
非特許文献 9:Endres et al., J. Cereb. Blood Flow Metab., 18, 238-247 (1998) 非特許文献 10:Yakovlev et al., J. Neurosci., 17, 7415-7424 (1997) Non-patent document 9: Endres et al., J. Cereb. Blood Flow Metab., 18, 238-247 (1998) Non-patent document 10: Yakovlev et al., J. Neurosci., 17, 7415-7424 (1997)
非特許文献 ll:Li et al" Science, 288, 335-339 (2000) Non-patent literature ll: Li et al "Science, 288, 335-339 (2000)
非特許文献 12:Schierle et al., Nature Med., 5, 97-100 (1999) Non-Patent Document 12: Schierle et al., Nature Med., 5, 97-100 (1999)
非特許文献 13: Los et al., Trends Immunol.22, 31-34 (2001) Non-Patent Document 13: Los et al., Trends Immunol. 22, 31-34 (2001)
非特許文献 14: Algeciras- Schimnich et al., Curr. Opin. Cell Biol.14, 721-726 (200Non-Patent Document 14: Algeciras- Schimnich et al., Curr. Opin. Cell Biol. 14, 721-726 (200
2) 2)
非特許文献 15:Schwerk et al., Biochem. Pharmacol.66, 1453-1458 (2003) 非特許文献 16: Newton et al., Genes Dev.17, 819-825 (2003) 非特許文献 17 : Woo et al, Nature Immunol. 4, 1016-1022 (2003) Non-patent document 15: Schwerk et al., Biochem. Pharmacol. 66, 1453-1458 (2003) Non-patent document 16: Newton et al., Genes Dev. 17, 819-825 (2003) Non-Patent Document 17: Woo et al, Nature Immunol. 4, 1016-1022 (2003)
非特許文献 18 : Yang et al., Cancer Res., 63, 6815-6824 (2003)  Non-Patent Document 18: Yang et al., Cancer Res., 63, 6815-6824 (2003)
非特許文献 19 : Satoh et al., Cancer, 92, 271-278 (2001)  Non-Patent Document 19: Satoh et al., Cancer, 92, 271-278 (2001)
非特許文献 20 :Ambrosini et al., Nat. Med. 3, 917-921 (1997)  Non-Patent Document 20: Ambrosini et al., Nat. Med. 3, 917-921 (1997)
非特許文献 21 : Serela et al., Ann. Surg. Oncol, 8, 305-310 (2001)  Non-Patent Document 21: Serela et al., Ann. Surg. Oncol, 8, 305-310 (2001)
非特許文献 22 : Tanaka et al., Clin. Cancer Res., 6, 127-134 (2000)  Non-Patent Document 22: Tanaka et al., Clin. Cancer Res., 6, 127-134 (2000)
非特許文献 23 : Ferreira et al., Ann. Oncol, 12, 799-805 (2001)  Non-Patent Document 23: Ferreira et al., Ann. Oncol, 12, 799-805 (2001)
非特許文献 24 : Li et al., Endocrinology, 142, 370-380 (2001)  Non-Patent Document 24: Li et al., Endocrinology, 142, 370-380 (2001)
非特許文献 25 : Sasaki et al., Cancer Res., 60, 5659-5666 (2000)  Non-Patent Document 25: Sasaki et al., Cancer Res., 60, 5659-5666 (2000)
非特許文献 26 : Liston et al., Nat. Cell Biol, 3, 128-133 (2001)  Non-Patent Document 26: Liston et al., Nat. Cell Biol, 3, 128-133 (2001)
非特許文献 27 : Mesri et al" J. Clin. Investig., 108, 981-990 (2001)  Non-Patent Document 27: Mesri et al "J. Clin. Investig., 108, 981-990 (2001)
非特許文献 28 : Schimmer et al., Cancer Cell, 5, 25-35 (2004)  Non-Patent Document 28: Schimmer et al., Cancer Cell, 5, 25-35 (2004)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 上述のように、がん細胞においてアポトーシスと関連しないカスパーゼの活性上昇 が報告されている。しかしながら、がん細胞特異的なカスパーゼの活性上昇の理由 は不明であり、もし、がん細胞特異的なカスパーゼの機能を明らかにできれば、カス パーゼの活性を阻害することによる新たながん治療法を提示できる可能性がある。 [0010] As described above, an increase in caspase activity that is not associated with apoptosis in cancer cells has been reported. However, the reason for the increase in cancer cell-specific caspase activity is unknown, and if the function of cancer cell-specific caspase can be clarified, a new cancer treatment method by inhibiting caspase activity can be found. Can be presented.
[0011] 本発明は、上記の事情に鑑みなされたものであって、その目的は、がん細胞におけ るカスパーゼの生理的役割、およびカスパーゼ阻害剤の抗がん剤としての利用可能 性につ!、て検討し、その知見に基づきカスパーゼを標的とした新たな抗がん剤等を 提供することにある。  [0011] The present invention has been made in view of the above-described circumstances, and the object thereof is the physiological role of caspase in cancer cells, and the availability of caspase inhibitors as anticancer agents. The aim is to provide new anti-cancer drugs targeting caspases based on the findings.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者は、上記の課題に鑑み鋭意研究を進めた結果、(1)がん細胞の細胞分 裂期特異的にカスパーゼの活性型が検出されること、(2)カスパーゼ阻害剤を投与 することによって、がん細胞において細胞分裂の遅延を来し、また、分裂期における 正常な染色体分離が阻害されること、さらに、(3)カスパーゼ阻害剤を投与することに よって、実際に肝がん、子宮頸がん、急性 T細胞性白血病由来の各がん細胞に対し て増殖抑制効果が認められたこと、等を見出し、本発明を完成させるに至った。 [0012] As a result of diligent research in view of the above problems, the present inventor has (1) that an active form of caspase is detected specifically in the cell division stage of cancer cells, and (2) a caspase inhibitor. Administration of this drug causes delay in cell division in cancer cells, inhibits normal chromosomal segregation during mitosis, and (3) administers a caspase inhibitor. For cancer cells derived from liver cancer, cervical cancer, and acute T-cell leukemia As a result, the inventors have found that a growth inhibitory effect has been recognized, and have completed the present invention.
即ち、本発明は、医療および産業上有用な発明として、以下の発明を包含するもの である。  That is, the present invention includes the following inventions as medically and industrially useful inventions.
A) カスパーゼ阻害物質を有効成分とする杭がん剤。カスパーゼ阻害物質には、 ( 1)基質類似の構造体等を有し、カスパーゼの活性部位に結合することによって、力 スパーゼの活性を阻害する物質、(2)活性部位以外の部位と相互作用し、カスパー ゼの活性を阻害する物質、(3)カスパーゼの活性ィ匕を抑制 '阻害することによって力 スパーゼを阻害する物質、(4)カスパーゼの発現を抑制 ·阻害することによってカス パーゼを阻害する物質など、カスパーゼを直接的または間接的に阻害する物質が広 く含まれる。  A) A pile cancer agent containing a caspase inhibitor as an active ingredient. Caspase inhibitors include (1) substances that have a substrate-like structure, etc., that bind to the active site of caspase, thereby inhibiting the activity of force spurase, and (2) interact with sites other than the active site. , A substance that inhibits caspase activity, (3) a substance that inhibits caspase activity and inhibits force spase, and (4) a substance that inhibits and inhibits caspase expression. Substances that directly or indirectly inhibit caspases, such as substances, are widely included.
B) がん細胞の細胞分裂期において活性化されるカスパーゼの阻害物質を有効 成分とする杭がん剤。  B) A pile cancer agent containing as an active ingredient an inhibitor of caspase activated during the cell division phase of cancer cells.
C) カスパーゼ 1、 3、 4、 7、 8、 9のいずれか 1つ又は複数の阻害物質を有効成分 とする抗がん剤。  C) An anticancer agent comprising as an active ingredient any one or more of caspases 1, 3, 4, 7, 8, and 9.
D) 肝がん、子宫頸部がんなどの固形がんに適用される、上記 A)〜C)のいずれ かに記載の抗がん剤。  D) The anticancer agent according to any one of the above A) to C), which is applied to solid cancers such as liver cancer and cervical cancer.
E) カスパーゼ阻害物質が、ペプチド性化合物、非ペプチド性化合物、または、生 物由来のタンパク質である、上記 A)〜C)のいずれかに記載の抗がん剤。  E) The anticancer agent according to any one of A) to C) above, wherein the caspase inhibitor is a peptidic compound, a non-peptidic compound, or a protein derived from a living organism.
F) カスパーゼ阻害物質が、下記(1)〜(8)のいずれかの化合物である、上記 E) 記載の抗がん剤。  F) The anticancer agent according to E) above, wherein the caspase inhibitor is any one of the following compounds (1) to (8).
(1) Z- Asp- CH2- DCB  (1) Z- Asp- CH2- DCB
(2) Boc-Asp(OMe)-FMK  (2) Boc-Asp (OMe) -FMK
(3) Boc- Asp(OBzl)- CMK  (3) Boc- Asp (OBzl)-CMK
(4) Ac-AAVALLPAVLLALLAP-YVAD-CHO  (4) Ac-AAVALLPAVLLALLAP-YVAD-CHO
(5) Ac- AAVALLPAVLLALLAP- DEVD- CHO  (5) Ac- AAVALLPAVLLALLAP- DEVD- CHO
(6) Ac- AAVALLPAVLLALLAP- LEVD- CHO  (6) Ac- AAVALLPAVLLALLAP- LEVD- CHO
(7) Ac— AAVALLPAVLLALLAP— IETD— CHO  (7) Ac— AAVALLPAVLLALLAP— IETD— CHO
(8) Ac- AAVALLPAVLLALLAP- LEHD- CHO G) カスパーゼ阻害物質を含有することによって、抗がん作用を有する食用組成 物。 (8) Ac- AAVALLPAVLLALLAP- LEHD- CHO G) An edible composition having an anticancer effect by containing a caspase inhibitor.
H) カスパーゼタンパク質の発現を特異的に抑制する RNAをがん細胞に導入す ることによって、がん細胞の増殖を抑制する方法。  H) A method for suppressing the growth of cancer cells by introducing RNA that specifically suppresses the expression of caspase protein into the cancer cells.
上記 RNA(RNAi)は、 siRNA (short interference RNA:「short interfering RNA」「s mall interfering RNA」等とも呼ばれる。)であってもよいし、 RNAi発現ベクター(「siR NA発現ベクター」等とも呼ばれる。)であってもよい。 siRNAおよび RNAi発現べクタ 一は、抑制対象となるカスパーゼの遺伝子配列をもとに公知の方法にしたがって設 計することができる(たとえば Ambion TechNotes 9(1): 3-5 (2002)、 Proc. Natl. Acad. Sci. USA 99(8): 5515-5520 (2002)、 Proc. Natl. Acad. Sci. USA 99(9): 6047-6052 (2 002)、 Nature Biotechnology 20: 505-508 (2002)など参照)。また、 RNAi発現べクタ 一は、(1) 1本の RNAで適当な長さのヘアピン構造をもつ dsRNAを対象細胞内で 発現させるように設計されたもの、(2)センス鎖、アンチセンス鎖それぞれを対象細胞 内で発現させ、会合させるように設計されたもの、のいずれであってもよい。  The RNA (RNAi) may be a siRNA (short interference RNA: also referred to as “short interfering RNA”, “small interfering RNA”, etc.) or an RNAi expression vector (“siRNA expression vector”). ). siRNA and RNAi expression vectors can be designed according to known methods based on the gene sequence of the caspase to be suppressed (for example, Ambion TechNotes 9 (1): 3-5 (2002), Proc. Natl. Acad. Sci. USA 99 (8): 5515-5520 (2002), Proc. Natl. Acad. Sci. USA 99 (9): 6047-6052 (2 002), Nature Biotechnology 20: 505-508 (2002) )). The RNAi expression vector (1) is designed to express dsRNA having a hairpin structure of an appropriate length with a single RNA in the target cell, (2) sense strand, antisense strand Any of those designed to express and associate with each other in the target cell may be used.
がん細胞への RNAの導入は、常法にしたがって行うことができるが(たとえば Natur e 411:494-498 (2001)、 Science 296:550-553 (2002)など参照)、本発明以降に新た に開発された方法を使用するものであってもよい。  RNA can be introduced into cancer cells according to a conventional method (see, for example, Nature 411: 494-498 (2001), Science 296: 550-553 (2002)). It is also possible to use the method developed in (1).
I) カスパーゼタンパク質の発現を特異的に抑制する RNA、または当該 RNAを標 的がん細胞で発現するよう構築された RNAi発現ベクターカゝらなる杭がん剤。  I) Stake cancer agent consisting of RNA that specifically suppresses caspase protein expression, or RNAi expression vector constructed to express the RNA in target cancer cells.
「RNAi発現ベクター」は、ウィルスベクター、プラスミド、ファージ、又はコスミドなど を使用することができ、標的がん細胞内で機能するプロモーター(たとえば U6又は H 1プロモーター等の RNAポリメラーゼ III系のプロモーター、あるいは RNAポリメラー ゼ II系のプロモーターなど)を発現させる siRNAの配列の上流に組み入れたものを 使用すればよい。  As the “RNAi expression vector”, a viral vector, plasmid, phage, cosmid or the like can be used, and a promoter that functions in the target cancer cell (for example, an RNA polymerase III promoter such as U6 or H1 promoter, or RNA polymerase II promoters etc.) may be used that are incorporated upstream of the siRNA sequence that expresses it.
なお、ここで「カスパーゼタンパク質の発現を特異的に抑制する」とは、標的がん細 胞におけるカスパーゼタンパク質の発現量を実質的に低下させるものであればよぐ カスパーゼタンパク質の発現を完全に抑制するものでなくてもよい。  Here, “specifically suppress caspase protein expression” is sufficient if it substantially reduces the expression level of caspase protein in the target cancer cell. Caspase protein expression is completely suppressed. It does not have to be.
発明の効果 [0014] 本発明は、カスパーゼ阻害剤を抗がん剤、または抗がん効果のある機能性食品等 として利用するものである。従来、カスパーゼ阻害剤の医薬利用は、アポトーシスの 抑制 ·予防という観点力も研究開発が進められてきた (例えばアポトーシスの異常によ つて引き起こされる神経変性疾患の治療など)。本発明は、がん細胞の細胞分裂期 にカスパーゼが活性ィ匕してその制御に関与することを見出し、さらに、この知見に基 づいてカスパーゼ阻害剤によるがん細胞の増殖抑制という新たな用途を提供するも のである。 The invention's effect [0014] The present invention utilizes a caspase inhibitor as an anticancer agent or a functional food having an anticancer effect. Conventionally, caspase inhibitors have been researched and developed from the viewpoint of suppressing / preventing apoptosis (for example, treatment of neurodegenerative diseases caused by abnormal apoptosis). The present invention has been found that caspases are activated during the cell division phase of cancer cells and are involved in the control thereof. Further, based on this finding, a new use of suppressing the growth of cancer cells by caspase inhibitors is provided. It is to provide.
[0015] このように本発明によれば、アポトーシスの実行に重要な役割を果たすと考えられ ているカスパーゼを阻害することにより、がん細胞の増殖を抑制することができる。多 くのがん細胞で非アポトーシス状態であるにもかかわらず、カスパーゼの活性が上昇 しており、カスパーゼ阻害剤はがん細胞特異的に作用する可能性が高い。これまで のがん治療に用いられてきたィ匕学療法、放射線療法などは、細胞にアポトーシスを 誘導することが目的であり、がん細胞以外の正常細胞にも多大な影響があり、その副 作用が大きな問題となっている。がん細胞特異的に活性ィ匕するカスパーゼを標的と する本発明の抗がん剤の使用によって、副作用の極めて低い、これまでにない新し いタイプのがん治療方法の確立が期待できる。  [0015] Thus, according to the present invention, the growth of cancer cells can be suppressed by inhibiting caspases that are thought to play an important role in the execution of apoptosis. Despite being non-apoptotic in many cancer cells, caspase activity is increased, and caspase inhibitors are likely to act specifically on cancer cells. Conventional acupuncture, radiation therapy, etc. used for cancer treatment are aimed at inducing apoptosis in cells, and have a great influence on normal cells other than cancer cells. The effect is a big problem. By using the anticancer agent of the present invention that targets a caspase that specifically activates cancer cells, the establishment of a new type of cancer treatment method that has extremely low side effects and is unprecedented can be expected.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]免疫蛍光染色法によって細胞分裂期特異的なカスパーゼ 3の活性ィ匕を示す図 である。 (a)は、カスパーゼ 3の大サブユニット (pi 7)を認識する抗体を使用した結果 、 (b)は、カスパーゼ 3の小サブユニット (pi 2)を認識する抗体を使用した結果である  [0016] FIG. 1 is a diagram showing the activity of caspase 3 specific to cell division phase by immunofluorescence staining. (a) is the result of using an antibody that recognizes the large subunit of caspase 3 (pi 7), (b) is the result of using an antibody that recognizes the small subunit of caspase 3 (pi 2)
[図 2]肝がん由来 HepG2細胞をノコダゾール処理し、細胞分裂期におけるカスパー ゼの活性ィ匕を検討した結果を示す図である。(a)は、フローサイトメトリーによる細胞 周期の解析結果、(b)は、ウェスタンブロッテイングによるカスパーゼの活性ィ匕とカス パーゼによる基質切断の有無を調べた結果を示す。 FIG. 2 is a diagram showing the results of examining caspase activity during cell division by treating hepatoma-derived HepG2 cells with nocodazole. (A) shows the results of cell cycle analysis by flow cytometry, and (b) shows the results of examining the activity of caspase by Western blotting and the presence or absence of substrate cleavage by caspase.
[図 3]子宮頸がん由来 HeLa細胞をチミジン処理し、細胞分裂期におけるカスパーゼ の活性ィ匕を検討した結果を示す図である。(a)は、フローサイトメトリーによる細胞周 期の解析結果、(b)は、ウェスタンブロッテイングによるカスパーゼの活性ィ匕とカスバ ーゼによる基質切断の有無を調べた結果を示す。 FIG. 3 shows the results of examining caspase activity during cell division by treating cervical cancer-derived HeLa cells with thymidine. (A) shows the results of cell cycle analysis by flow cytometry. (B) shows the activity of caspase and caspase by Western blotting. The result of having investigated the presence or absence of the substrate cleavage by a case is shown.
[図 4]カスパーゼ阻害剤による細胞周期進行の遅延を示すグラフである。  FIG. 4 is a graph showing the delay in cell cycle progression by caspase inhibitors.
[図 5]カスパーゼ阻害剤による凝縮した核を持つ細胞数の増加を示すグラフである。  FIG. 5 is a graph showing an increase in the number of cells having condensed nuclei by caspase inhibitors.
[図 6]カスパーゼ阻害剤による細胞分裂期の染色体分離の進行阻害を示す図である  FIG. 6 is a diagram showing inhibition of progression of chromosome segregation during cell division by caspase inhibitors.
[図 7]汎用性カスパーゼ阻害剤によるがん細胞の増殖抑制効果を示すグラフである。 FIG. 7 is a graph showing the effect of suppressing proliferation of cancer cells by a general-purpose caspase inhibitor.
[図 8]HepG2細胞に対する各カスパーゼ特異的阻害剤の増殖抑制効果を示すダラ フである。  FIG. 8 is a graph showing the growth inhibitory effect of each caspase-specific inhibitor on HepG2 cells.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の好ましい態様について説明する。なお、本明細書および図面にお いて、アミノ酸等の化合物を略号で表記する場合、その表記は IUPAC- IUB Commiss ion on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に 基づくものである。  [0017] Hereinafter, preferred embodiments of the present invention will be described. In the present specification and drawings, when a compound such as an amino acid is represented by an abbreviation, the notation is based on an abbreviation by IUPAC-IUB Commission on Biochemical Nomenclature or an abbreviation commonly used in the field.
[0018] [1]本発明の抗がん剤  [0018] [1] Anticancer agent of the present invention
本発明の抗がん剤は、上述のとおり、カスパーゼ阻害物質すなわちカスパーゼ阻 害剤を有効成分とするものである。後述の実施例に示すように、いくつかのカスパー ゼ阻害剤を投与することによって、実際に肝がん由来 HepG2細胞、および子宮頸が ん由来 HeLa細胞の増殖を抑制 ·阻害することができた(図 7 · 8)。  As described above, the anticancer agent of the present invention comprises a caspase inhibitor, that is, a caspase inhibitor as an active ingredient. As shown in the examples below, administration of several caspase inhibitors actually suppressed and inhibited the growth of hepatoma-derived HepG2 cells and cervical cancer-derived HeLa cells. (Figures 7 and 8).
従来、カスパーゼはアポトーシス実行時に活性ィ匕し、アポトーシスを正に制御するこ とから、その阻害剤はアポトーシスを抑制するために使用されてきた。これに対して本 発明者は、カスパーゼの多様な生理的役割を解明する過程で今回新たに、 HepG2 細胞、 HeLa細胞といったがん細胞において、カスパーゼが細胞分裂期特異的に活 性ィ匕することを見出した(図 1— 3)。また、カスパーゼ阻害剤の投与によって、がん細 胞において細胞周期の進行が遅延し、分裂期における正常な染色体分離が阻害さ れた(図 4 6)。なお、詳細は後述する。  Traditionally, caspases are active during apoptosis and positively control apoptosis, so inhibitors have been used to suppress apoptosis. In contrast to this, the present inventor newly discovered that caspases are activated specifically in the cell division phase in cancer cells such as HepG2 cells and HeLa cells in the process of elucidating the various physiological roles of caspases. (Figure 1-3). In addition, administration of caspase inhibitors slowed cell cycle progression in cancer cells and inhibited normal chromosome segregation during mitosis (Figure 46). Details will be described later.
[0019] 本発明は、上記新たな知見に基づき、実際に肝がん、子宮頸がん由来の各がん細 胞に対するカスパーゼ阻害剤の増殖抑制効果を確認し、カスパーゼ阻害剤の抗が ん剤としての新規使用方法を提供するものである。 [0020] カスパーゼ阻害剤は、急性 T細胞性白血病由 urkat細胞の増殖も抑制した(図 7)ため、本発明の抗がん剤は、白血病などのがん治療に対しても使用できる。また、 がん細胞における非アポトーシス状態でのカスパーゼの活性ィヒは、前立腺がん、乳 がん、大腸がんなどにおいて報告されているため、これらがん細胞に対してもカスバ ーゼ阻害剤によって増殖を抑制できる可能性がある。さらに、がん細胞における非ァ ポトーシス状態でのカスパーゼの活性ィ匕が広く認められるならば、すべてのがんに対 して増殖抑制によるカスパーゼ阻害剤の抗がん剤としての使用が可能となる。 [0019] Based on the above new findings, the present invention confirms the growth inhibitory effect of caspase inhibitors against cancer cells derived from liver cancer and cervical cancer, and provides anticancer drugs against caspase inhibitors. It provides a novel method of use as an agent. [0020] Since the caspase inhibitor also suppressed the proliferation of urkat cells due to acute T cell leukemia (FIG. 7), the anticancer agent of the present invention can also be used for the treatment of cancer such as leukemia. In addition, caspase activity in a non-apoptotic state in cancer cells has been reported in prostate cancer, breast cancer, colon cancer, etc., and therefore caspase inhibitors can also be used against these cancer cells. May suppress proliferation. Furthermore, if caspase activity in cancer cells in a non-apoptotic state is widely recognized, it becomes possible to use caspase inhibitors as anticancer agents by inhibiting growth for all cancers. .
[0021] 換言すれば、本発明の抗がん剤は、細胞分裂期においてカスパーゼの活性化が 認められるがん細胞に対して適応可能であり、具体的には、肝がん等の消ィ匕器系が ん、子宮頸部がん等の扁平上皮がん、といった各種固形がんへの使用を例示するこ とがでさる。 In other words, the anticancer agent of the present invention can be applied to cancer cells in which caspase activation is observed in the cell division phase. Examples include use in various solid cancers such as cervical cancer and squamous cell carcinomas such as cervical cancer.
[0022] カスパーゼ阻害剤により阻害対象となるカスパーゼの種類は特に制限されるもので はないが、カスパーゼ 1、 3、 4、 7、 8、 9の各阻害剤について実際に増殖抑制効果が 認められたので(図 8)、カスパーゼ 1、 3、 4、 7、 8、 9のいずれか 1つ又は複数を阻害 するカスパーゼ阻害剤の使用が好ましい。とりわけ、増殖抑制効果の高力つたカスバ ーゼ 1、 3、 4、 7の各阻害剤の使用が好ましぐ肝がん、子宮頸がん等で分裂期にお ける活性ィ匕が確認されたカスパーゼ 3、 7に対する阻害剤の使用が特に好ましい。ま た、複数種類のカスパーゼを阻害する汎用性のカスパーゼ阻害剤を使用してもよい し、カスパーゼ 3等の活性ィ匕を上流で制御するカスパーゼの阻害剤を使用してもよ ヽ  [0022] The type of caspase to be inhibited by the caspase inhibitor is not particularly limited, but the caspase 1, 3, 4, 7, 8, and 9 inhibitors were actually observed to have a growth inhibitory effect. Therefore (FIG. 8), it is preferable to use a caspase inhibitor that inhibits one or more of caspases 1, 3, 4, 7, 8, and 9. In particular, activity in the mitotic phase has been confirmed in liver cancer, cervical cancer, etc., where the use of inhibitors of caspases 1, 3, 4, and 7 that have a high growth inhibitory effect is preferred. Particularly preferred is the use of inhibitors against caspases 3,7. In addition, a general-purpose caspase inhibitor that inhibits multiple types of caspases may be used, or a caspase inhibitor that controls upstream activity of caspase 3 and the like may be used.
[0023] カスパーゼ阻害剤すなわちカスパーゼ阻害物質は、ペプチド性化合物、非ぺプチ ド性化合物、あるいは、生物由来のタンパク質のいずれであってもよい。ペプチド性 化合物としては、例えば人工的に化学合成された下記(1)〜(8)のペプチド性ィ匕合 物を挙げることができる。 [0023] The caspase inhibitor, that is, the caspase inhibitor, may be any of a peptide compound, a non-peptide compound, or a biological protein. Examples of peptidic compounds include artificially chemically synthesized peptidic compounds (1) to (8) below.
(1) Z- Asp- CH2- DCB (分子量 454. 26)  (1) Z- Asp- CH2- DCB (Molecular weight 454. 26)
(2) Boc- Asp(OMe)- FMK (分子量 263. 3)  (2) Boc- Asp (OMe)-FMK (Molecular weight 263.3)
(3) Boc- Asp(OBzl)- CMK (分子量 355. 8)  (3) Boc- Asp (OBzl)-CMK (Molecular weight 355.8)
(4) Ac-AAVALLPAVLLALLAP-YVAD-CHO (分子量 1990. 5) (5) Ac- AAVALLPAVLLALLAP- DEVD- CHO (分子量 2000. 4) (4) Ac-AAVALLPAVLLALLAP-YVAD-CHO (Molecular weight 1990.5) (5) Ac- AAVALLPAVLLALLAP- DEVD- CHO (Molecular weight 2000. 4)
(6) Ac- AAVALLPAVLLALLAP- LEVD- CHO (分子量 1998. 5)  (6) Ac- AAVALLPAVLLALLAP- LEVD- CHO (Molecular weight 1998.5)
(7) Ac— AAVALLPAVLLALLAP— IETD— CHO (分子量 2000. 5)  (7) Ac— AAVALLPAVLLALLAP— IETD— CHO (Molecular weight 2000. 5)
(8) Ac- AAVALLPAVLLALLAP- LEHD- CHO (分子量 2036. 5)  (8) Ac- AAVALLPAVLLALLAP- LEHD- CHO (Molecular weight 2036.5)
[0024] 上記(1)〜(3)の化合物は!、ずれも細胞膜透過性であり、複数種類のカスパーゼ を阻害する汎用性のカスパーゼ阻害剤である。 (1)の Z-Asp- CH2-DCBは、正式名 ベンジルォキシカルボ-ルー Lーァスパルトー 1ーィルー [ (2, 6—ジクロ口べンゾィ ノレノォ3 rン]メタン (Benzyloxycarbonyl— L— Aspart— 1—yト [(2,6— Dichlorobenzoyl)oxy」me thane)である。(2)の Boc-Asp(OMe)- FMKは、正式名 N— (tert ブトキシカルボ- ノレ)ァスパノレチノレ(O—メチノレ)ーフノレオロメチノレケトン(N- (tert- butoxycarbonyl)aspar tyl(0- methyl)- fluoromethylketone)である。(3)の Boc- Asp(OBzl)- CMKは、正式名 N ― (tert—ブトキシカルボ-ル)ァスパルチル(O—ベンジル) クロロメチルケトン(N- ( tert— Dutoxycarbonyl)aspartyl(0— benzyl)— chioromethylketoneノで &)る。 Z— Asp— CH2— DCBゝ Boc- Asp(OMe)- FMKゝ Boc- Asp(OBzl)- CMKはいずれも HepG2細胞、 HeLa 細胞、 Jurkat細胞の増殖を濃度依存的に抑制した(図 7)。増殖抑制効果の程度は、 Boc- Asp(OBzl)- CMK、 Z- Asp- CH2- DCB、 Boc- Asp(OMe)- FMKの順に良好であつ た。 [0024] The compounds (1) to (3) are!, All of which are cell membrane permeable and are general-purpose caspase inhibitors that inhibit multiple types of caspases. Z-Asp-CH2-DCB in (1) is the official name Benzyloxycarbo-Lu L-Spartau 1-Lu [(2, 6-Dichloro-benzo Noreno 3- r)] methane (Benzyloxycarbonyl— L— Aspart— 1— y ([2,6—Dichlorobenzoyl) oxy ”me thane). (2) Boc-Asp (OMe) -FMK is the official name N— (tert-butoxycarbo-nore) aspanoretinore (O-methinore)- Fnorolelomethinoleketone (N- (tert-butoxycarbonyl) aspartyl (0-methyl) -fluoromethylketone). (3) Boc- Asp (OBzl) -CMK is the official name N ― (tert-butoxycarbo -L) Aspartyl (O-benzyl) Chloromethylketone (N- (tert-Dutoxycarbonyl) aspartyl (0-benzyl)-chioromethylketone) & Z- Asp- CH2- DCB ゝ Boc- Asp (OMe)-FMKゝ Boc- Asp (OBzl) -CMK inhibited the growth of HepG2 cells, HeLa cells, and Jurkat cells in a concentration-dependent manner (Fig. 7). CMK, Z-Asp-CH2-DCB, and Boc-Asp (OMe) -FMK were favorable in this order.
[0025] 上記(4)は、カスパーゼ 1阻害剤であり、カスパーゼ 1の阻害に関与する YVAD (す なわちチロシン一パリン ァラニン ァスパラギン酸)の 4アミノ酸の N末端側には細 胞膜透過性を高めるために、下記アミノ酸配列力もなる力ポジ繊維芽細胞成長因子( Kaposi fibroblast growth factor)の疎水性領域が付与されている。  [0025] The above (4) is a caspase 1 inhibitor, and cell membrane permeability is present on the N-terminal side of the 4 amino acids of YVAD (ie, tyrosine monoparin / alanine / aspartate) involved in caspase 1 inhibition. In order to enhance, a hydrophobic region of force-positive fibroblast growth factor (Kaposi fibroblast growth factor) having the following amino acid sequence ability is added.
アミノ酸酉己歹 U: AAVALLPAVLLALLAP (すなわちァラニン一ァラニン一パリン一ァ ラニン一ロイシン ロイシン プロリンーァラニン一パリン ロイシン ロイシンーァラ ニン ロイシン ロイシンーァラニン プロリン)  Amino acid 酉 己 歹 U: AAVALLPAVLLALLAP (ie, Alanine, Alanine, Parin, Lanin, Leucine, Leucine, Proline, Alanine, and Parin, Leucine, Leucine, Alanine, Leucine, Leucine, Alanine, Proline)
[0026] 上記(5)は、カスパーゼ 3および 7阻害剤であり、カスパーゼ 3および 7の阻害に関 与する DEVD (すなわちァスパラギン酸 グルタミン酸一パリン ァスパラギン酸)の 4アミノ酸の N末端側に、細胞膜透過性を高めるために、上記力ポジ繊維芽細胞増 殖因子の疎水性領域が付与されて 、る。 [0027] 上記(6)は、カスパーゼ 4阻害剤であり、カスパーゼ 4の阻害に関与する LEVD (す なわちロイシン一グルタミン酸一パリン一ァスパラギン酸)の 4アミノ酸の N末端側に、 細胞膜透過性を高めるために、上記力ポジ繊維芽細胞増殖因子の疎水性領域が付 与されている。 [0026] The above (5) is a caspase 3 and 7 inhibitor, and permeates through the cell membrane on the N-terminal side of the 4 amino acids of DEVD (ie, aspartate glutamate monoparin aspartate) involved in the inhibition of caspase 3 and 7. In order to enhance the properties, a hydrophobic region of the force positive fibroblast growth factor is added. [0027] The above (6) is a caspase 4 inhibitor. Cell membrane permeability is increased on the N-terminal side of the 4 amino acids of LEVD (ie, leucine monoglutamate monoparin monoaspartate) involved in the inhibition of caspase 4. To enhance, a hydrophobic region of the force positive fibroblast growth factor is given.
[0028] 上記(7)は、カスパーゼ 8阻害剤であり、カスパーゼ 8の阻害に関与する IETD (す なわちイソロイシン グルタミン酸一スレオニン一ァスパラギン酸)の 4アミノ酸の N末 端側に、細胞膜透過性を高めるために、上記力ポジ繊維芽細胞増殖因子の疎水性 領域が付与されている。  [0028] The above (7) is a caspase 8 inhibitor, and it has cell membrane permeability on the N-terminal side of 4 amino acids of IETD (ie isoleucine glutamate 1 threonine 1 aspartate) involved in caspase 8 inhibition. In order to enhance, a hydrophobic region of the force positive fibroblast growth factor is added.
[0029] 上記(8)は、カスパーゼ 9阻害剤であり、カスパーゼ 9の阻害に関与する LEHD (す なわちロイシン グルタミン酸 ヒスチジン ァスパラギン酸)の 4アミノ酸の N末端側 に、細胞膜透過性を高めるために、上記力ポジ繊維芽細胞増殖因子の疎水性領域 が付与されている。  [0029] The above (8) is a caspase 9 inhibitor, in order to enhance cell membrane permeability on the N-terminal side of the 4 amino acids of LEHD (ie, leucine glutamate histidine aspartate) involved in caspase 9 inhibition. The hydrophobic region of the force positive fibroblast growth factor is given.
[0030] 上記 (4)〜(8)の化合物は、これら合計 20のアミノ酸力 なるオリゴペプチドの N末 端側にァセチル基 (Ac)を、 C末端側にァセトアルデヒド基 (CHO)をそれぞれ有する 。これら各カスパーゼに特異的な阻害剤は、抑制効果に差は見られるものの、いず れも HepG2細胞に対して増殖抑制活性を示した(図 8)。  [0030] The compounds of (4) to (8) above have an acetyl group (Ac) on the N-terminal side and an aldehyde group (CHO) on the C-terminal side of the oligopeptide having a total of 20 amino acids. Have Each of these caspase specific inhibitors showed growth inhibitory activity against HepG2 cells, although there was a difference in their inhibitory effects (Fig. 8).
[0031] 上記(1)〜(8)の化合物は、既存の各種ペプチド合成法など公知の化学合成法を 使用して容易に製造可能である。また、ペプチド性ィ匕合物としてはこれらのものに限 られず、カスパーゼの活性を抑制 ·阻害することができる他のペプチド性ィヒ合物を本 発明の抗がん剤に使用してもょ 、。  [0031] The compounds (1) to (8) can be easily produced by using known chemical synthesis methods such as various existing peptide synthesis methods. In addition, peptide compounds are not limited to these compounds, and other peptide compounds that can suppress / inhibit caspase activity may be used in the anticancer agent of the present invention. Oh ,.
[0032] 例えば、ペプチド性化合物のカスパーゼ阻害剤として、(l) VX-740 - Vertex Phar maceuticals (Leung— Toung et al" Curr. Med. Chem. 9, 979-1002 (2002》、 (2) HMR -3480 - Aventis Pharma AG (Randle et al., Expert Opin. Investig. Drugs 10, 1207- 1209 (2001》、を挙げることができる。  [0032] For example, as a caspase inhibitor of a peptide compound, (l) VX-740-Vertex Pharmeuticals (Leung-Toung et al "Curr. Med. Chem. 9, 979-1002 (2002), (2) HMR -3480-Aventis Pharma AG (Randle et al., Expert Opin. Investig. Drugs 10, 1207-1209 (2001).
非ペプチド性ィ匕合物のカスパーゼ阻害剤としては、(1)ァ-リノキナゾリン (anilinoqu inazolines (AQZs)) -AstraZeneca Pharmaceuticals (Scott et al" J. Pnarmacol. Exp. Ther. 304, 433—440 (2003))、 (2) M826 - Merck Frosst (Han et al., J. Biol. Chem. 277, 30128-30136 (2002))、 (3) M867 - Merck Frosst (Methot et al., J.Exp. Med. 199, 199-207 (2004))、(4)ニコチュルァスパチルケトンズ(Nicotinyl aspartyl ketone s) - Merck Frosst (Isabel et al., Bioorg. Med. Chem. Lett. 13, 2137—2140 (2003))、 などを例示することができる。 Non-peptide compound caspase inhibitors include (1) anlinoqu inazolines (AQZs) -AstraZeneca Pharmaceuticals (Scott et al "J. Pnarmacol. Exp. Ther. 304, 433-440 ( 2003)), (2) M826-Merck Frosst (Han et al., J. Biol. Chem. 277, 30128-30136 (2002)), (3) M867-Merck Frosst (Methot et al., J. Exp. Med. 199, 199-207 (2004)), (4) Nicotinyl aspartyl ketones-Merck Frosst (Isabel et al., Bioorg. Med. Chem. Lett. 13, 2137-2140 (2003) )), Etc.
また、その他の非ペプチド性化合物のカスパーゼ阻害剤として、(l) IDN-6556 - Id un Pharmaceuticals (Hoglen et al., J.Pharmacol. Exp. Ther. 309, 634—640 (2004》、 ( 2) MF-286 and MF-867 - Merck Frosst (Los et al., Drug Discov. Today 8, 67—77 ( 2003》、(3) IDN— 5370 - Idun Pharmaceuticals (Deckwerth et al., Drug Dev. Res. 52, Further, as caspase inhibitors of other non-peptidic compounds, (l) IDN-6556-Id un Pharmaceuticals (Hoglen et al., J. Pharmacol. Exp. Ther. 309, 634-640 (2004), (2) MF-286 and MF-867-Merck Frosst (Los et al., Drug Discov. Today 8, 67-77 (2003), (3) IDN— 5370-Idun Pharmaceuticals (Deckwerth et al., Drug Dev. Res. 52 ,
579-586 (2001》、 (4) IDN— 1965 - Idun Pharmaceuticals (Hoglen et al" J. Pharmaco 1. Exp. Ther. 297, 811—818 (2001》、 (5) VX- 799 - Vertex Pharmaceuticals (Los et a 1., Drug Discov. Today 8, 67-77 (2003))、などを挙げることができる。このほかに、 M- 920 and M— 791 - Merck Frosst (Hotchkiss et al., Nat. Immunol. 1, 496—501 (2000》 などもカスパーゼ阻害剤として挙げることができる。 579-586 (2001), (4) IDN— 1965-Idun Pharmaceuticals (Hoglen et al "J. Pharmaco 1. Exp. Ther. 297, 811—818 (2001), (5) VX-799-Vertex Pharmaceuticals (Los et a 1., Drug Discov. Today 8, 67-77 (2003)), etc. In addition, M-920 and M—791-Merck Frosst (Hotchkiss et al., Nat. Immunol. 1, 496-501 (2000) and the like can also be mentioned as caspase inhibitors.
生物由来のタンパク質としては、天然に存在するカスパーゼの活性阻害蛋白質で ある IAPファミリー蛋白質(例えば、 cIAPl, cIAP2, XIAP, survivin等)、バキュ口ウィル ス由来の p35蛋白質、牛痘ウィルス由来の crmA蛋白質などを例示することができる 。これらのタンパク質をがん細胞特異的に発現させることにより、がん細胞の増殖を抑 制することが可能である。タンパク質をがん細胞に発現させる方法としては、例えば 当該タンパク質をコードする遺伝子発現ベクターの使用が挙げられる。この方法の場 合、遺伝子発現ベクターの塩基配列について、常法に従って 1個または数個の塩基 を置換、欠失、挿入、及び Z又は付加させ、人為的に改変蛋白を発現させるようにし てもよい。  Biologically derived proteins include IAP family proteins (eg cIAPl, cIAP2, XIAP, survivin, etc.) that are caspase activity-inhibiting proteins, p35 protein derived from vaccinia virus, crmA protein derived from cowpox virus, etc. Can be illustrated. By expressing these proteins specifically for cancer cells, it is possible to suppress the growth of cancer cells. Examples of a method for expressing a protein in cancer cells include use of a gene expression vector encoding the protein. In the case of this method, the modified protein may be expressed artificially by substituting, deleting, inserting, and Z or adding one or several bases in the base sequence of the gene expression vector according to a conventional method. Good.
さらに他のカスパーゼ阻害剤として、前述のように、カスパーゼタンパク質の発現を 特異的に抑制する RNA、および当該 RNAを標的がん細胞で発現するよう構築され た RNAi発現ベクターを挙げることができる。実際に RNAi法を用いて、がん細胞内 の複数のカスパーゼタンパク質量を減少させたところ、がん細胞の増殖が抑制される 結果が得られた。したがって、カスパーゼタンパク質の発現を抑制する siRNAをがん 治療に利用することができる。がん細胞への siRNAの導入方法として、標的がん細 胞に効率よく選択的に siRNAを導入するため、ベクターや核酸を生体の特定部位や 特定細胞に運搬するよう提案された公知の担体やドラッグデリバリーシステムを使用 することができる。 Still other caspase inhibitors include RNA that specifically suppresses caspase protein expression, and RNAi expression vectors constructed to express the RNA in target cancer cells, as described above. In fact, when RNAi method was used to reduce the amount of multiple caspase proteins in cancer cells, the results showed that cancer cell growth was suppressed. Therefore, siRNA that suppresses the expression of caspase protein can be used for cancer treatment. As a method of introducing siRNA into cancer cells, vectors and nucleic acids can be used to transfer specific vectors or nucleic acids in order to efficiently and selectively introduce siRNA into target cancer cells. Known carriers and drug delivery systems proposed to be transported to specific cells can be used.
上記 siRNAおよび RNAi発現ベクターは、前述のように、カスパーゼの遺伝子配列 をもとに設計することができる。例えば、ヒト由来カスパーゼ 3の cDNA配列とアミノ酸 配列については、 DDBJ/EMBL/GenBank databasesのァクセッション番号「NM_00434 6」および「NM_032991」等に開示され、これらの配列情報をもとにターゲット配列を決 定し、カスパーゼタンパク質の発現を抑制し得る siRNAおよび RNAi発現ベクターの 設計と調製が可能である。  The siRNA and RNAi expression vectors can be designed based on the caspase gene sequence as described above. For example, the cDNA sequence and amino acid sequence of human caspase 3 are disclosed in DDBJ / EMBL / GenBank databases, such as accession numbers “NM_004346” and “NM_032991,” and the target sequence is determined based on these sequence information. It is possible to design and prepare siRNA and RNAi expression vectors that can be determined and suppress caspase protein expression.
[0034] 以上のように、本発明の抗がん剤は、カスパーゼ阻害剤すなわちカスパーゼ阻害 物質を有効成分とするものである力 公知のカスパーゼ阻害剤のみならず、将来見 出されたカスパーゼ阻害剤を使用するものであってもよい。カスパーゼ阻害剤には、 (1)基質類似の構造体等を有し、カスパーゼの活性部位に結合することによって、力 スパーゼの活性を阻害する物質、(2)活性部位以外の部位と相互作用し、カスパー ゼの活性を阻害する物質、(3)カスパーゼの活性ィ匕を抑制 '阻害することによって力 スパーゼを阻害する物質、(4)カスパーゼの発現を抑制 ·阻害することによってカス パーゼを阻害する物質など、カスパーゼを直接的または間接的に阻害する物質が広 く含まれる。例えば、カスパーゼの活性ィ匕によって細胞にアポトーシスを誘導する実 験系にお 、て、当該アポトーシスを抑制する物質もカスパーゼを直接的または間接 的に阻害する物質といえ、本発明のカスパーゼ阻害剤として利用し得る。  [0034] As described above, the anticancer agent of the present invention is a caspase inhibitor, that is, a caspase inhibitory substance as an active ingredient. Not only a known caspase inhibitor but also a caspase inhibitor found in the future. May be used. Caspase inhibitors include (1) substances that have a substrate-like structure, etc., that bind to the active site of caspase, thereby inhibiting the activity of force spurase, and (2) interact with sites other than the active site. , A substance that inhibits caspase activity, (3) a substance that inhibits caspase activity and inhibits force spase, and (4) a substance that inhibits and inhibits caspase expression. Substances that directly or indirectly inhibit caspases, such as substances, are widely included. For example, in an experimental system in which apoptosis is induced in cells by the activity of caspase, a substance that suppresses apoptosis can also be said to be a substance that directly or indirectly inhibits caspase, and as a caspase inhibitor of the present invention. Can be used.
[0035] カスパーゼの酵素活性を阻害する物質を用いる場合、阻害の程度は特に制限され るものではないが、 in vivoまたは in vitroにて行われる通常の酵素活性アツセィにお いて、 50%阻害濃度が数ピコモル (pM)〜数十マイクロモル M)程度の高い阻害 活性を有するものが好ましぐ in vivoにおいて数マイクロモル M)以下、 in vitroに ぉ 、て数百ナノモル (nM)以下であることがさらに好まし 、。  [0035] When a substance that inhibits the enzyme activity of caspase is used, the degree of inhibition is not particularly limited, but in a normal enzyme activity assay performed in vivo or in vitro, a 50% inhibitory concentration is used. It is preferable to have a high inhibitory activity of several picomoles (pM) to several tens of micromoles M), in vivo several micromoles M) or less, and in vitro, several hundred nanomoles (nM) or less. More preferred,
[0036] [2]本発明の抗がん剤等の使用例  [0036] [2] Examples of use of the anticancer agent of the present invention
以上はカスパーゼ阻害剤を抗がん剤 (制癌剤)として使用する場合であつたが、本 発明はこれに限定されるものではなぐカスパーゼ阻害剤を機能性食品、サプリメント などの食品 (食用組成物)の原材料に使用し、抗がん作用、がん予防効果をもった食 品開発に利用することも可能である。あるいは、化粧品の原材料に使用し、抗がん作 用、がん予防効果をもったィ匕粧品の開発に利用することも可能である。 The above is the case where a caspase inhibitor is used as an anticancer agent (anticancer agent). However, the present invention is not limited to this. A caspase inhibitor is a food such as a functional food or a supplement (edible composition). Food with anti-cancer and cancer-preventing effects It can also be used for product development. Alternatively, it can be used as a raw material for cosmetics, and can be used to develop cosmetics that have anticancer effects and cancer prevention effects.
[0037] 以下、カスパーゼ阻害剤を抗がん剤として使用する場合の一例について説明する 。カスパーゼ阻害剤は、これをそのまま、あるいは慣用の医薬製剤担体とともに医薬 用組成物となし、ヒト (または動物)に投与することができる。医薬用組成物の剤形とし ては特に制限されるものではなく必要に応じて適宜選択すればよいが、例えば、錠 剤、カプセル剤、顆粒剤、細粒剤、散剤等の経口剤、注射剤、坐剤、塗布剤等の非 経口剤が挙げられる。  Hereinafter, an example of using a caspase inhibitor as an anticancer agent will be described. The caspase inhibitor can be administered to humans (or animals) as it is or as a pharmaceutical composition together with a conventional pharmaceutical preparation carrier. The dosage form of the pharmaceutical composition is not particularly limited and may be appropriately selected as necessary. For example, oral preparations such as tablets, capsules, granules, fine granules, powders, injections, etc. Parenterals such as suppositories, suppositories, and coating agents.
[0038] 錠剤、カプセル剤、顆粒剤、細粒剤、散剤等の経口剤は、例えば、デンプン、乳糖 、 白糖、トレノヽロース、マンニット、カルボキシメチルセルロース、コーンスターチ、無機 塩類等を用いて常法に従って製造される。これらの製剤中のカスパーゼ阻害剤の配 合量は特に限定されるものではなく適宜設定できる。この種の製剤には、結合剤、崩 壊剤、界面活性剤、滑沢剤、流動性促進剤、矯味剤、着色剤、香料等を適宜に使用 することができる。  [0038] Oral preparations such as tablets, capsules, granules, fine granules, powders and the like are commonly used, for example, starch, lactose, sucrose, trenorose, mannitol, carboxymethylcellulose, corn starch, inorganic salts, etc. Manufactured according to. The amount of caspase inhibitor in these preparations is not particularly limited and can be set as appropriate. In this type of preparation, binders, disintegrants, surfactants, lubricants, fluidity promoters, corrigents, colorants, flavors, and the like can be appropriately used.
[0039] 非経口剤の場合、患者の年齢、体重、疾患の程度などに応じて用量を調節し、例 えば、静注、点滴静注、皮下注射、腹腔内注射、筋肉注射、腫瘍内注射などによつ て全身又は局所に投与する。この非経口剤は常法に従って製造され、希釈剤として 一般に注射用蒸留水、生理食塩水等を用いることができる。さらに必要に応じて、殺 菌剤、防腐剤、安定剤を加えてもよい。また、この非経口剤は安定性の点から、バイ アル等に充填後冷凍し、通常の凍結乾燥処理により水分を除き、使用直前に凍結乾 燥物から液剤を再調製することもできる。さらに必要に応じて、等張化剤、安定剤、防 腐剤、無痛化剤を加えてもよい。これら製剤中のカスパーゼ阻害剤の配合量は特に 限定されるものではなく任意に設定できる。その他の非経口剤の例として、外用液剤 、軟膏等の塗布剤、直腸内投与のための坐剤等が挙げられ、これらも常法に従って 製造される。  [0039] In the case of parenteral agents, the dosage is adjusted according to the patient's age, weight, disease severity, etc., for example, intravenous injection, intravenous infusion, subcutaneous injection, intraperitoneal injection, intramuscular injection, intratumoral injection For example, systemically or locally. This parenteral preparation is produced according to a conventional method, and distilled water for injection, physiological saline and the like can be generally used as a diluent. Further, if necessary, bactericides, preservatives and stabilizers may be added. In addition, from the viewpoint of stability, this parenteral preparation can be frozen after filling in a vial or the like, water can be removed by ordinary freeze-drying treatment, and the liquid preparation can be re-prepared from the freeze-dried product immediately before use. Furthermore, an isotonic agent, stabilizer, preservative, and soothing agent may be added as necessary. The compounding amount of the caspase inhibitor in these preparations is not particularly limited and can be arbitrarily set. Examples of other parenteral agents include liquid preparations for external use, coating agents such as ointments, suppositories for rectal administration, etc., and these are also produced according to conventional methods.
[0040] なお、公知の DDS (ドラッグ 'デリバリ一'システム)を利用し、例えば、カスパーゼ阻 害剤または阻害剤として作用する蛋白をコードする遺伝子発現ベクターをリボソーム などの運搬体に封入して体内投与してもよい。このとき標的部位 (がん細胞)を特異 的に認識する運搬体などを利用すれば、標的部位にカスパーゼ阻害剤を効率よく運 ぶことができ効果的である。 [0040] It should be noted that, using a known DDS (drug 'delivery' system), for example, a caspase inhibitor or a gene expression vector encoding a protein acting as an inhibitor is enclosed in a carrier such as a ribosome. It may be administered. At this time, the target site (cancer cell) is specific If a carrier that recognizes the target is used, the caspase inhibitor can be efficiently transported to the target site.
[0041] また前述したように、カスパーゼ阻害剤を、サプリメント、機能性食品などの食品(食 用組成物)に利用することができる。すなわち、各種飲料や各種加工食品の原材料と してカスパーゼ阻害剤^食品に添加したり、必要に応じてデキストリン、乳糖、澱粉 等の賦形剤や香料、色素等とともにペレット、錠剤、顆粒等に加工したり、またゼラチ ン等で被覆してカプセルに成形加工して健康食品や保健食品等として利用できる。 実施例  [0041] As described above, the caspase inhibitor can be used in foods (edible compositions) such as supplements and functional foods. In other words, it is added to caspase inhibitors as raw materials for various beverages and various processed foods, and if necessary, it can be added to pellets, tablets, granules, etc. together with excipients such as dextrin, lactose, starch, flavorings, pigments, etc. It can be processed, or coated with gelatin and molded into capsules for use as health food or health food. Example
[0042] 以下図面を参照しつつ、本発明の実施例について説明するが、本発明はこれら実 施例によって何ら限定されるものではない。  Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited to these examples.
〔実施例 1:がん細胞の細胞分裂期におけるカスパーゼの活性化〕  [Example 1: Activation of caspase during cell division of cancer cells]
まず、がん細胞の非アポトーシス状態におけるカスパーゼ 3の活性ィ匕を調べるため に、以下の実験を行った。  First, in order to investigate the activity of caspase 3 in a non-apoptotic state of cancer cells, the following experiment was conducted.
[0043] 肝がん細胞由来 HepG2細胞を、カバーグラスを底に入れた 6well dishに 1 well当 り 2 X 105細胞播き、 24時間培養した。 3. 7%ホルムアルデヒドを含んだリン酸緩衝液 で 10分間固定後、リン酸緩衝液で 2回洗浄し、 0. 5%トリトン X— 100を含んだリン酸 緩衝液で 10分間処理した後、リン酸緩衝液で 2回洗浄した。 [0043] HepG2 cells derived from hepatoma cells were seeded at 2 x 10 5 cells per well in a 6-well dish with a cover glass in the bottom and cultured for 24 hours. 3. After fixing with phosphate buffer containing 7% formaldehyde for 10 minutes, wash twice with phosphate buffer, treat with phosphate buffer containing 0.5% Triton X-100 for 10 minutes, Washed twice with phosphate buffer.
[0044] このように処理した細胞を、一次抗体として抗活性型カスパーゼ 3抗体と抗チューブ リン抗体をカ卩えたリン酸緩衝液 (含 1%ゥシ血清アルブミン)中で、一晩、 4°Cでインキ ュベーシヨンした。リン酸緩衝液で 2回洗浄後、 TXRD或いは FITCで標識された二 次抗体を含んだリン酸緩衝液中で 10分間インキュベーションした後、リン酸緩衝液で 2回洗浄した。 10 iu Mのへキスト33342 (Calbiochem社)で核を染色後、蛍光顕微鏡 (製品名 Laborlux、 Leitz社)で検鏡した。 [0044] The cells treated in this manner were subjected to 4 ° overnight in a phosphate buffer (containing 1% ushi serum albumin) containing anti-active caspase 3 antibody and anti-tubulin antibody as primary antibodies. Incubation with C. After washing twice with phosphate buffer, it was incubated for 10 minutes in a phosphate buffer containing a secondary antibody labeled with TXRD or FITC, and then washed twice with phosphate buffer. Nuclei were stained with 10 i u M Hoechst 33342 (Calbiochem) and then examined with a fluorescence microscope (product name Laborlux, Leitz).
[0045] 図 1 (a)は、一次抗体として活性型カスパーゼ 3の大サブユニット (pl7)の C末端を 認識する抗体を使用した結果、同図(b)は、活性型カスパーゼ 3の小サブユニット (p 12)の N末端を認識する抗体を使用した結果、である。図中、間期を除く細胞は、チ ユーブリンの重合と染色体の凝縮が見られ、細胞分裂期にあると考えられる。カスバ ーゼ 3が細胞分裂期の前期、前中期、中期、後期、終期で活性ィ匕していることが分か る。 [0045] Fig. 1 (a) shows the result of using an antibody that recognizes the C terminus of the large subunit (pl7) of active caspase 3 as the primary antibody. The result of using an antibody that recognizes the N-terminus of the unit (p 12). In the figure, cells other than the interphase show tubulin polymerization and chromosome condensation, and are considered to be in the cell division phase. It can be seen that caspase 3 is active in the early, early, middle, late, and late stages of cell division. The
[0046] さらに、細胞分裂期特異的なカスパーゼの活性ィ匕を確認するために、肝がん由来 HepG2細胞と子宮頸がん由来 HeLa細胞を使用して、以下の実験を行った。  [0046] Furthermore, in order to confirm the activity of caspase specific to cell division phase, the following experiment was performed using HepG2 cells derived from liver cancer and HeLa cells derived from cervical cancer.
[0047] まず、 HepG2細胞(1 X 106/6cmディッシュ)をノコダゾール(0. 8 μ g/ml)存在 下で培養し、経時的に細胞を回収し、ウェスタンブロッテイングを行い、活性ィ匕による 切断の結果生ずるカスパーゼ 3 (およびカスパーゼ 8 · 9)の活性ィ匕断片の検出を行つ た。ノコダゾール処理により分裂期の細胞が蓄積されることはフローサイトメトリーによ り確認した c [0047] First, HepG2 cells (1 X 10 6 / 6cm dish) were cultured in nocodazole (0. 8 μ g / ml) in the presence, over time the cells were harvested and subjected to Western blotting, activity I spoon We detected caspase 3 (and caspase 8 · 9) active fragments as a result of cleavage by the above method. The accumulation of mitotic cells by nocodazole treatment was confirmed by flow cytometry c
[0048] 図 2 (a)に示すように、細胞数 (cell number)は、時間経過と共に分裂期の細胞(= DNA量(DNA content)力 Νの細胞)が増え、ノコダゾール(Nocodazole)処理 18時 間後には、 80%以上の細胞が分裂期に存在した。同図(b)に示すように、カスパー ゼ 3の活性型(active form)断片はノコダゾール処理 12時間後に検出され、時間経過 と共に増加した。また、同様の時間経過でカスパーゼ 8、カスパーゼ 9の活性型(activ e form)断片も検出され、さらにカスパーゼ 3の基質であるポリ ADPリボースポリメラー ゼ(PARP)、ラミン Bl (LaminBl)、プロテインキナーゼ C δ (PKC δ )の切断(cleav age fragment)も検出された。なお、図中レーン Aは、コントロールとして抗 Fas抗体で アポトーシスを誘導した細胞である。  [0048] As shown in Fig. 2 (a), the number of cells (= cells with DNA content) increased with time, and the number of cells (cell number) increased with nocodazole treatment. After time, over 80% of the cells were in mitotic phase. As shown in FIG. 2 (b), the active form fragment of caspase 3 was detected 12 hours after nocodazole treatment and increased with time. In addition, caspase 8 and caspase 9 active form fragments were detected in the same time course, and the caspase 3 substrates poly ADP ribose polymerase (PARP), lamin Bl (LaminBl), protein kinase C δ (PKC δ) cleavage (cleav age fragment) was also detected. Lane A in the figure is a cell in which apoptosis was induced with an anti-Fas antibody as a control.
[0049] これらの結果から、肝がん由来 HepG2細胞の細胞分裂期にお 、てカスパーゼ 3 ( および 8.9)が活性化されることが確認された。  [0049] From these results, it was confirmed that caspase 3 (and 8.9) was activated in the cell division phase of HepG2 cells derived from liver cancer.
[0050] 次に、子宮頸がん由来 HeLa細胞における細胞分裂期特異的なカスパーゼの活性 化について検討した。 HeLa細胞 (4 X 105Z6cmディッシュ)を 24時間培養後、 2. 5 mMチミジン存在下で 18時間培養した。リン酸緩衝液で 3回洗浄後、新たな培地を 加え 10時間培養し、再び 2. 5mMチミジン存在下で 14時間培養した。リン酸緩衝液 で 3回洗浄後、チミジンを除去した新たな培地中で培養し、経時的に細胞を回収し、 ウェスタンブロッテイングによって活性ィ匕により切断されたカスパーゼ 3 · 8 · 9の断片を 検出した。各回収時の細胞周期の進行はフローサイトメトリーによって確認した。 [0050] Next, cell-phase specific caspase activation in cervical cancer-derived HeLa cells was examined. HeLa cells (4 × 10 5 Z6 cm dishes) were cultured for 24 hours and then cultured for 18 hours in the presence of 2.5 mM thymidine. After washing 3 times with phosphate buffer, a new medium was added and the cells were cultured for 10 hours, and again cultured in the presence of 2.5 mM thymidine for 14 hours. After washing 3 times with phosphate buffer, the cells are cultured in a new medium from which thymidine has been removed. The cells are collected over time, and fragments of caspases 3/8, 9 cleaved by active protein by Western blotting are collected. Detected. Progression of the cell cycle at each recovery was confirmed by flow cytometry.
[0051] チミジン処理を 2回行うことにより細胞をほぼ 100%G1期と S期の境界に停止させる ことができる。図 3 (a)に示すように、チミジンを培養液から除去すると (release)、細胞 は再び細胞周期を周りはじめ、チミジン除去後、約 8— 12時間で細胞は G2ZM期 にあり、約 14時間で再び G1期に入る。 [0051] By performing thymidine treatment twice, the cells can be stopped at the boundary between almost 100% G1 phase and S phase. As shown in Figure 3 (a), when thymidine is removed from the culture (release), the cells Begins around the cell cycle again, and after thymidine removal, the cells are in the G2ZM phase approximately 8-12 hours and reenter the G1 phase approximately 14 hours later.
[0052] 図 3 (b)に示すように、カスパーゼ 3、カスパーゼ 8およびカスパーゼ 9の活性化(act ive form)断片は、チミジン除去後 10— 14時間で検出された。また、カスパーゼ 3の 基質であるポリ ADPリボースポリメラーゼ(PARP)、ラミン Bl (LaminBl)、プロティ ンキナーゼ C δ (PKC δ )の切断(cleavage fragment)も、同様の時間で検出された。 なお、図中レーン Nは、通常(Normal)の条件で培養を行った HeLa細胞の結果であ り、レーン Aは、抗 Fas抗体でアポトーシスを誘導した細胞の結果である。  [0052] As shown in Fig. 3 (b), caspase 3, caspase 8 and caspase 9 active form fragments were detected 10-14 hours after thymidine removal. In addition, cleavage of the caspase 3 substrates poly ADP ribose polymerase (PARP), lamin Bl (LaminBl), and protein kinase C δ (PKC δ) was also detected at the same time. In the figure, lane N is the result of HeLa cells cultured under normal conditions, and lane A is the result of cells in which apoptosis was induced with anti-Fas antibody.
[0053] 以上の結果から、子宮頸がん由来 HeLa細胞においても細胞分裂期特異的なカス パーゼの活性ィ匕が確認された。  [0053] From the above results, caspase activity specific to cell division was also confirmed in cervical cancer-derived HeLa cells.
[0054] 〔実施例 2 :カスパーゼ阻害剤による細胞分裂期進行遅延〕  [Example 2: Delayed progression of cell division by caspase inhibitor]
以上のように、がん細胞の細胞分裂期特異的にカスパーゼの活性化が確認された 力 次に、その役割 '機能について検討を行った。  As described above, caspase activation was confirmed specifically in the cell division phase of cancer cells. Next, its role was examined.
[0055] 実施例 1と同様に、チミジンを用いて HeLa細胞の細胞周期を G1期と S期の境界に 停止させた。その後、新たな培地を加え、細胞周期の進行を再開させ、 7時間後に細 胞膜透過性汎用カスパーゼ阻害剤である Z-Asp-CH2-DCB (培養液中の最終濃度 2 00 μ Μ)をジメチルスルホキシド(DMSO)に溶解して添カ卩し、細胞周期の進行をフ ローサイトメトリーで調べた。  [0055] In the same manner as in Example 1, the cell cycle of HeLa cells was stopped at the boundary between the G1 phase and the S phase using thymidine. Then, a new medium was added to resume cell cycle progression, and after 7 hours, Z-Asp-CH2-DCB (final concentration in culture medium: 200 μΜ), a cell membrane-permeable general-purpose caspase inhibitor, was added. The cells were dissolved in dimethyl sulfoxide (DMSO) and added, and the progression of the cell cycle was examined by flow cytometry.
[0056] その結果を図 4に示す。コントロールの培地には、上記阻害剤を加えた場合と同様 に 0. 5%DMSOを添カ卩した。阻害剤をカ卩えた細胞およびコントロールの細胞は、い ずれも 8時間後においては G2ZM期にあった。  The results are shown in FIG. The control medium was supplemented with 0.5% DMSO in the same manner as when the inhibitor was added. Cells with inhibitor and control cells were both in G2ZM phase after 8 hours.
[0057] その後、コントロール細胞では 10時間後にほとんどの細胞は M期にあり、一部の細 胞は G1期へと進行し、 14時間後にはほとんどの細胞が G1期に移行した。これに対 して、カスパーゼ阻害剤を加えた細胞ではコントロール細胞に比べて約 2時間の細 胞周期遅延が観察された。この結果から、カスパーゼ阻害剤が HeLa細胞の細胞分 裂期に活性ィ匕したカスパーゼの活性を阻害することにより、がん細胞の細胞周期の 進行を遅延させることが示された。  [0057] Thereafter, most cells in control cells were in M phase after 10 hours, some cells progressed to G1 phase, and most cells entered G1 phase after 14 hours. In contrast, a cell cycle delay of about 2 hours was observed in cells to which a caspase inhibitor was added, compared to control cells. From these results, it was shown that caspase inhibitors delay the progression of the cell cycle of cancer cells by inhibiting the activity of caspases activated during the cell division stage of HeLa cells.
[0058] 〔実施例 3 :カスパーゼ阻害剤による細胞分裂期での正常な染色体分離阻止〕 さらに、カスパーゼ阻害剤の細胞分裂期に対する影響を調べるために、 HepG2細 胞および HaLa細胞を上記カスパーゼ阻害剤存在下で培養し、核の形態変化を調 ベた。 HepG2細胞または HeLa細胞を、カバーグラスを底に入れた 6well dishに lw ell当り 2 X 105細胞播いた。翌日、 Z- Asp- CH2- DCB (終濃度 200 μ Μ)あるいはコン トロールとしての DMSOをカ卩え、 1日ごとに 10 Μへキスト 33342で核を染色し、全 細胞核当りの凝縮した核の割合を調べた。その結果、カスパーゼ阻害剤によってァ ポトーシスが抑制されており、断片化した核を有する細胞は観察されないが、細胞分 裂前期から中期に相当する細胞核が観察された。また図 5に示すように、 HepG2細 胞、 HeLa細胞ともにカスパーゼ阻害剤処理により、アポトーシスによる核変性とは異 なる凝縮した核 (nuclear condensation)を持った細胞の割合の増加が観察された。 [Example 3: Prevention of normal chromosome segregation during cell division by caspase inhibitor] Furthermore, in order to examine the effect of caspase inhibitors on the cell division phase, HepG2 cells and HaLa cells were cultured in the presence of the caspase inhibitors to examine changes in the morphology of the nucleus. HepG2 cells or HeLa cells were seeded at 2 × 10 5 cells per lwell in a 6-well dish with a cover glass at the bottom. The next day, Z-Asp-CH2-DCB (final concentration 200 μΜ) or DMSO as a control was covered, and each day, the nuclei were stained with 10 ΜHoechst 33342. The proportion was examined. As a result, apoptosis was suppressed by the caspase inhibitor, and cells having fragmented nuclei were not observed, but cell nuclei corresponding to the early to middle cell division were observed. In addition, as shown in FIG. 5, an increase in the proportion of cells with condensed nucleus (nuclear condensation) different from nuclear degeneration due to apoptosis was observed by treatment with caspase inhibitors for both HepG2 cells and HeLa cells.
[0059] 次に、カスパーゼ阻害剤の細胞周期における作用点を明らかにするために、共焦 点レーザー顕微鏡を用いて経時的に核の形態変化を解析した。染色体を可視化す るためにヒストン H2Bを GFPと融合させ高発現させた HeLa細胞(HeLa-GFP- H2B) を使用した。この HeLa- GFP- H2B細胞(2 X 105細胞 Z3.5 cm glass bottom dish)を 播き、翌日、 Z- Asp- CH2- DCB (終濃度 300 μ Μ)あるいはコントロールとしての DM SOを加え、 2日後共焦点レーザー顕微鏡を用いて、 1分間隔で 1時間から 2時間核 の形態変化を観察した。 [0059] Next, in order to clarify the action point of the caspase inhibitor in the cell cycle, the morphological change of the nucleus over time was analyzed using a confocal laser microscope. In order to visualize the chromosome, HeLa cells (HeLa-GFP-H2B) in which histone H2B was fused with GFP and highly expressed were used. Seed these HeLa-GFP-H2B cells (2 X 10 5 cells Z3.5 cm glass bottom dish), and add Z-Asp-CH2-DCB (final concentration 300 μΜ) or DMSO as a control the next day. After 1 day, the morphological changes of the nucleus were observed for 1 to 2 hours at 1 minute intervals using a confocal laser microscope.
[0060] 図 6に、コントロールとカスパーゼ阻害剤を処理した細胞の典型的な核の形態を示 す。 DMSOをカ卩えたコントロール細胞では正常に細胞分裂が進行し、約 90分から 1 20分で染色体の凝縮力も分離まで進行した(図 6の aおよび b)。  [0060] Figure 6 shows typical nuclear morphology of cells treated with control and caspase inhibitors. In control cells with DMSO, cell division progressed normally, and chromosome condensing power progressed to separation in about 90 to 120 minutes (Figs. 6a and b).
[0061] これに対して、カスパーゼ阻害剤を終濃度 300 μ Μとなるよう培養液に添加した細 胞では、細胞分裂期の進行に明らかな異常がみられ、染色体が 3分裂する細胞(図 6 の cおよび d)、 120分間で染色体の凝縮が完了しない細胞(図 6の eおよび f)、中期 にとどまったまま染色体分裂が進行しな 、細胞(図 6の g)などが観察された。これらの 結果は、カスパーゼ阻害剤が細胞分裂期の染色体の凝縮、及び分裂を阻害してい ることを示すものである。  [0061] In contrast, cells in which caspase inhibitor was added to the culture solution to a final concentration of 300 μΜ showed obvious abnormalities in the progression of the cell division phase, and cells with chromosomes dividing into three (Fig. C and d in 6), cells in which condensation of chromosomes was not completed in 120 minutes (e and f in Fig. 6), cells that remained in the middle stage and chromosome division did not proceed (g in Fig. 6), etc. were observed . These results indicate that caspase inhibitors inhibit chromosome condensation and division during cell division.
[0062] 〔実施例 4 :カスパーゼ阻害剤によるがん細胞増殖抑制〕  [Example 4: Inhibition of cancer cell proliferation by caspase inhibitor]
以上より、カスパーゼががん細胞の細胞分裂期で活性ィ匕し、カスパーゼ阻害剤が がん細胞の細胞分裂、特に染色体の分離を阻害することが明らかとなった。幾つか のがん細胞ではカスパーゼ 3の活性が非アポトーシス状態であるにもかかわらず上昇 し、がん細胞特異的に何らかの機能を果たしていることが示唆されているため、カス パーゼ阻害剤はがん細胞特異的な細胞増殖抑制剤として機能する可能性が考えら れた。そこで、この可能性を調べるために、以下の実験を行った。 From the above, caspase was activated during the cell division stage of cancer cells, and caspase inhibitor was It has been shown to inhibit cancer cell division, especially chromosome segregation. In some cancer cells, caspase 3 activity increases despite being in a non-apoptotic state, suggesting that some functions specific to cancer cells are occurring. The possibility of functioning as a cell-specific cell growth inhibitor was considered. Therefore, in order to investigate this possibility, the following experiment was conducted.
[0063] 細胞増殖の検定には WST— 1試薬 (ロシュ社製)を用いた。肝がん由来 HepG2細 胞、子宮頸がん由来 HeLa細胞、または、急性 T細胞性白血病由 urkat細胞を 96 well dishに lwell当り 4 X 103細胞ずっ播き、 24時間培養した。各カスパーゼ阻害 剤を各濃度でカ卩えた後、 1日毎に WST— 1試薬をカ卩え、 450nmと 690nmの吸光度 (Absorbance)を測定することによってミトコンドリアに局在する脱水素酵素活性を測 定し、細胞増殖の指標とした。 [0063] WST-1 reagent (Roche) was used for the cell proliferation assay. HepG2 cells derived from liver cancer, HeLa cells derived from cervical cancer, or urkat cells derived from acute T cell leukemia were seeded in 96 well dishes at 4 × 10 3 cells per well and cultured for 24 hours. After each caspase inhibitor is prepared at each concentration, WST-1 reagent is prepared every day, and the dehydrogenase activity localized in mitochondria is measured by measuring the absorbance at 450 nm and 690 nm. And used as an index of cell proliferation.
[0064] カスパーゼ阻害剤としては、下記(1)〜(8)の化合物を使用した。  [0064] As caspase inhibitors, the following compounds (1) to (8) were used.
(1) Z- Asp- CH2- DCB  (1) Z- Asp- CH2- DCB
(2) Boc-Asp(OMe)-FMK  (2) Boc-Asp (OMe) -FMK
(3) Boc- Asp(OBzl)- CMK  (3) Boc- Asp (OBzl)-CMK
(4) Ac-AAVALLPAVLLALLAP-YVAD-CHO (カスパーゼ 1阻害剤)  (4) Ac-AAVALLPAVLLALLAP-YVAD-CHO (Caspase 1 inhibitor)
(5) Ac- AAVALLPAVLLALLAP- DEVD- CHO (カスパーゼ 3および 7阻害剤) (5) Ac- AAVALLPAVLLALLAP- DEVD- CHO (Caspase 3 and 7 inhibitor)
(6) Ac- AAVALLPAVLLALLAP- LEVD- CHO (カスパーゼ 4阻害剤) (6) Ac- AAVALLPAVLLALLAP- LEVD- CHO (Caspase 4 inhibitor)
(7) Ac- AAVALLPAVLLALLAP- IETD-CHO (カスパーゼ 8阻害剤)  (7) Ac- AAVALLPAVLLALLAP- IETD-CHO (caspase 8 inhibitor)
(8) Ac- AAVALLPAVLLALLAP- LEHD-CHO (カスパーゼ 9阻害剤)  (8) Ac- AAVALLPAVLLALLAP- LEHD-CHO (Caspase 9 inhibitor)
[0065] 上記(1)〜(3)は、細胞膜透過型の汎用性阻害剤である。上記 (4)〜(8)の各カス パーゼ特異的阻害剤の N末端側には、細胞膜透過性を高めるために力ポジ繊維芽 細胞成長因子の疎水性領域が付与されている。(1)はペプチド研究所社製、(2)〜( 8)は Calbiochem社製の阻害剤である。すべての阻害剤は DMSOに溶解し、その一 部を培養液に加えたため、コントロールは阻害剤をカ卩えた場合と同濃度の DMSOを カロえた。  [0065] The above (1) to (3) are cell membrane permeation-type versatile inhibitors. A hydrophobic region of force-positive fibroblast growth factor is added to the N-terminal side of each of the caspase-specific inhibitors (4) to (8) above in order to enhance cell membrane permeability. (1) is an inhibitor made by Peptide Institute, and (2) to (8) are inhibitors made by Calbiochem. All inhibitors were dissolved in DMSO, and a portion of it was added to the culture medium, so the control burned DMSO at the same concentration as the inhibitor was added.
[0066] 上記実験結果が、図 7および図 8に示される。各グラフに示される阻害剤濃度は、 培養液中の最終濃度である。細胞膜透過型の汎用性阻害剤である Z-Asp-CH2-DC B、 Boc- Asp(OMe)- FMKゝおよび Boc- Asp(OBzl)- CMKは、いずれも HepG2細胞、 H eLa細胞、 Jurkat細胞の増殖を濃度依存的に抑制した(図 7)。また、各カスパーゼ 特異的阻害剤は、抑制効果に差は見られるものの、 HepG2細胞に対していずれも 細胞増殖抑制活性を示した(図 8)。 [0066] The experimental results are shown in FIG. 7 and FIG. The inhibitor concentration shown in each graph is the final concentration in the culture medium. Z-Asp-CH2-DC is a cell membrane permeation inhibitor B, Boc-Asp (OMe) -FMK and Boc-Asp (OBzl) -CMK all inhibited the growth of HepG2, HeLa, and Jurkat cells in a concentration-dependent manner (FIG. 7). Each caspase-specific inhibitor showed cytostatic activity against HepG2 cells, although there was a difference in the inhibitory effect (Fig. 8).
産業上の利用可能性 Industrial applicability
以上のように、本発明の抗がん剤は、がん細胞の増殖抑制効果が認められたカス パーゼ阻害剤を有効成分とするものであり、肝がん、子宮頸部がんといった固形がん 等に対する抗がん剤として利用可能である。  As described above, the anticancer agent of the present invention comprises a caspase inhibitor that has been shown to be effective in inhibiting the growth of cancer cells as an active ingredient, and solids such as liver cancer and cervical cancer It can be used as an anticancer agent against cancer.
また、本発明は、抗がん作用、がんの予防効果をもった機能性食品、サプリメント等 としても利用可能である。  The present invention can also be used as functional foods, supplements and the like having an anticancer effect and a cancer prevention effect.

Claims

請求の範囲 [1] カスパーゼ阻害物質を有効成分とする杭がん剤。 [2] がん細胞の細胞分裂期において活性化されるカスパーゼの阻害物質を有効成分 とする抗がん剤。 [3] カスパーゼ 1、 3、 4、 7、 8、 9のいずれか 1つ又は複数の阻害物質を有効成分とす る抗がん剤。 [4] 肝がん、子宫頸部がんなどの固形がんに適用される、請求項 1〜3のいずれか 1項 に記載の抗がん剤。 [5] カスパーゼ阻害物質が、ペプチド性化合物、非ペプチド性化合物、または、生物由 来のタンパク質である、請求項 1〜3のいずれか 1項に記載の抗がん剤。 [6] カスパーゼ阻害物質が、下記(1)〜(8)のいずれかの化合物である、請求項 5記載 の抗がん剤。 Claims [1] A pile cancer agent comprising a caspase inhibitor as an active ingredient. [2] An anticancer agent comprising as an active ingredient an inhibitor of caspase activated during the cell division phase of cancer cells. [3] An anticancer agent comprising as an active ingredient any one or more of caspases 1, 3, 4, 7, 8, and 9. [4] The anticancer agent according to any one of claims 1 to 3, which is applied to solid cancers such as liver cancer and cervical cancer. [5] The anticancer agent according to any one of claims 1 to 3, wherein the caspase inhibitor is a peptide compound, a non-peptide compound, or a protein derived from a living organism. [6] The anticancer agent according to claim 5, wherein the caspase inhibitor is any one of the following compounds (1) to (8).
(1) Z- Asp- CH2- DCB  (1) Z- Asp- CH2- DCB
(2) Boc-Asp(OMe)-FMK  (2) Boc-Asp (OMe) -FMK
(3) Boc- Asp(OBzl)- CMK  (3) Boc- Asp (OBzl)-CMK
(4) Ac-AAVALLPAVLLALLAP-YVAD-CHO  (4) Ac-AAVALLPAVLLALLAP-YVAD-CHO
(5) Ac- AAVALLPAVLLALLAP- DEVD- CHO  (5) Ac- AAVALLPAVLLALLAP- DEVD- CHO
(6) Ac- AAVALLPAVLLALLAP- LEVD- CHO  (6) Ac- AAVALLPAVLLALLAP- LEVD- CHO
(7) Ac— AAVALLPAVLLALLAP— IETD— CHO  (7) Ac— AAVALLPAVLLALLAP— IETD— CHO
(8) Ac- AAVALLPAVLLALLAP- LEHD- CHO  (8) Ac- AAVALLPAVLLALLAP- LEHD- CHO
[7] カスパーゼ阻害物質を含有することによって、抗がん作用を有する食用組成物。  [7] An edible composition having an anticancer effect by containing a caspase inhibitor.
[8] カスパーゼタンパク質の発現を特異的に抑制する RNAをがん細胞に導入すること によって、がん細胞の増殖を抑制する方法。 [8] A method for suppressing the growth of cancer cells by introducing RNA that specifically suppresses the expression of caspase protein into the cancer cells.
[9] カスパーゼタンパク質の発現を特異的に抑制する RNA、または当該 RNAを標的 がん細胞で発現するよう構築された RNAi発現ベクターカゝらなる杭がん剤。 [9] RNA that specifically suppresses the expression of caspase protein, or a stake cancer agent such as an RNAi expression vector constructed to express the RNA in target cancer cells.
PCT/JP2005/021470 2004-11-22 2005-11-22 Activation of caspase in the cell division stage of cancer cells and utilization of caspase inhibitor in anticancer agent and so on WO2006054773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-337586 2004-11-22
JP2004337586 2004-11-22

Publications (1)

Publication Number Publication Date
WO2006054773A1 true WO2006054773A1 (en) 2006-05-26

Family

ID=36407303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021470 WO2006054773A1 (en) 2004-11-22 2005-11-22 Activation of caspase in the cell division stage of cancer cells and utilization of caspase inhibitor in anticancer agent and so on

Country Status (1)

Country Link
WO (1) WO2006054773A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291705B2 (en) 2016-10-13 2022-04-05 Technion Research & Development Foundation Limited Use of caspase-3 inhibitors and caspase-3 activators in the manufacture of medicament for treating cancer and wound healing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338474A (en) * 2001-05-23 2002-11-27 Bizen Chemical Co Ltd Caspase inhibitor
WO2004028474A2 (en) * 2002-09-25 2004-04-08 University Of Rochester Caspase inhibitors as anticancer agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338474A (en) * 2001-05-23 2002-11-27 Bizen Chemical Co Ltd Caspase inhibitor
WO2004028474A2 (en) * 2002-09-25 2004-04-08 University Of Rochester Caspase inhibitors as anticancer agents

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CARLSON K. ET AL: "Organophosphorus Compound-Induced Apoptosis in SH-SY5Y Human Neuroblastoma Cells", TOXICOLOGY AND APPLIED PHARMACOLOGY, vol. 168, no. 2, 2000, pages 102 - 113, XP002995260 *
CHANDRA J. ET AL: "Protease Activation Is Required for Glucocorticoid-Induced Apoptosis in Chronic Lymphocytic Leukemic Lymphocytes", BLOOD, vol. 90, no. 9, 1997, pages 3673 - 3681, XP002193992 *
GASTMAN B.R. ET AL: "Tumor-induced Apoptosis of T Cells: Amplification by a Mitochondrial Cascade", CANCER RESEARCH, vol. 60, 2000, pages 6811 - 6817, XP002995261 *
HARADA J. ET AL: "Inhibitors of interleukin-1 beta-converting enzyme-family proteases (caspases) prevent apoptosis without affecting decreased cellular ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide in cerebellar granule neurons", BRAIN RESEARCH, vol. 793, 1998, pages 231 - 243, XP002995259 *
SCHLOSSER S. ET AL: "Inhibition of caspase-1 induces cell death in pancreatic carcinoma cells and potentially modulates expression levels of bcl-2 family proteins", FEBS LETTERS, vol. 491, 2001, pages 104 - 108, XP004257283 *
SIDDIQUI R.A. ET AL: "Prevention of docosahexaenoic acid-induced cytotoxicity by phosphatidic acid in Jurkat leukemic cells: the role of protein phosphatase-1", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1541, 2001, pages 188 - 200, XP004330476 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291705B2 (en) 2016-10-13 2022-04-05 Technion Research & Development Foundation Limited Use of caspase-3 inhibitors and caspase-3 activators in the manufacture of medicament for treating cancer and wound healing

Similar Documents

Publication Publication Date Title
Schulze-Bergkamen et al. Apoptosis in cancer—implications for therapy
KR101549245B1 (en) Wnt proteins and detection and treatment of cancer
US20060094676A1 (en) Compositions and methods for treating cancer using compositions comprising an inhibitor of endothelin receptor activity
EP3542821A1 (en) p53 DEGRADATION INDUCING MOLECULE AND PHARMACEUTICAL COMPOSITION
KR100732298B1 (en) - -1 Composition for diagnosing cancer metastasis using ubiquitin C-terminal hydrolase-L1
KR20210056959A (en) Composition for preventing or treating of liver cancer
Lin et al. Lysosomal cysteine protease cathepsin S is involved in cancer cell motility by regulating store-operated Ca2+ entry
US9309286B2 (en) Compositions and methods for augmenting permeability barriers
KR20200044695A (en) A composition for treating stomach cancer comprising an inhibitor of SYT11
AU2007221863A1 (en) Treatment of chemotherapy -or radiothereapy-resistant tumors
KR20140098870A (en) Use of eIF-5A to kill multiple myeloma cells
WO2006054773A1 (en) Activation of caspase in the cell division stage of cancer cells and utilization of caspase inhibitor in anticancer agent and so on
JP2006169242A (en) Activation of caspase in cell division stage of cancer cell and utilization of caspase inhibitor as anticancer agent or the like
ES2396115T3 (en) Use of p27 degradation inhibitors, in particular argirine and derivatives thereof, for the treatment of cancer
US20070238677A1 (en) Pharmaceutical Composition Containing Hshrd3
WO2013122321A1 (en) Use of hdac6 as hepatoma diagnosis marker and therapeutic agent
Li et al. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target
US20130157959A1 (en) Use of hades as tumor suppressor target
KR101776864B1 (en) A composition for inhibiting metastasis and treating cancer comprising an inhibitor of NPFFR2
KR100861464B1 (en) A carcinoma gene tip41, a protein translated from the gene and a diagnostic kit using the same
US20080299123A1 (en) Treatment of chemotherapy- or radiotherapy-resistant tumors
KR102328654B1 (en) A composition for preventing or treating cancer
KR101217705B1 (en) A novel use of kiaa1764 as a regulator of, apotopsis and senescense
EP2797948B1 (en) Compositions for use in regulating glucose metabolism
KR101213796B1 (en) Suppression of cancer metastasis via upregulation of TASK-3 potassium channel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809528

Country of ref document: EP

Kind code of ref document: A1