WO2006054748A1 - Remedy for nephritis - Google Patents

Remedy for nephritis Download PDF

Info

Publication number
WO2006054748A1
WO2006054748A1 PCT/JP2005/021383 JP2005021383W WO2006054748A1 WO 2006054748 A1 WO2006054748 A1 WO 2006054748A1 JP 2005021383 W JP2005021383 W JP 2005021383W WO 2006054748 A1 WO2006054748 A1 WO 2006054748A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
interferon
ipc
nephritis
cells
Prior art date
Application number
PCT/JP2005/021383
Other languages
French (fr)
Japanese (ja)
Inventor
Yumiko Kamogawa
Sahori Namiki
Original Assignee
Ginkgo Biomedical Research Institute Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ginkgo Biomedical Research Institute Co., Ltd. filed Critical Ginkgo Biomedical Research Institute Co., Ltd.
Priority to JP2006545196A priority Critical patent/JPWO2006054748A1/en
Publication of WO2006054748A1 publication Critical patent/WO2006054748A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to the treatment of nephritis.
  • Nephritis is a disease caused by inhibition of the urinary filtration function by the kidney. Leakage of protein and blood into the urine is observed due to the reduced filtration function. On the other hand, the excretion function of metabolites that should be excreted in the urine is reduced and accumulates in the body. Due to decreased renal function, nitrogen-containing compounds such as urea, uric acid, and creatine accumulate in the body. Patients with nephritis often have high blood pressure.
  • nephritis Many causes have been pointed out for nephritis.
  • the glomeruli are damaged by the autoimmune response.
  • Autoimmune diseases such as rheumatism are often associated with nephritis, and autoimmunity is considered one of the major causes of nephritis.
  • a normal immune response to infection causes nephritis.
  • acute nephritis observed after infection with hemolytic streptococci is considered to be one of the causes. That is, antibodies are produced as a normal immune response to infection with hemolytic streptococci.
  • an immune complex composed of the hemolytic streptococcal antigen and its antibody is produced. This immune complex accumulates in the glomerular basement membrane and activates the cytotoxic effect of complement, causing inflammation.
  • the main treatment for nephritis is diet therapy for the purpose of limiting salt and protein. Dietary therapy can be expected to slow the progression of symptoms, but the cause of nephritis cannot be removed.
  • Various types of steroids may also be used to treat nephritis. However, the therapeutic effects of steroids depend mainly on their anti-inflammatory effects.
  • nephritis associated with autoimmune disease renal inflammation is suppressed by regulating immune function.
  • artificial dialysis may be necessary if the symptoms of nephritis have progressed. Artificial dialysis is a treatment method that places a heavy burden on the patient, both physically and socially.
  • steroid The immunosuppressive action of the drug may increase the risk of infection.
  • SLE systemic lupus erythematosus
  • SLE is a typical disease of collagen disease advocated by Klemperer in 1942. It is a disease mainly characterized by multiple organ disorders based on the appearance of autoantibodies and immune complexes.
  • the facial butterfly erythema characteristic of this disease, was named as Systemic Lupus Erythematosus because it resembles a lupus wound (lupus).
  • the clinical symptoms of SLE are not limited to skin irritation, but are quite varied.
  • Examples include fever, polyarthralgia and polyarthritis, serositis, anemia, thrombocytopenia, renal symptoms, or neurological symptoms.
  • SLE is overwhelmingly common among women, especially women in their 20s and 30s, and the onset of gender is 1 to 10. There are 7,000-9,000 patients in Japan, and the prevalence is estimated at 66-85 per 100,000 population.
  • the kidney is one of the susceptible organs in SLE. In fact, kidney damage occurs in 70-80% of patients.
  • the renal disorder found in SLE patients is specifically called lupus nephritis.
  • Lupus nephritis is characterized by glomerular damage and progressive decreased renal function.
  • the glomerular disorder of lupus nephritis is related to the autoimmune process that occurs because the immune system makes antibodies against autoantigens (autoantibodies). That is, it is thought that a complex of autoantibodies and complements bound to kidney tissues such as glomeruli accumulates in the kidney and causes an inflammatory reaction.
  • Lupus nephritis has various symptoms such as hematuria, fever, red spots on the face and limbs, and swelling. Patients with lupus nephritis often develop nephrotic syndrome (excessive protein excretion) and rapidly progressive glomerulonephritis and may transition to acute or chronic renal failure. Lupus nephritis is thought to be genetically predisposed. It may be associated with other autoimmune diseases such as rheumatoid arthritis and scleroderma. Also known is Gaith, who is evoked by pregnancy.
  • an immunosuppressant is further used in combination.
  • Anticoagulants may be administered when there is a symptom of “rapidly progressive nephritis” in which kidney function suddenly declines.
  • Non-Patent Document 2ZScience 16 Nov. 2001 Vol.294
  • 0 Suppressing can potentially control symptoms.
  • Patent Document 1ZWO 01/054721 an antibody against type 1 interferon was used. That is, treatment of SLE with an antibody against IFN- ⁇ was proposed.
  • the effect of antibodies against IFN- ⁇ on renal inflammation is not clear.
  • nephritis associated with autoimmune diseases such as SLE
  • treatment of autoimmune diseases is the main.
  • autoimmune diseases are the cause of nephritis
  • treatment to remove the cause is important.
  • Strength Nephritis is one of the disorders that has a major impact on patients' quality of life (QOL). Therefore, active treatment or prevention of nephritis is an important issue for maintaining the patient's QOL.
  • Patent Literature l WO 01/054721
  • Non-patent literature l Saag K.G. et al., AM.J.Med., 96, 115, 1994
  • Non-Patent Document 2 Science, 16 Nov. 2001 Vol.294 Disclosure of the invention
  • an object of the present invention is to provide a technique for treating and preventing nephritis.
  • Type 1 interferons include interferon (IFN a) and interferon 13 (IFN ⁇ ).
  • IFN a or IFN ⁇ is known as an interferon having antiviral activity or antitumor activity.
  • Interferon-producing cells hereinafter sometimes abbreviated as IPC
  • IPC Interferon-producing cells
  • IPC has only power in the blood.
  • the proportion of IPC in peripheral blood lymphocytes is considered to be less than 1%.
  • IPC has a very high ability to produce interferon.
  • IPC ability of IPC to produce IFN reaches, for example, 3000 pg / mL / 10 6 cells. In other words, although the number of cells is small, it can be said that most of IFN a or IFN jS in the blood is brought about by IPC.
  • the present inventors thought that if IPC activity can be regulated in vivo, symptoms of autoimmune disease can be improved.
  • the present inventors then produced a number of antibodies that recognize cell surface antigens of IPC and analyzed the effect on the activity of IPC. As a result, it was clarified that an antibody that recognizes a specific antigen has an action of regulating the activity of IPC. Furthermore, the therapeutic effect of the autoimmune disease was analyzed.
  • the present invention was completed by confirming that an antibody that suppresses the activity of IPC can provide a therapeutic effect particularly on nephritis.
  • the present invention relates to the following nephritis therapeutic agent or preventive agent, therapeutic method, preventive method, and screening method for the therapeutic agent or prophylactic agent.
  • a therapeutic agent for nephritis comprising an interferon-producing cell activity inhibitor as an active ingredient.
  • the therapeutic agent according to [4] which is an antibody comprising at least an antigen-binding region of a monoclonal antibody produced by hybridoma 3G7 # 6 deposited as P-10340.
  • a method for treating nephritis comprising a step of suppressing the activity of interferon-producing cells.
  • a process power for suppressing the activity of interferon-producing cells comprising the step of administering an antibody having an action of suppressing interferon production and cell survival, interferon production, or both of the interferon-producing cells.
  • Method of treatment comprising the step of administering an antibody having an action of suppressing interferon production and cell survival, interferon production, or both of the interferon-producing cells.
  • a method for detecting the therapeutic effect of a test compound on nephritis comprising the following steps.
  • the cell stimulating agent is at least one cell stimulating agent selected from group power consisting of a virus, a viral component, and bacterial DNA.
  • test compound is an antibody that recognizes interferon-producing cells or an antibody fragment containing at least an antigen-binding region thereof.
  • a screening method for a compound having a therapeutic effect on nephritis comprising a step of selecting a test compound in which the therapeutic effect on nephritis is detected by the method according to [11].
  • a therapeutic agent for nephritis comprising a compound selected by the screening method according to [14] as an active ingredient.
  • the present invention relates to the use of a compound selected by the above screening method in the manufacture of a therapeutic agent for nephritis.
  • the present invention further relates to the use of an interferon-producing cell activity inhibitor in the treatment of nephritis.
  • Power! The present invention further provides a pharmaceutical package for the treatment of nephritis, which comprises a pharmaceutical composition containing as an active ingredient a substance that suppresses the activity of interferon-producing cells, which is indicated to be used for the treatment of nephritis.
  • anti-BDCA-2 monoclonal antibody (Dzionek, A. et al. J. lmmunol.
  • a therapeutic agent for nephritis targeting IPC is provided. That is, it became clear that nephritis can be treated with IPC activity inhibitors.
  • the activity of IPC is suppressed by, for example, administration of an antibody that recognizes the cell surface antigen of IPC.
  • an antibody that recognizes the cell surface antigen of IPC For example, antibodies against BST 2 and its homologues bind to IPC and act in a suppressive manner on its IFN production and cell survival itself.
  • the antibody that binds to BST2 was actually confirmed to have a therapeutic effect on nephritis when administered in vivo.
  • nephritis a therapeutic effect for nephritis has been achieved by regulating the function of IPC.
  • anti-BDCA-2 antibody and anti-BDCA-4 antibody are known as antibodies that suppress IFN- ⁇ production. It has been suggested that these antibodies may have therapeutic effects on autoimmune symptoms in SLE patients (Blomberg S. et al. Arthritis Rheum. 48. 2524, 2003). The effect of these antibodies on nephritis is unclear.
  • the present invention has provided a therapeutic strategy for nephritis that targets cells that produce IFN, which is not regulated by IFN function. That is, the approach of the present invention enables more essential nephritis treatment. More specifically, for example, the following merits can be expected in the present invention.
  • an IPC activity inhibitor can achieve a high therapeutic effect even in a small amount.
  • IPC In IPC, few cells produce large amounts of IFN.
  • an antibody corresponding to the number of IFN molecules is required for neutralization of IFN.
  • the activity of the production cell is directly suppressed.
  • a strong IFN suppression effect can be expected with a smaller amount of antibody.
  • IPC activity regulators act directly on IPC, which produces very large amounts of IFN. Therefore, IFN production can be efficiently suppressed.
  • the manufacturing cost of an antibody drug is high. At present, no method has been established that can significantly reduce manufacturing costs. Therefore, necessary for treatment The low dose of antibody is a great economic advantage. In addition, lower doses can not only be economically advantageous, but also reduce the risk of side effects.
  • an effect of suppressing IFN production over a long period can be expected.
  • an antibody that recognizes BST2 or a homolog thereof suppresses not only IFN production of IPC but also the number of cells.
  • the effect of suppressing IFN production continues until new IPC is supplied.
  • production of other inflammatory site force ins that can be produced by IPC is also directly or indirectly suppressed.
  • FIG.l Cell surface of mouse bone marrow cells (IPC enriched) cultured for 10 days after addition of FLT-3 ligand, FACS analysis image stained with the prepared antibody and other markers is there.
  • the culture supernatant positive fraction and negative fraction were designated R2 and R3, respectively.
  • R1 & R2 represents an antibody positive cell population
  • R1 & R3 represents an antibody negative cell population.
  • FIG. 2 is a photomicrograph (x400) showing the morphology of cells extracted with each monoclonal antibody.
  • (A) shows the form before infection with influenza virus PR8, and
  • (b) shows the form after incubation with influenza virus PR8 for 24 hours. After infection, the cells had rod-shaped processes and showed a typical morphology for rod-shaped cells.
  • FIG. 3 is a graph showing interferon-producing ability of cells separated using monoclonal antibodies SNK01 and SNK03.
  • the horizontal axis indicates the type of cell treatment, and the vertical axis indicates the IFN ⁇ concentration (pg / mL) in the culture supernatant.
  • P (+) on the horizontal axis indicates the number of cells bound to the monoclonal antibody.
  • N (+) infects cells that did not bind to the monoclonal antibody
  • N (+) infects the virus
  • N (-) infects the cells that did not bind to the monoclonal antibody and infect the virus. The result when a strong effort is shown.
  • FIG. 4 is a graph showing the effect of monoclonal antibody SNK01 on interferon production ability.
  • the horizontal axis represents the concentration (g / mL) of the antibody used in the treatment
  • the vertical axis represents the IFNa concentration (pg / mL) in the culture supernatant.
  • the (-) on the horizontal axis shows the result of virus processing.
  • SNK01 showed interferon production inhibitory activity in a concentration-dependent manner.
  • FIG. 5 is a graph showing the effect of monoclonal antibody SNK03 on interferon production ability.
  • the horizontal axis represents the concentration (g / mL) of the antibody used for the treatment, and the vertical axis represents the IFN ⁇ concentration (pg / mL) in the culture supernatant.
  • CTL shows the results for the horizontal axis treated with the control antibody.
  • SNK03 showed interferon production inhibitory activity in a concentration-dependent manner.
  • FIG. 6 is a photograph showing the results of Western blotting assay using monoclonal antibody SNK01.
  • the photo shows the results with the anti-His tag antibody, and the bottom shows the results with the monoclonal antibody SNK01 of the present invention.
  • the left side of the photo is the result of COS7 cells transformed with PCDNA3.1-mBST2D-His, and the right side is pcDNA3.1-mBST2H-His.
  • the results for the precipitate (P) and the supernatant (S) when the cultured cells were lysed were shown.
  • FIG. 7 shows the amino acid sequence and genomic structure of mouse BST2 and its homologue.
  • (A) shows the alignment of amino acid sequences of each isoform, and
  • (b) shows exon mapping.
  • FIG. 8 shows the amino acid sequence and genomic structure of human BST2 and its homologue.
  • (A) shows the alignment of amino acid sequences of each isoform, and
  • (b) shows exon mapping.
  • FIG. 9 is a graph showing the influence of the produced monoclonal antibody against mouse BST2 on the ability to produce interferon.
  • the horizontal axis indicates the type of culture supernatant used in the treatment, and the vertical axis indicates the IFN o concentration (pg / mL) in the culture supernatant.
  • PR8 shows the result of infection with influenza virus PR8.
  • FIG. 10 is a graph showing the influence of the prepared monoclonal antibody against human BST2 on the ability to produce interferon.
  • the horizontal axis represents the type and concentration of the antibody used for the treatment
  • the vertical axis represents the IFNa concentration (pg / mL) in the culture supernatant when HCV was stimulated with HSV.
  • FIG. 11 is a view showing the analysis results of cells from which the force of a mouse administered with an antibody was also collected.
  • (a) Indicates a given schedule.
  • (B) shows the concentration of IFN produced when bone marrow cells were stimulated with CpG or influenza virus PR8. The horizontal axis indicates the administered antibody, and IgG indicates the control antibody.
  • FIG. 12 shows the effect of administration of anti-mouse BST2 antibody SNK01 in mice infected with virus.
  • A shows the schedule of administration.
  • B shows the concentration of INFa in the serum, and the horizontal axis shows the administered antibody.
  • C shows the ratio of IPC in the spleen, the horizontal axis shows the administered antibody, and the vertical axis shows the ratio of IPC. “No antibody” indicates a group in which only PBS was administered instead of the antibody.
  • FIG. 13 shows the results of analyzing the number of IPC cells in various mice.
  • the vertical axis shows the percentage (%) of IPC in various organs.
  • the horizontal axis shows the mouse strain, and F1 shows the mouse that has been crossed by NZB and NZW.
  • FIG. 14 is a graph showing the effects of antibodies on IFN production using bone marrow cells derived from various mice. This is the result of measuring the concentration of IFN produced when bone marrow cells were stimulated with influenza virus PR8 (top) or CpG (bottom), with the vertical axis representing IFNa concentration (pg / mL) and the horizontal axis derived from Each column indicates the antibody used for the treatment.
  • (A) shows the schedule of antibody administration.
  • (b) shows changes over time in the frequency of proteinuria in the group of mice administered with the antibody.
  • C shows the amount of protein in the urine of each mouse. Proteinuria on the vertical axis is protein of 1: -37 mg / dl, 2: -74 mg / dl, 3: -lllmg / dl, 4: -333 mg / dl, 5: -1000 mg / dl, 6: -3000 mg / dl Indicates the amount.
  • is the value of surviving mice, and ⁇ is the value of dead mice.
  • the horizontal axis represents the antibody administered, and the vertical axis represents the concentration of serum cytodynamic force at 5 months of age in the mouse administered the antibody.
  • the numbers in the figure represent average values.
  • the present invention relates to a therapeutic agent for nephritis comprising an interferon-producing cell activity inhibitor as an active ingredient.
  • nephritis refers to a disease caused by inhibition of the urinary filtration function by the kidney, and its cause is not limited. Decreased renal filtration function is diagnosed using protein or blood leakage into the urine as an indicator.
  • nephritis including an immune response as an onset mechanism is preferable as a treatment target.
  • Nephritis involving the immune response includes nephritis associated with autoimmune diseases.
  • nephritis associated with the deposition of immune complexes on the glomeruli can be indicated as a treatment target in the present invention.
  • Such nephritis is called immune complex nephritis.
  • the antigen or antibody constituting the immune complex may be self or foreign antigen.
  • lupus nephritis can be indicated.
  • nephritis associated with an autoimmune disease includes, for example, nephritis caused by autoantibodies against glomeruli, or anti-basement membrane nephritis caused by autoantibodies against glomerular basement membrane. Nephritis)
  • the autoimmune disease means that an immune function causes tissue damage or inflammation.
  • Immune functions include humoral immunity with antibodies and cellular immunity with immunocompetent cells.
  • the autoimmune disease in the present invention can also be defined by the activation of an immune mechanism against a self antigen.
  • the self-antigen here includes foreign antigens introduced into the host by some means in addition to the antigens present in the tissues of healthy individuals.
  • an immune function attack against a foreign antigen introduced into a living body by infection, transplantation, or contact may damage cells or tissues.
  • Such a disorder is included in the autoimmune disease in the present invention.
  • the presence of an autoimmune disease in the living body can be detected using the reactivity of the immune mechanism against the self antigen as an index.
  • nephritis associated with an autoimmune disease can be said to be a state in which cell or tissue damage due to an autoimmune mechanism is observed and inflammation in the kidney is observed.
  • the nephritis in the present invention includes not only a direct disorder caused by an autoimmune mechanism but also an indirect disorder.
  • nephritis resulting from excessive production of inflammatory site force-in due to enhanced function of immunocompetent cells is a typical pathology of nephritis associated with autoimmune diseases.
  • nephritis caused by complex mechanisms including autoimmune diseases is included in nephritis, which is the subject of treatment in the present invention.
  • lupus nephritis is a typical disease of nephritis associated with an autoimmune disease in the present invention.
  • lupus nephritis refers to nephritis caused by systemic lupus erythematosus (SLE). More specifically, symptoms of autoimmune diseases and diseases associated with nephritis are included in lupus nephritis. The symptoms of an autoimmune disease can be confirmed using, for example, an autoantibody such as an anti-double-stranded DNA (dsDNA) antibody as an index. Lupus nephritis is preferable as nephritis associated with the autoimmune disease in the present invention.
  • SLE systemic lupus erythematosus
  • any of the autoimmune diseases as described above it is considered that enhancement of the autoimmune mechanism is brought about by IPC. Therefore, therapeutic effects can be expected by regulating autoimmune diseases based on suppression of IPC function. Therefore, in the present invention, these diseases can also be referred to as nephritis having an autoimmune disease due to hyperfunction of IPC.
  • the treatment of nephritis includes, in addition to suppressing the renal inflammation state, delaying the progression or preventing the progression to the renal inflammation state. More specifically, for example, the therapeutic effect of nephritis is achieved by suppressing at least one symptom characteristic of nephritis as shown below, preventing its progression, or preventing the occurrence of the symptom itself. Proteinuria,
  • the present invention includes the prevention of nephritis. That is, the present invention provides either or both of a therapeutic agent and a preventive agent for nephritis, which contain an IPC activity inhibitor as an active ingredient. Alternatively, the present invention provides either or both of a method for treating and preventing nephritis, which comprises a step of suppressing the function of IPC.
  • albumin concentration in urine can generally be measured by a urine test strip method based on a biochemical reaction or by immunoassay.
  • a urine test paper for detecting hemoglobin is used to detect blood in urine.
  • urea, uric acid, and creatine can be shown as nitrogen-containing compounds in blood that serve as an index of renal function.
  • Creatun is a typical renal function marker. Creatun can be measured by the Jaffe method or an enzymatic measurement method.
  • immune complex or autoantibody deposition in kidney tissue can be detected by microscopic observation of kidney tissue. The kidney tissue required for the examination can also be collected for vitality by renal biopsy.
  • the interferon-producing cell (IPC) in the present invention refers to a cell having the ability to produce IFN.
  • a cell in which expression of either or both of BST2 and its homolog on the cell surface is detected can be identified as an IPC.
  • BST2 and its homologues are included when expressed in association with cell activity.
  • IPC refers to not only cells that are precursor cells of rod cells but also cells that have the ability to produce IFN.
  • cells expressing BST2 and / or its homologues on the cell surface are preferred as IPC.
  • IPC identification methods are known.
  • IPC can be distinguished from other blood cells using several cell surface markers as indicators.
  • the cell surface marker profile of HI HPC is as follows (Shortman, K. and Liu, YJ. Nature Reviews 2: 151-161, 2002).
  • Recently, there is a report that positions BDCA-2 positive cells as IPC (Dzionek, A. et al. J. Immunol. 165: 6037-6046, 2000.). Therefore, BDCA-2 positive cells are preferred as IPC in the present invention.
  • Profile of cell surface antigen of HCV [Profile of cell surface antigen of HCV]
  • CD4 positive CD123 positive
  • mouse IPC is defined by the following profile.
  • the nucleus is relatively large
  • Type-1 interferon A large amount of Type-1 interferon is produced in a short time during virus infection
  • IPC activity suppression refers to suppression of at least one of the functions of IPC. That is, the IPC activity inhibitor includes any substance that suppresses at least one of the functions of IPC. IPC function can show IFN production and cell survival. Cell survival can be rephrased as the number of cells. Therefore, it is said that IPC activity is suppressed when both or any of these functions are suppressed. A substance that suppresses both or any of these functions can be used as an IPC activity inhibitor.
  • type 1 IFN produced by IPC causes various diseases. Therefore, suppressing its production is useful as a therapeutic strategy for these diseases.
  • the relationship between autoimmune disease pathology and IFN a has been pointed out.
  • the majority of IFN o; is produced by IPC. Therefore, if the production is suppressed, the pathological condition caused by IFN o; can be alleviated.
  • IPC The suppression of IFN production by means that the production of at least one IFN produced by IPC is suppressed.
  • a preferred IFN in the present invention is type 1 IFN. Of these, IFN a is important.
  • IPC includes cells that produce large amounts of IFN with a small number of cells.
  • progenitor cells of rod-shaped cells stimulated with a virus or the like produce most of IFN produced by the living body. Suppressing the number of IPC cells that produce large amounts of IFN results in suppression of IFN production. Therefore, suppression of the IPC cell number can also alleviate the pathology caused by IFNa.
  • the IPC activity inhibitor is preferably an antibody that recognizes an IPC cell surface antigen and suppresses its activity. Specifically, it is an antibody that suppresses either or both of the ability of IPC to produce interferon and the number of IPC cells. It can be confirmed, for example, by a method for detecting the therapeutic effect of nephritis described later that an antibody suppresses the activity of IPC. For example, the present inventors have confirmed that an antibody recognizing either or both of BST2 and its homolog suppresses the activity of IPC.
  • the present invention relates to a therapeutic agent for nephritis comprising an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region as an active ingredient.
  • the present invention also relates to a method for treating nephritis, which comprises the step of administering an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof.
  • the present invention relates to the use of an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof, in the manufacture of a therapeutic agent for nephritis.
  • IPC is not particularly limited as long as it is a cell that produces IFN.
  • a cell group expressing either or both of BST2 and its homologue was confirmed to have a high ability to produce IFN (hereinafter referred to as BST2 and its homologue. Or a group of cells expressing both, may be described as BST2-positive cells).
  • BST2 and its homologue a cell group expressing either or both of BST2 and its homologue.
  • BST2-positive cells a group of cells expressing both.
  • human and mouse BST2-positive cells are preferred as IPCs in the present invention.
  • the expression level of BST2 and its homolog is markedly increased with its activation. So BST2 and its homologues Recognizing antibodies act specifically on activated IPC in humans. Therefore, HIHPC is particularly preferred as the IPC of the present invention.
  • the present inventors have clarified that antibody activity against BST2 or its homologue suppresses the activity of IPC. It was confirmed that the symptoms of nephritis can be alleviated through suppression of IPC activity. That is, the present inventors have found a method for suppressing the activity of IPC, and have confirmed that treatment of nephritis can be realized by actually suppressing the activity of IPC by the method. Based on these findings, it was clarified that IPC function is effective as a therapeutic strategy for nephritis.
  • the BST2 gene is a human-derived protein defined by the amino acid sequence set forth in SEQ ID NO: 2.
  • the amino acid sequence described in SEQ ID NO: 2 is encoded by cDNA consisting of the base sequence described in SEQ ID NO: 1!
  • Human BST2 cDNA cloning and monoclonal antibodies have been reported (Ishikawa J. et al. Genomics 26: 527, 1995; GenBank Acc # .D28137)
  • BST2 is a membrane protein that has the ability to support pre-B cell proliferation.
  • White matter Japanese Patent Laid-Open No. 7-196694. Knowledge about the BST2 genomic gene and promoter has also been obtained (WO99 / 43803).
  • human BST2 has been shown to be an antigen recognized by anti-HM1.24 antibody, which is a monoclonal antibody against myeloma (Ohmoto T. et al. BBRC 258: 583, 1999).
  • Anti-HM1.24 antibody is a monoclonal antibody established using human plasma cell line as an immunogen (Goto T. et al. Blood 84:19 92, 1994). Later, it was revealed that myeloma was specifically recognized, and a humanized antibody was created for the treatment of myeloma (Ozaki S. et al. Blood 93: 3922, 1999 ;: W 098/14580).
  • the human anti-anti-HM1.24 antibody has a therapeutic effect on cancer of hematopoietic tissue (WO02 / 064159) o
  • human BST2 is used as a marker in hematopoietic tumors.
  • antibodies that specifically bind to human BST2 suppress the activation of T cells and B cells, resulting in autoimmune diseases. It has been suggested that it can be a therapeutic drug for patients (Japanese Patent Laid-Open No. 10-298106).
  • Japanese Patent Laid-Open No. 10-298106 Japanese Patent Laid-Open No. 10-298106.
  • BST2 includes a homologue thereof.
  • the homologue of BST2 can be defined as a protein that is functionally equivalent to the protein consisting of the amino acid sequence set forth in SEQ ID NO: 2.
  • proteins include naturally occurring proteins.
  • eukaryotic genes have polymorphism, as is known for IFN genes and the like.
  • One or more amino acids may be substituted, deleted, inserted, and Z or added due to changes in the base sequence caused by this polymorphism.
  • a BST2 splicing variant or a mutant caused by a gene polymorphism is included in the BST2 homolog.
  • the present inventors have clarified the existence of a splicing variant for cDNA having the nucleotide sequence of SEQ ID NO: 1.
  • This splicing variant had the nucleotide sequence shown in SEQ ID NO: 3 or SEQ ID NO: 5, and encoded the amino acid sequence described in SEQ ID NO: 4 or SEQ ID NO: 6.
  • the amino acid sequence may not change even if the base sequence changes due to the polymorphism.
  • Such a nucleotide sequence variation is called a silent variation.
  • a gene comprising a nucleotide sequence having a silent mutation is also included in the present invention.
  • the polymorphism mentioned here means that a certain gene has a different nucleotide sequence among individuals within a population.
  • polymorphisms and mutations are genetically defined by genotype distribution rates.
  • the polymorphism referred to here is independent of the ratio (distribution rate) at which different nucleotide sequences are found.
  • BST2 homologs include functionally equivalent proteins in species other than humans.
  • a protein functionally equivalent to BST2 can be identified using, for example, hybridization. That is, a polynucleotide encoding BST2 as shown in SEQ ID NO: 1 or a fragment thereof is used as a probe, and a polynucleotide capable of hybridizing therewith is isolated. If hybridization is performed under stringent conditions As a result, a highly homologous polynucleotide is selected as the base sequence, and as a result, there is an increased possibility that the protein to be isolated contains a protein functionally equivalent to BST2.
  • the present inventors confirmed that the antibody strength against homologues of BST2 mice suppresses the activity of mouse IPC in the same manner as antibodies in humans.
  • Mouse BST2 had the base sequence set forth in SEQ ID NO: 9 and encoded the amino acid sequence set forth in SEQ ID NO: 10.
  • the present inventors also confirmed the presence of homologues in mice in the same manner as for BST2H, which is a BST2 splicing nootropic.
  • the base sequence of mouse BST2H is shown in SEQ ID NO: 7, and the amino acid sequence encoded by this base sequence is shown in SEQ ID NO: 8. It was confirmed that the antibody against BST2H in mice also suppresses IPC activity.
  • the stringent conditions specifically indicate conditions such as 6 X SSC, 40% formamide, hybridization at 25 ° C, and IX SSC, washing at 55 ° C. it can. Stringency depends on conditions such as salt concentration, formamide concentration, or temperature. Those skilled in the art can adjust these conditions appropriately to obtain the required stringency.
  • a polynucleotide encoding a homologue of BST2 in, for example, an animal species other than human.
  • Non-human animal species ie, animal species such as mice, rats, rabbits, pigs, goats, etc.
  • the BST2 homologue encoded by the polynucleotide constitutes a functionally equivalent protein in the present invention.
  • the protein encoded by the polynucleotide isolated using the noblerization technique or the like usually has high homology in amino acid sequence with human BST2D (SEQ ID NO: 2).
  • High homology refers to sequence identity of at least 30% or more, preferably 50% or more, more preferably 80% or more (eg, 95% or more, 98%, or even 99% or more).
  • the identity of nucleotide sequences and amino acid sequences can be examined using a homology search site using the Internet [For example, in Japan DNA Data Bank (DDBJ)! /, FAS TA, BLAST, PSI-BLAST] , And SSEARCH etc. can be used [For example, search and analysis of Japan DNA Databank (DDBJ) website: ⁇ ; http://www.ddbj.nig.ac .Jp / E—mail / homology—j.ntml].
  • NCBI National Center for Biotechnology Information
  • the calculation of amino acid sequence identity in Advanced BLAST 2.1 uses blastp as the program, sets the Expect value to 10, all filters are OFF, uses BLOSUM62 as the matrix, Gap existence cost, Per residue gap cost , And Lambda ratio can be set to 11, 1, 0.85 (default value) and searches can be performed to obtain identity values (%) (Karlin, S. and SF Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-68; Karlin, S. and SF Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7).
  • BST2 homologues in other species can be found by searching the nucleotide sequence information of cDNA or genomic DNA whose structure has already been clarified. In other words, similar sequence information is searched by a homology search that uses known BST information or a database that accumulates amino acid sequence information as a query using the base sequence information of human BST2 and Z or amino acid sequence information. Is done. If a known gene or protein having high homology derived from another species exists in the database, it can be found by homology search. Even if the full length of the gene is not identified, if the sequence information of fragments such as EST is obtained, the full length sequence of the gene can be constructed by in silico cloning. Sometimes you can. If homologs derived from other species thus identified are actually confirmed in the IPC of the animal species, they can be used as BST2 homologs in the present invention.
  • An antibody that recognizes either or both of BST2 and its homologue used in the present invention can be prepared using BST2 and its homologue or a fragment thereof as an immunogen.
  • the antibodies in the present invention may be of any class.
  • the species from which the antibody is derived is not limited.
  • a fragment containing an antigen-binding region of an antibody can be used as an antibody.
  • an antibody fragment containing an antigen binding site produced by enzymatic digestion of IgG can also be used as the antibody in the present invention.
  • antibody fragments such as Fab or F (ab ′) 2 can be obtained by digestion with papain or pepsin. It is well known that these antibody fragments can be used as antibody molecules having binding affinity for an antigen.
  • an antibody constructed by gene recombination can be used as long as the necessary antigen-binding activity is maintained.
  • the antibody constructed by gene recombination can be, for example, a chimeric antibody, a CDR-grafted antibody, or a single chain Fv. Methods for obtaining these antibodies using any immunogen are known
  • the antibody can be modified as necessary.
  • an antibody that recognizes either or both of BST2 or a homologue thereof has an action of suppressing the number of IPC cells. That is, the antibody itself was considered to have cytotoxicity against IPC.
  • Subclasses of antibodies that exhibit strong effector activity are known.
  • the effect of suppressing the activity of IPC can be further enhanced by modifying the antibody with a cytotoxic agent. The following substances can be shown as cytotoxic substances.
  • Toxins Pseudomonas aeruginosa toxin (Pseudomonas Endotoxin; PE), diphtheria toxin, ricin radioisotope: Tc "m, Sr 89, I 131, Y 9 °
  • Anticancer drugs calikiamycin, mitomycin, paclitaxel
  • Toxins that also have protein power can be bound to antibodies or fragments thereof by a bifunctional reagent.
  • the gene encoding the antibody encodes a toxin Genes can be joined to obtain a fusion protein of both.
  • Methods for binding radioisotopes to antibodies are also known. For example, a method for labeling an antibody with a radioisotope using a chelating agent is known.
  • anticancer agents can be bound to antibodies by using sugar chains or bifunctional reagents.
  • the antibody used in the present invention may be an artificially modified antibody.
  • various modification methods for improving the cytotoxic effect and stability of antibodies are known.
  • an immunoglobulin having a modified heavy chain sugar chain is known (Shinkawa, T. et al. J. Biol. Chem. 278: 3466-3473. 2003.).
  • the sugar chain modification enhanced the ADCC (antibody-dependent cell-mediated cytotoxicity) activity of immunoglobulin.
  • immunoglobulins with modified Fc region amino acid sequences are also known. That is, ADCC activity was enhanced by artificially increasing the binding activity of immunoglobulin to the Fc receptor (Shield, RL. Et al. J. Biol. Chem. 27 6; 6591-6604, 2001. ).
  • IgG bound to the Fc receptor is once taken up into cells. Subsequently, it has been revealed that it binds to the Fc receptor expressed in the endosome and is released into the blood again. IgG with high Fc receptor binding activity is more likely to be released into the blood after being taken up by cells. As a result, the residence time of IgG in the blood is extended (Hinton.PR. Et al. J Biol Chem. 279: 6213-6216. 2004). In addition, modification of the amino acid sequence of the Fc region is also said to cause a change in CDC (Complement Dependent Cytotoxicity) activity. Antibodies with these modifications can be used as antibodies in the present invention.
  • the antibody-producing cell force that produces the monoclonal antibody can also be collected.
  • Monoclonal antibody-producing cells that can be used in the present invention include, for example, BST2 or a homolog thereof, a fragment thereof, a cell that produces them, or a cell membrane fraction thereof administered to an immunized animal as an immunogen, It can be obtained by cloning. More specifically, the antibody used in the present invention can be obtained, for example, by a method including the following steps.
  • Step of administering BST2 or a homolog thereof to an immunized animal as an immunogen selecting an antibody-producing cell that produces an antibody that recognizes BST2 from the antibody-producing cells of the immunized animal of (1),
  • a step of recovering an antibody that suppresses the activity of interferon-producing cells from the culture of (3) In a general method for producing a monoclonal antibody, a hyperidoma obtained by cell fusion of immune cells and tumor cells is used. Used as antibody-producing cells.
  • BST2 or a homologue thereof, or a fragment thereof can be used as an immunogen in the present invention.
  • the immunogen can be purified from cells transformed with the gene encoding it.
  • cells expressing BST2 or a homologue thereof can be used as an immunogen. Specific examples of such cells include the following cells.
  • the cell membrane fraction of these cells can also be used as an immunogen.
  • a target cell may be collected based on the expression profile of a cell surface marker as described above.
  • Methods for collecting specific cells using a plurality of cell surface markers as an index are known. For example, by using immunostaining and a cell sorter, cells that meet the target expression profile can be easily separated.
  • human IPC is enriched by selecting BDCA-2 positive cells. IPCs collected from humans are used as an immunogen after being activated as necessary.
  • IPC can also be obtained as cultured cells in addition to the peripheral blood or hematopoietic tissue of a living body. For example, it can be obtained in large quantities by culturing hematopoietic stem cells of humans and mice and distributing them to IPC. Conditions for differentiating human and mouse hematopoietic stem cells into IPC in vitro are known. [0057] For example, humans from hematopoietic stem cells in vitro (Blom, B. et al. J. Exp. Med. 192: 17 85-1796, 2000 .; Chen, W. et al. Blood 103: 2547-2553 , 2004.), and induction of IPC in mice (Gillie rt et al 2002, J.
  • differentiation into IPC is induced by culturing a cell population containing hematopoietic stem cells in the presence of an IPC inducer.
  • a cell population containing hematopoietic stem cells for example, bone marrow cells can be used.
  • the IPC inducer FLT-3 ligand or a combination of FLT-3 ligand and thrombopoietin (TPO) can be used.
  • the concentration of FLT-3 ligand in the medium can usually be 1 to: LOOng / mL.
  • general blood cell culture conditions may be applied. That is, RPMI1 640 or the like can be used as a basal medium, and about 10% fetal bovine serum can be obtained. Alternatively, Yssel's Medium was used to guide HPC. In vitro differentiation into IPC peaks in humans, for example, around 25 days.
  • IPCs for immunogens can be obtained.
  • several cell surface markers are used to sort cells with cell surface antigens characteristic of IPC. That is, for example, BDCA-2 positive cells can be obtained as HCHP.
  • CDllc positive, CDllb negative, and B220 positive cell fractions can be sorted using a cell sorter to obtain mouse IPC.
  • the antibody-positive cells can be sorted as IPC.
  • a monoclonal antibody produced by the present inventors and produced by a monoclonal antibody-producing cell 2E6 that recognizes a mouse IPC-specific antigen (WO 2004/013325, FERM-BP-8445) can be used for fractionation of mouse IPC. it can.
  • IPC can also be collected from peripheral blood.
  • IPC peripheral blood The population that can be collected is extremely low, so a large amount of blood is required to collect IPC from peripheral blood. Therefore, it is advantageous to use cells differentiated from hematopoietic stem cells for IPC as an immunogen.
  • a protein containing the amino acid sequence described in any selected SEQ ID NO: or a fragment thereof can also be used as an immunogen.
  • the monoclonal antibody of the present invention recognizes a protein containing the amino acid sequence described in any one of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 as an antigen. It was revealed that Therefore, the monoclonal antibody of the present invention can be obtained by using these proteins as immunogens.
  • a protein containing the amino acid sequence described in any one of SEQ ID NOs: selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 can be obtained as a recombinant.
  • the base sequence described in SEQ ID NO: 1 encodes the amino acid sequence described in SEQ ID NO: 2.
  • the base sequence described in SEQ ID NO: 3 encodes the amino acid sequence described in SEQ ID NO: 4. Therefore, the target protein can be obtained by expressing DNA consisting of these base sequences using an appropriate host vector.
  • an amino acid sequence ability described in any one of SEQ ID NOs selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 An oligopeptide having a selected continuous amino acid sequence ability It can also be an immunogen.
  • the amino acid sequence to be selected as the immunogen has an amino acid strength of, for example, about 5-50, preferably about 7-20.
  • Methods for obtaining oligopeptides having an arbitrary amino acid sequence are known. For example, an amino acid can be chemically bonded to obtain an oligopeptide having the target amino acid sequence.
  • a fragment having a predetermined amino acid sequence can be obtained by cleaving a protein having a full-length amino acid sequence obtained as the above recombinant.
  • the obtained oligopeptide can be made more immunogenic by binding to an appropriate carrier protein.
  • the carrier protein keyhole limpet Hesiyaninu serum serum albumin and the like are used.
  • SEQ ID NO: 2 and most of the amino acid sequences of SEQ ID NO: 4 and SEQ ID NO: 6 are identical. Yes. Therefore, a monoclonal antibody that recognizes all of these proteins can be obtained by using an amino acid sequence that is selected for its common amino acid sequence ability. In addition, for each of the three types of proteins, two specific proteins can be distinguished from the other by using the amino acid sequence shared by the two types. Alternatively, a monoclonal antibody that specifically identifies each protein can be obtained by using an amino acid sequence unique to each amino acid sequence. For example, in the amino acid sequence described in SEQ ID NO: 4, the amino acid sequence from 139 to 158 from the N-terminus is an amino acid sequence unique to SEQ ID NO: 4. Similarly, the amino acid sequence set forth in SEQ ID NO: 6 is an amino acid sequence unique to SEQ ID NO: 6 having an amino acid sequence of 96 to 100 from the N-terminus.
  • an appropriate immunized animal is immunized with the immunogen.
  • IPC can be administered to immune animals with appropriate adjuvants.
  • the group force consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 is selected from any of the selected SEQ ID NOs, or a peptide having a partial amino acid sequence power, and an immunized animal together with an adjuvant. It can be administered.
  • the transformation is carried out so that the DNA encoding the amino acid sequence described in any one of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 can be expressed.
  • Cells can be used as immunogens.
  • a DNA containing a base sequence constituting a coding region of a base sequence described in any one of SEQ ID NO: selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, and SEQ ID NO: 5 is preferable as the DNA. .
  • transformed cells useful as immunogens can be obtained.
  • a host cell for use as an immunogen can be a cell derived from the same species as the immunized animal. By using the same type of cells, a specific immune response against foreign proteins can be induced. For example, if a rat is used as an immunized animal, it is advantageous to use a host cell derived from the rat.
  • a fraction of transformed cells containing the protein can also be used as an immunogen. As shown in the examples, SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 group power of force A transmembrane domain was found in the amino acid sequence described in any selected SEQ ID NO: (the transmembrane region of FIG. 8; transmembrane region) 0 Mr. Therefore, proteins with these amino acid sequences may be expressed on the cell membrane
  • the cell membrane fraction of cells expressing the above protein can be used as an immunogen.
  • any non-human vertebrate that recognizes IPC as a foreign substance can be used.
  • an animal for which a fusion partner for obtaining a hyperpridoma is readily available is advantageous.
  • hybridomas derived from cells such as mice, rats, rabbits, bushes, and goats.
  • These immunized animals can be used in the present invention.
  • Freund's complete adjuvant or Freund's incomplete adjuvant is used as the adjuvant.
  • Immunized animals are immunized multiple times at 3 to: L0 day intervals.
  • the number of IPCs used for one immunization is arbitrary. Usually, 10 3 to 10 8 , for example 10 6 IPCs are immunized.
  • immunization with protein peptide is immunized with 1 ⁇ : LOO / zg.
  • the monoclonal antibody of the present invention can be obtained by collecting immunocompetent cells from an immunized animal that has undergone multiple immunizations and cloning the cells that produce the target antibody.
  • An immunocompetent cell refers to a cell having antibody-producing ability in an immunized animal.
  • Immunocompetent cells can be cloned, for example, by the hypridoma method.
  • the hyperidoma method refers to a method in which immunocompetent cells are fused with an appropriate cell line, immortalized, and then cloned.
  • Many cell lines useful for the hybridoma method are known. These cell lines are excellent in the immortalization efficiency of lymphocyte cells and have various genetic markers necessary for selection of cells successfully fused.
  • a cell line lacking antibody-producing ability can also be used.
  • mouse myeloma P3x63Ag8.653 (ATCC CRL-1580) is widely used as a cell line useful for mouse or rat cell fusion.
  • Use human IPC as immunogen If so, mice and rats can be used as immunized animals.
  • the immunized animal is an animal other than the mouse (for example, rat).
  • hyperpridoma is obtained by obtaining a monoclonal antibody that has heterohypridoma force between closely related different types of force generated by the fusion of cells of the same type.
  • a cell that has succeeded in cell fusion is selected based on a selection marker possessed by the fused cell. For example, when a HAT-sensitive cell line is used for cell fusion, cells that have succeeded in cell fusion are selected by selecting cells that grow in the HAT medium. Furthermore, it is confirmed that the antibody produced by the selected cell has the desired reactivity.
  • Each noblebroma is screened based on antibody reactivity. That is, a hybridoma producing an antibody that binds to either or both of BST2 and its homolog is selected. Preferably, the selected hybridoma is subcloned and finally selected as a hyperidoma that produces the monoclonal antibody of the present invention when production of the target antibody is confirmed.
  • the protein having the amino acid sequence ability described in any one of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 selected from the group consisting of A peptide consisting of an amino acid sequence can be screened as an antigen.
  • the antigen is bound to an appropriate solid phase, and the monoclonal antibody that binds to the antigen can be detected by a labeled antibody that recognizes the immunoglobulin of the immunized animal.
  • a monoclonal antibody can be rapidly screened by using an ELISA method using an enzyme-labeled antibody by binding an antigen to the inner wall of the microplate.
  • Monoclonal antibodies that have been confirmed to have an antigen-binding activity are actually confirmed to have an effect on IPC activity as needed. IP The effect on C can be confirmed, for example, by the method described later.
  • Such a monoclonal antibody can be expressed by obtaining cDNA encoding the antigen-binding region of the antibody from the hyperidoma and inserting it into an appropriate expression vector.
  • Techniques for obtaining cDNA encoding the variable region of an antibody and expressing it in an appropriate host cell are known.
  • Also known is a technique for producing a chimeric antibody by binding a variable region including an antigen-binding region to a constant region.
  • the antigen-binding activity of the monoclonal antibody can be transplanted to other immunoglobulins.
  • the variable region of immunoglobulin is composed of a complementarity determining region (CDR) and a frame region.
  • CDR complementarity determining region
  • the antigen-binding properties of each immunoglobulin are determined by CDR, and the frame maintains the structure of the antigen-binding region.
  • the amino acid sequence in the frame part is highly conserved, whereas the amino acid sequence of CDR is very diverse. It is known that antigen-binding activity can also be transplanted by incorporating the amino acid sequence constituting the CDR into the frame region of another immunoglobulin molecule.
  • the antigen-binding region can include CDR grafted in a frame. Therefore, a “fragment containing an antigen-binding region” of a certain monoclonal antibody includes a human immunoglobulin fragment containing a variable region grafted with the CDR of the monoclonal antibody.
  • any of the monoclonal antibodies thus prepared can be used in the present invention. That is, an immunoglobulin-binding monoclonal antibody containing an antigen-binding region encoded by a polynucleotide derived from a cDNA encoding the antigen-binding region of the monoclonal antibody or an antibody fragment containing the antigen-binding region is used in the present invention. can do.
  • hyperidoma 3D3 # 7 or 3G7 # 6 can be shown.
  • Hypridoma 3 D3 # 7 and Hypridoma 3G7 # 6 were registered with the Patent Biological Depositary Center of the National Institute of Advanced Industrial Science and Technology as of May 27, 2005, with accession numbers FERM BP-10339 and accession number FERM BP. Deposited as -10340. Below is a description of the deposit. Included.
  • the monoclonal antibody to be used in the present invention can be recovered from the culture by culturing the hyperidoma that produces the monoclonal antibody.
  • Hypridoma can be cultured in vitro or in vivo.
  • a known medium such as RPMI1640 can be used to cultivate wild and hybridomas.
  • the immunoglobulin secreted by the hyperidoma accumulates in the culture supernatant. Therefore, the monoclonal antibody of the present invention can be obtained by collecting the culture supernatant and purifying it as necessary.
  • the medium is easy to purify immunoglobulin without adding serum. However, for the purpose of more rapid growth of hypridoma and promotion of antibody production, it is possible to release about 10% urine fetal serum into the medium.
  • Nobridoma can also be cultured in vivo. Specifically, a hyperidoma can be cultured in the peritoneal cavity by inoculating the peritoneal cavity of a nude mouse. Monoclonal antibodies accumulate in ascites. Therefore, the necessary monoclonal antibodies can be obtained by collecting ascites and purifying it as necessary. The obtained monoclonal antibody can be appropriately modified or covered according to the purpose.
  • the present invention provides a therapeutic agent for nephritis comprising as an active ingredient at least one component selected from the following (a) to (c) powerful group forces.
  • the present invention relates to a method for treating nephritis comprising the step of administering at least one component selected from the following group powers (a) to (c) that also have powers.
  • the present invention further relates to the use of at least one component selected from the following groups (a) to (c) in the manufacture of a therapeutic agent for nephritis.
  • the monoclonal antibody that suppresses the activity of IPC includes SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6. Protein having the amino acid sequence described in any selected SEQ ID NO: 6 Monoclonal antibodies that recognize can be used.
  • IPC produces large amounts of IFN upon viral stimulation. Before and after virus stimulation of IPC, give antibody at the same time as virus stimulation, and compare the ability of IFN to produce IPC without antibody. The IFN production ability can be evaluated by measuring IFN-a and IFN- ⁇ contained in the culture supernatant of IPC. As a result of the comparison, if the amount of IFN in the supernatant is significantly reduced by the addition of the antibody, it can be confirmed that the tested antibody has an action of suppressing IFN production ability. Methods for measuring these IFNs are known. I PC is a cell that produces most of IFN in the living body. Therefore, the production state of IFN in the living body can be regulated by suppressing the IFN production ability of IPC.
  • IPC activity includes maintenance of the number of IPC cells. Therefore, suppression of IPC activity in the present invention includes suppression of the number of IPC cells. Similar to IFN production, IPC activity is induced by stimulating infectious viruses. If it is confirmed that the number of activated IPC cells is suppressed in the presence of the antibody, it can be seen that the antibody suppresses the IPC activity. As a comparative control, inactive immunoglobulin derived from the same animal species as the antibody whose activity is to be confirmed can be used, as in IFN production. The number of cells in IPC can be compared quantitatively by counting cells. The number of cells can be counted with a FACS microscope.
  • the IPC activity inhibitor is preferably an antibody that recognizes an IPC cell surface antigen and suppresses its activity.
  • BST2 and its homologue Antibodies that recognize both are preferred as IPC activity inhibitors in the present invention.
  • an antibody is administered to a host different from the species from which the antibody is derived, it is desirable to cover the antibody in a form that is difficult for the host to recognize as a foreign object.
  • immunoglobulin can be recognized as a foreign substance.
  • a technique for covering the immunoglobulin molecule as follows is known.
  • a chimeric antibody composed of the antigen-binding region of a monoclonal antibody and the constant region of the immunoglobulin of the host (Gene Expression Experiment Manual Kodansha 1994 (Ishida Isao, Ando Tamie))
  • CDR-substituted antibody in which the complementarity-determining region (CDR) in the immunoglobulin of one host is replaced with CDR of the monoclonal antibody (Gene Expression Experiment Manual Kodansha 1994 (Ishida Isao, Ando Tamie))
  • a human antibody can be obtained using the non-human animal.
  • transgenic mice incorporating human antibody genes have been put to practical use as immunized animals for producing human antibodies (Ishida et al., Cloning and Stem Cells, 4: 85-95, 2002).
  • a human antibody that recognizes BST2 can be obtained using human BST2 as an antigen.
  • Human antibodies are preferred antibodies for administration to humans.
  • the human immunoglobulin variable region gene can also be obtained by Kretzschmar T et.al, Curr Opin Biotechnol. 2002 Dec; 13 (6): 598-602.).
  • a gene encoding a human immunoglobulin variable region is incorporated into a phage gene.
  • a phage library can also be created using various immunoglobulin genes as sources.
  • the phage expresses the variable region as a fusion protein of its constituent proteins.
  • the variable region of the phage surface expressed by the phage maintains the binding activity to the antigen. Therefore, it binds to the antigen or cells expressing the antigen.
  • a phage expressing a variable region having a target binding activity can be screened from a phage library. Furthermore, the phage particles thus selected retain a gene that codes for a variable region having the desired binding activity. That is, in the phage display method, a gene encoding a variable region having a target binding activity can be obtained using the binding activity of the variable region as an index.
  • an antibody or an antibody fragment containing at least an antigen-binding region thereof can be administered as a protein or a polynucleotide encoding the antibody.
  • a vector in which a polynucleotide encoding the target protein is placed under the control of an appropriate promoter so that the target protein can be expressed.
  • An enhancer or terminator can be placed in the vector.
  • Vectors that retain the heavy and light chain genes that make up immunoglobulin and are capable of expressing immunoglobulin molecules are known.
  • a vector capable of expressing an immunoglobulin can be administered by introduction into a cell.
  • those that can infect cells by administration to a living body can be administered as they are.
  • the vector can be introduced into lymphocytes once separated from the living body and returned to the living body (ex vivo).
  • the amount of monoclonal antibody administered to the living body is usually 0.5 mg to 100 mg, for example, lmg to 50 mg, preferably 1 mg to 50 mg per kg body weight as immunoglobulin. Is 2 mg ⁇ : LOmg.
  • the administration interval of the antibody to the living body can be appropriately adjusted so that the effective concentration of immunoglobulin in the living body during the treatment period can be maintained. Specifically, for example, it can be administered at intervals of 1 to 2 weeks.
  • the administration route is arbitrary. A person skilled in the art can appropriately select an effective administration route for treatment. Specifically, oral or parenteral administration can be indicated.
  • the antibody can be administered whole or locally by intravenous injection, intramuscular injection, intraperitoneal injection, or subcutaneous injection.
  • preparations suitable for parenteral administration in the present invention include injections, suppositories, and sprays.
  • parenteral administration in the present invention include injections, suppositories, and sprays.
  • 1 ⁇ g / mL, preferably 10 g / mL or more, more preferably 50 g / mL or more, and even more preferably 0.5 mg / mL or more of immunoglobulin is provided in the culture solution.
  • the monoclonal antibody can be administered to a living body by any method.
  • monoclonal antibodies are combined with a pharmaceutically acceptable carrier.
  • Monoclonal antibodies can be blended with additives such as thickeners, stabilizers, preservatives, and solubilizers as necessary.
  • Such carriers or additives include latatoses, citrates, stearic acid, magnesium stearate, sucrose, starch, talc, dielatin, agar, vegetable oil, ethylene glycol and the like.
  • the term “pharmaceutically acceptable” is approved by national government supervisory authorities, or in the national pharmacopoeia or generally recognized pharmacopoeia for animals, mammals, and especially humans. Say what is listed for use.
  • the therapeutic agent for nephritis of the present invention can also be supplied in the form of one or more doses of lyophilized powder or tablets.
  • the lyophilized powder or tablet may be further combined with sterile water for injection, physiological saline or buffer to dissolve the composition to the desired concentration prior to administration.
  • each plasmid when administered as an immunoglobulin-expressing vector, is 0.1 to 10 mg per kg body weight, for example, l -5 mg can be administered.
  • l -5 mg can be administered for introduction into cells in vitro.
  • 1-5 ⁇ g / 10 6 cell vectors are used for introduction into cells in vitro.
  • the present invention further relates to a method for detecting the therapeutic effect of a test compound on nephritis, comprising the following steps.
  • a cell stimulator that induces interferon production is contacted with the interferon-producing cells.
  • a cell stimulant that induces interferon production is contacted with the interferon-producing cells.
  • the test compound and interferon-producing cells are contacted
  • the cell stimulating agent refers to a substance capable of inducing IPC activity and interferon production.
  • viruses and virus components can be indicated as cell stimulants.
  • IPC is activated by administration of a virus such as Herpes simplex virus (HS V) or influenza virus (Influenza virus).
  • HS V Herpes simplex virus
  • influenza virus Influenza virus
  • CpG which is DNA in bacteria
  • These cell stimulants may be used alone or in combination with different cell stimulants.
  • the cell stimulant and test compound may be contacted with the IPC at the same time, or by contacting the IPC with the test compound before or after contact with the cell stimulant.
  • the cell stimulator, IPC, and test compound can be contacted in vitro, in vivo, or ex vivo.
  • cell stimulants and test compounds can be contacted with IPC in any order as described above under conditions where IPC can be cultured.
  • the test compound or cell stimulant is administered to the in vivo IPC, and then the IPC is collected. After the collected IPC is contacted with a cell stimulant or a test compound in vitro, the level of cell activity can be evaluated. The level of cell activity can be evaluated by changing the concentration of IFN produced by the cell.
  • a cell stimulant or a test compound is brought into contact with IPC prepared in vitro.
  • the contacted IPC is administered to the living body, and the test compound or cell stimulant is administered.
  • the level of IPC activity in vivo is evaluated, and the effect of the test compound is evaluated.
  • the level of IPC activation can be evaluated using, for example, the level of IFN in blood as an index.
  • the preparation of IPC in vitro refers to collecting IPC from a living body or artificially preparing IPC by induction of IPC progenitor cells.
  • saline is a substance with no therapeutic effect.
  • a substance that has been confirmed to have a therapeutic effect on nephritis can be used as a target, and the action of the test compound can be evaluated by relative comparison with the substance.
  • the activity of IPC refers to, for example, either or both of the production level of IFN and the number of IPCs.
  • a particularly preferred activity is the ability to produce IFN by IPC.
  • the ability of IPC to produce IFN can be compared by determining the amount or concentration of IFN contained in the cell culture. Reagents or kits for measuring various IFNs are commercially available.
  • the number of IPC cells can be compared by counting the number of cells present in the IPC culture. The number of cells can be determined by FACS using an antibody that recognizes the cell surface antigen of IPC.
  • BST2 or BDCA-2 can be used as the cell surface antigen of IPC.
  • CD4 and CD123 can also be used as markers for counting IPC.
  • the reagent necessary for detecting the therapeutic effect of nephritis is further combined with a cell stimulant for activating IPC, a medium for culturing IPC, a culture vessel, and the like. You can also. Substances that have a clear effect on IPC activity can also be combined as a control.
  • a method for screening a candidate compound for a therapeutic agent for nephritis is provided by using the method for measuring the therapeutic effect of nephritis of the present invention. That is, the present invention relates to a screening method for a test compound having a therapeutic effect for nephritis, including the following steps.
  • an antibody that recognizes an IPC cell surface antigen, an antibody fragment containing at least an antigen-binding region thereof, or a fragment containing a variable region thereof can be used.
  • an antibody a phage library expressing a variable region is used.
  • a brary can also be used.
  • a mixture containing multiple compounds such as extracts of animal and plant tissues or microbial cultures, and preparations purified from them can be combined. Use it as a thing.
  • a detection method including the following steps can be carried out.
  • the method for detecting the therapeutic effect of an antibody nephritis based on the present invention further enables a screening method for an antibody having the activity. That is, the present invention relates to a method for screening an antibody having a therapeutic effect for nephritis, including the following steps.
  • an antibody includes a natural immunoglobulin molecule, a fragment containing the antigen-binding region thereof, a variant with a modified amino acid sequence or sugar chain, and a derivative with chemical modification. included.
  • a fragment containing the antigen-binding region of an antibody can be obtained by enzymatic digestion of immunoglobulin. Alternatively, it can be obtained by genetic engineering by isolating a gene encoding the region and expressing it in an appropriate expression system.
  • an immunoglobulin recombinant for example, a phage antibody library can be shown.
  • IPCs and cell stimulants can be used as described above.
  • IFN production can be regulated by regulating its activation.
  • the present inventors have clarified that a therapeutic effect for nephritis can be obtained through suppression of IPC activity. Therefore, a substance capable of suppressing IPC activity can be used as a therapeutic agent for nephritis. That is, the compound that can be selected by the screening method of the present invention is useful as a therapeutic agent for nephritis.
  • a substance having a therapeutic effect greater than this substance can be found by using as a control an IPC that has been brought into contact with a substance that is apparently effective in treating nephritis.
  • IPC is an important cell that produces most of the IFN in the body. Therefore, the compound obtainable by the screening method of the present invention is important as a therapeutic agent for nephritis by regulating immune balance.
  • the compound obtained by the screening method of the present invention can be used for the production of a therapeutic agent for nephritis by regulating immune balance.
  • the compound selected by the screening of the present invention By contacting the compound selected by the screening of the present invention with various cells other than IPC as necessary, the action on other cells can be confirmed. If significant growth inhibition and cytotoxic effects are not detected on cells other than IPC, the compound is likely to be used as a safe therapeutic agent. Alternatively, even when a disordered effect on specific cells is confirmed, there is a possibility that it can be used as a therapeutic agent by selecting an administration form such as local administration. Furthermore, it can be administered to SLE model animals and the like to evaluate the therapeutic effect of nephritis in more detail.
  • Cells used as an immunogen were prepared as follows.
  • the bone marrow cells of Balb / c female mice (4-6 weeks old) were mixed with 10% FCS-RPMI164 0 medium supplemented with 10 ng / ml FLT-3 ligand (R & D Systems) [10% fetal bovine serum ( FCS), and RPMI 16 40 medium containing penicillin and streptomycin] for 10 days.
  • FCS fetal bovine serum
  • RPMI 16 40 medium containing penicillin and streptomycin 10 days.
  • IPC Interferon producing cell
  • Sex Sex
  • CDllb negative CDllb negative
  • B220 positive fractions were separated with a cell sorter (FACSVantage, manufactured by Becton Dickinson).
  • the antibody manufactured by Becton Dickinson was used.
  • the separated cells were injected into rat foot pads together with 6 lxlO per leg together with complete Freund's adjuvant (CFA: manufactured by Jatron).
  • CFA complete Freund's adjuvant
  • the lymph nodes of the immunized rat were isolated and lymphocytes were collected.
  • Mouse myeloma cells P3x63Ag8.653 and rat lymphocytes were mixed at a ratio of 4: 5, and polyethylene glycol (PEG) was added to fuse the cells. The fused cells were thoroughly washed and dispersed in HAT medium, and spread on a 96-well plate to contain 5xl0 4 cells per well.
  • Bone marrow cells of female Balb / c mice (4-6 weeks old) were cultured for 10 days in 10% FCS-RPMI1640 medium supplemented with 10 ng / ml FLT-3 ligand. On day 10, about 40% of the cells became IPC. Using these cells, the hyperpridoma culture supernatant was used as a primary antibody, and the secondary antibody was stained with a FITC-labeled anti-ra Hg antibody (BD Pharmingen). Thereafter, double staining was performed with various antibodies (CDllb, CDllc ⁇ CD3, CD19, CD45RB, B220, Ly6C; all manufactured by Becton Dickinson) and analyzed by flow cytometry (FACS analysis).
  • the culture supernatant positive fraction and negative fraction were R2 and R3, respectively, and the expression of various antigens in each Gate was shown as a histogram (Fig. 1).
  • the cell groups stained with several kinds of antibodies produced matched the cell surface antigen profile of mouse IPC (Nature Immunol, 2001; 2, 1144-1150.) Defined in the literature. Therefore, these antibodies were considered to be antibodies that specifically bind to mouse IPC.
  • Bone marrow cells cultured as in Example 2 were stained using the culture supernatant as the primary antibody and FITC-labeled anti-rat Ig antibody as the secondary antibody. Thereafter, positive cells were separated using a cell sorter (FACSVantage, manufactured by Becton Dickinson). After cytospinning, Giemsa staining and observation under a microscope showed a form specific to IPC (Fig. 2a). That is, the shape of this cell had a large round nucleus.
  • FACSVantage manufactured by Becton Dickinson
  • Bone marrow cells cultured as in Example 2 were stained with SNK01, SNK03 culture supernatant and secondary antibody, and then positive and negative cells were separated using a cell sorter. Dispense 5 lxlO cells from each fraction into a 96-well round-bottom plate (100 ⁇ l / well), infect with influenza virus PR8, and concentrate IFNa in the culture supernatant after 24 hours. was measured by the following ELISA method.
  • rat anti-mouse IFNa antibody (PBL Biomedical Laboratory) was reacted overnight at 4 ° C in a 96 well plate and coated. After washing the plate, culture supernatant 1001 was added and allowed to react overnight at 4 ° C. After the plate was washed, a labeled anti-interferon antibody that recognizes IFNa and IFN ⁇ was added and reacted for 1 hour for detection. Each reaction was performed in triplicate and the average value was determined. The concentration of IFNa in the culture supernatant was calculated by creating a calibration curve.
  • Antibody positive cells produced higher interferon production than negative cells.
  • the antigen recognized by monoclonal antibodies SNK01 and SNK03 is a table specific to IPC. It was confirmed that it was a surface antigen (Fig. 3).
  • Mouse bone marrow cells cultured in the same manner as in Example 2 were dispensed into 96-well round-bottom plates, 5 lxlO at a time. This is supplemented with antibody or control antibody Lag HgG and incubated at 37 ° C for 30 minutes, followed by influenza virus PR8 and cultured at 37 ° C for 24 hours. IFN o; was measured by ELISA shown in Example 4 above (FIG. 4). As a result, SNK01 inhibited IFNa production in a concentration-dependent manner. Similarly, SNK03 antibody also suppressed IFN ⁇ production in a concentration-dependent manner (Fig. 5).
  • CDNA is synthesized from purified mRNA by the Gubler-Hoffinan method, EcoRI-Notl adapters (Invitrogen) are coupled to both ends, and then unreacted EcoRI adapters and 500 by Span column (Chromaspin 400, Clontech). CDNA shorter than the base was removed.
  • the resulting cDNA having EcoRI sites at both ends was ligated to the EcoRI site of the animal cell expression vector pME18s (excluding the Xhol fragment) by T4 ligase, and E. coli DH10 (manufactured by Invitrogen) using the erect-mouth polarization method.
  • This is incubated in 500 ml of LB medium (LB. carbecillin) containing 100 g / ml carbecillin at 30 ° C and the protocol of the kit is prepared using QIA filter plasmid ma xi kit (Qiagen).
  • the plasmid was extracted and purified according to the procedure described above to obtain an IP C-cDNA library.
  • COS7 cells are spread on a 6cm dish, 5 sheets of 5xl0, 10 sheets at 37 ° C in the presence of 5% CO for 20 hours
  • the IPC cDNA library obtained in 1) above was ransfectioned using Effectene trasfection Reagent (Qiagen) according to the protocol of the product. Incubate for 48 hours at 37 ° C, 5% CO, wash with PBS (Phosphate Buffered Saline), and cells with PBS / 5mM EDTA Was peeled from the dish, further washed with PBS, and passed through a cell strainer (70 m, manufactured by Falcon).
  • Effectene trasfection Reagent Qiagen
  • Excess streptavidin microbeads were removed by washing with PBS / 0.5% BSA / 2 mM EDTA and suspended in 1 ml PBS / 0.5% BSA / 2 mM EDTA. Cells were sorted using AutoMACS (Miltenyi Biotec) under posselds conditions. Plasmid was extracted and purified by the modified Hirt method (BioTechniques Vol.24,760-762,1998). The resulting plasmid was transformed into E.
  • coli DH10 by the electopore polarization method, cultured in 30 ml at 30 ° C with 100 ml of L ⁇ carbe-cillin, and the protocol of the kit was prepared using QIA filter plasmid midi kit (Qiagen). The plasmid was extracted and purified according to
  • the nucleotide sequence of the cDNA cloned on the obtained plasmid was determined, and the gene was determined by blast search with the nucleotide sequence information registered in the mouse gene database. At the same time, we searched the human gene database to identify the power partner.
  • the clone bound with the monoclonal antibody SNK01 had the nucleotide sequences set forth in SEQ ID NO: 7 and SEQ ID NO: 9.
  • the amino acid sequences encoded by these base sequences are shown in SEQ ID NO: 8 and SEQ ID NO: 10.
  • the base sequence described in SEQ ID NO: 9 was a base sequence known as mouse BST2 (GenBank Acc # .BC027328).
  • the base sequence described in SEQ ID NO: 7 is the salt of SEQ ID NO: 9. Although it had a partially identical base sequence to the base sequence, a different base sequence was seen on the 3 ′ end side, and a different amino acid sequence was encoded. That is, of the amino acid sequence described in SEQ ID NO: 8, the amino acid sequence from the N-terminal to the 139th position was identical to the amino acid sequence described in SEQ ID NO: 10.
  • the 140th to 178th amino acids from the N-terminal were unique to the amino acid sequence shown in SEQ ID NO: 8. Both were considered to be the norits generated by alternative splicing.
  • the amino acid sequence (SEQ ID NO: 8) that is encoded by the nucleotide sequence set forth in SEQ ID NO: 7 was considered to be a novel splicing noun of mouse BST2.
  • the gene consisting of the base sequence shown in SEQ ID NO: 7 is also called mBST2H
  • the gene consisting of the base sequence shown in SEQ ID NO: 9 is also called mBST2D.
  • the plasmid obtained by the above expression cloning method was again highly purified from Escherichia coli again using QIA filter plasmid midi kit (manufactured by Qiag en), and again transfected into COS7 cells. After 48 hours, according to a conventional method, reaction with SNK01 antibody and FITC-labeled anti-ra Hg antibody was performed, and FACS analysis was carried out to confirm whether or not the cDNA force antigen cloned on the plasmid was encoded.
  • the monoclonal antibody SNK01 was observed to bind to COS7 cells into which the plasmid was introduced. Therefore, it was confirmed that all cDNAs cloned on the plasmid encoded the antigen recognized by this monoclonal antibody.
  • DNA having the nucleotide sequence set forth in SEQ ID NO: 7 or SEQ ID NO: 9 was amplified by PCR.
  • the base sequences of the primers used for PCR are as follows.
  • the composition of the reaction solution is as follows.
  • PCR was performed under the conditions of 25 times, with [95 ° C 30 seconds Z55 ° C 30 seconds Z72 ° C 1 minute 30 seconds] as one cycle.
  • phenol chloroform extraction and ethanol precipitation were performed, and the recovered amplification product was dissolved in 10 ⁇ L of TE buffer. This was cleaved with restriction enzymes Nhe I and Xho I (Takara Bio), purified by agarose gel electrophoresis using QIAquick Gel Extraction Kit (QIAGEN), precipitated with ethanol, and dissolved in 4 L of TE buffer.
  • mammalian cell expression plasmid pcDNA3.1 (Invitrogen) was digested with restriction enzymes Nhe I and Xho I, treated with CIAP (Takara Bio), and purified by agarose gel electrophoresis. After ethanol precipitation, it was dissolved in 4 ⁇ L of TE buffer. 2 ⁇ L of each of the aforementioned DNA fragments and 0.5 ⁇ L of this plasmid were ligated using ligation kit ver. II (manufactured by Takara Bio Inc.), and transformed into E. coli DH5.
  • ligation kit ver. II manufactured by Takara Bio Inc.
  • pcDNA3.1- mBST2D for pcDNA3.1- mBST2D-His construction
  • pcDNA3.1- m BST2H for pcDNA3.1- mBST2H-His construction
  • the base sequence to be added was added.
  • the base sequences of the primers used for PCR are as follows.
  • the same forward primer (SEQ ID NO: 13) was used for pcDNA3.1-mBST2D-His and pcDNA3.1-mBST2H-His.
  • the composition of the reaction solution and the temperature cycle conditions were the same as in 1).
  • PCDNA3.1—mBST2D and pcDNA3.1—mBST2H were digested with restriction enzymes BamH I and Xho I, treated with CIAP (Takara Bio), purified by agarose gel electrophoresis, and ethanol precipitated. Then, it was dissolved in 4 ⁇ L of TE buffer. 2 ⁇ L of each DNA fragment amplified by PCR and 0.5 ⁇ L of these plasmids were ligated using ligation kit ver. II (manufactured by Takara Bio Inc.), and transformed into E. coli DH5.
  • the cultured COS7 cells were transformed with pcDN A3.
  • RIPA buffer containing IxHalt Protease Inhibitor Coctail (PIERCE) was collected and lysed on ice for 1 hour.
  • the composition of RIPA buffer is shown below.
  • an HRP-labeled anti-His tag antibody (manufactured by Invitrogene) was used at a concentration of 5000-fold dilution, and a signal was detected according to the protocol of the Imunostar kit. After detection of the signal, the PVDF membrane is treated with a denaturing solution (7M guanidine hydrochloride, 50 mM glycine, 0.05 mM EDTA, 0.1 M potassium chloride, 20 mM 2-mercaptoethanol) for 1 hour at room temperature. Thus, the labeled anti-His tag antibody was removed. Next, a signal was detected in the same manner using a SNK01 antibody labeled with piotin. The result is shown in FIG.
  • RNA extracted from mouse IPC that is highly isolated by a cell sorter (FACSVantage, manufactured by Becton Dickinson) It was confirmed.
  • the base sequences of primers used for PCR are as follows.
  • Fig. 7 (a) The alignment of the amino acid sequences of mBST2D, mBST2H, and mBST2HS is shown in Fig. 7 (a), and the genome structure of each is shown in Fig. 7 (b).
  • the mBST2D and mBST2H cDNA obtained in Example 6 was used as a saddle, and PCR was performed under the following conditions using primers consisting of the following base sequences.
  • DNA polymerase LA Taq (Takara Bio Inc.)
  • Each amplified fragment was digested by treating with restriction enzymes Nhel and Xhol (V, both are manufactured by Takara Bio Inc.), and then similarly treated with Nhel and Xhol. PcD NA3.1 -Ligated using Zeo (+) (Invitrogen) and ligation kit ver.II (Takara Bio Inc.) to obtain each expression vector.
  • the mBST2HS expression vector was prepared by removing the second exon portion of mBST2H according to a standard method using PCR.
  • human orthologue of the mouse IPC-specific antigen BST2 identified in the present invention was searched, it was a known gene reported as human BST2 (IshikawaJ. Et al. Genomics, 1995; 26, 527-; GenBank Acc #. D28137). Furthermore, including the novel splicing variant humanolog found in mice, it was cloned by PCR as follows to prepare three types of expression vectors. [0133] In accordance with the method described in the following example, human IPC stimulated with Herpes Simplex virus was prepared, RNA was extracted, and first strand cDNA was extracted using Superscript First Strand System Kit (Invitrogen). Synthesized.
  • hBST2 primer F aaaaaaaagctagctggatggcatctacttcgtatg ( ⁇ Self sequence number: 20) and hBST2 primer R; PCR (95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes, 25 cycles)
  • the amplified fragment was digested with restriction enzymes Nhel and Xhol, and then PCDNA3.1-Zeo It was inserted into the Nhe Xhol site of (+) (Invitrogen) and used as an expression plasmid for human BST2.
  • PCR 95 ° C at 30 ° C
  • LA Taq primers consisting of the following base sequences from the IPC cDNA library.
  • Second 55 ° C for 30 seconds, 72 ° C for 2 minutes, 25 cycles).
  • cDNA was synthesized by GeneRacer kit (Invitrogen). The amplified fragment was cleaved with the restriction enzymes Nhel and Xhol, and then inserted into the Nhel-Xhol site of pcDNA3.1-Zeo (+) (Invitrogen) to obtain an expression plasmid.
  • primerhBHR ttttttctcgagctagggatgtgggggtgagaggaatgtggcaggtggagggtagcgggggaagg ctatctctgacctcagtcgctccacctctgcagac (self column number: 22)
  • the gene having this sequence is also referred to as hBST2D.
  • the base sequence of the human ortholog of mBST2H (hereinafter also referred to as hBST2H) obtained as described above is shown in SEQ ID NO: 3
  • the amino acid sequence is shown in SEQ ID NO: 4
  • the human ortholog of mBST2HS hereinafter also referred to as hBST2HS.
  • the nucleotide sequence is shown in SEQ ID NO: 5
  • the amino acid sequence is shown in SEQ ID NO: 6.
  • hBST2D The alignment of the amino acid sequences of hBST2D, hBST2H, and hBST2HS is shown in Fig. 8 (a).
  • the genome structure is shown in Fig. 8 (b). It was suggested that hBST2H and hBST2HS are novel splicing variants.
  • Lymph nodes were collected on the 12th day from rats immunized by performing such operations on the 0th, 4th, and 11th days, and hyperpridoma was administered in the same manner as shown in Example 1.
  • Hypridoma culture supernatants were screened by Cell ELISA, and clones were selected that reacted with COS7 cells transfected with the three expression vectors but did not react with host COS7 cells.
  • FACS analysis confirmed the binding activity and cell cloning, and finally 5 positive clones were obtained.
  • Example 12 Using the culture supernatant of the obtained clone, the effect on IFN production was examined in accordance with the method shown in Example 5. V and the deviation were less active in inhibiting IFN production of IPC than the control antibody. there were. Furthermore, when stimulated with 0.1 ⁇ ⁇ ⁇ CpG ODN 1668 (MWG Biotech), it also showed IFN production inhibitory activity (FIG. 9). From this, it was confirmed that antibodies against mBST2 other than SNK01 also showed activity to suppress IFN production from IPC.
  • Example 12
  • An antibody that recognizes any or all of the three subtypes D, H, and HS of human BST2 was prepared in the same manner as in Example 11. Using three types of expression vectors cloned in each type of human cDNA prepared in Example 10, the culture supernatant was subjected to FACS analysis to screen for hyperidoma. Multiple clones such as 3D3 # 7, 3E2 # 8, 5C11 # 7, 3G7 # 6 were obtained. Purified antibodies of the obtained clones were obtained and further analyzed.
  • Peripheral blood was collected from healthy individuals and PBL (peripheral blood lymphocytes) were isolated. Various cells were removed by MACS with Lineage antibodies (CD3, CD14, CD16, CD19, CD20, CD56 antibodies), and then CD4-positive, CD123-positive, and Lineage-negative cell groups were separated as IPCs using a cell sorter. The good urchin acquired human IPC was seeded in 96 well plates at 2xl0 4 cells / well, were each cultured for 1 hour at 3, 10, 30 ⁇ g / in a concentration mL by the addition of anti-BST2 antibody 37 ° C.
  • PBL peripheral blood lymphocytes
  • mice were intraperitoneally administered SNK01, SNK03, and control rat IgG, 300 g each, 3 times every other day (0.9 mg / mouse). On day 6, spleen and bone marrow were Collected. Furthermore, bone marrow cells were seeded in 96well plates at lxl0 6 / well, had there CpG (0.5 M) were stimulated by influenza virus PR8, were measured by ELISA site force in value of the culture supernatant after 24 h ( ( Figure 11).
  • NZB New Zealand Black mice that spontaneously develop autoimmune hemolytic anemia
  • F1 mice that appear to be normal NZW New Zealand White mice spontaneously develop lupus nephritis.
  • NZB and NZB / WF1 mice that develop autoimmune disease showed an increase in the number of IPCs, particularly in the bone marrow ( Figure 13). .
  • each mouse force also bone marrow cells harvested and sowing in 96well plates at lxl0 6 / well, and stimulated by CpG (0.5 M) or influenza virus PR8, by adding various antibody, after 24 hours
  • the cytodynamic force-in value of the culture supernatant was measured by ELISA as shown in Example 5.
  • IFN production-suppressing activity was observed when SNK01 antibody and SNK03 antibody were added, unlike control IgG or 2E6 antibody-added as described in WO2004 / 013325 (FIG. 14). This revealed that the SNK01 and SNK03 antibodies inhibit IFN production of model mouse-derived IPC.
  • Serum was collected from each 5-month-old mouse, and the IFNa concentration in the serum was measured by the method shown in Example 4, and the TNF ⁇ concentration was measured by ELISA Development kit (Genzyme-Techne).
  • the amount of production of site force in was suppressed (FIG. 16).
  • NZB / W F1 mice were bred, and antibodies were administered from 5 to 8 months of age when nephritis developed, and the effects were compared.
  • Each group consisted of 6 animals, and the following substances were administered intraperitoneally twice a week. The amount of protein in urine of each group was measured in the same manner as in Example 15 for comparison.
  • Predonin is a steroid used to treat autoimmune diseases.
  • Prednisolone sodium succinate manufactured by Shionogi & Co. was used as predonin (hereinafter referred to as predonin or PD).
  • a therapeutic agent and a therapeutic method for nephritis targeting the IPC are provided.
  • IPC includes cells that produce thousands of times as many IFNs as other cells. Therefore, if IFN production ability and cell survival (some! /, Is the number of cells) are suppressed, shifted or both, IFN production is effectively suppressed and alleviates symptoms such as nephritis. be able to.
  • the therapeutic agent of the present invention that acts on IPC realizes more essential treatment through improvement of immune balance of nephritis patients that is not limited only by suppression of renal inflammation symptoms.
  • the present invention provides a method for detecting therapeutic activity for nephritis and a method for screening candidate compounds useful for treatment using the method.
  • regulation of IPC activity was revealed to be an important issue in the treatment of 1S nephritis. Therefore, a compound useful for treating nephritis can be selected by selecting a compound that modulates the activity of IPC. That is, the compound selected based on the screening method of the present invention is useful for the treatment of nephritis.

Abstract

It is intended to provide a remedy for nephritis which contains, as the active ingredient, an interferon producing cell (IPC) activity inhibitor. As the IPC activity inhibitor, use may be made of, for example, an antibody capable of recognizing a surface antigen of IPC. Namely, an antibody recognizing, for example, BST2 or its homolog is useful therefor. It is also intended to provide a method of screening a remedy for nephritis which involves the step of selecting a substance having an effect of controlling the IPC activity. Thus, it has been clarified that the immune balance of a patient suffering from nephritis can be controlled by regulating the IPC activity. Namely, a novel therapeutic strategy against nephritis is provided. It is particularly useful in treating lupus nephritis accompanying SLE.

Description

明 細 書  Specification
腎炎の治療剤  Nephritis treatment
技術分野  Technical field
[0001] 本発明は、腎炎の治療に関する。  [0001] The present invention relates to the treatment of nephritis.
背景技術  Background art
[0002] 腎炎は腎臓による尿のろ過機能の阻害によってもたらされる疾患である。ろ過機能 の低下によって、蛋白質や血液の尿への漏出が見られる。一方、本来尿中に排泄さ れるべき代謝産物の排出機能が低下し体内に蓄積するようになる。腎機能の低下に より、たとえば尿素、尿酸、クレアチュンなどの含窒素化合物が体内に蓄積する。また 腎炎患者にはしばしば高血圧が見られる。  [0002] Nephritis is a disease caused by inhibition of the urinary filtration function by the kidney. Leakage of protein and blood into the urine is observed due to the reduced filtration function. On the other hand, the excretion function of metabolites that should be excreted in the urine is reduced and accumulates in the body. Due to decreased renal function, nitrogen-containing compounds such as urea, uric acid, and creatine accumulate in the body. Patients with nephritis often have high blood pressure.
[0003] 腎炎については、多くの原因が指摘されている。たとえば、自己免疫応答によって 糸球体が障害される。リウマチなどの自己免疫性の疾患には、しばしば腎炎がともな うこと力 、自己免疫は腎炎の主要な原因の一つと考えられている。あるいは感染に 対する正常な免疫応答が腎炎を引き起こす例も知られている。たとえば溶血性連鎖 球菌の感染後に見られる急性腎炎は、次のようなメカニズムが原因の一つと考えられ ている。すなわち、溶血性連鎖球菌の感染に対する正常な免疫応答として、抗体が 産生される。そして生体内には、溶血性連鎖球菌の抗原とその抗体からなる免疫複 合体が生じる。この免疫複合体が糸球体基底膜に蓄積し、補体の細胞障害作用を 活性化して炎症の原因となる。  [0003] Many causes have been pointed out for nephritis. For example, the glomeruli are damaged by the autoimmune response. Autoimmune diseases such as rheumatism are often associated with nephritis, and autoimmunity is considered one of the major causes of nephritis. There are also known cases where a normal immune response to infection causes nephritis. For example, acute nephritis observed after infection with hemolytic streptococci is considered to be one of the causes. That is, antibodies are produced as a normal immune response to infection with hemolytic streptococci. In the living body, an immune complex composed of the hemolytic streptococcal antigen and its antibody is produced. This immune complex accumulates in the glomerular basement membrane and activates the cytotoxic effect of complement, causing inflammation.
[0004] 現在のところ、腎炎の治療の主体は、食塩や蛋白質の制限を目的とする食事療法 である。食事療法には症状の進行を遅らせる効果は期待できるが、腎炎の原因を取 り除くことはできない。また腎炎の治療に、様々な種類のステロイド剤が用いられるこ ともある。しかしステロイド剤による治療効果は主にその抗炎症作用に依存している。 あるいは自己免疫性疾患に伴う腎炎においては、免疫機能の調節によって腎炎症 状が抑制される。いずれにせよ、ステロイド剤によって疾患の原因は除去できないの で、腎炎の症状が進行した場合には人工透析が必要になることもある。人工透析は、 身体的にも、また社会的にも、患者の負担が大きい治療方法である。またステロイド 剤の免疫抑制作用は、感染症のリスクを高める可能性がある。 [0004] At present, the main treatment for nephritis is diet therapy for the purpose of limiting salt and protein. Dietary therapy can be expected to slow the progression of symptoms, but the cause of nephritis cannot be removed. Various types of steroids may also be used to treat nephritis. However, the therapeutic effects of steroids depend mainly on their anti-inflammatory effects. Alternatively, in nephritis associated with autoimmune disease, renal inflammation is suppressed by regulating immune function. In any case, because the cause of the disease cannot be eliminated by steroids, artificial dialysis may be necessary if the symptoms of nephritis have progressed. Artificial dialysis is a treatment method that places a heavy burden on the patient, both physically and socially. Also steroid The immunosuppressive action of the drug may increase the risk of infection.
[0005] 腎炎の例としては、全身性エリテマトーデス (Systemic Lupus Erythematosus、以下 S LEと記載する)が原因で起こるループス腎炎 (lupus nephritis)が挙げられる。 SLEは 19 42年に Klempererにより提唱された膠原病の代表的な病気で、自己抗体や免疫複合 体の出現等に基づく多臓器障害を主徴とする疾患である。本疾患に特徴的な顔面 の蝶形紅斑が、狼 (lupus)による傷 (狼瘡)に似ているため、全身性紅斑性狼瘡 (Syste mic Lupus Erythematosus)と名づけられた。 SLEの臨床症状は皮疼にとどまらず,実 に多彩である。たとえば、発熱、多関節痛および多関節炎、漿膜炎、貧血、血小板減 少、腎症状、あるいは神経症状などが見られる。 SLEは圧倒的に女性、特に 20〜30 歳代の女性に好発し,発症の男女比は 1対 10とされている。 日本には 7,000〜9,000 人の患者が存在し、有病率は人口 10万人あたり 66〜85人と推定される。 [0005] Examples of nephritis include lupus nephritis caused by systemic lupus erythematosus (hereinafter referred to as SLE). SLE is a typical disease of collagen disease advocated by Klemperer in 1942. It is a disease mainly characterized by multiple organ disorders based on the appearance of autoantibodies and immune complexes. The facial butterfly erythema, characteristic of this disease, was named as Systemic Lupus Erythematosus because it resembles a lupus wound (lupus). The clinical symptoms of SLE are not limited to skin irritation, but are quite varied. Examples include fever, polyarthralgia and polyarthritis, serositis, anemia, thrombocytopenia, renal symptoms, or neurological symptoms. SLE is overwhelmingly common among women, especially women in their 20s and 30s, and the onset of gender is 1 to 10. There are 7,000-9,000 patients in Japan, and the prevalence is estimated at 66-85 per 100,000 population.
[0006] 腎臓は SLEにおいて侵されやすい臓器の 1つである。実際、患者の 70〜80%に腎 障害が起こる。 SLE患者に見られる腎障害は、特にループス腎炎と呼ばれる。ループ ス腎炎は、糸球体への障害と進行性の腎機能低下を特徴とする。ループス腎炎の糸 球体障害は、免疫系が自己抗原に対する抗体(自己抗体)を作るために起こる自己 免疫プロセスと関係がある。すなわち、糸球体などの腎臓組織に結合した自己抗体と 補体の複合体が腎臓に蓄積し、炎症反応を起こすと考えられている。  [0006] The kidney is one of the susceptible organs in SLE. In fact, kidney damage occurs in 70-80% of patients. The renal disorder found in SLE patients is specifically called lupus nephritis. Lupus nephritis is characterized by glomerular damage and progressive decreased renal function. The glomerular disorder of lupus nephritis is related to the autoimmune process that occurs because the immune system makes antibodies against autoantigens (autoantibodies). That is, it is thought that a complex of autoantibodies and complements bound to kidney tissues such as glomeruli accumulates in the kidney and causes an inflammatory reaction.
[0007] ループス腎炎には、血尿、発熱、顔や手足の赤い斑点、あるいはむくみといつた多 彩な症状がみられる。ループス腎炎患者は、しばしばネフローゼ症候群(蛋白質の排 出過剰)や急速進行性糸球体腎炎を起こし、急性腎不全や慢性腎不全に移行する 場合がある。ループス腎炎は遺伝的素因があると考えられている。慢性関節リウマチ や強皮症など他の自己免疫疾患と関連している可能性もある。また妊娠によって誘 発されるゲースも知られて ヽる。  [0007] Lupus nephritis has various symptoms such as hematuria, fever, red spots on the face and limbs, and swelling. Patients with lupus nephritis often develop nephrotic syndrome (excessive protein excretion) and rapidly progressive glomerulonephritis and may transition to acute or chronic renal failure. Lupus nephritis is thought to be genetically predisposed. It may be associated with other autoimmune diseases such as rheumatoid arthritis and scleroderma. Also known is Gaith, who is evoked by pregnancy.
[0008] ループス腎炎の治療は、原因疾患である SLEの治療と同様に、ステロイド剤による 薬物療法が中心となっている。通常、 2〜3年はステロイド剤が継続的に投与される。 症状が軽快した後も再発しやすいので、薬物治療は長期間にわたることが多い。病 気の活動性の強い重症の場合、大量のステロイド剤を点滴で静脈内に投与する「パ ルス療法」を行うこともある。その結果、ステロイド剤の副作用が問題となる場合がある (非特許文献 lZSaag K.G. et al., AM.J.Med.,96, 115, 1994)。たとえばステロイド剤 によって患者の免疫機能が抑制され、患者が感染症に罹患する可能性が高まる恐 れがあることが指摘されて 、る。 [0008] The treatment of lupus nephritis is centered on steroidal drug therapy, as is the treatment of the causative disease SLE. Usually, steroids are administered continuously for 2-3 years. Drug treatment is often prolonged over time because symptoms are likely to recur even after symptoms have resolved. In severe cases with strong disease activity, “pulse therapy” may be used, in which a large amount of steroids is administered intravenously. As a result, side effects of steroids may be problematic (Non-Patent Document lZSaag KG et al., AM.J.Med., 96, 115, 1994). For example, it has been pointed out that steroids may reduce the patient's immune function and increase the likelihood that the patient will suffer from an infection.
[0009] ステロイド剤だけで効果が現れないときは、さらに免疫抑制剤を併用する。急に腎 臓の機能が低下する「急速進行性腎炎」の症状があるときなどには、抗凝血剤を投与 することちある。 [0009] When an effect is not manifested only with a steroid, an immunosuppressant is further used in combination. Anticoagulants may be administered when there is a symptom of “rapidly progressive nephritis” in which kidney function suddenly declines.
薬物治療の他に、自己抗体などの自己免疫症状の原因物質を除去する治療法も 知られている。 1つは「血漿交換」という方法で、透析と同じように血液を体外へ導き 出して原因物質を除いて力 体内に戻す。所要時間は 3〜4時間で週に 1回程度行 う。もう 1つは「血液吸着」といい、血液を体外へ導き出し原因物質をトリブトファンを固 定ィ匕した膜に吸着させて除去するという方法である。しかし薬物療法と同様に治療効 果には個人差がある。  In addition to drug treatment, there are also known treatments that remove the causative substances of autoimmune symptoms such as autoantibodies. One is a “plasma exchange” method that, like dialysis, draws blood out of the body, removes the causative agent, and returns it to the body. The time required is 3-4 hours and once a week. The other is called “blood adsorption”, in which blood is introduced outside the body, and the causative substances are removed by adsorbing them on a membrane fixed with tributophane. However, like pharmacotherapy, there are individual differences in treatment effects.
[0010] SLEのような自己免疫疾患患者の血中 IFN濃度が高いことが報告されている(非特 許文献 2ZScience, 16 Nov. 2001 Vol.294)0このような疾患に対して、 IFNの作用を 抑制すれば、症状をコントロールできる可能性がある。このようなアプローチを実現す るためのサイト力イン拮抗剤として、タイプ 1インターフェロンに対する抗体が用いられ た (特許文献 1ZWO 01/054721)。すなわち、 IFN- αに対する抗体による SLEの治療 が提案された。しかし IFN- αに対する抗体の腎炎症状に及ぼす影響については明 らかでない。 [0010] It has been reported that patients with autoimmune diseases such as SLE have high IFN concentrations in the blood (Non-Patent Document 2ZScience, 16 Nov. 2001 Vol.294). 0 Suppressing can potentially control symptoms. As a site force-in antagonist for realizing such an approach, an antibody against type 1 interferon was used (Patent Document 1ZWO 01/054721). That is, treatment of SLE with an antibody against IFN-α was proposed. However, the effect of antibodies against IFN-α on renal inflammation is not clear.
[0011] 更に重要なことは、 SLEのような自己免疫性の疾患に付随する腎炎においては、自 己免疫疾患の治療が主体となっていることである。自己免疫疾患が腎炎の原因とな つている以上、その原因を取り除くための治療が重要であることは言うまでもない。し 力 腎炎は患者の生活の質 (QOL)に大きな影響を与える障害の一つである。したが つて、患者の QOLの維持のためには、腎炎に対する積極的な治療、あるいは予防も 重要な課題と言って良い。  [0011] More importantly, in nephritis associated with autoimmune diseases such as SLE, treatment of autoimmune diseases is the main. Needless to say, since autoimmune diseases are the cause of nephritis, treatment to remove the cause is important. Strength Nephritis is one of the disorders that has a major impact on patients' quality of life (QOL). Therefore, active treatment or prevention of nephritis is an important issue for maintaining the patient's QOL.
[0012] 特許文献 l :WO 01/054721  [0012] Patent Literature l: WO 01/054721
非特許文献 l : Saag K.G. et al., AM.J.Med.,96, 115, 1994  Non-patent literature l: Saag K.G. et al., AM.J.Med., 96, 115, 1994
非特許文献 2 : Science, 16 Nov. 2001 Vol.294 発明の開示 Non-Patent Document 2: Science, 16 Nov. 2001 Vol.294 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 腎炎の治療において重要なことは、自己免疫症状のコントロールのみならず、腎炎 症状の緩和である。すなわち本発明は、腎炎の治療ならびに予防のための技術の提 供を課題とする。  [0013] What is important in the treatment of nephritis is not only the control of autoimmune symptoms but also the alleviation of nephritic symptoms. That is, an object of the present invention is to provide a technique for treating and preventing nephritis.
課題を解決するための手段  Means for solving the problem
[0014] ヒトにおいて、免疫システムのバランスが偏る原因の一つは、タイプ 1インターフエ口 ンの作用である。タイプ 1インターフェロンには、インターフェロンお (IFN a )およびィ ンターフェロン 13 (IFN β )が含まれる。 IFN aあるいは IFN βは、抗ウィルス活性、ある いは抗腫瘍活性を有するインターフェロンとして知られて ヽる。ウィルス感染に伴って 、これらのインターフェロンを大量に産生する細胞として同定されたのがインターフエ ロン産生細胞(以下、 IPCと省略する場合がある)である。 IPCは血中にわず力しか存 在していない。末梢血リンパ球に占める IPCの割合は、 1%以下と考えられている。しか し IPCは、きわめて高いインターフェロンの産生能を有する。 IPCの IFN産生能は、たと えば 3000pg/mL/106cellsに達する。つまり、細胞の数は少ないが、血中 IFN aあるい は IFN jSの大部分は、 IPCによってもたらされていると言って良い。 [0014] One of the causes of the imbalance in the immune system in humans is the action of type 1 interface. Type 1 interferons include interferon (IFN a) and interferon 13 (IFN β). IFN a or IFN β is known as an interferon having antiviral activity or antitumor activity. Interferon-producing cells (hereinafter sometimes abbreviated as IPC) have been identified as cells that produce these interferons in large quantities due to viral infection. IPC has only power in the blood. The proportion of IPC in peripheral blood lymphocytes is considered to be less than 1%. However, IPC has a very high ability to produce interferon. The ability of IPC to produce IFN reaches, for example, 3000 pg / mL / 10 6 cells. In other words, although the number of cells is small, it can be said that most of IFN a or IFN jS in the blood is brought about by IPC.
[0015] したがって、 IPCのインターフェロン産生、あるいは IPCの細胞数そのものを抑制する ことができれば、生体内のタイプ 1インターフェロンの量を制御することができる。その 結果、偏った免疫バランスを調節し、 SLEのような自己免疫性疾患のより本質的な治 療を実現できる可能性がある。  [0015] Therefore, if the production of IPC interferon or the number of IPC cells themselves can be suppressed, the amount of type 1 interferon in vivo can be controlled. As a result, it may be possible to regulate the biased immune balance and achieve more essential treatment of autoimmune diseases such as SLE.
[0016] 本発明者らは、生体内において IPCの活性を調節することができれば、自己免疫疾 患の症状を改善できると考えた。そして本発明者らは、 IPCの細胞表面抗原を認識す る数多くの抗体を作製し、 IPCの活性に及ぼす影響を解析した。その結果、特定の抗 原を認識する抗体は、 IPCの活性を調節する作用を有することを明らかにした。更に 、その自己免疫疾患の治療効果を解析した。そして IPCの活性を抑制する抗体によ つて、特に腎炎の治療効果が得られることを確認して本発明を完成した。すなわち本 発明は、以下の腎炎治療剤あるいは予防剤、治療方法、予防方法、並びに治療剤 あるいは予防剤のスクリ一二ング方法に関する。 〔1〕インターフ ロン産生細胞の活性抑制物質を有効成分として含有する腎炎の治 療剤。 [0016] The present inventors thought that if IPC activity can be regulated in vivo, symptoms of autoimmune disease can be improved. The present inventors then produced a number of antibodies that recognize cell surface antigens of IPC and analyzed the effect on the activity of IPC. As a result, it was clarified that an antibody that recognizes a specific antigen has an action of regulating the activity of IPC. Furthermore, the therapeutic effect of the autoimmune disease was analyzed. The present invention was completed by confirming that an antibody that suppresses the activity of IPC can provide a therapeutic effect particularly on nephritis. That is, the present invention relates to the following nephritis therapeutic agent or preventive agent, therapeutic method, preventive method, and screening method for the therapeutic agent or prophylactic agent. [1] A therapeutic agent for nephritis comprising an interferon-producing cell activity inhibitor as an active ingredient.
〔2〕インターフェロン産生細胞の活性抑制物質力 インターフェロン産生細胞のイン ターフ ロン産生および細胞の生存のいずれ力、または両方を抑制する作用を有す る物質である〔1〕に記載の治療剤。  [2] Interferon-producing cell activity inhibitory substance force The therapeutic agent according to [1], which has an action of suppressing either or both of interferon-producing cell interferon production and cell survival.
〔3〕インターフェロン産生細胞の活性抑制物質力 インターフェロン産生細胞のイン ターフ ロン産生および細胞の生存のいずれ力、または両方を抑制する作用を有す る抗体である〔2〕に記載の治療剤。  [3] Activity inhibitory substance power of interferon-producing cells The therapeutic agent according to [2], which is an antibody having an action of suppressing interferon-producing cell interferon production and / or cell survival.
〔4〕抗体が、 BST2およびそのホモログのいずれか、または両方を認識する抗体、また はその少なくとも抗原結合領域を含む抗体断片である〔3〕に記載の治療剤。  [4] The therapeutic agent according to [3], wherein the antibody is an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof.
〔5〕抗体が、 FERM BP-10339として寄託されたハイブリドーマ 3D3#7、または FERM B [5] Hybridoma 3D3 # 7 deposited as FERM BP-10339 or FERM B
P-10340として寄託されたハイブリドーマ 3G7#6が産生するモノクローナル抗体の、少 なくとも抗原結合領域を含む抗体である〔4〕に記載の治療剤。 The therapeutic agent according to [4], which is an antibody comprising at least an antigen-binding region of a monoclonal antibody produced by hybridoma 3G7 # 6 deposited as P-10340.
〔6〕インターフェロン産生細胞の活性を抑制する工程を含む、腎炎の治療方法。  [6] A method for treating nephritis, comprising a step of suppressing the activity of interferon-producing cells.
[7]抑制すべきインターフェロン産生細胞の活性力 インターフェロン産生細胞のィ ンターフェロン産生および細胞の生存のいずれか、または両方である〔6〕に記載の 治療方法。  [7] The activity of interferon-producing cells to be suppressed The treatment method according to [6], which is either or both of interferon production and cell survival of interferon-producing cells.
〔8〕インターフェロン産生細胞の活性を抑制する工程力 インターフェロン産生細胞 のインターフェロン産生および細胞の生存の 、ずれか、または両方を抑制する作用 を有する抗体を投与する工程を含む、〔7〕に記載の治療方法。  [8] A process power for suppressing the activity of interferon-producing cells, comprising the step of administering an antibody having an action of suppressing interferon production and cell survival, interferon production, or both of the interferon-producing cells. Method of treatment.
〔9〕抗体が、 BST2およびそのホモログのいずれか、または両方を認識する抗体、また はその少なくとも抗原結合領域を含む抗体断片である、〔8〕に記載の治療方法。 [9] The treatment method according to [8], wherein the antibody is an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof.
〔10〕抗体力 FERM BP-10339として寄託されたハイブリドーマ 3D3#7、または FERM[10] Antibody power FERM Hybridoma 3D3 # 7 deposited as BP-10339, or FERM
BP-10340として寄託されたハイブリドーマ 3G7#6が産生するモノクローナル抗体の、 少なくとも抗原結合領域を含む抗体である〔9〕に記載の治療方法。 The method according to [9], wherein the monoclonal antibody produced by hybridoma 3G7 # 6 deposited as BP-10340 is an antibody comprising at least an antigen-binding region.
〔11〕次の工程を含む、被験化合物の腎炎の治療効果の検出方法。  [11] A method for detecting the therapeutic effect of a test compound on nephritis, comprising the following steps.
(1)インターフェロン産生細胞とインターフェロン産生細胞のインターフェロン産生誘 導物質を、以下の i)-iii)の 、ずれかの順序で接触させる工程、 i)被験化合物とインターフェロン産生細胞を接触後に、インターフェロン産生を誘導 する細胞刺激剤をインターフェロン産生細胞に接触させる、 (1) contacting the interferon-producing cells and the interferon-producing inducer of the interferon-producing cells in any order of the following i) to iii): i) contacting the interferon-producing cells with a cell stimulator that induces interferon production after contacting the test compound with the interferon-producing cells;
ii)被験化合物とインターフェロン産生を誘導する細胞刺激剤を同時にインターフエ口 ン産生細胞に接触させる、または ii) contacting a test compound and a cell stimulant that induces interferon production simultaneously with the interferon-producing cells, or
iii)インターフェロン産生を誘導する細胞刺激剤をインターフェロン産生細胞に接触さ せた後に、被験化合物とインターフェロン産生細胞を接触させる iii) Contact the interferon-producing cells with a cell stimulator that induces interferon production, and then contact the test compound with the interferon-producing cells.
(2)インターフェロン産生細胞の活性を測定する工程、および  (2) measuring the activity of interferon-producing cells, and
(3)対照と比較して、インターフ ロン産生細胞の活性が抑制されたとき、被験化合物 の腎炎の治療効果が検出される工程  (3) A step in which the therapeutic effect of the test compound on nephritis is detected when the activity of interferon-producing cells is suppressed compared to the control.
〔12〕細胞刺激剤がウィルス、ウィルスの構成要素、およびバクテリアの DNAからなる 群力 選択される少なくとも 1つの細胞刺激剤である〔11〕に記載の方法。  [12] The method according to [11], wherein the cell stimulating agent is at least one cell stimulating agent selected from group power consisting of a virus, a viral component, and bacterial DNA.
〔13〕被験化合物が、インターフェロン産生細胞を認識する抗体またはその少なくとも 抗原結合領域を含む抗体断片である〔11〕に記載の方法。  [13] The method according to [11], wherein the test compound is an antibody that recognizes interferon-producing cells or an antibody fragment containing at least an antigen-binding region thereof.
〔14〕〔11〕に記載の方法によって腎炎の治療効果が検出された被験化合物を選択 する工程を含む、腎炎の治療効果を有する化合物のスクリーニング方法。  [14] A screening method for a compound having a therapeutic effect on nephritis, comprising a step of selecting a test compound in which the therapeutic effect on nephritis is detected by the method according to [11].
〔15〕〔14〕に記載のスクリーニング方法によって選択されたィ匕合物を有効成分として 含有する腎炎の治療剤。 [15] A therapeutic agent for nephritis comprising a compound selected by the screening method according to [14] as an active ingredient.
〔16〕インターフェロン産生細胞の活性抑制物質の、腎炎の治療剤の製造における 使用。  [16] Use of an interferon-producing cell activity inhibitor in the manufacture of a therapeutic agent for nephritis.
あるいは本発明は、上記スクリーニング方法によって選択された化合物の、腎炎の 治療剤の製造における使用に関する。更に本発明は、インターフェロン産生細胞の 活性抑制物質の、腎炎の治療における使用に関する。力!]えて本発明は、腎炎の治 療に利用されることを表示したインターフェロン産生細胞の活性抑制物質を有効成 分として含有する医薬組成物を含む、腎炎の治療用の医薬パッケージを提供する。 ところで、 IPCを認識する既知のモノクローナル抗体である抗 BDCA-2モノクローナ ノレ抗体 (Dzionek, A. et al. J.lmmunol. 165: 6037-6046, 2000.)は、ヒ HPCの IFN産生 を抑制する作用を有することが明らかにされて 、る。その他にもマウスのインターフエ ロン産生細胞を認識するモノクローナル抗体力 インターフェロンの産生を抑制する ことも報告されている (Blood 2004 Jun 1;103/11:4201- 4206. Epub 2003 Dec)。マウス のプラズマ細胞様榭状細胞 (Plasmacytoid Dendritic Cell)に対するモノクローナル抗 体による榭状細胞数の減少が報告された (J. Immunol. 2003, 171:6466-6477)。しかし これらの抗体の腎炎に対する治療効果は未知である。 Alternatively, the present invention relates to the use of a compound selected by the above screening method in the manufacture of a therapeutic agent for nephritis. The present invention further relates to the use of an interferon-producing cell activity inhibitor in the treatment of nephritis. Power! The present invention further provides a pharmaceutical package for the treatment of nephritis, which comprises a pharmaceutical composition containing as an active ingredient a substance that suppresses the activity of interferon-producing cells, which is indicated to be used for the treatment of nephritis. By the way, anti-BDCA-2 monoclonal antibody (Dzionek, A. et al. J. lmmunol. 165: 6037-6046, 2000.), a known monoclonal antibody that recognizes IPC, suppresses IFN production of HCV. It has been clarified that it has an action to do. In addition, the ability of monoclonal antibodies to recognize mouse interferon-producing cells Suppress interferon production It has also been reported (Blood 2004 Jun 1; 103/11: 4201- 4206. Epub 2003 Dec). A decrease in the number of rod-shaped cells by a monoclonal antibody against plasmacytoid dendritic cells in mice was reported (J. Immunol. 2003, 171: 6466-6477). However, the therapeutic effect of these antibodies on nephritis is unknown.
発明の効果  The invention's effect
[0018] 本発明により、 IPCを標的とする腎炎の治療剤が提供された。すなわち IPCの活性 抑制剤によって、腎炎を治療しうることが明ら力となった。 IPCは、たとえば IPCの細胞 表面抗原を認識する抗体などの投与によってその活性が抑制される。たとえば、 BST 2並びにそのホモログに対する抗体は、 IPCに結合してその IFN産生および細胞の生 存そのものに対して抑制的に作用する。そして BST2に結合する抗体は、生体内に投 与した場合に、実際に腎炎に対する治療効果が確認された。  [0018] According to the present invention, a therapeutic agent for nephritis targeting IPC is provided. That is, it became clear that nephritis can be treated with IPC activity inhibitors. The activity of IPC is suppressed by, for example, administration of an antibody that recognizes the cell surface antigen of IPC. For example, antibodies against BST 2 and its homologues bind to IPC and act in a suppressive manner on its IFN production and cell survival itself. The antibody that binds to BST2 was actually confirmed to have a therapeutic effect on nephritis when administered in vivo.
[0019] 本発明においては、 IPCの機能調節によって腎炎の治療効果を達成した。ところで 、 IFN- αの産生を抑制する抗体として抗 BDCA-2抗体、および抗 BDCA-4抗体が知 られている。そしてこれらの抗体が SLE患者の自己免疫症状に対する治療効果を示 す可能性が示唆されている (Blomberg S. et al. Arthritis Rheum. 48. 2524, 2003)。し 力 これらの抗体の腎炎に対する影響は明らかでない。一方本発明は、 IFNの機能 調節ではなぐ IFNを産生する細胞を標的とする腎炎の治療戦略を提供した。つまり 本発明のアプローチは、より本質的な腎炎治療を可能とする。より具体的には、たと えば、本発明にお ヽては次のようなメリットが期待できる。  [0019] In the present invention, a therapeutic effect for nephritis has been achieved by regulating the function of IPC. Incidentally, anti-BDCA-2 antibody and anti-BDCA-4 antibody are known as antibodies that suppress IFN-α production. It has been suggested that these antibodies may have therapeutic effects on autoimmune symptoms in SLE patients (Blomberg S. et al. Arthritis Rheum. 48. 2524, 2003). The effect of these antibodies on nephritis is unclear. On the other hand, the present invention has provided a therapeutic strategy for nephritis that targets cells that produce IFN, which is not regulated by IFN function. That is, the approach of the present invention enables more essential nephritis treatment. More specifically, for example, the following merits can be expected in the present invention.
[0020] まず、 IPCの活性抑制剤は、少量でも高度な治療効果を達成することができる。 IPC は、わずかな細胞が多量の IFNを産生する。 IFNの中和には、 IFNの分子数に応じた 抗体が必要である。しかし本発明においては、産生細胞の活性が直接抑制される。 その結果、抗 IFN抗体による中和と比較して、より少量の抗体で強力な IFNの抑制効 果を期待できる。抗体ある 、は可溶性受容体などによって IFNの機能を調節する場 合、 IFNの濃度に応じた治療剤が必要となる。一方、 IPCの活性調節剤は、きわめて 多量の IFNを産生している IPCに直接作用する。そのため、 IFNの産生を効率的に抑 制することができる。一般的に、抗体医薬の製造コストは高い。現在のところ、製造コ ストの大幅な抑制を実現できる方法は確立されていない。したがって、治療に必要な 抗体の投与量が少ないことは、経済的な大きな利点である。また投与量が少ないこと は、経済的に有利なだけでなぐ副作用の危険性を小さくすることにもつながる。 [0020] First, an IPC activity inhibitor can achieve a high therapeutic effect even in a small amount. In IPC, few cells produce large amounts of IFN. For neutralization of IFN, an antibody corresponding to the number of IFN molecules is required. However, in the present invention, the activity of the production cell is directly suppressed. As a result, compared to neutralization with anti-IFN antibody, a strong IFN suppression effect can be expected with a smaller amount of antibody. When the function of IFN is regulated by an antibody or a soluble receptor, a therapeutic agent corresponding to the concentration of IFN is required. On the other hand, IPC activity regulators act directly on IPC, which produces very large amounts of IFN. Therefore, IFN production can be efficiently suppressed. Generally, the manufacturing cost of an antibody drug is high. At present, no method has been established that can significantly reduce manufacturing costs. Therefore, necessary for treatment The low dose of antibody is a great economic advantage. In addition, lower doses can not only be economically advantageous, but also reduce the risk of side effects.
[0021] 更に、持続的に IFNが産生されている場合には、 IFNの抗体による中和は、一過的 な抑制に留まると予想される。 IFNに結合した抗体は免疫複合体を形成し、貪食細胞 などの作用によって速やかに除去される。そして、抗体の IFN活性中和作用は失われ る。 IPCは高度な IFN産生機能を有する細胞である。したがって、抗 IFN抗体の作用に よって一時的に IFN濃度を低下させたとしても、 IFNは再び速やかに補充されてしまう 可能 ¾が高い。 [0021] Furthermore, when IFN is continuously produced, neutralization of IFN with an antibody is expected to be only transient suppression. The antibody bound to IFN forms an immune complex and is quickly removed by the action of phagocytic cells. The neutralizing action of the antibody's IFN activity is lost. IPC is a cell with a high IFN production function. Therefore, even if the IFN concentration is temporarily reduced by the action of the anti-IFN antibody, IFN is likely to be replenished quickly again.
一方、本発明においては、 IPCの活性を抑制することから、長期間にわたる IFN産生 抑制効果が期待できる。特に、本発明の望ましい態様によれば、 BST2あるいはその ホモログを認識する抗体は、 IPCの IFN産生のみならず、細胞数をも抑制する。つまり 、新たな IPCが供給されるまでは、 IFN産生の抑制効果が持続する。また IPCが産生し 得る他の炎症性サイト力インの産生も直接的あるいは間接的に抑制されることになる 。これらの効果が相乗的に作用し、 IFNの産生は効果的に抑制される。その結果、腎 炎の高度な治療効果が達成される。特に腎炎のような慢性の疾患の治療方法にお いては、治療効果の持続性が大きな利点となる。  On the other hand, in the present invention, since the activity of IPC is suppressed, an effect of suppressing IFN production over a long period can be expected. In particular, according to a desirable embodiment of the present invention, an antibody that recognizes BST2 or a homolog thereof suppresses not only IFN production of IPC but also the number of cells. In other words, the effect of suppressing IFN production continues until new IPC is supplied. In addition, production of other inflammatory site force ins that can be produced by IPC is also directly or indirectly suppressed. These effects act synergistically and IFN production is effectively suppressed. As a result, an advanced therapeutic effect for nephritis is achieved. Particularly in the treatment of chronic diseases such as nephritis, the sustainability of the therapeutic effect is a great advantage.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 l]FLT-3リガンド添加後、 10日間培養したマウスの骨髄細胞 (IPCが濃縮されて 、 る)の細胞表面を、作製した抗体及び他のマーカーで染色した FACS解析像である。 培養上清陽性分画、陰性分画をそれぞれ R2、 R3とした。グラフ内の、 R1&R2は抗体 陽性の細胞集団、 R1&R3は抗体陰性の細胞集団を表わす。  [0022] [Fig.l] Cell surface of mouse bone marrow cells (IPC enriched) cultured for 10 days after addition of FLT-3 ligand, FACS analysis image stained with the prepared antibody and other markers is there. The culture supernatant positive fraction and negative fraction were designated R2 and R3, respectively. In the graph, R1 & R2 represents an antibody positive cell population, and R1 & R3 represents an antibody negative cell population.
[図 2]各モノクローナル抗体で抽出した細胞の形態を表わす顕微鏡写真 (x400)であ る。(a)はインフルエンザウイルス PR8に感染させる前の形態、(b)はインフルエンザゥ ィルス PR8と 24時間培養した後の形態を示す。感染後の細胞は榭状突起を持ち、榭 状細胞に典型的な形態を示した。  FIG. 2 is a photomicrograph (x400) showing the morphology of cells extracted with each monoclonal antibody. (A) shows the form before infection with influenza virus PR8, and (b) shows the form after incubation with influenza virus PR8 for 24 hours. After infection, the cells had rod-shaped processes and showed a typical morphology for rod-shaped cells.
[図 3]モノクローナル抗体 SNK01、 SNK03を用いて分離した細胞のインターフェロン産 生能を示すグラフである。図中、横軸は細胞の処理の種類を、縦軸は培養上清中の I FN α濃度 (pg/mL)を示す。横軸の P(+)はモノクローナル抗体に結合した細胞にウイ ルスを感染させた場合、 N(+)はモノクローナル抗体に結合しなかった細胞にウィル スを感染させた場合、そして N (—)はモノクローナル抗体に結合しな力つた細胞にウイ ルスを感染させな力つた場合の結果を示す。 FIG. 3 is a graph showing interferon-producing ability of cells separated using monoclonal antibodies SNK01 and SNK03. In the figure, the horizontal axis indicates the type of cell treatment, and the vertical axis indicates the IFNα concentration (pg / mL) in the culture supernatant. P (+) on the horizontal axis indicates the number of cells bound to the monoclonal antibody. N (+) infects cells that did not bind to the monoclonal antibody, N (+) infects the virus, and N (-) infects the cells that did not bind to the monoclonal antibody and infect the virus. The result when a strong effort is shown.
[図 4]モノクローナル抗体 SNK01のインターフェロン産生能に対する影響を示すグラフ である。図中、横軸は処理に用いた抗体の濃度 ( g/mL)を、縦軸は培養上清中の I FN a濃度 (pg/mL)を示す。横軸の (-)はウィルス処理して 、な 、場合の結果を示す。 SNK01は濃度依存的にインターフ ロン産生抑制活性を示した。  FIG. 4 is a graph showing the effect of monoclonal antibody SNK01 on interferon production ability. In the figure, the horizontal axis represents the concentration (g / mL) of the antibody used in the treatment, and the vertical axis represents the IFNa concentration (pg / mL) in the culture supernatant. The (-) on the horizontal axis shows the result of virus processing. SNK01 showed interferon production inhibitory activity in a concentration-dependent manner.
[図 5]モノクローナル抗体 SNK03のインターフェロン産生能に対する影響を示すグラフ である。図中、横軸は処理に用いた抗体の濃度 ( g/mL)を、縦軸は培養上清中の I FN α濃度 (pg/mL)を示す。 CTLはコントロール抗体で処理した横軸の場合の結果を 示す。 SNK03は濃度依存的にインターフ ロン産生抑制活性を示した。 FIG. 5 is a graph showing the effect of monoclonal antibody SNK03 on interferon production ability. In the figure, the horizontal axis represents the concentration (g / mL) of the antibody used for the treatment, and the vertical axis represents the IFN α concentration (pg / mL) in the culture supernatant. CTL shows the results for the horizontal axis treated with the control antibody. SNK03 showed interferon production inhibitory activity in a concentration-dependent manner.
[図 6]モノクローナル抗体 SNK01によるウェスタンブロッテイングアツセィの結果を示す 写真である。写真上は抗 Hisタグ抗体、下は本発明のモノクローナル抗体 SNK01によ る結果を示す。写真左側が PCDNA3.1- mBST2D- His、右側が pcDNA3.1- mBST2H- H isで形質転換した COS7細胞の結果である。培養した細胞を溶解処理した際の沈殿 物 (P)と上清 (S)についての結果を示した。 FIG. 6 is a photograph showing the results of Western blotting assay using monoclonal antibody SNK01. The photo shows the results with the anti-His tag antibody, and the bottom shows the results with the monoclonal antibody SNK01 of the present invention. The left side of the photo is the result of COS7 cells transformed with PCDNA3.1-mBST2D-His, and the right side is pcDNA3.1-mBST2H-His. The results for the precipitate (P) and the supernatant (S) when the cultured cells were lysed were shown.
[図 7]マウス BST2及びそのホモログのアミノ酸配列とゲノム構造を示す図である。(a)は 各ァイソフォームのアミノ酸配列のァライメントを、(b)はェキソンマッピングを示す。  FIG. 7 shows the amino acid sequence and genomic structure of mouse BST2 and its homologue. (A) shows the alignment of amino acid sequences of each isoform, and (b) shows exon mapping.
[図 8]ヒト BST2及びそのホモログのアミノ酸配列とゲノム構造を示す図である。(a)は各 ァイソフォームのアミノ酸配列のァライメントを、(b)はェキソンマッピングを示す。 FIG. 8 shows the amino acid sequence and genomic structure of human BST2 and its homologue. (A) shows the alignment of amino acid sequences of each isoform, and (b) shows exon mapping.
[図 9]作製したマウス BST2に対するモノクローナル抗体のインターフェロン産生能に 対する影響を示すグラフである。図中、横軸は処理に用いたノ、イブリドーマ培養上清 の種類を、縦軸は培養上清中の IFN o;濃度 (pg/mL)を示す。 CpGは CpGで処理した 際、 PR8はインフルエンザウイルス PR8を感染させた際の結果を示す。 FIG. 9 is a graph showing the influence of the produced monoclonal antibody against mouse BST2 on the ability to produce interferon. In the figure, the horizontal axis indicates the type of culture supernatant used in the treatment, and the vertical axis indicates the IFN o concentration (pg / mL) in the culture supernatant. When CpG is treated with CpG, PR8 shows the result of infection with influenza virus PR8.
[図 10]作製したヒト BST2に対するモノクローナル抗体のインターフェロン産生能に対 する影響を示すグラフである。図中、横軸は処理に用いた抗体の種類と濃度、縦軸 はヒ HPCを HSVで刺激した際の培養上清中の IFN a濃度 (pg/mL)を示す。 FIG. 10 is a graph showing the influence of the prepared monoclonal antibody against human BST2 on the ability to produce interferon. In the figure, the horizontal axis represents the type and concentration of the antibody used for the treatment, and the vertical axis represents the IFNa concentration (pg / mL) in the culture supernatant when HCV was stimulated with HSV.
圆 11]抗体を投与したマウス力も採取した細胞の解析結果を示す図である。 (a)は投 与のスケジュールを示す。(b)は骨髄細胞を CpGあるいはインフルエンザウイルス PR8 で刺激した際に産生した IFNの濃度を示す。横軸が投与した抗体を示し、 IgGはコント ロール抗体を示す。 [11] FIG. 11 is a view showing the analysis results of cells from which the force of a mouse administered with an antibody was also collected. (a) Indicates a given schedule. (B) shows the concentration of IFN produced when bone marrow cells were stimulated with CpG or influenza virus PR8. The horizontal axis indicates the administered antibody, and IgG indicates the control antibody.
[図 12]ウィルスを感染させたマウスにおける、抗マウス BST2抗体 SNK01の投与の効果 を示す。(a)は投与のスケジュールを示す。(b)は血清中の INF aの濃度を示し、横 軸が投与した抗体を示す。(c)は脾臓中の IPCの割合を示し、横軸が投与した抗体を 、縦軸が IPCの割合を示す。「抗体なし」は抗体のかわりに PBSのみを投与した群を示 す。  FIG. 12 shows the effect of administration of anti-mouse BST2 antibody SNK01 in mice infected with virus. (A) shows the schedule of administration. (B) shows the concentration of INFa in the serum, and the horizontal axis shows the administered antibody. (C) shows the ratio of IPC in the spleen, the horizontal axis shows the administered antibody, and the vertical axis shows the ratio of IPC. “No antibody” indicates a group in which only PBS was administered instead of the antibody.
[図 13]各種マウスにおける IPCの細胞数を解析した結果の図である。縦軸は各種臓 器での IPCの割合 (%)を示す。横軸はマウスの系統を示し、 F1は NZBと NZWを掛け合 わせたマウスを示す。  FIG. 13 shows the results of analyzing the number of IPC cells in various mice. The vertical axis shows the percentage (%) of IPC in various organs. The horizontal axis shows the mouse strain, and F1 shows the mouse that has been crossed by NZB and NZW.
[図 14]各種マウス由来の骨髄細胞を用 V、て、抗体の IFN産生に及ぼす影響を示す図 である。骨髄細胞をインフルエンザウイルス PR8(上段)ある 、は CpG (下段)で刺激した 際に産生した IFNの濃度を測定した結果であり、縦軸が IFN a濃度 (pg/mL)を、横軸 は由来のマウスを、各カラムは処理に用いた抗体を示す。  FIG. 14 is a graph showing the effects of antibodies on IFN production using bone marrow cells derived from various mice. This is the result of measuring the concentration of IFN produced when bone marrow cells were stimulated with influenza virus PR8 (top) or CpG (bottom), with the vertical axis representing IFNa concentration (pg / mL) and the horizontal axis derived from Each column indicates the antibody used for the treatment.
[図 15ab]ループス腎炎発症モデルを用いて抗体の効果を検討した結果を示す図で ある (n=10)。(a)は抗体投与のスケジュールを示す。 (b)は抗体を投与したマウス群の 蛋白尿頻度の継時変化を示す。  FIG. 15ab is a diagram showing the results of examining the effect of an antibody using a lupus nephritis onset model (n = 10). (A) shows the schedule of antibody administration. (b) shows changes over time in the frequency of proteinuria in the group of mice administered with the antibody.
[図 15c]ループス腎炎発症モデルを用いて抗体の効果を検討した結果を示す図であ る (n=10)。(c)は個々のマウスの尿中の蛋白量を示す。縦軸の蛋白尿度は 1:〜37mg/ dl、 2:〜74mg/dl、 3:〜lllmg/dl、 4:〜333mg/dl、 5:〜1000mg/dl、 6:〜3000mg/dl の蛋白量を示す。〇が生存マウスの、參は死亡マウスの値である。  FIG. 15c is a diagram showing the results of examining the effect of an antibody using a lupus nephritis onset model (n = 10). (C) shows the amount of protein in the urine of each mouse. Proteinuria on the vertical axis is protein of 1: -37 mg / dl, 2: -74 mg / dl, 3: -lllmg / dl, 4: -333 mg / dl, 5: -1000 mg / dl, 6: -3000 mg / dl Indicates the amount. ○ is the value of surviving mice, and 參 is the value of dead mice.
[図 16]ループス腎炎発症モデルを用いて抗体の効果を検討した結果を示す図であ る(n=10)。横軸は投与した抗体、縦軸は抗体を投与したマウスの 5ヶ月齢での血清 中サイト力インの濃度を示す。図中の数字は平均値を示す。 FIG. 16 shows the results of studying antibody effects using a lupus nephritis onset model (n = 10). The horizontal axis represents the antibody administered, and the vertical axis represents the concentration of serum cytodynamic force at 5 months of age in the mouse administered the antibody. The numbers in the figure represent average values.
圆 17]ループス腎炎発症モデルを用いて、発症後に抗体を投与し、その治療効果を 検討した結果を示す図である (n=6)。横軸は投与した薬剤を示し、 PDは水溶性プレ ドニン (塩野義製薬社)を示す。縦軸の蛋白尿度は図 15cと同様に、 1:〜 37mg/dl、 2 :〜 74mg/dl、 3:〜 lllmg/dl、 4:〜 333mg/dl、 5:〜 1000mg/dl、 6:〜 3000mg/dlの尿 中蛋白量を示す。〇は生存マウスの、參は死亡マウスの値である。図中の数字は平 均値を示す。 [17] This figure shows the results of studying the therapeutic effect of administration of antibodies after onset using lupus nephritis onset model (n = 6). The abscissa indicates the administered drug, and PD indicates water-soluble predonin (Shionogi Pharmaceutical Co., Ltd.). The proteinuria on the vertical axis is the same as in Fig. 15c. : -74 mg / dl, 3: -llllmg / dl, 4: -333 mg / dl, 5: -1000 mg / dl, 6: -3000 mg / dl. ○ is the value of the surviving mouse, and 參 is the value of the dead mouse. The numbers in the figure represent average values.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明は、インターフェロン産生細胞の活性抑制物質を有効成分として含有する 腎炎の治療剤に関する。  [0023] The present invention relates to a therapeutic agent for nephritis comprising an interferon-producing cell activity inhibitor as an active ingredient.
本発明において、腎炎とは腎臓による尿のろ過機能の阻害によってもたらされる疾 患をいい、その原因は限定されない。腎臓のろ過機能の低下は、蛋白質や血液の尿 への漏出を指標として診断される。  In the present invention, nephritis refers to a disease caused by inhibition of the urinary filtration function by the kidney, and its cause is not limited. Decreased renal filtration function is diagnosed using protein or blood leakage into the urine as an indicator.
[0024] 本発明において、免疫応答を発症メカニズムに含む腎炎は、治療対象として好まし い。免疫応答を発症メカニズムに含む腎炎には、自己免疫疾患に伴う腎炎が含まれ る。たとえば免疫複合体の糸球体への沈着をともなう腎炎を、本発明における治療対 象として示すことができる。このような腎炎は、免疫複合体性腎炎 (immune complex n ephritis)と呼ばれる。免疫複合体を構成する抗原あるいは抗体は、自己のものであつ ても外来性抗原であっても良い。このような腎炎として、ループス腎炎を示すことがで きる。あるいは、自己免疫疾患に伴う腎炎としては、たとえば糸球体に対する自己抗 体によってもたらされる腎炎、または糸球体基底膜に対する自己抗体によってもたら される饥基 1¾膜饥体'性腎炎 (anti— basement membrane nephritis)を不すこと力でさる。  In the present invention, nephritis including an immune response as an onset mechanism is preferable as a treatment target. Nephritis involving the immune response includes nephritis associated with autoimmune diseases. For example, nephritis associated with the deposition of immune complexes on the glomeruli can be indicated as a treatment target in the present invention. Such nephritis is called immune complex nephritis. The antigen or antibody constituting the immune complex may be self or foreign antigen. As such nephritis, lupus nephritis can be indicated. Alternatively, nephritis associated with an autoimmune disease includes, for example, nephritis caused by autoantibodies against glomeruli, or anti-basement membrane nephritis caused by autoantibodies against glomerular basement membrane. Nephritis)
[0025] 本発明において、自己免疫疾患とは、免疫機能によって組織の障害や炎症がもた らされていることを言う。免疫機能には、抗体による液性免疫と、免疫担当細胞による 細胞性免疫が含まれる。本発明における自己免疫疾患は、自己抗原に対する免疫 機構の発動によって定義することもできる。ここでいう自己抗原には、健常者の組織 に存在する抗原にカ卩えて、宿主に何らかの手段によって導入された外来性の抗原も 含まれる。たとえば、感染、移植、あるいは接触などによって生体に導入された外来 性の抗原に対する免疫機能の攻撃が細胞あるいは組織を障害することがある。この ような障害は、本発明における自己免疫疾患に含まれる。生体が自己免疫疾患を有 していることは、自己抗原に対する免疫機構の反応性を指標として検出することがで きる。自己免疫疾患の指標とすることができる自己抗原として IgGなどが知られている [0026] 本発明において、自己免疫疾患に伴う腎炎とは、自己免疫機構による細胞または 組織の障害が観察され、かつ腎臓における炎症が見られる状態と言うことができる。 本発明における腎炎は、自己免疫機構による直接的な障害のみならず、間接的な障 害も含まれる。たとえば、免疫担当細胞の機能亢進による炎症性サイト力インの産生 過剰に起因する腎炎は、自己免疫疾患を伴う腎炎の代表的な病態である。更に、自 己免疫疾患を含む、複合的なメカニズムによってもたらされる腎炎は、本発明におけ る治療の対象である腎炎に含まれる。たとえばループス腎炎は、本発明における自 己免疫疾患を伴う腎炎の代表的な疾患である。 [0025] In the present invention, the autoimmune disease means that an immune function causes tissue damage or inflammation. Immune functions include humoral immunity with antibodies and cellular immunity with immunocompetent cells. The autoimmune disease in the present invention can also be defined by the activation of an immune mechanism against a self antigen. The self-antigen here includes foreign antigens introduced into the host by some means in addition to the antigens present in the tissues of healthy individuals. For example, an immune function attack against a foreign antigen introduced into a living body by infection, transplantation, or contact may damage cells or tissues. Such a disorder is included in the autoimmune disease in the present invention. The presence of an autoimmune disease in the living body can be detected using the reactivity of the immune mechanism against the self antigen as an index. IgG is known as an autoantigen that can be used as an indicator of autoimmune diseases In the present invention, nephritis associated with an autoimmune disease can be said to be a state in which cell or tissue damage due to an autoimmune mechanism is observed and inflammation in the kidney is observed. The nephritis in the present invention includes not only a direct disorder caused by an autoimmune mechanism but also an indirect disorder. For example, nephritis resulting from excessive production of inflammatory site force-in due to enhanced function of immunocompetent cells is a typical pathology of nephritis associated with autoimmune diseases. Furthermore, nephritis caused by complex mechanisms including autoimmune diseases is included in nephritis, which is the subject of treatment in the present invention. For example, lupus nephritis is a typical disease of nephritis associated with an autoimmune disease in the present invention.
[0027] 本発明において、ループス腎炎とは、全身性エリトマト一デス(SLE)が原因で起こる 腎炎をいう。より具体的には、自己免疫性疾患の症状と、腎炎を伴う疾患が、ループ ス腎炎に含まれる。自己免疫性疾患の症状は、たとえば、抗 2本鎖 DNA(dsDNA)抗 体などの自己抗体を指標として、確認することができる。ループス腎炎は本発明にお ける自己免疫疾患を伴う腎炎として好ましい。  In the present invention, lupus nephritis refers to nephritis caused by systemic lupus erythematosus (SLE). More specifically, symptoms of autoimmune diseases and diseases associated with nephritis are included in lupus nephritis. The symptoms of an autoimmune disease can be confirmed using, for example, an autoantibody such as an anti-double-stranded DNA (dsDNA) antibody as an index. Lupus nephritis is preferable as nephritis associated with the autoimmune disease in the present invention.
[0028] 以上のような自己免疫疾患は、いずれも IPCによって自己免疫機構の亢進がもたら されていると考えられる。したがって、 IPCの機能抑制に基づく自己免疫疾患の調節 によって治療効果が期待できる。したがって、本発明においては、これらの疾患を、 IP Cの機能亢進による自己免疫疾患を有する腎炎と言うこともできる。  [0028] In any of the autoimmune diseases as described above, it is considered that enhancement of the autoimmune mechanism is brought about by IPC. Therefore, therapeutic effects can be expected by regulating autoimmune diseases based on suppression of IPC function. Therefore, in the present invention, these diseases can also be referred to as nephritis having an autoimmune disease due to hyperfunction of IPC.
[0029] 本発明において、腎炎の治療とは、腎炎症状を抑制することに加え、その進行を遅 らせること、あるいは腎炎症状への進行を防ぐことを含む。より具体的には、たとえば 次に示すような腎炎に特徴的な症状の少なくとも一つの症状を抑制、その進行の防 止、あるいは症状の発生そのものを防ぐことによって、腎炎の治療効果が達成される 蛋白尿、  [0029] In the present invention, the treatment of nephritis includes, in addition to suppressing the renal inflammation state, delaying the progression or preventing the progression to the renal inflammation state. More specifically, for example, the therapeutic effect of nephritis is achieved by suppressing at least one symptom characteristic of nephritis as shown below, preventing its progression, or preventing the occurrence of the symptom itself. Proteinuria,
—血尿、  —Hematuria,
血液のろ過機能低下に伴う窒素化合物の血中濃度の上昇  Increased blood concentration of nitrogen compounds with reduced blood filtration function
一糸球体における免疫複合体の沈着、あるいは  Immune complex deposition in the glomerulus, or
腎臓組織に対する自己抗体の沈着等 したがって、本発明は、腎炎の予防を含む。すなわち本発明は、 IPCの活性抑制物 質を有効成分として含む、腎炎の治療剤および予防剤の、いずれかまたは両方を提 供する。あるいは本発明は、 IPCの機能を抑制する工程を含む、腎炎の治療方法お よび予防方法の、いずれかまたは両方を提供する。 Autoantibody deposition on kidney tissue, etc. Thus, the present invention includes the prevention of nephritis. That is, the present invention provides either or both of a therapeutic agent and a preventive agent for nephritis, which contain an IPC activity inhibitor as an active ingredient. Alternatively, the present invention provides either or both of a method for treating and preventing nephritis, which comprises a step of suppressing the function of IPC.
[0030] 上記の腎炎に特徴的な症状の進行状態を評価する方法は公知である。たとえば尿 中のアルブミン濃度は、一般に、生化学的な反応に基づく尿試験紙による方法、ある いはィムノアッセィによって測定することができる。同様に、尿中の血液の検出には、 ヘモグロビンを検出するための尿試験紙が用いられている。また腎機能の指標となる 血中の含窒素化合物としては、尿素、尿酸、およびクレアチュンを示すことができる。 中でもクレアチュンは、代表的な腎機能マーカーである。クレアチュンは、ヤッフェ法 や酵素的な測定方法によって測定することができる。更に腎臓組織における免疫複 合体あるいは自己抗体の沈着は、腎臓組織の顕微鏡観察により検出することができ る。検査に必要な腎臓組織は、腎生検 (renal biopsy)によって生体力も採取することが できる。  [0030] Methods for evaluating the progress of symptoms characteristic of nephritis are known. For example, albumin concentration in urine can generally be measured by a urine test strip method based on a biochemical reaction or by immunoassay. Similarly, a urine test paper for detecting hemoglobin is used to detect blood in urine. Further, urea, uric acid, and creatine can be shown as nitrogen-containing compounds in blood that serve as an index of renal function. Among them, Creatun is a typical renal function marker. Creatun can be measured by the Jaffe method or an enzymatic measurement method. Furthermore, immune complex or autoantibody deposition in kidney tissue can be detected by microscopic observation of kidney tissue. The kidney tissue required for the examination can also be collected for vitality by renal biopsy.
[0031] また、本発明におけるインターフェロン産生細胞 (IPC)とは、 IFN産生能を有する細 胞をいう。たとえば、細胞表面に BST2およびそのホモログのいずれかまたは両方の 発現が検出される細胞を IPCとして同定することができる。 BST2およびそのホモログ のいずれかまたは両方は、細胞の活性ィ匕に伴って発現する場合が含まれる。たとえ ばヒト並びにマウスにおいて、榭状細胞の前駆細胞であって、刺激により IFNを産生 する細胞は、 IPCとして好ましい。以下、特に断りの無い場合には、 IPCは、榭状細胞 の前駆細胞である細胞のみならず、 IFN産生能を有する細胞を言う。中でも細胞表面 に BST2およびそのホモログの!/、ずれかまたは両方を発現する細胞は、 IPCとして好ま しい。このような IPCの同定方法は公知である。たとえばいくつかの細胞表面マーカー を指標として IPCを他の血液細胞と識別することができる。具体的には、ヒ HPCの細 胞表面マーカーのプロファイルは次のとおりである (Shortman,K. and Liu, YJ. Nature Reviews 2: 151-161, 2002)。近年になって、 BDCA-2陽性細胞を IPCと位置づける報 告もある (Dzionek, A. et al. J.Immunol. 165: 6037-6046, 2000.)。したがって、 BDCA- 2陽性細胞は、本発明における IPCとして好ま 、。 [ヒ HPCの細胞表面抗原のプロファイル] [0031] The interferon-producing cell (IPC) in the present invention refers to a cell having the ability to produce IFN. For example, a cell in which expression of either or both of BST2 and its homolog on the cell surface is detected can be identified as an IPC. One or both of BST2 and its homologues are included when expressed in association with cell activity. For example, in humans and mice, cells that are progenitor cells of rod cells and produce IFN upon stimulation are preferable as IPC. Hereinafter, unless otherwise specified, IPC refers to not only cells that are precursor cells of rod cells but also cells that have the ability to produce IFN. In particular, cells expressing BST2 and / or its homologues on the cell surface are preferred as IPC. Such IPC identification methods are known. For example, IPC can be distinguished from other blood cells using several cell surface markers as indicators. Specifically, the cell surface marker profile of HI HPC is as follows (Shortman, K. and Liu, YJ. Nature Reviews 2: 151-161, 2002). Recently, there is a report that positions BDCA-2 positive cells as IPC (Dzionek, A. et al. J. Immunol. 165: 6037-6046, 2000.). Therefore, BDCA-2 positive cells are preferred as IPC in the present invention. [Profile of cell surface antigen of HCV]
CD4陽性、 CD123陽性、  CD4 positive, CD123 positive,
Uneage(CD3、 CD14、 CD16、 CD19、 CD20、 CD56)陰性、 CDllc陰性  Uneage (CD3, CD14, CD16, CD19, CD20, CD56) negative, CDllc negative
[0032] あるいはマウス IPCは、以下のプロファイルによって定義されている。 [0032] Alternatively, the mouse IPC is defined by the following profile.
[マウス IPCの細胞表面抗原のプロファイル]  [Mouse IPC cell surface antigen profile]
-CDllc, B220、 Ly6C、および CD45RBが陽性  -Positive for CDllc, B220, Ly6C, and CD45RB
— CDllb、 CD3、 CD19が陰性  — CDllb, CD3, CD19 negative
更に、ヒトあるいはマウスの IPCに共通して見られる特徴として、以下のような特徴を 示すことができる。  Furthermore, the following features can be shown as common features seen in human or mouse IPC.
[細胞の形態上の特徴]  [Characteristics of cell morphology]
プラズマ細胞に似ている  Similar to plasma cells
細胞表面が平滑な丸 、細胞  A round cell with a smooth cell surface
—核が比較的大きい  —The nucleus is relatively large
[細胞の機能的な特徴]  [Functional characteristics of cells]
—ウィルス感染時に、短期間に大量の Type-1 interferonを産生する  —A large amount of Type-1 interferon is produced in a short time during virus infection
ウィルス感染後、榭状細胞に分化する  Differentiate into rod-shaped cells after viral infection
[0033] 本発明において、 IPCの活性抑制とは、 IPCが有する機能の少なくとも一つを抑制 することを言う。すなわち、 IPCの活性抑制剤には、 IPCが有する機能の少なくとも一 つを抑制する任意の物質が含まれる。 IPCの機能として、 IFNの産生と細胞生存を示 すことができる。細胞の生存は、細胞数と言い換えることもできる。したがって、これら の機能の両方あるいはいずれかを抑制する場合に、 IPCの活性を抑制すると言う。そ して、これらの機能の両方あるいはいずれかを抑制する物質を、 IPCの活性抑制剤と して利用することができる。 In the present invention, IPC activity suppression refers to suppression of at least one of the functions of IPC. That is, the IPC activity inhibitor includes any substance that suppresses at least one of the functions of IPC. IPC function can show IFN production and cell survival. Cell survival can be rephrased as the number of cells. Therefore, it is said that IPC activity is suppressed when both or any of these functions are suppressed. A substance that suppresses both or any of these functions can be used as an IPC activity inhibitor.
[0034] IPCによって産生されるタイプ 1IFNが種々の疾患の原因となっていることが明らかに されている。したがってその産生を抑制することは、それらの疾患の治療戦略として 有用である。たとえば、自己免疫性の疾患の病態と IFN aの関連性が指摘されている 。 IFN o;の大部分が IPCによって産生されている。したがってその産生を抑制すれば 、 IFN o;によってもたらされる病態を緩和することができる。なお本発明において、 IPC による IFN産生抑制とは、 IPCが産生する IFNの少なくとも 1種類の IFN産生を抑制す ることを言う。本発明における好ましい IFNは、タイプ 1IFNである。中でも IFN aは重要 である。 [0034] It has been clarified that type 1 IFN produced by IPC causes various diseases. Therefore, suppressing its production is useful as a therapeutic strategy for these diseases. For example, the relationship between autoimmune disease pathology and IFN a has been pointed out. The majority of IFN o; is produced by IPC. Therefore, if the production is suppressed, the pathological condition caused by IFN o; can be alleviated. In the present invention, IPC The suppression of IFN production by means that the production of at least one IFN produced by IPC is suppressed. A preferred IFN in the present invention is type 1 IFN. Of these, IFN a is important.
[0035] IPCには、少数の細胞で大量の IFNを産生する細胞が含まれる。たとえば、ウィルス などで刺激を受けた榭状細胞の前駆細胞は、生体が産生する IFNの大部分を産生 する。大量の IFNを産生する IPCの細胞数を抑制することは、結果として IFNの産生量 を抑制することになる。したがって、 IPCの細胞数の抑制によっても、 IFN aによっても たらされる病態を緩和することがでさる。  [0035] IPC includes cells that produce large amounts of IFN with a small number of cells. For example, progenitor cells of rod-shaped cells stimulated with a virus or the like produce most of IFN produced by the living body. Suppressing the number of IPC cells that produce large amounts of IFN results in suppression of IFN production. Therefore, suppression of the IPC cell number can also alleviate the pathology caused by IFNa.
[0036] 本発明にお 、て、好ま 、IPCの活性抑制剤は、 IPCの細胞表面抗原を認識し、そ の活性を抑制する抗体である。具体的には、 IPCのインターフェロン産生能、および I PCの細胞の数のいずれか、または両方を抑制する抗体である。ある抗体が、 IPCの 活性を抑制することは、たとえば後に述べる腎炎の治療効果の検出方法などによつ て確認することができる。たとえば本発明者らは、 BST2およびそのホモログのいずれ 力または両方を認識する抗体が、 IPCの活性を抑制することを確認した。  [0036] In the present invention, the IPC activity inhibitor is preferably an antibody that recognizes an IPC cell surface antigen and suppresses its activity. Specifically, it is an antibody that suppresses either or both of the ability of IPC to produce interferon and the number of IPC cells. It can be confirmed, for example, by a method for detecting the therapeutic effect of nephritis described later that an antibody suppresses the activity of IPC. For example, the present inventors have confirmed that an antibody recognizing either or both of BST2 and its homolog suppresses the activity of IPC.
すなわち本発明は、 BST2およびそのホモログのいずれかまたは両方を認識する抗 体、またはその少なくとも抗原結合領域を含む抗体断片を有効成分として含有する 腎炎の治療剤に関する。また本発明は、 BST2およびそのホモログのいずれ力または 両方を認識する抗体、またはその少なくとも抗原結合領域を含む抗体断片を投与す る工程を含む、腎炎の治療方法に関する。あるいは本発明は、 BST2およびそのホモ ログのいずれかまたは両方を認識する抗体、またはその少なくとも抗原結合領域を含 む抗体断片の、腎炎の治療剤の製造における使用に関する。  That is, the present invention relates to a therapeutic agent for nephritis comprising an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region as an active ingredient. The present invention also relates to a method for treating nephritis, which comprises the step of administering an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof. Alternatively, the present invention relates to the use of an antibody that recognizes either or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof, in the manufacture of a therapeutic agent for nephritis.
[0037] 本発明にお 、て IPCは、 IFNを産生する細胞であれば特に限定されな 、。たとえば 、ヒト、およびマウスにおいては、 BST2およびそのホモログのいずれかまたは両方を 発現している細胞群は、高度な IFN産生能を有することが確認された (以下、 BST2お よびそのホモログの 、ずれかまたは両方を発現して 、る細胞群を BST2陽性細胞と記 載する場合がある)。したがって、ヒト、およびマウスの BST2陽性細胞は、本発明にお ける IPCとして好ましい。特にヒ HPCにおいては、その活性化に伴って BST2およびそ のホモログの発現レベルが顕著に上昇する。そのため、 BST2およびそのホモログを 認識する抗体は、ヒトにおいては、活性化された IPCに対して特異的に作用する。し たがって、ヒ HPCは本発明の IPCとして特に好ましい。 In the present invention, IPC is not particularly limited as long as it is a cell that produces IFN. For example, in humans and mice, a cell group expressing either or both of BST2 and its homologue was confirmed to have a high ability to produce IFN (hereinafter referred to as BST2 and its homologue. Or a group of cells expressing both, may be described as BST2-positive cells). Accordingly, human and mouse BST2-positive cells are preferred as IPCs in the present invention. In particular, in hi-HPC, the expression level of BST2 and its homolog is markedly increased with its activation. So BST2 and its homologues Recognizing antibodies act specifically on activated IPC in humans. Therefore, HIHPC is particularly preferred as the IPC of the present invention.
[0038] 本発明者らは、 BST2あるいはそのホモログに対する抗体力 IPCの活性を抑制する ことを明らかにした。そして、 IPCの活性抑制を通じて、腎炎の症状を緩和しうることを 確認した。すなわち本発明者らは、 IPCの活性を抑制する方法を見出し、そして実際 にその方法によって IPCの活性を抑制することによって腎炎の治療を実現できること を確認した。これらの知見に基づいて、 IPCの機能の抑制力 腎炎の治療戦略として 有用であることが明らかにされた。 [0038] The present inventors have clarified that antibody activity against BST2 or its homologue suppresses the activity of IPC. It was confirmed that the symptoms of nephritis can be alleviated through suppression of IPC activity. That is, the present inventors have found a method for suppressing the activity of IPC, and have confirmed that treatment of nephritis can be realized by actually suppressing the activity of IPC by the method. Based on these findings, it was clarified that IPC function is effective as a therapeutic strategy for nephritis.
[0039] その他、 BDCA- 2に対する抗体 (Dzionek, A. et al. J.Immunol. 165: 6037-6046, 20 00.)も、 IPCの機能を抑制することが明らかにされている (Dzionek, A. et al. J. Exp. M ed. 194;1823-34. 2001.)。したがって、 BDCA-2に結合する抗体も、本発明における「 IPC活性抑制物質」として利用することができる。  [0039] In addition, antibodies against BDCA-2 (Dzionek, A. et al. J. Immunol. 165: 6037-6046, 20 00.) have also been shown to suppress IPC function (Dzionek, A. et al. J. Exp. M ed. 194; 1823-34. 2001.). Therefore, an antibody that binds to BDCA-2 can also be used as an “IPC activity inhibitor” in the present invention.
[0040] 本発明において、 BST2遺伝子は、配列番号: 2に記載のアミノ酸配列によって定義 されるヒト由来の蛋白質である。配列番号: 2に記載のアミノ酸配列は配列番号: 1に 記載の塩基配列からなる cDNAによってコードされて!/、る。ヒト BST2の cDNAのクロー ユングと、モノクローナル抗体についての報告がある (Ishikawa J. et al. Genomics 26: 527, 1995; GenBank Acc#.D28137)0 BST2は、プレ B細胞増殖支持能を有する膜蛋 白質であるとされた (特開平 7-196694)。 BST2のゲノム遺伝子とプロモーターについて の知見も得られている (WO99/43803)。また、ヒト BST2は、ミエローマに対するモノクロ ーナル抗体である抗 HM1.24抗体が認識している抗原であることが明らかにされてい る (Ohmoto T. et al. B.B.R.C 258: 583, 1999)。抗 HM1.24抗体は、ヒトプラズマセルラ インを免疫原として榭立されたモノクローナル抗体である (Goto T. et al. Blood 84:19 92, 1994)。その後ミエローマを特異的に認識することが明らかにされ、ミエローマの 治療を目的としてヒト化抗体が作成された (Ozaki S. et al. Blood 93: 3922, 1999;: W 098/14580)。ヒトイ匕抗 HM1.24抗体は、造血組織の癌に対する治療効果を有している (WO02/064159)o現在はその実用化を目指して臨床試験が進められている。以上の ようにヒト BST2は、造血器系の腫瘍におけるマーカーとして利用されている。また、ヒト BST2に特異的に結合する抗体が、 T細胞や B細胞の活性化を抑制し、自己免疫疾 患などの治療薬となりうることが示唆されている(特開平 10-298106)。しかし現在のと ころ BST2を認識する抗体と IPCの関連を示唆する報告は無い。 [0040] In the present invention, the BST2 gene is a human-derived protein defined by the amino acid sequence set forth in SEQ ID NO: 2. The amino acid sequence described in SEQ ID NO: 2 is encoded by cDNA consisting of the base sequence described in SEQ ID NO: 1! Human BST2 cDNA cloning and monoclonal antibodies have been reported (Ishikawa J. et al. Genomics 26: 527, 1995; GenBank Acc # .D28137) 0 BST2 is a membrane protein that has the ability to support pre-B cell proliferation. White matter (Japanese Patent Laid-Open No. 7-196694). Knowledge about the BST2 genomic gene and promoter has also been obtained (WO99 / 43803). In addition, human BST2 has been shown to be an antigen recognized by anti-HM1.24 antibody, which is a monoclonal antibody against myeloma (Ohmoto T. et al. BBRC 258: 583, 1999). Anti-HM1.24 antibody is a monoclonal antibody established using human plasma cell line as an immunogen (Goto T. et al. Blood 84:19 92, 1994). Later, it was revealed that myeloma was specifically recognized, and a humanized antibody was created for the treatment of myeloma (Ozaki S. et al. Blood 93: 3922, 1999 ;: W 098/14580). The human anti-anti-HM1.24 antibody has a therapeutic effect on cancer of hematopoietic tissue (WO02 / 064159) o Currently, clinical trials are in progress for its practical application. As described above, human BST2 is used as a marker in hematopoietic tumors. In addition, antibodies that specifically bind to human BST2 suppress the activation of T cells and B cells, resulting in autoimmune diseases. It has been suggested that it can be a therapeutic drug for patients (Japanese Patent Laid-Open No. 10-298106). However, there are no reports suggesting an association between antibodies that recognize BST2 and IPC.
[0041] 本発明において、 BST2はそのホモログを含む。 BST2のホモログとは、配列番号: 2 に記載のアミノ酸配列からなる蛋白質と機能的に同等な蛋白質と定義することができ る。このような蛋白質は、天然に存在する蛋白質を含む。一般に真核生物の遺伝子 は、 IFN遺伝子等で知られているように、多型現象 (polymorphism)を有する。この多型 現象によって生じた塩基配列の変化によって、 1または複数個のアミノ酸が、置換、 欠失、挿入、および Zまたは付加される場合がある。このようにヒトに由来する蛋白質 であって、かつ配列番号: 2に記載のアミノ酸配列において、 1若しくは複数のァミノ 酸が、置換、欠失、挿入、および Zまたは付加したアミノ酸配列を有し、配列番号: 2 に記載のアミノ酸配列からなる蛋白質と機能的に同等な蛋白質は、本発明の BST2ホ モログに含まれる。 [0041] In the present invention, BST2 includes a homologue thereof. The homologue of BST2 can be defined as a protein that is functionally equivalent to the protein consisting of the amino acid sequence set forth in SEQ ID NO: 2. Such proteins include naturally occurring proteins. In general, eukaryotic genes have polymorphism, as is known for IFN genes and the like. One or more amino acids may be substituted, deleted, inserted, and Z or added due to changes in the base sequence caused by this polymorphism. Thus, it is a human-derived protein, and in the amino acid sequence set forth in SEQ ID NO: 2, one or more amino acids have an amino acid sequence substituted, deleted, inserted, and Z or added, A protein functionally equivalent to the protein consisting of the amino acid sequence set forth in SEQ ID NO: 2 is included in the BST2 homologue of the present invention.
[0042] 具体的には、たとえば BST2のスプライシングバリアント、あるいは遺伝子多型によつ て生じる変異体は、 BST2ホモログに含まれる。たとえば本発明者らは、配列番号: 1 の塩基配列力もなる cDNAに対するスプライシングバリアントの存在を明らかにした。 このスプライシングバリアントは、配列番号: 3または配列番号: 5に示す塩基配列力 なり、配列番号: 4または配列番号: 6に記載のアミノ酸配列をコードして 、た。  [0042] Specifically, for example, a BST2 splicing variant or a mutant caused by a gene polymorphism is included in the BST2 homolog. For example, the present inventors have clarified the existence of a splicing variant for cDNA having the nucleotide sequence of SEQ ID NO: 1. This splicing variant had the nucleotide sequence shown in SEQ ID NO: 3 or SEQ ID NO: 5, and encoded the amino acid sequence described in SEQ ID NO: 4 or SEQ ID NO: 6.
[0043] あるいは多型現象によって塩基配列に変化はあっても、アミノ酸配列が変わらない 場合もある。このような塩基配列の変異は、サイレント変異と呼ばれる。サイレント変異 を有する塩基配列からなる遺伝子も、本発明に含まれる。なおここで言う多型現象と は、集団内において、ある遺伝子が個体間で異なる塩基配列を有することを言う。一 般に、遺伝学的には多型と変異は遺伝子型の分布率によって定義されている。しか しここで言う多型は、異なる塩基配列が見出される割合 (分布率)とは無関係である。  [0043] Alternatively, the amino acid sequence may not change even if the base sequence changes due to the polymorphism. Such a nucleotide sequence variation is called a silent variation. A gene comprising a nucleotide sequence having a silent mutation is also included in the present invention. The polymorphism mentioned here means that a certain gene has a different nucleotide sequence among individuals within a population. In general, polymorphisms and mutations are genetically defined by genotype distribution rates. However, the polymorphism referred to here is independent of the ratio (distribution rate) at which different nucleotide sequences are found.
[0044] BST2のホモログは、ヒト以外の種における機能的に同等な蛋白質を含む。 BST2と 機能的に同等な蛋白質は、たとえばハイブリダィゼーシヨンを利用して同定すること ができる。すなわち、配列番号: 1に示すような BST2をコードするポリヌクレオチド、あ るいはその断片をプローブとし、これとハイブリダィズすることができるポリヌクレオチド を単離するのである。ハイブリダィゼーシヨンをストリンジェントな条件下で実施すれば 、塩基配列としては相同性の高いポリヌクレオチドが選択され、その結果として単離さ れる蛋白質には BST2と機能的に同等なタンパク質が含まれる可能性が高まる。 [0044] BST2 homologs include functionally equivalent proteins in species other than humans. A protein functionally equivalent to BST2 can be identified using, for example, hybridization. That is, a polynucleotide encoding BST2 as shown in SEQ ID NO: 1 or a fragment thereof is used as a probe, and a polynucleotide capable of hybridizing therewith is isolated. If hybridization is performed under stringent conditions As a result, a highly homologous polynucleotide is selected as the base sequence, and as a result, there is an increased possibility that the protein to be isolated contains a protein functionally equivalent to BST2.
[0045] 本発明者らは、 BST2のマウスにおけるホモログに対する抗体力 ヒトにおける抗体と 同様にマウス IPCの活性を抑制することを確認した。マウス BST2は、配列番号: 9に記 載の塩基配列を有し配列番号: 10に記載のアミノ酸配列をコードしていた。更に本発 明者らは、 BST2のスプライシングノ リアントである BST2Hについても同様に、マウスに おけるホモログの存在を確認した。マウス BST2Hの塩基配列は配列番号: 7に、この 塩基配列によってコードされるアミノ酸配列を配列番号: 8に示した。マウスの BST2H に対する抗体も、 IPCの活性を抑制することが確認された。 [0045] The present inventors confirmed that the antibody strength against homologues of BST2 mice suppresses the activity of mouse IPC in the same manner as antibodies in humans. Mouse BST2 had the base sequence set forth in SEQ ID NO: 9 and encoded the amino acid sequence set forth in SEQ ID NO: 10. Furthermore, the present inventors also confirmed the presence of homologues in mice in the same manner as for BST2H, which is a BST2 splicing nootropic. The base sequence of mouse BST2H is shown in SEQ ID NO: 7, and the amino acid sequence encoded by this base sequence is shown in SEQ ID NO: 8. It was confirmed that the antibody against BST2H in mice also suppresses IPC activity.
本発明において明らかにされたヒトとマウスの BST2とそのホモログの塩基配列情報 、およびアミノ酸配列情報を以下にまとめた。  The base sequence information and amino acid sequence information of human and mouse BST2 and homologues clarified in the present invention are summarized below.
塩基配列 アミノ酸配列 アミノ酸配列の長さ ヒト BST2D 配列番号: 1 配列番号: 2 (180)  Base sequence Amino acid sequence Amino acid sequence length Human BST2D SEQ ID NO: 1 SEQ ID NO: 2 (180)
ヒト BST2H 配列番号: 3 配列番号: 4 (158)  Human BST2H SEQ ID NO: 3 SEQ ID NO: 4 (158)
ヒト BST2HS 配列番号: 5 配列番号: 6 (100)  Human BST2HS SEQ ID NO: 5 SEQ ID NO: 6 (100)
マウス BST2H 配列番号: 7 配列番号: 8 (178)  Mouse BST2H SEQ ID NO: 7 SEQ ID NO: 8 (178)
マウス BST2D 配列番号: 9 配列番号: 10 (172)  Mouse BST2D SEQ ID NO: 9 SEQ ID NO: 10 (172)
マウス BST2HS 配列番号: 18 配列番号: 19 (105)  Mouse BST2HS SEQ ID NO: 18 SEQ ID NO: 19 (105)
[0046] なおストリンジヱントな条件とは、具体的には例えば 6 X SSC、 40%ホルムアミド、 25°C でのハイブリダィゼーシヨンと、 I X SSC、 55°Cでの洗浄といった条件を示すことができ る。ストリンジエンシーは、塩濃度、ホルムアミドの濃度、あるいは温度といった条件に 左右される。当業者は、これらの条件を必要なストリンジエンシーを得られるように適 宜調節することができる。 The stringent conditions specifically indicate conditions such as 6 X SSC, 40% formamide, hybridization at 25 ° C, and IX SSC, washing at 55 ° C. it can. Stringency depends on conditions such as salt concentration, formamide concentration, or temperature. Those skilled in the art can adjust these conditions appropriately to obtain the required stringency.
[0047] ノ、イブリダィゼーシヨンを利用することによって、たとえばヒト以外の動物種における BST2のホモログをコードするポリヌクレオチドの単離が可能である。ヒト以外の動物種 、すなわちマウス、ラット、ゥサギ、ブタ、あるいはャギ等の動物種力も得ることができる ポリヌクレオチドがコードする BST2のホモログは、本発明における機能的に同等な蛋 白質を構成する。 [0048] ノ、イブリダィゼーシヨン技術等を利用して単離されるポリヌクレオチドがコードする蛋 白質は、通常、ヒト BST2D (配列番号: 2)とアミノ酸配列において高い相同性を有する 。高い相同性とは、少なくとも 30%以上、好ましくは 50%以上、さらに好ましくは 80% 以上(例えば、 95%以上、あるいは 98%、更には 99%以上)の配列の同一性を指す。 塩基配列やアミノ酸配列の同一性は、インターネットを利用したホモロジ一検索サイト を利用して調べることができる [例えば日本 DNAデータバンク(DDBJ)にお!/、て、 FAS TA、 BLAST, PSI-BLAST、および SSEARCH等の相同性検索が利用できる [例えば 日本 DNAデータバンク(DDBJ)のウェブサイトの相同性検索(Search and Analysis)の へ' ~~ン; http://www.ddbj.nig.ac.Jp/E— mail/homology—j.ntml]。ま 7こ、 Nationalし ente r for Biotechnology Information (NCBI)において、 BLASTを用いた検索を行うことが できる(例えば NCBIのホームページのウェブサイトの BLASTのページ; http:〃 www.n cbi.nlm.nih.gov/BLAST/; Altschul, S.F. et al" J. Mol. Biol, 1990, 215(3):403- 10; Altschul, S.F. & Gish, W., Meth. EnzymoL, 1996, 266:460-480; Altschul, S.F. et al. , Nucleic Acids Res., 1997, 25:3389—3402) ]。 [0047] By using the hybridization, it is possible to isolate a polynucleotide encoding a homologue of BST2 in, for example, an animal species other than human. Non-human animal species, ie, animal species such as mice, rats, rabbits, pigs, goats, etc. can be obtained. The BST2 homologue encoded by the polynucleotide constitutes a functionally equivalent protein in the present invention. . [0048] The protein encoded by the polynucleotide isolated using the noblerization technique or the like usually has high homology in amino acid sequence with human BST2D (SEQ ID NO: 2). High homology refers to sequence identity of at least 30% or more, preferably 50% or more, more preferably 80% or more (eg, 95% or more, 98%, or even 99% or more). The identity of nucleotide sequences and amino acid sequences can be examined using a homology search site using the Internet [For example, in Japan DNA Data Bank (DDBJ)! /, FAS TA, BLAST, PSI-BLAST] , And SSEARCH etc. can be used [For example, search and analysis of Japan DNA Databank (DDBJ) website: ~~~; http://www.ddbj.nig.ac .Jp / E—mail / homology—j.ntml]. You can also search using BLAST in the National Center for Biotechnology Information (NCBI) (for example, the BLAST page of the NCBI website; http: 〃 www.ncbi.nlm.nih .gov / BLAST /; Altschul, SF et al "J. Mol. Biol, 1990, 215 (3): 403-10; Altschul, SF & Gish, W., Meth. EnzymoL, 1996, 266: 460-480; Altschul, SF et al., Nucleic Acids Res., 1997, 25: 3389-3402)].
[0049] 例えば Advanced BLAST 2.1におけるアミノ酸配列の同一性の算出は、プログラム に blastpを用い、 Expect値を 10、 Filterは全て OFFにして、 Matrixに BLOSUM62を用 い、 Gap existence cost、 Per residue gap cost、およひ Lambda ratioをてれてれ 11、 1 、 0.85 (デフォルト値)に設定して検索を行 ヽ、同一性 (identity)の値 (%)を得ることが できる(Karlin, S. and S. F. Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68; Karlin, S. and S. F. Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873—7)。  [0049] For example, the calculation of amino acid sequence identity in Advanced BLAST 2.1 uses blastp as the program, sets the Expect value to 10, all filters are OFF, uses BLOSUM62 as the matrix, Gap existence cost, Per residue gap cost , And Lambda ratio can be set to 11, 1, 0.85 (default value) and searches can be performed to obtain identity values (%) (Karlin, S. and SF Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-68; Karlin, S. and SF Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7).
[0050] 更に既に構造が明らかにされている cDNA、あるいはゲノム DNAの塩基配列情報の 検索によって、他の種における BST2ホモログを見出すこともできる。すなわち、公知 の塩基配列情報ある 、はアミノ酸配列情報を蓄積したデータベースを対象として、ヒ ト BST2の塩基配列情報および Zまたはアミノ酸配列情報をクエリーとする相同性検 索によって、類似の配列情報が検索される。もしも他の種に由来する相同性の高い 既知の遺伝子並びに蛋白質がデータベース中に存在すれば、相同性検索によって 、それを見出すことができる。遺伝子の全長が同定されていなくても、 ESTなどの断片 配列情報が得られれば、インシリコクローユングによって、遺伝子の全長配列を構成 できる場合もある。こうして明らかにされた他の種に由来するホモログについて、実際 に当該動物種の IPCにおける発現が確認できれば、本発明における BST2のホモログ として禾 IJ用することができる。 [0050] Furthermore, BST2 homologues in other species can be found by searching the nucleotide sequence information of cDNA or genomic DNA whose structure has already been clarified. In other words, similar sequence information is searched by a homology search that uses known BST information or a database that accumulates amino acid sequence information as a query using the base sequence information of human BST2 and Z or amino acid sequence information. Is done. If a known gene or protein having high homology derived from another species exists in the database, it can be found by homology search. Even if the full length of the gene is not identified, if the sequence information of fragments such as EST is obtained, the full length sequence of the gene can be constructed by in silico cloning. Sometimes you can. If homologs derived from other species thus identified are actually confirmed in the IPC of the animal species, they can be used as BST2 homologs in the present invention.
[0051] 本発明に用いる BST2およびそのホモログの 、ずれかまたは両方を認識する抗体は 、 BST2およびそのホモログ、あるいはそれらの断片を免疫原として調製することがで きる。本発明における抗体は、任意のクラスであってよい。また抗体が由来する生物 種も限定されない。更に、抗体の抗原結合領域を含む断片を抗体として用いることが できる。たとえば IgGの酵素的な消化によって生成される、抗原結合部位を含む抗体 断片も、本発明における抗体として利用することができる。具体的には、パパインある いはペプシンによる消化によって、 Fabあるいは F(ab')2などの抗体断片を得ることが できる。これらの抗体断片は、抗原との結合親和性を有する抗体分子として利用しう ることは周知である。あるいは、必要な抗原結合活性を維持している限り、遺伝子組 み換えによって構築された抗体を用いることもできる。遺伝子組み換えによって構築 された抗体とは、たとえばキメラ抗体、 CDR移植抗体、あるいはシングルチェイン Fv等 を示すことができる。任意の免疫原を利用してこれらの抗体を得る方法は公知である [0051] An antibody that recognizes either or both of BST2 and its homologue used in the present invention can be prepared using BST2 and its homologue or a fragment thereof as an immunogen. The antibodies in the present invention may be of any class. The species from which the antibody is derived is not limited. Furthermore, a fragment containing an antigen-binding region of an antibody can be used as an antibody. For example, an antibody fragment containing an antigen binding site produced by enzymatic digestion of IgG can also be used as the antibody in the present invention. Specifically, antibody fragments such as Fab or F (ab ′) 2 can be obtained by digestion with papain or pepsin. It is well known that these antibody fragments can be used as antibody molecules having binding affinity for an antigen. Alternatively, an antibody constructed by gene recombination can be used as long as the necessary antigen-binding activity is maintained. The antibody constructed by gene recombination can be, for example, a chimeric antibody, a CDR-grafted antibody, or a single chain Fv. Methods for obtaining these antibodies using any immunogen are known
[0052] 本発明において、抗体は、必要に応じて修飾することができる。本発明によれば、 B ST2またはそのホモログの 、ずれかまたは両方を認識する抗体は、 IPCの細胞数を抑 制する作用を有する。すなわち、抗体そのものが IPCに対する細胞傷害性を有してい ると考えられた。強いエフェクター作用を示す抗体のサブクラスは公知である。あるい は、抗体を細胞傷害物質 (cytotoxic agent)によって修飾することによって、 IPCの活性 抑制効果を更に増強することができる。細胞傷害物質としては、以下のような物質を 示すことができる。 [0052] In the present invention, the antibody can be modified as necessary. According to the present invention, an antibody that recognizes either or both of BST2 or a homologue thereof has an action of suppressing the number of IPC cells. That is, the antibody itself was considered to have cytotoxicity against IPC. Subclasses of antibodies that exhibit strong effector activity are known. Alternatively, the effect of suppressing the activity of IPC can be further enhanced by modifying the antibody with a cytotoxic agent. The following substances can be shown as cytotoxic substances.
トキシン類:緑膿菌毒素 (Pseudomonas Endotoxin; PE)、ジフテリアトキシン、リシン 放射性同位元素: Tc"m、 Sr89、 I131、 Y9° Toxins: Pseudomonas aeruginosa toxin (Pseudomonas Endotoxin; PE), diphtheria toxin, ricin radioisotope: Tc "m, Sr 89, I 131, Y 9 °
抗癌剤:カリキアマイシン、マイトマイシン、パクリタキセル  Anticancer drugs: calikiamycin, mitomycin, paclitaxel
蛋白質力もなるトキシン類は、 2官能性試薬によって抗体あるいはその断片などに 結合することができる。あるいは、抗体をコードする遺伝子にトキシン類をコードする 遺伝子を接合し、両者の融合蛋白質を得ることもできる。放射性同位元素を抗体に 結合する方法も公知である。たとえば、キレート剤を利用して、抗体を放射性同位元 素で標識する方法が公知である。更に抗癌剤は、糖鎖あるいは 2官能性試薬などの 利用により、抗体に結合することができる。 Toxins that also have protein power can be bound to antibodies or fragments thereof by a bifunctional reagent. Alternatively, the gene encoding the antibody encodes a toxin Genes can be joined to obtain a fusion protein of both. Methods for binding radioisotopes to antibodies are also known. For example, a method for labeling an antibody with a radioisotope using a chelating agent is known. Furthermore, anticancer agents can be bound to antibodies by using sugar chains or bifunctional reagents.
[0053] 本発明において用いられる抗体は、人為的に構造を改変された抗体であっても良 い。たとえば、抗体の細胞傷害作用や安定性を改善するための様々な修飾方法が 公知である。具体的には、重鎖の糖鎖が改変されたィムノグロブリンが知られている( Shinkawa, T. et al. J. Biol. Chem.278:3466-3473. 2003.)。糖鎖の改変によって、ィム ノグロブリンの ADCC (抗体依存性の細胞傷害; Antibody Dependent Cell-mediated C ytotoxicity)活性が増強された。あるいは、 Fc領域のアミノ酸配列を改変されたィムノ グロブリンも公知である。すなわち、ィムノグロブリンの Fc受容体との結合活性を人為 的に高めることによって、 ADCC活性が増強された(Shield,RL.et al. J.Biol.Chem. 27 6;6591- 6604, 2001.)。 [0053] The antibody used in the present invention may be an artificially modified antibody. For example, various modification methods for improving the cytotoxic effect and stability of antibodies are known. Specifically, an immunoglobulin having a modified heavy chain sugar chain is known (Shinkawa, T. et al. J. Biol. Chem. 278: 3466-3473. 2003.). The sugar chain modification enhanced the ADCC (antibody-dependent cell-mediated cytotoxicity) activity of immunoglobulin. Alternatively, immunoglobulins with modified Fc region amino acid sequences are also known. That is, ADCC activity was enhanced by artificially increasing the binding activity of immunoglobulin to the Fc receptor (Shield, RL. Et al. J. Biol. Chem. 27 6; 6591-6604, 2001. ).
[0054] また、 Fc受容体に結合した IgGは、細胞内にいったん取り込まれる。その後、エンド ノームに発現した Fc受容体と結合して、再び血中に放出される現象が明らかにされ ている。 Fc受容体との結合活性が高い IgGは、細胞に取り込まれた後に再び血中に 放出される可能性が高まる。その結果、 IgGの血中における滞留期間が延長される (H inton.PR. et al. J Biol Chem. 279:6213-6216. 2004)。その他、 Fc領域のアミノ酸配列 の改変は、 CDC (補体依存性の細胞傷害作用; Complement Dependent Cytotoxicity )活性の変化をもたらすとも言われて ヽる。これらの改変を施した抗体を本発明にお ける抗体として用いることができる。  [0054] IgG bound to the Fc receptor is once taken up into cells. Subsequently, it has been revealed that it binds to the Fc receptor expressed in the endosome and is released into the blood again. IgG with high Fc receptor binding activity is more likely to be released into the blood after being taken up by cells. As a result, the residence time of IgG in the blood is extended (Hinton.PR. Et al. J Biol Chem. 279: 6213-6216. 2004). In addition, modification of the amino acid sequence of the Fc region is also said to cause a change in CDC (Complement Dependent Cytotoxicity) activity. Antibodies with these modifications can be used as antibodies in the present invention.
[0055] たとえばモノクローナル抗体は、当該モノクローナル抗体を産生する抗体産生細胞 力も採取することができる。本発明に用いることができるモノクローナル抗体の産生細 胞は、たとえば BST2またはそのホモログ、その断片、あるいはそれらを産生する細胞 またはその細胞膜分画を免疫原として免疫動物に投与し、その抗体産生細胞をクロ 一-ングすることによって取得することができる。より具体的には、本発明に用いる抗 体は、たとえば次の工程を含む方法によって得ることができる。  [0055] For example, for a monoclonal antibody, the antibody-producing cell force that produces the monoclonal antibody can also be collected. Monoclonal antibody-producing cells that can be used in the present invention include, for example, BST2 or a homolog thereof, a fragment thereof, a cell that produces them, or a cell membrane fraction thereof administered to an immunized animal as an immunogen, It can be obtained by cloning. More specifically, the antibody used in the present invention can be obtained, for example, by a method including the following steps.
( BST2またはそのホモログを免疫原として免疫動物に投与する工程 (2) (1)の免疫動物の抗体産生細胞から、 BST2を認識する抗体を産生する抗体産生 細胞を選択する工程、 (Step of administering BST2 or a homolog thereof to an immunized animal as an immunogen (2) selecting an antibody-producing cell that produces an antibody that recognizes BST2 from the antibody-producing cells of the immunized animal of (1),
(3) (2)で選択された抗体産生細胞を培養するか、または当該抗体産生細胞が産生す る抗体をコードする遺伝子を単離し、この遺伝子を発現可能に保持する細胞を培養 する工程、および  (3) culturing the antibody-producing cells selected in (2), or isolating a gene encoding an antibody produced by the antibody-producing cells and culturing cells that retain this gene in an expressible manner, and
(4) (3)の培養物からインターフェロン産生細胞の活性を抑制する抗体を回収する工程 一般的なモノクローナル抗体の製造方法においては、免疫細胞と腫瘍細胞との細 胞融合によって得られるハイプリドーマが抗体産生細胞として利用される。本発明に おける免疫原には、 BST2またはそのホモログ、あるいはその断片を用いることができ る。免疫原は、それをコードする遺伝子で形質転換した細胞から精製することができ る。更に、 BST2またはそのホモログを発現している細胞を免疫原として利用すること ができる。このような細胞としては、具体的には以下のような細胞を示すことができる。 これらの細胞の細胞膜分画を免疫原とすることもできる。  (4) A step of recovering an antibody that suppresses the activity of interferon-producing cells from the culture of (3) In a general method for producing a monoclonal antibody, a hyperidoma obtained by cell fusion of immune cells and tumor cells is used. Used as antibody-producing cells. As an immunogen in the present invention, BST2 or a homologue thereof, or a fragment thereof can be used. The immunogen can be purified from cells transformed with the gene encoding it. Furthermore, cells expressing BST2 or a homologue thereof can be used as an immunogen. Specific examples of such cells include the following cells. The cell membrane fraction of these cells can also be used as an immunogen.
—生体力も採取された IPC —IPC with vitality
一造血幹細胞などから分化誘導された IPC IPC differentiated from hematopoietic stem cells
一外来性の BST2またはそのホモログ遺伝子を発現可能に保持する細胞 Cells that can express an exogenous BST2 gene or its homologous gene
生体から IPCを採取するためには、たとえば先に述べたような細胞表面マーカーの 発現プロファイルに基づいて、目的とする細胞を採取すればよい。複数の細胞表面 マーカーを指標として特定の細胞を集めるための方法は公知である。たとえば免疫 染色とセルソーターを利用することによって、目的とする発現プロファイルに適合する 細胞を容易に分取することができる。たとえばヒトの IPCは、 BDCA-2陽性細胞を選択 することにより、 IPCが濃縮される。ヒトから採取された IPCは、必要に応じて活性化さ れた後に免疫原として利用される。  In order to collect IPC from a living body, for example, a target cell may be collected based on the expression profile of a cell surface marker as described above. Methods for collecting specific cells using a plurality of cell surface markers as an index are known. For example, by using immunostaining and a cell sorter, cells that meet the target expression profile can be easily separated. For example, human IPC is enriched by selecting BDCA-2 positive cells. IPCs collected from humans are used as an immunogen after being activated as necessary.
IPCは、生体の末梢血あるいは造血組織以外に、培養細胞として得ることもできる。 たとえばヒトおよびマウスの造血幹細胞を培養し、 IPCに分ィ匕させることによって大量 に得ることができる。ヒトおよびマウス造血幹細胞を in vitroで IPCに分化させるための 条件は公知である。 [0057] たとえば、 in vitroにおける造血幹細胞からのヒト (Blom, B. et al.J.Exp.Med. 192: 17 85-1796, 2000.; Chen, W. et al. Blood 103: 2547-2553, 2004.)、およびマウス (Gillie rt et al 2002, J. Exp. Med. 958-953)の IPCの誘導が報告されている。あるいは in vivo でのマウス IPCの誘導も公知である (Bjorckらの Blood 2001, 3520-3526)。ただし、こ れらの方法によって誘導された IPCを免疫原に用いた報告は無い。しかし本発明者ら は、 in vitroで分化させた IPC力 IPCを認識するモノクローナル抗体を得るための免 疫原として有利であることを見出した。特に、この免疫原の使用によって、マウス IPC の IFN産生能を調節しうるモノクローナル抗体が得られることは、まったく予想されな かった。 IPC can also be obtained as cultured cells in addition to the peripheral blood or hematopoietic tissue of a living body. For example, it can be obtained in large quantities by culturing hematopoietic stem cells of humans and mice and distributing them to IPC. Conditions for differentiating human and mouse hematopoietic stem cells into IPC in vitro are known. [0057] For example, humans from hematopoietic stem cells in vitro (Blom, B. et al. J. Exp. Med. 192: 17 85-1796, 2000 .; Chen, W. et al. Blood 103: 2547-2553 , 2004.), and induction of IPC in mice (Gillie rt et al 2002, J. Exp. Med. 958-953) has been reported. Alternatively, induction of mouse IPC in vivo is also known (Bjorck et al. Blood 2001, 3520-3526). However, there have been no reports of using IPCs induced by these methods as immunogens. However, the present inventors have found that the in vitro differentiated IPC force is advantageous as an immunogen for obtaining a monoclonal antibody that recognizes IPC. In particular, it was completely unexpected that the use of this immunogen would yield a monoclonal antibody capable of regulating the ability of mouse IPC to produce IFN.
[0058] 具体的には、造血幹細胞を含む細胞集団を IPC誘導剤の存在下で培養すること〖こ より、 IPCへの分化が誘導される。造血幹細胞を含む細胞集団としては、たとえば骨 髄細胞を用いることができる。また IPC誘導剤には、 FLT-3リガンド、あるいは FLT-3リ ガンドとトロンボポェチン (TPO)の組み合わせを用いることができる。培地中の FLT-3 リガンドの濃度は、通常 1〜: LOOng/mLとすることができる。その他の培養条件は、一 般的な血液細胞の培養条件を応用すればよい。すなわち基礎培地としては、 RPMI1 640等を用い、更に 10%程度の牛胎児血清をカ卩えることができる。あるいはヒ HPCの誘 導においては、 Yssel's Mediumが用いられた。 in vitroにおける IPCへの分化は、ヒト では、たとえば 25日前後にピークを迎える。  [0058] Specifically, differentiation into IPC is induced by culturing a cell population containing hematopoietic stem cells in the presence of an IPC inducer. As a cell population containing hematopoietic stem cells, for example, bone marrow cells can be used. As the IPC inducer, FLT-3 ligand or a combination of FLT-3 ligand and thrombopoietin (TPO) can be used. The concentration of FLT-3 ligand in the medium can usually be 1 to: LOOng / mL. As other culture conditions, general blood cell culture conditions may be applied. That is, RPMI1 640 or the like can be used as a basal medium, and about 10% fetal bovine serum can be obtained. Alternatively, Yssel's Medium was used to guide HPC. In vitro differentiation into IPC peaks in humans, for example, around 25 days.
[0059] 培養された造血幹細胞から、 IPCに分化した細胞を取得すれば、免疫原のための I PCを得ることができる。実際には、いくつかの細胞表面マーカーを利用して、 IPCに 特徴的な細胞表面抗原を有する細胞を分取する。すなわち、たとえば BDCA-2陽性 細胞をヒ HPCとして取得することができる。あるいは、 CDllc陽性、 CDllb陰性、およ び B220陽性の細胞分画をセルソーターで分取しマウス IPCを得ることができる。  [0059] If cells differentiated into IPC are obtained from cultured hematopoietic stem cells, IPCs for immunogens can be obtained. In practice, several cell surface markers are used to sort cells with cell surface antigens characteristic of IPC. That is, for example, BDCA-2 positive cells can be obtained as HCHP. Alternatively, CDllc positive, CDllb negative, and B220 positive cell fractions can be sorted using a cell sorter to obtain mouse IPC.
あるいは、既に IPC特異的であることが明らかな抗体を利用して、当該抗体陽性の 細胞を IPCとして分取することもできる。本発明者らが榭立した、マウス IPC特異抗原 を認識するモノクローナル抗体産生細胞 2E6(WO 2004/013325, FERM- BP-8445)が 産生するモノクローナル抗体を、マウス IPCの分取に利用することができる。  Alternatively, by using an antibody that is already known to be IPC-specific, the antibody-positive cells can be sorted as IPC. A monoclonal antibody produced by the present inventors and produced by a monoclonal antibody-producing cell 2E6 that recognizes a mouse IPC-specific antigen (WO 2004/013325, FERM-BP-8445) can be used for fractionation of mouse IPC. it can.
[0060] IPCは、末梢血から分取することもできる。しかし先に述べたように IPCの末梢血にお けるポピュレーションは極めて低いので、末梢血から IPCを採集するには多量の血液 が必要となる。したがって、免疫原とする IPCには、造血幹細胞から分化させた細胞を 利用するのが有利である。 [0060] IPC can also be collected from peripheral blood. However, as mentioned earlier, IPC peripheral blood The population that can be collected is extremely low, so a large amount of blood is required to collect IPC from peripheral blood. Therefore, it is advantageous to use cells differentiated from hematopoietic stem cells for IPC as an immunogen.
[0061] 本発明に用いるモノクローナル抗体の調製においては、 IPCのみならず、配列番号  [0061] In the preparation of the monoclonal antibody used in the present invention, not only IPC but also SEQ ID NO:
: 2、配列番号: 4、および配列番号: 6からなる群力 選択されるいずれかの配列番号 に記載のアミノ酸配列を含む蛋白質、またはその断片を免疫原として利用することも できる。本発明のモノクローナル抗体は、配列番号: 2、配列番号: 4、および配列番 号: 6からなる群力も選択される 、ずれかの配列番号に記載のアミノ酸配列を含む蛋 白質を抗原として認識していることが明らかにされた。したがって、これらの蛋白質を 免疫原として用いることによって、本発明のモノクローナル抗体を得ることができる。  : Group power consisting of SEQ ID NO: 4, and SEQ ID NO: 6 A protein containing the amino acid sequence described in any selected SEQ ID NO: or a fragment thereof can also be used as an immunogen. The monoclonal antibody of the present invention recognizes a protein containing the amino acid sequence described in any one of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 as an antigen. It was revealed that Therefore, the monoclonal antibody of the present invention can be obtained by using these proteins as immunogens.
[0062] 配列番号: 2、配列番号: 4、および配列番号: 6からなる群から選択される 、ずれか の配列番号に記載のアミノ酸配列を含む蛋白質は、組み換え体として得ることができ る。たとえば配列番号: 1に記載の塩基配列は、配列番号: 2に記載のアミノ酸配列を コードして 、る。また配列番号: 3に記載の塩基配列は配列番号: 4に記載のアミノ酸 配列をコードしている。したがって、これらの塩基配列からなる DNAを適当な宿主 ベクターを使って発現させれば、目的とする蛋白質を得ることができる。  [0062] A protein containing the amino acid sequence described in any one of SEQ ID NOs: selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 can be obtained as a recombinant. For example, the base sequence described in SEQ ID NO: 1 encodes the amino acid sequence described in SEQ ID NO: 2. The base sequence described in SEQ ID NO: 3 encodes the amino acid sequence described in SEQ ID NO: 4. Therefore, the target protein can be obtained by expressing DNA consisting of these base sequences using an appropriate host vector.
[0063] あるいは、配列番号: 2、配列番号: 4、および配列番号: 6からなる群から選択され るいずれかの配列番号に記載のアミノ酸配列力 選択された連続するアミノ酸配列 力もなるオリゴペプチドを免疫原とすることもできる。免疫原として選択すべきアミノ酸 配列は、たとえば 5— 50、好ましくは 7— 20程度のアミノ酸力もなる。任意のアミノ酸 配列を有するオリゴペプチドを得る方法は公知である。たとえば、化学的にアミノ酸を 結合させて、目的とするアミノ酸配列を有するオリゴペプチドを得ることができる。ある いは、上記組み換え体として得られた全長アミノ酸配列を有する蛋白質を切断するこ とによって、所定のアミノ酸配列を有する断片を得ることもできる。得られたオリゴぺプ チドは、適当なキャリアー蛋白質と結合することによって、より免疫原性を高めることが できる。キャリアー蛋白質には、キーホールリンペットへモシァニンゃゥシ血清アルブ ミンなどが用いられる。  [0063] Alternatively, an amino acid sequence ability described in any one of SEQ ID NOs selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 An oligopeptide having a selected continuous amino acid sequence ability It can also be an immunogen. The amino acid sequence to be selected as the immunogen has an amino acid strength of, for example, about 5-50, preferably about 7-20. Methods for obtaining oligopeptides having an arbitrary amino acid sequence are known. For example, an amino acid can be chemically bonded to obtain an oligopeptide having the target amino acid sequence. Alternatively, a fragment having a predetermined amino acid sequence can be obtained by cleaving a protein having a full-length amino acid sequence obtained as the above recombinant. The obtained oligopeptide can be made more immunogenic by binding to an appropriate carrier protein. As the carrier protein, keyhole limpet Hesiyaninu serum serum albumin and the like are used.
[0064] 配列番号: 2と、配列番号: 4および配列番号: 6のアミノ酸配列の大部分は一致して いる。したがって、共通のアミノ酸配列力も選択されたアミノ酸配列を利用することに よって、これらの蛋白質の全てを認識するモノクローナル抗体を得ることができる。ま た 3種類の蛋白質のそれぞれについて、 2種類が共有するアミノ酸配列を利用するこ とによって、特定の 2つの蛋白質を、他の 1つと識別することができる。あるいは各アミ ノ酸配列に固有のアミノ酸配列を利用することによって、各蛋白質を特異的に識別す るモノクローナル抗体を取得することもできる。たとえば、配列番号: 4に記載のァミノ 酸配列において、 N末端から 139〜158のアミノ酸配列は、配列番号: 4に固有のアミ ノ酸配列である。同様に、配列番号: 6に記載のアミノ酸配列においては、 N末端から 96〜100のアミノ酸配列力 配列番号: 6に固有のアミノ酸配列である。 [0064] SEQ ID NO: 2 and most of the amino acid sequences of SEQ ID NO: 4 and SEQ ID NO: 6 are identical. Yes. Therefore, a monoclonal antibody that recognizes all of these proteins can be obtained by using an amino acid sequence that is selected for its common amino acid sequence ability. In addition, for each of the three types of proteins, two specific proteins can be distinguished from the other by using the amino acid sequence shared by the two types. Alternatively, a monoclonal antibody that specifically identifies each protein can be obtained by using an amino acid sequence unique to each amino acid sequence. For example, in the amino acid sequence described in SEQ ID NO: 4, the amino acid sequence from 139 to 158 from the N-terminus is an amino acid sequence unique to SEQ ID NO: 4. Similarly, the amino acid sequence set forth in SEQ ID NO: 6 is an amino acid sequence unique to SEQ ID NO: 6 having an amino acid sequence of 96 to 100 from the N-terminus.
[0065] 続いて免疫原を、適当な免疫動物に免疫する。 IPCは適当なアジュバントとともに免 疫動物へ投与することができる。あるいは、配列番号:2、配列番号: 4、および配列 番号: 6からなる群力 選択されるいずれかの配列番号に記載の蛋白質、若しくはそ の部分アミノ酸配列力もなるペプチドを、アジュバントとともに免疫動物に投与するこ とがでさる。 [0065] Subsequently, an appropriate immunized animal is immunized with the immunogen. IPC can be administered to immune animals with appropriate adjuvants. Alternatively, the group force consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 is selected from any of the selected SEQ ID NOs, or a peptide having a partial amino acid sequence power, and an immunized animal together with an adjuvant. It can be administered.
[0066] 更に、配列番号: 2、配列番号: 4、および配列番号: 6からなる群から選択されるい ずれかの配列番号に記載のアミノ酸配列をコードする DNAを発現可能に保持した形 質転換細胞を免疫原として利用することができる。たとえば配列番号: 1、配列番号: 3、および配列番号: 5からなる群から選択されるいずれかの配列番号に記載の塩基 配列のコード領域を構成する塩基配列を含む DNAは、上記 DNAとして好ましい。これ らの DNAを適当な発現ベクターに組み込み、宿主細胞を形質転換すれば免疫原とし て有用な形質転換細胞を得ることができる。  [0066] Furthermore, the transformation is carried out so that the DNA encoding the amino acid sequence described in any one of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 can be expressed. Cells can be used as immunogens. For example, a DNA containing a base sequence constituting a coding region of a base sequence described in any one of SEQ ID NO: selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, and SEQ ID NO: 5 is preferable as the DNA. . By incorporating these DNAs into an appropriate expression vector and transforming host cells, transformed cells useful as immunogens can be obtained.
[0067] 免疫原とするための宿主細胞は、免疫動物と同じ種に由来する細胞とすることがで きる。同種の細胞を用いることにより、外来性の蛋白質に対する特異的な免疫応答を 誘導することができる。たとえば、免疫動物にラットを用いるのであれば、ラットに由来 する宿主細胞を用いるのが有利である。上記蛋白質を含む形質転換細胞の分画を 免疫原として用いることもできる。実施例に示したように、配列番号: 2、配列番号: 4、 および配列番号: 6力 なる群力 選択されるいずれかの配列番号に記載のアミノ酸 配列には、膜貫通ドメインが見られた(図 8の膜貫通領域; transmembrane region) 0し たがって、これらのアミノ酸配列を有する蛋白質は、細胞膜に発現する可能性がある[0067] A host cell for use as an immunogen can be a cell derived from the same species as the immunized animal. By using the same type of cells, a specific immune response against foreign proteins can be induced. For example, if a rat is used as an immunized animal, it is advantageous to use a host cell derived from the rat. A fraction of transformed cells containing the protein can also be used as an immunogen. As shown in the examples, SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 group power of force A transmembrane domain was found in the amino acid sequence described in any selected SEQ ID NO: (the transmembrane region of FIG. 8; transmembrane region) 0 Mr. Therefore, proteins with these amino acid sequences may be expressed on the cell membrane
。実際に COS細胞に発現させた場合には、配列番号: 8および配列番号: 10に記載 のアミノ酸配列を有する蛋白質は、形質転換体培養物の沈殿分画においてより多く の蛋白質が検出された。したがって、上記蛋白質を発現する細胞の、細胞膜分画を 免疫原として利用できる。 . When actually expressed in COS cells, a larger amount of the protein having the amino acid sequence of SEQ ID NO: 8 and SEQ ID NO: 10 was detected in the precipitate fraction of the transformant culture. Therefore, the cell membrane fraction of cells expressing the above protein can be used as an immunogen.
[0068] 本発明における免疫動物は、 IPCを異物と認識するあらゆる非ヒト脊椎動物を利用 することができる。モノクローナル抗体を得るためには、ハイプリドーマとするための融 合パートナーの入手が容易な動物が有利である。たとえば、マウス、ラット、ラビット、 ゥシ、ャギなどの細胞に由来するハイブリドーマの樹立が確立されている。これらの 免疫動物を、本発明に用いることができる。一方アジュバントには、フロイントの完全 アジュバントゃフロイントの不完全アジュバント等が用いられる。 [0068] As the immunized animal in the present invention, any non-human vertebrate that recognizes IPC as a foreign substance can be used. In order to obtain a monoclonal antibody, an animal for which a fusion partner for obtaining a hyperpridoma is readily available is advantageous. For example, the establishment of hybridomas derived from cells such as mice, rats, rabbits, bushes, and goats has been established. These immunized animals can be used in the present invention. On the other hand, Freund's complete adjuvant or Freund's incomplete adjuvant is used as the adjuvant.
[0069] 免疫動物は、 3〜: L0日間隔で複数回免疫される。 1回の免疫に用いられる IPCの数 は、任意である。通常、 103〜108、たとえば 106の IPCが免疫される。また蛋白質ゃぺ プチドによる免疫においては、一般に 1〜: LOO /z gが免疫される。複数回の免疫を経 た免疫動物から免疫担当細胞を回収し、目的とする抗体を産生する細胞をクロー二 ングすることにより、本発明のモノクローナル抗体を得ることができる。免疫担当細胞 とは、免疫動物において抗体産生能を有する細胞を言う。 [0069] Immunized animals are immunized multiple times at 3 to: L0 day intervals. The number of IPCs used for one immunization is arbitrary. Usually, 10 3 to 10 8 , for example 10 6 IPCs are immunized. In general, immunization with protein peptide is immunized with 1 ~: LOO / zg. The monoclonal antibody of the present invention can be obtained by collecting immunocompetent cells from an immunized animal that has undergone multiple immunizations and cloning the cells that produce the target antibody. An immunocompetent cell refers to a cell having antibody-producing ability in an immunized animal.
[0070] 免疫担当細胞は、たとえばハイプリドーマ法によってクローニングすることができる。  [0070] Immunocompetent cells can be cloned, for example, by the hypridoma method.
免疫担当細胞は、 1つの細胞が 1種類の抗体を産生している。したがって、 1つの細 胞に由来する細胞集団を確立すること (すなわちクローユング)ができれば、モノクロ ーナル抗体を得ることができる。ハイプリドーマ法とは、免疫担当細胞を適当な細胞 株と融合させ、不死化する (immortalize)した後にクローユングする方法を言う。ハイブ リドーマ法に有用な多くの細胞株が知られている。これらの細胞株は、リンパ球系細 胞の不死化効率に優れ、かつ細胞融合に成功した細胞の選択に必要な各種の遺伝 マーカーを有している。更に抗体産生細胞の取得を目的とする場合には、抗体産生 能を欠落した細胞株を用いることもできる。  In immunocompetent cells, one cell produces one kind of antibody. Therefore, if a cell population derived from one cell can be established (ie, cloning), a monoclonal antibody can be obtained. The hyperidoma method refers to a method in which immunocompetent cells are fused with an appropriate cell line, immortalized, and then cloned. Many cell lines useful for the hybridoma method are known. These cell lines are excellent in the immortalization efficiency of lymphocyte cells and have various genetic markers necessary for selection of cells successfully fused. Furthermore, for the purpose of obtaining antibody-producing cells, a cell line lacking antibody-producing ability can also be used.
[0071] たとえばマウスミエローマ P3x63Ag8.653(ATCC CRL- 1580)は、マウスやラットの細 胞融合法に有用な細胞株として広く用いられて 、る。ヒトの IPCを免疫原に用いるの であれば、マウスやラットを免疫動物として利用することができる。一方、後に述べる 実施例においては、マウスの IPCを免疫原としているので、免疫動物はマウス以外の 動物(たとえばラット)となる。一般にハイプリドーマは、同種の細胞の融合によって作 成される力 近縁の異種間でのヘテロハイプリドーマ力 モノクローナル抗体を取得 することちでさる。 For example, mouse myeloma P3x63Ag8.653 (ATCC CRL-1580) is widely used as a cell line useful for mouse or rat cell fusion. Use human IPC as immunogen If so, mice and rats can be used as immunized animals. On the other hand, in the examples described later, since the mouse IPC is used as the immunogen, the immunized animal is an animal other than the mouse (for example, rat). In general, hyperpridoma is obtained by obtaining a monoclonal antibody that has heterohypridoma force between closely related different types of force generated by the fusion of cells of the same type.
[0072] 細胞融合の具体的なプロトコルは公知である。すなわち、免疫動物の免疫担当細 胞を適当な融合パートナーと混合し、細胞融合させる。免疫担当細胞には、脾細胞 や末梢血 B細胞などが用いられる。融合パートナーとしては、先に述べた各種の細胞 株を利用することができる。細胞融合には、ポリエチレングリコール法や、電気融合法 が用いられる。  [0072] Specific protocols for cell fusion are known. That is, immunized cells of an immunized animal are mixed with an appropriate fusion partner to cause cell fusion. Spleen cells and peripheral blood B cells are used as immunocompetent cells. As the fusion partner, the various cell lines mentioned above can be used. For cell fusion, the polyethylene glycol method or the electrofusion method is used.
次に、融合細胞が有する選択マーカーに基づいて、細胞融合に成功した細胞が選 択される。たとえば HAT感受性の細胞株を細胞融合に用いた場合には、 HAT培地に ぉ 、て成育する細胞を選択することによって、細胞融合に成功した細胞が選択され る。更に選択された細胞が産生する抗体が、目的とする反応性を有していることを確 認する。  Next, a cell that has succeeded in cell fusion is selected based on a selection marker possessed by the fused cell. For example, when a HAT-sensitive cell line is used for cell fusion, cells that have succeeded in cell fusion are selected by selecting cells that grow in the HAT medium. Furthermore, it is confirmed that the antibody produced by the selected cell has the desired reactivity.
[0073] 各ノ、イブリドーマは、抗体の反応性に基づいて、スクリーニングされる。すなわち、 B ST2およびそのホモログのいずれ力または両方に結合する抗体を産生するハイブリド 一マが選択される。好ましくは、選択されたノヽイブリドーマをサブクローユングし、最終 的に目的とする抗体の産生が確認された場合に、本発明のモノクローナル抗体を産 生するハイプリドーマとして選択する。  [0073] Each noblebroma is screened based on antibody reactivity. That is, a hybridoma producing an antibody that binds to either or both of BST2 and its homolog is selected. Preferably, the selected hybridoma is subcloned and finally selected as a hyperidoma that produces the monoclonal antibody of the present invention when production of the target antibody is confirmed.
[0074] 具体的には、たとえば配列番号: 2、配列番号: 4、および配列番号: 6力 なる群か ら選択されるいずれかの配列番号に記載のアミノ酸配列力 なる蛋白質や、その部 分アミノ酸配列からなるペプチドを抗原としてスクリーニングすることができる。抗原を 適当な固相に結合し、抗原に結合するモノクローナル抗体を、免疫動物のィムノグロ ブリンを認識する標識抗体によって検出することができる。マイクロプレートの内壁に 抗原を結合させ、酵素標識抗体を使った ELISA法を利用すれば、モノクローナル抗 体を迅速にスクリーニングすることができる。抗原に対する結合活性が確認されたモ ノクローナル抗体は、必要に応じて実際に IPCの活性に与える影響が確認される。 IP Cに対する影響は、たとえば後に述べるような方法によって確認することができる。 [0074] Specifically, for example, the protein having the amino acid sequence ability described in any one of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6 selected from the group consisting of A peptide consisting of an amino acid sequence can be screened as an antigen. The antigen is bound to an appropriate solid phase, and the monoclonal antibody that binds to the antigen can be detected by a labeled antibody that recognizes the immunoglobulin of the immunized animal. A monoclonal antibody can be rapidly screened by using an ELISA method using an enzyme-labeled antibody by binding an antigen to the inner wall of the microplate. Monoclonal antibodies that have been confirmed to have an antigen-binding activity are actually confirmed to have an effect on IPC activity as needed. IP The effect on C can be confirmed, for example, by the method described later.
[0075] このようなモノクローナル抗体は、当該ハイプリドーマから抗体の抗原結合領域をコ ードする cDNAを取得し、これを適当な発現ベクターに挿入することによって発現させ ることができる。抗体の可変領域をコードする cDNAを取得し、適当な宿主細胞に発 現させる技術は公知である。また抗原結合領域を含む可変領域を、定常領域と結合 させること〖こよってキメラ抗体とする手法ち公知である。 [0075] Such a monoclonal antibody can be expressed by obtaining cDNA encoding the antigen-binding region of the antibody from the hyperidoma and inserting it into an appropriate expression vector. Techniques for obtaining cDNA encoding the variable region of an antibody and expressing it in an appropriate host cell are known. Also known is a technique for producing a chimeric antibody by binding a variable region including an antigen-binding region to a constant region.
[0076] 更に、モノクローナル抗体の抗原結合活性を他のィムノグロブリンに移植することも できる。ィムノグロブリンの可変領域は、相補性決定領域 (CDR)と、フレーム領域で構 成されている。各ィムノグロブリンの抗原結合特性は CDRによって決定されており、フ レームは抗原結合領域の構造を維持して 、る。 CDRのアミノ酸配列がきわめて多様 性に富むのに対して、フレーム部分のアミノ酸配列は高度に保存されている。 CDRを 構成するアミノ酸配列を他のィムノグロブリン分子のフレーム領域に組み込むことによ つて、抗原結合活性も移植できることが知られている。この方法を利用して、異種のィ ムノグロブリンが有する抗原結合特性をヒト ·ィムノグロブリンに移植する方法が確立さ れている。本発明において、抗原結合領域とは、フレームに移植 (graft)された CDRを 含みうる。したがって、あるモノクローナル抗体の「抗原結合領域を含む断片」とは、 当該モノクローナル抗体の CDRを移植された可変領域を含むヒトイムノグロブリンの 断片を含む。 [0076] Furthermore, the antigen-binding activity of the monoclonal antibody can be transplanted to other immunoglobulins. The variable region of immunoglobulin is composed of a complementarity determining region (CDR) and a frame region. The antigen-binding properties of each immunoglobulin are determined by CDR, and the frame maintains the structure of the antigen-binding region. The amino acid sequence in the frame part is highly conserved, whereas the amino acid sequence of CDR is very diverse. It is known that antigen-binding activity can also be transplanted by incorporating the amino acid sequence constituting the CDR into the frame region of another immunoglobulin molecule. Using this method, a method has been established for transplanting the antigen-binding properties of different types of immunoglobulins to human immunoglobulins. In the present invention, the antigen-binding region can include CDR grafted in a frame. Therefore, a “fragment containing an antigen-binding region” of a certain monoclonal antibody includes a human immunoglobulin fragment containing a variable region grafted with the CDR of the monoclonal antibody.
[0077] このようにして作成されたモノクローナル抗体は ヽずれも本発明に利用することがで きる。すなわち、当該モノクローナル抗体の抗原結合領域をコードする cDNAに由来 するポリヌクレオチドによってコードされた抗原結合領域を含むィムノグロブリン力 な るモノクローナル抗体、あるいはその抗原結合領域を含む抗体断片を本発明に利用 することができる。  Any of the monoclonal antibodies thus prepared can be used in the present invention. That is, an immunoglobulin-binding monoclonal antibody containing an antigen-binding region encoded by a polynucleotide derived from a cDNA encoding the antigen-binding region of the monoclonal antibody or an antibody fragment containing the antigen-binding region is used in the present invention. can do.
本発明に利用することができるモノクローナル抗体を産生するハイプリドーマとして 、たとえば、ハイプリドーマ 3D3#7あるいは 3G7#6を示すことができる。ハイプリドーマ 3 D3#7およびハイプリドーマ 3G7#6は、 2005年 5月 27日付けで独立行政法人産業技 術総合研究所内特許生物寄託センターに対して、受託番号 FERM BP-10339および 受託番号 FERM BP-10340として寄託されている。以下に、寄託を特定する内容を記 載する。 As a hyperidoma producing a monoclonal antibody that can be used in the present invention, for example, hyperidoma 3D3 # 7 or 3G7 # 6 can be shown. Hypridoma 3 D3 # 7 and Hypridoma 3G7 # 6 were registered with the Patent Biological Depositary Center of the National Institute of Advanced Industrial Science and Technology as of May 27, 2005, with accession numbers FERM BP-10339 and accession number FERM BP. Deposited as -10340. Below is a description of the deposit. Included.
(a)寄託機関の名称'あて名  (a) Depositor's name
名称:独立行政法人産業技術総合研究所特許生物寄託センター  Name: National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center
あて名:日本国茨城県つくば巿東 1丁目 1番 1号中央第 6 (郵便番号 305-8566) Address: Japan Tsukuba Sakai Higashi 1-chome No. 1 No. 1 Central No. 6 (Postal code 305-8566)
(b)寄託日: 2005年 5月 27日 (b) Date of deposit: May 27, 2005
(c)受託番号: BP-10339 (ハイブリドーマ 3D3#7)  (c) Accession number: BP-10339 (Hybridoma 3D3 # 7)
(c)受託番号: BP-10340 (ハイブリドーマ 3G7#6)  (c) Accession number: BP-10340 (Hybridoma 3G7 # 6)
[0078] 本発明に利用するためのモノクローナル抗体は、それを産生するハイプリドーマを 培養しその培養物から回収することができる。ハイプリドーマは、 in vitroまたは in vivo で培養することができる。 in vitroにおいては、 RPMI1640などの公知の培地を用いて 、 ノ、イブリドーマを培養することができる。培養上清には当該ハイプリドーマが分泌し たィムノグロブリンが蓄積される。したがって、培養上清を採取し、必要に応じて精製 することにより、本発明のモノクローナル抗体を得ることができる。培地には、血清を 添カロしない方力 ィムノグロブリンの精製が容易である。しかし、ハイプリドーマのより 迅速な増殖と、抗体産生の促進を目的として、 10%程度のゥシ胎児血清を培地にカロ 免ることちでさる。  [0078] The monoclonal antibody to be used in the present invention can be recovered from the culture by culturing the hyperidoma that produces the monoclonal antibody. Hypridoma can be cultured in vitro or in vivo. In vitro, a known medium such as RPMI1640 can be used to cultivate wild and hybridomas. The immunoglobulin secreted by the hyperidoma accumulates in the culture supernatant. Therefore, the monoclonal antibody of the present invention can be obtained by collecting the culture supernatant and purifying it as necessary. The medium is easy to purify immunoglobulin without adding serum. However, for the purpose of more rapid growth of hypridoma and promotion of antibody production, it is possible to release about 10% urine fetal serum into the medium.
[0079] ノ、イブリドーマは、 in vivoにおいて培養することもできる。具体的には、ヌードマウス の腹腔にハイプリドーマを接種することにより、腹腔内でハイプリドーマを培養するこ とができる。モノクローナル抗体は、腹水中に蓄積する。したがって、腹水を採取し、 必要に応じて精製すれば、必要なモノクローナル抗体を得ることができる。得られた モノクローナル抗体は、目的に応じて適宜、修飾、あるいはカ卩ェすることができる。  [0079] Nobridoma can also be cultured in vivo. Specifically, a hyperidoma can be cultured in the peritoneal cavity by inoculating the peritoneal cavity of a nude mouse. Monoclonal antibodies accumulate in ascites. Therefore, the necessary monoclonal antibodies can be obtained by collecting ascites and purifying it as necessary. The obtained monoclonal antibody can be appropriately modified or covered according to the purpose.
[0080] BST2およびそのホモログのいずれかまたは両方に結合する抗体は、 IPCに接触さ せるとその活性を抑制する。したがってこれらの抗体を、本発明における IPCの活性 抑制剤に利用することができる。すなわち本発明は、下記 (a)- (c)力 なる群力 選択 される少なくとも 1種類の成分を有効成分として含む、腎炎の治療剤を提供する。ある いは本発明は、下記 (a)-(c)力もなる群力 選択される少なくとも 1種類の成分を投与 する工程を含む腎炎の治療方法に関する。更に本発明は、下記 (a)- (c)力 なる群か ら選択される少なくとも 1種類の成分の腎炎の治療剤の製造における使用に関する。 (a) BST2およびそのホモログの 、ずれかまたは両方に結合する抗体、またはその抗 原結合領域を含む断片 [0080] Antibodies that bind to either or both of BST2 and its homologues suppress their activity when contacted with IPC. Therefore, these antibodies can be used as IPC activity inhibitors in the present invention. That is, the present invention provides a therapeutic agent for nephritis comprising as an active ingredient at least one component selected from the following (a) to (c) powerful group forces. Alternatively, the present invention relates to a method for treating nephritis comprising the step of administering at least one component selected from the following group powers (a) to (c) that also have powers. The present invention further relates to the use of at least one component selected from the following groups (a) to (c) in the manufacture of a therapeutic agent for nephritis. (a) An antibody that binds to one or both of BST2 and its homolog, or a fragment containing the antigen-binding region thereof
(b) (a)の抗体の相補性決定領域を移植したィムノグロブリン、またはその抗原結合領 域を含む断片、および  (b) an immunoglobulin transplanted with the complementarity-determining region of the antibody of (a), or a fragment containing the antigen-binding region thereof, and
(c) (a)または (b)に記載の成分をコードするポリヌクレオチド  (c) a polynucleotide encoding the component according to (a) or (b)
本発明において、 IPCの活性を抑制するモノクローナル抗体としては、配列番号: 2 、配列番号: 4、および配列番号: 6力 なる群力 選択されるいずれかの配列番号に 記載のアミノ酸配列を有する蛋白質を認識するモノクローナル抗体を利用することが できる。  In the present invention, the monoclonal antibody that suppresses the activity of IPC includes SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 6. Protein having the amino acid sequence described in any selected SEQ ID NO: 6 Monoclonal antibodies that recognize can be used.
[0081] 抗体が IPCの IFN産生活性の抑制作用を有することは次のようにして確認することが できる。 IPCはウィルスの刺激によって IFNを大量に産生する。 IPCに対するウィルス 刺激の前、後、あるいはウィルス刺激と同時に抗体を与え、抗体を与えない IPCを対 照として、 IFNの産生能を比較する。 IFN産生能は、 IPCの培養上清中に含まれる IFN - aや IFN- βを測定することによって評価することができる。比較の結果、抗体の添 加によって、上清中の IFNの量が有意に低下すれば、試験された抗体は、 IFN産生 能を抑制する作用を有することが確認できる。これら IFNの測定方法は公知である。 I PCは、生体における IFNの大部分を産生する細胞である。したがって、 IPCの IFN産 生能の抑制によって、生体の IFNの産生状態を調節することができる。  [0081] It can be confirmed as follows that the antibody has an inhibitory effect on IPC IFN production activity. IPC produces large amounts of IFN upon viral stimulation. Before and after virus stimulation of IPC, give antibody at the same time as virus stimulation, and compare the ability of IFN to produce IPC without antibody. The IFN production ability can be evaluated by measuring IFN-a and IFN-β contained in the culture supernatant of IPC. As a result of the comparison, if the amount of IFN in the supernatant is significantly reduced by the addition of the antibody, it can be confirmed that the tested antibody has an action of suppressing IFN production ability. Methods for measuring these IFNs are known. I PC is a cell that produces most of IFN in the living body. Therefore, the production state of IFN in the living body can be regulated by suppressing the IFN production ability of IPC.
[0082] 本発明にお 、て、 IPC活性には IPCの細胞数の維持が含まれる。したがって本発明 における IPCの活性の抑制は、 IPCの細胞数の抑制を含む。 IFN産生と同様に、感染 性のウィルスなどの刺激によって IPCの活性ィ匕が誘導される。活性ィ匕された IPCの細 胞数が、抗体の存在下で抑制されることを確認すれば、当該抗体が IPCの活性を抑 制していることがわかる。比較対照としては、 IFN産生と同様に、活性を確認すべき抗 体と同じ動物種に由来する不活性なィムノグロブリンを用いることができる。 IPCの細 胞数は、細胞の計数によって定量的に比較することができる。細胞数は、 FACSゃ顕 微鏡によって計数することができる。  [0082] In the present invention, IPC activity includes maintenance of the number of IPC cells. Therefore, suppression of IPC activity in the present invention includes suppression of the number of IPC cells. Similar to IFN production, IPC activity is induced by stimulating infectious viruses. If it is confirmed that the number of activated IPC cells is suppressed in the presence of the antibody, it can be seen that the antibody suppresses the IPC activity. As a comparative control, inactive immunoglobulin derived from the same animal species as the antibody whose activity is to be confirmed can be used, as in IFN production. The number of cells in IPC can be compared quantitatively by counting cells. The number of cells can be counted with a FACS microscope.
[0083] 本発明にお 、て、好ま 、IPCの活性抑制剤は、 IPCの細胞表面抗原を認識し、そ の活性を抑制する抗体である。たとえば BST2およびそのホモログの 、ずれかまたは 両方を認識する抗体は、本発明における IPC活性抑制剤として好ましい。抗体を、そ の抗体が由来する生物種とは異なる宿主に投与する場合には、当該宿主にとって異 物と認識されにくい形にカ卩ェするのが望ましい。たとえば、次のような分子に加工す ることにより、ィムノグロブリンを異物として認識されに《することができる。ィムノグロ ブリン分子を以下のようにカ卩ェする手法は公知である。 [0083] In the present invention, the IPC activity inhibitor is preferably an antibody that recognizes an IPC cell surface antigen and suppresses its activity. For example, BST2 and its homologue Antibodies that recognize both are preferred as IPC activity inhibitors in the present invention. When an antibody is administered to a host different from the species from which the antibody is derived, it is desirable to cover the antibody in a form that is difficult for the host to recognize as a foreign object. For example, by processing into the following molecules, immunoglobulin can be recognized as a foreign substance. A technique for covering the immunoglobulin molecule as follows is known.
一定常領域を欠失した抗原結合領域を含む断片 (Monoclonal Ant¾odies: Principle s and Practice, third edition, Academic Press Limited. 1995; Antioody Engineering, A Practical Approach, IRL PRESS, 1996)  Fragment containing antigen-binding region lacking one constant region (Monoclonal Ant¾odies: Principles and Practice, third edition, Academic Press Limited. 1995; Antioody Engineering, A Practical Approach, IRL PRESS, 1996)
モノクローナル抗体の抗原結合領域と宿主のィムノグロブリンの定常領域とで構成 されるキメラ抗体 (遺伝子発現実験マニュアル 講談社 1994年 (石田 功、安東 民衛 編))  A chimeric antibody composed of the antigen-binding region of a monoclonal antibody and the constant region of the immunoglobulin of the host (Gene Expression Experiment Manual Kodansha 1994 (Ishida Isao, Ando Tamie))
一宿主のィムノグロブリンにおける相補性決定領域 (CDR)をモノクローナル抗体の CD Rに置換した CDR置換抗体 (遺伝子発現実験マニュアル 講談社 1994年 (石田 功、安東 民衛 編))  A CDR-substituted antibody in which the complementarity-determining region (CDR) in the immunoglobulin of one host is replaced with CDR of the monoclonal antibody (Gene Expression Experiment Manual Kodansha 1994 (Ishida Isao, Ando Tamie))
[0084] あるいはヒト抗体遺伝子を組み込まれた非ヒト動物を免疫動物として用いることによ り、非ヒト動物を用いながら、ヒト抗体を得ることができる。たとえば、ヒト抗体遺伝子を 組み込んだトランスジエニックマウス力 ヒト抗体を製造するための免疫動物として実 用化されている (Ishida et al., Cloning and Stem Cells, 4:85-95,2002)。このような動物 を用いることにより、ヒトの BST2を抗原として、 BST2を認識するヒト抗体を得ることがで きる。ヒト抗体は、ヒトに投与する抗体として好ましい抗体である。  [0084] Alternatively, by using a non-human animal into which a human antibody gene has been incorporated as an immunized animal, a human antibody can be obtained using the non-human animal. For example, transgenic mice incorporating human antibody genes have been put to practical use as immunized animals for producing human antibodies (Ishida et al., Cloning and Stem Cells, 4: 85-95, 2002). By using such an animal, a human antibody that recognizes BST2 can be obtained using human BST2 as an antigen. Human antibodies are preferred antibodies for administration to humans.
[0085] あるいは、ファージディスプレー法 (McCafferty J. et al., Nature 348:552-554, 1990;  [0085] Alternatively, the phage display method (McCafferty J. et al., Nature 348: 552-554, 1990;
Kretzschmar T et.al, Curr Opin Biotechnol. 2002 Dec;13(6):598- 602.)によって、ヒト のィムノグロブリン可変領域遺伝子を取得することもできる。ファージディスプレー法 にお 、ては、ヒトイムノグロブリン可変領域をコードする遺伝子がファージ遺伝子に組 み込まれる。多様なィムノグロブリン遺伝子をソースとして、ファージライブラリーを作 成することもできる。ファージは自身を構成する蛋白質の融合蛋白質として、当該可 変領域を発現する。ファージによって発現されたファージ表面の可変領域は、抗原と の結合活性を維持している。したがって、抗原あるいは抗原を発現した細胞などに結 合するファージを選択することによって、ファージライブラリーから、目的とする結合活 性を有する可変領域を発現したファージをスクリーニングすることができる。更に、こう して選択されたファージ粒子の中には、目的とする結合活性を有する可変領域をコ ードする遺伝子が保持されている。すなわち、ファージディスプレー法においては、 可変領域の結合活性を指標として、目的とする結合活性を有する可変領域をコード して 、る遺伝子を取得することができる。 The human immunoglobulin variable region gene can also be obtained by Kretzschmar T et.al, Curr Opin Biotechnol. 2002 Dec; 13 (6): 598-602.). In the phage display method, a gene encoding a human immunoglobulin variable region is incorporated into a phage gene. A phage library can also be created using various immunoglobulin genes as sources. The phage expresses the variable region as a fusion protein of its constituent proteins. The variable region of the phage surface expressed by the phage maintains the binding activity to the antigen. Therefore, it binds to the antigen or cells expressing the antigen. By selecting a phage to be combined, a phage expressing a variable region having a target binding activity can be screened from a phage library. Furthermore, the phage particles thus selected retain a gene that codes for a variable region having the desired binding activity. That is, in the phage display method, a gene encoding a variable region having a target binding activity can be obtained using the binding activity of the variable region as an index.
[0086] 本発明による腎炎の治療剤、または治療方法において、抗体、またはその少なくと も抗原結合領域を含む抗体断片は、蛋白質として、あるいはそれをコードするポリヌ クレオチドとして、投与することができる。ポリヌクレオチドを投与するには、目的とする 蛋白質を発現できるように、適当なプロモーターの制御下に目的とする蛋白質をコー ドするポリヌクレオチドを配置したベクターを利用するのが望ましい。ベクターには、ェ ンハンサーゃターミネータ一を配置することもできる。ィムノグロブリンを構成する重鎖 と軽鎖の遺伝子を保持し、ィムノグロブリン分子を発現することができるベクターが公 知である。  [0086] In the therapeutic agent or therapeutic method for nephritis according to the present invention, an antibody or an antibody fragment containing at least an antigen-binding region thereof can be administered as a protein or a polynucleotide encoding the antibody. In order to administer the polynucleotide, it is desirable to use a vector in which a polynucleotide encoding the target protein is placed under the control of an appropriate promoter so that the target protein can be expressed. An enhancer or terminator can be placed in the vector. Vectors that retain the heavy and light chain genes that make up immunoglobulin and are capable of expressing immunoglobulin molecules are known.
ィムノグロブリンを発現することができるベクターは、細胞に導入することにより投与 することができる。生体への投与にあたっては、生体への投与によって細胞に感染さ せることができるものはそのまま投与することができる。あるいは、いったん生体から分 離したリンパ球にベクターを導入して再び生体に戻すこともできる (ex vivo)。  A vector capable of expressing an immunoglobulin can be administered by introduction into a cell. In administration to a living body, those that can infect cells by administration to a living body can be administered as they are. Alternatively, the vector can be introduced into lymphocytes once separated from the living body and returned to the living body (ex vivo).
[0087] 本発明に基づく腎炎の治療剤、または治療方法において、生体に投与されるモノク ローナル抗体の量は、ィムノグロブリンとして体重 lkgあたり、通常 0. 5mg〜100mg、 たとえば lmg〜50mg、好ましくは 2mg〜: LOmgである。生体への抗体の投与間隔は、 治療期間中の生体内におけるィムノグロブリンの有効濃度が維持できるように適宜調 節することができる。具体的には、たとえば、 1〜2週間間隔で投与することができる。 投与経路は、任意である。当業者は、治療に際して効果的な投与経路を適宜選択す ることができる。具体的には、経口的に、あるいは非経口的な投与を示すことができる 。たとえば、静脈内注射、筋肉内注射、腹腔内注射、あるいは皮下注射等により、全 身あるいは局所に抗体を投与することができる。本発明における非経口投与に適当 な製剤として、注射剤、座剤、噴霧剤などがあげられる。また細胞に与える場合には 、培養液中に通常 1 μ g/mL、好ましくは 10 g/mL以上、より好ましくは 50 g/mL以 上、更に好ましくは 0. 5mg/mL以上のィムノグロブリンを与える。 [0087] In the therapeutic agent or therapeutic method for nephritis according to the present invention, the amount of monoclonal antibody administered to the living body is usually 0.5 mg to 100 mg, for example, lmg to 50 mg, preferably 1 mg to 50 mg per kg body weight as immunoglobulin. Is 2 mg ~: LOmg. The administration interval of the antibody to the living body can be appropriately adjusted so that the effective concentration of immunoglobulin in the living body during the treatment period can be maintained. Specifically, for example, it can be administered at intervals of 1 to 2 weeks. The administration route is arbitrary. A person skilled in the art can appropriately select an effective administration route for treatment. Specifically, oral or parenteral administration can be indicated. For example, the antibody can be administered whole or locally by intravenous injection, intramuscular injection, intraperitoneal injection, or subcutaneous injection. Examples of preparations suitable for parenteral administration in the present invention include injections, suppositories, and sprays. When giving to cells In general, 1 μg / mL, preferably 10 g / mL or more, more preferably 50 g / mL or more, and even more preferably 0.5 mg / mL or more of immunoglobulin is provided in the culture solution.
[0088] 本発明の腎炎の治療剤、または治療方法において、モノクローナル抗体は、任意 の方法により生体に投与することができる。通常モノクローナル抗体は、薬学的に許 容される担体と配合される。モノクローナル抗体には、必要に応じて増粘剤、安定剤 、防腐剤および可溶化剤などの添加剤を配合することができる。このような担体また は添加剤としては、ラタトース、クェン酸、ステアリン酸、ステアリン酸マグネシウム、ス クロース、デンプン、タルク、ジエラチン、寒天、植物油、エチレングリコールなどが挙 げられる。「薬学的に許容される」という用語は、各国政府の監督当局により承認され ているか、または各国の薬局方もしくは一般的に認知されている薬局方に動物、哺 乳動物、および特にヒトへの使用に関して列記されていることを言う。本発明の腎炎 の治療剤は、 1回または複数回の用量の凍結乾燥粉末または錠剤の形態で供給す ることもできる。凍結乾燥粉末または錠剤には、更に、投与の前に該組成物を所望の 濃度となるように溶解するための注射用の滅菌済みの水、生理的食塩水または緩衝 液を組み合わせることもできる。 [0088] In the therapeutic agent or therapeutic method for nephritis of the present invention, the monoclonal antibody can be administered to a living body by any method. Usually, monoclonal antibodies are combined with a pharmaceutically acceptable carrier. Monoclonal antibodies can be blended with additives such as thickeners, stabilizers, preservatives, and solubilizers as necessary. Such carriers or additives include latatoses, citrates, stearic acid, magnesium stearate, sucrose, starch, talc, dielatin, agar, vegetable oil, ethylene glycol and the like. The term “pharmaceutically acceptable” is approved by national government supervisory authorities, or in the national pharmacopoeia or generally recognized pharmacopoeia for animals, mammals, and especially humans. Say what is listed for use. The therapeutic agent for nephritis of the present invention can also be supplied in the form of one or more doses of lyophilized powder or tablets. The lyophilized powder or tablet may be further combined with sterile water for injection, physiological saline or buffer to dissolve the composition to the desired concentration prior to administration.
[0089] 更に、ィムノグロブリンを発現するベクターとして投与する場合には、重鎖と軽鎖を 別のプラスミドとしてコトランスフエタトするとして、体重 lkgあたり各プラスミドを 0. 1〜 10mg、たとえば l〜5mgを投与することができる。また in vitroにおいて細胞に導入す るためには、 1〜5 μ g/106cellのベクターが用いられる。 [0089] Further, when administered as an immunoglobulin-expressing vector, each plasmid is 0.1 to 10 mg per kg body weight, for example, l -5 mg can be administered. For introduction into cells in vitro, 1-5 μg / 10 6 cell vectors are used.
[0090] 更に本発明は、次の工程を含む被験化合物の腎炎の治療効果の検出方法に関す る。  [0090] The present invention further relates to a method for detecting the therapeutic effect of a test compound on nephritis, comprising the following steps.
(1)インターフェロン産生細胞とインターフェロン産生細胞のインターフェロン産生誘 導物質を、以下の i)-iii)の 、ずれかの順序で接触させる工程、  (1) contacting the interferon-producing cells and the interferon-producing inducer of the interferon-producing cells in any order of the following i) to iii):
0被験化合物とインターフェロン産生細胞を接触後に、インターフェロン産生を誘導 する細胞刺激剤をインターフェロン産生細胞に接触させる、  After contacting the test compound and interferon-producing cells, a cell stimulator that induces interferon production is contacted with the interferon-producing cells.
ii)被験化合物とインターフェロン産生を誘導する細胞刺激剤を同時にインターフエ口 ン産生細胞に接触させる、または  ii) contacting a test compound and a cell stimulant that induces interferon production simultaneously with the interferon-producing cells, or
iii)インターフェロン産生を誘導する細胞刺激剤をインターフェロン産生細胞に接触さ せた後に、被験化合物とインターフェロン産生細胞を接触させる iii) A cell stimulant that induces interferon production is contacted with the interferon-producing cells. The test compound and interferon-producing cells are contacted
(2)インターフェロン産生細胞の活性を測定する工程、および  (2) measuring the activity of interferon-producing cells, and
(3)対照と比較して、インターフ ロン産生細胞の活性が抑制されたとき、被験化合物 の腎炎の治療効果が検出される工程  (3) A step in which the therapeutic effect of the test compound on nephritis is detected when the activity of interferon-producing cells is suppressed compared to the control.
[0091] 本発明の方法において、細胞刺激剤とは IPCの活性ィ匕およびインターフェロン産生 を誘導しうる物質を言う。たとえば、ウィルスやウィルスの構成成分を、細胞刺激剤と して示すことができる。具体的には、単純へルぺスウィルス (Herpes simplex virus ;HS V)、あるいはインフルエンザウイルス (Influenza virus)などのウィルスの投与により IPC が活性化することが知られている。その他、バクテリア中の DNAである CpGの IPC活性 化作用も公知である。これらの細胞刺激剤は、単独で用いても良いし、異なる細胞刺 激剤を組み合わせて用いることもできる。細胞刺激剤と被験化合物とは、同時に IPC に接触させても良いし、細胞刺激剤との接触の前あるいは後に IPCと被験化合物を 接虫させることちでさる。  [0091] In the method of the present invention, the cell stimulating agent refers to a substance capable of inducing IPC activity and interferon production. For example, viruses and virus components can be indicated as cell stimulants. Specifically, it is known that IPC is activated by administration of a virus such as Herpes simplex virus (HS V) or influenza virus (Influenza virus). In addition, the IPC activation action of CpG, which is DNA in bacteria, is also known. These cell stimulants may be used alone or in combination with different cell stimulants. The cell stimulant and test compound may be contacted with the IPC at the same time, or by contacting the IPC with the test compound before or after contact with the cell stimulant.
[0092] 本発明にお ヽて、細胞刺激剤、 IPC,および被験化合物は、生体外 (in vitro),生体 内 (in vivo),あるいは ex vivoにおいて接触させることができる。生体外 (in vitro)にお いては、 IPCを培養可能な条件下で、先に述べたような任意の順番で細胞刺激剤お よび被験化合物を IPCと接触させることができる。また生体内 (in vivo)においては、生 体内の IPCに対して、被験化合物あるいは細胞刺激剤を投与した後に、 IPCを採取す る。採取された IPCを生体外にお 、て細胞刺激剤あるいは被験化合物に接触させた 後、細胞の活性ィ匕のレベルを評価することができる。細胞の活性ィ匕のレベルは、細胞 が産生する IFNの濃度の変化などによって評価することができる。  In the present invention, the cell stimulator, IPC, and test compound can be contacted in vitro, in vivo, or ex vivo. In vitro, cell stimulants and test compounds can be contacted with IPC in any order as described above under conditions where IPC can be cultured. In vivo, the test compound or cell stimulant is administered to the in vivo IPC, and then the IPC is collected. After the collected IPC is contacted with a cell stimulant or a test compound in vitro, the level of cell activity can be evaluated. The level of cell activity can be evaluated by changing the concentration of IFN produced by the cell.
更に ex vivoでの評価においては、生体外で調製された IPCに対して、細胞刺激剤 または被験化合物を接触させる。接触後の IPCを生体に投与し、更に被験化合物ま たは細胞刺激剤を投与する。生体内における IPCの活性ィ匕のレベルを評価し、被験 化合物の作用が評価される。 IPCの活性化のレベルは、たとえば血中の IFNのレベル を指標として評価することができる。なお生体外における IPCの調製とは、生体から IP Cを採取すること、あるいは IPCの前駆細胞の分ィ匕誘導によって人工的に IPCを調製 することを言う。 [0093] なお本発明の方法における対照としては、被験化合物に代えて腎炎の治療効果が 予め知られている物質を用いることができる。たとえば、生理食塩水は治療効果の無 V、物質である。あるいは腎炎の治療効果を有することが確認されて 、る物質を対象と して用い、その物質との相対的な比較によって被験化合物の作用を評価することも できる。 Furthermore, in ex vivo evaluation, a cell stimulant or a test compound is brought into contact with IPC prepared in vitro. The contacted IPC is administered to the living body, and the test compound or cell stimulant is administered. The level of IPC activity in vivo is evaluated, and the effect of the test compound is evaluated. The level of IPC activation can be evaluated using, for example, the level of IFN in blood as an index. The preparation of IPC in vitro refers to collecting IPC from a living body or artificially preparing IPC by induction of IPC progenitor cells. [0093] As a control in the method of the present invention, a substance whose therapeutic effect on nephritis is known in advance can be used in place of the test compound. For example, saline is a substance with no therapeutic effect. Alternatively, a substance that has been confirmed to have a therapeutic effect on nephritis can be used as a target, and the action of the test compound can be evaluated by relative comparison with the substance.
[0094] 本発明による腎炎の治療効果の検出方法において、 IPCの活性とは、たとえば IFN の産生レベル、および IPCの数の、いずれか、または両方を言う。特に好ましい活性 は、 IPCによる IFNの産生能である。 IPCの IFN産生能は、細胞の培養物中に含まれる I FNの量、あるいは濃度を決定することによって比較することができる。各種の IFNを測 定するための試薬、あるいはキットが市販されている。あるいは、 IPCの細胞数は、 IP Cの培養物中に存在する細胞数を計数することによって比較することができる。細胞 数は、 IPCの細胞表面抗原を認識する抗体を使った FACSによって明らかにすること ができる。 IPCの細胞表面抗原には、たとえば BST2や BDCA-2などを利用することが できる。その他、 CD4並びに CD123を、 IPCを計数するためのマーカーとすることもで きる。  [0094] In the method for detecting the therapeutic effect of nephritis according to the present invention, the activity of IPC refers to, for example, either or both of the production level of IFN and the number of IPCs. A particularly preferred activity is the ability to produce IFN by IPC. The ability of IPC to produce IFN can be compared by determining the amount or concentration of IFN contained in the cell culture. Reagents or kits for measuring various IFNs are commercially available. Alternatively, the number of IPC cells can be compared by counting the number of cells present in the IPC culture. The number of cells can be determined by FACS using an antibody that recognizes the cell surface antigen of IPC. For example, BST2 or BDCA-2 can be used as the cell surface antigen of IPC. In addition, CD4 and CD123 can also be used as markers for counting IPC.
[0095] 本発明において、腎炎の治療効果を検出するために必要な試薬には、更に IPCを 活性ィ匕するための細胞刺激剤、 IPCの培養のための培地や培養容器などを組み合 わせることもできる。また、 IPCの活性ィ匕作用に与える影響が明らかな物質を対照とし て組み合わせることもできる。  [0095] In the present invention, the reagent necessary for detecting the therapeutic effect of nephritis is further combined with a cell stimulant for activating IPC, a medium for culturing IPC, a culture vessel, and the like. You can also. Substances that have a clear effect on IPC activity can also be combined as a control.
[0096] 更に本発明の腎炎の治療効果を測定する方法を利用して、腎炎の治療剤の候補 化合物のスクリーニング方法が提供される。すなわち本発明は、次の工程を含む、腎 炎の治療効果を有する被験化合物のスクリーニング方法に関する。  Furthermore, a method for screening a candidate compound for a therapeutic agent for nephritis is provided by using the method for measuring the therapeutic effect of nephritis of the present invention. That is, the present invention relates to a screening method for a test compound having a therapeutic effect for nephritis, including the following steps.
(1)本発明の腎炎の治療効果を測定する方法によって、被験化合物が有している腎 炎の治療効果を測定する工程、および  (1) a step of measuring a therapeutic effect of nephritis possessed by a test compound by the method for measuring a therapeutic effect of nephritis of the present invention, and
(2)対照と比較して前記効果が大きい被験化合物を選択する工程  (2) a step of selecting a test compound having a greater effect than the control
本発明のスクリ一-ング方法に用 、る被験化合物としては、 IPCの細胞表面抗原を 認識する抗体、その少なくとも抗原結合領域を含む抗体断片、あるいはその可変領 域を含む断片を用いることができる。抗体として、可変領域を発現させたファージライ ブラリーを用いることもできる。あるいは、コンビナトリアルケミストリ一により合成された 化合物標品のほか、動 ·植物組織の抽出物もしくは微生物培養物等の複数の化合 物を含む混合物、またそれらから精製された標品などを候補ィ匕合物として用いること ちでさる。 As a test compound to be used in the screening method of the present invention, an antibody that recognizes an IPC cell surface antigen, an antibody fragment containing at least an antigen-binding region thereof, or a fragment containing a variable region thereof can be used. . As an antibody, a phage library expressing a variable region is used. A brary can also be used. Alternatively, in addition to compound preparations synthesized by combinatorial chemistry, a mixture containing multiple compounds such as extracts of animal and plant tissues or microbial cultures, and preparations purified from them can be combined. Use it as a thing.
本発明に基づ 、て、 IPC表面抗原を認識する抗体の、腎炎の治療効果を見出すた めには、たとえば次の工程を含む検出方法を実施することができる。  On the basis of the present invention, in order to find out the therapeutic effect of nephritis of an antibody that recognizes the IPC surface antigen, for example, a detection method including the following steps can be carried out.
(1)インターフェロン産生細胞とインターフェロン産生細胞のインターフェロン産生誘 導物質を、以下の i)-iii)の 、ずれかの順序で接触させる工程、  (1) contacting the interferon-producing cells and the interferon-producing inducer of the interferon-producing cells in any order of the following i) to iii):
0抗体と IPCを接触後に、 IFN産生を誘導する細胞刺激剤を IPCに接触させる、 ii)抗体と IFN産生を誘導する細胞刺激剤を同時に IPCに接触させる、または  After contacting the antibody and IPC, contact the cell stimulant that induces IFN production with IPC, ii) contact the antibody and the cell stimulator that induces IFN production simultaneously with IPC, or
iii) IFN産生を誘導する細胞刺激剤を IPCに接触させた後に、抗体と IPCを接触させるiii) Contacting the IPC with a cell stimulator that induces IFN production, and then contacting the antibody with the IPC
(2) IPCの活性を測定する工程、および (2) measuring the activity of IPC, and
(3)対照と比較して、 IPCの活性が抑制されたとき、抗体の腎炎の治療効果が検出さ れる工程  (3) The step of detecting the therapeutic effect of antibody nephritis when the activity of IPC is suppressed compared to the control
本発明に基づぐ抗体の腎炎の治療効果の検出方法は、更に当該活性を有する 抗体のスクリーニング方法を可能とする。すなわち本発明は、以下の工程を含む、腎 炎の治療効果を有する抗体のスクリーニング方法に関する。  The method for detecting the therapeutic effect of an antibody nephritis based on the present invention further enables a screening method for an antibody having the activity. That is, the present invention relates to a method for screening an antibody having a therapeutic effect for nephritis, including the following steps.
(1)本発明の腎炎の治療効果を測定する方法によって、抗体が有している腎炎の治 療効果を測定する工程、および  (1) a step of measuring a therapeutic effect of nephritis possessed by an antibody by the method for measuring a therapeutic effect of nephritis of the present invention, and
(2)対照と比較して前記効果が大きい抗体を選択する工程  (2) A step of selecting an antibody having the above effect compared to the control
本発明の検出方法並びにスクリーニング方法において、抗体とは、天然のィムノグ ロブリン分子、その抗原結合領域を含む断片、アミノ酸配列や糖鎖が修飾された変 異体、および化学的な修飾を施した誘導体が含まれる。抗体の抗原結合領域を含む 断片は、ィムノグロブリンを酵素的に消化することによって得ることができる。あるいは 、当該領域をコードする遺伝子を単離し、適当な発現系において発現させることによ り、遺伝子工学的に得ることもできる。このようなィムノグロブリンの組み換え体として、 たとえばファージ抗体ライブラリーを示すことができる。一方、 IPCおよび細胞刺激剤 は、先に示したようなものを利用することができる。 [0098] IPCに対する刺激は IFNの産生を誘導することから、その活性化の調節によって IFN 産生を調節することができる。そして本発明者らは、 IPCの活性の抑制を通じて、腎炎 の治療効果を得られることを明らかにした。したがって、 IPCの活性を抑制することが できる物質は腎炎の治療剤として用いることができる。すなわち、本発明のスクリー- ング方法によって選択することができる化合物は、腎炎の治療剤として有用である。 In the detection method and screening method of the present invention, an antibody includes a natural immunoglobulin molecule, a fragment containing the antigen-binding region thereof, a variant with a modified amino acid sequence or sugar chain, and a derivative with chemical modification. included. A fragment containing the antigen-binding region of an antibody can be obtained by enzymatic digestion of immunoglobulin. Alternatively, it can be obtained by genetic engineering by isolating a gene encoding the region and expressing it in an appropriate expression system. As such an immunoglobulin recombinant, for example, a phage antibody library can be shown. On the other hand, IPCs and cell stimulants can be used as described above. [0098] Since stimulation to IPC induces IFN production, IFN production can be regulated by regulating its activation. The present inventors have clarified that a therapeutic effect for nephritis can be obtained through suppression of IPC activity. Therefore, a substance capable of suppressing IPC activity can be used as a therapeutic agent for nephritis. That is, the compound that can be selected by the screening method of the present invention is useful as a therapeutic agent for nephritis.
[0099] 本発明のスクリーニング方法において、腎炎の治療効果を有することが明らかな物 質を接触させた IPCを対照として用いれば、この物質よりも治療効果の大きい物質を 見出すことができる。 IPCは生体中の IFNの大部分を産生する重要な細胞である。し たがって、本発明のスクリーニング方法によって得ることができる化合物は、免疫バラ ンスの調節による腎炎の治療剤として重要である。あるいは、本発明のスクリーニング 方法によって得ることができる化合物は、免疫バランスの調節による腎炎の治療剤の 製造に使用することができる。  [0099] In the screening method of the present invention, a substance having a therapeutic effect greater than this substance can be found by using as a control an IPC that has been brought into contact with a substance that is apparently effective in treating nephritis. IPC is an important cell that produces most of the IFN in the body. Therefore, the compound obtainable by the screening method of the present invention is important as a therapeutic agent for nephritis by regulating immune balance. Alternatively, the compound obtained by the screening method of the present invention can be used for the production of a therapeutic agent for nephritis by regulating immune balance.
[0100] 本発明のスクリーニングによって選択された化合物を、必要に応じて、 IPC以外の様 々な細胞に接触させることにより、他の細胞に対する作用を確認することができる。 IP C以外の細胞に対して顕著な増殖抑制や細胞障害作用が検出されなければ、その 化合物は安全な治療薬として使用できる可能性が高まる。あるいは、特定の細胞に 対する障害作用が確認された場合であっても、局所投与など、投与形態を選択する ことにより、治療薬として利用できる可能性はある。更に、 SLEモデル動物などに投与 して、より詳細に腎炎の治療効果を評価することができる。  [0100] By contacting the compound selected by the screening of the present invention with various cells other than IPC as necessary, the action on other cells can be confirmed. If significant growth inhibition and cytotoxic effects are not detected on cells other than IPC, the compound is likely to be used as a safe therapeutic agent. Alternatively, even when a disordered effect on specific cells is confirmed, there is a possibility that it can be used as a therapeutic agent by selecting an administration form such as local administration. Furthermore, it can be administered to SLE model animals and the like to evaluate the therapeutic effect of nephritis in more detail.
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書 に組み入れられる。  It should be noted that all prior art documents cited in this specification are incorporated herein by reference.
以下、実施例に基づいて本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail based on examples.
実施例 1  Example 1
[0101] モノクローナル抗体作製プロトコール  [0101] Monoclonal antibody production protocol
免疫原とする細胞は以下のようにして調製した。 Balb/cマウス雌 (4〜6週令)の骨髄 細胞を、 10ng/mlの FLT- 3リガンド(R&D Systems社製)を添カ卩した 10%FCS- RPMI164 0培地〔10%牛胎児血清(FCS)、およびペニシリン、ストレプトマイシンを含む RPMI16 40培地〕にて 10日間培養した。 10日後、 IPC (Interferon producing cell)を、 CDllc陽 性、 CDllb陰性、 B220陽性分画としてセルソーター(FACSVantage, Becton Dickinso n社製)で分離した。抗体は Becton Dickinson社製のものを用いた。 Cells used as an immunogen were prepared as follows. The bone marrow cells of Balb / c female mice (4-6 weeks old) were mixed with 10% FCS-RPMI164 0 medium supplemented with 10 ng / ml FLT-3 ligand (R & D Systems) [10% fetal bovine serum ( FCS), and RPMI 16 40 medium containing penicillin and streptomycin] for 10 days. 10 days later, IPC (Interferon producing cell) Sex, CDllb negative, and B220 positive fractions were separated with a cell sorter (FACSVantage, manufactured by Becton Dickinson). The antibody manufactured by Becton Dickinson was used.
上記の分離した細胞を、 0、 4、 11日目に、片足あたり lxlO6個ずつ、完全フロインド アジュバント(CFA:ャトロン社製)と共にラットのフットパッド(foot pad)へ注入した。 12 日目に免疫ラットのリンパ節を分離し、リンパ球を採取した。マウスのミエローマ細胞 P 3x63Ag8.653とラットのリンパ球を 4 : 5の割合で混合し、ポリエチレングリコール(PEG) を加えて細胞を融合した。融合後の細胞を十分に洗浄して HAT培地に分散させ、 1 ゥエルあたり 5xl04個の細胞を含むように 96 well plateにまいた。 On day 0, 4, and 11, the separated cells were injected into rat foot pads together with 6 lxlO per leg together with complete Freund's adjuvant (CFA: manufactured by Jatron). On day 12, the lymph nodes of the immunized rat were isolated and lymphocytes were collected. Mouse myeloma cells P3x63Ag8.653 and rat lymphocytes were mixed at a ratio of 4: 5, and polyethylene glycol (PEG) was added to fuse the cells. The fused cells were thoroughly washed and dispersed in HAT medium, and spread on a 96-well plate to contain 5xl0 4 cells per well.
[0102] 細胞が増殖したゥエルの細胞を回収して希釈して、その培養上清をマウス脾臓細 胞、及び培養骨髄細胞に対する反応性を指標としてスクリーニングした。スクリーニン グ方法の詳細は実施例 2のとおりである。陽性反応を示したゥエルの細胞を限外希釈 によりクローユングし、モノクローナル抗体を産生するハイブリドーマクローンを確立し た。更に、ノ、イブリドーマの培養上清、あるいはハイプリドーマをマウスの腹腔内に移 植して得られた腹水より精製された抗体の反応性を解析した。 [0102] Well cells in which the cells had proliferated were collected and diluted, and the culture supernatant was screened using the reactivity to mouse spleen cells and cultured bone marrow cells as an indicator. The details of the screening method are as in Example 2. The positive cells of the well were cloned by limiting dilution to establish a hybridoma clone producing monoclonal antibodies. Furthermore, the reactivity of the antibody purified from ascites obtained by transplanting the culture supernatant of hybridoma or hybridoma or hyperpridoma into the abdominal cavity of mice was analyzed.
実施例 2  Example 2
[0103] 培養上清のスクリーニング  [0103] Screening of culture supernatant
Balb/cマウス雌(4〜6週令)の骨髄細胞を、 10ng/mlの FLT- 3リガンドを添カ卩した 10 %FCS-RPMI1640培地にて 10日間培養した。 10日目には約 40%の細胞が IPCになつ た。この細胞を用い、ハイプリドーマ培養上清を 1次抗体とし、 2次抗体に FITC標識 抗ラッ Hg抗体 (BD Pharmingen社製)を用いて染色した。その後、各種抗体 (CDllb、 CDllcゝ CD3、 CD19、 CD45RB、 B220、 Ly6C ;いずれも Becton Dickinson社製)により 二重染色し、フローサイトメトリー法により解析 (FACS解析)した。  Bone marrow cells of female Balb / c mice (4-6 weeks old) were cultured for 10 days in 10% FCS-RPMI1640 medium supplemented with 10 ng / ml FLT-3 ligand. On day 10, about 40% of the cells became IPC. Using these cells, the hyperpridoma culture supernatant was used as a primary antibody, and the secondary antibody was stained with a FITC-labeled anti-ra Hg antibody (BD Pharmingen). Thereafter, double staining was performed with various antibodies (CDllb, CDllc ゝ CD3, CD19, CD45RB, B220, Ly6C; all manufactured by Becton Dickinson) and analyzed by flow cytometry (FACS analysis).
[0104] 培養上清陽性分画、陰性分画をそれぞれ R2、 R3とし各々の Gate内での各種抗原 の発現をヒストグラムで示した(図 1)。作製した数種類の抗体によって染色される細胞 群は、文献上で定義されているマウス IPC (Nature Immunol, 2001; 2, 1144-1150.) の細胞表面抗原プロファイルが一致した。したがって、これらの抗体はマウス IPCに特 異的に結合する抗体であると考えられた。  [0104] The culture supernatant positive fraction and negative fraction were R2 and R3, respectively, and the expression of various antigens in each Gate was shown as a histogram (Fig. 1). The cell groups stained with several kinds of antibodies produced matched the cell surface antigen profile of mouse IPC (Nature Immunol, 2001; 2, 1144-1150.) Defined in the literature. Therefore, these antibodies were considered to be antibodies that specifically bind to mouse IPC.
実施例 3 [0105] 抗体で分離した細胞の形態 Example 3 [0105] Morphology of cells separated by antibody
実施例 2と同様に培養した骨髄細胞を、培養上清を 1次抗体とし、 2次抗体に FITC 標識抗ラット Ig抗体を用いて染色した。その後、セルソーター(FACSVantage, Becton Dickinson社製)を用いて陽性細胞を分離した。サイトスピン後、ギムザ染色し、顕微 鏡下にて観察したところ、 IPCに特異的な形態を示した(図 2a)。すなわち、この細胞 の形は丸ぐ大きな核を有していた。  Bone marrow cells cultured as in Example 2 were stained using the culture supernatant as the primary antibody and FITC-labeled anti-rat Ig antibody as the secondary antibody. Thereafter, positive cells were separated using a cell sorter (FACSVantage, manufactured by Becton Dickinson). After cytospinning, Giemsa staining and observation under a microscope showed a form specific to IPC (Fig. 2a). That is, the shape of this cell had a large round nucleus.
[0106] lxlO5個の細胞を 96 well丸底プレートにてインフルエンザウイルス PR8と共に 24時 間 37°Cにて培養し、同様にギムザ染色した後、顕微鏡下にて観察したところ、形態的 に典型的な榭状細胞に分化した(図 2b)。この結果から、上記抗体によって分離され た細胞は、ウィルス感染によって榭状細胞に分ィ匕すると 、うマウス IPCの特徴を有し て!、ることが確認された。このようなマウス IPC特異的なモノクローナル抗体およびそ の抗体を産生するハイブリドーマのうち、 SNK01、 SNK03を選択して以降の実験に用 いた。 [0106] lxlO 5 cells were cultured with influenza virus PR8 at 24 hours between 37 ° C at 96 well round bottom plate, after Giemsa staining similarly, was observed under a microscope, morphologically typical Differentiated into typical rod cells (Figure 2b). From these results, it was confirmed that the cells isolated by the above-mentioned antibody have the characteristics of mouse IPC when they are separated into rod-like cells by viral infection! Of these mouse IPC-specific monoclonal antibodies and hybridomas producing such antibodies, SNK01 and SNK03 were selected and used for the subsequent experiments.
実施例 4  Example 4
[0107] 抗体で分離した細胞のインターフ ロン産生能  [0107] Interferon-producing ability of cells separated by antibody
実施例 2と同様に培養した骨髄細胞を SNK01、SNK03培養上清および 2次抗体で 染色後、セルソーターにて陽性、陰性細胞を分離した。各々の分画の細胞、 lxlO5個 ずつを 96 well丸底プレートに分注し(100 μ 1/well)、インフルエンザウイルス PR8を感 染させ、 24時間後の培養上清中の IFN aの濃度を以下のような ELISA法にて測定し た。 Bone marrow cells cultured as in Example 2 were stained with SNK01, SNK03 culture supernatant and secondary antibody, and then positive and negative cells were separated using a cell sorter. Dispense 5 lxlO cells from each fraction into a 96-well round-bottom plate (100 μl / well), infect with influenza virus PR8, and concentrate IFNa in the culture supernatant after 24 hours. Was measured by the following ELISA method.
[0108] まずラット抗マウス IFN a抗体(PBL Biomedical Laboratory社製)を 96 wellプレート に 4°Cで一晩反応させ、プレートコートした。プレートを洗浄後、培養上清 100 1を添 加し、 4°Cで一晩反応させた。プレートを洗浄後、 IFN aと IFN βを認識する標識化抗 インターフェロン抗体を添加し、 1時間反応させて、検出を行った。それぞれの反応は 3連で行い、平均値を求めた。検量線を作成することにより、培養上清中の IFN a濃 度を算出した。  [0108] First, rat anti-mouse IFNa antibody (PBL Biomedical Laboratory) was reacted overnight at 4 ° C in a 96 well plate and coated. After washing the plate, culture supernatant 1001 was added and allowed to react overnight at 4 ° C. After the plate was washed, a labeled anti-interferon antibody that recognizes IFNa and IFNβ was added and reacted for 1 hour for detection. Each reaction was performed in triplicate and the average value was determined. The concentration of IFNa in the culture supernatant was calculated by creating a calibration curve.
抗体陽性細胞では、陰性細胞に比べて、高いインターフェロンの産生が認められた 。すなわち、モノクローナル抗体 SNK01、 SNK03が認識する抗原は IPCに特異的な表 面抗原であることが確認できた(図 3)。 Antibody positive cells produced higher interferon production than negative cells. In other words, the antigen recognized by monoclonal antibodies SNK01 and SNK03 is a table specific to IPC. It was confirmed that it was a surface antigen (Fig. 3).
実施例 5  Example 5
[0109] 抗体のマウスインターフェロン産生能への影響  [0109] Effects of antibodies on the ability to produce mouse interferon
実施例 2と同様に培養したマウス骨髄細胞を lxlO5個ずつ、 96 well丸底プレートに 分注した。これに抗体、またはコントロール抗体であるラッ HgGを添カ卩し、 37°Cにて 30 分間培養後、インフルエンザウイルス PR8を添カ卩し、 37°Cにて 24時間培養し、培養上 清中の IFN o;を上記実施例 4に示した ELISAにより測定した(図 4)。その結果、 SNK01 は濃度依存的に IFN aの産生を抑制した。また、 SNK03抗体も同様に濃度依存的に I FN αの産生を抑制した(図 5)。 Mouse bone marrow cells cultured in the same manner as in Example 2 were dispensed into 96-well round-bottom plates, 5 lxlO at a time. This is supplemented with antibody or control antibody Lag HgG and incubated at 37 ° C for 30 minutes, followed by influenza virus PR8 and cultured at 37 ° C for 24 hours. IFN o; was measured by ELISA shown in Example 4 above (FIG. 4). As a result, SNK01 inhibited IFNa production in a concentration-dependent manner. Similarly, SNK03 antibody also suppressed IFNα production in a concentration-dependent manner (Fig. 5).
実施例 6  Example 6
[0110] 抗体が認識する分子のクローユング  [0110] Molecular cloning recognized by antibodies
1) IPC- cDNAライブラリーの作製  1) Preparation of IPC-cDNA library
実施例 2と同様に FLT-3リガンドで骨髄細胞力も誘導した IPCより全 RNAをフエノー ル-グァ-ジン法により抽出し、 oligo- dTカラムにより mRNAを精製した。精製した mRN Aから Gubler- Hoffinan法により cDNAを合成し、両端に EcoRI- Notlアダプター (インビト ロジェン社製)を結合後、スパンカラム (クロマスピン 400、クロンテック社製)により未反 応の EcoRIアダプターおよび 500塩基以下の短!、cDNAを除去した。得られた両端に EcoRIサイトを有する cDNAを動物細胞用発現用ベクター pME18s (Xhol断片を除!ヽた もの)の EcoRIサイトに T4リガーゼにより結合し、大腸菌 DH10 (インビトロジェン社製)に エレクト口ポーレーシヨン法により形質転換した。これを 100 g/mlのカルべ-シリンを 含む LB培地(LB.カルべ-シリン) 500mlで 30°Cでー晚培養し、 QIA filter plasmid ma xi kit (Qiagen社製)により同キットのプロトコールに従って plasmidを抽出、精製し、 IP C- cDNAライブラリーを得た。  In the same manner as in Example 2, total RNA was extracted from the IPC in which bone marrow cell force was also induced by FLT-3 ligand by the phenol-guanidine method, and mRNA was purified by an oligo-dT column. CDNA is synthesized from purified mRNA by the Gubler-Hoffinan method, EcoRI-Notl adapters (Invitrogen) are coupled to both ends, and then unreacted EcoRI adapters and 500 by Span column (Chromaspin 400, Clontech). CDNA shorter than the base was removed. The resulting cDNA having EcoRI sites at both ends was ligated to the EcoRI site of the animal cell expression vector pME18s (excluding the Xhol fragment) by T4 ligase, and E. coli DH10 (manufactured by Invitrogen) using the erect-mouth polarization method. Was transformed. This is incubated in 500 ml of LB medium (LB. carbecillin) containing 100 g / ml carbecillin at 30 ° C and the protocol of the kit is prepared using QIA filter plasmid ma xi kit (Qiagen). The plasmid was extracted and purified according to the procedure described above to obtain an IP C-cDNA library.
[0111] 2) COS7細胞による発現クローユング  [0111] 2) Expression cloning by COS7 cells
COS7細胞を 6cmデイシュに 5xl05個ずつ 10枚まき、 37°C、 5%CO存在下で 20時間 COS7 cells are spread on a 6cm dish, 5 sheets of 5xl0, 10 sheets at 37 ° C in the presence of 5% CO for 20 hours
2  2
培養後、 Effectene trasfection Reagent(Qiagen社製)により同製品のプロトコールに従 い、上記 1)で取得した IPC cDNAライブラリー ¾ ransfectionした。 48時間、 37°C、 5% CO下で培養後、 PBS (Phosphate Buffered Saline)で洗浄、 PBS/5mM EDTAで細胞 をデイシュから剥離し、さらに PBSで洗浄後、セルストレナー(70 m,ファルコン社製) を通した。遠心後(1300rpm, 5分)上清を除去し、 PBS/ 0.5%BSA/2mM EDTAを lml 添カロして懸濁し、 Fc block (ファーミンジェン社製) 40 μ 1を加え 4°Cで 20分間置いた。 これにピオチン化した SNK01抗体 30〜50 μ gを加え、氷上で 30分間保持した。 PBSで 洗浄後、 100 μ 1の PBSに懸濁し、ストレプトアビジンマイクロビーズ (Miltenyi Biotec社 製) 10-20 μ 1を加え 10°Cで 15分静置した。 PBS/ 0.5%BSA/2mM EDTAで洗浄すること により過剰なストレプトアビジンマイクロビーズを除去し、 lmlの PBS/ 0.5%BSA/2mM E DTAに懸濁した。 AutoMACS (Miltenyi Biotec社製)で posseldsの条件で細胞を分取 した。改良 Hirt法(BioTechniques Vol.24,760-762,1998)により plasmidを抽出、精製し た。得られた plasmidを大腸菌 DH10にエレクト口ポーレーシヨン法により形質転換し、 L Β·カルべ-シリン 100mlで 30°Cでー晚培養し、 QIA filter plasmid midi kit (Qiagen社 製)により同キットのプロトコールに従って plasmidを抽出、精製した。 After culturing, the IPC cDNA library obtained in 1) above was ransfectioned using Effectene trasfection Reagent (Qiagen) according to the protocol of the product. Incubate for 48 hours at 37 ° C, 5% CO, wash with PBS (Phosphate Buffered Saline), and cells with PBS / 5mM EDTA Was peeled from the dish, further washed with PBS, and passed through a cell strainer (70 m, manufactured by Falcon). After centrifugation (1300 rpm, 5 minutes), remove the supernatant, add lml of PBS / 0.5% BSA / 2mM EDTA, suspend, add 40 μ 1 of Fc block (Pharmingen), and add 20 μC at 4 ° C. Left for a minute. To this was added 30-50 μg of SNK01 antibody that had been biotinized and kept on ice for 30 minutes. After washing with PBS, the suspension was suspended in 100 μl of PBS, added with streptavidin microbeads (Miltenyi Biotec) 10-20 μ1, and allowed to stand at 10 ° C. for 15 minutes. Excess streptavidin microbeads were removed by washing with PBS / 0.5% BSA / 2 mM EDTA and suspended in 1 ml PBS / 0.5% BSA / 2 mM EDTA. Cells were sorted using AutoMACS (Miltenyi Biotec) under posselds conditions. Plasmid was extracted and purified by the modified Hirt method (BioTechniques Vol.24,760-762,1998). The resulting plasmid was transformed into E. coli DH10 by the electopore polarization method, cultured in 30 ml at 30 ° C with 100 ml of L Β carbe-cillin, and the protocol of the kit was prepared using QIA filter plasmid midi kit (Qiagen). The plasmid was extracted and purified according to
[0112] 以上の操作を 1クールとして、この後同じ操作を 4回繰り返し、 SNK01抗体に反応す る抗原をコードする plasmidを濃縮した。最後に、 AutoMACSのかわりにセルソーター( FACSVantage, Becton Dickinson社製)により陽性細胞を分取し、これらより抽出した plasmidを形質転換した大腸菌 DH10を適量 LB'カルべ-シリンプレートに塗布した。 3 0°Cでー晚培養し、現れたコロニーを 30個ピックアップし、それぞれより plasmidを抽出 、 COS7細胞に transfectionし、 SNK01抗体を用いて FACS解析することにより陽性 plas midを選抜した。 [0112] The above operation was taken as one course, and thereafter the same operation was repeated four times to concentrate a plasmid encoding an antigen that reacts with the SNK01 antibody. Finally, positive cells were collected using a cell sorter (FACSVantage, manufactured by Becton Dickinson) instead of AutoMACS, and an appropriate amount of Escherichia coli DH10 transformed with the plasmid was applied to an LB ′ carbe-silin plate. The cells were cultured at 30 ° C and picked up 30 colonies. Plasmids were extracted from each colony, transfected into COS7 cells, and positive plasmid was selected by FACS analysis using SNK01 antibody.
[0113] 得られた plasmid上にクローン化されている cDNAの塩基配列を決定し、マウス遺伝 子データベースに登録されている塩基配列情報と blastサーチすることにより、その遺 伝子を決定した。また、同時にヒト遺伝子データベースをサーチすることによりその力 ゥンターパートを同定した。  [0113] The nucleotide sequence of the cDNA cloned on the obtained plasmid was determined, and the gene was determined by blast search with the nucleotide sequence information registered in the mouse gene database. At the same time, we searched the human gene database to identify the power partner.
その結果モノクローナル抗体 SNK01が結合したクローンは、配列番号: 7および、配 列番号: 9に記載の塩基配列を有していた。これらの塩基配列によってコードされるァ ミノ酸配列を、配列番号: 8および配列番号: 10に示した。  As a result, the clone bound with the monoclonal antibody SNK01 had the nucleotide sequences set forth in SEQ ID NO: 7 and SEQ ID NO: 9. The amino acid sequences encoded by these base sequences are shown in SEQ ID NO: 8 and SEQ ID NO: 10.
[0114] 配列番号: 9に記載の塩基配列は、マウス BST2として既知の塩基配列であった (Ge nBank Acc#.BC027328)。一方、配列番号: 7に記載の塩基配列は、配列番号: 9の塩 基配列と部分的に同一の塩基配列を有していたが、 3'末端側に異なる塩基配列が 見られ、異なるアミノ酸配列をコードしていた。すなわち、配列番号: 8に記載のァミノ 酸配列のうち、 N末端から 139位までのアミノ酸配列は、配列番号: 10に記載されたァ ミノ酸配列と一致した。そして配列番号: 8に記載のアミノ酸配列において、 N末端か ら 140〜178番目のアミノ酸は、配列番号: 8に記載のアミノ酸配列に固有の配列であ つた。両者はォータナティブスプライシングによって生じたノ リアントであると考えられ た。これらの知見に基づいて、配列番号: 7に記載の塩基配列によってコードされるァ ミノ酸配列(配列番号: 8)力 なるタンパク質は、マウス BST2の新規なスプライシング ノ リアントであると考えられた。以下、配列番号: 7に記載の塩基配列からなる遺伝子 を mBST2H、配列番号: 9に記載の塩基配列からなる遺伝子を mBST2Dとも称する。 ( 図 7(a)) [0114] The base sequence described in SEQ ID NO: 9 was a base sequence known as mouse BST2 (GenBank Acc # .BC027328). On the other hand, the base sequence described in SEQ ID NO: 7 is the salt of SEQ ID NO: 9. Although it had a partially identical base sequence to the base sequence, a different base sequence was seen on the 3 ′ end side, and a different amino acid sequence was encoded. That is, of the amino acid sequence described in SEQ ID NO: 8, the amino acid sequence from the N-terminal to the 139th position was identical to the amino acid sequence described in SEQ ID NO: 10. In the amino acid sequence shown in SEQ ID NO: 8, the 140th to 178th amino acids from the N-terminal were unique to the amino acid sequence shown in SEQ ID NO: 8. Both were considered to be the norits generated by alternative splicing. Based on these findings, the amino acid sequence (SEQ ID NO: 8) that is encoded by the nucleotide sequence set forth in SEQ ID NO: 7 was considered to be a novel splicing noun of mouse BST2. Hereinafter, the gene consisting of the base sequence shown in SEQ ID NO: 7 is also called mBST2H, and the gene consisting of the base sequence shown in SEQ ID NO: 9 is also called mBST2D. (Figure 7 (a))
[0115] 3) FACSによる確認 [0115] 3) Confirmation by FACS
上記発現クローニング法により得られたプラスミドを QIA filter plasmid midi kit (Qiag en社製)により再度大腸菌より高度に精製し、もう一度 COS7細胞に transfectionした。 48時間後、定法に従って、 SNK01抗体および FITC標識抗ラッ Hg抗体で反応させ、 F ACS解析を行うことで、 plasmid上にクローン化されている cDNA力 抗原をコードして いるかどうかを確認した。  The plasmid obtained by the above expression cloning method was again highly purified from Escherichia coli again using QIA filter plasmid midi kit (manufactured by Qiag en), and again transfected into COS7 cells. After 48 hours, according to a conventional method, reaction with SNK01 antibody and FITC-labeled anti-ra Hg antibody was performed, and FACS analysis was carried out to confirm whether or not the cDNA force antigen cloned on the plasmid was encoded.
その結果、上記モノクローナル抗体 SNK01は、プラスミドを導入した COS7細胞に対 する結合が観察された。したがって、プラスミド上にクローンィ匕されている cDNAは、い ずれもこのモノクローナル抗体によって認識された抗原をコードしていることが確認さ れた。  As a result, the monoclonal antibody SNK01 was observed to bind to COS7 cells into which the plasmid was introduced. Therefore, it was confirmed that all cDNAs cloned on the plasmid encoded the antigen recognized by this monoclonal antibody.
実施例 7  Example 7
[0116] ウェスタンブロティング法による抗体の反応性の確認  [0116] Confirmation of antibody reactivity by Western blotting
前記モノクローナル抗体力 配列番号: 8または配列番号: 10に記載のアミノ酸配 列を有する蛋白質を認識し結合することを、ウェスタンブロッテイング法によって確認 した。配列番号: 8または配列番号: 10に記載のアミノ酸配列を遺伝子組み換え体と して発現させ、本発明のモノクローナル抗体との反応性を確認した。具体的な操作は 次のとおりである。 [0117] 1 ) pcDNA3.1- mBST2Dおよび pcDNA3.1- mBST2Hの構築 Recognizing and binding to the protein having the amino acid sequence of SEQ ID NO: 8 or SEQ ID NO: 10 was confirmed by Western blotting. The amino acid sequence shown in SEQ ID NO: 8 or SEQ ID NO: 10 was expressed as a gene recombinant, and the reactivity with the monoclonal antibody of the present invention was confirmed. The specific operation is as follows. [0117] 1) Construction of pcDNA3.1- mBST2D and pcDNA3.1- mBST2H
クロー-ングした mBST2Dおよび mBST2Hをコードする plasmid(l μ g)を铸型として、 P CRにより配列番号: 7または配列番号: 9に記載の塩基配列を有する DNAを増幅した 。 PCRに用いたプライマーの塩基配列は次のとおりである。  Using the cloned plasmids (l μg) encoding mBST2D and mBST2H as a saddle, DNA having the nucleotide sequence set forth in SEQ ID NO: 7 or SEQ ID NO: 9 was amplified by PCR. The base sequences of the primers used for PCR are as follows.
forward primer (酉己列番 : 1丄  forward primer
5 -tttttgctagcgacggatcacatggcgccctctttctatcactatctgcccgtgcccatggatgagatgggggggaa gcaagga-3  5 -tttttgctagcgacggatcacatggcgccctctttctatcactatctgcccgtgcccatggatgagatgggggggaa gcaagga-3
reverse primer (酉己列番 : 12)  reverse primer (Tsubaki line number : 12)
5 -tttttttctcgagtcctcaaaagagcaggaacagtgac-ύ '  5 -tttttttctcgagtcctcaaaagagcaggaacagtgac-ύ '
また反応液の組成は以下のとおりである。  The composition of the reaction solution is as follows.
1XGC bufferl,  1XGC bufferl,
dNTP mix (0.25 mM ),  dNTP mix (0.25 mM),
LA Taq DNA polymerase 5U(以上タカラバイオ製)/ 100 μ L  LA Taq DNA polymerase 5U (above Takara Bio) / 100 μL
forward primer (1 pmol):  forward primer (1 pmol):
reverse primer (1 pmol)  reverse primer (1 pmol)
[0118] 95°Cで 1分インキュベート後、 [95°C30秒 Z55°C30秒 Z72°C1分 30秒]を 1サイ クルとして、 25回の条件で PCRを行った。ァガロースゲル電気泳動にて目的の大きさ の DNA断片が増幅されていることを確認後、フエノールクロロフオルム抽出、エタノー ル沈殿後、回収した増幅産物を TE buffer 10 μ Lに溶解した。これを制限酵素 Nhe I および Xho I (タカラバイオ製)で切断後、 QIAquick Gel Extraction Kit (QIAGEN社製 )を用いてァガロースゲル電気泳動により精製し、エタノール沈殿後、 TE buffer 4 L に溶解した。 [0118] After incubating at 95 ° C for 1 minute, PCR was performed under the conditions of 25 times, with [95 ° C 30 seconds Z55 ° C 30 seconds Z72 ° C 1 minute 30 seconds] as one cycle. After confirming that a DNA fragment of the desired size was amplified by agarose gel electrophoresis, phenol chloroform extraction and ethanol precipitation were performed, and the recovered amplification product was dissolved in 10 μL of TE buffer. This was cleaved with restriction enzymes Nhe I and Xho I (Takara Bio), purified by agarose gel electrophoresis using QIAquick Gel Extraction Kit (QIAGEN), precipitated with ethanol, and dissolved in 4 L of TE buffer.
[0119] 一方、哺乳動物細胞発現 plasmid pcDNA3.1 (インビトロジヱン社製) 5 μ gを制限酵 素 Nhe Iおよび Xho Iで消化、 CIAP (タカラバイオ製)処理後、ァガロースゲル電気泳 動により精製し、エタノール沈殿後、 TE buffer 4 μ Lに溶解した。前述の DNA断片そ れぞれ 2 μ Lと、この plasmid 0.5 μ Lを ligation kit ver.II (タカラバイオ製)を用いて連結 し、大腸菌 DH5に形質転換した。  [0119] Meanwhile, 5 μg of mammalian cell expression plasmid pcDNA3.1 (Invitrogen) was digested with restriction enzymes Nhe I and Xho I, treated with CIAP (Takara Bio), and purified by agarose gel electrophoresis. After ethanol precipitation, it was dissolved in 4 μL of TE buffer. 2 μL of each of the aforementioned DNA fragments and 0.5 μL of this plasmid were ligated using ligation kit ver. II (manufactured by Takara Bio Inc.), and transformed into E. coli DH5.
[0120] LB培地(100 μ g/mlアンピシリン)にて 37°Cでー晚培養後、出現したコロニー数個 を選び、 QIAprep Spin miniprep kit(QIAGEN社製)を用いて plasmidを抽出した。抽出 されたプラスミドに挿入されて ヽる DNA断片の塩基配列を定法に従って決定した。配 列番号: 8または配列番号: 10に記載のアミノ酸配列をコードする塩基配列を有する DNA断片が挿入されているプラスミドであることを確認し、 目的の構築物 PCDNA3.1- mBST2Dおよび PCDNA3.1- mBST2Hを得た。 [0120] Several colonies appeared after culturing at 37 ° C in LB medium (100 μg / ml ampicillin) The plasmid was extracted using a QIAprep Spin miniprep kit (manufactured by QIAGEN). The base sequence of the DNA fragment inserted into the extracted plasmid was determined according to a standard method. Confirm that the plasmid is inserted with a DNA fragment having a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 8 or SEQ ID NO: 10, and construct the desired constructs PCDNA3.1- mBST2D and PCDNA3.1- mBST2H was obtained.
[0121] 2) pcDNA3.1- mBST2D- Hisおよび PCDNA3.1- mBST2H- Hisの構築 [0121] 2) Construction of pcDNA3.1- mBST2D-His and PCDNA3.1- mBST2H-His
pcDNA3.1- mBST2D (pcDNA3.1- mBST2D- His構築の場合)あるいは pcDNA3.1- m BST2H (pcDNA3.1- mBST2H- His構築の場合) 1 μ gを铸型として、 PCRにより Hisタグ をコードする塩基配列を付加した。 PCRに用いたプライマーの塩基配列は次のとおり である。なお forward primer (配列番号: 13)は、 pcDNA3.1- mBST2D- Hisと pcDNA3.1 -mBST2H- Hisに同じものを用いた。反応液の組成と温度サイクルの条件は 1)と同様 とした。  pcDNA3.1- mBST2D (for pcDNA3.1- mBST2D-His construction) or pcDNA3.1- m BST2H (for pcDNA3.1- mBST2H-His construction) 1 μg as a saddle type, and coding His tag by PCR The base sequence to be added was added. The base sequences of the primers used for PCR are as follows. The same forward primer (SEQ ID NO: 13) was used for pcDNA3.1-mBST2D-His and pcDNA3.1-mBST2H-His. The composition of the reaction solution and the temperature cycle conditions were the same as in 1).
forward primer (酉己列番 :13) :  forward primer (Tsubaki line number : 13):
5 -ccagctcacccgcacccaggacagtc-ύ '  5 -ccagctcacccgcacccaggacagtc-ύ '
reverse primer (pcDNA3.1-mBST2D- His用、配列番号: 14):  reverse primer (for pcDNA3.1-mBST2D-His, SEQ ID NO: 14):
5 -tttttttctcgagtcaatgatgatgatgatgatgaaagagcagaaacagtgacactttga-3  5 -tttttttctcgagtcaatgatgatgatgatgatgaaagagcagaaacagtgacactttga-3
reverse primer (pcDNA3.1-mBST2H- His用、配列番号: 15):  reverse primer (for pcDNA3.1-mBST2H-His, SEQ ID NO: 15):
5'— tttttttctcgagtcaatgatgatgatgatgatggaagtctccttttggatcctgagctg— 3,  5'— tttttttctcgagtcaatgatgatgatgatgatggaagtctccttttggatcctgagctg— 3,
[0122] ァガロースゲル電気泳動にて目的の大きさの DNA断片が増幅されていることを確認 後、フエノールクロロフオルム抽出、エタノール沈殿後、 TE buffer 10 μ Lに溶解した。 これを制限酵素 BamH Iおよび Xho I (タカラバイオ製)で切断後、 QIAquick Gel Extra ction Kit (QIAGEN社製)を用いてァガロースゲル電気泳動により精製し、エタノール 沈殿後、 TE buffer 4 μ 1に溶解した。  [0122] After confirming that the DNA fragment of the desired size was amplified by agarose gel electrophoresis, phenol chloroform extraction, ethanol precipitation, and dissolution in 10 μL of TE buffer were performed. This was cleaved with restriction enzymes BamH I and Xho I (Takara Bio), purified by agarose gel electrophoresis using QIAquick Gel Extra ction Kit (QIAGEN), ethanol precipitated, and dissolved in TE buffer 4 μ1 .
[0123] 一方、 PCDNA3.1— mBST2Dおよび pcDNA3.1— mBST2H 5 μ gを制限酵素 BamH Iお よび Xho Iで消化、 CIAP (タカラバイオ製)処理後、ァガロースゲル電気泳動により精 製し、エタノール沈殿後、 TE buffer 4 μ Lに溶解した。 PCRで増幅された DNA断片そ れぞれ 2 μ Lとこれらの plasmid 0.5 μ Lを ligation kit ver.II (タカラバイオ製)を用いて 連結し、大腸菌 DH5に形質転換した。 [0124] LB培地(100 μ g/mlアンピシリン)にて 37°Cでー晚培養後、出現したコロニー数個 を選び、 QIAprep Spin miniprep kit(QIAGEN社製)を用いてこれらより plasmidを抽出 した。抽出されたプラスミドに挿入されて 、る DNA断片の塩基配列を定法に従って決 定した。 Hisタグをコードする塩基配列が付加された DNA断片が挿入されて 、ることを 確認し、 目的の構築物 PCDNA3.1- mBST2D- Hisおよび PCDNA3.1- mBST2H- Hisを得 た。 [0123] On the other hand, 5 μg of PCDNA3.1—mBST2D and pcDNA3.1—mBST2H were digested with restriction enzymes BamH I and Xho I, treated with CIAP (Takara Bio), purified by agarose gel electrophoresis, and ethanol precipitated. Then, it was dissolved in 4 μL of TE buffer. 2 μL of each DNA fragment amplified by PCR and 0.5 μL of these plasmids were ligated using ligation kit ver. II (manufactured by Takara Bio Inc.), and transformed into E. coli DH5. [0124] After culturing at 37 ° C in LB medium (100 μg / ml ampicillin), several colonies that appeared were selected, and plasmids were extracted from them using QIAprep Spin miniprep kit (QIAGEN) . The base sequence of the DNA fragment inserted into the extracted plasmid was determined according to a standard method. It was confirmed that a DNA fragment to which a base sequence encoding a His tag was added was inserted, and the desired constructs PCDNA3.1-mBST2D-His and PCDNA3.1-mBST2H-His were obtained.
[0125] 3) Western— blotting  [0125] 3) Western— blotting
6cmデイシュに COS7細胞を 5xl05で 10枚まき、 37°C、 5%CO下で 20時間培養し Spread 10 COS7 cells with 5xl0 5 on a 6cm dish and incubate at 37 ° C, 5% CO for 20 hours.
2  2
た。培養後の COS7細胞に、 Effectene trasfection Reagent(Qiagen社製)により、 pcDN A3. l-mBST2D- Hisあるいは pcDNA3.1-mBST2H- Hisを形質転換した。操作は、同製 品のプロトコールに従った。 37°C ' 5%CO下で 48時間の培養後、 PBSで洗浄、 PBS/  It was. The cultured COS7 cells were transformed with pcDN A3. L-mBST2D-His or pcDNA3.1-mBST2H-His by Effectene trasfection Reagent (Qiagen). The operation followed the protocol of the product. After incubation for 48 hours at 37 ° C '5% CO, wash with PBS, PBS /
2  2
5mM EDTAで細胞をデイシュ力も剥離し回収した。回収した細胞は、さらに PBSで洗 浄後、 IxHalt Protease Inhibitor Coctail (PIERCE社製)を含む 2mlの RIPA bufferをカロ えて氷上で 1時間溶解した。 RIPA bufferの組成を以下に示す。  Cells were detached and recovered with 5 mM EDTA. The collected cells were further washed with PBS, and 2 ml of RIPA buffer containing IxHalt Protease Inhibitor Coctail (PIERCE) was collected and lysed on ice for 1 hour. The composition of RIPA buffer is shown below.
50 mM Tris-HCl(pH7.4),  50 mM Tris-HCl (pH 7.4),
150 mM NaCl,  150 mM NaCl,
1% Triton x- 100,  1% Triton x- 100,
0.5% sodium deoxycholate,  0.5% sodium deoxycholate,
0.1% SDS  0.1% SDS
[0126] 溶解後の細胞は、 4°C、 15000 rpm、 5分間の遠心分離した。上清は Microcon YM- 10(MILLIPORE社製)にて L以下まで濃縮し、ウェスタンブロッテイングの試料とし た。一方、沈殿物は、 IxHalt Protease Inhibitor Coctail (PIERCE社製)を含む lmLの RIPA bufferでもう一度洗浄後に、ウェスタンブロッテイングの試料とした。  [0126] The cells after lysis were centrifuged at 4 ° C, 15000 rpm for 5 minutes. The supernatant was concentrated to L or less with Microcon YM-10 (MILLIPORE) and used as a sample for Western blotting. On the other hand, the precipitate was washed once again with 1 mL of RIPA buffer containing IxHalt Protease Inhibitor Coctail (PIERCE) and used as a sample for Western blotting.
沈殿には 200 Lの lx変性 bufferを、濃縮した上清には等量の 2x変性 bufferをカロえ 100°Cにて 10分間煮沸した後、それぞれ 5 μ Lを NuPAGE4-12% Bis-Tris Gel (イン ビトロジェン社製)にて電気泳動した。泳動後のゲル力も試料をセミドライ方式のブロッ ティング装置(BIO CRAFT社製、 MODEL BE- 330)にて、 PVDF膜 (MILLIPORE社製 )にトランスファーした。 [0127] 抗体による検出はィムノスターキット (和光純薬社製)を用いた。まず、 1次抗体とし て、 HRP標識抗 His tag抗体 (インビトロジヱン社製)を 5000倍希釈の濃度で用いて、 ィムノスターキットのプロトコールに従ってシグナルを検出した。シグナルの検出後、 P VDF膜を変性溶液(7M 塩酸グァ-ジン、 50mMグリシン、 0.05mM EDTA、 0.1 M 塩ィ匕カリウム、 20 mM 2-メルカプトエタノール)で室温で 1時間振とう処理することによ り、標識抗 His tag抗体を除去した。次に、ピオチン標識した SNK01抗体を用いて、同 様に、シグナルを検出した。結果を図 6に示す。 Precipitate with 200 L of lx-denatured buffer and concentrate the supernatant with an equal volume of 2x-denatured buffer, boil at 100 ° C for 10 minutes, and then add 5 μL each of NuPAGE4-12% Bis-Tris Gel Electrophoresis was performed using (Invitrogen). The gel force after electrophoresis was also transferred to a PVDF membrane (MILLIPORE) using a semi-dry blotting device (BIO CRAFT, MODEL BE-330). [0127] Imnostar kit (manufactured by Wako Pure Chemical Industries, Ltd.) was used for detection by antibody. First, as a primary antibody, an HRP-labeled anti-His tag antibody (manufactured by Invitrogene) was used at a concentration of 5000-fold dilution, and a signal was detected according to the protocol of the Imunostar kit. After detection of the signal, the PVDF membrane is treated with a denaturing solution (7M guanidine hydrochloride, 50 mM glycine, 0.05 mM EDTA, 0.1 M potassium chloride, 20 mM 2-mercaptoethanol) for 1 hour at room temperature. Thus, the labeled anti-His tag antibody was removed. Next, a signal was detected in the same manner using a SNK01 antibody labeled with piotin. The result is shown in FIG.
[0128] モノクローナル抗体 SNK01にお!/、て、アミノ酸配列から予想される分子量(約 20kD) の位置に明瞭なバンドが見られた。 SNK01は、 BST2D (配列番号: 10)と BST2H (配列 番号: 8)の両方に対して強く反応した。 20kD以上の位置にも強 、反応が検出された 。これらの分子量の大きい蛋白質は、糖鎖の修飾を有していると予想された。 BST2D (配列番号: 10)は、上清よりも沈殿で強いシグナルが見られた。 BST2H (配列番号: 8)も沈殿でより強いシグナルが見られたが、上清に対しても抗体の強い反応が検出 された。 BST2D (配列番号: 10)に対する Hisタグ抗体のシグナルが検出されていない のは、 C末端に付加した Hisタグがプロセシングによって除去されてしまったためと考 えられた。  [0128] In the monoclonal antibody SNK01, a clear band was observed at the position of the molecular weight (about 20 kD) predicted from the amino acid sequence. SNK01 reacted strongly against both BST2D (SEQ ID NO: 10) and BST2H (SEQ ID NO: 8). A strong reaction was detected even at positions above 20 kD. These large molecular weight proteins were expected to have sugar chain modifications. BST2D (SEQ ID NO: 10) showed a stronger signal in the precipitate than the supernatant. BST2H (SEQ ID NO: 8) also showed a stronger signal in the precipitate, but a strong antibody reaction was also detected in the supernatant. The reason why the His tag antibody signal against BST2D (SEQ ID NO: 10) was not detected was thought to be because the His tag added to the C-terminal had been removed by processing.
実施例 8  Example 8
[0129] マウス BST2の新規スプライシングバリアントのクローユング  [0129] Cloning of a novel splicing variant of mouse BST2
セルソーター(FACSVantage, Becton Dickinson社製)により高度に分離したマウス I PC力も抽出した RNAより合成した cDNAを铸型として、定法に従って PCRを行い、抗 原遺伝子が IPCに特異的に発現して ヽることを確認した。 PCRに用 ヽたプライマーの 塩基配列は次の通りである。  Mouse isolated from RNA extracted from mouse IPC that is highly isolated by a cell sorter (FACSVantage, manufactured by Becton Dickinson) It was confirmed. The base sequences of primers used for PCR are as follows.
配列番号: 7用 forward (配列番号: 16):  Forward for SEQ ID NO: 7 (SEQ ID NO: 16):
5 -acatggcgccctctttctatcac-3  5 -acatggcgccctctttctatcac-3
reverse (配列番号: 17):  reverse (SEQ ID NO: 17):
0 -gagcccaggttttgaaggaagtg-3  0 -gagcccaggttttgaaggaagtg-3
その結果、 cDNAに該当する増幅断片の他に、短い増幅断片が観察された。本増 幅断片を定法によりクローニングして塩基配列を確認したところ、配列番号: 7に示し た mBST2Hの第 2ェクソン部分が欠失した塩基配列を有していた。すなわち、配列番 号: 18に示した塩基配列を有する、マウス BST2の新規のスプライシングバリアントで あると考えられた。この遺伝子がコードするアミノ酸配列を配列番号: 19に示した。こ の配列番号: 18記載の遺伝子を、以下 mBST2HSとも称する。 As a result, short amplified fragments were observed in addition to the amplified fragments corresponding to the cDNA. When this amplified fragment was cloned by a conventional method and the nucleotide sequence was confirmed, it was shown in SEQ ID NO: 7. In addition, the second exon part of mBST2H had a deleted base sequence. That is, it was considered to be a novel splicing variant of mouse BST2 having the nucleotide sequence shown in SEQ ID NO: 18. The amino acid sequence encoded by this gene is shown in SEQ ID NO: 19. The gene described in SEQ ID NO: 18 is hereinafter also referred to as mBST2HS.
mBST2D、 mBST2H、 mBST2HSのアミノ酸配列のァライメントを図 7(a)に、それぞれ のゲノム構造を図 7(b)に示す。  The alignment of the amino acid sequences of mBST2D, mBST2H, and mBST2HS is shown in Fig. 7 (a), and the genome structure of each is shown in Fig. 7 (b).
実施例 9  Example 9
[0130] マウス BST2発現ベクターの作製  [0130] Construction of mouse BST2 expression vector
実施例 6により得られた mBST2Dおよび mBST2Hの cDNAを铸型とし、以下の塩基配 列からなるプライマーを使って以下の条件で PCRを行った。  The mBST2D and mBST2H cDNA obtained in Example 6 was used as a saddle, and PCR was performed under the following conditions using primers consisting of the following base sequences.
forward primer;  forward primer ;
tttttgctagcgacggatcacatggcgccctctttctatcactatctgcccgtgcccatggatgagatgggggggaagca agga (配列番号: 11)および  tttttgctagcgacggatcacatggcgccctctttctatcactatctgcccgtgcccatggatgagatgggggggaagca agga (SEQ ID NO: 11) and
reverse primer; tttttttctcgagtcctcaaaagagcaggaacagtgac (lc^[J¾ -^": 12)  reverse primer ; tttttttctcgagtcctcaaaagagcaggaacagtgac (lc ^ [J¾-^ ": 12)
DNAポリメラーゼ: LA Taq (タカラバイオ社)  DNA polymerase: LA Taq (Takara Bio Inc.)
[95°Cを 30秒、 55°Cを 30秒、 72°Cを 2分]を 25サイクル  [95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes] 25 cycles
[0131] 増幅されたそれぞれの断片を制限酵素 Nhel及び Xhol (V、ずれもタカラバイオ社製) で処理して切断した後、同様に Nhelと Xholで処理した動物細胞発現用ベクター pcD NA3.1- Zeo(+) (インビトロジェン社)と ligation kit ver.II (タカラバイオ社製)を用いて連 結し、それぞれの発現ベクターとした。 mBST2HSの発現ベクターについては mBST2H の第 2ェクソン部分を PCR法を用いて定法に従って除去することによって作製した。 実施例 10 [0131] Each amplified fragment was digested by treating with restriction enzymes Nhel and Xhol (V, both are manufactured by Takara Bio Inc.), and then similarly treated with Nhel and Xhol. PcD NA3.1 -Ligated using Zeo (+) (Invitrogen) and ligation kit ver.II (Takara Bio Inc.) to obtain each expression vector. The mBST2HS expression vector was prepared by removing the second exon portion of mBST2H according to a standard method using PCR. Example 10
[0132] ヒトォーソログ cDNAのクローユングと発現ベクターの作製  [0132] Humanolog cDNA cloning and expression vector construction
本発明において同定されたマウス IPC特異抗原 BST2のヒトォーソログを検索したと ころ、ヒト BST2として報告された既知の遺伝子であった(IshikawaJ. et al. Genomics, 1995; 26, 527- ; GenBank Acc#. D28137)。更にマウスで見出された新規スプライシ ングバリアントのヒトォーソログも含めて以下のようにして PCR法によりクローユングし、 3種類の発現ベクターを作製した。 [0133] 下記の実施例に示した方法に従って、 Herpes Simplex virus刺激を行ったヒト IPCを 調製し、 RNAを抽出後、スーパースクリプトファーストストランドシステムキット (インビト ロジェン社)を用いて、ファーストストランド cDNAを合成した。これを铸型に、 hBST2 pr imer F; aaaaaaagctagctggatggcatctacttcgtatg (酉己列番 : 20)および hBST2 primer R ; aaaaaaactcgagacccataacaacaggcagcacat (酉己歹 号: 2丄ノで、 LA i,aq (タカフノ イ ) を酵素にもちいて PCR(95°Cを 30秒、 55°Cを 30秒、 72°Cを 2分、 25 cycle)を行った。 増幅された断片を、制限酵素 Nhelおよび Xholで切断後、 PCDNA3.1- Zeo(+) (インビト ロジェン社)の Nheト Xholサイトに挿入し、ヒト BST2の発現プラスミドとした。 When a human orthologue of the mouse IPC-specific antigen BST2 identified in the present invention was searched, it was a known gene reported as human BST2 (IshikawaJ. Et al. Genomics, 1995; 26, 527-; GenBank Acc #. D28137). Furthermore, including the novel splicing variant humanolog found in mice, it was cloned by PCR as follows to prepare three types of expression vectors. [0133] In accordance with the method described in the following example, human IPC stimulated with Herpes Simplex virus was prepared, RNA was extracted, and first strand cDNA was extracted using Superscript First Strand System Kit (Invitrogen). Synthesized. In this form, hBST2 primer F; aaaaaaagctagctggatggcatctacttcgtatg (酉 Self sequence number: 20) and hBST2 primer R; PCR (95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes, 25 cycles) The amplified fragment was digested with restriction enzymes Nhel and Xhol, and then PCDNA3.1-Zeo It was inserted into the Nhe Xhol site of (+) (Invitrogen) and used as an expression plasmid for human BST2.
[0134] マウススプライシングバリアントのォーソログである遺伝子に関しては、 IPCの cDNA ライブラリーを铸型として以下の塩基配列からなるプライマーで、 LA Taq (タカラバイ ォ)を酵素に用いて PCR(95°Cを 30秒、 55°Cを 30秒、 72°Cを 2分、 25 cycle)を行った。 cDNAは、 GeneRacer kit (インビトロジェン社)によって合成した。増幅された断片を、 制限酵素 Nhelおよび Xholで切断後、 pcDNA3.1- Zeo(+) (インビトロジェン社)の Nhel- Xholサイトに挿入し、発現プラスミドとした。  [0134] For genes that are orthologues of mouse splicing variants, PCR (95 ° C at 30 ° C) using LA Taq as an enzyme with primers consisting of the following base sequences from the IPC cDNA library. Second, 55 ° C for 30 seconds, 72 ° C for 2 minutes, 25 cycles). cDNA was synthesized by GeneRacer kit (Invitrogen). The amplified fragment was cleaved with the restriction enzymes Nhel and Xhol, and then inserted into the Nhel-Xhol site of pcDNA3.1-Zeo (+) (Invitrogen) to obtain an expression plasmid.
mBST2Hォーソログ用のプライマー  Primer for mBST2H ortholog
hBST2 primer F (配列番号: 20)および  hBST2 primer F (SEQ ID NO: 20) and
primerhBHR ;ttttttctcgagctagggatgtgggggtgagaggaatgtggcaggtggagggtagcgggggaagg ctatctctgacctcagtcgctccacctctgcagac (酉己列番号: 22)  primerhBHR; ttttttctcgagctagggatgtgggggtgagaggaatgtggcaggtggagggtagcgggggaagg ctatctctgacctcagtcgctccacctctgcagac (self column number: 22)
mBST2HSォーソログ用のプライマー  Primer for mBST2HS ortholog
hBST2 primer F (配列番号: 20)および  hBST2 primer F (SEQ ID NO: 20) and
pnmerhBi f2HSRl; aaaaaaactcgagcttatggtttaatgtagtgatctctccacagtgtggttgcaggtggc ggcct (配列番号: 23)  pnmerhBi f2HSRl; aaaaaaactcgagcttatggtttaatgtagtgatctctccacagtgtggttgcaggtggc ggcct (SEQ ID NO: 23)
[0135] 既知遺伝子であるヒト BST2の塩基配列を配列番号: 1に、アミノ酸配列を配列番号: 2に示した。以下、この配列を有する遺伝子を hBST2Dとも称する。また、上記により得 られた mBST2Hのヒトォーソログ(以下、 hBST2Hとも称する)の塩基配列を配列番号: 3に、アミノ酸配列を配列番号: 4に、また、 mBST2HSのヒトォーソログ(以下、 hBST2H Sとも称する)の塩基配列を配列番号: 5に、アミノ酸配列を配列番号: 6に示した。 hBST2D、 hBST2H、 hBST2HSのアミノ酸配列のァライメントを図 8(a)に、それぞれの ゲノム構造を図 8(b)に示した。 hBST2Hおよび hBST2HSは新規スプライシングバリアン トであることが示唆された。 [0135] The base sequence of human BST2, which is a known gene, is shown in SEQ ID NO: 1, and the amino acid sequence is shown in SEQ ID NO: 2. Hereinafter, the gene having this sequence is also referred to as hBST2D. In addition, the base sequence of the human ortholog of mBST2H (hereinafter also referred to as hBST2H) obtained as described above is shown in SEQ ID NO: 3, the amino acid sequence is shown in SEQ ID NO: 4, and the human ortholog of mBST2HS (hereinafter also referred to as hBST2HS). The nucleotide sequence is shown in SEQ ID NO: 5, and the amino acid sequence is shown in SEQ ID NO: 6. The alignment of the amino acid sequences of hBST2D, hBST2H, and hBST2HS is shown in Fig. 8 (a). The genome structure is shown in Fig. 8 (b). It was suggested that hBST2H and hBST2HS are novel splicing variants.
実施例 11  Example 11
[0136] マウス BST2を認識する抗体の作製と評価  [0136] Production and evaluation of antibodies recognizing mouse BST2
1)抗マウス BST2抗体の作製  1) Preparation of anti-mouse BST2 antibody
マウス BST2の 3種類のサブタイプ D、 H、 HSのいずれ力、あるいは複数を認識する 抗体を以下のように作製した。  An antibody that recognizes any of the three subtypes D, H, and HS of mouse BST2 or multiple antibodies was prepared as follows.
6cmディッシュ 5枚に、 1枚あたり 4xl05個の COS7細胞を播種し、 20時間培養後に Eff ectene trasfection Reagent(Qiagen社製)を用いて同製品のプロトコールに従い、上記 実施例 10で作製したそれぞれのタイプの cDNAがクローユングされた 3種類の発現べ クタ一を同量(ディッシュ 1枚あたり 1 g)ずつ混合してトランスフエクシヨンした。 24時 間後、新鮮な培地に交換し、更に 24時間後、 PBS/5mM EDTAで細胞を回収し、 PBS で洗浄した後に、 Wister rat (5〜6週令)の両足の foot padにアジュバンド CFAとともに 注入した。 Inoculate 5 x 6 cm dishes with 5 x 4 CLO cells per cell, and after culturing for 20 hours, according to the protocol of the same product using Effectectransection Reagent (Qiagen) Three expression vectors cloned with type cDNA were mixed in the same amount (1 g per dish) and transfected. After 24 hours, the medium was replaced with fresh medium. After another 24 hours, the cells were collected with PBS / 5 mM EDTA, washed with PBS, and then added to the foot pads of both feet of Wister rat (5-6 weeks old). Infused with CFA.
[0137] このような操作を 0、 4、 11日目に行って免疫したラットから、 12日目にリンパ節を採取 して、実施例 1に示したのと同様の方法で、ハイプリドーマを作製した。ハイプリドーマ の培養上清を Cell ELISAによってスクリーニングし、 3種類の発現ベクターをトランスフ ェクシヨンした COS7細胞には反応し、宿主の COS7細胞には反応しないクローンを選 択した。更に FACS解析でも結合活性を確認して細胞のクローユングを行い、最終的 には 5つの陽性クローンを得た。  [0137] Lymph nodes were collected on the 12th day from rats immunized by performing such operations on the 0th, 4th, and 11th days, and hyperpridoma was administered in the same manner as shown in Example 1. Produced. Hypridoma culture supernatants were screened by Cell ELISA, and clones were selected that reacted with COS7 cells transfected with the three expression vectors but did not react with host COS7 cells. In addition, FACS analysis confirmed the binding activity and cell cloning, and finally 5 positive clones were obtained.
[0138] 2)マウス IFN産生能への影響  [0138] 2) Effects on mouse IFN production
得られたクローンの培養上清を用いて、実施例 5に示した方法に従って、 IFN産生 に与える影響を検討したところ、 V、ずれもコントロール抗体と比較して IPCの IFN産生 を抑制する活性があった。更に、 0.1 μ Μの CpG ODN 1668 (MWG Biotech社)を用い て刺激した際にも、 IFN産生抑制活性を示した(図 9)。このことから、 SNK01以外の m BST2に対する抗体も IPCからの IFN産生を抑制する活性を示すことが確認された。 実施例 12  Using the culture supernatant of the obtained clone, the effect on IFN production was examined in accordance with the method shown in Example 5. V and the deviation were less active in inhibiting IFN production of IPC than the control antibody. there were. Furthermore, when stimulated with 0.1 μ 示 し CpG ODN 1668 (MWG Biotech), it also showed IFN production inhibitory activity (FIG. 9). From this, it was confirmed that antibodies against mBST2 other than SNK01 also showed activity to suppress IFN production from IPC. Example 12
[0139] ヒト BST2 (hBST2)を認識する抗体の作製と評価 1) ヒト BST2抗体の作製 [0139] Production and evaluation of antibodies recognizing human BST2 (hBST2) 1) Production of human BST2 antibody
ヒト BST2の 3種類のサブタイプ D、 H、 HSのいずれ力 あるいは複数を認識する抗体 を実施例 11と同様の方法に従って作製した。実施例 10で作製したそれぞれのタイ プのヒト cDNAがクローユングされた 3種類の発現ベクターを用い、培養上清を FACS 解析することによってハイプリドーマをスクリーニングした。 3D3#7、 3E2#8、 5C11#7、 3 G7#6など、複数のクローンが得られた。得られた複数のクローンの精製抗体を取得し 、更に解析を行った。  An antibody that recognizes any or all of the three subtypes D, H, and HS of human BST2 was prepared in the same manner as in Example 11. Using three types of expression vectors cloned in each type of human cDNA prepared in Example 10, the culture supernatant was subjected to FACS analysis to screen for hyperidoma. Multiple clones such as 3D3 # 7, 3E2 # 8, 5C11 # 7, 3G7 # 6 were obtained. Purified antibodies of the obtained clones were obtained and further analyzed.
[0140] 2)ヒト IFN産生能への影響 [0140] 2) Effects on human IFN production
健常人より末梢血を採取し、 PBL (末梢血リンパ球)を分離した。 Lineage抗体 (CD3、 CD14、 CD16、 CD19、 CD20、 CD56抗体)にて MACSで種々の細胞を除去した後、 CD 4陽性、 CD123陽性、 Lineage陰性細胞群を IPCとしてセルソーターで分離した。このよ うに取得したヒト IPCを 2xl04cells/wellで 96 wellプレートに播種し、それぞれ 3、 10、 30 μ g/mLの濃度で抗 BST2抗体を添加して 37°Cで 1時間培養した。 1時間培養後に Her pes Simplex virus(20 pfo/cell)を添カ卩し、 37°Cで 24時間培養し、培養上清中の IFN a を ELISA kit(Bender Med System社)により、測定した。その結果、抗ヒト BST2抗体は、 既に報告のある BDCA2抗体 (Miltenyi社)と同様に、ヒ HFN産生抑制活性を示すこと が明らかとなった(図 10)。すなわち、ヒト BST2を認識する抗体は、その分子を発現す る細胞の IFN産生活性に影響を与えることが明ら力となった。 Peripheral blood was collected from healthy individuals and PBL (peripheral blood lymphocytes) were isolated. Various cells were removed by MACS with Lineage antibodies (CD3, CD14, CD16, CD19, CD20, CD56 antibodies), and then CD4-positive, CD123-positive, and Lineage-negative cell groups were separated as IPCs using a cell sorter. The good urchin acquired human IPC was seeded in 96 well plates at 2xl0 4 cells / well, were each cultured for 1 hour at 3, 10, 30 μ g / in a concentration mL by the addition of anti-BST2 antibody 37 ° C. After culturing for 1 hour, Herpes Simplex virus (20 pfo / cell) was added and cultured at 37 ° C for 24 hours, and IFN a in the culture supernatant was measured by ELISA kit (Bender Med System). As a result, it was clarified that the anti-human BST2 antibody exhibited HI HFN production inhibitory activity in the same manner as the previously reported BDCA2 antibody (Miltenyi) (FIG. 10). That is, it became clear that an antibody that recognizes human BST2 affects the IFN production activity of cells expressing the molecule.
実施例 13  Example 13
[0141] 抗体の in vivoにおける評価 [0141] In vivo evaluation of antibodies
1)抗体投与マウスより採取した細胞の解析  1) Analysis of cells collected from antibody-treated mice
Balb/cマウスの腹腔内に SNK01、 SNK03、およびコントロールのラット IgGを 1匹あた り 300 gずつ、一日おきに 3回投与し (0.9mg/マウス)、 6日目に脾臓、骨髄を採取し た。更に、骨髄細胞を lxl06/wellにて 96wellプレートに播種し、 CpG (0.5 M)あるい はインフルエンザウイルス PR8によって刺激し、 24時間後の培養上清のサイト力イン値 を ELISAにより測定した(図 11)。 Balb / c mice were intraperitoneally administered SNK01, SNK03, and control rat IgG, 300 g each, 3 times every other day (0.9 mg / mouse). On day 6, spleen and bone marrow were Collected. Furthermore, bone marrow cells were seeded in 96well plates at lxl0 6 / well, had there CpG (0.5 M) were stimulated by influenza virus PR8, were measured by ELISA site force in value of the culture supernatant after 24 h ( (Figure 11).
その結果、 SNK01、 SNK03投与群において、 IPCの各種刺激に対する IFNの産生能 が低いことが明らかになった。すなわち、抗体の投与により、 IPCの機能に変化を生じ 、 in vitroでの刺激による IFN産生能が抑制されたことが示された。 As a result, it was clarified that in the SNK01 and SNK03 administration groups, IFN production ability to various IPC stimuli was low. In other words, IPC function changes due to antibody administration. It was shown that the ability to produce IFN by in vitro stimulation was suppressed.
[0142] 2) ウィルス感染マウスを用いた解析 [0142] 2) Analysis using virus-infected mice
抗体を前投与(1.5日前と 0.5日前にそれぞれ一匹あたり 500 g)したマウス (n=3)に 5xl04pfo/mouseの MCMV (マウスサイトメガロウィルス)を腹腔内に投与し、感染を起 した。この感染後、 1.5日後のマウスの血清中の IFN aを ELISAにより測定した。また、 脾臓での IPCの細胞数 (cell population)を B220、 CDllc、 CD1 lbの染色によって解析 した(図 12)。 5xl0 4 pfo / mouse MCMV (mouse cytomegalovirus) was administered intraperitoneally to mice (n = 3) pre-administered with antibodies (500 g per mouse 1.5 days and 0.5 days before) to cause infection. . After this infection, IFNa in the serum of mice 1.5 days later was measured by ELISA. In addition, the cell population of IPC in the spleen was analyzed by staining with B220, CDllc, and CD1 lb (FIG. 12).
その結果、 SNK01投与群において、血清中の IFN産生量は抑制されていた。すな わち、本抗体投与により、分子が発現している細胞の機能に変化を生じ、 in vivoにお ける IFN産生能が抑制されたことが示された。  As a result, serum IFN production was suppressed in the SNK01 administration group. In other words, it was shown that administration of this antibody resulted in a change in the function of cells expressing the molecule, and the ability to produce IFN in vivo was suppressed.
実施例 14  Example 14
[0143] 自己免疫疾患発症モデルマウスを用いた解析  [0143] Analysis using autoimmune disease model mouse
自己免疫性溶血性貧血を自然発症する NZB(New Zealand Black)マウスと、一見正 常に見える NZW(New Zealand White)マウスの F1マウスは、ループス腎炎を自然発症 する。(Helyer BJ et al. Nature 197;197,1963) これらのマウス(日本 SLC)を用いて、 解析を行った。まず、骨髄、脾臓、末梢血中の IPCの細胞数 (cell population)を FACS 解析によって測定した。その結果、コントロールとして用いた 129マウスと比較して、自 己免疫疾患を発症する NZB、 NZB/W F1マウスでは、 IPCの数が特に骨髄で増加して いることが示された(図 13)。  NZB (New Zealand Black) mice that spontaneously develop autoimmune hemolytic anemia and F1 mice that appear to be normal NZW (New Zealand White) mice spontaneously develop lupus nephritis. (Helyer BJ et al. Nature 197; 197,1963) These mice (Japan SLC) were used for analysis. First, the IPC cell population in bone marrow, spleen, and peripheral blood was measured by FACS analysis. As a result, compared to 129 mice used as controls, NZB and NZB / WF1 mice that develop autoimmune disease showed an increase in the number of IPCs, particularly in the bone marrow (Figure 13). .
[0144] また、それぞれのマウス力も採取した骨髄細胞を lxl06/wellにて 96wellプレートに播 種し、 CpG (0.5 M)あるいはインフルエンザウイルス PR8によって刺激し、各種抗体 を添加して、 24時間後の培養上清のサイト力イン値を実施例 5に示したような、 ELISA 法により測定した。その結果、コントロール IgG、あるいは WO2004/013325記載の 2E6 抗体添カ卩時とは異なり、 SNK01抗体、 SNK03抗体添カ卩時には、 IFN産生抑制活性が 見られた(図 14)。このことより、 SNK01、 SNK03抗体はモデルマウス由来 IPCの IFN産 生を抑制することが明らかになった。 [0144] In addition, each mouse force also bone marrow cells harvested and sowing in 96well plates at lxl0 6 / well, and stimulated by CpG (0.5 M) or influenza virus PR8, by adding various antibody, after 24 hours The cytodynamic force-in value of the culture supernatant was measured by ELISA as shown in Example 5. As a result, IFN production-suppressing activity was observed when SNK01 antibody and SNK03 antibody were added, unlike control IgG or 2E6 antibody-added as described in WO2004 / 013325 (FIG. 14). This revealed that the SNK01 and SNK03 antibodies inhibit IFN production of model mouse-derived IPC.
実施例 15  Example 15
[0145] ループス腎炎モデルマウスへの抗体投与試験 NZB/W Flマウス(日本 SLC)を、 SPF環境下で飼育し、 2ヶ月齢から 7ヶ月齢までの 5 ヶ月間、次のように抗体投与を行った。各群 10匹のマウスに、 SNK01、 SNK03、および コントロールのラット IgG (ICN Pharmaceuticals^ )を 1匹あたり 250 gずつ、週 2回腹 腔内に投与した。 [0145] Antibody administration test to lupus nephritis model mice NZB / W Fl mice (Japan SLC) were bred in an SPF environment and administered with antibodies as follows for 5 months from 2 months to 7 months of age. Each group of 10 mice, SNK01, SNK03, and control rat I g G (ICN Pharmaceuticals ^) to 250 g each per animal was administered a week 2 Kaihara lumen.
[0146] 2週間に 1回、定期的に尿 10 μ Lを濾紙にとり、アルコール固定後、 BPB(Bromophen ol Blue)で染色し、既知濃度の蛋白質(BSA ; bovine serum albmin)溶液をスタンダー ドとして、含まれる蛋白質量を解析した(Knight et al. Clin.Exp.Immunol.28;352-358, 1977) o蛋白質量の指標として、 1 :〜37mg/dl、 2:〜74mg/dl、 3:〜l l lmg/dl、 4:〜3 33mg/dl、 5:〜1000mg/dl、 6:〜3000mg/dlとし、 3: l l lmg/dl以上を陽性と判定して 累積陽性率 (蛋白尿頻度)を算定した。その結果、 SNK01、 SNK03抗体投与群では蛋 白尿の抑制が見られ、腎炎が抑制されたことが示された(図 15)。  [0146] Once every two weeks, 10 μL of urine is periodically taken on filter paper, fixed with alcohol, stained with BPB (Bromophenol Blue), and a protein (BSA; bovine serum albmin) solution at a known concentration as a standard. (Knight et al. Clin. Exp. Immunol. 28; 352-358, 1977) o As an indicator of protein mass, 1: -37 mg / dl, 2: -74 mg / dl, 3: ~ Ll lmg / dl, 4: ~ 3 33mg / dl, 5: ~ 1000mg / dl, 6: ~ 3000mg / dl, 3: ll lmg / dl or more as positive and cumulative positive rate (proteinuria frequency) Was calculated. As a result, suppression of proteinuria was observed in the SNK01 and SNK03 antibody administration groups, indicating that nephritis was suppressed (FIG. 15).
5ヶ月齢の各マウスより血清を採取し、血清中の IFN a濃度を実施例 4に示した方法 で、また、 TNF α濃度を ELISA Development kit (Genzyme- Techne社製)により測定し た。その結果、 SNK01、 SNK03抗体投与群では、それぞれのサイト力イン産生量が抑 制されていた(図 16)。  Serum was collected from each 5-month-old mouse, and the IFNa concentration in the serum was measured by the method shown in Example 4, and the TNFα concentration was measured by ELISA Development kit (Genzyme-Techne). As a result, in each of the SNK01 and SNK03 antibody administration groups, the amount of production of site force in was suppressed (FIG. 16).
実施例 16  Example 16
[0147] ループス腎炎モデルマウスへの抗体投与による治療効果の検討  [0147] Therapeutic effect of antibody administration to lupus nephritis model mice
NZB/W F1マウスを飼育し、腎炎が発症する 5ヶ月齢より 8ヶ月齢まで抗体を投与し、 その効果を比較検討した。各群を 6匹とし、以下に示す物質を週 2回腹腔内に投与し た。各群の尿中の蛋白質量を実施例 15と同様に測定し、比較検討した。プレドニン は自己免疫疾患の治療に利用されるステロイドである。塩野義製薬社製のコハク酸 プレドニゾロンナトリウムをプレドニン(以下プレドニンあるいは PDと称する)として用い た。  NZB / W F1 mice were bred, and antibodies were administered from 5 to 8 months of age when nephritis developed, and the effects were compared. Each group consisted of 6 animals, and the following substances were administered intraperitoneally twice a week. The amount of protein in urine of each group was measured in the same manner as in Example 15 for comparison. Predonin is a steroid used to treat autoimmune diseases. Prednisolone sodium succinate manufactured by Shionogi & Co. was used as predonin (hereinafter referred to as predonin or PD).
1) SNK01抗体 250 μ g+プレドニン 0.5mg、  1) SNK01 antibody 250 μg + predonin 0.5 mg,
2)コントロールのラット IgG (ICN Pharmaceuticals, Inc. ) 250 iu g +プレドニン 0.5mgゝ2) Control rat IgG (ICN Pharmaceuticals, Inc.) 250 i ug + predonin 0.5mg
3)プレドニン 0.5mgのみ 3) Predonin 0.5mg only
治療後 8ヶ月齢のマウスでは、 SNK01抗体とプレドニンを併用した群において、プレ ドニン単独もしくは、プレドニン +コントロール抗体の投与群に比較し、蛋白尿の程度 の抑制が見られ、腎炎発症において治療効果があることが示唆された(図 17)。なお 図において、黒丸は死亡マウスで、死亡直前の蛋白尿の程度を示す。 In 8-month-old mice after treatment, the degree of proteinuria was higher in the combination of SNK01 antibody and predonin than in the group administered predonin alone or predonin + control antibody. It was suggested that there is a therapeutic effect on the onset of nephritis (Fig. 17). In the figure, black circles are dead mice and indicate the degree of proteinuria immediately before death.
産業上の利用可能性  Industrial applicability
[0148] 本発明によって IPCを治療標的とする腎炎の治療剤、並びに治療方法が提供され た。 IPCには他の細胞の数千倍もの IFNを産生する細胞が含まれる。したがって、そ の IFN産生能、および細胞生存 (ある!/、は細胞数)の!、ずれかあるいは両方を抑制す れば、 IFNの産生が効果的に抑制され、腎炎などの症状を緩和することができる。 IPC に作用する本発明の治療剤は、腎炎症状の抑制のみではなぐ腎炎患者の免疫バ ランスの改善を通じてより本質的な治療を実現する。  [0148] According to the present invention, a therapeutic agent and a therapeutic method for nephritis targeting the IPC are provided. IPC includes cells that produce thousands of times as many IFNs as other cells. Therefore, if IFN production ability and cell survival (some! /, Is the number of cells) are suppressed, shifted or both, IFN production is effectively suppressed and alleviates symptoms such as nephritis. be able to. The therapeutic agent of the present invention that acts on IPC realizes more essential treatment through improvement of immune balance of nephritis patients that is not limited only by suppression of renal inflammation symptoms.
[0149] 加えて本発明は、腎炎の治療活性の検出方法と、その方法を利用した治療に有用 な候補ィ匕合物のスクリーニング方法を提供した。本発明によって、 IPCの活性の調節 1S 腎炎の治療において重要な課題であることが明らかにされた。したがって、 IPCの 活性を調節する化合物を選択することによって、腎炎の治療に有用な化合物を選択 することができる。すなわち本発明のスクリーニング方法に基づいて選択されたィ匕合 物は、腎炎の治療に有用である。  [0149] In addition, the present invention provides a method for detecting therapeutic activity for nephritis and a method for screening candidate compounds useful for treatment using the method. According to the present invention, regulation of IPC activity was revealed to be an important issue in the treatment of 1S nephritis. Therefore, a compound useful for treating nephritis can be selected by selecting a compound that modulates the activity of IPC. That is, the compound selected based on the screening method of the present invention is useful for the treatment of nephritis.

Claims

請求の範囲 The scope of the claims
[I] インターフェロン産生細胞の活性抑制物質を有効成分として含有する腎炎の治療剤  [I] Therapeutic agent for nephritis containing an interferon-producing cell activity inhibitor as an active ingredient
[2] インターフェロン産生細胞の活性抑制物質力 インターフェロン産生細胞のインター フエロン産生および細胞の生存のいずれか、または両方を抑制する作用を有する物 質である請求項 1に記載の治療剤。 [2] The agent for inhibiting the activity of interferon-producing cells The therapeutic agent according to claim 1, which is a substance having an action of suppressing either or both of interferon production and cell survival of interferon-producing cells.
[3] インターフェロン産生細胞の活性抑制物質力 インターフェロン産生細胞のインター フエロン産生および細胞の生存のいずれか、または両方を抑制する作用を有する抗 体である請求項 2に記載の治療剤。 [3] The therapeutic agent according to claim 2, which is an antibody having an action of suppressing either or both of interferon production and cell survival of interferon-producing cells.
[4] 抗体が、 BST2およびそのホモログの 、ずれか、または両方を認識する抗体、または その少なくとも抗原結合領域を含む抗体断片である請求項 3に記載の治療剤。 [4] The therapeutic agent according to claim 3, wherein the antibody is an antibody that recognizes one or both of BST2 and its homolog, or an antibody fragment containing at least an antigen-binding region thereof.
[5] 抗体が、 FERM BP-10339として寄託されたハイブリドーマ 3D3#7、または FERM BP-1[5] Hybridoma 3D3 # 7 deposited as FERM BP-10339, or FERM BP-1
0340として寄託されたハイブリドーマ 3G7#6が産生するモノクローナル抗体の、少なく とも抗原結合領域を含む抗体である請求項 4に記載の治療剤。 The therapeutic agent according to claim 4, which is an antibody comprising at least an antigen-binding region of a monoclonal antibody produced by hybridoma 3G7 # 6 deposited as 0340.
[6] インターフェロン産生細胞の活性を抑制する工程を含む、腎炎の治療方法。 [6] A method for treating nephritis, comprising a step of suppressing the activity of interferon-producing cells.
[7] 抑制すべきインターフェロン産生細胞の活性力 インターフェロン産生細胞のインタ 一フエロン産生および細胞の生存のいずれか、または両方である請求項 6に記載の 治療方法。 [7] The therapeutic method according to claim 6, wherein the interferon-producing cells are to be inhibited by interferon-producing cells, interferon production and / or cell survival.
[8] インターフェロン産生細胞の活性を抑制する工程力 インターフェロン産生細胞のィ ンターフェロン産生および細胞の生存のいずれか、または両方を抑制する作用を有 する抗体を投与する工程を含む、請求項 7に記載の治療方法。  [8] The process power of suppressing the activity of interferon-producing cells. The method comprises the step of administering an antibody having an action of suppressing either or both of interferon production and cell survival of interferon-producing cells. The method of treatment described.
[9] 抗体が、 BST2およびそのホモログの 、ずれか、または両方を認識する抗体、または その少なくとも抗原結合領域を含む抗体断片である、請求項 8に記載の治療方法。  [9] The method according to claim 8, wherein the antibody is an antibody that recognizes either or both of BST2 and its homologue, or an antibody fragment containing at least an antigen-binding region thereof.
[10] 抗体が、 FERM BP-10339として寄託されたハイブリドーマ 3D3#7、または FERM BP-1 0340として寄託されたハイブリドーマ 3G7#6が産生するモノクローナル抗体の、少なく とも抗原結合領域を含む抗体である請求項 9に記載の治療方法。  [10] The antibody is an antibody containing at least the antigen-binding region of the monoclonal antibody produced by hybridoma 3D3 # 7 deposited as FERM BP-10339 or hybridoma 3G7 # 6 deposited as FERM BP-10340. The treatment method according to claim 9.
[II] 次の工程を含む、被験化合物の腎炎の治療効果の検出方法。  [II] A method for detecting the therapeutic effect of a test compound on nephritis, comprising the following steps:
(1)インターフェロン産生細胞とインターフェロン産生細胞のインターフェロン産生誘 導物質を、以下の i)-iii)の 、ずれかの順序で接触させる工程、 (1) Induction of interferon production by interferon-producing cells and interferon-producing cells The step of contacting the conductive material in the following order i) -iii):
0被験化合物とインターフェロン産生細胞を接触後に、インターフェロン産生を誘導 する細胞刺激剤をインターフェロン産生細胞に接触させる、  After contacting the test compound and interferon-producing cells, a cell stimulator that induces interferon production is contacted with the interferon-producing cells.
ii)被験化合物とインターフェロン産生を誘導する細胞刺激剤を同時にインターフエ口 ン産生細胞に接触させる、または  ii) contacting a test compound and a cell stimulant that induces interferon production simultaneously with the interferon-producing cells, or
iii)インターフェロン産生を誘導する細胞刺激剤をインターフェロン産生細胞に接触さ せた後に、被験化合物とインターフェロン産生細胞を接触させる  iii) Contact the interferon-producing cells with a cell stimulator that induces interferon production, and then contact the test compound with the interferon-producing cells.
(2)インターフェロン産生細胞の活性を測定する工程、および  (2) measuring the activity of interferon-producing cells, and
(3)対照と比較して、インターフ ロン産生細胞の活性が抑制されたとき、被験化合物 の腎炎の治療効果が検出される工程  (3) A step in which the therapeutic effect of the test compound on nephritis is detected when the activity of interferon-producing cells is suppressed compared to the control.
[12] 細胞刺激剤がウィルス、ウィルスの構成要素、およびバクテリアの DNAカゝらなる群か ら選択される少なくとも 1つの細胞刺激剤である請求項 11に記載の方法。  12. The method according to claim 11, wherein the cell stimulating agent is at least one cell stimulating agent selected from the group consisting of viruses, viral components, and bacterial DNA.
[13] 被験化合物が、インターフ ロン産生細胞を認識する抗体またはその少なくとも抗原 結合領域を含む抗体断片である請求項 11に記載の方法。 [13] The method according to claim 11, wherein the test compound is an antibody recognizing an interferon-producing cell or an antibody fragment containing at least an antigen-binding region thereof.
[14] 請求項 11に記載の方法によって腎炎の治療効果が検出された被験化合物を選択 する工程を含む、腎炎の治療効果を有する化合物のスクリーニング方法。 [14] A screening method for a compound having a therapeutic effect on nephritis, comprising a step of selecting a test compound in which the therapeutic effect on nephritis is detected by the method according to claim 11.
[15] 請求項 14に記載のスクリーニング方法によって選択された化合物を有効成分として 含有する腎炎の治療剤。 [15] A therapeutic agent for nephritis comprising a compound selected by the screening method according to claim 14 as an active ingredient.
[16] インターフェロン産生細胞の活性抑制物質の、腎炎の治療剤の製造における使用。 [16] Use of an interferon-producing cell activity inhibitor in the manufacture of a therapeutic agent for nephritis.
PCT/JP2005/021383 2004-11-22 2005-11-21 Remedy for nephritis WO2006054748A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006545196A JPWO2006054748A1 (en) 2004-11-22 2005-11-21 Nephritis treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004337365 2004-11-22
JP2004-337365 2004-11-22

Publications (1)

Publication Number Publication Date
WO2006054748A1 true WO2006054748A1 (en) 2006-05-26

Family

ID=36407281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021383 WO2006054748A1 (en) 2004-11-22 2005-11-21 Remedy for nephritis

Country Status (2)

Country Link
JP (1) JPWO2006054748A1 (en)
WO (1) WO2006054748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051201A1 (en) * 2007-10-16 2009-04-23 Sbi Biotech Co., Ltd. Anti-bst2 antibody

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298106A (en) * 1997-02-28 1998-11-10 Chugai Pharmaceut Co Ltd Lymphocytic activation suppressant
WO2006002177A2 (en) * 2004-06-21 2006-01-05 Medarex, Inc. Interferon alpha receptor 1 antibodies and their uses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298106A (en) * 1997-02-28 1998-11-10 Chugai Pharmaceut Co Ltd Lymphocytic activation suppressant
WO2006002177A2 (en) * 2004-06-21 2006-01-05 Medarex, Inc. Interferon alpha receptor 1 antibodies and their uses

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ARTHRITIS AND RHEUMATISM, vol. 48, no. 9, 2003, pages 2524 - 2532 *
ASSELIN-PATUREL C. ET AL.: "Mouse Strain Differences in Plasmacytoid Dendritic Cell Frequency and Function Revealed by a Novel Monoclonal Antibody", THE JOURNAL OF IMMUNOLOGY, vol. 171, no. 12, 2003, pages 6466 - 6477, XP002984375 *
DATABASE MEDLINE [online] 10 February 2006 (2006-02-10), BLOMBERG S. ET AL.: "Expression of the Markers BDCA-2 and BDCA-4 and Production of Interferon-Alpha by Plasmacytoid Dendritic Cells in Systemic Lupus Erythematosus", XP002997569, accession no. STN Database accession no. (13130472) *
DZIONEK A. ET AL.: "BDCA-2, a Novel Plasmacytoid Dendritic Cell-Specific Type II C-Type Lectin, Mediates Antigen Capture and is a Potent Inhibitor of Interferon Alpha/Beta Induction", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 194, no. 12, 2001, pages 1823 - 1834, XP002277387 *
GRESSER I. ET AL.: "Progressive Glomerulonephritis in Mice Treated with Interferon Preparations at Birth", NATURE, vol. 263, no. 5576, 1976, pages 420 - 422, XP002997570 *
ISHIKAWA J. ET AL.: "Molecular Cloning and Chromosomal Mapping of a Bone Marrow Stromal Cell Surface Gene, BST2, That May Be Involved in Pre-B-cell Growth", GENOMICS, vol. 26, no. 3, 1995, pages 527 - 534, XP004828668 *
WANATABE K. ET AL.: "Investigation of the Mechanism of Drug-Induced Autoimmune Hemolytic Anemia in Cynomolgus Monkeys Elicited by a Repeated-Dose of a Humanized Monoclonal Antibody Drug", THE JOURNAL OF TOXICOLOGICAL SCIENCES, vol. 28, no. 3, 2003, pages 123 - 138, XP002997571 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051201A1 (en) * 2007-10-16 2009-04-23 Sbi Biotech Co., Ltd. Anti-bst2 antibody
US8529896B2 (en) 2007-10-16 2013-09-10 Sbi Biotech Co., Ltd. Anti-BST2 antibody
JP5558825B2 (en) * 2007-10-16 2014-07-23 Sbiバイオテック株式会社 Anti-BST2 antibody

Also Published As

Publication number Publication date
JPWO2006054748A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5802245B2 (en) Human monoclonal antibody human CD134 (OX40) and methods for making and using the same
KR101585532B1 (en) Anti-ilt7 antibody
US11090362B2 (en) Pharmaceutical composition comprising IL-34 and a mTOR inhibitor
JP2018197236A (en) Anti-tumour immune response to modified self-epitopes
JP4915919B2 (en) Interferon-producing cell activity regulator
EP2990419B1 (en) Preventive or therapeutic agent for inflammatory disease
US8404803B2 (en) Cancer-associated antigen analogue peptides and uses thereof
KR20220045980A (en) In vitro gamma delta T cell population
WO2011038689A1 (en) Novel human cytokine vstm1-v2 and use thereof
EP1327638A1 (en) Novel dendritic cell wall membrane and use thereof
WO2006013923A1 (en) Remedy for arthritis accompanied by autoimmune disease
EP4130039A1 (en) Development and application of immune cell activator
WO2006054748A1 (en) Remedy for nephritis
JP5616782B2 (en) Antibody with immune enhancement function
CA2624135A1 (en) T-cell adhesion molecule and antibody thereto
JP2008162954A (en) Treating agent containing antibody against plasma cell-like dendritic cell-specific membrane molecule
CN116284409A (en) GPC3CAR-T cells and their use in the preparation of a medicament for the treatment of cancer
KR101008387B1 (en) Pharmaceutical composition for the prevention or treatment of asthma comprising inhibitors or down regulators of G? 13 protein function
US20170198026A1 (en) Compositions And Methods For Treating Tumors And Immune Based Inflammatory Diseases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545196

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809214

Country of ref document: EP

Kind code of ref document: A1