WO2006054576A1 - Vhf band receiver - Google Patents

Vhf band receiver Download PDF

Info

Publication number
WO2006054576A1
WO2006054576A1 PCT/JP2005/021006 JP2005021006W WO2006054576A1 WO 2006054576 A1 WO2006054576 A1 WO 2006054576A1 JP 2005021006 W JP2005021006 W JP 2005021006W WO 2006054576 A1 WO2006054576 A1 WO 2006054576A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency
antenna
antenna coil
reception
Prior art date
Application number
PCT/JP2005/021006
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Miyagi
Original Assignee
Niigata Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Seimitsu Co., Ltd. filed Critical Niigata Seimitsu Co., Ltd.
Publication of WO2006054576A1 publication Critical patent/WO2006054576A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/24Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection
    • H03J5/242Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection used exclusively for band selection
    • H03J5/244Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection used exclusively for band selection using electronic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/10Tuning of a resonator by means of digitally controlled capacitor bank

Definitions

  • the present invention relates to a VHF band receiver that receives a VHF band signal.
  • a linear antenna using a rod antenna, a earphone cord, or the like has been used.
  • this type of antenna needs to be exposed outside the receiver's housing, which can be easily damaged.
  • a receiver using a helical 'loop type surface field radiation antenna in which a metal conductor is spirally wound around a core made of a rectangular frame type conductive material is known (for example, , See Patent Document 1.) o
  • the entire receiver including the antenna can be made smaller than a rod antenna or a linear antenna.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-93027 (Page 3-6, Fig. 1-11)
  • the helical 'loop type surface field radiation antenna disclosed in Patent Document 1 described above is smaller than a rod antenna or the like, but for example, a reception built in a portable device such as a cellular phone.
  • a portable device such as a cellular phone.
  • the directivity of the antenna is stronger than that of a rod antenna or the like, and there is a problem that the reception sensitivity is lowered depending on the installation position of the receiver.
  • the present invention was created in view of the above points, and the purpose of the present invention is a VHF band in which the degree of freedom of antenna installation is high, miniaturization is easy, and reception sensitivity can be improved. It is to provide a receiver.
  • the VHF band receiver of the present invention And a tuning circuit that selectively passes a tuning frequency and a signal in the vicinity thereof, a local oscillation circuit that generates a local oscillation signal, a local oscillation signal generated by using the local oscillation circuit, and a tuning operation by the tuning circuit.
  • the tuning circuit has a plurality of antenna coils wound around different magnetic cores, and a tuning frequency of the VHF band is set. In this way, a small antenna can be realized by using an antenna composed of a magnetic core and an antenna coil, so that the degree of freedom of antenna installation is increased and the entire VHF band receiver can be easily downsized. .
  • a magnetic core having a length of about 1 cm can be used, so that a conventional rod antenna, linear antenna, helical loop type Compared to surface field radiation antennas, it can be significantly reduced in size.
  • a plurality of such small antennas it is possible to improve reception sensitivity by diversity reception.
  • a selection unit that selects one of the plurality of antenna coils
  • a reception state detection unit that detects a reception state when the antenna coil selected by the selection unit is used
  • a reception state Switching control means for switching the antenna coil selected by the selection means based on the reception state detected by the detection means.
  • the switching control means described above is configured so that when the reception information corresponding to the antenna coil before switching is better than the reception state corresponding to the antenna coil after switching, the antenna before switching It is desirable to instruct the selection means to return to the coil. As a result, it is possible to reliably select an antenna having a good reception state and perform signal reception.
  • a selection unit that selects one of a plurality of reception systems corresponding to each of the plurality of antenna coils, and a reception state detection unit that detects a reception state corresponding to each of the plurality of reception systems.
  • a switching control means for switching the reception system selected by the selection means based on the reception status detected by the reception status detection means.
  • the plurality of antenna coils described above are arranged at positions separated from each other by a predetermined distance. As a result, it is possible to improve the reception state by improving the relationship between the antenna position and the phase of the received signal.
  • the distance between the plurality of antenna coils described above is a quarter wavelength of the carrier frequency included in the reception frequency band.
  • the plurality of antenna coils described above are arranged in different directions. This makes it possible to receive signals using other antennas even when one antenna is arranged in the direction that is most insensitive to received radio waves. Regardless of this, the reception sensitivity can be improved.
  • the above-described tuning circuit forms a resonance circuit together with the antenna coil, has a variable capacitance circuit whose capacitance can be changed, and performs a setting operation for matching the tuning frequency to the frequency of the signal to be received. It is desirable to further include frequency setting control means for performing. As a result, a signal in the vicinity of the frequency of the signal desired to be received can be selectively passed by the tuning circuit. Therefore, when a fixed tuning frequency is set as in the case of using a conventional rod antenna or the like. In comparison, sensitivity and selectivity can be improved.
  • the local oscillation circuit described above can change the oscillation frequency
  • the frequency setting control means preferably performs control to change the oscillation frequency of the local oscillation circuit in conjunction with the tuning frequency of the tuning circuit.
  • the tuning frequency of the tuning circuit and the oscillation frequency of the local oscillation circuit are changed while maintaining a frequency difference corresponding to the intermediate frequency.
  • variable capacitance circuit described above has a plurality of capacitors that are selectively connected to the respective antenna coils, and the frequency setting control means determines a connection state of the plurality of capacitors. It is desirable to change the tuning frequency of the VHF band determined by the antenna coil and the capacitor that is selectively connected to this antenna coil. By switching the capacitor connected to the antenna coil, it is possible to selectively pass signals in the vicinity of the frequency of the signal desired to be received. Therefore, a fixed rod like a conventional rod antenna is used. Sensitivity and selectivity can be improved compared to when the tuning frequency is set!
  • a switch for intermittent connection is connected in series to at least some of the plurality of capacitors described above, and the frequency setting control means changes the intermittent state of the switch by changing the intermittent state of the switch. It is desirable to change the selection state. This makes it possible to easily switch the connection state of the capacitor.
  • variable capacitance circuit described above is preferably formed on a semiconductor substrate on which frequency setting control means is formed.
  • frequency setting control means almost all components except the antenna coil and speaker can be integrally formed on the semiconductor substrate, and the entire VHF band receiver can be reduced in size and cost.
  • the frequency setting control means on the same semiconductor substrate as the plurality of capacitors and the plurality of switches, the switching control of the switches by the frequency setting control means becomes easy and the number of external parts can be reduced. .
  • the variation in the relative ratio of the plurality of capacitors can be reduced.
  • the above-described antenna coil has one end grounded and the other end connected to the variable capacitance circuit. Since only one end of the antenna coil needs to be directly connected to the variable capacitance circuit, wiring can be simplified. In particular, when a variable capacitance circuit is formed on a semiconductor substrate, the number of dedicated pads used to directly connect the antenna coil and the variable capacitance circuit is the same as the number of antenna coils. The number of pads can be reduced. [0019] Further, it is desirable that the above-described antenna coil has a grounded center tap, and each of both ends is connected to both ends of the variable capacitance circuit.
  • variable capacitance circuit in the variable capacitance circuit described above, two capacitors having capacitance values set to approximately the same are connected in series, the connection point of the two capacitors is grounded, and both ends of the variable capacitance circuit are connected to the antenna coil. It is desirable to be directly connected to both ends. As a result, it is possible to increase the amplitude of the signal output from the tuning circuit constituted by the antenna coil and the variable capacitance circuit, and the sensitivity and selectivity can be improved.
  • FIG. 1 is a diagram illustrating a configuration of an FM receiver according to an embodiment.
  • FIG. 2 is a diagram showing an arrangement example of two antenna coils.
  • FIG. 3 is a diagram showing an arrangement example of two antenna coils.
  • FIG. 4 is a flowchart showing an operation procedure for switching a switch by a control unit.
  • FIG. 5 is a view showing a modification of the FM receiver having two systems up to the detection circuit.
  • FIG. 6 is a flowchart showing an operation procedure for switching a switch by a control unit.
  • FIG. 7 is a diagram showing a partial configuration of an FM receiver using a balanced antenna coil.
  • FIG. 8 is a diagram showing a partial configuration of a modification of the FM receiver.
  • FIG. 9 is a diagram showing a partial configuration of a modification of the FM receiver.
  • FIG. 10 is a diagram showing an arrangement example of three antennas.
  • FIG. 1 is a diagram illustrating a configuration of an FM receiver according to an embodiment.
  • FM receiver 100 shown in FIG. 1 includes antenna coils 1 and 9, variable capacitance circuit 2, switches 5 and 6, inverter circuit 7, high-frequency amplifier circuit 11, mixing circuit 12, local oscillation circuit 13, intermediate frequency filter 14, 16, an intermediate frequency amplifier circuit 15, an FM detection circuit 18, a stereo demodulation circuit 19, a control unit 20, a detection circuit 21, and a selection circuit 22.
  • These components are formed as a one-chip component 10 on a semiconductor substrate using each component force SCMOS process except the antenna coils 1 and 9. 1
  • the chip component 10 and the antenna coils 1 and 9 are connected via pads 3 and 4 formed on the semiconductor substrate.
  • Each of the antenna coils 1 and 9 is wound around a ferrite-based magnetic core.
  • a ferrite magnetic core having a diameter of 2 to 3 mm and a length of about 1 cm is used, and an antenna coil 1 having an impedance of about several k ⁇ is formed by winding a conducting wire around the core. .
  • FIG. 2 and FIG. 3 are diagrams showing an arrangement example of two antenna coils 1 and 9.
  • the antenna coils 1 and 9 are arranged in the same direction and spatially at a predetermined distance (for example, ⁇ ⁇ 4 when the wavelength of the carrier frequency of the received signal is estimated), or Shown in 3 In such a case, it may be arranged in different directions (for example, 90 °).
  • the switches 5 and 6 selectively connect one of the antenna coils 1 and 9 to the variable capacitance circuit 2.
  • the connection is switched by a switching signal input from the control unit 20.
  • One switch 5 is inputted via a switching signal force inverter circuit 7 and the other switch 6 is inputted a switching signal directly.
  • a low-level switching signal is output from the control unit 20
  • this signal is inverted by the inverter circuit 7 and input to the switch 5, and the switch 5 is closed (ON).
  • the switch 6 is opened (turned off) by receiving a low-level control signal. Therefore, the variable capacitance circuit 2 is connected only to the antenna coil 1.
  • the variable capacitance circuit 2 is a capacitive circuit, and includes a plurality of capacitors 31 and a plurality of switches 32.
  • a variable capacitance circuit 2 is configured by including a plurality of series circuits of one capacitor 31 and one switch 32, and each of the plurality of series circuits is connected in parallel to one of the antenna coils 1 and 9.
  • the Each switch 32 can set an intermittent state independently of each other, and a capacitor 31 connected to the closed switch 32 is selectively connected to one of the antenna coils 1 and 9.
  • the switch 32 is realized by using an analog switch in which the source and drain of the p-channel FET and the n-channel FET are connected in parallel.
  • the antenna coil 1 or 9 and the variable capacitance circuit 2 are connected in parallel to form an LC resonance circuit, and a tuning frequency corresponding to the resonance frequency of the resonance circuit and a broadcast wave in the vicinity thereof are formed.
  • the antenna coil 1 or 9 and the variable capacitance circuit 2 operate as a tuning circuit that selectively passes.
  • the high frequency amplifier circuit 11 performs high frequency amplification on the signal output from the variable capacitance circuit 2.
  • the local oscillation circuit 13 generates a local oscillation signal shifted by an intermediate frequency with respect to the frequency of the broadcast wave desired to be received.
  • the control unit 20 controls the overall operation of the FM receiver 100, and is controlled by the local oscillation circuit 13. By selecting the frequency of the local oscillation signal to be generated, the channel selection operation is performed to determine the broadcast wave to be received. Further, the control unit 20 outputs a switching signal for selectively turning on one of the switches 5 and 6 based on the detection result by the detection circuit 21. Detailed operations for switching between switches 5 and 6 will be described later.
  • the control unit 20 includes a CPU and a memory, and performs a control operation by executing a predetermined program.
  • the detection circuit 21 is for detecting a reception state. For example, the detection is performed by paying attention to the electric field strength and the presence / absence of multipath as the reception state. In the present embodiment, the received electric field strength and the force that detects the presence / absence of multipath are detected as long as the reception sensitivity and noise level are changed when the antenna coils 1 and 9 are switched.
  • the reception state may be detected. For example, it may be possible to detect the degree of error when demodulating multiplexed data included in FM multiplex broadcasting. In some cases, the amount of noise may be detected as the reception state.
  • which configuration and the detection circuit 21 should be connected depends on the characteristics of the force detection target in which the detection circuit 21 is connected after the intermediate frequency filter 16. Alternatively, the detection circuit 21 may be connected to each other, or the detection circuit 21 may be connected to a plurality of configurations.
  • the selection circuit 22 performs a predetermined decoding process on the setting data input from the control unit 20 to generate a switching signal that controls the intermittent state of each switch 32 in the variable capacitance circuit 2. If the number of switches 32 is m, the number of switching signals is also m. Each switching signal is set to a voltage level of either low level or high level. For example, when a switching signal having a low voltage level is input, the switch 32 is opened, and when a switching signal having a high voltage level is input, the switch 32 is closed. In addition, only one switching signal can be selectively set to the high level, and two or more switching signals can be selectively combined to be set to the high level.
  • the mixing circuit 12 mixes the signal output from the high-frequency amplifier circuit 11 and the local oscillation signal output from the local oscillation circuit 13, and outputs a signal corresponding to the difference (or sum) component.
  • the intermediate frequency filters 14 and 16 are provided before and after the intermediate frequency amplifier circuit 15 and extract only a predetermined band component of the input intermediate frequency signal force.
  • the intermediate frequency amplifier circuit 15 converts some intermediate frequency signals that pass through the intermediate frequency filters 14 and 16. Amplify.
  • the FM detection circuit 18 performs FM detection processing on a signal having a constant amplitude after being output from the intermediate frequency filter 16 at the subsequent stage and passing through a limit circuit (not shown).
  • the stereo demodulation circuit 19 performs stereo demodulation processing on the composite signal after FM detection output from the FM detection circuit 18 to generate an L signal and an R signal.
  • the operation unit 40 is for performing channel selection operation, volume setting operation, and the like by a user, and includes various operation keys and operation knobs necessary for these operations.
  • the display unit 42 is for notifying the user of various types of information, and displays the frequency of the broadcast wave being received, the name of the broadcast station corresponding to this broadcast wave, and the volume level, etc. .
  • switches 5 and 6 and the inverter circuit 7 correspond to selection means
  • the detection circuit 21 corresponds to reception state detection means
  • the control unit 20 corresponds to switching control means and frequency setting control means, respectively.
  • FIG. 4 is a flowchart showing an operation procedure for switching the switches 5 and 6 by the control unit 20.
  • the control unit 20 determines whether the electric field strength is below the reference value based on the detection result of the detection circuit 21. Is determined (step 101). If it is not less than the reference value, a negative determination is made, and the control unit 20 determines whether multipath has occurred based on the detection result of the detection circuit 21 (step 102). If no multipath has occurred, a negative determination is made, and the process returns to step 101 and the determination operation is repeated.
  • step 101 If the electric field strength is a weak electric field that is less than or equal to the reference value, an affirmative determination is made in the determination of step 101. Alternatively, when multipath has occurred, an affirmative determination is made in the determination of step 102. If an affirmative determination is made in either step 101 or 102, the control unit 20 next stores the state (the electric field strength and the degree of multipath generation) at that time (step 103), and then the antenna. Is switched (step 104). For example, to switch to antenna coil 9 when antenna coil 1 is currently in use, control unit 20 switches the low-level switching signal output so far to the noise level and turns on switch 6. Turn off switch 5.
  • the control unit 20 determines whether or not the reception state after switching is better (step 105) If it is satisfactory, an affirmative determination is made, and a series of antenna switching operations are terminated. If the reception state after switching is worse, a negative determination is made in the determination of step 105, the antenna is returned to its original state (step 106), and the series of antenna switching operations ends.
  • the control unit 20 switches to the switch signal of “NO” and “Y” level, turns on the switch 5 and turns off the switch 6, and returns the connection to the antenna coil 1 side.
  • a small antenna can be realized by using the antenna composed of the magnetic core and the antenna coils 1 and 9, so that the antenna can be installed freely.
  • the size of the FM receiver 100 as a whole can be easily reduced.
  • a magnetic core with a length of about 1 cm can be used, so a conventional rod antenna, linear antenna, helical loop Compared to a type field radiation antenna, the size can be greatly reduced.
  • by providing a plurality of such small antennas it is possible to improve reception sensitivity by diversity reception.
  • the control unit 20 gives an instruction to switch the antenna coils 1 and 9 using the switches 5 and 6 based on the reception state detected by the detection circuit 21, and the antenna switching is performed based on the reception state. By doing so, it becomes possible to receive signals in a better reception state.
  • the control unit 20 instructs to return to the antenna coil before switching. Signals can be received by reliably selecting antennas with good reception conditions.
  • the two antenna coils 1 and 9 are arranged at positions separated from each other by a predetermined distance, it is possible to improve the reception state by improving the relationship between the antenna position and the phase of the received signal. Become. In particular, it is possible to receive signals using at least one antenna by setting the distance between the two antenna coils 1 and 9 to a length corresponding to a quarter wavelength of the carrier frequency included in the reception frequency band. Therefore, it is possible to prevent the reception sensitivity from becoming extremely bad.
  • control unit 20 performs a setting operation to make the tuning frequency coincide with the frequency of the broadcast wave to be received, so that a signal in the vicinity of the frequency of the broadcast wave desired to be received can be selectively passed. Therefore, compared to the case where a fixed tuning frequency is set as in the case where a conventional rod antenna or the like is used, sensitivity and selectivity can be improved over the entire FM frequency band. . Further, the control unit 20 performs control to change the oscillation frequency of the local oscillation circuit 13 in conjunction with the tuning frequency of the tuning circuit, and links the tuning frequency of the tuning circuit and the oscillation frequency of the local oscillation circuit 13. This makes it possible to realize a superheterodyne FM receiver 100 with further improved sensitivity and selectivity.
  • variable capacitance circuit 2 and other circuits are formed on the semiconductor substrate on which the control unit 20 is formed, only the antenna coils 1 and 9 wound around the magnetic core are tuned as external components.
  • the tuning circuit and the FM receiver 100 that can change the frequency can be configured, and the entire FM receiver 100 can be downsized.
  • control unit 20 by forming the control unit 20 on the same semiconductor substrate as the plurality of capacitors 31 and the plurality of switches 32, switching control of the switch 32 by the control unit 20 becomes easy and the number of external parts is reduced. Can do. Further, variation in the relative ratio of the plurality of capacitors 31 can be reduced.
  • variable capacitance circuit 2 by using an unbalanced configuration in which one end of the antenna coils 1 and 9 is grounded and the other end is directly connected to the variable capacitance circuit 2, wiring can be simplified.
  • variable capacitance circuit 2 when the variable capacitance circuit 2 is formed on a semiconductor substrate, only two dedicated nodes 3 and 4 can be used to directly connect the antenna coils 1 and 9 and the variable capacitance circuit 2. Therefore, the number of nodes on the semiconductor substrate can be reduced.
  • variable capacitance circuit 2 includes a plurality of capacitors 31 and a plurality of switches 32, and the switching state of these switches 32 is switched by the control unit 20, thereby easily switching the connection state of the capacitors 31.
  • the entire capacitance of the variable capacitance circuit 2 can be easily changed.
  • FIG. 5 is a diagram illustrating a modification of the FM receiver including two systems of reception systems up to the detection circuit. In FIG. 5, the main differences from the FM receiver 100 shown in FIG. 1 are shown.
  • FM receiver 100A shown in FIG. 5 includes two circuits of each receiving system from variable capacitance circuit 2 to intermediate frequency filter 16 and detection circuit 21 included in FM receiver 100 shown in FIG. Yes.
  • switches 5 and 6 and inverter circuit 7 provided between variable capacitance circuit 2 and pads 3 and 4 are connected between intermediate frequency filter 16 and FM detection circuit 18 in FM receiver 100A. Is provided.
  • the control unit 20 Based on the detection result by the detection circuit 21, the control unit 20 outputs a switching signal for selectively turning on one of the switches 5 and 6.
  • a system one receiving system corresponding to pad 3 and switch 5
  • B system the other receiving system corresponding to node 4 and switch 5
  • FIG. 6 is a flowchart showing an operation procedure for switching the switches 5 and 6 by the control unit 20.
  • the FM receiver 100A is turned on to start receiving a desired broadcast wave (step 200). This reception operation is performed using, for example, each circuit of system A with switch 5 turned on.
  • the control unit 20 detects the reception state (the electric field strength and the degree of multipath) for the A system (step 201), and detects the reception state for the B system (step 202). These reception status detection orders may be performed at the same time, whichever comes first.
  • the control unit 20 determines whether or not the reception state of the system A is better (step 203).
  • step 204 the control unit 20 makes an affirmative judgment and turns on the switch 5 to turn on the A
  • the connection is switched to the system side (step 204). Note that if reception using the A-system circuit has been performed so far, switch 5 is already in the ON state, so the connection state of switch 5 is maintained. Also, when the reception status is better for system B In step 203, a negative determination is made, and then the control unit 20 turns on the switch 6 and switches the connection to the B system side (step 205). In this way, after switching to a circuit of a system with a good reception state, the process returns to step 201 and the processing after the detection operation of the reception state is repeated again.
  • a force balance type antenna coil using unbalanced antenna coils 1 and 9 with one end grounded may be used.
  • Fig. 7 is a diagram showing a partial configuration of an FM receiver using a balanced antenna coil.
  • the FM receiver shown in Fig. 7 includes a balanced antenna coil 1A, 9A, a variable capacitance circuit 2A that forms a tuning circuit in combination with one of these antenna coils 1A, 9A, and a differential circuit.
  • a high frequency amplifier circuit 11A constituted by an amplifier circuit.
  • the other configurations are basically the same as those of the FM receiver 100 shown in FIG. 1, and the illustration and detailed description in FIG. 7 are omitted.
  • the antenna coil 1A is wound around a ferrite-based magnetic core, and a center position force center one tap is drawn out. This center tap is grounded. Both ends of the antenna coil 1A are connected to the variable capacitance circuit 2A via pads 3A and 3B and switches 5A and 5B formed on the semiconductor substrate. Similarly, the antenna coil 9A is wound around a ferrite-based magnetic core, and the center position force is also pulled out from the center tap. This center tap is grounded. Both ends of the antenna coil 9A are connected to the variable capacitance circuit 2A via pads 4A and 4B and switches 6A and 6B formed on the semiconductor substrate.
  • the variable capacitance circuit 2A has substantially the same configuration as the variable capacitance circuit 2 shown in FIG. 1, and includes a plurality of capacitors 31 and a plurality of switches 32. However, in the variable capacitance circuit 2, one end of the series circuit composed of the capacitor 31 and the switch 32 is grounded, but in the variable capacitance circuit 2A, both ends of the series circuit composed of the capacitor 31 and the switch 32 are connected to the pads 3A, 3B or The difference is that it is connected to either pad 4A or 4B and not grounded. [0052] By using the balanced antenna coil 1A (or 9A) in this way, the amplitudes on the opposite sides of the grounded center tap can be summed, so that the high frequency from the tuning circuit can be increased.
  • the gain of the broadcast wave signal input to the amplifier circuit 11A can be increased by about 6 dB.
  • the high-frequency amplifier circuit 11A differentially amplifies the broadcast wave signal output from the variable capacitance circuit 2A and inputs the amplified signal to the subsequent mixing circuit 12. By doing so, the dynamic range can be increased.
  • FIG. 8 is a diagram showing a partial configuration of a modification of the FM receiver.
  • the FM receiver shown in Fig. 7 is a force that realizes a non-type configuration by providing center taps on the antenna coils 1A and 9A and grounding them.
  • a similar balanced configuration can also be realized by providing a center tap and grounding.
  • the FM receiver shown in FIG. 8 includes antenna coils 1B and 9B, a variable capacitance circuit 2B that forms a tuning circuit in combination with one of these antenna coils 1B and 9B, and a differential amplifier circuit. And a high-frequency amplifier circuit 11A constituted by: The other configurations are the same as those of the FM receiver 100 shown in FIG. 1, and the illustration and detailed description in FIG. 8 are omitted.
  • the antenna coil 1B is wound around a flight-type magnetic core. Both ends of the antenna coil 1B are connected to the variable capacitance circuit 2B via pads 3A and 3B and switches 5A and 5B formed on the semiconductor substrate. Similarly, the antenna coil 9B is wound around a ferrite-based magnetic core. Both ends of the antenna coil 9B are connected to the variable capacitance circuit 2B via pads 4A and 4B and switches 6A and 6B formed on the semiconductor substrate.
  • the variable capacitance circuit 2B includes a plurality of capacitors 33 and a plurality of switches 34 in addition to the plurality of capacitors 31 and the plurality of switches 32.
  • Multiple series circuits consisting of capacitor 31, switches 32, 34, and capacitor 33 are connected between pads 3A and 3B (or between pads 4A and 4B).
  • a center tap is provided at the connection point of the switches 32 and 34, and the center tap is grounded.
  • Capacitors 31 and 33 as capacitive elements included in one series circuit are set to the same capacitance, and the two switches 32 and 34 connected to these capacitors 31 and 33 are the same.
  • the configuration shown in FIG. 7 and the configuration shown in FIG. 8 may be combined. That is, as shown in FIG. 9, the antenna coils 1A and 9A shown in FIG. 7 and the variable capacitance circuit 2B shown in FIG. 8 may be combined to form a balanced tuning circuit.
  • the FM receiver using the balance type tuning circuit shown in FIGS. 7 to 9 has been described as having a configuration corresponding to the FM receiver 100 shown in FIG.
  • An FM receiver having two circuits as shown in Fig. 5 may be provided with the balanced tuning circuit shown in Figs.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the FM receiver has been described.
  • the present invention can be applied to a VHF receiver that receives other signals included in the VHF band.
  • the demodulation method of the VHF receiver is not limited to the FM demodulation method, and an AM demodulation method or a digital demodulation method may be adopted.
  • FIG. 10 is a diagram illustrating an arrangement example of three antennas. As shown in Fig. 10, when using three (or more) antennas, each antenna can be arranged three-dimensionally so that it is not on the same plane. It is possible to receive the broadcast wave transmitted from the TV in good reception.
  • a small antenna can be realized by using an antenna composed of a magnetic core and an antenna coil, so that the degree of freedom of antenna installation is increased and the entire V HF band receiver can be realized. Miniaturization becomes easy.

Abstract

A VHF band receiver capable of providing a high flexibility of mounting an antenna, facilitating the reduction in size and improving the sensitivity. An FM receiver (100) comprises a tuner circuit for selectively passing signals, which have a tuning frequency and frequencies close thereto, of received signals; a local oscillator circuit (13) for generating a local oscillation signal; and a mixer circuit (12) for frequency mixing the local oscillation signal generated by the local oscillator circuit (13) with the high-frequency signals obtained by the tuning operation of the tuner circuit. The tuner circuit includes two antenna coils (1,9) wound around respective separate magnetic cores and is set to tuning frequencies of VHF band.

Description

明 細 書  Specification
VHF帯受信機  VHF receiver
技術分野  Technical field
[0001] 本発明は、 VHF帯の信号を受信する VHF帯受信機に関する。  The present invention relates to a VHF band receiver that receives a VHF band signal.
背景技術  Background art
[0002] 従来から、 FM放送等の VHF帯の信号を受信する受信機では、ロッドアンテナゃィ ャホンコード等を利用した線状アンテナが用いられている。しかし、このようなアンテ ナは、受信機の筐体の外部に露出させる必要があるため、破損しやすいという不都 合がある。このような不都合を回避する従来技術としては、長方形枠型の導電素材か らなる心材に金属導体を螺旋状に巻き付けたヘリカル'ループ型面界輻射アンテナ を用いる受信機が知られている(例えば、特許文献 1参照。 ) oこのアンテナを用いる ことにより、ロッドアンテナや線状アンテナよりもアンテナを含む受信機全体の小型化 が可能になる。  Conventionally, in a receiver that receives a VHF band signal such as an FM broadcast, a linear antenna using a rod antenna, a earphone cord, or the like has been used. However, this type of antenna needs to be exposed outside the receiver's housing, which can be easily damaged. As a conventional technique for avoiding such inconvenience, a receiver using a helical 'loop type surface field radiation antenna in which a metal conductor is spirally wound around a core made of a rectangular frame type conductive material is known (for example, , See Patent Document 1.) o By using this antenna, the entire receiver including the antenna can be made smaller than a rod antenna or a linear antenna.
特許文献 1 :特開平 9— 93027号公報 (第 3— 6頁、図 1— 11)  Patent Document 1: Japanese Patent Laid-Open No. 9-93027 (Page 3-6, Fig. 1-11)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、上述した特許文献 1に開示されたヘリカル'ループ型面界輻射アンテナ は、ロッドアンテナ等に比べると小型化されているが、例えば携帯電話のような携帯 機器に内蔵される受信機に用いる場合には比較的大きな占有スペースを確保する 必要があって、小型化が不十分であるという問題があった。また、ロッドアンテナ等に 比べるとアンテナの指向性が強いため、受信機の設置位置等によっては受信感度が 低下するという問題があった。  By the way, the helical 'loop type surface field radiation antenna disclosed in Patent Document 1 described above is smaller than a rod antenna or the like, but for example, a reception built in a portable device such as a cellular phone. When used in a machine, it was necessary to secure a relatively large occupied space, and there was a problem that miniaturization was insufficient. In addition, the directivity of the antenna is stronger than that of a rod antenna or the like, and there is a problem that the reception sensitivity is lowered depending on the installation position of the receiver.
[0004] 本発明は、このような点に鑑みて創作されたものであり、その目的は、アンテナ設置 の自由度が高ぐ小型化が容易であり、受信感度を向上させることができる VHF帯受 信機を提供することにある。  [0004] The present invention was created in view of the above points, and the purpose of the present invention is a VHF band in which the degree of freedom of antenna installation is high, miniaturization is easy, and reception sensitivity can be improved. It is to provide a receiver.
課題を解決するための手段  Means for solving the problem
[0005] 上述した課題を解決するために、本発明の VHF帯受信機は、受信した信号の中か ら同調周波数とその近傍の信号を選択的に通過させる同調回路と、局部発振信号を 生成する局部発振回路と、局部発振回路を用いて生成される局部発振信号と同調 回路による同調動作によって得られる高周波信号とを周波数混合する混合回路とを 有しており、同調回路は、別々の磁性芯に卷回された複数のアンテナコイルを備え、 VHF帯の同調周波数が設定されている。このように、磁性芯とアンテナコイルとから なるアンテナを用いることにより、小型のアンテナを実現することができるため、アンテ ナ設置の自由度を高めるとともに VHF帯受信機全体の小型化が容易となる。例えば 、 FM放送波受信用に 300 Ωのインピーダンスを有するアンテナを実現する場合に は、長さが lcm程度の磁性芯を用いることができるため、従来のロッドアンテナ、線状 アンテナ、ヘリカル'ループ型面界輻射アンテナなどに比べて大幅な小型化が可能 になる。また、このような小型のアンテナを複数備えることにより、ダイバーシティ受信 による受信感度の向上が可能になる。 [0005] In order to solve the above-described problems, the VHF band receiver of the present invention And a tuning circuit that selectively passes a tuning frequency and a signal in the vicinity thereof, a local oscillation circuit that generates a local oscillation signal, a local oscillation signal generated by using the local oscillation circuit, and a tuning operation by the tuning circuit. The tuning circuit has a plurality of antenna coils wound around different magnetic cores, and a tuning frequency of the VHF band is set. In this way, a small antenna can be realized by using an antenna composed of a magnetic core and an antenna coil, so that the degree of freedom of antenna installation is increased and the entire VHF band receiver can be easily downsized. . For example, when an antenna having an impedance of 300 Ω for FM broadcast wave reception is realized, a magnetic core having a length of about 1 cm can be used, so that a conventional rod antenna, linear antenna, helical loop type Compared to surface field radiation antennas, it can be significantly reduced in size. In addition, by providing a plurality of such small antennas, it is possible to improve reception sensitivity by diversity reception.
[0006] また、上述した複数のアンテナコイルの中の一つを選択する選択手段と、選択手段 によって選択されたアンテナコイルを用いたときの受信状態を検出する受信状態検 出手段と、受信状態検出手段によって検出された受信状態に基づいて選択手段に よって選択されるアンテナコイルを切り替える切替制御手段とをさらに備えて 、る。受 信状態に基づいてアンテナ切り替えを行うことにより、より良好な受信状態で信号を 受信することが可能になる。  [0006] Further, a selection unit that selects one of the plurality of antenna coils, a reception state detection unit that detects a reception state when the antenna coil selected by the selection unit is used, and a reception state Switching control means for switching the antenna coil selected by the selection means based on the reception state detected by the detection means. By switching antennas based on the reception status, it is possible to receive signals in a better reception status.
[0007] また、上述した切替制御手段は、切り替えた後のアンテナコイルに対応する受信状 態よりも、切り替え前のアンテナコイルに対応する受信情報の方が良好であるときに、 切り替え前のアンテナコイルに戻す指示を選択手段に対して行うことが望ましい。こ れにより、受信状態が良好なアンテナを確実に選択して信号受信を行うことが可能に なる。  [0007] Further, the switching control means described above is configured so that when the reception information corresponding to the antenna coil before switching is better than the reception state corresponding to the antenna coil after switching, the antenna before switching It is desirable to instruct the selection means to return to the coil. As a result, it is possible to reliably select an antenna having a good reception state and perform signal reception.
[0008] また、上述した複数のアンテナコイルのそれぞれに対応する複数の受信系統の中 の一つを選択する選択手段と、複数の受信系統のそれぞれに対応する受信状態を 検出する受信状態検出手段と、受信状態検出手段によって検出された受信状態に 基づいて選択手段によって選択される受信系統を切り替える切替制御手段とをさら に備えることが望ましい。これにより、複数の受信系統のそれぞれにおける受信状態 を並行して検出することが可能になり、常に適切な受信系統を用いて良好な受信感 度を実現することができる。 [0008] In addition, a selection unit that selects one of a plurality of reception systems corresponding to each of the plurality of antenna coils, and a reception state detection unit that detects a reception state corresponding to each of the plurality of reception systems. And a switching control means for switching the reception system selected by the selection means based on the reception status detected by the reception status detection means. As a result, the reception status in each of a plurality of reception systems Can be detected in parallel, and good reception sensitivity can always be achieved using an appropriate reception system.
[0009] また、上述した複数のアンテナコイルは、互いに所定距離隔たった位置に配置され ていることが望ましい。これにより、アンテナ位置と受信信号の位相との関係を改善し て受信状態を向上させることが可能になる。  [0009] Further, it is desirable that the plurality of antenna coils described above are arranged at positions separated from each other by a predetermined distance. As a result, it is possible to improve the reception state by improving the relationship between the antenna position and the phase of the received signal.
[0010] また、上述した複数のアンテナコイルの離間距離は、受信周波数帯域に含まれる 搬送波周波数の四分の一波長であることが望ましい。これにより、少なくとも一部のァ ンテナを用いた信号受信が可能になり、受信感度が極端に悪ィ匕することを防止する ことが可能になる。  [0010] Further, it is desirable that the distance between the plurality of antenna coils described above is a quarter wavelength of the carrier frequency included in the reception frequency band. As a result, signal reception using at least some of the antennas can be performed, and the reception sensitivity can be prevented from being extremely deteriorated.
[0011] また、上述した複数のアンテナコイルは、互いに異なる向きに配置されていることが 望ましい。これにより、一のアンテナが受信電波に対して最も感度が悪ィ匕する方向に 配置された場合であっても他のアンテナを用いた信号受信が可能になり、受信機筐 体の設置の向きによらず受信感度を向上させることができる。  [0011] Further, it is desirable that the plurality of antenna coils described above are arranged in different directions. This makes it possible to receive signals using other antennas even when one antenna is arranged in the direction that is most insensitive to received radio waves. Regardless of this, the reception sensitivity can be improved.
[0012] また、上述した同調回路は、アンテナコイルとともに共振回路を構成し、静電容量が 変更可能な可変容量回路を有し、受信対象の信号の周波数に同調周波数を一致さ せる設定動作を行う周波数設定制御手段をさらに備えることが望ましい。これにより、 受信を希望する信号の周波数近傍の信号を同調回路によって選択的に通過させる ことができるため、従来のロッドアンテナ等を用いた場合のように固定の同調周波数 が設定されている場合に比べて、感度や選択度を向上させることが可能となる。  [0012] Further, the above-described tuning circuit forms a resonance circuit together with the antenna coil, has a variable capacitance circuit whose capacitance can be changed, and performs a setting operation for matching the tuning frequency to the frequency of the signal to be received. It is desirable to further include frequency setting control means for performing. As a result, a signal in the vicinity of the frequency of the signal desired to be received can be selectively passed by the tuning circuit. Therefore, when a fixed tuning frequency is set as in the case of using a conventional rod antenna or the like. In comparison, sensitivity and selectivity can be improved.
[0013] また、上述した局部発振回路は、発振周波数が変更可能であり、周波数設定制御 手段は、同調回路の同調周波数に連動させて局部発振回路の発振周波数を変更 する制御を行うことが望ましい。このように、同調回路の同調周波数と局部発振回路 の発振周波数とを連動させることにより、さらに感度や選択度を向上させたスーパー ヘテロダイン方式の FM受信機を実現することが可能になる。例えば、中間周波数に 相当する周波数差を維持しながら同調回路の同調周波数と局部発振回路の発振周 波数とが変更される。  [0013] In addition, the local oscillation circuit described above can change the oscillation frequency, and the frequency setting control means preferably performs control to change the oscillation frequency of the local oscillation circuit in conjunction with the tuning frequency of the tuning circuit. . In this way, by linking the tuning frequency of the tuning circuit and the oscillation frequency of the local oscillation circuit, it becomes possible to realize a super heterodyne FM receiver with further improved sensitivity and selectivity. For example, the tuning frequency of the tuning circuit and the oscillation frequency of the local oscillation circuit are changed while maintaining a frequency difference corresponding to the intermediate frequency.
[0014] また、上述した可変容量回路は、それぞれのアンテナコイルに選択的に接続される 複数のコンデンサを有し、周波数設定制御手段は、複数のコンデンサの接続状態を 変更することにより、アンテナコイルとこのアンテナコイルに選択的に接続されたコン デンサによって決定される VHF帯の同調周波数を可変することが望ましい。アンテ ナコイルに接続されるコンデンサを切り替えることにより、受信を希望する信号の周波 数近傍の信号を選択的に通過させることができるため、従来のロッドアンテナ等を用 Vヽた場合のように固定の同調周波数が設定されて!ヽる場合に比べて、感度や選択度 を向上させることが可能となる。 [0014] Further, the variable capacitance circuit described above has a plurality of capacitors that are selectively connected to the respective antenna coils, and the frequency setting control means determines a connection state of the plurality of capacitors. It is desirable to change the tuning frequency of the VHF band determined by the antenna coil and the capacitor that is selectively connected to this antenna coil. By switching the capacitor connected to the antenna coil, it is possible to selectively pass signals in the vicinity of the frequency of the signal desired to be received. Therefore, a fixed rod like a conventional rod antenna is used. Sensitivity and selectivity can be improved compared to when the tuning frequency is set!
[0015] また、上述した複数のコンデンサの少なくとも一部には接続状態を断続するスイツ チが直列に接続されており、周波数設定制御手段は、スィッチの断続状態を変更す ることにより、コンデンサの選択状態を変更することが望ましい。これにより、コンデン サの接続状態を容易に切り替えることが可能になる。  [0015] In addition, a switch for intermittent connection is connected in series to at least some of the plurality of capacitors described above, and the frequency setting control means changes the intermittent state of the switch by changing the intermittent state of the switch. It is desirable to change the selection state. This makes it possible to easily switch the connection state of the capacitor.
[0016] また、上述した一のコンデンサに一のスィッチが直列に接続された直列回路が複数 組備わっており、これら複数組の直列回路がアンテナコイルに並列に接続されている ことが望ましい。これにより、アンテナコイルと並列接続するコンデンサを切り替えるこ とが可能になり、アンテナコイルとコンデンサ力 なる並列共振回路の共振周波数、 すなわち同調回路の同調周波数を容易に変更することができる。  [0016] Further, it is desirable that a plurality of series circuits each having one switch connected in series to the one capacitor described above are provided, and the plurality of series circuits are connected in parallel to the antenna coil. As a result, it is possible to switch the capacitor connected in parallel with the antenna coil, and the resonance frequency of the parallel resonance circuit, ie, the tuning frequency of the tuning circuit can be easily changed.
[0017] また、上述した可変容量回路は、周波数設定制御手段が形成された半導体基板 上に形成されていることが望ましい。これにより、アンテナコイルやスピーカ等の部品 を除くほとんどの部品を半導体基板上に一体形成することができ、 VHF帯受信機全 体の小型化、低コストィ匕が可能になる。また、複数のコンデンサおよび複数のスィッチ と同じ半導体基板上に周波数設定制御手段を形成することにより、周波数設定制御 手段によるスィッチの切り替え制御が容易になり、かつ、外付け部品を減らすことがで きる。さらに、複数のコンデンサの相対比のばらつきを小さくすることができる。  [0017] The variable capacitance circuit described above is preferably formed on a semiconductor substrate on which frequency setting control means is formed. As a result, almost all components except the antenna coil and speaker can be integrally formed on the semiconductor substrate, and the entire VHF band receiver can be reduced in size and cost. In addition, by forming the frequency setting control means on the same semiconductor substrate as the plurality of capacitors and the plurality of switches, the switching control of the switches by the frequency setting control means becomes easy and the number of external parts can be reduced. . Furthermore, the variation in the relative ratio of the plurality of capacitors can be reduced.
[0018] また、上述したアンテナコイルは、一方端が接地され、他方端が可変容量回路に接 続されて!ヽることが望ま ヽ。アンテナコイルの一方端のみを可変容量回路に直接接 続すればよいため、配線の簡略ィ匕が可能になる。特に、可変容量回路を半導体基板 上に形成した場合には、アンテナコイルと可変容量回路とを直接接続するために用 いられる専用のパッドがアンテナコイルの数と同数ですむため、半導体基板上のパッ ド数を減らすことができる。 [0019] また、上述したアンテナコイルは、接地されたセンタータップを有しており、両端のそ れぞれが可変容量回路の両端に接続されていることが望ましい。あるいは、上述した 可変容量回路は、容量値がほぼ同じに設定された 2つのコンデンサが直列接続され ており、 2つのコンデンサの接続点が接地されているとともに、可変容量回路の両端 がアンテナコイルの両端に直接接続されていることが望ましい。これにより、アンテナ コイルと可変容量回路によって構成される同調回路から出力される信号の振幅を増 大させることが可能になり、感度および選択度を向上させることができる。 [0018] Further, it is desirable that the above-described antenna coil has one end grounded and the other end connected to the variable capacitance circuit. Since only one end of the antenna coil needs to be directly connected to the variable capacitance circuit, wiring can be simplified. In particular, when a variable capacitance circuit is formed on a semiconductor substrate, the number of dedicated pads used to directly connect the antenna coil and the variable capacitance circuit is the same as the number of antenna coils. The number of pads can be reduced. [0019] Further, it is desirable that the above-described antenna coil has a grounded center tap, and each of both ends is connected to both ends of the variable capacitance circuit. Alternatively, in the variable capacitance circuit described above, two capacitors having capacitance values set to approximately the same are connected in series, the connection point of the two capacitors is grounded, and both ends of the variable capacitance circuit are connected to the antenna coil. It is desirable to be directly connected to both ends. As a result, it is possible to increase the amplitude of the signal output from the tuning circuit constituted by the antenna coil and the variable capacitance circuit, and the sensitivity and selectivity can be improved.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]一実施形態の FM受信機の構成を示す図である。 FIG. 1 is a diagram illustrating a configuration of an FM receiver according to an embodiment.
[図 2] 2つのアンテナコイルの配置例を示す図である。  FIG. 2 is a diagram showing an arrangement example of two antenna coils.
[図 3] 2つのアンテナコイルの配置例を示す図である。  FIG. 3 is a diagram showing an arrangement example of two antenna coils.
[図 4]制御部によってスィッチを切り替える動作手順を示す流れ図である。  FIG. 4 is a flowchart showing an operation procedure for switching a switch by a control unit.
[図 5]検出回路までの構成を 2系統備えた FM受信機の変形例を示す図である。  FIG. 5 is a view showing a modification of the FM receiver having two systems up to the detection circuit.
[図 6]制御部によってスィッチを切り替える動作手順を示す流れ図である。  FIG. 6 is a flowchart showing an operation procedure for switching a switch by a control unit.
[図 7]バランス型のアンテナコイルを用いた FM受信機の部分的な構成を示す図であ る。  FIG. 7 is a diagram showing a partial configuration of an FM receiver using a balanced antenna coil.
[図 8]FM受信機の変形例の部分的な構成を示す図である。  FIG. 8 is a diagram showing a partial configuration of a modification of the FM receiver.
[図 9]FM受信機の変形例の部分的な構成を示す図である。  FIG. 9 is a diagram showing a partial configuration of a modification of the FM receiver.
[図 10]3つのアンテナの配置例を示す図である。  FIG. 10 is a diagram showing an arrangement example of three antennas.
符号の説明  Explanation of symbols
[0021] 1、 9 アンテナコィノレ [0021] 1, 9 antenna coinore
2 可変容量回路  2 Variable capacitance circuit
3、 4 パッド  3, 4 pads
5、 6 スィッチ  5, 6 switches
7 インバータ回路  7 Inverter circuit
10 1チップ部品  10 1 chip parts
11 高周波増幅回路  11 High frequency amplifier circuit
12 混合回路 13 局部発振回路 12 Mixing circuit 13 Local oscillator circuit
14、 16 中間周波フィルタ  14, 16 Intermediate frequency filter
15 中間周波増幅回路  15 Intermediate frequency amplifier
18 FM検波回路  18 FM detector circuit
19 ステレオ復調回路  19 Stereo demodulation circuit
20 制御部  20 Control unit
21 検出回路  21 Detection circuit
22 選択回路  22 Selection circuit
40 操作部  40 Operation unit
42 表示部  42 Display
100 FM受信機  100 FM receiver
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明を適用した一実施形態の FM受信機について詳細に説明する。図 1 は、一実施形態の FM受信機の構成を示す図である。図 1に示す FM受信機 100は 、アンテナコイル 1、 9、可変容量回路 2、スィッチ 5、 6、インバータ回路 7、高周波増 幅回路 11、混合回路 12、局部発振回路 13、中間周波フィルタ 14、 16、中間周波増 幅回路 15、 FM検波回路 18、ステレオ復調回路 19、制御部 20、検出回路 21、選択 回路 22を含んで構成されている。これらの構成は、アンテナコイル 1、 9を除く各構成 力 SCMOSプロセスを用いて半導体基板上に 1チップ部品 10として形成されている。 1 チップ部品 10とアンテナコイル 1、 9との接続は、半導体基板上に形成されたパッド 3 、 4を介して行われる。 Hereinafter, an FM receiver according to an embodiment to which the present invention is applied will be described in detail. FIG. 1 is a diagram illustrating a configuration of an FM receiver according to an embodiment. FM receiver 100 shown in FIG. 1 includes antenna coils 1 and 9, variable capacitance circuit 2, switches 5 and 6, inverter circuit 7, high-frequency amplifier circuit 11, mixing circuit 12, local oscillation circuit 13, intermediate frequency filter 14, 16, an intermediate frequency amplifier circuit 15, an FM detection circuit 18, a stereo demodulation circuit 19, a control unit 20, a detection circuit 21, and a selection circuit 22. These components are formed as a one-chip component 10 on a semiconductor substrate using each component force SCMOS process except the antenna coils 1 and 9. 1 The chip component 10 and the antenna coils 1 and 9 are connected via pads 3 and 4 formed on the semiconductor substrate.
[0023] アンテナコイル 1、 9のそれぞれは、フェライト系の磁性芯に卷回されている。例えば 、直径が 2〜3mmで長さが lcm程度のフェライト系の磁性芯が用いられ、その周囲 に導線を卷回することにより、数 k Ω程度のインピーダンスを有するアンテナコイル 1 が形成されている。  Each of the antenna coils 1 and 9 is wound around a ferrite-based magnetic core. For example, a ferrite magnetic core having a diameter of 2 to 3 mm and a length of about 1 cm is used, and an antenna coil 1 having an impedance of about several kΩ is formed by winding a conducting wire around the core. .
[0024] 図 2および図 3は、 2つのアンテナコイル 1、 9の配置例を示す図である。アンテナコ ィル 1、 9は、図 2に示すように同じ向きで空間的に所定の距離 (例えば受信信号の 搬送波周波数の波長をえとしたときに λ Ζ4)をおいて配置する場合や、図 3に示す ように向きを異ならせて (例えば 90° )配置する場合が考えられる。 FIG. 2 and FIG. 3 are diagrams showing an arrangement example of two antenna coils 1 and 9. As shown in FIG. 2, the antenna coils 1 and 9 are arranged in the same direction and spatially at a predetermined distance (for example, λ Ζ4 when the wavelength of the carrier frequency of the received signal is estimated), or Shown in 3 In such a case, it may be arranged in different directions (for example, 90 °).
[0025] スィッチ 5、 6は、アンテナコイル 1、 9のいずれか一方を選択的に可変容量回路 2に 接続する。接続の切り替えは、制御部 20から入力される切替信号によって行われる。 一方のスィッチ 5には切替信号力インバータ回路 7を介して入力されており、他方の スィッチ 6には切替信号が直接入力されている。制御部 20からローレベルの切替信 号が出力されるとこの信号はインバータ回路 7で反転されてスイツ 5に入力され、スィ ツチ 5が閉成 (オン)される。このとき、スィッチ 6は、ローレベルの制御信号が入力され て開成 (オフ)される。したがって、可変容量回路 2はアンテナコイル 1のみと接続され る。反対に、制御部 20からハイレベルの切替信号が出力されるとこの信号はインバ ータ回路 7で反転されてスイツ 5に入力され、スィッチ 5が開成される。このとき、スイツ チ 5は、ハイレベルの制御信号が入力されて閉成される。したがって、可変容量回路 2はアンテナコイル 9のみと接続される。  The switches 5 and 6 selectively connect one of the antenna coils 1 and 9 to the variable capacitance circuit 2. The connection is switched by a switching signal input from the control unit 20. One switch 5 is inputted via a switching signal force inverter circuit 7 and the other switch 6 is inputted a switching signal directly. When a low-level switching signal is output from the control unit 20, this signal is inverted by the inverter circuit 7 and input to the switch 5, and the switch 5 is closed (ON). At this time, the switch 6 is opened (turned off) by receiving a low-level control signal. Therefore, the variable capacitance circuit 2 is connected only to the antenna coil 1. On the contrary, when a high-level switching signal is output from the control unit 20, this signal is inverted by the inverter circuit 7 and input to the switch 5, and the switch 5 is opened. At this time, the switch 5 is closed by inputting a high-level control signal. Therefore, the variable capacitance circuit 2 is connected only to the antenna coil 9.
[0026] 可変容量回路 2は、容量性回路であって、複数のコンデンサ 31と、複数のスィッチ 32によって構成されている。一のコンデンサ 31と一のスィッチ 32の直列回路が複数 組備わって可変容量回路 2が構成されており、これら複数組の直列回路のそれぞれ がアンテナコイル 1、 9のいずれか一方に並列に接続される。それぞれのスィッチ 32 は互いに独立して断続状態を設定することが可能であり、閉成されたスィッチ 32に接 続されたコンデンサ 31が選択的にアンテナコイル 1、 9の ヽずれか一方に接続される 。スィッチ 32は、例えば、 pチャネル FETと nチャネル FETの各ソース'ドレイン間が 並列接続されたアナログスィッチを用いて実現される。  The variable capacitance circuit 2 is a capacitive circuit, and includes a plurality of capacitors 31 and a plurality of switches 32. A variable capacitance circuit 2 is configured by including a plurality of series circuits of one capacitor 31 and one switch 32, and each of the plurality of series circuits is connected in parallel to one of the antenna coils 1 and 9. The Each switch 32 can set an intermittent state independently of each other, and a capacitor 31 connected to the closed switch 32 is selectively connected to one of the antenna coils 1 and 9. The For example, the switch 32 is realized by using an analog switch in which the source and drain of the p-channel FET and the n-channel FET are connected in parallel.
[0027] 上述したようにアンテナコイル 1あるいは 9と可変容量回路 2とが並列接続されて LC 共振回路が形成されており、この共振回路の共振周波数に相当する同調周波数とそ の近傍の放送波を選択的に通過させる同調回路としてアンテナコイル 1あるいは 9と 可変容量回路 2が動作する。  [0027] As described above, the antenna coil 1 or 9 and the variable capacitance circuit 2 are connected in parallel to form an LC resonance circuit, and a tuning frequency corresponding to the resonance frequency of the resonance circuit and a broadcast wave in the vicinity thereof are formed. The antenna coil 1 or 9 and the variable capacitance circuit 2 operate as a tuning circuit that selectively passes.
[0028] 高周波増幅回路 11は、可変容量回路 2から出力される信号に対して高周波増幅を 行う。局部発振回路 13は、受信を希望する放送波の周波数に対して中間周波数だ けずれた局部発振信号を生成する。  The high frequency amplifier circuit 11 performs high frequency amplification on the signal output from the variable capacitance circuit 2. The local oscillation circuit 13 generates a local oscillation signal shifted by an intermediate frequency with respect to the frequency of the broadcast wave desired to be received.
[0029] 制御部 20は、 FM受信機 100の全体動作を制御しており、局部発振回路 13によつ て生成する局部発振信号の周波数を設定することにより、受信対象となる放送波を 決定する選局動作を行う。また、制御部 20は、検出回路 21による検出結果に基づい て、スィッチ 5、 6のいずれか一方を選択的にオンする切替信号を出力する。スィッチ 5、 6を切り替える詳細動作については後述する。この制御部 20は、 CPUやメモリに よって構成されており、所定のプログラムを実行することにより制御動作を行う。 [0029] The control unit 20 controls the overall operation of the FM receiver 100, and is controlled by the local oscillation circuit 13. By selecting the frequency of the local oscillation signal to be generated, the channel selection operation is performed to determine the broadcast wave to be received. Further, the control unit 20 outputs a switching signal for selectively turning on one of the switches 5 and 6 based on the detection result by the detection circuit 21. Detailed operations for switching between switches 5 and 6 will be described later. The control unit 20 includes a CPU and a memory, and performs a control operation by executing a predetermined program.
[0030] 検出回路 21は、受信状態を検出するためのものである。例えば、受信状態として電 界強度とマルチパス発生の有無に着目し、これらの検出が行われる。なお、本実施 形態では、受信電界強度とマルチパス発生の有無を検出した力 アンテナコイル 1、 9を切り替えたときに受信感度やノイズレベル等が変更される受信状態であれば、こ れら以外の受信状態を検出するようにしてもよい。例えば、 FM多重放送に含まれる 多重化データを復調したときにそのエラーの程度を検出するようにしてもょ 、。ある ヽ は、受信状態としてノイズの量を検出するようにしてもよい。また、図 1に示した構成で は、中間周波フィルタ 16の後段に検出回路 21を接続した力 検出対象となる特性に よってどの構成と検出回路 21を接続すればよいかが変わるため、別の構成に検出回 路 21を接続したり、複数の構成に検出回路 21を接続するようにしてもよい。  [0030] The detection circuit 21 is for detecting a reception state. For example, the detection is performed by paying attention to the electric field strength and the presence / absence of multipath as the reception state. In the present embodiment, the received electric field strength and the force that detects the presence / absence of multipath are detected as long as the reception sensitivity and noise level are changed when the antenna coils 1 and 9 are switched. The reception state may be detected. For example, it may be possible to detect the degree of error when demodulating multiplexed data included in FM multiplex broadcasting. In some cases, the amount of noise may be detected as the reception state. In addition, in the configuration shown in FIG. 1, which configuration and the detection circuit 21 should be connected depends on the characteristics of the force detection target in which the detection circuit 21 is connected after the intermediate frequency filter 16. Alternatively, the detection circuit 21 may be connected to each other, or the detection circuit 21 may be connected to a plurality of configurations.
[0031] 選択回路 22は、制御部 20から入力される設定データに対して所定のデコード処理 を行って、可変容量回路 2内の各スィッチ 32の断続状態を制御する切替信号を生成 する。スィッチ 32の数を mとするとこの切替信号の数も mとなる。各切替信号は、電圧 レベルがローレベルあるいはハイレベルのいずれかの状態に設定される。例えば、 電圧レベルがローレベルの切替信号が入力されるとスィッチ 32が開成され、電圧レ ベルがハイレベルの切替信号が入力されるとスィッチ 32が閉成される。また、各切替 信号は、選択的に一つのみがハイレベルに設定される場合と、 2つ以上が選択的に 組み合わされてハイレベルに設定される場合とが考えられる。  The selection circuit 22 performs a predetermined decoding process on the setting data input from the control unit 20 to generate a switching signal that controls the intermittent state of each switch 32 in the variable capacitance circuit 2. If the number of switches 32 is m, the number of switching signals is also m. Each switching signal is set to a voltage level of either low level or high level. For example, when a switching signal having a low voltage level is input, the switch 32 is opened, and when a switching signal having a high voltage level is input, the switch 32 is closed. In addition, only one switching signal can be selectively set to the high level, and two or more switching signals can be selectively combined to be set to the high level.
[0032] 混合回路 12は、高周波増幅回路 11から出力される信号と、局部発振回路 13から 出力される局部発振信号とを混合して、その差 (あるいは和)成分に対応する信号を 出力する。中間周波フィルタ 14、 16は、中間周波増幅回路 15の前段および後段に 設けられており、入力される中間周波信号力 所定の帯域成分のみを抽出する。中 間周波増幅回路 15は、中間周波フィルタ 14、 16を通過する一部の中間周波信号を 増幅する。 FM検波回路 18は、後段の中間周波フィルタ 16から出力され、リミット回 路(図示せず)を通した後の振幅一定の信号に対して FM検波処理を行う。ステレオ 復調回路 19は、 FM検波回路 18から出力される FM検波後のコンポジット信号に対 してステレオ復調処理を行って、 L信号および R信号を生成する。 [0032] The mixing circuit 12 mixes the signal output from the high-frequency amplifier circuit 11 and the local oscillation signal output from the local oscillation circuit 13, and outputs a signal corresponding to the difference (or sum) component. . The intermediate frequency filters 14 and 16 are provided before and after the intermediate frequency amplifier circuit 15 and extract only a predetermined band component of the input intermediate frequency signal force. The intermediate frequency amplifier circuit 15 converts some intermediate frequency signals that pass through the intermediate frequency filters 14 and 16. Amplify. The FM detection circuit 18 performs FM detection processing on a signal having a constant amplitude after being output from the intermediate frequency filter 16 at the subsequent stage and passing through a limit circuit (not shown). The stereo demodulation circuit 19 performs stereo demodulation processing on the composite signal after FM detection output from the FM detection circuit 18 to generate an L signal and an R signal.
[0033] 操作部 40は、利用者による選局操作や音量設定操作等を行うためのものであり、こ れらの操作に必要な各種操作キーや操作つまみ類が備わって 、る。表示部 42は、 利用者に対して各種の情報を通知するためのものであり、受信中の放送波の周波数 やこの放送波に対応する放送局名を表示したり、音量レベル等を表示する。  [0033] The operation unit 40 is for performing channel selection operation, volume setting operation, and the like by a user, and includes various operation keys and operation knobs necessary for these operations. The display unit 42 is for notifying the user of various types of information, and displays the frequency of the broadcast wave being received, the name of the broadcast station corresponding to this broadcast wave, and the volume level, etc. .
[0034] 上述したスィッチ 5、 6、インバータ回路 7が選択手段に、検出回路 21が受信状態 検出手段に、制御部 20が切替制御手段、周波数設定制御手段にそれぞれ対応す る。  The above-described switches 5 and 6 and the inverter circuit 7 correspond to selection means, the detection circuit 21 corresponds to reception state detection means, and the control unit 20 corresponds to switching control means and frequency setting control means, respectively.
[0035] 本実施形態の FM受信機 100はこのような構成を有しており、次に、アンテナコイル 1、 9を切り替える動作について説明する。図 4は、制御部 20によってスィッチ 5、 6を 切り替える動作手順を示す流れ図である。 FM受信機 100に電源が投入されて所望 の放送波の受信動作が開始されると (ステップ 100)、制御部 20は、検出回路 21の 検出結果に基づいて電界強度が基準値以下力否かを判定する (ステップ 101)。基 準値以下でない場合には否定判断が行われ、制御部 20は、検出回路 21の検出結 果に基づいてマルチパスは発生しているか否かを判定する(ステップ 102)。マルチ パスが発生していない場合には否定判断が行われ、ステップ 101に戻って判定動作 が繰り返される。また、電界強度が基準値以下の弱電界になった場合にはステップ 1 01の判定において肯定判断が行われる。あるいは、マルチパスが発生している場合 にはステップ 102の判定において肯定判断が行われる。ステップ 101、 102のいずれ かにおいて肯定判断が行われた場合には、次に、制御部 20は、その時点における 状態 (電界強度とマルチパス発生の程度)を記憶した後 (ステップ 103)、アンテナの 切り替えを行う(ステップ 104)。例えば、現在アンテナコイル 1を使用中の場合にはァ ンテナコイル 9に切り替えるために、制御部 20は、それまで出力していたローレベル の切替信号をノヽィレベルに切り替えて、スィッチ 6をオンするとともスィッチ 5をオフす る。次に、制御部 20は、切り替え後の受信状態の方が良好力否かを判定し (ステップ 105)、良好の場合には肯定判断を行って一連のアンテナ切り替え動作を終了する。 また、切り替え後の受信状態の方が悪い場合にはステップ 105の判定において否定 判断が行われ、アンテナを再び元に戻した後 (ステップ 106)、一連のアンテナ切り替 え動作を終了する。上述した例では、制御部 20は、ノ、ィレベルの切替信号に切り替 えて、スィッチ 5をオンするとともにスィッチ 6をオフし、アンテナコイル 1側に接続を戻 す。 [0035] The FM receiver 100 of the present embodiment has such a configuration. Next, an operation of switching the antenna coils 1 and 9 will be described. FIG. 4 is a flowchart showing an operation procedure for switching the switches 5 and 6 by the control unit 20. When the FM receiver 100 is turned on and a desired broadcast wave reception operation is started (step 100), the control unit 20 determines whether the electric field strength is below the reference value based on the detection result of the detection circuit 21. Is determined (step 101). If it is not less than the reference value, a negative determination is made, and the control unit 20 determines whether multipath has occurred based on the detection result of the detection circuit 21 (step 102). If no multipath has occurred, a negative determination is made, and the process returns to step 101 and the determination operation is repeated. If the electric field strength is a weak electric field that is less than or equal to the reference value, an affirmative determination is made in the determination of step 101. Alternatively, when multipath has occurred, an affirmative determination is made in the determination of step 102. If an affirmative determination is made in either step 101 or 102, the control unit 20 next stores the state (the electric field strength and the degree of multipath generation) at that time (step 103), and then the antenna. Is switched (step 104). For example, to switch to antenna coil 9 when antenna coil 1 is currently in use, control unit 20 switches the low-level switching signal output so far to the noise level and turns on switch 6. Turn off switch 5. Next, the control unit 20 determines whether or not the reception state after switching is better (step 105) If it is satisfactory, an affirmative determination is made, and a series of antenna switching operations are terminated. If the reception state after switching is worse, a negative determination is made in the determination of step 105, the antenna is returned to its original state (step 106), and the series of antenna switching operations ends. In the above-described example, the control unit 20 switches to the switch signal of “NO” and “Y” level, turns on the switch 5 and turns off the switch 6, and returns the connection to the antenna coil 1 side.
[0036] このように、本実施形態の FM受信機 100では、磁性芯とアンテナコイル 1、 9とから なるアンテナを用いることにより、小型のアンテナを実現することができるため、アンテ ナ設置の自由度を高めるとともに FM受信機 100全体の小型化が容易となる。例え ば、 FM放送波受信用に 300 Ωのインピーダンスを有するアンテナを実現する場合 には、長さが lcm程度の磁性芯を用いることができるため、従来のロッドアンテナ、線 状アンテナ、ヘリカル'ループ型面界輻射アンテナなどに比べて大幅な小型化が可 能になる。また、このような小型のアンテナを複数備えることにより、ダイバーシティ受 信による受信感度の向上が可能になる。  [0036] As described above, in the FM receiver 100 of the present embodiment, a small antenna can be realized by using the antenna composed of the magnetic core and the antenna coils 1 and 9, so that the antenna can be installed freely. The size of the FM receiver 100 as a whole can be easily reduced. For example, when realizing an antenna with an impedance of 300 Ω for FM broadcast wave reception, a magnetic core with a length of about 1 cm can be used, so a conventional rod antenna, linear antenna, helical loop Compared to a type field radiation antenna, the size can be greatly reduced. In addition, by providing a plurality of such small antennas, it is possible to improve reception sensitivity by diversity reception.
[0037] 特に、検出回路 21によって検出された受信状態に基づいてスィッチ 5、 6を用いて アンテナコイル 1、 9を切り替える指示を制御部 20によって行っており、受信状態に基 づいてアンテナ切り替えを行うことにより、より良好な受信状態で信号を受信すること が可能になる。切り替えた後のアンテナコイルに対応する受信状態よりも、切り替え前 のアンテナコイルに対応する受信情報の方が良好であるときに、切り替え前のアンテ ナコイルに戻す指示を制御部 20によって行うことにより、受信状態が良好なアンテナ を確実に選択して信号受信を行うことが可能になる。  [0037] In particular, the control unit 20 gives an instruction to switch the antenna coils 1 and 9 using the switches 5 and 6 based on the reception state detected by the detection circuit 21, and the antenna switching is performed based on the reception state. By doing so, it becomes possible to receive signals in a better reception state. When the reception information corresponding to the antenna coil before switching is better than the reception state corresponding to the antenna coil after switching, the control unit 20 instructs to return to the antenna coil before switching. Signals can be received by reliably selecting antennas with good reception conditions.
[0038] また、 2つのアンテナコイル 1、 9を、互いに所定距離隔たった位置に配置することに より、アンテナ位置と受信信号の位相との関係を改善して受信状態を向上させること が可能になる。特に、 2つののアンテナコイル 1、 9の離間距離を、受信周波数帯域に 含まれる搬送波周波数の四分の一波長に相当する長さとすることにより、少なくとも 一方のアンテナを用いた信号受信が可能になり、受信感度が極端に悪ィ匕することを 防止することが可能になる。  [0038] Further, by arranging the two antenna coils 1 and 9 at positions separated from each other by a predetermined distance, it is possible to improve the reception state by improving the relationship between the antenna position and the phase of the received signal. Become. In particular, it is possible to receive signals using at least one antenna by setting the distance between the two antenna coils 1 and 9 to a length corresponding to a quarter wavelength of the carrier frequency included in the reception frequency band. Therefore, it is possible to prevent the reception sensitivity from becoming extremely bad.
[0039] また、 2つのアンテナコイル 1、 9を、互いに異なる向きに配置することにより、一のァ ンテナが受信電波に対して最も感度が悪化する方向に配置された場合であっても他 のアンテナを用いた信号受信が可能になり、受信機筐体の設置の向きによらず受信 感度を向上させることができる。 [0039] In addition, by arranging the two antenna coils 1 and 9 in different directions, one antenna Even when the antenna is placed in the direction where the sensitivity is most deteriorated with respect to the received radio wave, it is possible to receive signals using other antennas, improving reception sensitivity regardless of the orientation of the receiver housing. Can be made.
[0040] また、受信対象の放送波の周波数に同調周波数を一致させる設定動作を制御部 2 0によって行っており、受信を希望する放送波の周波数近傍の信号を選択的に通過 させることができるため、従来のロッドアンテナ等を用いた場合のように固定の同調周 波数が設定されて ヽる場合に比べて、 FM全周波数帯域にぉ ヽて感度や選択度を 向上させることが可能となる。また、制御部 20は、同調回路の同調周波数に連動させ て局部発振回路 13の発振周波数を変更する制御を行っており、同調回路の同調周 波数と局部発振回路 13の発振周波数とを連動させることにより、さらに感度や選択度 を向上させたスーパーヘテロダイン方式の FM受信機 100を実現することが可能にな る。  [0040] Further, the control unit 20 performs a setting operation to make the tuning frequency coincide with the frequency of the broadcast wave to be received, so that a signal in the vicinity of the frequency of the broadcast wave desired to be received can be selectively passed. Therefore, compared to the case where a fixed tuning frequency is set as in the case where a conventional rod antenna or the like is used, sensitivity and selectivity can be improved over the entire FM frequency band. . Further, the control unit 20 performs control to change the oscillation frequency of the local oscillation circuit 13 in conjunction with the tuning frequency of the tuning circuit, and links the tuning frequency of the tuning circuit and the oscillation frequency of the local oscillation circuit 13. This makes it possible to realize a superheterodyne FM receiver 100 with further improved sensitivity and selectivity.
[0041] また、可変容量回路 2やその他の回路を制御部 20が形成された半導体基板上に 形成しているため、磁性芯に卷回されたアンテナコイル 1、 9のみを外付け部品として 同調周波数が変更可能な同調回路や FM受信機 100を構成することができ、 FM受 信機 100全体の小型化が可能となる。また、複数のコンデンサ 31および複数のスイツ チ 32と同じ半導体基板上に制御部 20を形成することにより、制御部 20によるスイツ チ 32の切り替え制御が容易になり、かつ、外付け部品を減らすことができる。さらに、 複数のコンデンサ 31の相対比のばらつきを小さくすることができる。  [0041] Since the variable capacitance circuit 2 and other circuits are formed on the semiconductor substrate on which the control unit 20 is formed, only the antenna coils 1 and 9 wound around the magnetic core are tuned as external components. The tuning circuit and the FM receiver 100 that can change the frequency can be configured, and the entire FM receiver 100 can be downsized. In addition, by forming the control unit 20 on the same semiconductor substrate as the plurality of capacitors 31 and the plurality of switches 32, switching control of the switch 32 by the control unit 20 becomes easy and the number of external parts is reduced. Can do. Further, variation in the relative ratio of the plurality of capacitors 31 can be reduced.
[0042] また、アンテナコイル 1、 9の一方端が接地され、他方端が可変容量回路 2に直接接 続されたアンバランス型の構成とすることにより、配線の簡略ィ匕が可能になる。特に、 可変容量回路 2を半導体基板上に形成した場合には、アンテナコイル 1、 9と可変容 量回路 2とを直接接続するために用いられる専用のノ^ド 3、 4が 2つですむため、半 導体基板上のノ ッド数を減らすことができる。  [0042] In addition, by using an unbalanced configuration in which one end of the antenna coils 1 and 9 is grounded and the other end is directly connected to the variable capacitance circuit 2, wiring can be simplified. In particular, when the variable capacitance circuit 2 is formed on a semiconductor substrate, only two dedicated nodes 3 and 4 can be used to directly connect the antenna coils 1 and 9 and the variable capacitance circuit 2. Therefore, the number of nodes on the semiconductor substrate can be reduced.
[0043] また、可変容量回路 2を複数のコンデンサ 31と複数のスィッチ 32とで構成し、これ らのスィッチ 32の断続状態を制御部 20によって切り替えることにより、コンデンサ 31 の接続状態を容易に切り替えて可変容量回路 2全体の静電容量を容易に変更する ことが可能になる。 [0044] ところで、上述した説明では、一方のアンテナコイルを使用して受信動作を行った 場合の受信状態を検出してアンテナコイルの切り替えを行うか否かを判定したが。受 信状態の検出回路までの受信系統の構成を 2系統備えておけば、アンテナコイル 1、 9のそれぞれを使用した場合の受信状態を並行して検出することができるため、アン テナコイルの切り替えを行う前にどちらのアンテナコイルを使用した場合に良好な受 信状態となるかを判定することが可能となる。 [0043] In addition, the variable capacitance circuit 2 includes a plurality of capacitors 31 and a plurality of switches 32, and the switching state of these switches 32 is switched by the control unit 20, thereby easily switching the connection state of the capacitors 31. Thus, the entire capacitance of the variable capacitance circuit 2 can be easily changed. By the way, in the above description, it is determined whether or not to switch the antenna coil by detecting the reception state when the reception operation is performed using one antenna coil. If there are two reception system configurations up to the reception status detection circuit, the reception status when antenna coils 1 and 9 are used can be detected in parallel. It is possible to determine which antenna coil will be used for good reception before performing.
[0045] 図 5は、検出回路までの受信系統の構成を 2系統備えた FM受信機の変形例を示 す図である。図 5では、図 1に示した FM受信機 100に対して、主に相違する部分が 図示されている。 [0045] FIG. 5 is a diagram illustrating a modification of the FM receiver including two systems of reception systems up to the detection circuit. In FIG. 5, the main differences from the FM receiver 100 shown in FIG. 1 are shown.
[0046] 図 5に示す FM受信機 100Aでは、図 1に示す FM受信機 100に含まれる可変容量 回路 2から中間周波フィルタ 16および検出回路 21までの各受信系統の回路が 2系 統備わっている。また、 FM受信機 100では可変容量回路 2とパッド 3、 4の間に設け られていたスィッチ 5、 6およびインバータ回路 7が、 FM受信機 100Aでは中間周波 フィルタ 16と FM検波回路 18の間に設けられている。制御部 20は、検出回路 21によ る検出結果に基づいて、スィッチ 5、 6のいずれか一方を選択的にオンする切替信号 を出力する。以下の説明では、パッド 3とスィッチ 5に対応する一方の受信系統を A系 統、ノッド 4とスィッチ 5に対応する他方の受信系統を B系統とする。  [0046] FM receiver 100A shown in FIG. 5 includes two circuits of each receiving system from variable capacitance circuit 2 to intermediate frequency filter 16 and detection circuit 21 included in FM receiver 100 shown in FIG. Yes. In FM receiver 100, switches 5 and 6 and inverter circuit 7 provided between variable capacitance circuit 2 and pads 3 and 4 are connected between intermediate frequency filter 16 and FM detection circuit 18 in FM receiver 100A. Is provided. Based on the detection result by the detection circuit 21, the control unit 20 outputs a switching signal for selectively turning on one of the switches 5 and 6. In the following explanation, one receiving system corresponding to pad 3 and switch 5 is referred to as A system, and the other receiving system corresponding to node 4 and switch 5 is referred to as B system.
[0047] 図 6は、制御部 20によってスィッチ 5、 6を切り替える動作手順を示す流れ図である 。 FM受信機 100Aに電源が投入されて所望の放送波をの受信動作が開始される ( ステップ 200)。この受信動作は、例えばスィッチ 5がオンされて A系統の各回路を用 いて行われる。次に、制御部 20は、 A系統について受信状態 (電界強度とマルチパ スの程度)の検出を行うとともに (ステップ 201)、 B系統について受信状態の検出を 行う(ステップ 202)。これらの受信状態検出の順番はどちらが先であってもよぐ同時 に行うようにしてもよい。次に、制御部 20は、 A系統の方が受信状態が良好か否かを 判定し (ステップ 203)、 A系統の方が良好の場合には肯定判断を行ってスィッチ 5を オンして A系統側に接続を切り替える(ステップ 204)。なお、それまでに A系統の回 路を用いた受信が行われている場合には既にスィッチ 5がオン状態になっているた め、スィッチ 5の接続状態が維持される。また、 B系統の方が受信状態が良好な場合 にはステップ 203の判定において否定判断が行われ、次に、制御部 20は、スィッチ 6 をオンして B系統側に接続を切り替える (ステップ 205)。このようにして受信状態が良 好な系統の回路に切り替えた後ステップ 201に戻って再度受信状態の検出動作以 降の処理が繰り返される。 FIG. 6 is a flowchart showing an operation procedure for switching the switches 5 and 6 by the control unit 20. The FM receiver 100A is turned on to start receiving a desired broadcast wave (step 200). This reception operation is performed using, for example, each circuit of system A with switch 5 turned on. Next, the control unit 20 detects the reception state (the electric field strength and the degree of multipath) for the A system (step 201), and detects the reception state for the B system (step 202). These reception status detection orders may be performed at the same time, whichever comes first. Next, the control unit 20 determines whether or not the reception state of the system A is better (step 203). If the system A is better, the control unit 20 makes an affirmative judgment and turns on the switch 5 to turn on the A The connection is switched to the system side (step 204). Note that if reception using the A-system circuit has been performed so far, switch 5 is already in the ON state, so the connection state of switch 5 is maintained. Also, when the reception status is better for system B In step 203, a negative determination is made, and then the control unit 20 turns on the switch 6 and switches the connection to the B system side (step 205). In this way, after switching to a circuit of a system with a good reception state, the process returns to step 201 and the processing after the detection operation of the reception state is repeated again.
[0048] このように、 2つの受信系統を備えることにより、それぞれの受信系統における受信 状態を並行して検出することが可能になり、常に適切な受信系統を用いて良好な受 信感度を実現することができる。  [0048] As described above, by providing two reception systems, it becomes possible to detect the reception status in each reception system in parallel, and always achieve good reception sensitivity using an appropriate reception system. can do.
[0049] また、上述した FM受信機 100、 100Aでは、一方端が接地されたアンバランス型の アンテナコイル 1、 9を用いた力 バランス型のアンテナコイルを用いるようにしてもよ い。図 7は、バランス型のアンテナコイルを用いた FM受信機の部分的な構成を示す 図である。図 7に示す FM受信機には、バランス型のアンテナコイル 1A、 9Aと、これ らのアンテナコイル 1A、 9Aの 、ずれか一方と組み合わされて同調回路を構成する 可変容量回路 2Aと、差動増幅回路によって構成される高周波増幅回路 11Aとが含 まれている。それ以外の構成については、基本的には図 1に示した FM受信機 100と 同じであり、図 7における図示と詳細な説明は省略する。  [0049] Further, in the above-described FM receivers 100 and 100A, a force balance type antenna coil using unbalanced antenna coils 1 and 9 with one end grounded may be used. Fig. 7 is a diagram showing a partial configuration of an FM receiver using a balanced antenna coil. The FM receiver shown in Fig. 7 includes a balanced antenna coil 1A, 9A, a variable capacitance circuit 2A that forms a tuning circuit in combination with one of these antenna coils 1A, 9A, and a differential circuit. And a high frequency amplifier circuit 11A constituted by an amplifier circuit. The other configurations are basically the same as those of the FM receiver 100 shown in FIG. 1, and the illustration and detailed description in FIG. 7 are omitted.
[0050] アンテナコイル 1Aは、フェライト系の磁性芯に卷回されており、中央位置力 センタ 一タップが引き出されている。このセンタータップは接地されている。アンテナコイル 1 Aの両端は、半導体基板上に形成されたパッド 3A、 3Bとスィッチ 5A、 5Bを介して可 変容量回路 2Aに接続されている。同様に、アンテナコイル 9Aは、フェライト系の磁 性芯に卷回されており、中央位置力もセンタータップが引き出されている。このセンタ 一タップは接地されている。アンテナコイル 9Aの両端は、半導体基板上に形成され たパッド 4A、 4Bとスィッチ 6A、 6Bを介して可変容量回路 2Aに接続されている。  [0050] The antenna coil 1A is wound around a ferrite-based magnetic core, and a center position force center one tap is drawn out. This center tap is grounded. Both ends of the antenna coil 1A are connected to the variable capacitance circuit 2A via pads 3A and 3B and switches 5A and 5B formed on the semiconductor substrate. Similarly, the antenna coil 9A is wound around a ferrite-based magnetic core, and the center position force is also pulled out from the center tap. This center tap is grounded. Both ends of the antenna coil 9A are connected to the variable capacitance circuit 2A via pads 4A and 4B and switches 6A and 6B formed on the semiconductor substrate.
[0051] 可変容量回路 2Aは、図 1に示した可変容量回路 2とほぼ同じ構成を有しており、複 数のコンデンサ 31と複数のスィッチ 32とを備えている。但し、可変容量回路 2ではコ ンデンサ 31とスィッチ 32からなる直列回路の一方端が接地されていたが、可変容量 回路 2Aでは、コンデンサ 31とスィッチ 32からなる直列回路の両端がパッド 3A、 3B あるいはパッド 4A、 4Bのいずれかに接続されて、接地されていない点が異なってい る。 [0052] このようにバランス型のアンテナコイル 1A (あるいは 9A)を用いることにより、接地さ れたセンタータップの電位を中心として正負反対側の振幅を合計することができるた め、同調回路から高周波増幅回路 11Aに入力される放送波信号のゲインをほぼ 6d B高くすることができる。高周波増幅回路 11Aは、可変容量回路 2Aから出力される 放送波信号を差動増幅して、後段の混合回路 12に入力する。そうすることにより、ダ イナミックレンジを大きくすることができる。 The variable capacitance circuit 2A has substantially the same configuration as the variable capacitance circuit 2 shown in FIG. 1, and includes a plurality of capacitors 31 and a plurality of switches 32. However, in the variable capacitance circuit 2, one end of the series circuit composed of the capacitor 31 and the switch 32 is grounded, but in the variable capacitance circuit 2A, both ends of the series circuit composed of the capacitor 31 and the switch 32 are connected to the pads 3A, 3B or The difference is that it is connected to either pad 4A or 4B and not grounded. [0052] By using the balanced antenna coil 1A (or 9A) in this way, the amplitudes on the opposite sides of the grounded center tap can be summed, so that the high frequency from the tuning circuit can be increased. The gain of the broadcast wave signal input to the amplifier circuit 11A can be increased by about 6 dB. The high-frequency amplifier circuit 11A differentially amplifies the broadcast wave signal output from the variable capacitance circuit 2A and inputs the amplified signal to the subsequent mixing circuit 12. By doing so, the dynamic range can be increased.
[0053] 図 8は、 FM受信機の変形例の部分的な構成を示す図である。図 7に示した FM受 信機では、アンテナコイル 1A、 9Aにセンタータップを設けて接地することにより、ノ ンス型の構成を実現した力 図 8に示すように、可変容量回路内のコンデンサにセン タータップを設けて接地することによつても、同様のバランス型の構成を実現すること ができる。  FIG. 8 is a diagram showing a partial configuration of a modification of the FM receiver. The FM receiver shown in Fig. 7 is a force that realizes a non-type configuration by providing center taps on the antenna coils 1A and 9A and grounding them. A similar balanced configuration can also be realized by providing a center tap and grounding.
[0054] 図 8に示す FM受信機には、アンテナコイル 1B、 9Bと、これらのアンテナコイル 1B 、 9Bのいずれか一方と組み合わされて同調回路を構成する可変容量回路 2Bと、差 動増幅回路によって構成される高周波増幅回路 11Aとが含まれている。それ以外の 構成については、図 1に示した FM受信機 100と同じであり、図 8における図示と詳細 な説明は省略する。  [0054] The FM receiver shown in FIG. 8 includes antenna coils 1B and 9B, a variable capacitance circuit 2B that forms a tuning circuit in combination with one of these antenna coils 1B and 9B, and a differential amplifier circuit. And a high-frequency amplifier circuit 11A constituted by: The other configurations are the same as those of the FM receiver 100 shown in FIG. 1, and the illustration and detailed description in FIG. 8 are omitted.
[0055] アンテナコイル 1Bは、フ ライト系の磁性芯に卷回されている。このアンテナコイル 1Bの両端は、半導体基板上に形成されたパッド 3A、 3Bとスィッチ 5A、 5Bを介して 可変容量回路 2Bに接続されている。同様に、アンテナコイル 9Bは、フェライト系の磁 性芯に卷回されている。このアンテナコイル 9Bの両端は、半導体基板上に形成され たパッド 4A、 4Bとスィッチ 6A、 6Bを介して可変容量回路 2Bに接続されている。  The antenna coil 1B is wound around a flight-type magnetic core. Both ends of the antenna coil 1B are connected to the variable capacitance circuit 2B via pads 3A and 3B and switches 5A and 5B formed on the semiconductor substrate. Similarly, the antenna coil 9B is wound around a ferrite-based magnetic core. Both ends of the antenna coil 9B are connected to the variable capacitance circuit 2B via pads 4A and 4B and switches 6A and 6B formed on the semiconductor substrate.
[0056] 可変容量回路 2Bは、複数のコンデンサ 31および複数のスィッチ 32の他に、これら と同じ数の複数のコンデンサ 33および複数のスィッチ 34を備えている。コンデンサ 3 1、スィッチ 32、 34、コンデンサ 33からなる複数組の直列回路がパッド 3A、 3B間(あ るいはパッド 4A、 4B間)に接続されている。この直列回路は、スィッチ 32、 34の接続 点にセンタータップが設けられており、このセンタータップが接地されている。一の直 列回路に含まれる容量性素子としてのコンデンサ 31、 33の静電容量を同じ値に設 定するとともに、これらのコンデンサ 31、 33に接続された 2つのスィッチ 32、 34を同じ タイミングで断続制御することにより、この直列回路の両端から図 7に示す構成と同様 の大きな振幅の放送波信号を出力することが可能になる。 The variable capacitance circuit 2B includes a plurality of capacitors 33 and a plurality of switches 34 in addition to the plurality of capacitors 31 and the plurality of switches 32. Multiple series circuits consisting of capacitor 31, switches 32, 34, and capacitor 33 are connected between pads 3A and 3B (or between pads 4A and 4B). In this series circuit, a center tap is provided at the connection point of the switches 32 and 34, and the center tap is grounded. Capacitors 31 and 33 as capacitive elements included in one series circuit are set to the same capacitance, and the two switches 32 and 34 connected to these capacitors 31 and 33 are the same. By controlling the timing intermittently, it is possible to output a broadcast wave signal with a large amplitude similar to the configuration shown in Fig. 7 from both ends of this series circuit.
[0057] さらに、図 7に示した構成と図 8に示した構成とを組み合わせてもよい。すなわち、 図 9に示すように、図 7に示したアンテナコイル 1A、 9Aと図 8に示した可変容量回路 2Bとを組み合わせてバランス型の同調回路を構成するようにしてもよい。また、図 7 〜図 9に示したバランス型の同調回路を用いた FM受信機は図 1に示す FM受信機 1 00に対応する構成、すなわち 1系統の回路を有する場合について説明したが、図 5 に示すような 2系統の回路を有する FM受信機について図 7〜図 9に示したバランス 型の同調回路を備えるようにしてもよ 、。  Furthermore, the configuration shown in FIG. 7 and the configuration shown in FIG. 8 may be combined. That is, as shown in FIG. 9, the antenna coils 1A and 9A shown in FIG. 7 and the variable capacitance circuit 2B shown in FIG. 8 may be combined to form a balanced tuning circuit. In addition, the FM receiver using the balance type tuning circuit shown in FIGS. 7 to 9 has been described as having a configuration corresponding to the FM receiver 100 shown in FIG. An FM receiver having two circuits as shown in Fig. 5 may be provided with the balanced tuning circuit shown in Figs.
[0058] なお、本発明は上記実施形態に限定されるものではなぐ本発明の要旨の範囲内 において種々の変形実施が可能である。例えば、上述した実施形態では、 FM受信 機について説明したが、 VHF帯に含まれる他の信号を受信する VHF受信機に本発 明を適用することができる。この場合に、 VHF受信機の復調方式は、 FM復調方式 に限定されず、 AM復調方式やデジタル復調方式を採用するようにしてもょ ヽ。  It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, in the above-described embodiment, the FM receiver has been described. However, the present invention can be applied to a VHF receiver that receives other signals included in the VHF band. In this case, the demodulation method of the VHF receiver is not limited to the FM demodulation method, and an AM demodulation method or a digital demodulation method may be adopted.
[0059] また、上述した実施形態では、 2つのアンテナを受信状態に応じて切り替える場合 について説明した力 3つ以上のアンテナを受信状態に応じて切り替えるようにしても よい。図 10は、 3つのアンテナの配置例を示す図である。図 10に示すように、 3つ(あ るいはそれ以上)のアンテナを用いる場合には同一平面上とならな 、ように三次元的 に各アンテナを配置することができるため、どのような方向から送信された放送波に 対しても良好な受信状態で受信することが可能になる。  In the above-described embodiment, the force described for switching two antennas according to the reception state may be switched between three or more antennas according to the reception state. FIG. 10 is a diagram illustrating an arrangement example of three antennas. As shown in Fig. 10, when using three (or more) antennas, each antenna can be arranged three-dimensionally so that it is not on the same plane. It is possible to receive the broadcast wave transmitted from the TV in good reception.
産業上の利用可能性  Industrial applicability
[0060] 本発明によれば、磁性芯とアンテナコイルとからなるアンテナを用いることにより、小 型のアンテナを実現することができるため、アンテナ設置の自由度を高めるとともに V HF帯受信機全体の小型化が容易となる。 [0060] According to the present invention, a small antenna can be realized by using an antenna composed of a magnetic core and an antenna coil, so that the degree of freedom of antenna installation is increased and the entire V HF band receiver can be realized. Miniaturization becomes easy.

Claims

請求の範囲 The scope of the claims
[1] 受信した信号の中から同調周波数とその近傍の信号を選択的に通過させる同調回 路と、局部発振信号を生成する局部発振回路と、前記局部発振回路を用いて生成さ れる局部発振信号と前記同調回路による同調動作によって得られる高周波信号とを 周波数混合する混合回路とを有する VHF帯受信機において、  [1] A tuning circuit that selectively passes a tuning frequency and a signal in the vicinity thereof from a received signal, a local oscillation circuit that generates a local oscillation signal, and a local oscillation that is generated using the local oscillation circuit In a VHF band receiver having a mixing circuit for frequency-mixing a signal and a high-frequency signal obtained by a tuning operation by the tuning circuit,
前記同調回路は、別々の磁性芯に卷回された複数のアンテナコイルを備え、 VHF 帯の前記同調周波数が設定されている VHF帯受信機。  The tuning circuit includes a plurality of antenna coils wound around different magnetic cores, and the tuning frequency of the VHF band is set.
[2] 請求項 1において、 [2] In claim 1,
前記複数のアンテナコイルの中の一つを選択する選択手段と、  Selecting means for selecting one of the plurality of antenna coils;
前記選択手段によって選択された前記アンテナコイルを用いたときの受信状態を 検出する受信状態検出手段と、  Receiving state detecting means for detecting a receiving state when using the antenna coil selected by the selecting means;
前記受信状態検出手段によって検出された受信状態に基づいて前記選択手段に よって選択される前記アンテナコイルを切り替える切替制御手段と、  Switching control means for switching the antenna coil selected by the selection means based on the reception state detected by the reception state detection means;
をさらに備える VHF帯受信機。  Further equipped with a VHF receiver.
[3] 請求項 2において、 [3] In claim 2,
前記切替制御手段は、切り替えた後の前記アンテナコイルに対応する受信状態よ りも、切り替え前の前記アンテナコイルに対応する受信情報の方が良好であるときに 、切り替え前の前記アンテナコイルに戻す指示を前記選択手段に対して行う VHF帯 受信機。  The switching control means returns to the antenna coil before switching when the reception information corresponding to the antenna coil before switching is better than the reception state corresponding to the antenna coil after switching. A VHF band receiver for instructing the selection means.
[4] 請求項 1において、 [4] In claim 1,
前記複数のアンテナコイルのそれぞれに対応する複数の受信系統の中の一つを 選択する選択手段と、  Selecting means for selecting one of a plurality of receiving systems corresponding to each of the plurality of antenna coils;
前記複数の受信系統のそれぞれに対応する受信状態を検出する受信状態検出手 段と、  A reception state detecting means for detecting a reception state corresponding to each of the plurality of reception systems;
前記受信状態検出手段によって検出された受信状態に基づいて前記選択手段に よって選択される受信系統を切り替える切替制御手段と、  A switching control means for switching the reception system selected by the selection means based on the reception status detected by the reception status detection means;
をさらに備える VHF帯受信機。  Further equipped with a VHF receiver.
[5] 請求項 1において、 前記複数のアンテナコイルは、互いに所定距離隔たった位置に配置されて 、る VH F帯受信機。 [5] In claim 1, The plurality of antenna coils are arranged at positions spaced apart from each other by a predetermined distance, and are a VHF band receiver.
[6] 請求項 5において、 [6] In claim 5,
前記複数のアンテナコイルの離間距離は、受信周波数帯域に含まれる搬送波周波 数の四分の一波長である VHF帯受信機。  The VHF band receiver in which the distance between the plurality of antenna coils is a quarter wavelength of the carrier frequency included in the reception frequency band.
[7] 請求項 1において、 [7] In claim 1,
前記複数のアンテナコイルは、互いに異なる向きに配置されている VHF帯受信機  The plurality of antenna coils are arranged in different directions from each other.
[8] 請求項 1において、 [8] In claim 1,
前記同調回路は、前記アンテナコイルとともに共振回路を構成し、静電容量が変更 可能な可変容量回路を有し、  The tuning circuit constitutes a resonance circuit together with the antenna coil, and has a variable capacitance circuit whose capacitance can be changed.
受信対象の信号の周波数に前記同調周波数を一致させる設定動作を行う周波数 設定制御手段をさらに備える VHF帯受信機。  A VHF band receiver further comprising frequency setting control means for performing a setting operation to match the tuning frequency with the frequency of a signal to be received.
[9] 請求項 8において、 [9] In claim 8,
前記局部発振回路は、発振周波数が変更可能であり、  The local oscillation circuit can change the oscillation frequency,
前記周波数設定制御手段は、前記同調回路の同調周波数に連動させて前記局部 発振回路の発振周波数を変更する制御を行う VHF帯受信機。  The frequency setting control means is a VHF band receiver that performs control to change the oscillation frequency of the local oscillation circuit in conjunction with the tuning frequency of the tuning circuit.
[10] 請求項 8において、 [10] In claim 8,
前記可変容量回路は、それぞれの前記アンテナコイルに選択的に接続される複数 のコンデンサを有し、  The variable capacitance circuit has a plurality of capacitors that are selectively connected to each of the antenna coils,
前記周波数設定制御手段は、前記複数のコンデンサの接続状態を変更することに より、前記アンテナコイルとこのアンテナコイルに選択的に接続された前記コンデンサ によって決定される VHF帯の同調周波数を可変する VHF帯受信機。  The frequency setting control means varies a tuning frequency of a VHF band determined by the antenna coil and the capacitor selectively connected to the antenna coil by changing a connection state of the plurality of capacitors. Band receiver.
[11] 請求項 10において、 [11] In claim 10,
前記複数のコンデンサの少なくとも一部には接続状態を断続するスィッチが直列に 接続されており、  A switch for intermittent connection is connected in series to at least some of the plurality of capacitors,
前記周波数設定制御手段は、前記スィッチの断続状態を変更することにより、前記 コンデンサの選択状態を変更する VHF帯受信機。 The frequency setting control means is a VHF band receiver that changes a selection state of the capacitor by changing an intermittent state of the switch.
[12] 請求項 11において、 [12] In claim 11,
一の前記コンデンサに一の前記スィッチが直列に接続された直列回路が複数組備 わっており、これら複数組の前記直列回路が前記アンテナコイルに並列に接続され ている VHF帯受信機。  A VHF band receiver in which a plurality of series circuits in which one switch is connected in series to one capacitor is provided, and the plurality of series circuits are connected in parallel to the antenna coil.
[13] 請求項 8において、 [13] In claim 8,
前記可変容量回路は、前記周波数設定制御手段が形成された半導体基板上に形 成されている VHF帯受信機。  The variable capacitance circuit is a VHF band receiver formed on a semiconductor substrate on which the frequency setting control means is formed.
[14] 請求項 8において、 [14] In claim 8,
前記アンテナコイルは、一方端が接地され、他方端が前記可変容量回路に接続さ れている VHF帯受信機。  The antenna coil is a VHF band receiver in which one end is grounded and the other end is connected to the variable capacitance circuit.
[15] 請求項 8において、 [15] In claim 8,
前記アンテナコイルは、接地されたセンタータップを有しており、両端のそれぞれが 前記可変容量回路の両端に接続されている VHF帯受信機。  The antenna coil has a grounded center tap, and both ends of the antenna coil are connected to both ends of the variable capacitance circuit.
[16] 請求項 10において、 [16] In claim 10,
前記可変容量回路は、容量値がほぼ同じに設定された 2つの前記コンデンサが直 列接続されており、  In the variable capacitance circuit, two capacitors whose capacitance values are set to be substantially the same are connected in series,
前記 2つのコンデンサの接続点が接地されているとともに、前記可変容量回路の両 端が前記アンテナコイルの両端に直接接続されている VHF帯受信機。  A VHF band receiver in which a connection point of the two capacitors is grounded, and both ends of the variable capacitance circuit are directly connected to both ends of the antenna coil.
PCT/JP2005/021006 2004-11-18 2005-11-16 Vhf band receiver WO2006054576A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-333869 2004-11-18
JP2004333869 2004-11-18

Publications (1)

Publication Number Publication Date
WO2006054576A1 true WO2006054576A1 (en) 2006-05-26

Family

ID=36407117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021006 WO2006054576A1 (en) 2004-11-18 2005-11-16 Vhf band receiver

Country Status (1)

Country Link
WO (1) WO2006054576A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040811A (en) * 2009-08-06 2011-02-24 Hitachi Metals Ltd Antenna circuit
EP2299337A1 (en) 2009-09-22 2011-03-23 The Swatch Group Research and Development Ltd. Radio synchronous signal receiver for adjusting a time base, and method for activating the receiver
JP2016039470A (en) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 Radio communication apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861550U (en) * 1981-10-21 1983-04-25 トヨタ自動車株式会社 superheterodyne receiver
JPH08307297A (en) * 1995-05-02 1996-11-22 Fujitsu Ten Ltd On-vehicle antenna matching device
JPH09181571A (en) * 1995-12-25 1997-07-11 Sony Corp A/d conversion circuit and variable capacitor circuit
JP2002026784A (en) * 2000-07-05 2002-01-25 Toshiba Corp Wireless communication unit
JP2002026782A (en) * 2000-07-04 2002-01-25 Toyota Motor Corp Wireless receiver
JP2002043994A (en) * 2000-07-19 2002-02-08 Sony Corp Diversity antenna system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861550U (en) * 1981-10-21 1983-04-25 トヨタ自動車株式会社 superheterodyne receiver
JPH08307297A (en) * 1995-05-02 1996-11-22 Fujitsu Ten Ltd On-vehicle antenna matching device
JPH09181571A (en) * 1995-12-25 1997-07-11 Sony Corp A/d conversion circuit and variable capacitor circuit
JP2002026782A (en) * 2000-07-04 2002-01-25 Toyota Motor Corp Wireless receiver
JP2002026784A (en) * 2000-07-05 2002-01-25 Toshiba Corp Wireless communication unit
JP2002043994A (en) * 2000-07-19 2002-02-08 Sony Corp Diversity antenna system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040811A (en) * 2009-08-06 2011-02-24 Hitachi Metals Ltd Antenna circuit
EP2299337A1 (en) 2009-09-22 2011-03-23 The Swatch Group Research and Development Ltd. Radio synchronous signal receiver for adjusting a time base, and method for activating the receiver
US8630151B2 (en) 2009-09-22 2014-01-14 The Swatch Group Research And Development Ltd Radio-synchronous signal receiver for adjusting a time base, and method for activating the receiver
JP2016039470A (en) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 Radio communication apparatus

Similar Documents

Publication Publication Date Title
JP4292914B2 (en) Portable receiver and duplexer used therefor
JP4959956B2 (en) antenna
US7616163B2 (en) Multiband tunable antenna
US8818309B2 (en) Providing multiple inductors for a radio tuner
US20060063499A1 (en) VHF band receiver
US4397041A (en) Complex antenna system and FM/AM receiver
CN102594380B (en) Receiver circuits and systems for receiving medium wave and short wave signals
WO2006027952A1 (en) Antenna device and mobile wireless apparatus using the same
JP2004172958A (en) Matching device
WO2016086978A1 (en) Quadrature signal generator, beamforming arrangement, communication device and base station
CN101911386A (en) Portable wireless device
JP4570767B2 (en) Mobile radio receiver with integrated broadcast receiver
WO2006054576A1 (en) Vhf band receiver
WO2007125793A1 (en) Receiving apparatus and electronic device using same
JP2005159727A (en) Antenna system
JP2005130279A (en) Tuner for diversity reception
US8750819B2 (en) Integrating components in a radio tuner integrated circuit (IC) for a tracking filter
JP2004153310A (en) Wireless communication apparatus
JP2020014165A (en) Element sharing complex antenna device
JP2000151448A (en) On-vehicle antenna system
JP4337684B2 (en) Portable device
WO2002087109A1 (en) Antenna switching apparatus using earphone
JP2001320222A (en) Antenna device
CN100362883C (en) An apparatus for signal reception
JP2011035505A (en) Antenna device, broadcast receiving device, and compound wireless device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP