WO2006054540A1 - Objective lens control device and objective lens control method - Google Patents

Objective lens control device and objective lens control method Download PDF

Info

Publication number
WO2006054540A1
WO2006054540A1 PCT/JP2005/020921 JP2005020921W WO2006054540A1 WO 2006054540 A1 WO2006054540 A1 WO 2006054540A1 JP 2005020921 W JP2005020921 W JP 2005020921W WO 2006054540 A1 WO2006054540 A1 WO 2006054540A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
focus
focus position
light
detecting
Prior art date
Application number
PCT/JP2005/020921
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimichi Nishio
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006054540A1 publication Critical patent/WO2006054540A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Definitions

  • the present invention relates to an objective lens control device and an objective lens control method.
  • CD Compact Disk
  • Player Z Recorder and DVD Digital Video (Versatile) Disk
  • Player Recording and playback devices such as Z Recorder are equipped with a pickup of the recording and playback device.
  • the information recorded on the optical disk is read by irradiating the light beam and detecting the reflected light from the information recording surface of the optical disk.
  • the pickup includes an actuator for driving and controlling the objective lens.
  • the object lens focuses the emitted light beam on the information recording surface of the optical disc, and the focus of the light beam irradiated on the information recording surface changes depending on the distance between the objective lens and the information recording surface. To do.
  • a CD player or the like needs to control the actuator by the focus servo, and drive and control the position of the objective lens so that the information recording surface is irradiated with the optimally focused light beam.
  • the objective lens of the optical pickup device described in Patent Document 1 is mounted on an actuator and moved in the focus direction of the disc so as to form a light spot on the disc. That is, the actuator enables the objective lens to be accurately moved to a desired position by the current applied to the moving coil and the electromagnetic force formed by the permanent magnet.
  • Non-Patent Document 1 moves the pickup within a predetermined range ( ⁇ 0.7 mm).
  • FIG. 9 is a diagram for explaining the movement of a conventional objective lens.
  • the objective lens is moved within a predetermined range in the focus direction of the disc, and signal measurement and focus pull-in are performed near the in-focus position.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-152472
  • Non-Patent Document 1 Hikaru Nishihara, 6 others, "Thin DVD—Pickup for ROM”, [online], 19 December 1998, Sharp Technical Report, [searched August 12, 2004], Internet URLwww. s harp.co.jp/ corporate / rd / journa ⁇ 72 / pdf / 72— 20. pdf>
  • the problem to be solved by the present invention includes, for example, the problem of collision between the disc and the objective lens caused by the movement of the objective lens in Patent Document 1 and Non-Patent Document 1 described above.
  • the invention according to claim 1 of the present invention includes an objective lens, and irradiates the optical recording medium with light from the light source via the objective lens.
  • the objective lens control device that controls the focus of the irradiated light by controlling the position of the objective lens, a predetermined signal is detected from the received return light.
  • the focus position detection unit detects the focus position
  • the focus position detection unit detects the position of the objective lens where the light emitted from the light source is focused on the optical recording medium as the focus position.
  • an objective lens control unit that controls the objective lens so as to reverse the moving direction of the objective lens in the focus direction.
  • the invention according to claim 4 is an apparatus that includes an objective lens, irradiates the optical recording medium with light from a light source via the objective lens, and receives the return light.
  • the objective lens In the objective lens control device that controls the focus of the emitted light by controlling the position of the light, the light emitted from the light source is detected by detecting a predetermined signal from the received return light.
  • the position of the objective lens that focuses on the medium is the in-focus position.
  • a focus position detection unit that detects the position of the objective lens, and a timing for reversing the moving direction of the objective lens in the focus direction according to the focus position detected by the focus position detection unit, and generates timing information representing the timing
  • an objective lens control unit that reverses the moving direction of the objective lens in the focus direction at a timing based on the timing information.
  • the invention according to claim 6 is an apparatus that includes an objective lens, irradiates light onto the optical recording medium from a light source via the objective lens, and receives the return light.
  • the objective lens In the objective lens control device that controls the focus of the emitted light by controlling the position of the light, the light emitted from the light source is detected by detecting a predetermined signal from the received return light.
  • a focus position detecting step for detecting a position of the objective lens focused on the medium as a focus position; and a reversing step for reversing the moving direction in the focus direction of the objective lens.
  • the invention according to claim 7 is an apparatus that includes an objective lens, irradiates the optical recording medium with light from a light source via the objective lens, and receives the return light.
  • the objective lens In the objective lens control device that controls the focus of the emitted light by controlling the position of the light, the light emitted from the light source is detected by detecting a predetermined signal from the received return light.
  • a focus position detection step for detecting the position of the objective lens that focuses on the medium as a focus position, and the movement direction of the objective lens in the focus direction is reversed according to the focus position detected by the focus position detection unit.
  • the invention according to claim 8 is an apparatus that includes an objective lens, irradiates light onto the optical recording medium from a light source via the objective lens, and receives the return light.
  • the objective lens In a program for causing a computer to execute the objective lens control method for controlling the focus of the irradiated light by controlling the position of the light source, by detecting a predetermined signal from the received return light, An in-focus position detecting step for detecting, as an in-focus position, the position of an objective lens at which the irradiated light is in focus on the optical recording medium; And a reversing step of reversing the moving direction of the object lens in the focus direction, and causing the computer to execute the reversing step.
  • the invention according to claim 9 is an apparatus that includes an objective lens, irradiates the optical recording medium with light from a light source via the objective lens, and receives the return light.
  • the objective lens In a program for causing a computer to execute the objective lens control method for controlling the focus of the irradiated light by controlling the position of the light source, by detecting a predetermined signal from the received return light, A focus position detecting step for detecting, as a focus position, the position of the objective lens at which the irradiated light is focused on the optical recording medium, and the focus of the objective lens according to the focus position detected by the focus position detecting unit.
  • a timing information generation step for determining timing for reversing the moving direction in the direction, and generating timing information representing the timing; and the timing information In group Dzu was timing, characterized in that to perform a reversing step of reversing the direction of movement in the focus direction of the objective lens, to a computer.
  • FIG. 1 is a block diagram illustrating a configuration of an objective lens control device according to a first embodiment.
  • FIG. 2 is a flowchart showing an operation procedure of the objective lens control apparatus according to the first embodiment.
  • FIG. 3-1 is a diagram (1) for explaining the operation of the objective lens during signal level detection according to the first embodiment.
  • FIG. 3-2 is a diagram (2) for explaining the operation of the objective lens at the time of signal level detection according to the first embodiment.
  • Fig. 41 is a diagram (1) for explaining the operation of the objective lens in the conventional signal level detection.
  • Fig. 42 is a diagram (2) for explaining the operation of the objective lens in the conventional signal level detection.
  • FIG. 5 is a block diagram illustrating a configuration of an objective lens control device according to the second embodiment.
  • FIG. 6 is a flowchart illustrating an operation procedure of the objective lens control device according to the second embodiment.
  • FIG. 7-1 is a diagram (1) for explaining the operation of the objective lens at the time of signal level detection according to the second embodiment.
  • FIG. 7-2 is a diagram (2) for explaining the operation of the objective lens at the time of signal level detection according to the second embodiment.
  • FIG. 8-1 is a diagram (1) for explaining the operation of the objective lens at the time of conventional focus pull-in.
  • FIG. 8-2 is a diagram (2) for explaining the operation of the objective lens during the conventional focus pull-in.
  • FIG. 9 is a diagram for explaining the movement of a conventional objective lens.
  • the objective lens control device controls the focus of the irradiation beam when reading or recording recording medium force information such as CD (Compact Disk) and DVD (Digital Video Disk).
  • the objective lens control device controls the position of the objective lens of a pick-up (optical pickup) that irradiates the information recording surface of the disc when reading information from a disc such as a CD. This controls the focus of the irradiation beam on the disc.
  • the signal detection of the reflected beam with respect to the beam irradiated on the disk and the focus closing when reading the information recorded on the disk are performed by reciprocating the objective lens in a direction perpendicular to the surface of the disk.
  • the reflected beam signal detection and focus closing are performed by a focus error signal near the focus position of the irradiation beam irradiated from the pickup.
  • the objective lens is moved within a predetermined range in a direction perpendicular to the surface of the disc, and the focus search is performed. There may be a collision between the objective lens and the disk.
  • the operation of the objective lens is controlled without setting a range in which the objective lens can move in a direction perpendicular to the in-plane direction of the disc.
  • the objective lens when the objective lens is brought close to the disk in order to detect the reflected beam signal or to close the focus, if the objective lens passes the in-focus position, immediately or after a predetermined time has passed (or the objective lens is in focus). After the position elapses, the objective lens movement is reversed (moved away from the disc surface) after the objective lens movement distance calculated based on the timing results has reached a predetermined distance.
  • the disc type is discriminated, such as whether the disc is a power DVD or a DVD, and the objective lens is far from the disc surface force.
  • the reflected beam signal is detected and the focus is closed.
  • the in-focus position when the objective lens moves is detected, and the operation of the objective lens is controlled based on the detection of the in-focus position.
  • In-focus position detection For example, detection is based on the focus error signal, tracking error signal, RF signal, etc. extracted from the reflected beam force from the disk.
  • the objective lens when the objective lens approaches the disc in order to detect the signal of the disc force or perform the focus close, immediately after the objective lens passes the in-focus position or a predetermined value. Since the direction of movement of the objective lens is reversed after a lapse of time, it is possible to avoid collision between the objective lens and the disk. This makes it possible to detect signals from the disk stably.
  • FIG. 1 is a block diagram showing a configuration of an objective lens control device that works according to the present invention.
  • the objective lens control device 10 is a device that controls the focus of the light beam applied to the disk 31, and includes an error signal generation unit 15, an RF (Radio Frequency) signal generation unit 16, an error focus position detection unit 12, and an RF focus. It consists of a position detection unit 13, a focus drive control unit 17, a pickup 19, and a driver 20.
  • the error focus position detection unit 12 and the RF focus position detection unit 13 correspond to the focus position detection unit described in the claims, and the focus drive control unit 17 and the driver 20 serve as the objective lens control unit.
  • the focus drive control unit 17 and the driver 20 serve as the objective lens control unit.
  • the pickup 19 is configured to include an objective lens 21.
  • the pickup 19 is equipped with an actuator (not shown), and the actuator controls the focus of the light beam applied to the disk 31 by driving the objective lens 21.
  • the object lens 21 of the pickup 19 moves in a direction parallel to the plane of the disc 31 and a direction perpendicular to the plane of the disc 31 to irradiate the disc 31 with the irradiation beam from the actuator,
  • the reflected beam reflected from is sent to the actuator.
  • the pickup 19 transmits the reflected beam from the objective lens 21 to the error signal generator 15 and the RF signal generator 16.
  • the error signal generation unit 15 also generates a focus error signal, a tracking error signal, and the like for the reflected beam force sent from the pickup 19.
  • the RF signal generator 16 generates an RF signal or the like from the reflected beam sent from the pickup 19.
  • the error focus position detection unit 12 detects the focus error signal and tracking error signal generated by the error signal generation unit 15.
  • the RF focus position detector 13 is an RF signal generator 1 6 detects the RF signal generated and sends the detection signal to the focus drive controller 17
  • the focus drive control unit 17 controls the driver 20 to start operation after a predetermined time stored in a memory (not shown).
  • the focus drive control unit 17 generates pickup drive information (drive voltage or the like) for controlling the operation of the pickup 19 and transmits it to the driver 20.
  • the driver 20 drives the disk motor 32 and the pickup 19 based on the pickup drive information from the focus drive control unit 17.
  • the driver 20 supplies a current (drive current) to a focus coil (not shown) provided in the pickup 19 and moves the objective lens of the pickup 19 in the light beam irradiation direction (perpendicular to the surface of the disk 31).
  • the disk motor 32 is connected to the driver 20 and drives (rotates) the disk 31 with current supplied from the driver 20.
  • the disk 31 is a recording medium that is recorded and reproduced by a CD (Compact Disk) player Z recorder and a DVD (Digital Video Disk) player Z recorder, and is a disk such as a CD or a DVD.
  • CD Compact Disk
  • DVD Digital Video Disk
  • FIG. 2 is a flowchart illustrating the operation procedure of the object lens control apparatus according to the first embodiment.
  • the objective lens 21 of the pickup 19 is moved in the direction perpendicular to the surface of the disk 31 by the drive current from the dryno.
  • the objective lens 21 moves in a direction perpendicular to the surface of the disk 31 in order to perform a disc type determination process described later and to detect the signal level of the reflected beam reflected from the disc 31. .
  • the objective lens 21 moves in a direction approaching the disk 31 (step S100).
  • the pickup irradiates the disk 31 with the irradiation beam through the objective lens 21 when the objective lens 21 is moving.
  • the reflected beam reflected from the disk 31 is sent from the pickup 19 to the error signal generator 15 and the RF signal generator 16.
  • the error signal generator 15 generates a focus error signal and a tracking error signal as information for determining whether or not the objective lens 21 has crossed the in-focus position from the reflected beam from the pickup 19.
  • the RF signal generator 16 The RF signal is generated as information for determining whether or not the objective lens 21 has crossed the in-focus position.
  • the error signal generation unit 15 transmits the generated focus error signal and tracking error signal to the error focus position detection unit 12.
  • the RF signal generation unit 16 transmits the generated RF signal to the RF focus position detection unit 13.
  • the error focus position detector 12 detects the focus error signal and tracking error signal generated by the error signal generator 15.
  • the RF focus position detector 13 detects the RF signal generated by the RF signal generator 16. In the first embodiment, a case where a focus error signal is used as information for determining whether or not the objective lens 21 has crossed the in-focus position will be described.
  • the error focus position detection unit 12 detects the focus error signal as almost zero.
  • the level of the focus error signal gradually increases, and this focus error signal is detected by the error focus position detection unit 12.
  • the level of the focus error signal increases in accordance with the distance between the objective lens 21 and the disk 31 (as it gets closer).
  • the error focusing position detection unit 12 detects the peak (maximum point) of the focus error signal. As the objective lens 21 gets closer to the disk 31, the level of the focus error signal decreases according to the distance between the objective lens 21 and the disk 31, and becomes 0 at the in-focus position.
  • the disc type such as whether the disc 31 is a CD or a DVD is discriminated when the first in-focus position is detected, and the signal is detected when the in-focus position is detected for the second time. Measure the signal level (the amount of reflected beam received from the disk 31) and reflectivity.
  • the error focus position detection unit 12 detects whether or not the objective lens 21 has passed the focus position by detecting a focus error signal while the objective lens 21 is moving so as to approach the disk 31. Judgment is made (step S110). [0043] When the error focus position detection unit 12 determines that the objective lens 21 has passed (crossed) the focus position (Yes in step S110), the error focus position detection unit 12 detects that the objective lens 21 is in focus. A signal indicating that the focus position has been passed (hereinafter referred to as a focus position passing signal) is transmitted to the focus drive control unit 17.
  • a focus position passing signal A signal indicating that the focus position has been passed
  • the focus drive control unit 17 receives the in-focus position passing signal from the error in-focus position detection unit 12 so that the driver 20 starts operating after a predetermined time stored in a memory (not shown). To control. Here, the driver 20 is controlled so that the pickup 19 is moved away from the disk 31 in X milliseconds.
  • the driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves away from the disk 31 X milliseconds after the objective lens 21 passes the in-focus position.
  • the pickup 19 controls the movement of the objective lens 21 so that the objective lens 21 moves away from the disk 31 based on the drive current from the driver 20.
  • the objective lens 21 is driven (reversed) to move away from the disk 31 in a direction perpendicular to the plane of the disk 31 (step S 120).
  • the objective lens 21 When the objective lens 21 is driven away from the disc 31 in a direction perpendicular to the in-plane direction of the disc 31, the objective lens 21 approaches the in-focus position again.
  • the focus error signal level decreases according to the distance between the objective lens 21 and the disc 31, and the focus error signal is output at the in-focus position.
  • the error focus position detection unit 12 detects the focus error signal while the objective lens 21 is moving away from the disc 31 to detect the force that the objective lens 21 has passed through the focus position. Judgment is made or not (step S130).
  • Step S130 because this is the second detection of the focus position, the error focus position detector 12 detects the focus error signal while the error focus position detector 12 detects the focus error signal.
  • the level is measured (step S140).
  • the objective lens 21 is driven in a direction in which the objective lens 21 moves away from the disk 31 even after passing through the in-focus position.
  • the focus drive control unit 17 stores a predetermined time (for example, y milliseconds) stored in a memory (not shown). After the elapse of (after), the driver 20 is controlled so that the objective lens 21 moves in a direction approaching the disk 31.
  • the driver 20 is controlled so as to move the pickup 19 in the direction approaching the disk 31, for example, y milliseconds after the objective lens 21 passes the in-focus position.
  • the driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves in the direction approaching the disk 31 after y milliseconds.
  • the pickup 19 controls the movement of the objective lens 21 based on the drive current from the driver so that the objective lens 21 approaches the disk 31.
  • the objective lens 21 is driven so as to approach the disk 31 in a direction perpendicular to the surface of the disk 31. Thereafter, the objective lens control device 10 performs focus closing and the like as necessary.
  • FIG. 3A is a flowchart for explaining the operation of the object lens when the signal level is detected according to the first embodiment
  • the vertical axis indicates the position of the objective lens (objective lens 21) in the focus direction
  • the horizontal axis indicates time.
  • FIG. 3A shows a case where the disc 31 has a small run-out
  • FIG. 3-2 shows a case where the disc 31 has a large run-out.
  • the objective lens 21 is driven so as to approach the disk 31, and after the objective lens 21 passes the in-focus position (focus point), the objective lens 21 is immediately removed from the disk 31.
  • the drive direction is reversed in the direction to move away. Thus, the objective lens 21 does not collide with the disk 31.
  • FIGS. 41 and 42 are diagrams for explaining the operation of the objective lens at the time of conventional signal level detection.
  • Fig. 4-1 shows the case where the disc 31 has a small run-out
  • Fig. 4-2 shows the case where the disc 31 has a great run-out.
  • the objective lens 21 moves by a predetermined distance (eg, ⁇ 0.7 mm) regardless of the focus position, and performs a focus search. For this reason, when the distance between the objective lens 21 and the disk 31 is short at the in-focus position, the collision between the objective lens 21 and the disk 31 occurs.
  • a predetermined distance eg, ⁇ 0.7 mm
  • the in-focus position also changes with the runout of the disc 31.
  • the surface of the disk 31 is large and the objective lens 21 moves by a predetermined distance regardless of the in-focus position and performs a focus search, a collision between the objective lens 21 and the disk 31 occurs.
  • the objective lens 21 moves in the direction of approaching from the disk 31 after a predetermined time has passed after the objective lens 21 has passed the in-focus position.
  • the objective lens 21 may be moved in a direction approaching the disk 31 after a predetermined distance has passed after the 21 has passed the in-focus position.
  • a timing unit is newly provided, and the error focus position detection unit 12 detects the focus position and starts measuring the force, and measures the time until the objective lens spends moving a predetermined distance. After that, move the objective lens 21 in the direction approaching the disc 31.
  • the focus drive control unit 17 controls the driver 20 by receiving the focus position passing signal from the error focus position detection unit 12.
  • the driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves away from the disk 31 based on the instruction information of the focus drive controller 17 force.
  • the pickup 19 controls the movement of the objective lens 21 so that the objective lens 21 is moved away from the disk 31 based on the drive current from the driver 20. Then, the objective lens 21 is driven (reversed) so as to move away from the disk 31 in a direction perpendicular to the in-plane direction of the disk 31.
  • the error focus position detection unit 12 controls the operation of the objective lens 21 by detecting the focus error signal.
  • the error focus position detection unit 12 The operation of the objective lens 21 may be controlled by detecting the tracking error signal.
  • the error focus position detection unit 12 detects a tracking error signal
  • the error focus position detection unit 12 determines whether or not the objective lens 21 has passed through the focus position based on the tracking error signal.
  • the tracking error signal is Before the focus is reached, it appears as a large amplitude at the moment when the objective lens reaches the in-focus position. Therefore, if this is detected, it can be determined whether or not the objective lens has passed the in-focus position. I'll do it.
  • the operation of the objective lens 21 may be controlled by the RF focus position detector 13 detecting the RF signal.
  • the RF focus position detection unit 13 detects an RF signal
  • the RF focus position detection unit 13 determines whether or not the objective lens 21 has passed through the focus position based on the RF signal.
  • the error focus position detection unit 12 determines that the objective lens 21 has passed the focus position when the signal level of the RF signal shows the maximum, for example.
  • the objective lens 21 is not limited to the focus error signal, the tracking error signal, and the RF signal.
  • the operation of the objective lens 21 may be controlled by determining whether or not the force has passed.
  • the objective lens control device 10 is configured to include both the error focus position detection unit 12 and the RF focus position detection unit 13, but the objective lens control device 10 is configured to detect the error focus position.
  • the unit 12 and the RF focus position detection unit 13 may be configured to include either one of them. That is, the objective lens control device 10 only needs to include at least one means for determining whether or not the objective lens 21 has passed the in-focus position.
  • the RF focus position detection unit 13 has passed the objective lens 21 through the focus position. It may be determined whether or not it is correct.
  • the objective lens 21 determines the in-focus position. It becomes possible to control based on information on whether or not the force has passed.
  • the objective lens 21 when the objective lens 21 approaches the disk 31 in order to detect a signal from the disk 31, after the objective lens 21 has passed the in-focus position, a predetermined time has passed. Since the moving direction of the objective lens 21 is reversed after moving a predetermined distance or immediately, the collision between the objective lens 21 and the disk 31 can be avoided. Therefore, as is apparent from a comparison of FIGS. 4 and 4 which are the prior art and FIGS. 3A and 3B of the present embodiment, there is a case where the variation in mechanical dimensions of the pickup 19 is large.
  • Disc 31 The objective lens must be closer to the low-density disc than the low-density disc, even if there is a large amount of surface blur, or the minimum pit length is very short. It becomes possible to avoid the collision between 21 and the disk 31. As a result, signal detection from the disk 31 can be performed stably.
  • the operation of the objective lens 21 when detecting the in-focus position is controlled based on a focus error signal or the like. Also in the second embodiment, the operation of the objective lens 21 is controlled by the objective lens control device 10 having the same configuration as that of the first embodiment to control the focus.
  • FIG. 5 is a block diagram illustrating a configuration of the objective lens control device according to the second embodiment.
  • FIG. 5 is a block diagram showing a configuration of the objective lens control apparatus according to the first embodiment, and a reversal timing calculation unit (timing information generation unit) 14 is newly provided.
  • the inversion timing calculation unit 14 calculates the timing for controlling the moving direction of the pickup 19 (objective lens 21) based on the in-focus position detected by the error in-focus position detection unit 12, and the inversion timing calculation unit The timing calculated by 14 is sent as control information to the focus drive controller 17.
  • FIG. 6 is a flowchart illustrating an operation procedure of the objective lens control device according to the second embodiment.
  • the objective lens 21 of the pickup 19 is moved in a direction perpendicular to the surface of the disk 31 by the drive current from the driver.
  • the objective lens 21 moves in a direction perpendicular to the surface of the disk 31 in order to perform the disc type determination process and the focus close.
  • the objective lens 21 moves in a direction approaching the disk 31 (step S200).
  • the pickup irradiates the disk 31 with the irradiation beam through the objective lens 21 when the objective lens 21 is moving. .
  • the steps S110 to S130 in FIG. 2 described in the first embodiment correspond to the steps S210 to S230 in FIG. 6 in the second embodiment. That is, while the objective lens 21 is moving, the reflected beam reflected from the disk 31 generates an error signal from the pickup 19. Unit 15 and RF signal generation unit 16 are transmitted.
  • the error signal generator 15 generates a focus error signal and a tracking error signal as information for determining whether or not the objective lens 21 has crossed the in-focus position from the reflected beam from the pickup 19.
  • the RF signal generation unit 16 generates an RF signal as information for determining whether or not the reflected beam force objective lens 21 from the pickup 19 has crossed the in-focus position.
  • the error signal generation unit 15 transmits the generated focus error signal and tracking error signal to the error focus position detection unit 12.
  • the RF signal generation unit 16 transmits the generated RF signal to the RF focus position detection unit 13.
  • the error focus position detector 12 detects the focus error signal and tracking error signal generated by the error signal generator 15.
  • the RF focus position detector 13 detects the RF signal generated by the RF signal generator 16.
  • a focus error signal is used as information for determining whether or not the objective lens 21 has crossed the in-focus position.
  • the error focus position detection unit 12 detects the focus error signal as almost zero.
  • the level of the focus error signal gradually increases, and this focus error signal is detected by the error focus position detection unit 12.
  • the level of the focus error signal increases in accordance with the distance between the objective lens 21 and the disk 31. Then, the error focus position detector 12 detects the peak of the focus error signal. As the objective lens 21 comes closer to the disc 31, the level of the focus error signal decreases according to the distance between the objective lens 21 and the disc 31, and becomes 0 at the in-focus position.
  • the disc type is determined when the first in-focus position is detected, and the focus is pulled in when the second in-focus position is detected.
  • the disc type is discriminated.
  • the error focus position detection unit 12 detects the focus error signal while the objective lens 21 moves so as to approach the disk 31, so that the objective lens 21 passes the focus position. It is determined whether or not the power has been reduced (step S210).
  • the error focus position detection unit 12 determines that the objective lens 21 has passed the focus position (Yes in step S210)
  • the error focus position detection unit 12 detects the focus position passage information (for example, the focus position).
  • Information indicating the distance between the optical recording medium and the optical recording medium) is transmitted to the inversion timing calculation unit 14.
  • the focus drive control unit 17 receives the control information from the inversion timing calculation unit 14 and controls the driver 20 based on the control information.
  • the driver 20 is controlled to move the pick-up 19 away from the disk 31 in X milliseconds.
  • the driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves away from the disk 31 after X milliseconds.
  • the pickup 19 controls the movement of the objective lens 21 so that the objective lens 21 is moved away from the disk 31 based on the drive current from the driver 20.
  • the objective lens 21 is driven to move away from the disk 31 in a direction perpendicular to the in-plane direction of the disk 31 (step S220).
  • the objective lens 21 By driving the objective lens 21 away from the disc 31 in a direction perpendicular to the in-plane direction of the disc 31, the objective lens 21 approaches the in-focus position again.
  • the focus error signal level decreases according to the distance between the objective lens 21 and the disc 31, and the focus error signal is output at the in-focus position.
  • the error focus position detector 12 detects the focus error signal while the objective lens 21 is moving away from the disk 31 to detect the force that the objective lens 21 has passed through the focus position. Determine whether or not (step S230).
  • Step S230 Yes
  • the focus position is detected because it is the second focus position detection.
  • Rose (Step S240).
  • the driver 20 controls the pickup 19 so that the objective lens 21 is drawn into the focal depth with respect to the disk 31.
  • the error focus position detection unit 12 detects a focus error signal during the focus close process, and determines whether the focus close is successful based on the focus error signal (step S250).
  • the error focus position detection unit 12 transmits a determination result (hereinafter, referred to as “close determination result information”) as to whether or not the force has failed to close the focus to the inversion timing calculation unit 14.
  • the inversion timing calculation unit 14 creates control information related to the movement of the objective lens 21 based on the close determination result information from the error focus position detection unit 12.
  • step S250, No the inversion timing calculation unit 14 performs predetermined processing after the objective lens 21 has passed the focus position. Control information is created so that the objective lens 21 moves in the direction approaching the disk 31 after the elapse of time (after y milliseconds). This control information is transmitted from the inversion timing calculation unit 14 to the focus drive control unit 17.
  • the focus drive control unit 17 receives the control information from the inversion timing calculation unit 14 and controls the driver 20 based on the control information.
  • the driver 20 is controlled so as to move the pickup 19 in a direction approaching the disk 31 after y milliseconds, for example.
  • the driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves in the direction approaching the disk 31 after y milliseconds.
  • the pickup 19 controls the movement of the objective lens 21 based on the drive current from the driver so that the objective lens 21 approaches the disk 31.
  • the objective lens 21 moves away from the disk 31 for y milliseconds, and thereafter The objective lens 21 moves so as to approach the disk 31 (step S2 60). Then, the same processing as steps S210 to S250 is repeated again.
  • the processing power of steps S270 to S300 corresponds to the processing of S steps S210 to S250.
  • focus close fails in step S250. After that, the focus close process is performed once again by the processes in steps S260 to S300. However, if the focus close process fails, the focus close process may be repeated a plurality of times. In this case, the processes in steps S260 to S300 are repeated several times until the focus close is successful.
  • FIG. 7-1 is a flowchart for explaining the operation of the object lens at the time of signal level detection according to the second embodiment
  • the vertical axis indicates the position of the objective lens (objective lens 21) in the focus direction
  • the horizontal axis indicates time.
  • FIG. 7-1 shows the case where the disc 31 has a small runout
  • FIG. 7-2 shows the case where the disc 31 has a great runout.
  • the objective lens 21 is driven so as to approach the disk 31. After the objective lens 21 passes the in-focus position (in-focus position), the objective lens 21 immediately moves to the disk 31. The drive direction is reversed in a direction away from the drive. Thus, the objective lens 21 does not collide with the disk 31.
  • the in-focus position also changes as the disc 31 shakes. Even if the surface of the disc 31 is large, after the objective lens 21 has passed through the in-focus position, the objective lens 21 is immediately reversed by moving the objective lens 21 away from the disc 31. No longer collides with disk 31
  • FIGS. 8A and 8B are diagrams for explaining the operation of the objective lens when the conventional force is pulled.
  • Fig. 8-1 shows the case where the disc 31 has a small runout
  • Fig. 8-2 shows the case where the disc 31 has a large runout.
  • the objective lens 21 moves by a predetermined distance (eg, ⁇ 0.7 mm) regardless of the focus position, and performs a focus search. For this reason, when the distance between the objective lens 21 and the disk 31 is short at the in-focus position, the collision between the objective lens 21 and the disk 31 occurs.
  • a predetermined distance eg, ⁇ 0.7 mm
  • the in-focus position also changes with the runout of the disc 31.
  • the objective lens 21 is When a focus search is performed by moving a predetermined distance regardless of the in-focus position, a collision between the objective lens 21 and the disk 31 occurs.
  • whether or not the objective lens 21 has passed through the in-focus position may be determined based on a tracking error signal or an RF signal.
  • the movement in the direction of moving away from the disk 31 after passing through the focusing position of the objective lens 21 is performed after the objective lens 21 has moved a predetermined distance or after focusing. Immediately after passing through the position, it will move away from the disk 31 in the direction of force.
  • the objective lens control device 10 only needs to include at least one means for determining whether or not the objective lens 21 has passed the in-focus position.
  • the objective lens 21 since the focus error signal is detected when the objective lens 21 approaches the disk 31 to perform the focus pull-in process, the objective lens 21 has passed the in-focus position in the operation of the objective lens 21. It becomes possible to control based on the information of force.
  • Example 2 when the objective lens 21 approaches the disk 31 in order to close the focus, the objective lens 21 passes the in-focus position, and after a predetermined time has passed, the objective lens Since 21 reverses the direction of movement of the objective lens 21 after a predetermined time or immediately, it is possible to avoid collision between the objective lens 21 and the disk 31. Therefore, as can be seen from the comparison between Fig. 8-1 and Fig. 8-2, which are conventional technologies, and Fig. 7-1 and Fig. 7-2, which are the present embodiment, there is variation in the mechanical dimensions of the pickup 19. If the disk is large or the surface of the disk 31 is large, or if the minimum pit length is very short, the objective lens must be closer to the low-density disk. Even if it exists, it becomes possible to avoid the collision between the objective lens 21 and the disk 31. As a result, signal detection from the disk 31 can be performed stably.

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

There is provided an objective lens control device (10) having an objective lens (21), applying light from a light source via the objective lens (21) to a disc (31), and receiving the return light. By controlling the position of the objective lens (21), the focus of the light applied is controlled. The objective lens control device (10) includes: an error focus position detection unit (12) or an RF focus position detection unit (13) for detecting the position of the objective lens (21) through which the light irradiated from the light source is focused on the disc (31) by detecting a predetermined signal from the return light received; and a focus drive control unit (17) for controlling the objective lens (21) so that the movement direction of the objective lens (21) in the focus direction is reversed when the error focus position detection unit (12) or the RF focus position detection unit (13) has detected a focus position.

Description

明 細 書  Specification
対物レンズ制御装置および対物レンズ制御方法  Objective lens control device and objective lens control method
技術分野  Technical field
[0001] 本発明は、対物レンズ制御装置および対物レンズ制御方法に関するものである。  The present invention relates to an objective lens control device and an objective lens control method.
背景技術  Background art
[0002] CD (Compact Disk)プレーヤ Zレコーダや DVD (Digital Video (Versatile) Disk) プレーヤ Zレコーダ等の記録再生装置等は、記録再生装置のピックアップが備える 光源力 CD等の光ディスクの情報記録面に光ビームを照射し、光ディスクの情報記 録面からの反射光を検出することによって光ディスクに記録された情報を読み取って いる。  [0002] CD (Compact Disk) Player Z Recorder and DVD (Digital Video (Versatile) Disk) Player Recording and playback devices such as Z Recorder are equipped with a pickup of the recording and playback device. The information recorded on the optical disk is read by irradiating the light beam and detecting the reflected light from the information recording surface of the optical disk.
[0003] また、ピックアップは、対物レンズを駆動制御するァクチユエータを備えて 、る。対 物レンズは、出射された光ビームを光ディスクの情報記録面に集光させるものであり、 対物レンズと情報記録面の距離によって情報記録面に照射される光ビームのフォー カス (焦点)が変化する。  [0003] Further, the pickup includes an actuator for driving and controlling the objective lens. The object lens focuses the emitted light beam on the information recording surface of the optical disc, and the focus of the light beam irradiated on the information recording surface changes depending on the distance between the objective lens and the information recording surface. To do.
[0004] このため、 CDプレーヤ等はフォーカスサーボによってァクチユエータを制御し、情 報記録面に最適なフォーカスの光ビームが照射されるよう対物レンズの位置を駆動 制御する必要がある。  [0004] For this reason, a CD player or the like needs to control the actuator by the focus servo, and drive and control the position of the objective lens so that the information recording surface is irradiated with the optimally focused light beam.
[0005] 特許文献 1に記載の光ピックアップ装置の対物レンズは、ァクチユエータに搭載さ れてディスクに光スポットを形成するようにディスクのフォーカス方向に動かして 、る。 すなわち、ァクチユエータは可動コイルに印加された電流と永久磁石によって形成さ れた電磁気力とによって対物レンズを所望の位置に正確に移動できるようにしている  [0005] The objective lens of the optical pickup device described in Patent Document 1 is mounted on an actuator and moved in the focus direction of the disc so as to form a light spot on the disc. That is, the actuator enables the objective lens to be accurately moved to a desired position by the current applied to the moving coil and the electromagnetic force formed by the permanent magnet.
[0006] また、非特許文献 1に記載のピックアップのァクチユエータ部は、予め設定された所 定の範囲内(±0. 7mm)でピックアップを動かしている。 [0006] The pickup actuator described in Non-Patent Document 1 moves the pickup within a predetermined range (± 0.7 mm).
[0007] 図 9は、従来の対物レンズの移動を説明するための図である。従来の対物レンズに おいては、対物レンズをディスクのフォーカス方向に所定の範囲内で移動させ、合焦 位置の近傍で信号測定やフォーカスの引き込みを行なっている。 [0008] 特許文献 1:特開 2004— 152472号公報 FIG. 9 is a diagram for explaining the movement of a conventional objective lens. In the conventional objective lens, the objective lens is moved within a predetermined range in the focus direction of the disc, and signal measurement and focus pull-in are performed near the in-focus position. [0008] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-152472
非特許文献 1 :西原 光、外 6名、 "薄型 DVD— ROM用ピックアップ"、 [online] , 19 98年 12月、シャープ技報、 [平成 16年 8月 12日検索]、インターネットく URLwww.s harp.co.jp/ corporate/rd/journa卜 72/ pdf/72— 20. pdf>  Non-Patent Document 1: Hikaru Nishihara, 6 others, "Thin DVD—Pickup for ROM", [online], 19 December 1998, Sharp Technical Report, [searched August 12, 2004], Internet URLwww. s harp.co.jp/ corporate / rd / journa 卜 72 / pdf / 72— 20. pdf>
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、上記前者および後者の従来技術では、ァクチユエータを備えたディ スク記録装置ゃァクチユエータを備えたディスク再生装置等の機械的寸法のばらつ きによってディスクと対物レンズが衝突するといつた問題があった。また、ディスクの面 ぶれ等が大きい場合にディスクと対物レンズが衝突するといつた問題があった。 However, in the former and the latter prior arts described above, if the disc and the objective lens collide due to a variation in the mechanical dimensions of the disc recording device equipped with the actuator and the disc reproducing device equipped with the actuator, etc. When there was a problem. In addition, there was a problem when the disc collided with the objective lens when the disc surface shake was large.
[0010] 本発明が解決しょうとする課題には、上述した特許文献 1や非特許文献 1の対物レ ンズの移動によって生じる、ディスクと対物レンズの衝突という問題が一例として挙げ られる。  [0010] The problem to be solved by the present invention includes, for example, the problem of collision between the disc and the objective lens caused by the movement of the objective lens in Patent Document 1 and Non-Patent Document 1 described above.
課題を解決するための手段  Means for solving the problem
[0011] 上述した課題を解決し、目的を達成するために、本発明の請求項 1に記載の発明 は、対物レンズを備え、光源から前記対物レンズを介して光を光記録媒体に照射し てその戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記 照射される光のフォーカスを制御する対物レンズ制御装置において、前記受光され る戻り光から所定の信号を検出することによって、前記光源の照射する光が前記光 記録媒体に合焦する対物レンズの位置を合焦位置として検出する合焦位置検出部 と、前記合焦位置検出部が合焦位置を検出すると、前記対物レンズのフォーカス方 向における移動方向を反転させるように前記対物レンズを制御する対物レンズ制御 部と、を備えることを特徴とする。  In order to solve the above-described problems and achieve the object, the invention according to claim 1 of the present invention includes an objective lens, and irradiates the optical recording medium with light from the light source via the objective lens. In the objective lens control device that controls the focus of the irradiated light by controlling the position of the objective lens, a predetermined signal is detected from the received return light. When the focus position detection unit detects the focus position, the focus position detection unit detects the position of the objective lens where the light emitted from the light source is focused on the optical recording medium as the focus position. And an objective lens control unit that controls the objective lens so as to reverse the moving direction of the objective lens in the focus direction.
[0012] また、請求項 4に記載の発明は、対物レンズを備え、光源から前記対物レンズを介 して光を光記録媒体に照射してその戻り光を受光する装置であり、前記対物レンズ の位置を制御することで、前記照射される光のフォーカスを制御する対物レンズ制御 装置において、前記受光される戻り光から所定の信号を検出することによって、前記 光源の照射する光が前記光記録媒体に合焦する対物レンズの位置を合焦位置とし て検出する合焦位置検出部と、前記合焦位置検出部が検出した合焦位置に応じて 前記対物レンズのフォーカス方向における移動方向を反転させるタイミングを決定し 、前記タイミングを表すタイミング情報を生成するタイミング情報生成部と、を備え、前 記対物レンズ制御部は、前記タイミング情報に基づいたタイミングで、前記対物レン ズのフォーカス方向における移動方向を反転させることを特徴とする。 The invention according to claim 4 is an apparatus that includes an objective lens, irradiates the optical recording medium with light from a light source via the objective lens, and receives the return light. The objective lens In the objective lens control device that controls the focus of the emitted light by controlling the position of the light, the light emitted from the light source is detected by detecting a predetermined signal from the received return light. The position of the objective lens that focuses on the medium is the in-focus position. A focus position detection unit that detects the position of the objective lens, and a timing for reversing the moving direction of the objective lens in the focus direction according to the focus position detected by the focus position detection unit, and generates timing information representing the timing And an objective lens control unit that reverses the moving direction of the objective lens in the focus direction at a timing based on the timing information.
[0013] また、請求項 6に記載の発明は、対物レンズを備え、光源から前記対物レンズを介 して光を光記録媒体に照射してその戻り光を受光する装置であり、前記対物レンズ の位置を制御することで、前記照射される光のフォーカスを制御する対物レンズ制御 装置において、前記受光される戻り光から所定の信号を検出することによって、前記 光源の照射する光が前記光記録媒体に合焦する対物レンズの位置を合焦位置とし て検出する合焦位置検出ステップと、前記対物レンズのフォーカス方向における移 動方向を反転させる反転ステップと、を含むことを特徴とする。  [0013] The invention according to claim 6 is an apparatus that includes an objective lens, irradiates light onto the optical recording medium from a light source via the objective lens, and receives the return light. The objective lens In the objective lens control device that controls the focus of the emitted light by controlling the position of the light, the light emitted from the light source is detected by detecting a predetermined signal from the received return light. A focus position detecting step for detecting a position of the objective lens focused on the medium as a focus position; and a reversing step for reversing the moving direction in the focus direction of the objective lens.
[0014] また、請求項 7に記載の発明は、対物レンズを備え、光源から前記対物レンズを介 して光を光記録媒体に照射してその戻り光を受光する装置であり、前記対物レンズ の位置を制御することで、前記照射される光のフォーカスを制御する対物レンズ制御 装置において、前記受光される戻り光から所定の信号を検出することによって、前記 光源の照射する光が前記光記録媒体に合焦する対物レンズの位置を合焦位置とし て検出する合焦位置検出ステップと、前記合焦位置検出部が検出した合焦位置に 応じて前記対物レンズのフォーカス方向における移動方向を反転させるタイミングを 決定し、前記タイミングを表すタイミング情報を生成するタイミング情報生成ステップと 、前記タイミング情報に基づいたタイミングで、前記対物レンズのフォーカス方向にお ける移動方向を反転させるステップと、を含むことを特徴とする。  The invention according to claim 7 is an apparatus that includes an objective lens, irradiates the optical recording medium with light from a light source via the objective lens, and receives the return light. The objective lens In the objective lens control device that controls the focus of the emitted light by controlling the position of the light, the light emitted from the light source is detected by detecting a predetermined signal from the received return light. A focus position detection step for detecting the position of the objective lens that focuses on the medium as a focus position, and the movement direction of the objective lens in the focus direction is reversed according to the focus position detected by the focus position detection unit. A timing information generation step of determining timing to generate and generating timing information representing the timing, and at a timing based on the timing information, the objective lens Characterized in that it comprises a step of reversing the Contact Keru moving direction in the focusing direction, a.
[0015] また、請求項 8に記載の発明は、対物レンズを備え、光源から前記対物レンズを介 して光を光記録媒体に照射してその戻り光を受光する装置であり、前記対物レンズ の位置を制御することで、前記照射される光のフォーカスを制御する対物レンズ制御 方法をコンピュータに実行させるプログラムにおいて、前記受光される戻り光から所 定の信号を検出することによって、前記光源の照射する光が前記光記録媒体に合焦 する対物レンズの位置を合焦位置として検出する合焦位置検出ステップと、前記対 物レンズのフォーカス方向における移動方向を反転させる反転ステップと、をコンビュ ータに実行させることを特徴とする。 The invention according to claim 8 is an apparatus that includes an objective lens, irradiates light onto the optical recording medium from a light source via the objective lens, and receives the return light. The objective lens In a program for causing a computer to execute the objective lens control method for controlling the focus of the irradiated light by controlling the position of the light source, by detecting a predetermined signal from the received return light, An in-focus position detecting step for detecting, as an in-focus position, the position of an objective lens at which the irradiated light is in focus on the optical recording medium; And a reversing step of reversing the moving direction of the object lens in the focus direction, and causing the computer to execute the reversing step.
[0016] また、請求項 9に記載の発明は、対物レンズを備え、光源から前記対物レンズを介 して光を光記録媒体に照射してその戻り光を受光する装置であり、前記対物レンズ の位置を制御することで、前記照射される光のフォーカスを制御する対物レンズ制御 方法をコンピュータに実行させるプログラムにおいて、前記受光される戻り光から所 定の信号を検出することによって、前記光源の照射する光が前記光記録媒体に合焦 する対物レンズの位置を合焦位置として検出する合焦位置検出ステップと、前記合 焦位置検出部が検出した合焦位置に応じて前記対物レンズのフォーカス方向にお ける移動方向を反転させるタイミングを決定し、前記タイミングを表すタイミング情報を 生成するタイミング情報生成ステップと、前記タイミング情報に基づ 、たタイミングで、 前記対物レンズのフォーカス方向における移動方向を反転させる反転ステップと、を コンピュータに実行させることを特徴とする。  [0016] The invention according to claim 9 is an apparatus that includes an objective lens, irradiates the optical recording medium with light from a light source via the objective lens, and receives the return light. The objective lens In a program for causing a computer to execute the objective lens control method for controlling the focus of the irradiated light by controlling the position of the light source, by detecting a predetermined signal from the received return light, A focus position detecting step for detecting, as a focus position, the position of the objective lens at which the irradiated light is focused on the optical recording medium, and the focus of the objective lens according to the focus position detected by the focus position detecting unit. A timing information generation step for determining timing for reversing the moving direction in the direction, and generating timing information representing the timing; and the timing information In group Dzu was timing, characterized in that to perform a reversing step of reversing the direction of movement in the focus direction of the objective lens, to a computer.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、実施例 1に係る対物レンズ制御装置の構成を示すブロック図である。  FIG. 1 is a block diagram illustrating a configuration of an objective lens control device according to a first embodiment.
[図 2]図 2は、実施例 1に係る対物レンズ制御装置の動作手順を示すフローチャート である。  FIG. 2 is a flowchart showing an operation procedure of the objective lens control apparatus according to the first embodiment.
[図 3-1]図 3— 1は、実施例 1に係る信号レベル検出の際の対物レンズの動作を説明 するための図(1)である。  [FIG. 3-1] FIG. 3-1 is a diagram (1) for explaining the operation of the objective lens during signal level detection according to the first embodiment.
[図 3-2]図 3— 2は、実施例 1に係る信号レベル検出の際の対物レンズの動作を説明 するための図(2)である。  FIG. 3-2 is a diagram (2) for explaining the operation of the objective lens at the time of signal level detection according to the first embodiment.
[図 4-1]図 4 1は、従来の信号レベル検出の際の対物レンズの動作を説明するため の図(1)である。  [Fig. 4-1] Fig. 41 is a diagram (1) for explaining the operation of the objective lens in the conventional signal level detection.
[図 4-2]図 4 2は、従来の信号レベル検出の際の対物レンズの動作を説明するため の図(2)である。  [Fig. 4-2] Fig. 42 is a diagram (2) for explaining the operation of the objective lens in the conventional signal level detection.
[図 5]図 5は、実施例 2に係る対物レンズ制御装置の構成を示すブロック図である。  FIG. 5 is a block diagram illustrating a configuration of an objective lens control device according to the second embodiment.
[図 6]図 6は、実施例 2に係る対物レンズ制御装置の動作手順を示すフローチャート である。 [図 7-1]図 7— 1は、実施例 2に係る信号レベル検出の際の対物レンズの動作を説明 す1—る 〇ための図(1)である。 FIG. 6 is a flowchart illustrating an operation procedure of the objective lens control device according to the second embodiment. [FIG. 7-1] FIG. 7-1 is a diagram (1) for explaining the operation of the objective lens at the time of signal level detection according to the second embodiment.
[図 7-2]図 7— 2は、実施例 2に係る信号レベル検出の際の対物レンズの動作を説明 するための図(2)である。  FIG. 7-2 is a diagram (2) for explaining the operation of the objective lens at the time of signal level detection according to the second embodiment.
[図 8-1]図 8— 1は、従来のフォーカス引き込みの際の対物レンズの動作を説明する ための図(1)である。  [FIG. 8-1] FIG. 8-1 is a diagram (1) for explaining the operation of the objective lens at the time of conventional focus pull-in.
[図 8-2]図 8— 2は、従来のフォーカス引き込みの際の対物レンズの動作を説明する ための図(2)である。  [FIG. 8-2] FIG. 8-2 is a diagram (2) for explaining the operation of the objective lens during the conventional focus pull-in.
[図 9]図 9は、従来の対物レンズの移動を説明するための図である。  FIG. 9 is a diagram for explaining the movement of a conventional objective lens.
符号の説明  Explanation of symbols
対物レンズ制御装置  Objective lens controller
12 ヱラー合焦位置検出部  12 Focuser position detector
13 RF合焦位置検出部  13 RF focus position detector
14 反転タイミング算出部  14 Inversion timing calculator
15 エラー信号生成部  15 Error signal generator
16 RF信号生成部  16 RF signal generator
17 フォーカスドライブ制御部  17 Focus drive controller
19 ピックアップ  19 Pickup
20 ドライノ  20 Dyrino
21 対物レンズ  21 Objective lens
31 ディスク  31 discs
32 ディスクモータ  32 disc motor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
019] 以下に、本発明に係る対物レンズ制御装置および対物レンズ制御方法の実施の形 態を説明する。なお、この実施の形態によりこの発明が限定されるものではない。以 下では、本発明の対物レンズ制御装置および対物レンズ制御方法の概略と特徴を 実施の形態として説明し、その後に対物レンズ制御装置および対物レンズ制御方法 に関する実施例を説明する。 [0020] [実施の形態] Hereinafter, embodiments of the objective lens control device and the objective lens control method according to the present invention will be described. The present invention is not limited to the embodiments. In the following, the outline and features of the objective lens control apparatus and objective lens control method of the present invention will be described as embodiments, and then examples relating to the objective lens control apparatus and objective lens control method will be described. [0020] [Embodiment]
本実施の形態において、対物レンズ制御装置は、 CD (Compact Disk)や DVD (Di gital Video Disk)等の記録媒体力 情報を読み取る際や記録する際の照射ビーム のフォーカスを制御する。換言すると、対物レンズ制御装置は、 CD等のディスクから 情報を読み取る際などに、このディスクの情報記録面にビーム照射を行なうピックアツ プ(光ピックアップ)の対物レンズの位置を制御し、これによつてディスク等への照射ビ ームのフォーカスを制御する。  In the present embodiment, the objective lens control device controls the focus of the irradiation beam when reading or recording recording medium force information such as CD (Compact Disk) and DVD (Digital Video Disk). In other words, the objective lens control device controls the position of the objective lens of a pick-up (optical pickup) that irradiates the information recording surface of the disc when reading information from a disc such as a CD. This controls the focus of the irradiation beam on the disc.
[0021] 例えば、ディスクに照射したビームに対する反射ビームの信号検出やディスクに記 録された情報を読み出す際のフォーカスクローズは、対物レンズをディスクの面内と 垂直な方向に往復動作させることによって行なう。そして、反射ビームの信号検出や フォーカスクローズは、ピックアップから照射される照射ビームの合焦位置付近のフォ 一カスエラー信号等によって行われる。  [0021] For example, the signal detection of the reflected beam with respect to the beam irradiated on the disk and the focus closing when reading the information recorded on the disk are performed by reciprocating the objective lens in a direction perpendicular to the surface of the disk. . The reflected beam signal detection and focus closing are performed by a focus error signal near the focus position of the irradiation beam irradiated from the pickup.
[0022] このため、反射ビームの信号検出やフォーカスクローズにおいて、対物レンズを所 定の範囲内でディスクの面内と垂直な方向に移動させてフォーカスサーチを行なうよ う設定されて ヽると、対物レンズとディスクの衝突が起こる場合がある。  [0022] For this reason, when the reflected beam signal is detected or the focus is closed, the objective lens is moved within a predetermined range in a direction perpendicular to the surface of the disc, and the focus search is performed. There may be a collision between the objective lens and the disk.
[0023] そこで、本実施の形態においては、対物レンズに対してディスクの面内と垂直な方 向で移動可能な範囲を設定することなく対物レンズの動作を制御する。すなわち、反 射ビームの信号検出やフォーカスクローズを行なうために対物レンズをディスクに近 づける際、対物レンズが合焦位置を通過すると、直ちにまたは所定の時間経過後(或 いは対物レンズが合焦位置経過後、計時の結果等を基に算出した対物レンズの移 動距離が所定の距離となった後)に対物レンズの動作を反転 (ディスク面カゝら遠ざか る方向へ移動)させる。  Therefore, in the present embodiment, the operation of the objective lens is controlled without setting a range in which the objective lens can move in a direction perpendicular to the in-plane direction of the disc. In other words, when the objective lens is brought close to the disk in order to detect the reflected beam signal or to close the focus, if the objective lens passes the in-focus position, immediately or after a predetermined time has passed (or the objective lens is in focus). After the position elapses, the objective lens movement is reversed (moved away from the disc surface) after the objective lens movement distance calculated based on the timing results has reached a predetermined distance.
[0024] 対物レンズがディスク面に近付く方向に移動する際に通過する合焦位置で、デイス クが CDである力 DVDであるか等のディスクの種別を判別し、対物レンズがディスク 面力 遠ざ力る方向に移動する際に通過する合焦位置において、反射ビームの信号 検出やフォーカスクローズを行なう。  [0024] At the in-focus position through which the objective lens moves in the direction approaching the disc surface, the disc type is discriminated, such as whether the disc is a power DVD or a DVD, and the objective lens is far from the disc surface force. At the in-focus position that passes when moving in the direction of force, the reflected beam signal is detected and the focus is closed.
[0025] このため、本実施の形態においては、対物レンズが移動する際の合焦位置を検出 し、合焦位置の検出に基づいて対物レンズの動作を制御する。合焦位置の検出は、 例えばディスクからの反射ビーム力 抽出されるフォーカスエラー信号、トラッキング エラー信号、 RF信号等に基づいて検出する。 For this reason, in the present embodiment, the in-focus position when the objective lens moves is detected, and the operation of the objective lens is controlled based on the detection of the in-focus position. In-focus position detection For example, detection is based on the focus error signal, tracking error signal, RF signal, etc. extracted from the reflected beam force from the disk.
[0026] このように実施の形態によれば、ディスク力 の信号検出やフォーカスクローズを行 なうために対物レンズがディスクに近付く際、対物レンズが合焦位置を通過した後、 直ちにまたは所定の時間経過後等に対物レンズの移動方向を反転させるので、対物 レンズとディスクの衝突を回避することが可能となる。これにより、ディスクからの信号 検出を安定して行なうことが可能となる。 As described above, according to the embodiment, when the objective lens approaches the disc in order to detect the signal of the disc force or perform the focus close, immediately after the objective lens passes the in-focus position or a predetermined value. Since the direction of movement of the objective lens is reversed after a lapse of time, it is possible to avoid collision between the objective lens and the disk. This makes it possible to detect signals from the disk stably.
実施例 1  Example 1
[0027] 図 1は、本発明に力かる対物レンズ制御装置の構成を示すブロック図である。対物 レンズ制御装置 10は、ディスク 31に照射する光ビームのフォーカスを制御する装置 であり、エラー信号生成部 15、 RF (Radio Frequency)信号生成部 16、エラー合焦 位置検出部 12、 RF合焦位置検出部 13、フォーカスドライブ制御部 17、ピックアップ 19、ドライバ 20からなる。ここでの、エラー合焦位置検出部 12、 RF合焦位置検出部 13が特許請求の範囲に記載の合焦位置検出部に対応し、フォーカスドライブ制御 部 17、ドライバ 20が対物レンズ制御部に対応する。  FIG. 1 is a block diagram showing a configuration of an objective lens control device that works according to the present invention. The objective lens control device 10 is a device that controls the focus of the light beam applied to the disk 31, and includes an error signal generation unit 15, an RF (Radio Frequency) signal generation unit 16, an error focus position detection unit 12, and an RF focus. It consists of a position detection unit 13, a focus drive control unit 17, a pickup 19, and a driver 20. Here, the error focus position detection unit 12 and the RF focus position detection unit 13 correspond to the focus position detection unit described in the claims, and the focus drive control unit 17 and the driver 20 serve as the objective lens control unit. Correspond.
[0028] ピックアップ 19は、対物レンズ 21を備えて構成される。ピックアップ 19はァクチユエ ータ(図示せず)を搭載しており、ァクチユエータが対物レンズ 21を駆動させることに よって、ディスク 31に照射する光ビームのフォーカスを制御する。ピックアップ 19の対 物レンズ 21は、ディスク 31の面内と平行な方向およびディスク 31の面内と垂直な方 向に移動して、ァクチユエータからの照射ビームをディスク 31に照射するとともに、デ イスク 31から反射される反射ビームをァクチユエータに送り込む。ピックアップ 19は、 対物レンズ 21からの反射ビームをエラー信号生成部 15、 RF信号生成部 16に送信 する。  The pickup 19 is configured to include an objective lens 21. The pickup 19 is equipped with an actuator (not shown), and the actuator controls the focus of the light beam applied to the disk 31 by driving the objective lens 21. The object lens 21 of the pickup 19 moves in a direction parallel to the plane of the disc 31 and a direction perpendicular to the plane of the disc 31 to irradiate the disc 31 with the irradiation beam from the actuator, The reflected beam reflected from is sent to the actuator. The pickup 19 transmits the reflected beam from the objective lens 21 to the error signal generator 15 and the RF signal generator 16.
[0029] エラー信号生成部 15は、ピックアップ 19から送られる反射ビーム力もフォーカスェ ラー信号、トラッキングエラー信号等を生成する。 RF信号生成部 16は、ピックアップ 19から送られる反射ビームから RF信号等を生成する。  The error signal generation unit 15 also generates a focus error signal, a tracking error signal, and the like for the reflected beam force sent from the pickup 19. The RF signal generator 16 generates an RF signal or the like from the reflected beam sent from the pickup 19.
[0030] エラー合焦位置検出部 12は、エラー信号生成部 15が生成したフォーカスエラー信 号、トラッキングエラー信号を検出する。 RF合焦位置検出部 13は、 RF信号生成部 1 6が生成した RF信号を検出し、検出信号をフォーカスドライブ制御部 17に送信する The error focus position detection unit 12 detects the focus error signal and tracking error signal generated by the error signal generation unit 15. The RF focus position detector 13 is an RF signal generator 1 6 detects the RF signal generated and sends the detection signal to the focus drive controller 17
[0031] フォーカスドライブ制御部 17は、検出信号を受信した後メモリ(図示せず)に記憶さ れている所定の時間の経過後、ドライバ 20が動作を開始するように制御する。フォー カスドライブ制御部 17は、ピックアップ 19の動作を制御するためのピックアップ駆動 情報 (駆動電圧等)を生成してドライバ 20に送信する。 [0031] After receiving the detection signal, the focus drive control unit 17 controls the driver 20 to start operation after a predetermined time stored in a memory (not shown). The focus drive control unit 17 generates pickup drive information (drive voltage or the like) for controlling the operation of the pickup 19 and transmits it to the driver 20.
[0032] ドライバ 20は、フォーカスドライブ制御部 17からのピックアップ駆動情報に基づ 、て ディスクモータ 32、ピックアップ 19を駆動させる。ドライバ 20は、ピックアップ 19が備 えるフォーカスコイル(図示せず)に電流 (駆動電流)を供給し、ピックアップ 19の対物 レンズを光ビームの照射方向(ディスク 31の面内に垂直な方向)に移動させる。  The driver 20 drives the disk motor 32 and the pickup 19 based on the pickup drive information from the focus drive control unit 17. The driver 20 supplies a current (drive current) to a focus coil (not shown) provided in the pickup 19 and moves the objective lens of the pickup 19 in the light beam irradiation direction (perpendicular to the surface of the disk 31). Let
[0033] ディスクモータ 32は、ドライバ 20と接続され、ドライバ 20から供給される電流によつ てディスク 31を駆動(回転)させる。ディスク 31は、 CD (Compact Disk)プレーヤ Zレ コーダや DVD (Digital Video Disk)プレーヤ Zレコーダによって記録再生が行われ る記録媒体であり、例えば CDや DVD等のディスクである。  The disk motor 32 is connected to the driver 20 and drives (rotates) the disk 31 with current supplied from the driver 20. The disk 31 is a recording medium that is recorded and reproduced by a CD (Compact Disk) player Z recorder and a DVD (Digital Video Disk) player Z recorder, and is a disk such as a CD or a DVD.
[0034] つぎに、対物レンズ制御装置の動作について説明する。図 2は、実施例 1に係る対 物レンズ制御装置の動作手順を示すフローチャートである。ピックアップ 19の対物レ ンズ 21は、ドライノ からの駆動電流によってディスク 31面内と垂直な方向に移動する 。本実施例 1においては、後述するディスク種別の判断処理と、ディスク 31からの反 射される反射ビームの信号レベルの検出を行なうため、対物レンズ 21がディスク 31 面内と垂直な方向に移動する。  Next, the operation of the objective lens control device will be described. FIG. 2 is a flowchart illustrating the operation procedure of the object lens control apparatus according to the first embodiment. The objective lens 21 of the pickup 19 is moved in the direction perpendicular to the surface of the disk 31 by the drive current from the dryno. In the first embodiment, the objective lens 21 moves in a direction perpendicular to the surface of the disk 31 in order to perform a disc type determination process described later and to detect the signal level of the reflected beam reflected from the disc 31. .
[0035] ここでは、まず対物レンズ 21がディスク 31に近付く方向で移動する(ステップ S100 ) oピックアップは対物レンズ 21が移動している際、対物レンズ 21を介してディスク 31 に照射ビームを照射する。対物レンズ 21が移動している間、ディスク 31から反射され る反射ビームはピックアップ 19からエラー信号生成部 15、 RF信号生成部 16に送ら れる。  Here, first, the objective lens 21 moves in a direction approaching the disk 31 (step S100). The pickup irradiates the disk 31 with the irradiation beam through the objective lens 21 when the objective lens 21 is moving. . While the objective lens 21 is moving, the reflected beam reflected from the disk 31 is sent from the pickup 19 to the error signal generator 15 and the RF signal generator 16.
[0036] エラー信号生成部 15は、ピックアップ 19からの反射ビームから対物レンズ 21が合 焦位置を横切ったか否かを判別するための情報としてフォーカスエラー信号やトラッ キングエラー信号を生成する。 RF信号生成部 16は、ピックアップ 19からの反射ビー ム力 対物レンズ 21が合焦位置を横切ったか否かを判別するための情報として RF 信号を生成する。 The error signal generator 15 generates a focus error signal and a tracking error signal as information for determining whether or not the objective lens 21 has crossed the in-focus position from the reflected beam from the pickup 19. The RF signal generator 16 The RF signal is generated as information for determining whether or not the objective lens 21 has crossed the in-focus position.
[0037] エラー信号生成部 15は、生成したフォーカスエラー信号やトラッキングエラー信号 をエラー合焦位置検出部 12に送信する。 RF信号生成部 16は、生成した RF信号を RF合焦位置検出部 13に送信する。  The error signal generation unit 15 transmits the generated focus error signal and tracking error signal to the error focus position detection unit 12. The RF signal generation unit 16 transmits the generated RF signal to the RF focus position detection unit 13.
[0038] エラー合焦位置検出部 12は、エラー信号生成部 15が生成したフォーカスエラー信 号、トラッキングエラー信号を検出する。 RF合焦位置検出部 13は、 RF信号生成部 1 6が生成した RF信号を検出する。本実施例 1においては、対物レンズ 21が合焦位置 を横切ったか否かを判別するための情報として、フォーカスエラー信号を利用する場 合について説明する。  The error focus position detector 12 detects the focus error signal and tracking error signal generated by the error signal generator 15. The RF focus position detector 13 detects the RF signal generated by the RF signal generator 16. In the first embodiment, a case where a focus error signal is used as information for determining whether or not the objective lens 21 has crossed the in-focus position will be described.
[0039] 対物レンズ 21がディスク 31から遠い位置にある間は、エラー合焦位置検出部 12は フォーカスエラー信号をほぼ 0として検出する。対物レンズ 21がディスク 31の近傍( 例えば 10 m程度)まで近付くと、フォーカスエラー信号のレベルが徐々に大きくな り、このフォーカスエラー信号がエラー合焦位置検出部 12によって検出される。対物 レンズ 21がディスク 31に対してさらに近付くと、対物レンズ 21とディスク 31の距離に 応じて (近くなるにつれて)フォーカスエラー信号のレベルが大きくなる。そして、エラ 一合焦位置検出部 12はフォーカスエラー信号のピーク (極大点)を検出する。対物レ ンズ 21がディスク 31に対してさらに近付くと、対物レンズ 21とディスク 31の距離に応 じてフォーカスエラー信号のレベルが小さくなり合焦位置で 0となる。  While the objective lens 21 is at a position far from the disk 31, the error focus position detection unit 12 detects the focus error signal as almost zero. When the objective lens 21 approaches the vicinity of the disk 31 (for example, about 10 m), the level of the focus error signal gradually increases, and this focus error signal is detected by the error focus position detection unit 12. As the objective lens 21 gets closer to the disk 31, the level of the focus error signal increases in accordance with the distance between the objective lens 21 and the disk 31 (as it gets closer). The error focusing position detection unit 12 detects the peak (maximum point) of the focus error signal. As the objective lens 21 gets closer to the disk 31, the level of the focus error signal decreases according to the distance between the objective lens 21 and the disk 31, and becomes 0 at the in-focus position.
[0040] 本実施例 1においては、最初の合焦位置の検出時にディスク 31が CD、 DVDのい ずれであるか等のディスク種別の判別等を行ない、 2度目の合焦位置の検出時に信 号レベル (ディスク 31からの反射ビームの受光量)の測定や反射率の測定を行なう。  In the first embodiment, the disc type such as whether the disc 31 is a CD or a DVD is discriminated when the first in-focus position is detected, and the signal is detected when the in-focus position is detected for the second time. Measure the signal level (the amount of reflected beam received from the disk 31) and reflectivity.
[0041] ここでは最初の合焦位置の検出であるため、エラー合焦位置検出部 12がフォー力 スエラー信号を検出して ヽる間、図示しな 、ディスク判別手段等によってディスク種 別の判別等を行なっている。  [0041] Here, since it is the detection of the first in-focus position, while the error in-focus position detector 12 detects the force error signal, the disc type is discriminated by disc discriminating means or the like, not shown. Etc.
[0042] エラー合焦位置検出部 12は、対物レンズ 21がディスク 31に近付くよう移動している 間、フォーカスエラー信号を検出することによって対物レンズ 21が合焦位置を通過し た力否かを判断して 、る (ステップ S 110)。 [0043] エラー合焦位置検出部 12が、対物レンズ 21が合焦位置を通過した (横切った)と 判断すると (ステップ S 110、 Yes)、エラー合焦位置検出部 12は対物レンズ 21が合 焦位置を通過したことを示す信号 (以下、合焦位置通過信号と 、う)をフォーカスドラ イブ制御部 17に送信する。 The error focus position detection unit 12 detects whether or not the objective lens 21 has passed the focus position by detecting a focus error signal while the objective lens 21 is moving so as to approach the disk 31. Judgment is made (step S110). [0043] When the error focus position detection unit 12 determines that the objective lens 21 has passed (crossed) the focus position (Yes in step S110), the error focus position detection unit 12 detects that the objective lens 21 is in focus. A signal indicating that the focus position has been passed (hereinafter referred to as a focus position passing signal) is transmitted to the focus drive control unit 17.
[0044] フォーカスドライブ制御部 17は、エラー合焦位置検出部 12から合焦位置通過信号 を受けることで、メモリ(図示せず)に記憶されている所定時間後にドライバ 20が動作 を開始するように制御する。ここでは、 Xミリ秒後にピックアップ 19をディスク 31から遠 ざ力る方向に移動させるようドライバ 20を制御する。  The focus drive control unit 17 receives the in-focus position passing signal from the error in-focus position detection unit 12 so that the driver 20 starts operating after a predetermined time stored in a memory (not shown). To control. Here, the driver 20 is controlled so that the pickup 19 is moved away from the disk 31 in X milliseconds.
[0045] ドライバ 20は、対物レンズ 21が合焦位置を通過して Xミリ秒後に対物レンズ 21がデ イスク 31から遠ざ力る方向に移動するようピックアップ 19の駆動電流を制御する。ピッ クアップ 19は、ドライバ 20からの駆動電流に基づいて対物レンズ 21がディスク 31か ら遠ざ力るよう対物レンズ 21の移動を制御する。対物レンズ 21は、ディスク 31の面内 と垂直な方向において、ディスク 31から遠ざ力るよう駆動 (反転)する (ステップ S 120 The driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves away from the disk 31 X milliseconds after the objective lens 21 passes the in-focus position. The pickup 19 controls the movement of the objective lens 21 so that the objective lens 21 moves away from the disk 31 based on the drive current from the driver 20. The objective lens 21 is driven (reversed) to move away from the disk 31 in a direction perpendicular to the plane of the disk 31 (step S 120).
) o ) o
[0046] 対物レンズ 21が、ディスク 31の面内と垂直な方向において、ディスク 31から遠ざか るよう駆動すること〖こよって、対物レンズ 21は再び合焦位置に近付く。対物レンズ 21 が合焦位置に対して所定の距離だけ近付く(ディスク 31から遠ざかる)と、対物レンズ 21とディスク 31の距離に応じてフォーカスエラー信号のレベルが小さくなり合焦位置 でフォーカスエラー信号が 0となる。  When the objective lens 21 is driven away from the disc 31 in a direction perpendicular to the in-plane direction of the disc 31, the objective lens 21 approaches the in-focus position again. When the objective lens 21 approaches the in-focus position by a predetermined distance (away from the disc 31), the focus error signal level decreases according to the distance between the objective lens 21 and the disc 31, and the focus error signal is output at the in-focus position. 0.
[0047] エラー合焦位置検出部 12は、対物レンズ 21がディスク 31から遠ざ力るよう移動して いる間、フォーカスエラー信号を検出することによって対物レンズ 21が合焦位置を通 過した力否かを判断して 、る (ステップ S 130)。  [0047] The error focus position detection unit 12 detects the focus error signal while the objective lens 21 is moving away from the disc 31 to detect the force that the objective lens 21 has passed through the focus position. Judgment is made or not (step S130).
[0048] エラー合焦位置検出部 12が、対物レンズ 21が合焦位置を通過したと判断した場合  [0048] When the error focus position detection unit 12 determines that the objective lens 21 has passed the focus position
(ステップ S130、 Yes)、ここでは 2度目の合焦位置の検出であるため、エラー合焦位 置検出部 12がフォーカスエラー信号を検出して 、る間、エラー合焦位置検出部 12 は信号レベルの測定を行なう(ステップ S 140)。  (Step S130, Yes), because this is the second detection of the focus position, the error focus position detector 12 detects the focus error signal while the error focus position detector 12 detects the focus error signal. The level is measured (step S140).
[0049] 対物レンズ 21は、合焦位置通過後もディスク 31から遠ざ力る方向に駆動する。フォ 一カスドライブ制御部 17は、メモリ(図示せず)が記憶する所定の時間(例えば yミリ秒 後)が経過した後、対物レンズ 21がディスク 31に近付く方向に移動するようドライバ 2 0を制御する。ここでは、対物レンズ 21が合焦位置を通過して例えば yミリ秒後にピッ クアップ 19をディスク 31に近付く方向に移動させるようドライバ 20を制御する。 The objective lens 21 is driven in a direction in which the objective lens 21 moves away from the disk 31 even after passing through the in-focus position. The focus drive control unit 17 stores a predetermined time (for example, y milliseconds) stored in a memory (not shown). After the elapse of (after), the driver 20 is controlled so that the objective lens 21 moves in a direction approaching the disk 31. Here, the driver 20 is controlled so as to move the pickup 19 in the direction approaching the disk 31, for example, y milliseconds after the objective lens 21 passes the in-focus position.
[0050] ドライバ 20は、 yミリ秒後に対物レンズ 21がディスク 31から近付く方向に移動するよ うピックアップ 19の駆動電流を制御する。ピックアップ 19は、ドライバからの駆動電流 に基づいて対物レンズ 21がディスク 31に近付くよう対物レンズ 21の移動を制御する The driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves in the direction approaching the disk 31 after y milliseconds. The pickup 19 controls the movement of the objective lens 21 based on the drive current from the driver so that the objective lens 21 approaches the disk 31.
[0051] 対物レンズ 21は、ディスク 31の面内と垂直な方向において、ディスク 31に近付くよ う駆動する。この後、対物レンズ制御装置 10は必要に応じてフォーカスクローズ等を 行う。 The objective lens 21 is driven so as to approach the disk 31 in a direction perpendicular to the surface of the disk 31. Thereafter, the objective lens control device 10 performs focus closing and the like as necessary.
[0052] ここで、図 3—1および図 3— 2を用いて、実施例 1に係る信号レベル検出の際の対 物レンズの動作を説明するためのフローチャートである図 2の補足説明を行なう。各 図において縦軸は対物レンズ (対物レンズ 21)のフォーカス方向の位置を示し、横軸 は時間を示している。図 3—1は、ディスク 31の面ぶれが小さい場合を示し、図 3— 2 は、ディスク 31の面ぶれが大きい場合を示している。  Here, with reference to FIG. 3A and FIG. 3B, a supplementary explanation of FIG. 2, which is a flowchart for explaining the operation of the object lens when the signal level is detected according to the first embodiment, will be given. . In each figure, the vertical axis indicates the position of the objective lens (objective lens 21) in the focus direction, and the horizontal axis indicates time. FIG. 3A shows a case where the disc 31 has a small run-out, and FIG. 3-2 shows a case where the disc 31 has a large run-out.
[0053] 図 3—1に示すように、対物レンズ 21は、ディスク 31に対して近付くよう駆動し、対物 レンズ 21が合焦位置 (合焦点)を通過後、対物レンズ 21は直ちにディスク 31から遠 ざカゝる方向に駆動方向を反転している。これにより、対物レンズ 21はディスク 31と衝 突することがなくなる。  As shown in FIG. 3-1, the objective lens 21 is driven so as to approach the disk 31, and after the objective lens 21 passes the in-focus position (focus point), the objective lens 21 is immediately removed from the disk 31. The drive direction is reversed in the direction to move away. Thus, the objective lens 21 does not collide with the disk 31.
[0054] 図 3— 2に示すように、ディスク 31の面ぶれが大きい場合、ディスク 31の面ぶれに 伴って合焦位置も変化する。ディスク 31の面ぶれが大きい場合であっても対物レン ズ 21が合焦位置を通過後、直ちに対物レンズ 21をディスク 31から遠ざ力る方向に駆 動方向を反転することによって、対物レンズ 21はディスク 31と衝突することがなくなる  [0054] As shown in FIG. 3-2, when the disc 31 has a large runout, the in-focus position also changes with the runout of the disc 31. Even if the surface of the disc 31 is large, after the objective lens 21 has passed through the in-focus position, the objective lens 21 is immediately reversed by moving the objective lens 21 away from the disc 31. No longer collides with disk 31
[0055] 本実施例の効果を明白にするために、図 4 1および図 4 2にて従来の信号レべ ル検出の際の対物レンズの動作を説明するための図を示した。図 4—1は、ディスク 3 1の面ぶれが小さい場合を示し、図 4— 2は、ディスク 31の面ぶれが大きい場合を示 している。 [0056] 図 4—1に示すように、対物レンズ 21は合焦位置に関係なく予め定められた距離( 例えば ±0. 7mm)だけ移動して、フォーカスサーチを行なう。このため、合焦位置に おいて対物レンズ 21とディスク 31の距離が近い場合、対物レンズ 21とディスク 31の 衝突が起こる。 In order to clarify the effect of the present embodiment, FIGS. 41 and 42 are diagrams for explaining the operation of the objective lens at the time of conventional signal level detection. Fig. 4-1 shows the case where the disc 31 has a small run-out, and Fig. 4-2 shows the case where the disc 31 has a great run-out. As shown in FIG. 4A, the objective lens 21 moves by a predetermined distance (eg, ± 0.7 mm) regardless of the focus position, and performs a focus search. For this reason, when the distance between the objective lens 21 and the disk 31 is short at the in-focus position, the collision between the objective lens 21 and the disk 31 occurs.
[0057] 図 4 2に示すように、ディスク 31の面ぶれが大きい場合、ディスク 31の面ぶれに 伴って合焦位置も変化する。ディスク 31の面ぶれが大きい場合に、対物レンズ 21が 合焦位置に関係なく予め定められた距離だけ移動してフォーカスサーチを行なうと、 対物レンズ 21とディスク 31の衝突が起こる。  As shown in FIG. 42, when the disc 31 has a large runout, the in-focus position also changes with the runout of the disc 31. When the surface of the disk 31 is large and the objective lens 21 moves by a predetermined distance regardless of the in-focus position and performs a focus search, a collision between the objective lens 21 and the disk 31 occurs.
[0058] なお、本実施例 1においては、対物レンズ 21が合焦位置を通過して所定の時間が 経過した後、対物レンズ 21がディスク 31から近付く方向に移動することとした力 対 物レンズ 21が合焦位置を通過して所定の距離を経過した後、対物レンズ 21がデイス ク 31から近付く方向に移動させてもよい。この場合、例えば計時部を新たに設け、ェ ラー合焦位置検出部 12が合焦位置を検出して力も計時を開始し、対物レンズが所 定の距離を移動するのに費やす時間まで計時した後、対物レンズ 21がディスク 31か ら近付く方向に移動させてもょ 、。  In the first embodiment, the objective lens 21 moves in the direction of approaching from the disk 31 after a predetermined time has passed after the objective lens 21 has passed the in-focus position. The objective lens 21 may be moved in a direction approaching the disk 31 after a predetermined distance has passed after the 21 has passed the in-focus position. In this case, for example, a timing unit is newly provided, and the error focus position detection unit 12 detects the focus position and starts measuring the force, and measures the time until the objective lens spends moving a predetermined distance. After that, move the objective lens 21 in the direction approaching the disc 31.
[0059] フォーカスドライブ制御部 17は、エラー合焦位置検出部 12から合焦位置通過信号 を受けることで、ドライバ 20を制御する。ドライバ 20は、フォーカスドライブ制御部 17 力 の指示情報に基づいて対物レンズ 21がディスク 31から遠ざ力る方向に移動する ようピックアップ 19の駆動電流を制御する。ピックアップ 19は、ドライバ 20からの駆動 電流に基づいて対物レンズ 21がディスク 31から遠ざ力るよう対物レンズ 21の移動を 制御する。そして、対物レンズ 21は、ディスク 31の面内と垂直な方向において、ディ スク 31から遠ざ力るよう駆動 (反転)する。  The focus drive control unit 17 controls the driver 20 by receiving the focus position passing signal from the error focus position detection unit 12. The driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves away from the disk 31 based on the instruction information of the focus drive controller 17 force. The pickup 19 controls the movement of the objective lens 21 so that the objective lens 21 is moved away from the disk 31 based on the drive current from the driver 20. Then, the objective lens 21 is driven (reversed) so as to move away from the disk 31 in a direction perpendicular to the in-plane direction of the disk 31.
[0060] なお、本実施例 1においては、エラー合焦位置検出部 12がフォーカスエラー信号 を検出することによって対物レンズ 21の動作を制御することとしたが、エラー合焦位 置検出部 12がトラッキングエラー信号を検出することによって対物レンズ 21の動作を 制御してもよい。エラー合焦位置検出部 12がトラッキングエラー信号を検出する場合 は、エラー合焦位置検出部 12がトラッキングエラー信号に基づいて、対物レンズ 21 が合焦位置を通過した力否かを判断する。トラッキングエラー信号はフォーカスクロ ーズする前においては、対物レンズが合焦位置に達した瞬間、大きな振幅として現 れるため、これを検出すれば、対物レンズが合焦位置を通過したカゝ否かを判断するこ とがでさる。 In the first embodiment, the error focus position detection unit 12 controls the operation of the objective lens 21 by detecting the focus error signal. However, the error focus position detection unit 12 The operation of the objective lens 21 may be controlled by detecting the tracking error signal. When the error focus position detection unit 12 detects a tracking error signal, the error focus position detection unit 12 determines whether or not the objective lens 21 has passed through the focus position based on the tracking error signal. The tracking error signal is Before the focus is reached, it appears as a large amplitude at the moment when the objective lens reaches the in-focus position. Therefore, if this is detected, it can be determined whether or not the objective lens has passed the in-focus position. I'll do it.
[0061] また、 RF合焦位置検出部 13が RF信号を検出することによって対物レンズ 21の動 作を制御してもよい。 RF合焦位置検出部 13が RF信号を検出する場合は、 RF合焦 位置検出部 13が RF信号に基づいて、対物レンズ 21が合焦位置を通過した力否か を判断する。エラー合焦位置検出部 12は、例えば RF信号の信号レベルが最大を示 す時に対物レンズ 21が合焦位置を通過したと判断する。  In addition, the operation of the objective lens 21 may be controlled by the RF focus position detector 13 detecting the RF signal. When the RF focus position detection unit 13 detects an RF signal, the RF focus position detection unit 13 determines whether or not the objective lens 21 has passed through the focus position based on the RF signal. The error focus position detection unit 12 determines that the objective lens 21 has passed the focus position when the signal level of the RF signal shows the maximum, for example.
[0062] 対物レンズ 21が合焦位置を通過した力否かを判断することができれば、フォーカス エラー信号、トラッキングエラー信号、 RF信号に限られず、他の信号等によって対物 レンズ 21が合焦位置を通過した力否かを判断して対物レンズ 21の動作を制御しても よい。本実施例 1においては、対物レンズ制御装置 10は、エラー合焦位置検出部 12 と RF合焦位置検出部 13の両方を備える構成としたが、対物レンズ制御装置 10は、 エラー合焦位置検出部 12と RF合焦位置検出部 13の 、ずれか一方を備える構成と してもよい。すなわち、対物レンズ制御装置 10は、対物レンズ 21が合焦位置を通過 したカゝ否かを判断するための手段を少なくとも 1つ以上備えていればよい。  [0062] If it is possible to determine whether or not the objective lens 21 has passed through the in-focus position, the objective lens 21 is not limited to the focus error signal, the tracking error signal, and the RF signal. The operation of the objective lens 21 may be controlled by determining whether or not the force has passed. In the first embodiment, the objective lens control device 10 is configured to include both the error focus position detection unit 12 and the RF focus position detection unit 13, but the objective lens control device 10 is configured to detect the error focus position. The unit 12 and the RF focus position detection unit 13 may be configured to include either one of them. That is, the objective lens control device 10 only needs to include at least one means for determining whether or not the objective lens 21 has passed the in-focus position.
[0063] また、フォーカスエラー信号、トラッキングエラー信号、 RF信号等の中から 2つ以上 の信号等に基づ 、て RF合焦位置検出部 13が、対物レンズ 21が合焦位置を通過し たカゝ否かを判断してもよい。  [0063] Further, based on two or more signals out of the focus error signal, tracking error signal, RF signal, etc., the RF focus position detection unit 13 has passed the objective lens 21 through the focus position. It may be determined whether or not it is correct.
[0064] このように、ディスク 31からの信号検出を行なうため対物レンズ 21がディスク 31に近 付く際、フォーカスエラー信号等を検出するので、対物レンズ 21の動作を対物レンズ 21が合焦位置を通過した力否かの情報に基づいて制御することが可能となる。  In this way, since the focus error signal is detected when the objective lens 21 approaches the disc 31 in order to detect the signal from the disc 31, the objective lens 21 determines the in-focus position. It becomes possible to control based on information on whether or not the force has passed.
[0065] このように実施例 1によれば、ディスク 31からの信号検出を行なうために対物レンズ 21がディスク 31に近付く際、対物レンズ 21が合焦位置を通過した後、所定の時間経 過後、所定の距離を移動後または直ちに対物レンズ 21の移動方向を反転させるの で、対物レンズ 21とディスク 31の衝突を回避することが可能となる。したがって、従来 技術である図 4 1及び図 4 2と本実施例である図 3— 1及び図 3— 2を比較しても 明らかなように、ピックアップ 19の機械的寸法のばらつきが大きい場合やディスク 31 の面ぶれ等が大きい場合、または最小ピット長が非常に短い高密度なディスクにお V、て、対物レンズを低密度なディスクよりも近づけなくてはならな 、場合であっても、 対物レンズ 21とディスク 31の衝突を回避することが可能となる。これにより、ディスク 3 1からの信号検出を安定して行なうことが可能となる。 As described above, according to the first embodiment, when the objective lens 21 approaches the disk 31 in order to detect a signal from the disk 31, after the objective lens 21 has passed the in-focus position, a predetermined time has passed. Since the moving direction of the objective lens 21 is reversed after moving a predetermined distance or immediately, the collision between the objective lens 21 and the disk 31 can be avoided. Therefore, as is apparent from a comparison of FIGS. 4 and 4 which are the prior art and FIGS. 3A and 3B of the present embodiment, there is a case where the variation in mechanical dimensions of the pickup 19 is large. Disc 31 The objective lens must be closer to the low-density disc than the low-density disc, even if there is a large amount of surface blur, or the minimum pit length is very short. It becomes possible to avoid the collision between 21 and the disk 31. As a result, signal detection from the disk 31 can be performed stably.
実施例 2  Example 2
[0066] つぎに、図 5〜図 9を用いてこの発明の実施例 2について説明する。実施例 2では 合焦点位置の検出を行なう際の対物レンズ 21の動作をフォーカスエラー信号等に基 づいて制御する。本実施例 2においても実施例 1と同様の構成を有する対物レンズ 制御装置 10によって対物レンズ 21の動作を制御しフォーカスを制御する。  Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the operation of the objective lens 21 when detecting the in-focus position is controlled based on a focus error signal or the like. Also in the second embodiment, the operation of the objective lens 21 is controlled by the objective lens control device 10 having the same configuration as that of the first embodiment to control the focus.
[0067] 図 5は、実施例 2に係る対物レンズ制御装置の構成を示すブロック図である。図 5は 実施例 1係る対物レンズ制御装置の構成を示すブロック図に新たに反転タイミング算 出部 (タイミング情報生成部) 14を設けてある。  FIG. 5 is a block diagram illustrating a configuration of the objective lens control device according to the second embodiment. FIG. 5 is a block diagram showing a configuration of the objective lens control apparatus according to the first embodiment, and a reversal timing calculation unit (timing information generation unit) 14 is newly provided.
[0068] 反転タイミング算出部 14は、エラー合焦位置検出部 12が検出した合焦位置に基 づいてピックアップ 19 (対物レンズ 21)の移動方向を制御するタイミングを算出し、反 転タイミング算出部 14が算出したタイミングは制御情報として、フォーカスドライブ制 御部 17に送られる。  The inversion timing calculation unit 14 calculates the timing for controlling the moving direction of the pickup 19 (objective lens 21) based on the in-focus position detected by the error in-focus position detection unit 12, and the inversion timing calculation unit The timing calculated by 14 is sent as control information to the focus drive controller 17.
[0069] 図 6は、実施例 2に係る対物レンズ制御装置の動作手順を示すフローチャートであ る。ピックアップ 19の対物レンズ 21は、ドライバからの駆動電流によってディスク 31面 内と垂直な方向に移動する。本実施例 2においては、ディスク種別の判断処理と、フ オーカスクローズを行なうため、対物レンズ 21がディスク 31面内と垂直な方向に移動 する。  FIG. 6 is a flowchart illustrating an operation procedure of the objective lens control device according to the second embodiment. The objective lens 21 of the pickup 19 is moved in a direction perpendicular to the surface of the disk 31 by the drive current from the driver. In the second embodiment, the objective lens 21 moves in a direction perpendicular to the surface of the disk 31 in order to perform the disc type determination process and the focus close.
[0070] ここでは、まず対物レンズ 21がディスク 31に近付く方向で移動する(ステップ S200 ) oピックアップは対物レンズ 21が移動している際、対物レンズ 21を介してディスク 31 に照射ビームを照射する。  Here, first, the objective lens 21 moves in a direction approaching the disk 31 (step S200). The pickup irradiates the disk 31 with the irradiation beam through the objective lens 21 when the objective lens 21 is moving. .
[0071] この後、実施例 1と同様の処理によって対物レンズ 21が合焦位置を通過した力否 かを判別する。実施例 1で説明した図 2のステップ S110〜S130が本実施例 2にお ける図 6のステップ S210〜S230〖こ対応する。すなわち、対物レンズ 21が移動して いる間、ディスク 31から反射される反射ビームはピックアップ 19からエラー信号生成 部 15、 RF信号生成部 16に送信される。 Thereafter, whether or not the objective lens 21 has passed through the in-focus position is determined by the same processing as in the first embodiment. The steps S110 to S130 in FIG. 2 described in the first embodiment correspond to the steps S210 to S230 in FIG. 6 in the second embodiment. That is, while the objective lens 21 is moving, the reflected beam reflected from the disk 31 generates an error signal from the pickup 19. Unit 15 and RF signal generation unit 16 are transmitted.
[0072] エラー信号生成部 15は、ピックアップ 19からの反射ビームから対物レンズ 21が合 焦位置を横切ったか否かを判別するための情報としてフォーカスエラー信号、トラッ キングエラー信号を生成する。 RF信号生成部 16は、ピックアップ 19からの反射ビー ム力 対物レンズ 21が合焦位置を横切ったか否かを判別するための情報として RF 信号を生成する。 The error signal generator 15 generates a focus error signal and a tracking error signal as information for determining whether or not the objective lens 21 has crossed the in-focus position from the reflected beam from the pickup 19. The RF signal generation unit 16 generates an RF signal as information for determining whether or not the reflected beam force objective lens 21 from the pickup 19 has crossed the in-focus position.
[0073] エラー信号生成部 15は、生成したフォーカスエラー信号やトラッキングエラー信号 をエラー合焦位置検出部 12に送信する。 RF信号生成部 16は、生成した RF信号を RF合焦位置検出部 13に送信する。  The error signal generation unit 15 transmits the generated focus error signal and tracking error signal to the error focus position detection unit 12. The RF signal generation unit 16 transmits the generated RF signal to the RF focus position detection unit 13.
[0074] エラー合焦位置検出部 12は、エラー信号生成部 15が生成したフォーカスエラー信 号、トラッキングエラー信号を検出する。 RF合焦位置検出部 13は、 RF信号生成部 1 6が生成した RF信号を検出する。ここでは、対物レンズ 21が合焦位置を横切ったか 否かを判別するための情報として、フォーカスエラー信号を利用する場合について説 明する。  The error focus position detector 12 detects the focus error signal and tracking error signal generated by the error signal generator 15. The RF focus position detector 13 detects the RF signal generated by the RF signal generator 16. Here, a case where a focus error signal is used as information for determining whether or not the objective lens 21 has crossed the in-focus position will be described.
[0075] 対物レンズ 21がディスク 31から遠い位置にある間は、エラー合焦位置検出部 12は フォーカスエラー信号をほぼ 0として検出する。対物レンズ 21がディスク 31の近傍ま で近付くと、フォーカスエラー信号のレベルが徐々〖こ大きくなり、このフォーカスエラ 一信号がエラー合焦位置検出部 12によって検出される。対物レンズ 21がディスク 31 に対してさらに近付くと、対物レンズ 21とディスク 31の距離に応じてフォーカスエラー 信号のレベルが大きくなる。そして、エラー合焦位置検出部 12はフォーカスエラー信 号のピークを検出する。対物レンズ 21がディスク 31に対してさらに近付くと、対物レン ズ 21とディスク 31の距離に応じてフォーカスエラー信号のレベルが小さくなり合焦位 置で 0となる。  While the objective lens 21 is at a position far from the disk 31, the error focus position detection unit 12 detects the focus error signal as almost zero. When the objective lens 21 approaches the vicinity of the disk 31, the level of the focus error signal gradually increases, and this focus error signal is detected by the error focus position detection unit 12. As the objective lens 21 gets closer to the disk 31, the level of the focus error signal increases in accordance with the distance between the objective lens 21 and the disk 31. Then, the error focus position detector 12 detects the peak of the focus error signal. As the objective lens 21 comes closer to the disc 31, the level of the focus error signal decreases according to the distance between the objective lens 21 and the disc 31, and becomes 0 at the in-focus position.
[0076] 本実施例 2においては、最初の合焦位置の検出時にディスク種別の判別等を行な い、 2度目の合焦位置の検出時にフォーカスの引き込みを行なう。ここでは最初の合 焦位置の検出であるため、ディスク種別の判別等を行なう。  In the second embodiment, the disc type is determined when the first in-focus position is detected, and the focus is pulled in when the second in-focus position is detected. Here, since it is the detection of the first in-focus position, the disc type is discriminated.
[0077] エラー合焦位置検出部 12は、対物レンズ 21がディスク 31に近付くよう移動している 間、フォーカスエラー信号を検出することによって対物レンズ 21が合焦位置を通過し た力否かを判断している (ステップ S210)。 [0077] The error focus position detection unit 12 detects the focus error signal while the objective lens 21 moves so as to approach the disk 31, so that the objective lens 21 passes the focus position. It is determined whether or not the power has been reduced (step S210).
[0078] エラー合焦位置検出部 12が、対物レンズ 21が合焦位置を通過したと判断すると( ステップ S210、 Yes)、エラー合焦位置検出部 12は合焦位置通過情報 (例えば合焦 位置と光記録媒体との間の距離等を示す情報)を反転タイミング算出部 14に送信す る。 When the error focus position detection unit 12 determines that the objective lens 21 has passed the focus position (Yes in step S210), the error focus position detection unit 12 detects the focus position passage information (for example, the focus position). Information indicating the distance between the optical recording medium and the optical recording medium) is transmitted to the inversion timing calculation unit 14.
[0079] 反転タイミング算出部 14は、合焦位置通過情報を受信すると、合焦位置通過情報 に基づいて、所定の時間 (Xミリ秒後)を決定し、決定された所定の時間を示す制御情 報を作成する。この制御情報は、反転タイミング算出部 14からフォーカスドライブ制 御部 17に送信される。対物レンズ 21が合焦位置を通過した後、直ちに対物レンズ 2 1をディスク 31から遠ざ力る方向に移動させたい場合は x=0とする。  [0079] Upon receiving the in-focus position passage information, the inversion timing calculation unit 14 determines a predetermined time (after X milliseconds) based on the in-focus position passage information, and performs control indicating the determined predetermined time. Create information. This control information is transmitted from the inversion timing calculation unit 14 to the focus drive control unit 17. If it is desired to move the objective lens 21 away from the disk 31 immediately after the objective lens 21 passes the in-focus position, x = 0 is set.
[0080] フォーカスドライブ制御部 17は、反転タイミング算出部 14からの制御情報を受信す ることで、制御情報に基づいてドライバ 20を制御する。ここでは、 Xミリ秒後にピックァ ップ 19をディスク 31から遠ざ力る方向に移動させるようドライバ 20を制御する。  The focus drive control unit 17 receives the control information from the inversion timing calculation unit 14 and controls the driver 20 based on the control information. Here, the driver 20 is controlled to move the pick-up 19 away from the disk 31 in X milliseconds.
[0081] ドライバ 20は、 Xミリ秒後に対物レンズ 21がディスク 31から遠ざ力る方向に移動する ようピックアップ 19の駆動電流を制御する。ピックアップ 19は、ドライバ 20からの駆動 電流に基づいて対物レンズ 21がディスク 31から遠ざ力るよう対物レンズ 21の移動を 制御する。対物レンズ 21は、ディスク 31の面内と垂直な方向において、ディスク 31か ら遠ざ力るよう駆動する (ステップ S220)。  The driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves away from the disk 31 after X milliseconds. The pickup 19 controls the movement of the objective lens 21 so that the objective lens 21 is moved away from the disk 31 based on the drive current from the driver 20. The objective lens 21 is driven to move away from the disk 31 in a direction perpendicular to the in-plane direction of the disk 31 (step S220).
[0082] 対物レンズ 21が、ディスク 31の面内と垂直な方向において、ディスク 31から遠ざか るよう駆動すること〖こよって、対物レンズ 21は再び合焦位置に近付く。対物レンズ 21 が合焦位置に対して所定の距離だけ近付く(ディスク 31から遠ざかる)と、対物レンズ 21とディスク 31の距離に応じてフォーカスエラー信号のレベルが小さくなり合焦位置 でフォーカスエラー信号が 0となる。  By driving the objective lens 21 away from the disc 31 in a direction perpendicular to the in-plane direction of the disc 31, the objective lens 21 approaches the in-focus position again. When the objective lens 21 approaches the in-focus position by a predetermined distance (away from the disc 31), the focus error signal level decreases according to the distance between the objective lens 21 and the disc 31, and the focus error signal is output at the in-focus position. 0.
[0083] エラー合焦位置検出部 12は、対物レンズ 21がディスク 31から遠ざ力るよう移動して いる間、フォーカスエラー信号を検出することによって対物レンズ 21が合焦位置を通 過した力否かを判断して 、る (ステップ S230)。  The error focus position detector 12 detects the focus error signal while the objective lens 21 is moving away from the disk 31 to detect the force that the objective lens 21 has passed through the focus position. Determine whether or not (step S230).
[0084] エラー合焦位置検出部 12が、対物レンズ 21が合焦位置を通過したと判断した場合  [0084] When the error focus position detection unit 12 determines that the objective lens 21 has passed the focus position
(ステップ S230、 Yes)、ここでは 2度目の合焦位置の検出であるため、フォーカスク ローズを行なう(ステップ S240)。ここでのフォーカスクローズは、ディスク 31に対して 対物レンズ 21を焦点深度内に引き込むようドライバ 20がピックアップ 19を制御する。 (Step S230, Yes). Here, the focus position is detected because it is the second focus position detection. Rose (Step S240). In this focus close, the driver 20 controls the pickup 19 so that the objective lens 21 is drawn into the focal depth with respect to the disk 31.
[0085] エラー合焦位置検出部 12は、フォーカスクローズ処理中にフォーカスエラー信号を 検出し、このフォーカスエラー信号に基づ 、てフォーカスクローズが成功したか否か を判断する (ステップ S250)。  The error focus position detection unit 12 detects a focus error signal during the focus close process, and determines whether the focus close is successful based on the focus error signal (step S250).
[0086] エラー合焦位置検出部 12は、フォーカスクローズに失敗した力否かの判断結果( 以下、クローズ判断結果情報という)を反転タイミング算出部 14に送信する。反転タイ ミング算出部 14は、エラー合焦位置検出部 12からのクローズ判断結果情報に基づ いて、対物レンズ 21の移動に関する制御情報を作成する。  The error focus position detection unit 12 transmits a determination result (hereinafter, referred to as “close determination result information”) as to whether or not the force has failed to close the focus to the inversion timing calculation unit 14. The inversion timing calculation unit 14 creates control information related to the movement of the objective lens 21 based on the close determination result information from the error focus position detection unit 12.
[0087] エラー合焦位置検出部 12が、フォーカスクローズに失敗したと判断した場合 (ステ ップ S250、 No)、反転タイミング算出部 14は、対物レンズ 21が合焦位置を通過した 後で所定時間 (yミリ秒後)の経過後に対物レンズ 21がディスク 31に対して近付く方 向に移動するよう制御情報を作成する。この制御情報は、反転タイミング算出部 14か らフォーカスドライブ制御部 17に送信される。  [0087] When the error focus position detection unit 12 determines that the focus close has failed (step S250, No), the inversion timing calculation unit 14 performs predetermined processing after the objective lens 21 has passed the focus position. Control information is created so that the objective lens 21 moves in the direction approaching the disk 31 after the elapse of time (after y milliseconds). This control information is transmitted from the inversion timing calculation unit 14 to the focus drive control unit 17.
[0088] フォーカスドライブ制御部 17は、反転タイミング算出部 14からの制御情報を受ける ことで制御情報に基づいてドライバ 20を制御する。ここでは、対物レンズ 21が合焦位 置を通過した後、例えば yミリ秒後にピックアップ 19をディスク 31に近付く方向に移動 させるようドライバ 20を制御する。  The focus drive control unit 17 receives the control information from the inversion timing calculation unit 14 and controls the driver 20 based on the control information. Here, after the objective lens 21 passes through the in-focus position, the driver 20 is controlled so as to move the pickup 19 in a direction approaching the disk 31 after y milliseconds, for example.
[0089] ドライバ 20は、 yミリ秒後に対物レンズ 21がディスク 31から近付く方向に移動するよ うピックアップ 19の駆動電流を制御する。ピックアップ 19は、ドライバからの駆動電流 に基づいて対物レンズ 21がディスク 31に近付くよう対物レンズ 21の移動を制御する  The driver 20 controls the drive current of the pickup 19 so that the objective lens 21 moves in the direction approaching the disk 31 after y milliseconds. The pickup 19 controls the movement of the objective lens 21 based on the drive current from the driver so that the objective lens 21 approaches the disk 31.
[0090] これにより、対物レンズ 21が合焦位置を通過した後、またはフォーカスドライブ制御 部 17が制御情報を受信した後、 yミリ秒間は対物レンズ 21がディスク 31から遠ざかる 方向に移動し、その後対物レンズ 21がディスク 31に近付くよう移動する (ステップ S2 60)。そして、再びステップ S210〜S250と同様の処理を繰り返す。ここでは、ステツ プ S270〜S300の処理力 Sステップ S210〜S250の処理に対応する。 Thus, after the objective lens 21 passes the in-focus position, or after the focus drive control unit 17 receives the control information, the objective lens 21 moves away from the disk 31 for y milliseconds, and thereafter The objective lens 21 moves so as to approach the disk 31 (step S2 60). Then, the same processing as steps S210 to S250 is repeated again. Here, the processing power of steps S270 to S300 corresponds to the processing of S steps S210 to S250.
[0091] なお、本実施例 2においては、ステップ S250においてフォーカスクローズが失敗し た後、ステップ S260〜S300の処理によってフォーカスクローズを 1度だけやり直して いるが、フォーカスクローズが失敗した場合は、フォーカスクローズ処理を複数回繰り 返してもよい。この場合、フォーカスクローズが成功するまでステップ S260〜S300の 処理を複数回繰り返す。 [0091] In the second embodiment, focus close fails in step S250. After that, the focus close process is performed once again by the processes in steps S260 to S300. However, if the focus close process fails, the focus close process may be repeated a plurality of times. In this case, the processes in steps S260 to S300 are repeated several times until the focus close is successful.
[0092] ここで、図 7—1および図 7— 2を用いて、実施例 2に係る信号レベル検出の際の対 物レンズの動作を説明するためのフローチャートである図 6の補足説明を行なう。各 図において縦軸は対物レンズ (対物レンズ 21)のフォーカス方向の位置を示し、横軸 は時間を示している。図 7—1は、ディスク 31の面ぶれが小さい場合を示し、図 7— 2 は、ディスク 31の面ぶれが大きい場合を示している。  Here, with reference to FIG. 7-1 and FIG. 7-2, supplementary explanation of FIG. 6, which is a flowchart for explaining the operation of the object lens at the time of signal level detection according to the second embodiment, will be given. . In each figure, the vertical axis indicates the position of the objective lens (objective lens 21) in the focus direction, and the horizontal axis indicates time. FIG. 7-1 shows the case where the disc 31 has a small runout, and FIG. 7-2 shows the case where the disc 31 has a great runout.
[0093] 図 7—1に示すように、対物レンズ 21は、ディスク 31に対して近付くよう駆動し、対物 レンズ 21が合焦位置 (合焦位置)を通過後、対物レンズ 21は直ちにディスク 31から 遠ざカゝる方向に駆動方向を反転している。これにより、対物レンズ 21はディスク 31と 衝突することがなくなる。  As shown in FIG. 7-1, the objective lens 21 is driven so as to approach the disk 31. After the objective lens 21 passes the in-focus position (in-focus position), the objective lens 21 immediately moves to the disk 31. The drive direction is reversed in a direction away from the drive. Thus, the objective lens 21 does not collide with the disk 31.
[0094] 図 7— 2に示すように、ディスク 31の面ぶれが大きい場合、ディスク 31の面ぶれに 伴って合焦位置も変化する。ディスク 31の面ぶれが大きい場合であっても対物レン ズ 21が合焦位置を通過後、直ちに対物レンズ 21をディスク 31から遠ざ力る方向に駆 動方向を反転することによって、対物レンズ 21はディスク 31と衝突することがなくなる  As shown in FIG. 7-2, when the disc 31 has a large surface shake, the in-focus position also changes as the disc 31 shakes. Even if the surface of the disc 31 is large, after the objective lens 21 has passed through the in-focus position, the objective lens 21 is immediately reversed by moving the objective lens 21 away from the disc 31. No longer collides with disk 31
[0095] 本実施例の効果を明白にするために、図 8— 1および図 8— 2にて従来のフォー力 ス引き込みの際の対物レンズの動作を説明するための図を示した。図 8— 1は、ディ スク 31の面ぶれが小さい場合を示し、図 8— 2は、ディスク 31の面ぶれが大きい場合 を示している。 In order to clarify the effect of the present embodiment, FIGS. 8A and 8B are diagrams for explaining the operation of the objective lens when the conventional force is pulled. Fig. 8-1 shows the case where the disc 31 has a small runout, and Fig. 8-2 shows the case where the disc 31 has a large runout.
[0096] 図 8—1に示すように、対物レンズ 21は合焦位置に関係なく予め定められた距離( 例えば ±0. 7mm)だけ移動して、フォーカスサーチを行なう。このため、合焦位置に おいて対物レンズ 21とディスク 31の距離が近い場合、対物レンズ 21とディスク 31の 衝突が起こる。  As shown in FIG. 8-1, the objective lens 21 moves by a predetermined distance (eg, ± 0.7 mm) regardless of the focus position, and performs a focus search. For this reason, when the distance between the objective lens 21 and the disk 31 is short at the in-focus position, the collision between the objective lens 21 and the disk 31 occurs.
[0097] 図 8— 2に示すように、ディスク 31の面ぶれが大きい場合、ディスク 31の面ぶれに 伴って合焦位置も変化する。ディスク 31の面ぶれが大きい場合に、対物レンズ 21が 合焦位置に関係なく予め定められた距離だけ移動してフォーカスサーチを行なうと、 対物レンズ 21とディスク 31の衝突が起こる。 As shown in FIG. 8-2, when the disc 31 has a large runout, the in-focus position also changes with the runout of the disc 31. The objective lens 21 is When a focus search is performed by moving a predetermined distance regardless of the in-focus position, a collision between the objective lens 21 and the disk 31 occurs.
[0098] なお、実施例 1と同様に対物レンズ 21が合焦位置を通過した力否かの判断はトラッ キングエラー信号や RF信号によって行ってもよい。また、実施例 1と同様に、対物レ ンズ 21の合焦位置を通過した後のディスク 31から遠ざ力る方向への移動は、対物レ ンズ 21が所定の距離を移動した後や合焦位置を通過した後、直ちにディスク 31から 遠ざ力る方向へ移動することとしてもょ 、。  Note that, as in the first embodiment, whether or not the objective lens 21 has passed through the in-focus position may be determined based on a tracking error signal or an RF signal. Similarly to the first embodiment, the movement in the direction of moving away from the disk 31 after passing through the focusing position of the objective lens 21 is performed after the objective lens 21 has moved a predetermined distance or after focusing. Immediately after passing through the position, it will move away from the disk 31 in the direction of force.
[0099] さらに、実施例 1と同様に対物レンズ制御装置 10は、対物レンズ 21が合焦位置を 通過したカゝ否かを判断するための手段を少なくとも 1つ以上備えていればよい。  Furthermore, similarly to the first embodiment, the objective lens control device 10 only needs to include at least one means for determining whether or not the objective lens 21 has passed the in-focus position.
[0100] このように、フォーカスの引き込み処理を行なうため対物レンズ 21がディスク 31に近 付く際、フォーカスエラー信号等を検出するので、対物レンズ 21の動作を対物レンズ 21が合焦位置を通過した力否かの情報に基づいて制御することが可能となる。  [0100] As described above, since the focus error signal is detected when the objective lens 21 approaches the disk 31 to perform the focus pull-in process, the objective lens 21 has passed the in-focus position in the operation of the objective lens 21. It becomes possible to control based on the information of force.
[0101] このように実施例 2によれば、フォーカスクローズを行なうために対物レンズ 21がデ イスク 31に近付く際、対物レンズ 21が合焦位置を通過した後、所定の時間経過後、 対物レンズ 21が所定の時間後または直ちに対物レンズ 21の移動方向を反転させる ので、対物レンズ 21とディスク 31の衝突を回避することが可能となる。したがって、従 来技術である図 8— 1及び図 8— 2と本実施例である図 7— 1及び図 7— 2を比較して も明らかなように、ピックアップ 19の機械的寸法のばらつきが大きい場合やディスク 3 1の面ぶれ等が大きい場合、または最小ピット長が非常に短い高密度なディスクにお V、て、対物レンズを低密度なディスクよりも近づけなくてはならな 、場合であっても、 対物レンズ 21とディスク 31の衝突を回避することが可能となる。これにより、ディスク 3 1からの信号検出を安定して行なうことが可能となる。  [0101] Thus, according to Example 2, when the objective lens 21 approaches the disk 31 in order to close the focus, the objective lens 21 passes the in-focus position, and after a predetermined time has passed, the objective lens Since 21 reverses the direction of movement of the objective lens 21 after a predetermined time or immediately, it is possible to avoid collision between the objective lens 21 and the disk 31. Therefore, as can be seen from the comparison between Fig. 8-1 and Fig. 8-2, which are conventional technologies, and Fig. 7-1 and Fig. 7-2, which are the present embodiment, there is variation in the mechanical dimensions of the pickup 19. If the disk is large or the surface of the disk 31 is large, or if the minimum pit length is very short, the objective lens must be closer to the low-density disk. Even if it exists, it becomes possible to avoid the collision between the objective lens 21 and the disk 31. As a result, signal detection from the disk 31 can be performed stably.

Claims

請求の範囲 The scope of the claims
[1] 対物レンズを備え、光源カゝら前記対物レンズを介して光を光記録媒体に照射してそ の戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記照射 される光のフォーカスを制御する対物レンズ制御装置において、  [1] An apparatus that includes an objective lens, irradiates light onto the optical recording medium through the objective lens in addition to a light source, and receives the return light. By controlling the position of the objective lens, In an objective lens control device that controls the focus of irradiated light,
前記受光される戻り光から所定の信号を検出することによって、前記光源の照射す る光が前記光記録媒体に合焦する対物レンズの位置を合焦位置として検出する合 焦位置検出部と、  An in-focus position detecting unit that detects a position of an objective lens at which the light emitted from the light source is in focus on the optical recording medium by detecting a predetermined signal from the received return light;
前記合焦位置検出部が合焦位置を検出すると、前記対物レンズのフォーカス方向 における移動方向を反転させるように前記対物レンズを制御する対物レンズ制御部と を備えることを特徴とする対物レンズ制御装置。  An objective lens control device comprising: an objective lens control unit that controls the objective lens so as to reverse a moving direction of the objective lens in a focus direction when the in-focus position detecting unit detects the in-focus position. .
[2] 前記合焦位置検出部が合焦位置を検出すると、前記対物レンズ制御部は、直ちに 前記対物レンズのフォーカス方向における移動方向を反転させることを特徴とする請 求項 1に記載の対物レンズ制御装置。  [2] The objective according to claim 1, wherein when the in-focus position detection unit detects the in-focus position, the objective lens control unit immediately reverses the moving direction of the objective lens in the focus direction. Lens control device.
[3] 前記合焦位置検出部が合焦位置を検出した後、所定時間経過後に、前記対物レ ンズ制御部が、前記対物レンズのフォーカス方向における移動方向を反転させること を特徴とする請求項 1に記載の対物レンズ制御装置。 [3] The objective lens control unit reverses the movement direction of the objective lens in the focus direction after a predetermined time has elapsed after the focus position detection unit has detected the focus position. The objective lens control device according to 1.
[4] 対物レンズを備え、光源カゝら前記対物レンズを介して光を光記録媒体に照射してそ の戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記照射 される光のフォーカスを制御する対物レンズ制御装置において、 [4] An apparatus that includes an objective lens, irradiates light onto the optical recording medium via the objective lens in addition to the light source, and receives the return light. By controlling the position of the objective lens, In an objective lens control device that controls the focus of irradiated light,
前記受光される戻り光から所定の信号を検出することによって、前記光源の照射す る光が前記光記録媒体に合焦する対物レンズの位置を合焦位置として検出する合 焦位置検出部と、  An in-focus position detecting unit that detects a position of an objective lens at which the light emitted from the light source is in focus on the optical recording medium by detecting a predetermined signal from the received return light;
前記合焦位置検出部が検出した合焦位置に応じて前記対物レンズのフォーカス方 向における移動方向を反転させるタイミングを決定し、前記タイミングを表すタイミング 情報を生成するタイミング情報生成部と、を備え、  A timing information generation unit that determines a timing for reversing the moving direction of the objective lens in the focus direction according to the focus position detected by the focus position detection unit, and generates timing information indicating the timing. ,
前記対物レンズ制御部は、前記タイミング情報に基づいたタイミングで、前記対物 レンズのフォーカス方向における移動方向を反転させることを特徴とする対物レンズ 制御装置。 The objective lens control unit reverses the moving direction in the focus direction of the objective lens at a timing based on the timing information. Control device.
[5] 前記タイミング情報生成部は、前記合焦位置に応じた所定時間を決定し、前記所 定時間を表すタイミング情報を生成し、  [5] The timing information generation unit determines a predetermined time according to the in-focus position, generates timing information representing the predetermined time,
前記対物レンズ制御部は、前記タイミング情報を受信してから、前記所定時間後に 前記対物レンズのフォーカス方向における移動方向を反転させることを特徴とする請 求項 4に記載の対物レンズ制御装置。  5. The objective lens control device according to claim 4, wherein the objective lens control unit reverses a movement direction of the objective lens in a focus direction after the predetermined time after receiving the timing information.
[6] 対物レンズを備え、光源カゝら前記対物レンズを介して光を光記録媒体に照射してそ の戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記照射 される光のフォーカスを制御する対物レンズ制御装置において、 [6] An apparatus that includes an objective lens, irradiates light onto the optical recording medium through the objective lens in addition to a light source, and receives the return light. By controlling the position of the objective lens, In an objective lens control device that controls the focus of irradiated light,
前記受光される戻り光から所定の信号を検出することによって、前記光源の照射す る光が前記光記録媒体に合焦する対物レンズの位置を合焦位置として検出する合 焦位置検出ステップと、  An in-focus position detecting step of detecting a position of an objective lens at which the light emitted from the light source is in focus on the optical recording medium by detecting a predetermined signal from the received return light;
前記対物レンズのフォーカス方向における移動方向を反転させる反転ステップと、 を含むことを特徴とする対物レンズ制御方法。  And a reversing step of reversing the moving direction of the objective lens in the focus direction.
[7] 対物レンズを備え、光源カゝら前記対物レンズを介して光を光記録媒体に照射してそ の戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記照射 される光のフォーカスを制御する対物レンズ制御装置において、 [7] An apparatus that includes an objective lens, irradiates light onto the optical recording medium through the objective lens in addition to the light source, and receives the return light. By controlling the position of the objective lens, In an objective lens control device that controls the focus of irradiated light,
前記受光される戻り光から所定の信号を検出することによって、前記光源の照射す る光が前記光記録媒体に合焦する対物レンズの位置を合焦位置として検出する合 焦位置検出ステップと、  An in-focus position detecting step of detecting a position of an objective lens at which the light emitted from the light source is in focus on the optical recording medium by detecting a predetermined signal from the received return light;
前記合焦位置検出部が検出した合焦位置に応じて前記対物レンズのフォーカス方 向における移動方向を反転させるタイミングを決定し、前記タイミングを表すタイミング 情報を生成するタイミング情報生成ステップと、  A timing information generating step for determining a timing for reversing the moving direction in the focus direction of the objective lens according to the focus position detected by the focus position detection unit, and generating timing information representing the timing;
前記タイミング情報に基づ 、たタイミングで、前記対物レンズのフォーカス方向にお ける移動方向を反転させる反転ステップと、  An inversion step of inverting the moving direction of the objective lens in the focus direction at a timing based on the timing information;
を含むことを特徴とする対物レンズ制御方法。  An objective lens control method comprising:
[8] 対物レンズを備え、光源カゝら前記対物レンズを介して光を光記録媒体に照射してそ の戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記照射 される光のフォーカスを制御する対物レンズ制御方法をコンピュータに実行させるプ ログラムにおいて、 [8] An apparatus that includes an objective lens, irradiates light onto the optical recording medium through the objective lens in addition to the light source, and receives the return light. By controlling the position of the objective lens, Irradiation In a program that causes a computer to execute an objective lens control method for controlling the focus of light to be emitted,
前記受光される戻り光から所定の信号を検出することによって、前記光源の照射す る光が前記光記録媒体に合焦する対物レンズの位置を合焦位置として検出する合 焦位置検出ステップと、  An in-focus position detecting step of detecting a position of an objective lens at which the light emitted from the light source is in focus on the optical recording medium by detecting a predetermined signal from the received return light;
前記対物レンズのフォーカス方向における移動方向を反転させる反転ステップと、 をコンピュータに実行させることを特徴とするプログラム。  A reversing step of reversing the moving direction of the objective lens in the focus direction, and causing the computer to execute the program.
対物レンズを備え、光源カゝら前記対物レンズを介して光を光記録媒体に照射してそ の戻り光を受光する装置であり、前記対物レンズの位置を制御することで、前記照射 される光のフォーカスを制御する対物レンズ制御方法をコンピュータに実行させるプ ログラムにおいて、  An apparatus that includes an objective lens, irradiates light onto the optical recording medium via the objective lens in addition to the light source, and receives the return light. The irradiation is performed by controlling the position of the objective lens. In a program that causes a computer to execute an objective lens control method for controlling the focus of light,
前記受光される戻り光から所定の信号を検出することによって、前記光源の照射す る光が前記光記録媒体に合焦する対物レンズの位置を合焦位置として検出する合 焦位置検出ステップと、  An in-focus position detecting step of detecting a position of an objective lens at which the light emitted from the light source is in focus on the optical recording medium by detecting a predetermined signal from the received return light;
前記合焦位置検出部が検出した合焦位置に応じて前記対物レンズのフォーカス方 向における移動方向を反転させるタイミングを決定し、前記タイミングを表すタイミング 情報を生成するタイミング情報生成ステップと、  A timing information generating step for determining a timing for reversing the moving direction in the focus direction of the objective lens according to the focus position detected by the focus position detection unit, and generating timing information representing the timing;
前記タイミング情報に基づ 、たタイミングで、前記対物レンズのフォーカス方向にお ける移動方向を反転させる反転ステップと、  An inversion step of inverting the moving direction of the objective lens in the focus direction at a timing based on the timing information;
をコンピュータに実行させることを特徴とするプログラム。  A program that causes a computer to execute.
PCT/JP2005/020921 2004-11-17 2005-11-15 Objective lens control device and objective lens control method WO2006054540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-333506 2004-11-17
JP2004333506 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006054540A1 true WO2006054540A1 (en) 2006-05-26

Family

ID=36407083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020921 WO2006054540A1 (en) 2004-11-17 2005-11-15 Objective lens control device and objective lens control method

Country Status (1)

Country Link
WO (1) WO2006054540A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228717A (en) * 1997-02-14 1998-08-25 Hitachi Ltd Optical disk device
JP2004273023A (en) * 2003-03-07 2004-09-30 Victor Co Of Japan Ltd Focus control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228717A (en) * 1997-02-14 1998-08-25 Hitachi Ltd Optical disk device
JP2004273023A (en) * 2003-03-07 2004-09-30 Victor Co Of Japan Ltd Focus control device

Similar Documents

Publication Publication Date Title
JP4512198B2 (en) Optical disk apparatus and disk rotational speed control method thereof
JPH1097720A (en) Information recording and reproducing device
US6400663B1 (en) Optical disc apparatus
JP3565827B2 (en) Recording layer discriminating apparatus, recording layer discriminating program, and recording layer discriminating method
US20010030915A1 (en) Optical disc apparatus
JP3649282B2 (en) Disk device and focusing servo starting method
US20090010123A1 (en) Data recording/reproduction method and data recording/reproduction apparatus
US4989194A (en) Optical information processing method of driving auto-focusing and/or auto-tracking means in accordance with a stored servo signal when irradiation of a record medium with light beam is stopped, and apparatus therefor
JP3608737B2 (en) Disc playback apparatus and disc type discrimination method
WO2006054540A1 (en) Objective lens control device and objective lens control method
JP4343221B2 (en) Optical pickup device
US4761773A (en) Tracking control apparatus
JP2000222744A (en) Optical disk device and focus servo controller
JP3565275B2 (en) Focus search method
JP2001202632A (en) Optical disk device
KR100606671B1 (en) Method for actuator vibration preventing of optical record/player
JPH08147715A (en) Disk recording or reproducing device and focus servo circuit
JP3203373B2 (en) Focus control method for optical disk device
JP2003272182A (en) Optical disk drive and focus searching method thereof
JP2002358663A (en) Optical disk device and recording and reproducing method of optical disk
JP2005063566A (en) Optical disk reproducing device
JPH0991713A (en) Optical information recording and reproducing device
JP4091490B2 (en) Focus servo pull-in device and method
US20050201238A1 (en) Method and device for discriminating deflecting disc
JP4187012B2 (en) Optical disk device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP