WO2006054466A1 - Novel radioactive technetium/bisphosphinoamine complex and radioactive imaging diagnostic agent containing the complex - Google Patents

Novel radioactive technetium/bisphosphinoamine complex and radioactive imaging diagnostic agent containing the complex Download PDF

Info

Publication number
WO2006054466A1
WO2006054466A1 PCT/JP2005/020522 JP2005020522W WO2006054466A1 WO 2006054466 A1 WO2006054466 A1 WO 2006054466A1 JP 2005020522 W JP2005020522 W JP 2005020522W WO 2006054466 A1 WO2006054466 A1 WO 2006054466A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
dimethoxypropylphosphinoethyl
technetium
group
formula
Prior art date
Application number
PCT/JP2005/020522
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Tokunaga
Masaru Kanagawa
Yukie Tomizawa
Yoshihiro Yamamichi
Original Assignee
Nihon Medi-Physics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi-Physics Co., Ltd. filed Critical Nihon Medi-Physics Co., Ltd.
Publication of WO2006054466A1 publication Critical patent/WO2006054466A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0476Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from monodendate ligands, e.g. sestamibi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0489Phosphates or phosphonates, e.g. bone-seeking phosphonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System
    • C07F13/005Compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals

Definitions

  • the present invention relates to a novel radioactive technetium-bisphosphinoamine complex useful for nuclear medicine diagnosis, particularly for nuclear medicine diagnosis in the field of tumor diagnosis and myocardial perfusion diagnosis, and a radioactive diagnostic imaging agent containing the complex.
  • Heart disease such as ischemic heart disease such as myocardial infarction occupies the top causes of death, and since death rate is high when discovery is delayed, early diagnosis is important.
  • diagnostic imaging methods in the heart region include echocardiography, X-ray computed tomography (X-ray CT), and magnetic resonance.
  • Imaging (MRI) and nuclear medicine diagnosis such as positron emission tomography (PET) and single photon emission tomography (SPECT) are mainly used.
  • PET positron emission tomography
  • SPECT single photon emission tomography
  • various compounds have been developed as diagnostic agents for use in nuclear medicine in the heart region, and some of them have been clinically applied.
  • One of the clinically applied myocardial perfusion diagnostic agents sodium chloride thallium 201, dissociates in aqueous solution to become a monovalent cation ( 2Q1 TI + ) and behaves like potassium ion This is considered to be actively taken into the myocardial cells by the sodium-potassium pump. For this reason, it has the feature of providing SPECT images that reflect the distribution of blood flow in the myocardium, which is highly absorbed into the myocardium. In addition, because of the high initial circulation extraction rate (hereinafter referred to as FPEF), it also has the excellent feature of high blood flow linearity and high diagnostic accuracy.
  • FPEF high initial circulation extraction rate
  • thallium 201 has properties that are undesirable for use as a radiopharmaceutical because it has a low energy half of about 70 keV and a long half-life of about 73 hours, making it impossible to administer large doses. Therefore, there is a drawback that the obtained image tends to be unclear.
  • Thallium-201 is a nuclide produced by the cyclotron. There is also the disadvantage of being inferior. Therefore, technetium 99m, which is more favorable as a nuclide for use in radiopharmaceuticals because it has a relatively short half-life of about 140 hours with an energy of about 140 keV, is cheaper and more convenient. Compounds have been developed.
  • MIBI is suppressed in the lung, it accumulates in the liver due to slow clearance from the liver, and the heart / liver ratio calculated from the radioactivity count in the SPECT image is not sufficient. . Since the lungs and liver are present at a location close to the heart, accumulation of the administered diagnostic imaging agent in the lungs, Z, or liver hinders diagnosis in heart disease. For this reason, development of new myocardial perfusion diagnostic agents that suppress accumulation in the lungs and liver is underway. Tetrofosmin is less accumulated in the liver than MIBI, but it is desirable to use a myocardial blood flow agent with less accumulation in the liver in order to further improve the diagnostic ability.
  • Technetium-99m nitride bis (dimethoxypropylphosphinoethyl) ethoxyethylamine-Jetki Shetilditi talented rubamate complex (hereinafter referred to as “technetium-99m nitride”) is a compound that suppresses accumulation in the liver and improves the heart / liver ratio.
  • 99m TcN_PNP5 and the like, various tenetium-99m-nitride-bisphosphinoamine complexes have been developed (see, for example, Patent Documents 2 and 3).
  • this compound is characterized by accumulation in the heart and low accumulation in the lungs and liver, it has the disadvantage that FPEF is low compared to MIBI, which is the preceding agent.
  • Patent Document 1 JP-A-9-328495
  • Patent Document 2 Pamphlet of International Publication No. 98/27100
  • Patent Document 3 Japanese Translation of Special Publication 2004-505064
  • the present invention has been made in view of the above problems, and provides a radioactive technetium complex having a high heart / liver ratio and a heart / lung ratio in a SPECT image and a higher FPEF. And means for solving the problems aimed at providing diagnostic imaging agents using the complex
  • the present invention relates to the following formula (1) in which a bisphosphinoamine compound is coordinated to a technetium-99m tricarbonyl compound:
  • 99m Tc (CO) is technetium-99m tricarbonyl
  • L is bisphosphine
  • a technetium 99m tricarbonyl complex represented by the following formula: and a radioactive diagnostic imaging agent comprising the complex.
  • the above L is not particularly limited as long as it is a bisphosphinoamine compound capable of forming a complex with technetium-99m tricarbonyl compound, but two or more functional groups bonded to phosphorus have a primary hydroxyl group. It is preferable to use a compound other than the compound which is a lower linear alkyl group or a hydroxyl group to be contained, for example, a compound other than a bishydroxymethylphosphino compound or a bishydroxyphosphino compound.
  • R 1 ′′ and R 1 ′ ′′ may be the same or different and each independently represents an alkyl group, a phenyl group, or the following formula (3):
  • R 2 Is a compound represented by hydrogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an amino group, a group represented by the above formula (3) or a group represented by the above formula (4)) Can be preferably used.
  • the alkyl group that can be selected as R ′′, R 1 ′′ or R 1 ′ ′′, and the alkyl group and the substituted alkyl group that can be selected as R 2 may be linear or branched. Is preferably a lower alkyl group, more preferably one having 1 to 4 carbon atoms.
  • bisphosphinoamine compound used in the present invention include bis (diphenylphosphine). Finoethyl) amine, bis (diphenylphosphinoethyleno) methylamine, bis (diphenylphosphinoethyl) ethylamine, bis (diphenylphosphinoethyl) propylamine, bis (diphenylphosphinoethyleno) methoxyethyla Bis (diphenylphosphinoethyl) butyramine, bis (diphenylphosphinoethyl) acetonylamine, bis (dimethoxyphosphinoethyl) amine, bis (dimethoxyphosphinoethyl) methylamine, bis (dimethoxyphosphinoethyl) Ethylamine, bis (dimethoxyphosphinoethyl) propylamine, bis (dimeth
  • bis (dimethoxypropylphosphinoethyl) methoxyethylamine, bis (dimethoxypropylphosphinoethyl) ethoxyethylamine, and bis (diethoxypropylphosphinoethyl) ethoxyethylamine are A compound selected from the group consisting of:
  • the diagnostic imaging agent according to the present invention can be used for diagnosis of various diseases, but can be suitably used particularly as a tumor diagnostic agent and a myocardial blood flow diagnostic agent.
  • a radioactive diagnostic imaging agent preparation kit for preparing the diagnostic imaging agent.
  • the kit includes a first container containing a carbon monoxide source, a reducing agent and a base, and a bisphosphine.
  • a second container containing an inoamine compound is included.
  • the first container may contain a stabilizer if necessary.
  • the bisphosphinoamine compound to be blended in the second container is not particularly limited as long as it can form a complex with technetium 99m tricarbonyl.
  • the same phosphinoamine compound can be used.
  • the base is preferably an inorganic salt such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, calcium hydroxide, or
  • magnesium hydroxide It is more preferable to use magnesium hydroxide.
  • a boron borohydride or a substituted boron hydride in which at least three of the hydrogen atoms constituting the borohydride can be substituted with an inert substituent can be used.
  • the inert substituent refers to a substituent that does not participate in the reaction, and specifically refers to an alkyl group, a phenyl group, or the like.
  • the amount of reducing agent is preferably between 0.1 and 2 molar ratio of base to reducing agent, more preferably between 0.15 and 2, more preferably between 0.25 and 2. .
  • As the stabilizer, tartrate, citrate, formate, etc. can be used, preferably tartrate, more preferably sodium L-tartrate.
  • the compound blended in each container may be in a state of being dissolved in water or physiological saline (0.9% sodium chloride sodium chloride solution).
  • the dried product may be dried by means such as spray drying.
  • the compound according to the present invention exhibits sufficient accumulation in the heart to obtain SPECT images, and in addition to accumulation in the lung and liver, FPEF is 99 m TcN-PNP5. High performance. Therefore, by using the compound according to the present invention as a diagnostic agent for myocardial perfusion, it is possible to obtain a good SPECT image with a high heart / lung ratio and heart Z liver ratio.
  • the compound according to the present invention provides a condition necessary for complex formation by mixing a solution containing a technetium 99m tricarbonyl compound with a solution containing a bisphosphinoamine compound. You can get power S by doing S.
  • the method for synthesizing the complex according to the present invention will be described.
  • a solution containing a technetium-99m tricarbonyl product is prepared.
  • a known method for example, a method described in the literature (Japanese Translation of PCT International Publication No. 2002-512616) can be used.
  • a base, a reducing agent, carbon monoxide, and optionally a stabilizer are dissolved
  • the reaction can be carried out between 20 ° C. and 100 ° C. A temperature between 75 ° C. and 100 ° C. is preferred because the reaction proceeds more quickly.
  • an inorganic salt can be used, and sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, calcium hydroxide, or magnesium hydroxide is preferable. Can be used.
  • the reducing agent is a borohydride or a borohydride, a substituted borohydride that is substituted with an inert substituent in up to three of the hydrogen atoms constituting the anion.
  • a borohydride or a borohydride a substituted borohydride that is substituted with an inert substituent in up to three of the hydrogen atoms constituting the anion.
  • the amount of the reducing agent is adjusted so that the molar ratio with respect to the sum of technetium-99m and technetium-99 is 3 or more, preferably 100 or more, more preferably 1000 or more, and most preferably 10000 or more. If the amount of the reducing agent is small, the reduction of technetium becomes insufficient.
  • the stabilizer tartrate, citrate, formate, or the like can be used, preferably tartrate, more preferably sodium L-tartrate.
  • the amount of stabilizer should be greater than the total amount of technetium-99m and technetium-99, and the molar ratio to the total amount of technetium-99m and technetium-99 is preferably between 100 and 1000000. More preferably between 1000 and 1000000. In this case, the amount of the stabilizer is small, and sufficient stability cannot be obtained, which is preferable.
  • Carbon monoxide may be introduced directly into the solution using a cylinder or the like. You may introduce
  • borano disodium carbonate Na BH 2 CO 3
  • Carbon monoxide and reducing agent can be introduced simultaneously.
  • the amount of the base is such that the molar ratio to the reducing agent is between 0.1 and 2, preferably between 0.15 and 2, and more preferably between 0.25 and 2. At this time, if the amount of the base is small, the pH of the solution becomes low, and the reaction does not proceed sufficiently. If the amount is too large, the solute concentration becomes too high.
  • Each solution used in the above reaction may be a solution using water as a solvent, but it is preferable to use a physiological saline solution as a solvent for preparing an injection.
  • Bisphosphinoamine compounds are described in the literature (Claudio Bianchini et al., Organometallics, 1995, 14, p. 1489-1502 and L. Sacconi & R. Morassi, J. Chem. Soc. (A), 1969, p.2904-29 10) and can be synthesized according to the method described.
  • a bisphosphinoamine compound solution is prepared.
  • a solvent for dissolving the bisphosphinoamine compound water can be used, but a physiological saline solution may be used.
  • a solution obtained by appropriately mixing an amphipathic solvent such as ethanol with water or physiological saline may be used.
  • the pH it is desirable to adjust the pH by adding a pH adjuster to the bisphosphinoamine compound solution.
  • the type and amount of the pH adjusting agent are appropriately selected so that the pH is suitable for complexing the bisphosphinoamine compound with the technetium tricarbonyl compound.
  • the bisphosphinoamine amine compound is bis (dimethoxy propyl phosphino ethyl) Etoki Shechiruamin, since the preferred P H in the complex formed is about 7, bis O.
  • the concentration of the bisphosphinoamine compound is such that it is completely soluble in the solvent used, although there is no particular limitation, it is preferable in consideration of operability in the complex formation reaction after the force of 0.1 force 3 mmol / L.
  • the amount of technetium-99m tricarbonyl compound solution and bisphosphinoamine compound solution to be mixed is appropriately adjusted according to the amount of technetium-99m tricarbonyl compound bisphosphinoamine compound complex and the concentration of each solution. Is done.
  • the concentration of technetium-99m tricarbonyl solution is 3700 MBq /
  • concentration of mL, bis (dimethoxypropylphosphinoethyl) ethoxyethylamine solution is 0.2 mmol / L (0.2 mg / mL), 1 mL of each solution may be used.
  • the ratio of the total amount of bisphosphinoamine compounds used in the reaction to the total amount of technetium tricarbonyl compounds (the total amount of technetium-99m tricarbonyl compounds and the total amount of technetium-99 tricarbonyl compounds) is used. As long as all of the technetium tricarbonyl compounds are in a sufficient amount ratio to form a complex, there is no need to specifically limit them. For example, when synthesizing technetium-99m tricarbonyl compound-bis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex, the amount of bisphosphinoamine compound is 100 or more in molar ratio to technetium tricarbonyl compound. If there is enough.
  • the complex formation reaction can be performed at room temperature, but it is desirable to increase the reaction temperature from the viewpoint of shortening the reaction time.
  • it may be heated at 100 ° C. for 15 minutes.
  • the kit according to the present invention essentially comprises a first container containing a carbon monoxide source, a reducing agent, a base, and optionally a stabilizer, and a second container containing a bisphosphinoamine compound. Including it as an element.
  • the bisphosphinoamine compound blended in the second container is As long as it can form a complex with technetium-99m tricarbonyl compound, the ability to use the same compound as the bisphosphinoamine compound constituting the complex according to the present invention is practical. S can.
  • the same ones used for the preparation of the compound according to the present invention can be used.
  • the carbon monoxide source it is preferable to use a compound capable of generating carbon monoxide in a solution.
  • boranonitrate carbonate can be used.
  • borano disodium carbonate the carbon monoxide source and the reducing agent can be blended in the first container at the same time.
  • the amount of each compound blended in the first container is adjusted according to the amount of technetium-99 to be processed at one time. Specifically, it is used in the same amount ratio as in the synthesis of the complex according to the present invention.
  • the amount of the bisphosphinoamine compound blended in the second container is such that all of the technetium-99m tricarbonyl compound and technetium-99 tricarbonyl compound produced in the first container are coordinated. A sufficient amount is sufficient.
  • borano disodium carbonate 1.5 mg, sodium tetraborate decahydrate 0.7 mg, sodium tartrate dihydrate 2.1 mg and sodium carbonate 1.8 mg are mixed in the first container.
  • the second container 0.15 mg of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine and 120 ⁇ L of 0.5 mol / L hydrochloric acid are blended and freeze-dried. To this was added 1.5 mL of physiological saline solution, 1 mL of which was dispensed and added to the first container, and a complex formation reaction was performed. Technetium 99m tricarbonyl compound bis (dimethoxypropylphosphinoethyl) ethoxetylamine complex is obtained. At this time, the complex formation reaction can be performed at room temperature, but it is preferable to increase the reaction temperature from the viewpoint of shortening the reaction time.
  • the reaction was terminated by carefully adding 78 mL of water little by little, and 78 mL of a 15% sodium hydroxide (Vopak, USA, In) solution and 234 mL of water were added. 200 g of Celite was added as a filter remover, and the mixture was further stirred at room temperature for 30 minutes.
  • a 15% sodium hydroxide Vopak, USA, In
  • thiophosphoryl chloride manufactured by Aldrich 54 mL (0.54 mol) was dissolved in 363 mL of ethanol to prepare a thiophosphoryl chloride solution.
  • the Grignard reagent was cooled to 0 ° C., and the thiophosphoryl chloride solution was added little by little over 1 hour.
  • the reaction solution was cooled so that the temperature of the mixed solution was kept between 0 and 5 ° C.
  • the reaction vessel was allowed to warm to room temperature with stirring and the reaction was refluxed for 2 hours. Thereafter, the reaction solution was cooled to 0 ° C.
  • g (3-methoxypropyl) phosphine was synthesized according to the synthesis scheme described in the following formula (8).
  • the reaction solution was cooled to 0 ° C, and 6.4 mL of degassed water was added little by little with vigorous stirring.
  • 6.4 mL of degassed 15% sodium hydroxide solution was added, and 19.2 mL of degassed water was further added.
  • Stirring was stopped and the reaction solution was allowed to stand at room temperature under argon.
  • 500 mL of degassed ether and 500 mL of degassed water were added and stirred for 30 minutes. Thereafter, stirring was stopped and the mixture was allowed to stand to separate the layers.
  • the upper organic layer was transferred to a 3 L flask.
  • the aqueous layer was extracted with 500 mL of ether, and the ether layer was added to the organic layer in the flask.
  • the organic layer was dried with sodium sulfate (manufactured by Fisher Science) (300 g) and then concentrated under reduced pressure while cooling with a dry ice / isopropanol filling cooler.
  • the reaction product was transferred to a 100 mL flask and dried under reduced pressure under conditions of 0.4 mmHg and 55-60 ° C. to obtain 9.55 g of a colorless transparent oily product, di- (3-methoxypropyl) phosphine.
  • N_ethoxyethyl- ⁇ , ⁇ -diethanolamine was synthesized.
  • distillation under reduced pressure was performed under conditions of 0.5 mmHg and 125 to 127 ° C. to obtain 121 g of a yellow oily substance.
  • This product was applied to a column packed with 1 kg of silica gel and purified using methanol / dichloromethane (1: 9) 10 L to obtain 60 g of N-etochetyl ⁇ , ⁇ -diethanolamine.
  • N, N_di- (2_chloroethyl) 1 N-ethoxyethylamine was synthesized.
  • the ether used for extraction was added to the separated organic layer and dried using 100 g of magnesium sulfate (manufactured by Vopak USA, In). The organic layer was filtered, and the filtrate was concentrated with a rotary evaporator in the presence of 20 mL of toluene to obtain 37 g of a yellow oil.
  • reaction mixture was chromatographed with 400 g of silica gel and 3 L of hexane / ether (5: 1). Fractions with a yellow or slightly yellow color were collected and concentrated using a rotary evaporator. This was concentrated under reduced pressure at room temperature to obtain 19 g of N, N_di- (2_chloroethyl) -N-ethoxyethylamine as a yellow transparent oil.
  • a 500 mL flask was purged with argon, and 9.5 g (53.3 mmol) of di- (3-methoxypropyl) phosphine synthesized in the above step and 115 mL of anhydrous tetrahydrofuran were calorieated. 23.4 mL (58.6 mmol) of a solution obtained by dissolving n-butyllithium in hexane to 2.5 M was added in portions over 4 hours.
  • the reaction vessel was cooled to 0 ° C, and 5.7 g (26.7 mmol) of N, N-di (2-chloroethyl) mono-N-ethoxyethylamine synthesized in the above step was dissolved in 10 mL of anhydrous tetrahydrofuran. The solution was added in small portions over 3 hours. The reaction solution was stirred overnight at room temperature.
  • the synthesized product was applied to a silica gel chromatograph (bed volume 150 mL), and nonpolar impurities were washed out with 2 L of hexane / ether (1: 1). Thereafter, the desired product was eluted with a 5% methanol / dichloromethane solution. The eluate was concentrated to obtain 10 g of a pale yellow oil. This compound was further purified by silica gel chromatography under the same conditions to obtain 5 g of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine having a HPLC purity of 95.3%. This compound was stored under argon (one 30 ° C) until use.
  • Tin chloride anhydrous O. lmg (Nacalai Testa Lot. VIP5014), succinic acid dihydrazide (SDH) recrystallized product lmg (Aldrich Lot.00229EQ) and ethylenediammine tetraacetate disohydrate lmg (Dojindo: Lot. KK078) is dissolved in physiological saline O.
  • m TcO- pertechnetium _99m acid
  • m TcO- pertechnetium _99m acid
  • This 99 m TcN-PNP5 solution was passed through an S-Pak (registered trademark, Waters' Investment Limited) C18 cartridge (trade name, manufactured by Nippon Waters Co., Ltd.), and " m TcN_PNP5 was adsorbed onto the column. After washing with water and 80% ethanol solution, elute with 0.1 mol / L tetraptylammonium bromide solution Z ethanol (10/90), add physiological saline to the eluate and adjust the ethanol concentration to 10%. The final solution had a radioactivity concentration of 350 MBq / mL for pharmacokinetic measurements and 493 MBq / mL for FPEF measurements.
  • the prepared 99 m TcN_PNP5 was subjected to TLC analysis under the following conditions, and the area% of the peak was determined to obtain the radiochemical purity.
  • the radiochemical purity was 94.4% for pharmacokinetic measurements and 95.2% for FPEF measurements.
  • Radiochromatogram scanner manufactured by Aroka, PS-201
  • a solution was prepared by adding 0.79 mL of physiological saline and 0.16 mL of 0.5 mol / L hydrochloric acid to 05 mL. Add 0.5 mL of the technetium-99m tricarbonyl solution prepared above to 100 mL of this solution to 100 mL. Heat at C for 15 minutes and combine technetium-99m tricarbonyl monobis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex (hereinafter referred to as “ 99m Tc (CO) PNP5”).
  • the radioactivity concentration of the obtained 99 m Tc (CO) PNP5 was 1060 MBq / mL.
  • the chemical purity was 88.7%.
  • the pH of the solution was 7.17.
  • Radiochromatogram scanner manufactured by Aroka, model: PS-201 type
  • Technetium tricarbonyl monobis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex [0081] Sodium tetraborate decahydrate 2.8 mg, sodium tartrate dihydrate 8.5 mg, and sodium carbonate 7.2 mg dissolved in 3 mL of physiological saline (0.9% sodium chloride aqueous solution) 1.5 mL was added to 2.3 mg of disodium boranocarbonate. To this solution, 0.5 mL of a pertechnetium mono-99m acid (" m Tc 0-) solution (radioactive concentration: 2162MBq / mL) was added and heated at 100 ° C for 20 minutes. Tricarbonyl compound solution ”).
  • m Tc 0- pertechnetium mono-99m acid
  • the obtained technetium-99m tricarbonyl compound solution and 99 m Tc (CO) PNP5 were subjected to TLC analysis under the same conditions as in Example 1, and the technetium-99m tricarbonyl compound was bis (dimethoxy). It was confirmed that a complex was formed with propylphosphinoethyl) ethoxyethylamine.
  • the value of the area% of the peak in m Tc (CO) PNP5 was obtained and defined as radiochemical purity.
  • the radiochemical purity of the obtained 99 m Tc (CO) PNP5 was 90.1
  • the pH value of the solution was 6.56.
  • Rats (SD system, female, 9 weeks old) were administered intraperitoneally with ketamine and xylazine at 80 mg / kg and 19 mg / kg of the body weight of the rats, respectively, and anesthetized. Introduced. 45 minutes after the introduction of anesthesia, 0.1 mL of m Tc (CO) PNP5 (activity concentration during use: 217.2MBq / mL) was administered from the tail vein of the rat.
  • m Tc (CO) PNP5 activity concentration during use: 217.2MBq / mL
  • the rat abdominal aorta Blood was collected and euthanized, and the organs were removed, and the weight and radioactivity of each organ were measured after removal, using a single channel analyzer (Applied Koken Kogyo Co., Ltd., model: 701_1C).
  • the accumulation rate (% 10) of each organ was calculated according to the following formula (I), and the accumulation rate value obtained for each organ was used to calculate the accumulation rate of the heart / lung. Ratio and heart / liver ratio were calculated (Example 3) Measurements were repeated four times.
  • test time 300MBq / mL (Concentration at use: 385.2 MBq / mL), tetrofosmin (manufactured by Mediphysix of Japan, lot number TMV_C2085, 592MBq / mL at test) (concentration at use 851.3MBq / mL) and Thallium chloride 201 injection ( (Product name, manufactured by Nippon Physics Co., Ltd., lot number 2104, 74MBq / mL at the time of test) (concentration 76MBq / mL at the time of use) was administered from the rat tail vein, and the accumulation rate (% ID / g) of each organ was determined.
  • each formulation was 0.1 mL for 99m TcN_PNP5, 0.05 mL for MIBI and Thallium Chloride-201 Injection, and 0.025 mL for Tetrofosmin. The measurement was repeated 5 times for each preparation.
  • the blood of a rat different from the above was collected, and 5 mL of heparin was added to 10 mL of blood to obtain blood for preparing a perfusate.
  • the hematocrit value is increased by mixing the blood for perfusate preparation with 5 mmol / L 2_ [4_ (2-hydroxyschetil) -1-piperajuryl] ethanesulfonic acid buffer (hereinafter referred to as HEPES buffer).
  • HEPES buffer 5 mmol / L 2_ [4_ (2-hydroxyschetil) -1-piperajuryl] ethanesulfonic acid buffer
  • a solution adjusted to 20% was prepared and used as blood for perfusion.
  • " m Tc (CO) PNP5 m In_DTPA- HSA and thallium chloride-2
  • the radioactivity concentration each 110 ⁇ 120 MBq / mL, 18 ⁇ 19 MBq / mL, the mixed liquid so that 110 to 120 MBq / mL was prepared and the "m Tc (CO) PNP5 dosing solution .
  • the perfusion apparatus is configured to supply perfusate to the aorta of the perfusion heart 9 and to sample coronary circulation blood of the perfusion heart 9 from the pulmonary artery. More specifically, the perfusate is supplied from an oxygen tank (not shown) via a conduit 1 through a conduit 1 from a perfusate container 13 through a pump 3 to a perfusion heart 9 via a delivery line 2. To be supplied.
  • the liquid feed line 2 is provided with a filter 4 and an air trap 5 between the pump 3 and the perfusion heart 9 so as to remove foreign substances and air in the perfusion liquid.
  • a perfusion pressure measuring device 7 is connected to the liquid supply line 2 between the air trap 5 and the perfusion heart 9 so that the perfusion pressure during the experiment can be monitored.
  • the liquid feeding line 2 is provided with an administration liquid injection port 8 between the perfusion pressure measuring device 7 and the perfusion heart 9, from which the administration liquid can be injected into the liquid feeding line 2.
  • a pacing device 6 for the heart is connected to the perfusion heart 9 for the purpose of keeping the heart rate constant. Then, by connecting the catheter 10 to the pulmonary artery of the perfused heart 9, the force S for sampling the coronary blood into the Sampnore vessel 11 can be obtained. In order to prevent the backflow of the perfusate, a hole was made in the apex of the perfused heart 9 with a needle (21 gauge), and a waste reservoir 12 was placed below the heart.
  • the perfusate was perfused with a 5 mmol / L HEPES buffer at a flow rate of 2 mL / min, and fragments of other organs (lungs, etc.) attached to the heart were removed. Thereafter, the flow rate was set to 4 mL / min, and a catheter 10 for collecting coronary blood was inserted into the pulmonary artery to remove blood. Then the pulmonary vein After ligating and replacing the perfusate with the blood for perfusion, the flow rate was set to 1 mL / min. Thereafter, the flow rate of the perfusion apparatus was adjusted so that the coronary blood flow rate was about 1 mL / min / g. About 30 minutes after replacing the perfusate with the blood for perfusion, 99 m Tc (CO) PNP5 administration solution 0.1 m
  • Tetrofosmin manufactured by Mediphysix of Japan, lot number TMV_C4253, 592MBq / mL at the time of test) (concentration 733.9MBq / mL at the time of use), " m Tc (CO) PNP5 administration solution (actual
  • An administration solution was prepared in the same manner as in Example 4), and a 99 m TcN_PNP5 administration solution (Comparative Example 7), a MIBI administration solution (Comparative Example 8) and a tetrofosmin administration solution (Comparative Example 9) were used.
  • the radioactivity concentration of the radioactive technetium compound in each administration solution was 110 to 120 MBq / mL for 99 " 1 TcN_PNP5 administration solution and MIBI administration solution, and 89 to 97 MBq / mL for tetrofosmin administration solution.
  • Example 4 Experiments were carried out in the same manner as in Example 4 using 0.1 mL of each administered solution, and the radioactivity of the coronary blood was measured to determine FPEF (Comparative Examples 7 to 9). The measurement was repeated 4 times for m TcN -PNP5 administration solution and 5 times for other administration solutions.
  • the technetium 99m tricarbonyl complex according to the present invention and the kit according to the present invention can be used as diagnostic imaging agents for various diseases, and in particular, have a high heart / liver ratio and heart / lung ratio in SPECT images. Since FPEF is high, it can be suitably used as a tumor diagnostic agent and a cardiac muscle blood flow diagnostic agent.
  • FIG. 1 is a diagram showing an apparatus for measuring an initial circulation extraction rate.

Abstract

A radioactive technetium complex that realizes enhancing of in a single photon discharge type tomogram, cardiac contrast and initial circulation extraction ratio; and a radioactive imaging diagnostic agent comprising the complex. The complex is a compound of the formula (1) (wherein 99mTc(CO)3 is a technetium-99m tricarbonyl compound and L is a bisphosphinoamine compound). As the bisphosphinoamine compound (L), there can be mentioned, for example, bis(dimethoxypropylphosphinoethyl)methoxyethylamine, bis(dimethoxypropylphosphinoethyl)ethoxyethylamine or bis(diethoxypropylphosphinoethyl)ethoxyethylamine.

Description

明 細 書  Specification
新規放射性テクネチウム一ビスホスフイノアミン錯体および該錯体を含む 放射性画像診断剤  Novel radioactive technetium monobisphosphinoamine complex and radioactive diagnostic imaging agent containing the complex
技術分野  Technical field
[0001] 本発明は、核医学診断、特に腫瘍診断分野および心筋血流診断分野における核 医学診断に有用な新規放射性テクネチウム—ビスホスフイノアミン錯体、および該錯 体を含む放射性画像診断剤に関する。  [0001] The present invention relates to a novel radioactive technetium-bisphosphinoamine complex useful for nuclear medicine diagnosis, particularly for nuclear medicine diagnosis in the field of tumor diagnosis and myocardial perfusion diagnosis, and a radioactive diagnostic imaging agent containing the complex.
背景技術  Background art
[0002] 心筋梗塞等の虚血性心疾患を始めとする心臓病は死亡原因の上位を占めており、 発見が遅れた場合の致死率が高いため、早期に診断することは重要である。心臓領 域における画像診断方法としては、侵襲的な左室造影や冠動脈造影のほか、非侵 襲的な画像診断方法として、心エコー検查、 X線コンピューター断層撮像 (X線 CT)、 磁気共鳴イメージング (MRI)、並びに、陽電子放出型断層撮像 (PET)および単光子 放出型断層撮像(SPECT)等の核医学診断が主に用いられている。これらのうち、心 臓領域における核医学検査に用いる診断剤として、種々の化合物が開発され、その 一部にっレ、ては臨床応用されてレ、る。  [0002] Heart disease such as ischemic heart disease such as myocardial infarction occupies the top causes of death, and since death rate is high when discovery is delayed, early diagnosis is important. In addition to invasive left ventricular imaging and coronary angiography, diagnostic imaging methods in the heart region include echocardiography, X-ray computed tomography (X-ray CT), and magnetic resonance. Imaging (MRI) and nuclear medicine diagnosis such as positron emission tomography (PET) and single photon emission tomography (SPECT) are mainly used. Of these, various compounds have been developed as diagnostic agents for use in nuclear medicine in the heart region, and some of them have been clinically applied.
[0003] 臨床応用されている心筋血流診断剤の一つである塩ィ匕タリウム一 201は、水溶液中 で解離して一価の陽イオン (2Q1TI+)となり、カリウムイオンと同様の挙動を示して、心筋 細胞内にナトリウム カリウムポンプにより能動的に摂取されると考えられている。そ のため、心筋への取込が高ぐ心筋の血流分布を反映した SPECT画像を与えるとい つた特徴を有している。さらに、初回循環抽出率(First Pass Extraction Fraction,以 下、 FPEFとする)が高いため、血流直線性が高ぐ診断精度が高いという優れた特徴 も有している。 [0003] One of the clinically applied myocardial perfusion diagnostic agents, sodium chloride thallium 201, dissociates in aqueous solution to become a monovalent cation ( 2Q1 TI + ) and behaves like potassium ion This is considered to be actively taken into the myocardial cells by the sodium-potassium pump. For this reason, it has the feature of providing SPECT images that reflect the distribution of blood flow in the myocardium, which is highly absorbed into the myocardium. In addition, because of the high initial circulation extraction rate (hereinafter referred to as FPEF), it also has the excellent feature of high blood flow linearity and high diagnostic accuracy.
[0004] し力し、タリウム 201は、エネルギーが約 70 keVと低ぐ半減期が約 73時間と長い ために大量投与ができない、といった放射性医薬品として用いるには好ましくない性 質を有しており、そのために、得られた画像が不鮮明となりやすいという欠点を有して いる。また、タリウム— 201は、サイクロトロンによって製造される核種であり、利便性に 劣るという欠点もある。そこで、エネルギーが約 140keVと高ぐ半減期が約 6時間と比 較的短いために放射性医薬品に用いる核種としてより好ましい性質を有し、より安価 で、かつ利便性に優れたテクネチウム 99mを用いた化合物が開発されている。 [0004] However, thallium 201 has properties that are undesirable for use as a radiopharmaceutical because it has a low energy half of about 70 keV and a long half-life of about 73 hours, making it impossible to administer large doses. Therefore, there is a drawback that the obtained image tends to be unclear. Thallium-201 is a nuclide produced by the cyclotron. There is also the disadvantage of being inferior. Therefore, technetium 99m, which is more favorable as a nuclide for use in radiopharmaceuticals because it has a relatively short half-life of about 140 hours with an energy of about 140 keV, is cheaper and more convenient. Compounds have been developed.
[0005] テクネチウム— 99mを用いた心筋血流診断剤用放射性医薬品としては、テクネチウ ム一 99m—へキサキス一 2—メトキシ _ 2_イソブチル一イソ二トリル(以下、 MIBIとす る)(カルディオライト、登録商標、第一ラジオアイソトープ研究所製)およびテクネチウ ム— 99m—テトロフォスミン(以下、テトロフォスミンとする)(マイオビユー、登録商標、 日本メジフィジックス株式会社製)(例えば、特許文献 1参照)が開発され、臨床応用 されている。これらのうち、 MIBIは肺への集積は抑えられているものの、肝臓からのク リアランスが遅いために肝臓に集積し、 SPECT画像における放射能カウントから算出 した心臓/肝臓比が十分ではなレ、。肺および肝臓は、心臓に近レ、位置に存在してレヽ るため、投与した画像診断剤が肺および Zまたは肝臓に集積すると、心疾患におけ る診断の妨げになる。そのため、肺および肝臓への集積を抑えた新規な心筋血流診 断剤の開発が進められている。テトロフォスミンは、肝臓への集積は MIBIよりは抑えら れているが、更なる診断能の向上を目指すためには、より肝集積を抑えた心筋血流 剤を用いることが望ましい。  [0005] As a radiopharmaceutical for diagnosing myocardial perfusion using technetium-99m, technetium-99m-hexakis-1-methoxy-2-isobutylmonoisonitryl (hereinafter referred to as MIBI) (cardiolite) , Registered trademark, manufactured by Daiichi Radioisotope Laboratories) and technetium-99m-tetrofosmin (hereinafter referred to as tetrofosmin) (Myobiu, registered trademark, manufactured by Nippon Mediphysics Co., Ltd.) It has been applied clinically. Among these, although MIBI is suppressed in the lung, it accumulates in the liver due to slow clearance from the liver, and the heart / liver ratio calculated from the radioactivity count in the SPECT image is not sufficient. . Since the lungs and liver are present at a location close to the heart, accumulation of the administered diagnostic imaging agent in the lungs, Z, or liver hinders diagnosis in heart disease. For this reason, development of new myocardial perfusion diagnostic agents that suppress accumulation in the lungs and liver is underway. Tetrofosmin is less accumulated in the liver than MIBI, but it is desirable to use a myocardial blood flow agent with less accumulation in the liver in order to further improve the diagnostic ability.
[0006] 肝臓への集積を抑えて心臓/肝臓比を改善させた化合物として、テクネチウム— 99 m窒化物 ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンージェトキ シェチルジチ才力ルバメイト錯体(以下、 99mTcN_PNP5とする)を始めとする種々のテ タネチウム一 99m窒化物一ビスホスフイノアミン錯体が開発されている(例えば、特許 文献 2および 3参照)。この化合物は、心臓へ集積し、かつ肺および肝臓への集積が 低いという特徴を有しているものの、 FPEFが先行剤である MIBIと比較して低いという 欠点を有している。 [0006] Technetium-99m nitride bis (dimethoxypropylphosphinoethyl) ethoxyethylamine-Jetki Shetilditi talented rubamate complex (hereinafter referred to as “technetium-99m nitride”) is a compound that suppresses accumulation in the liver and improves the heart / liver ratio. 99m TcN_PNP5) and the like, various tenetium-99m-nitride-bisphosphinoamine complexes have been developed (see, for example, Patent Documents 2 and 3). Although this compound is characterized by accumulation in the heart and low accumulation in the lungs and liver, it has the disadvantage that FPEF is low compared to MIBI, which is the preceding agent.
[0007] 特許文献 1 :特開平 9一 328495号公報  [0007] Patent Document 1: JP-A-9-328495
特許文献 2:国際公開第 98/27100号パンフレット  Patent Document 2: Pamphlet of International Publication No. 98/27100
特許文献 3:特表 2004— 505064号公報  Patent Document 3: Japanese Translation of Special Publication 2004-505064
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0008] 上述したように、 mTcN-PNP5の開発により、心臓/肝臓比は改善されたが、本化合 物は FPEFが十分でないという問題を有している。心筋血流診断剤として用いる化合 物としては、心臓へ集積し、かつ肝臓および肺への集積が低いという99"1 TcN-PNP5の 優れた性能は保持しつつ、 FPEFをより向上させた化合物を用いることが望ましいが、 今までにそのような化合物は開発されていなかった。 Problems to be solved by the invention [0008] As described above, the development of m TcN-PNP5 has improved the heart / liver ratio, but this compound has a problem that the FPEF is not sufficient. Compounds that can be used as diagnostic agents for myocardial perfusion include compounds that have improved FPEF while retaining the excellent performance of 99 " 1 TcN-PNP5, which accumulates in the heart and has low accumulation in the liver and lungs. Although desirable to use, no such compound has been developed so far.
[0009] 本発明は、上記のごとき問題点に鑑みてなされたものであり、 SPECT画像における 心臓/肝臓比および心臓/肺比が高ぐかつ、 FPEFがより高い放射性テクネチウム 錯体を提供すること、および該錯体を用いた画像診断剤を提供することを目的とした 課題を解決するための手段  [0009] The present invention has been made in view of the above problems, and provides a radioactive technetium complex having a high heart / liver ratio and a heart / lung ratio in a SPECT image and a higher FPEF. And means for solving the problems aimed at providing diagnostic imaging agents using the complex
[0010] 本発明者等は鋭意検討を行った結果、テクネチウム 99mトリカルボニル物にビス ホスフィノアミンィ匕合物を配位させた化合物により、上述した問題点を克服し得ること を見出し、本発明を完成するに至った。 [0010] As a result of intensive studies, the present inventors have found that the above-mentioned problems can be overcome by a compound in which a bis-phosphinoamine compound is coordinated to a technetium 99m tricarbonyl compound. The invention has been completed.
[0011] すなわち、本発明は、テクネチウム一 99mトリカルボニル物に、ビスホスフィノアミン 化合物が配位した、下記式(1): [0011] That is, the present invention relates to the following formula (1) in which a bisphosphinoamine compound is coordinated to a technetium-99m tricarbonyl compound:
[0012] [化 12] [0012] [Chemical 12]
〖"mTc(CO)3(L)] ( 1 ) 〖"MTc (CO) 3 (L)] (1)
(式(1)において、 99mTc(CO)はテクネチウム一 99mトリカルボニル物、 Lはビスホスフ (In the formula (1), 99m Tc (CO) is technetium-99m tricarbonyl, L is bisphosphine.
3  Three
イノアミン化合物を示す)で表されるテクネチウム 99mトリカルボ二ル物錯体および 、該錯体を配合してなる放射性画像診断剤である。  A technetium 99m tricarbonyl complex represented by the following formula: and a radioactive diagnostic imaging agent comprising the complex.
[0013] 上記 Lは、テクネチウム一 99mトリカルボニル物と錯体を形成し得るビスホスフィノア ミンィ匕合物である限り特に限定されないが、リンに結合している二つ以上の官能基が 1級の水酸基を含む低級直鎖アルキル基または水酸基である化合物以外のもの、例 えば、ビスヒドロキシメチルホスフイノ体またはビスヒドロキシホスフイノ体以外のものを 用いることが好ましい。 [0013] The above L is not particularly limited as long as it is a bisphosphinoamine compound capable of forming a complex with technetium-99m tricarbonyl compound, but two or more functional groups bonded to phosphorus have a primary hydroxyl group. It is preferable to use a compound other than the compound which is a lower linear alkyl group or a hydroxyl group to be contained, for example, a compound other than a bishydroxymethylphosphino compound or a bishydroxyphosphino compound.
例えば、下記式(2) : [0014] [化 13] For example, the following formula (2): [0014] [Chemical 13]
Figure imgf000005_0001
Figure imgf000005_0001
PCH2CH2NCH2CH2P (2)
Figure imgf000005_0002
Ri,
PCH 2 CH 2 NCH 2 CH 2 P (2)
Figure imgf000005_0002
Ri,
(式(2)において、
Figure imgf000005_0003
R1''および R1'''は同じでも異なっていても良ぐそれぞれ独 立に、アルキル基、フエニル基、または下記式(3):
(In Formula (2),
Figure imgf000005_0003
R 1 ″ and R 1 ′ ″ may be the same or different and each independently represents an alkyl group, a phenyl group, or the following formula (3):
[0015] [化 14]
Figure imgf000005_0004
[0015] [Chemical 14]
Figure imgf000005_0004
(式(3)において、 1は 0≤1≤4、 は 0≤1'≤ 3の整数を示す)で表される基、または下 記式 (4) : (In formula (3), 1 is an integer of 0≤1≤4, is an integer of 0≤1'≤3) or the following formula (4):
[0016] [化 15]  [0016] [Chemical 15]
Figure imgf000005_0005
式(4)において、 mは 0≤m≤4、 m'は 0≤m'≤4、 m',は 0≤m',≤3の整数を示す)で 表される基であり、 R2は水素、アルキル基、置換アルキル基、ァリール基、置換ァリー ル基、アミノ基、前記式(3)で表される基または前記式 (4)で表される基を示す)で表 される化合物を好ましく用いることができる。ここで、 、 R"、 R1''または R1'''として 選択され得るアルキル基、および R2として選択され得るアルキル基および置換アルキ ル基は直鎖でも分岐を有していても良いが、低級アルキル基であることが好ましぐ 炭素数 1から 4のものを用いることがより好ましい。
Figure imgf000005_0005
In Equation (4), m is 0≤m≤4, m 'is 0≤m'≤4, m' is an integer of 0≤m ', ≤3), R 2 Is a compound represented by hydrogen, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an amino group, a group represented by the above formula (3) or a group represented by the above formula (4)) Can be preferably used. Here, the alkyl group that can be selected as R ″, R 1 ″ or R 1 ′ ″, and the alkyl group and the substituted alkyl group that can be selected as R 2 may be linear or branched. Is preferably a lower alkyl group, more preferably one having 1 to 4 carbon atoms.
[0017] 本発明に用いるビスホスフィノアミン化合物の具体例としては、ビス(ジフヱニルホス フィノエチル)ァミン、ビス(ジフエニルホスフイノェチノレ)メチルァミン、ビス(ジフエニル ホスフィノエチル)ェチルァミン、ビス(ジフエニルホスフィノエチル)プロピルァミン、ビ ス(ジフエニルホスフイノェチノレ)メトキシェチルァミン、ビス(ジフエニルホスフイノェチ ノレ)ブチルァミン、ビス(ジフエニルホスフィノエチル)ァセトニルァミン、ビス(ジメトキシ ホスフィノエチル)ァミン、ビス(ジメトキシホスフィノエチル)メチルァミン、ビス(ジメトキ シホスフィノエチル)ェチルァミン、ビス(ジメトキシホスフィノエチル)プロピルァミン、ビ ス(ジメトキシメチルホスフィノエチル)ァミン、ビス(ジメトキシメチルホスフィノエチル)メ チノレアミン、ビス(ジメトキシメチルホスフィノエチル)ェチルァミン、ビス(ジメトキシメチ ビス(ジメトキシェチルホスフィノエチル)ァミン、ビス(ジメトキシェチルホスフイノェチ ノレ)メチノレアミン、ビス(ジメトキシェチルホスフィノエチル)ェチルァミン、ビス(ジメトキ シェチルホスフィノエチル)プロピルァミン、ビス(ジメトキシプロピルホスフィノエチル) ェチルァミン、ビス(ジメトキシプロピルホスフイノェチノレ)プロピルァミン、ビス(ジメトキ シプロピルホスフィノエチル)メトキシェチルァミン、ビス(ジメトキシプロピルホスフイノ ェチノレ)エトキシェチ /レアミン、ビス(ジエトキシプロピ/レホスフイノェチ /レ)エトキシェ チルァミン、ビス(ジエトキシェチルホスフイノェチノレ)ェチルァミン、ビス(ジエトキシェ チルホスフイノェチノレ)プロピルァミン、ビス(ジエトキシェチルホスフィノエチル)メトキ シェチルァミン、ビス(ジメチルホスフィノエチル)メチルァミン、およびビス(ジプロポキ シメチルホスフィノエチル)エトキシェチルァミンより選択される化合物を挙げることが でき、最も好ましくは、ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン 、ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、およびビス(ジエト キシプロピルホスフィノエチル)エトキシェチルァミン力、らなる群より選ばれる化合物を 用いることができる。 [0017] Specific examples of the bisphosphinoamine compound used in the present invention include bis (diphenylphosphine). Finoethyl) amine, bis (diphenylphosphinoethyleno) methylamine, bis (diphenylphosphinoethyl) ethylamine, bis (diphenylphosphinoethyl) propylamine, bis (diphenylphosphinoethyleno) methoxyethyla Bis (diphenylphosphinoethyl) butyramine, bis (diphenylphosphinoethyl) acetonylamine, bis (dimethoxyphosphinoethyl) amine, bis (dimethoxyphosphinoethyl) methylamine, bis (dimethoxyphosphinoethyl) Ethylamine, bis (dimethoxyphosphinoethyl) propylamine, bis (dimethoxymethylphosphinoethyl) amine, bis (dimethoxymethylphosphinoethyl) methylamine, bis (dimethoxymethylphosphinoethyl) Ethylamine, bis (dimethoxymethybis (dimethoxyethylphosphinoethyl) amine, bis (dimethoxyethylphosphinoethyl) methylolamine, bis (dimethoxyethylphosphinoethyl) ethylamine, bis (dimethyoxysethylphosphinoethyl) Propylamine, bis (dimethoxypropylphosphinoethyl) ethylamine, bis (dimethoxypropylphosphinoethyleno) propylamine, bis (dimethoxypropylphosphinoethyl) methoxyethylamine, bis (dimethoxypropylphosphinoethyleno) ethoxyethyl / leamine Bis (diethoxypropy / rephosphinotech / le) ethoxyethylamine, bis (diethoxyethylphosphinotechnoethyl) ethylamine, bis (diethoxyethylphosphinotechnole) And a compound selected from propylamine, bis (diethoxyethylphosphinoethyl) methoxylamylamine, bis (dimethylphosphinoethyl) methylamine, and bis (dipropoxymethylphosphinoethyl) ethoxyethylamine. Most preferably, bis (dimethoxypropylphosphinoethyl) methoxyethylamine, bis (dimethoxypropylphosphinoethyl) ethoxyethylamine, and bis (diethoxypropylphosphinoethyl) ethoxyethylamine are A compound selected from the group consisting of:
本発明に係る画像診断剤は、種々の疾患の診断に用いることができるが、特に腫瘍 診断剤および心筋血流診断剤として、好適に用いることができる。  The diagnostic imaging agent according to the present invention can be used for diagnosis of various diseases, but can be suitably used particularly as a tumor diagnostic agent and a myocardial blood flow diagnostic agent.
本発明の別の側面によれば、前記画像診断剤を調製するための、放射性画像診断 剤調製用キットが提供される。  According to another aspect of the present invention, there is provided a radioactive diagnostic imaging agent preparation kit for preparing the diagnostic imaging agent.
本キットは、一酸化炭素源、還元剤および塩基を含有する第一の容器と、ビスホスフ イノアミン化合物を含有する第二の容器を含んでいることを特徴とするものである。第 一の容器は、必要に応じて安定化剤を配合させたものであっても良い。 The kit includes a first container containing a carbon monoxide source, a reducing agent and a base, and a bisphosphine. A second container containing an inoamine compound is included. The first container may contain a stabilizer if necessary.
また、第二の容器に配合されるビスホスフィノアミン化合物は、テクネチウム 99mト リカルボニル物と錯体を形成しうるものであれば良ぐ具体的には、本発明に係る錯 体を構成するビスホスフィノアミンィ匕合物と同じものを用いることができる。  The bisphosphinoamine compound to be blended in the second container is not particularly limited as long as it can form a complex with technetium 99m tricarbonyl. The same phosphinoamine compound can be used.
[0019] 塩基は無機塩であることが好ましぐ水酸化ナトリウム、水酸化カリウム、炭酸水素ナ トリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、水酸化カルシウム、または[0019] The base is preferably an inorganic salt such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, calcium hydroxide, or
、水酸化マグネシウムを用いることがより好ましレ、。 It is more preferable to use magnesium hydroxide.
[0020] 還元剤としては、水素化ホウ素ァニオン、または、水素化ホウ素ァニオンを構成する 水素原子のうちの少なくとも 3つが、不活性置換基により置換される置換水素化ホウ 素ァニオンを用いることができる。ここで、不活性置換基とは、反応に関与しない置換 基を指し、具体的には、アルキル基、フエ二ル基等を指す。 [0020] As the reducing agent, a boron borohydride or a substituted boron hydride in which at least three of the hydrogen atoms constituting the borohydride can be substituted with an inert substituent can be used. . Here, the inert substituent refers to a substituent that does not participate in the reaction, and specifically refers to an alkyl group, a phenyl group, or the like.
還元剤の量は、塩基の還元剤に対するモル比が 0.1から 2の間とすることが好ましぐ 0.15から 2の間とすることがより好ましぐ 0.25から 2の間とすることがさらに好ましい。 安定化剤としては、酒石酸塩、クェン酸塩、ギ酸塩等を用いることができ、好ましくは 酒石酸塩、より好ましくは、 L-酒石酸ナトリウムを用いることができる。  The amount of reducing agent is preferably between 0.1 and 2 molar ratio of base to reducing agent, more preferably between 0.15 and 2, more preferably between 0.25 and 2. . As the stabilizer, tartrate, citrate, formate, etc. can be used, preferably tartrate, more preferably sodium L-tartrate.
[0021] 本発明に係るキットにおいて、各容器中に配合された化合物は、水や生理食塩液 (0 .9 %塩ィ匕ナトリウム溶液)に溶解した状態のものであっても良いが、凍結乾燥ゃスプ レードライ等の手段により、乾燥させたものであっても良い。 発明の効果 [0021] In the kit according to the present invention, the compound blended in each container may be in a state of being dissolved in water or physiological saline (0.9% sodium chloride sodium chloride solution). The dried product may be dried by means such as spray drying. The invention's effect
[0022] 本発明に係る化合物は、 SPECT画像を得るために十分な心臓への集積を示し、か つ肺および肝臓には集積しないことに加え、さらに、 FPEFが99 mTcN-PNP5と比較して 高いという性能を有している。従って、本発明に係る化合物を心筋血流診断剤として 用いることにより、心臓/肺比ならびに心臓 Z肝臓比が高レ、、良好な SPECT画像を 得ること力 Sできる。 [0022] The compound according to the present invention exhibits sufficient accumulation in the heart to obtain SPECT images, and in addition to accumulation in the lung and liver, FPEF is 99 m TcN-PNP5. High performance. Therefore, by using the compound according to the present invention as a diagnostic agent for myocardial perfusion, it is possible to obtain a good SPECT image with a high heart / lung ratio and heart Z liver ratio.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明に係る化合物は、テクネチウム 99mトリカルボ二ル物を含有する溶液と、ビ スホスフィノアミン化合物を含有する溶液とを混合し、錯体形成に必要な条件を与え ることによって得ること力 Sできる。以下、本発明に係る錯体の合成方法について説明 する。 [0023] The compound according to the present invention provides a condition necessary for complex formation by mixing a solution containing a technetium 99m tricarbonyl compound with a solution containing a bisphosphinoamine compound. You can get power S by doing S. Hereinafter, the method for synthesizing the complex according to the present invention will be described.
[0024] 本発明に係る錯体の合成においては、まず、テクネチウム— 99mトリカルボ二ル物を 含有した溶液を調製する。この溶液の調製法としては、公知の方法、例えば、文献( 特表 2002— 512616号公報)記載の方法を用いることができる。具体的には、塩基 、還元剤、一酸化炭素および所望により安定化剤の溶解した溶液に、過テクネチウム — 99111酸ィォン(991111^〇―)の溶解した溶液をカ卩え、反応させることによって得ることが In the synthesis of the complex according to the present invention, first, a solution containing a technetium-99m tricarbonyl product is prepared. As a method for preparing this solution, a known method, for example, a method described in the literature (Japanese Translation of PCT International Publication No. 2002-512616) can be used. Specifically, a solution in which pertechnetium-99111 acid ( 99111 1 ^ 〇- ) is dissolved in a solution in which a base, a reducing agent, carbon monoxide, and optionally a stabilizer are dissolved, is reacted. Can get by
4  Four
できる。反応は、 20 °Cから 100 °Cの間で行うことができ、 75 °Cから 100 °Cとすると、よ り早く反応が進行するため好ましい。  it can. The reaction can be carried out between 20 ° C. and 100 ° C. A temperature between 75 ° C. and 100 ° C. is preferred because the reaction proceeds more quickly.
[0025] 塩基としては無機塩を用いることができ、水酸化ナトリウム、水酸化カリウム、炭酸水 素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、水酸化カルシウム、ま たは、水酸化マグネシウムを好ましく用いることができる。  [0025] As the base, an inorganic salt can be used, and sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, calcium hydroxide, or magnesium hydroxide is preferable. Can be used.
[0026] 還元剤としては水素化ホウ素ァニオン、または、水素化ホウ素ァニオンであって、該 ァニオンを構成する水素原子の 3つまでが不活性置換基で置換されている、置換水 素化ホウ素ァニオンを用いることができる。より好ましくは、水素化ホウ素ナトリウム、 水素化ホウ素カリウム、水素化ホウ素リチウム、および水素化ホウ素亜鉛からなる群よ り選択された塩により誘導されたァニオンを用いることができる。  [0026] The reducing agent is a borohydride or a borohydride, a substituted borohydride that is substituted with an inert substituent in up to three of the hydrogen atoms constituting the anion. Can be used. More preferably, an anion derived from a salt selected from the group consisting of sodium borohydride, potassium borohydride, lithium borohydride, and zinc borohydride can be used.
還元剤の量は、テクネチウム— 99mとテクネチウム— 99の総和に対し、モル比にし て 3以上、好ましくは 100以上、より好ましくは 1000以上、最も好ましくは 10000以上とな るように調整する。還元剤の量が少ないと、テクネチウムの還元が不十分となるため 好ましくない。  The amount of the reducing agent is adjusted so that the molar ratio with respect to the sum of technetium-99m and technetium-99 is 3 or more, preferably 100 or more, more preferably 1000 or more, and most preferably 10000 or more. If the amount of the reducing agent is small, the reduction of technetium becomes insufficient.
[0027] 安定化剤としては、酒石酸塩、クェン酸塩、ギ酸塩等を用いることができ、好ましくは 酒石酸塩、より好ましくは、 L -酒石酸ナトリウムを用いることができる。安定化剤の量 は、テクネチウム一 99mとテクネチウム一 99の総量よりも多いことが必要であり、テク ネチウム一 99mとテクネチウム一 99の総量に対するモル比を 100から 1000000の間と することが好ましぐ 1000から 1000000の間とすることがより好ましい。この場合、安定 化剤の量が少なレ、と十分な安定性が得られなレ、ため好ましくなレ、。  [0027] As the stabilizer, tartrate, citrate, formate, or the like can be used, preferably tartrate, more preferably sodium L-tartrate. The amount of stabilizer should be greater than the total amount of technetium-99m and technetium-99, and the molar ratio to the total amount of technetium-99m and technetium-99 is preferably between 100 and 1000000. More preferably between 1000 and 1000000. In this case, the amount of the stabilizer is small, and sufficient stability cannot be obtained, which is preferable.
[0028] 一酸化炭素はボンべ等を用いて直接溶液中に導入しても良いが、溶液中で一酸化 炭素を生成し得る化合物を用いて導入しても良い。例えば、前記の還元剤と併せ、 ボラノ炭酸ニナトリウム(Na BH CO )を前記溶液に溶解させることにより、溶液中に [0028] Carbon monoxide may be introduced directly into the solution using a cylinder or the like. You may introduce | transduce using the compound which can produce | generate carbon. For example, in combination with the reducing agent, borano disodium carbonate (Na BH 2 CO 3) is dissolved in the solution.
2 3 2 一 酸化炭素および還元剤を同時に導入することができる。  2 3 2 Carbon monoxide and reducing agent can be introduced simultaneously.
[0029] また、塩基の量は、還元剤に対するモル比が 0.1から 2の間、好ましくは 0.15から 2、よ り好ましくは 0.25から 2の間とする。このとき、塩基の量が少ないと溶液の pHが低くなり 、反応が十分に進行しなくなるため好ましくなぐ多すぎると溶質濃度が高くなりすぎ るため好ましくない。 [0029] The amount of the base is such that the molar ratio to the reducing agent is between 0.1 and 2, preferably between 0.15 and 2, and more preferably between 0.25 and 2. At this time, if the amount of the base is small, the pH of the solution becomes low, and the reaction does not proceed sufficiently. If the amount is too large, the solute concentration becomes too high.
上記反応に用いる各溶液は、水を溶媒としたものであっても良レ、が、生理食塩液を 溶媒として用いた方が、注射剤を調製する上で、好ましい。  Each solution used in the above reaction may be a solution using water as a solvent, but it is preferable to use a physiological saline solution as a solvent for preparing an injection.
[0030] ビスホスフィノアミン化合物は、文献(Claudio Bianchini et al., Organometallics, 1995 ,14, p.1489—1502および L. Sacconi & R. Morassi, J. Chem. Soc.(A),1969,p.2904—29 10)記載の方法に準じて合成することができる。例えば、ビス(ジメトキシプロピルホス フィノエチル)エトキシェチルァミンを合成する場合は、 N,N—ジー(2—クロロェチル) —N—エトキシェチルァミンとジ一(3—メトキシプロピル)ホスフィンを、 n—ブチルリチ ゥムとテトラヒドロフランの存在下で反応させることによって得ることができる。  [0030] Bisphosphinoamine compounds are described in the literature (Claudio Bianchini et al., Organometallics, 1995, 14, p. 1489-1502 and L. Sacconi & R. Morassi, J. Chem. Soc. (A), 1969, p.2904-29 10) and can be synthesized according to the method described. For example, when synthesizing bis (dimethoxypropylphosphinoethyl) ethoxyethylamine, N, N-di (2-chloroethyl) -N-ethoxyethylamine and di (3-methoxypropyl) phosphine It can be obtained by reacting n-butyllithium with tetrahydrofuran.
[0031] 合成したビスホスフィノアミンィ匕合物を用レ、、ビスホスフィノアミン化合物溶液を調製 する。ビスホスフィノアミン化合物を溶解する溶媒としては、水を用いることができるが 、生理食塩液を用いても良い。また、ビスホスフィノアミン化合物の水に対する溶解度 が低レ、場合は、エタノール等の両親媒性の溶媒を水または生理食塩液に適宜混合 させた液を用いても良い。  [0031] Using the synthesized bisphosphinoamine compound, a bisphosphinoamine compound solution is prepared. As a solvent for dissolving the bisphosphinoamine compound, water can be used, but a physiological saline solution may be used. In the case where the solubility of the bisphosphinoamine compound in water is low, a solution obtained by appropriately mixing an amphipathic solvent such as ethanol with water or physiological saline may be used.
上記ビスホスフィノアミン化合物溶液には、 pH調整剤を加えて pHを調整することが 望ましい。 pH調整剤の種類および量は、ビスホスフィノアミン化合物がテクネチウムト リカルボニル物との間で錯体形成するために適した pHとなるように適宜選択される。 例えば、ビスホスフィノアミン化合物がビス(ジメトキシプロピルホスフィノエチル)ェトキ シェチルァミンである場合は、錯体形成における好適 PHは約 7であるので、 O. lmgの ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンを、 0.92 mLの生理食 塩液に溶解したものに対し、 0.08 mLの 0.5 mol/L塩酸を添加すればよレ、。 It is desirable to adjust the pH by adding a pH adjuster to the bisphosphinoamine compound solution. The type and amount of the pH adjusting agent are appropriately selected so that the pH is suitable for complexing the bisphosphinoamine compound with the technetium tricarbonyl compound. For example, if the bisphosphinoamine amine compound is bis (dimethoxy propyl phosphino ethyl) Etoki Shechiruamin, since the preferred P H in the complex formed is about 7, bis O. lmg (dimethoxypropyl phosphino ethyl) Etokishe Add 0.08 mL of 0.5 mol / L hydrochloric acid to tyramine dissolved in 0.92 mL of physiological saline.
ビスホスフィノアミン化合物の濃度は、用レ、る溶媒に完全に溶解する濃度である限り 特に限定する必要はないが、 0.1力 3 mmol/Lの濃度とするの力 後の錯体形成反 応における操作性を考慮すると好ましい。 As long as the concentration of the bisphosphinoamine compound is such that it is completely soluble in the solvent used, Although there is no particular limitation, it is preferable in consideration of operability in the complex formation reaction after the force of 0.1 force 3 mmol / L.
[0032] 次に、調製したテクネチウム一 99mトリカルボニル物溶液と、ビスホスフイノアミンィ匕 合物溶液とを混合し、反応に適した条件を与えて、テクネチウム— 99mトリカルボ二 ル物ビスホスフィノアミン化合物錯体を合成する。 [0032] Next, the prepared technetium-99m tricarbonyl compound solution and the bisphosphinoamine compound solution were mixed and given conditions suitable for the reaction, and technetium-99m tricarbonate bisphosphino was mixed. An amine compound complex is synthesized.
混合するテクネチウム一 99mトリカルボニル物溶液および、ビスホスフィノアミン化合 物溶液の量は、必要とするテクネチウム一 99mトリカルボニル物ビスホスフィノアミン 化合物錯体の量と、各溶液の濃度に応じて適宜調整される。例えば、テクネチウム一 99mトリカルボニル物一ビス(ジメトキシプロピルホスフイノェチノレ)エトキシェチルアミ ン錯体を 1850 MBq合成する場合であって、テクネチウム— 99mトリカルボ二ル物溶 液の濃度が 3700 MBq/mL,ビス(ジメトキシプロピルホスフィノエチル)エトキシェチル ァミン溶液の濃度が 0.2 mmol/L (0.2 mg/mL)である場合は、それぞれの溶液を 1 mL ずつ用いればよい。  The amount of technetium-99m tricarbonyl compound solution and bisphosphinoamine compound solution to be mixed is appropriately adjusted according to the amount of technetium-99m tricarbonyl compound bisphosphinoamine compound complex and the concentration of each solution. Is done. For example, in the case of synthesizing 1850 MBq of technetium-99m tricarbonyl monobis (dimethoxypropylphosphinochinole) ethoxyethylamine complex, the concentration of technetium-99m tricarbonyl solution is 3700 MBq / When the concentration of mL, bis (dimethoxypropylphosphinoethyl) ethoxyethylamine solution is 0.2 mmol / L (0.2 mg / mL), 1 mL of each solution may be used.
[0033] また、反応に用いるビスホスフィノアミン化合物の総量と、テクネチウムトリカルボニル 物の総量(テクネチウム— 99mトリカルボニル物の総量と、テクネチウム—99トリカル ボニル物の総量の合計)の比は、用いるテクネチウムトリカルボニル物の全てが錯体 を形成するために十分な量比である限り特に限定する必要はなレ、。例えば、テクネチ ゥム一 99mトリカルボニル物一ビス(ジメトキシプロピルホスフィノエチル)エトキシェチ ルァミン錯体を合成する場合は、ビスホスフィノアミン化合物の量は、テクネチウムトリ カルボニル物に対し、モル比にして 100以上あれば十分である。  [0033] The ratio of the total amount of bisphosphinoamine compounds used in the reaction to the total amount of technetium tricarbonyl compounds (the total amount of technetium-99m tricarbonyl compounds and the total amount of technetium-99 tricarbonyl compounds) is used. As long as all of the technetium tricarbonyl compounds are in a sufficient amount ratio to form a complex, there is no need to specifically limit them. For example, when synthesizing technetium-99m tricarbonyl compound-bis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex, the amount of bisphosphinoamine compound is 100 or more in molar ratio to technetium tricarbonyl compound. If there is enough.
[0034] 錯体の形成反応は室温で行うことができるが、反応時間を短縮する観点から、反応 温度を高くすることが望ましい。例えば、テクネチウム一 99mトリカルボニル物一ビス( ジメトキシプロピルホスフィノエチル)エトキシェチルァミン錯体を合成する場合におい ては、 100°Cで 15分加熱すればよい。  [0034] The complex formation reaction can be performed at room temperature, but it is desirable to increase the reaction temperature from the viewpoint of shortening the reaction time. For example, in the case of synthesizing technetium-99m tricarbonyl compound-bis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex, it may be heated at 100 ° C. for 15 minutes.
[0035] 次に、本発明に係る放射性画像診断剤調製用キットについて説明する。  Next, the kit for preparing a diagnostic imaging agent for radioactivity according to the present invention will be described.
本発明に係るキットは、一酸化炭素源、還元剤、塩基および所望により安定化剤を 含有する第一の容器と、ビスホスフィノアミンィ匕合物を含有する第二の容器を必須の 構成要素として含んでレ、る。第二の容器に配合されるビスホスフィノアミン化合物は、 テクネチウム— 99mトリカルボニル物との間で錯体を形成するものであれば良ぐ具 体的には、本発明に係る錯体を構成するビスホスフィノアミンィ匕合物と同じ物を用い ること力 Sできる。 The kit according to the present invention essentially comprises a first container containing a carbon monoxide source, a reducing agent, a base, and optionally a stabilizer, and a second container containing a bisphosphinoamine compound. Including it as an element. The bisphosphinoamine compound blended in the second container is As long as it can form a complex with technetium-99m tricarbonyl compound, the ability to use the same compound as the bisphosphinoamine compound constituting the complex according to the present invention is practical. S can.
[0036] 第一の容器に配合される還元剤、塩基および安定化剤は、本発明に係る化合物の 調製に用いられるものと同じものを用いることができる。一酸化炭素源としては、溶液 中で一酸化炭素を発生し得る化合物を用いることが好ましぐ例えばボラノ炭酸ニナ トリウムを用いることができる。ボラノ炭酸ニナトリウムを用いることにより、第一の容器 中に一酸化炭素源と還元剤を同時に配合することができる。  [0036] As the reducing agent, base, and stabilizer blended in the first container, the same ones used for the preparation of the compound according to the present invention can be used. As the carbon monoxide source, it is preferable to use a compound capable of generating carbon monoxide in a solution. For example, boranonitrate carbonate can be used. By using borano disodium carbonate, the carbon monoxide source and the reducing agent can be blended in the first container at the same time.
また、第一の容器および第二の容器としては、密封容器を用いることが望ましぐ各 容器に配合されるそれぞれの化合物は、凍結乾燥されたものを用いることが望ましい  In addition, it is desirable to use sealed containers as the first container and the second container, and it is desirable to use lyophilized compounds for each compound in each container.
[0037] 第一の容器に配合される各化合物の量は、一度に処理するテクネチウム— 99の量 に応じて調整される。具体的には、本発明に係る錯体の合成と同様の量比にて用い られる。また、第二の容器に配合されるビスホスフィノアミン化合物の量は、第一の容 器中で生成したテクネチウム— 99mトリカルボニル物およびテクネチウム— 99トリ力 ルポニル物の全てが配位するのに十分な量であればよい。 [0037] The amount of each compound blended in the first container is adjusted according to the amount of technetium-99 to be processed at one time. Specifically, it is used in the same amount ratio as in the synthesis of the complex according to the present invention. In addition, the amount of the bisphosphinoamine compound blended in the second container is such that all of the technetium-99m tricarbonyl compound and technetium-99 tricarbonyl compound produced in the first container are coordinated. A sufficient amount is sufficient.
以下、ジェネレータより溶出された過テクネチウム 99m酸溶液(総テクネチウムとし て、 10— 1Q mol相当を含有) 1 mLを用いてテクネチウム 99mトリカルボニル物一ビス( ジメトキシプロピルホスフィノエチル)エトキシェチルァミン錯体を合成する場合を例に とって、本発明に係る放射性画像診断剤調製用キットについて説明する。 Hereafter, 1 milliliter of technetium 99m tricarbonyl compound bis (dimethoxypropylphosphinoethyl) ethoxyethylamine using 1 mL of pertechnetium 99m acid solution (total technetium equivalent to 10-1Q mol) eluted from the generator Taking the case of synthesizing a complex as an example, the kit for preparing a diagnostic imaging agent according to the present invention will be described.
[0038] まず、第一の容器中に、ボラノ炭酸ニナトリウム 1.5 mg、四ホウ酸ナトリウム 10水和物 0.7 mg、酒石酸ナトリウム 2水和物 2.1 mgおよび炭酸ナトリウム 1.8 mgを配合させる。こ こに、ジェネレータより溶出された過テクネチウム一 99m酸溶液 (総テクネチウムとし て、 10— 1Q mol相当を含有) 1 mLを添加し、反応させる。この反応は、 20°Cから 100°Cの 間で行うことができ、 75°Cから 100°Cとすると、より早く反応が進行するため好ましい。 [0038] First, borano disodium carbonate 1.5 mg, sodium tetraborate decahydrate 0.7 mg, sodium tartrate dihydrate 2.1 mg and sodium carbonate 1.8 mg are mixed in the first container. Add 1 mL of the pertechnetium-99m acid solution eluted from the generator (total technetium containing 10-1Q mol equivalent) and react. This reaction can be performed between 20 ° C. and 100 ° C., and 75 ° C. to 100 ° C. is preferred because the reaction proceeds more quickly.
[0039] 第二の容器には、ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン 0.1 5 mgおよび 0.5 mol/L塩酸 120 μ Lを配合し、凍結乾燥させる。これに生理的食塩液 1 .5 mLを添加し、うち 1 mLを分取して前記第一の容器に添カ卩し、錯体形成反応させて テクネチウム 99mトリカルボニル物一ビス(ジメトキシプロピルホスフィノエチル)エト キシェチルァミン錯体を得る。このとき、錯体形成反応は室温でも行うことが可能であ るが、反応時間を短くする観点から、反応温度を高くすることが好ましい。例えば、テ タネチウム一 99mトリカルボニル物一ビス(ジメトキシプロピルホスフィノエチル)ェトキ シェチルァミン錯体を合成する場合は、 100°Cで 15分間加熱するのが好ましい。 実施例 In the second container, 0.15 mg of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine and 120 μL of 0.5 mol / L hydrochloric acid are blended and freeze-dried. To this was added 1.5 mL of physiological saline solution, 1 mL of which was dispensed and added to the first container, and a complex formation reaction was performed. Technetium 99m tricarbonyl compound bis (dimethoxypropylphosphinoethyl) ethoxetylamine complex is obtained. At this time, the complex formation reaction can be performed at room temperature, but it is preferable to increase the reaction temperature from the viewpoint of shortening the reaction time. For example, when synthesizing tenetium-99m-tricarbonyl-monobis (dimethoxypropylphosphinoethyl) ethoxystilamine complex, it is preferable to heat at 100 ° C. for 15 minutes. Example
[0040] 以下、実施例を示して本発明をさらに詳しく説明するが、本発明はこれらの内容に 限定されるものではない。  [0040] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these contents.
[0041] [参考例] [0041] [Reference Example]
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンの合成  Synthesis of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine
[0042] 下記の要領に従って、ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルアミ ンの合成を行った。 [0042] Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine was synthesized according to the following procedure.
[0043] まず、下記、式(5)記載の合成スキームに従レ、、 3—メトキシー 1 プロパノールの合 成を行った。  First, 3-methoxy-1-propanol was synthesized according to the synthesis scheme described in the following formula (5).
オーブン乾燥させアルゴン置換した 12L容のフラスコに、リチウムアルミニウムハイド ライド(Aldrich製) 78g (2.1 mol)と、ジェチルエーテル(Columbus Chem. Co.製、以下 、「エーテル」とする) 3Lを入れた。これに、メチル _3—メトキシプロピオネート(Aldric h製) 424g (3.59 mol)を 4時間かけて少量ずつ添加した。添加終了後、混合液を 30分 攪拌し、 0°Cに冷却した。水 78 mLを少量ずつ注意深く添加して反応を終了させ、 15 %水酸化ナトリウム(Vopak, USA, In 製)溶液 78 mLと、水 234 mLをカロえた。セライト 2 00 gを、濾過除剤としてカ卩え、さらに室温で 30分間攪拌した。  In a 12 L flask that had been oven dried and purged with argon, 78 g (2.1 mol) of lithium aluminum hydride (Aldrich) and 3 L of jetyl ether (Columbus Chem. Co., hereinafter referred to as “ether”) were placed. . To this, 424 g (3.59 mol) of methyl _3-methoxypropionate (manufactured by Aldric h) was added little by little over 4 hours. After the addition was complete, the mixture was stirred for 30 minutes and cooled to 0 ° C. The reaction was terminated by carefully adding 78 mL of water little by little, and 78 mL of a 15% sodium hydroxide (Vopak, USA, In) solution and 234 mL of water were added. 200 g of Celite was added as a filter remover, and the mixture was further stirred at room temperature for 30 minutes.
[0044] 得られた茶色の懸濁液を濾過し、さらに濾過物をエーテル 500mLで洗レ、、溶出した エーテルを前記濾過における濾液と合わせた。このろ液を分液ロートに移し、静置分 離させた後に水層を廃棄し、有機層を 4 Lの三角フラスコに移した。無水硫酸マグネ シゥム(Vopak, USA, In 製) 100 gをこのフラスコに加え、 30分間攪拌した。フィルタ 一を用いて無機塩を除去し、そのろ液をロータリーエバポレータ一を用いて濃縮して 285 gの無色透明油状物を得た。これを室温下で減圧濃縮し、 196 gの 3—メトキシー 1 プロパノールを得た。 [0045] [化 16]
Figure imgf000013_0001
[0044] The obtained brown suspension was filtered, and the filtrate was further washed with 500 mL of ether, and the eluted ether was combined with the filtrate in the filtration. The filtrate was transferred to a separatory funnel and allowed to stand still, then the aqueous layer was discarded, and the organic layer was transferred to a 4 L Erlenmeyer flask. 100 g of anhydrous magnesium sulfate (manufactured by Vopak, USA, In) was added to the flask and stirred for 30 minutes. Inorganic salts were removed using a filter, and the filtrate was concentrated using a rotary evaporator to obtain 285 g of a colorless transparent oil. This was concentrated under reduced pressure at room temperature to obtain 196 g of 3-methoxy-1-propanol. [0045] [Chemical 16]
Figure imgf000013_0001
[0046] 次に、下記式(6)記載の合成スキームに従い、 3—メトキシー 1 クロ口プロパンの合 成を行った。 Next, synthesis of 3-methoxy-1-chloropropane was performed according to the synthesis scheme described in the following formula (6).
乾燥、アルゴン置換した 2 L容のフラスコに、上記工程にて合成した 3—メトキシー 1 —プロパノール 196 g (2.17 mol)および、無水ピリジン (Aldrich製) 176 mL (2.17 mol) を入れた。そのフラスコに、塩化チオニール(Bayer Co卬.製) 388 g (3.36 mol)を、反 応液の温度が 10から 30°Cに保たれる様に注意しながら、氷冷下で 4時間かけて少量 ずつ添加した。添加完了後、 70°Cで 4時間過熱し、その後室温に戻した。  196 g (2.17 mol) of 3-methoxy-1-propanol synthesized in the above step and 176 mL (2.17 mol) of anhydrous pyridine (manufactured by Aldrich) were placed in a 2 L flask that had been dried and purged with argon. In the flask, add 388 g (3.36 mol) of thionyl chloride (from Bayer Co.) over 4 hours under ice-cooling, taking care that the temperature of the reaction solution is kept at 10 to 30 ° C. Small portions were added. After the addition was complete, the mixture was heated at 70 ° C for 4 hours and then returned to room temperature.
[0047] この反応液に氷 600 gおよび濃塩酸(Vopak USA, Inc.製) 110 mLの混合物 (懸濁液) をカロえ攪拌した。得られた二層性の液を、分液ロートに移し、有機層をフラスコに回 収した。水層につき、エーテル 300 mLを用いて抽出を行レ、、エーテル層を前記有機 層と合わせた。この有機層を、 5%炭酸カリウム(Aldrich性)溶液 300mLで洗レ、、さらに 炭酸カリウム 100 gを用いて乾燥させた後、濾過を行った。ろ液につきロータリーエバ ポレーターを用いた濃縮を行レ、、 400 mLの黄色の液を得た。  [0047] To this reaction solution, a mixture (suspension) of 600 g of ice and 110 mL of concentrated hydrochloric acid (manufactured by Vopak USA, Inc.) was stirred and stirred. The resulting bilayer liquid was transferred to a separatory funnel, and the organic layer was collected in a flask. The aqueous layer was extracted with 300 mL of ether, and the ether layer was combined with the organic layer. This organic layer was washed with 300 mL of 5% potassium carbonate (Aldrich) solution, further dried with 100 g of potassium carbonate, and then filtered. The filtrate was concentrated using a rotary evaporator to obtain 400 mL of a yellow liquid.
これを常圧下、 105から 108°Cの条件で蒸留し、 166.5 gの無色透明の油状物として、 3—メトキシ一 1—クロ口プロパンを得た。  This was distilled under normal pressure at 105 to 108 ° C. to obtain 16-6.5 g of a colorless transparent oily product, 3-methoxy-1-chloropropane.
[0048] [化 17]
Figure imgf000013_0002
次に、下記式(7)記載の合成スキームに従い、テトラ—(1—メトキシプロピル)ジホス ファンジスルフイドの合成を行った。
[0048] [Chemical 17]
Figure imgf000013_0002
Next, tetra- (1-methoxypropyl) diphosphane disulfide was synthesized according to the synthesis scheme described in the following formula (7).
アルゴン置換した 3 L容フラスコに、上記工程にて合成した 3—メトキシ _ 1 _クロロプ 口パン 66 gおよび、肖 IJり状マグネシウム(Aldrich製) 37.2 g (1.53 mol)を入れ、さらにェ 一テル 1Lを加えた。これを室温下で 10分間攪拌後、室温下で 10分間放置した。この フラスコに、マグネシウムの表面を覆う程度の量のヨウ素の結晶(Aldrich製)を加えた 。エーテルが沸騰を始めた後(約 15分後)に、上記工程にて合成した 3—メトキシー 1 クロ口プロパン 100 gを加えた。本工程にてグリニャール試薬を生成させた。 Into a 3 L flask purged with argon, add 66 g of 3-methoxy_1_chloropump pan synthesized in the above step and 37.2 g (1.53 mol) of shore IJ-like magnesium (manufactured by Aldrich). 1L was added. This was stirred at room temperature for 10 minutes and then allowed to stand at room temperature for 10 minutes. this An amount of iodine crystals (Aldrich) was added to the flask to cover the magnesium surface. After the ether began to boil (after about 15 minutes), 100 g of 3-methoxy-1-chloropropane synthesized in the above step was added. In this step, a Grignard reagent was generated.
[0050] 別に、アルゴン下にて、塩化チォホスフォリル (Aldrich製) 54 mL (0.54 mol)をエーテ ノレ 363 mLに溶解させ、塩化チォホスフォリル溶液を調製した。上記グリニャール試薬 の沸騰終了後、該グリニャール試薬を 0°Cに冷却し、前記塩化チォホスフォリル溶液 を、 1時間以上かけて少量ずつ添カ卩した。このとき、この混合溶液の温度が 0から 5°C の間を保つように反応溶液の冷却を行った。添加が完了したら、反応容器を攪拌し たまま室温まで加温し、反応液を 2時間還流させた。その後、反応液を 0°Cに冷却し た。 [0050] Separately, under argon, thiophosphoryl chloride (manufactured by Aldrich) 54 mL (0.54 mol) was dissolved in 363 mL of ethanol to prepare a thiophosphoryl chloride solution. After completion of boiling of the Grignard reagent, the Grignard reagent was cooled to 0 ° C., and the thiophosphoryl chloride solution was added little by little over 1 hour. At this time, the reaction solution was cooled so that the temperature of the mixed solution was kept between 0 and 5 ° C. When the addition was complete, the reaction vessel was allowed to warm to room temperature with stirring and the reaction was refluxed for 2 hours. Thereafter, the reaction solution was cooled to 0 ° C.
この反応溶液に、氷 3.3 Lと硫酸(Fisher Scientific製) 134 mLの混合物 (懸濁液)をカロ え攪拌した。得られた二層性の液を室温下で一晩攪拌し、その後アルゴン下で分液 ロートに移した。有機層を分取し、ロータリーエバポレーターにて濃縮して無色透明 の油状物として、テトラ一(1—メトキシプロピル)ジホスファンジスルフイド 48 gを得た。  To this reaction solution, a mixture (suspension) of 3.3 L of ice and 134 mL of sulfuric acid (Fisher Scientific) was stirred and stirred. The resulting biphasic liquid was stirred overnight at room temperature and then transferred to a separatory funnel under argon. The organic layer was separated and concentrated with a rotary evaporator to obtain 48 g of tetra (1-methoxypropyl) diphosphane disulfide as a colorless and transparent oily substance.
[0051] [化 18] [0051] [Chemical 18]
Figure imgf000014_0001
次に、下記式(8)記載の合成スキームに従って、ジー(3—メトキシプロピル)ホスフィ ンの合成を行った。
Figure imgf000014_0001
Next, g (3-methoxypropyl) phosphine was synthesized according to the synthesis scheme described in the following formula (8).
乾燥させアルゴン置換した 2 L容のフラスコに、 1 Mのリチウムアルミニウムハイドライ ド /テトラヒドロフラン溶液 168 mL (168 mmol)を入れた。上記工程にて合成したテトラ 一(1ーメトキシプロピル)ジホスファンジスルフイドに、上記工程と同様の方法にて別 に合成したテトラー(1ーメトキシプロピル)ジホスファンジスルフイドをあわせ、合計 64 g (153 mmol)とし、これを脱気したテトラヒドロフラン 375 mLに溶解させ、上記フラスコ に攪拌しながら少量ずつ 4時間以上かけて添加した。この溶液を、 60°Cで 3時間還流 した。 反応液を 0°Cに冷却し、強く攪拌しながら脱気した水 6.4 mLを少量ずつ加えた。この 反応液に、脱気した 15 %水酸化ナトリウム溶液 6.4 mLを加え、さらに脱気した水 19.2 mLを加えた。攪拌を止め、反応液を室温、アルゴン下の条件でー晚静置した。この 反応液に、脱気したエーテル 500 mLおよび脱気した水 500 mLをカロえ、 30分攪拌した 。その後、攪拌を止め、静置して層分離させた。上層の有機層を 3 Lフラスコに移した 。水層は、エーテル 500 mLを用いて抽出し、エーテル層を前記フラスコ中の有機層 に加えた。この有機層を硫酸ナトリウム(Fisher Science製) 300 gでー晚乾燥させた後 、ドライアイス/イソプロパノール充填冷却機にて冷却しながら減圧し、濃縮した。 反応物を 100 mLフラスコに移し、 0.4 mmHg、 55〜60°Cの条件で減圧乾燥して 9.55 g の無色透明の油状物として、ジ— (3—メトキシプロピル)ホスフィンを得た。 In a 2 L flask that had been dried and purged with argon, 168 mL (168 mmol) of 1 M lithium aluminum hydride / tetrahydrofuran solution was placed. Combine tetra- (1-methoxypropyl) diphosphane disulfide synthesized in the above step with tetra- (1-methoxypropyl) diphosphane disulfide separately synthesized in the same manner as in the above step, The total amount was 64 g (153 mmol), which was dissolved in 375 mL of degassed tetrahydrofuran and added to the above flask in portions over 4 hours with stirring. This solution was refluxed at 60 ° C. for 3 hours. The reaction solution was cooled to 0 ° C, and 6.4 mL of degassed water was added little by little with vigorous stirring. To this reaction solution, 6.4 mL of degassed 15% sodium hydroxide solution was added, and 19.2 mL of degassed water was further added. Stirring was stopped and the reaction solution was allowed to stand at room temperature under argon. To this reaction solution, 500 mL of degassed ether and 500 mL of degassed water were added and stirred for 30 minutes. Thereafter, stirring was stopped and the mixture was allowed to stand to separate the layers. The upper organic layer was transferred to a 3 L flask. The aqueous layer was extracted with 500 mL of ether, and the ether layer was added to the organic layer in the flask. The organic layer was dried with sodium sulfate (manufactured by Fisher Science) (300 g) and then concentrated under reduced pressure while cooling with a dry ice / isopropanol filling cooler. The reaction product was transferred to a 100 mL flask and dried under reduced pressure under conditions of 0.4 mmHg and 55-60 ° C. to obtain 9.55 g of a colorless transparent oily product, di- (3-methoxypropyl) phosphine.
[0053] [化 19] [0053] [Chemical 19]
Figure imgf000015_0001
Figure imgf000015_0001
[0054] 次いで、下記式(9)記載の合成スキームに従い、 N _エトキシェチル— Ν,Ν—ジエタ ノールァミンの合成を行った。  Next, according to the synthesis scheme described in the following formula (9), N_ethoxyethyl-Ν, Ν-diethanolamine was synthesized.
乾燥しアルゴン置換した 3 L容のフラスコに、無水エタノール (Tarr製) 240 mL、炭酸 カリウム 276 g (1.97 mol)、ジエタノールァミン 120 mL (1.14 mol)を入れた。これに、ブ ロモェチルェチルエーテル (Aldrich製) 304 g (1.97 mol)を 3時間かけて少量ずつ添 加した。その後、この液をアルゴン下にて 2日間還流させた。この液を 0°Cに冷却し、 濾過した。濾過物をエタノールで洗い、濾液のエタノールを先の濾液と混合した。こ れをロータリーエバポレーターにて濃縮し、 800 gの黄色油状物を得た。  In a 3 L flask that had been dried and purged with argon, 240 mL of absolute ethanol (manufactured by Tarr), 276 g (1.97 mol) of potassium carbonate, and 120 mL (1.14 mol) of diethanolamine were placed. To this, 304 g (1.97 mol) of bromoethyl ether (Aldrich) was added little by little over 3 hours. The solution was then refluxed for 2 days under argon. The solution was cooled to 0 ° C and filtered. The filtrate was washed with ethanol, and the filtrate ethanol was mixed with the previous filtrate. This was concentrated with a rotary evaporator to obtain 800 g of a yellow oily substance.
さらに、 0.5 mmHg、 125から 127°Cの条件で減圧蒸留し、 121 gの黄色油状物を得た 。この生成物をシリカゲル 1 kgを充填したカラムにかけ、メタノーノレ/ジクロロメタン(1 : 9) 10 Lを用いて精製し、 N—ェトキシェチルー Ν,Ν—ジエタノールァミン 60 gを得た  Further, distillation under reduced pressure was performed under conditions of 0.5 mmHg and 125 to 127 ° C. to obtain 121 g of a yellow oily substance. This product was applied to a column packed with 1 kg of silica gel and purified using methanol / dichloromethane (1: 9) 10 L to obtain 60 g of N-etochetyl ー, Ν-diethanolamine.
[0055] [化 20] OEt [0055] [Chemical 20] OEt
NN
HO OH K2C03/ EtOH HO OH ( 9 ) HO OH K 2 C0 3 / EtOH HO OH (9)
[0056] 次いで、下記式(10)記載の合成スキームに従レ、、 N,N_ジ—(2_クロロェチル)一 N—エトキシェチルァミンの合成を行った。 Next, according to the synthesis scheme described in the following formula (10), N, N_di- (2_chloroethyl) 1 N-ethoxyethylamine was synthesized.
乾燥し、アルゴン置換した 1 L容のフラスコに、無水ピリジン 25 mL (304 mmol)および 上記工程にて合成した N—エトキシェチル _N,N_ジエタノールァミン 27 g (152 mmol )を入れた。このフラスコを 0°Cに冷却し、塩化チォニル 108.5 g (912 mmol)を、温度を 0から 10°Cに保ちながら少量ずつ 6時間以上かけて添加した。得られた粘性のある溶 液を、アルゴン下、室温下、遮光条件下で、一晩攪拌した。  In a 1 L-volume flask that had been dried and purged with argon, 25 mL (304 mmol) of anhydrous pyridine and 27 g (152 mmol) of N-ethoxyethyl_N, N_diethanolamine synthesized in the above steps were placed. The flask was cooled to 0 ° C., and 108.5 g (912 mmol) of thionyl chloride was added in small portions over 6 hours while maintaining the temperature at 0 to 10 ° C. The resulting viscous solution was stirred overnight under argon at room temperature under light shielding conditions.
未反応の塩ィ匕チオニールを減圧蒸留にて取り除き、その後、反応液を 0°Cに冷却し た。反応液に水 200 mLを強く攪拌しながら少量ずつ加え、さらに 10°Cに保ちながら 1 時間攪拌した。その後、温度を- 5°Cに下げ、炭酸ナトリウム(Fisher Scientific製) 40 g を強く攪拌しながら少量ずつ加えた。攪拌を、室温に戻るまで 1時間続けた。エーテ ノレ 400 mLを加えて攪拌を止め、得られた二層性の液を分液ロートに移した。この二 層性の液から有機層を分取し、水層についてはエーテル 200mLで抽出を行った。抽 出に用いたエーテルを前記分取した有機層に加え、硫酸マグネシウム(Vopak USA, In 製) 100 gを用いて乾燥させた。この有機層をろ過し、ろ液をトルエン 20 mLの存 在下、ロータリーエバポレータ—にて濃縮し、 37 gの黄色油状物を得た。  Unreacted salt and thioneyl were removed by distillation under reduced pressure, and then the reaction solution was cooled to 0 ° C. To the reaction solution, 200 mL of water was added little by little with vigorous stirring, and further stirred for 1 hour while maintaining at 10 ° C. Thereafter, the temperature was lowered to −5 ° C., and 40 g of sodium carbonate (Fisher Scientific) was added little by little with vigorous stirring. Stirring was continued for 1 hour until it returned to room temperature. 400 mL of etherol was added to stop stirring, and the resulting bilayered liquid was transferred to a separatory funnel. The organic layer was separated from this two-layered solution, and the aqueous layer was extracted with 200 mL of ether. The ether used for extraction was added to the separated organic layer and dried using 100 g of magnesium sulfate (manufactured by Vopak USA, In). The organic layer was filtered, and the filtrate was concentrated with a rotary evaporator in the presence of 20 mL of toluene to obtain 37 g of a yellow oil.
この反応液をシリカゲル 400 g、へキサン/エーテル(5 : 1) 3 Lでクロマトグラフ精製 した。黄色または微黄色を呈した画分を回収し、ロータリーエバポレータ一を用いて 濃縮した。これを室温下で減圧濃縮し、黄色透明の油状物として N,N_ジ—(2_クロ ロェチル)—N—エトキシェチルァミン 19 gを得た。  The reaction mixture was chromatographed with 400 g of silica gel and 3 L of hexane / ether (5: 1). Fractions with a yellow or slightly yellow color were collected and concentrated using a rotary evaporator. This was concentrated under reduced pressure at room temperature to obtain 19 g of N, N_di- (2_chloroethyl) -N-ethoxyethylamine as a yellow transparent oil.
[0057] [化 21] [0057] [Chemical 21]
Figure imgf000016_0001
( 1 0 ) [0058] 最後に、下記式(11)記載の合成スキームに従レ、、ビス(ジメトキシプロピルホスフイノ ェチル)エトキシェチルァミンを合成した。
Figure imgf000016_0001
( Ten ) [0058] Finally, bis (dimethoxypropylphosphinoethyl) ethoxyethylamine was synthesized according to the synthesis scheme described in the following formula (11).
500 mL容のフラスコをアルゴン置換し、上記工程にて合成したジ—(3—メトキシプロ ピル)ホスフィン 9.5 g (53.3 mmol)および無水テトラヒドロフラン 115 mLをカロえた。 n— ブチルリチウムをへキサンに溶解して 2.5 Mとした溶液 23.4 mL (58.6 mmol)を 4時間 以上かけて少量ずつ添加した。反応容器を 0°Cに冷却し、上記工程にて合成した N, N—ジ一(2—クロロェチル)一N—エトキシェチルァミン 5.7 g (26.7 mmol)を無水テト ラヒドロフラン 10 mLに溶解した液を、 3時間以上かけて少量ずつ添カ卩した。この反応 溶液を室温下で一晩攪拌した。  A 500 mL flask was purged with argon, and 9.5 g (53.3 mmol) of di- (3-methoxypropyl) phosphine synthesized in the above step and 115 mL of anhydrous tetrahydrofuran were calorieated. 23.4 mL (58.6 mmol) of a solution obtained by dissolving n-butyllithium in hexane to 2.5 M was added in portions over 4 hours. The reaction vessel was cooled to 0 ° C, and 5.7 g (26.7 mmol) of N, N-di (2-chloroethyl) mono-N-ethoxyethylamine synthesized in the above step was dissolved in 10 mL of anhydrous tetrahydrofuran. The solution was added in small portions over 3 hours. The reaction solution was stirred overnight at room temperature.
[0059] 脱気した冷水 40 mLを上記反応液に少量ずつ加えた。さらに脱気したエーテル 100 mLをカ卩え、得られた二層性の液を分液ロートに移した。水層および有機層をァルゴ ン下でそれぞれ分取した。水層につき、エーテル 30 mLで抽出を行レ、、エーテル層を 前記有機層に加えた。この混合した有機層につき、硫酸ナトリウム 20 gで乾燥させ、 アルゴン下で濾過した。ろ液につきロータリーエバポレータ一にて濃縮し、さらに、攪 拌しながら一晩減圧して 12.17 gの微黄色油状物を得た。この化合物につき、下記の 条件にて HPLC分析を行い、面積%を求めて HPLC純度とした。 HPLC純度は 90%で あった。 [0059] 40 mL of degassed cold water was added to the reaction solution little by little. Further, 100 mL of degassed ether was added, and the resulting bilayer liquid was transferred to a separatory funnel. The aqueous layer and organic layer were separated under argon. The aqueous layer was extracted with 30 mL of ether, and the ether layer was added to the organic layer. The combined organic layer was dried over 20 g sodium sulfate and filtered under argon. The filtrate was concentrated on a rotary evaporator and further depressurized overnight with stirring to obtain 12.17 g of a pale yellow oil. This compound was subjected to HPLC analysis under the following conditions, and area% was determined as HPLC purity. The HPLC purity was 90%.
この合成物をシリカゲルクロマトグラフ(bed volume 150 mL)に力け、非極性不純物 を、へキサン/エーテル(1: 1) 2 Lで洗い出した。その後、 目的物を 5 %メタノール/ ジクロロメタン溶液で溶出した。溶出液を濃縮し、 10 gの微黄色油状物を得た。この 化合物につき、さらに同様の条件にてシリカゲルクロマトグラフ精製を行レ、、 HPLC純 度 95.3 %のビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン 5gを得た。 なお本化合物は、使用まで、アルゴン下 (一 30°C)で保存した。  The synthesized product was applied to a silica gel chromatograph (bed volume 150 mL), and nonpolar impurities were washed out with 2 L of hexane / ether (1: 1). Thereafter, the desired product was eluted with a 5% methanol / dichloromethane solution. The eluate was concentrated to obtain 10 g of a pale yellow oil. This compound was further purified by silica gel chromatography under the same conditions to obtain 5 g of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine having a HPLC purity of 95.3%. This compound was stored under argon (one 30 ° C) until use.
[0060] [化 22] [0060] [Chemical 22]
Figure imgf000017_0001
[0061] HPLC分析条件
Figure imgf000017_0001
[0061] HPLC analysis conditions
使用カラム Kaseisorb LC ODS 300-5 (製品名、東京化成工業株式会社製), 4.6m m X 15cm  Column used Kaseisorb LC ODS 300-5 (product name, manufactured by Tokyo Chemical Industry Co., Ltd.), 4.6 mm x 15 cm
流速 l.OmL/min  Flow rate l.OmL / min
検出 紫外可視吸光光度計 (検出波長: 210nm)  Detection UV-Vis spectrophotometer (Detection wavelength: 210nm)
[0062] 合成したビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンにつき、 N MR測定、質量分析、元素分析 (C、 H、 N、 P、 0 :各%オーダー)を行い、 目的化合物 が合成されていることを確認した。各測定の結果を以下に示す。  [0062] The synthesized bis (dimethoxypropylphosphinoethyl) ethoxyethylamine is subjected to N MR measurement, mass spectrometry, and elemental analysis (C, H, N, P, 0: each% order). It was confirmed that it was synthesized. The results of each measurement are shown below.
[0063] H—NMR^OOMHz, CDC1 , δ )  [0063] H—NMR ^ OOMHz, CDC1, δ)
3  Three
[0064] 1· 19(3Η, s, 1), 3.48(4H, m, 2,3), 2.65(6H, m, 4,5), 1.56(4H, m, 6), 1.45(8H, m, 7), 1.68(8H, m, 8), 3.41(8H, t, 9), 3.33(12H, s, 10)。  [0064] 1 · 19 (3Η, s, 1), 3.48 (4H, m, 2,3), 2.65 (6H, m, 4,5), 1.56 (4H, m, 6), 1.45 (8H, m 7), 1.68 (8H, m, 8), 3.41 (8H, t, 9), 3.33 (12H, s, 10).
なお、ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンの1 H-NMRによ る解析においては、炭素に下記式(12)のとおり番号を付けた。 In the 1 H-NMR analysis of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine, carbon was numbered as shown in the following formula (12).
[0065] [化 23] [0065] [Chemical 23]
Figure imgf000018_0001
Figure imgf000018_0001
[0066] 質量分析 [0066] Mass spectrometry
測定法: ESI ( + )— TOF  Measurement method: ESI (+) — TOF
理論値: [M+H]+ 498 Theoretical value: [M + H] + 498
実験値: m/z 498, 306, 205, 177(フラグメントは下記式(13)のとおり)  Experimental value: m / z 498, 306, 205, 177 (fragment as shown in the following formula (13))
[0067] [化 24] [0067] [Chemical 24]
Figure imgf000019_0001
Figure imgf000019_0001
( 1 3 ) ( 13 )
[0068] 元素分析: ?(各%ォーダー)  [0068] Elemental analysis:? (Each% order)
[0069] [表 1] ビス (ジメトキシプロピルホスフィノエチル) エトキシェチルァミンの元素分析の結果
Figure imgf000019_0003
[0069] [Table 1] Results of elemental analysis of bis (dimethoxypropylphosphinoethyl) ethoxyethylamine
Figure imgf000019_0003
[0070] [比較例 1] [0070] [Comparative Example 1]
テクネチウム 99m窒化物 ビス(ジメトキシプロピルホスフィノエチル)エトキシェチ
Figure imgf000019_0002
Technetium 99m nitride Bis (dimethoxypropylphosphinoethyl) ethoxy
Figure imgf000019_0002
[0071] 体内動態測定および FPEF測定における比較例取得に供する目的で、下記の要領 にて99"1 TcN-PNP5の調製を行った。 [0071] 99 " 1 TcN-PNP5 was prepared in the following manner for the purpose of obtaining a comparative example in pharmacokinetic measurement and FPEF measurement.
塩化スズ(無水) O. lmg (ナカライテスタ Lot.VIP5014)、コハク酸ジヒドラジド (SDH)再結 晶品 lmg (アルドリッチ Lot.00229EQ)およびエチレンジァミン四酢酸ニナトリウム 2水 和物 lmg (同仁化学: Lot.KK078)を生理食塩液 O. lmLに溶解させ、過テクネチウム _ 99m酸 ("mTcO―)溶液を、体内動態測定用は 1.5 mL (放射能濃度: 3754 MBq/mL )、 FPEF測定用は 3.2 mL (放射能濃度: 2945 MBq/mL)加え、室温で 15分放置した。 この際、 0.1 mol/L水酸化ナトリウム 20 を添加して、 pHを約 6.5に調製した。 (この 液を、「"mTcN中間体溶液」とした)。この99 mTcN中間体溶液に、ビス (ジメトキシプロピ ルホスフィノエチル)エトキシェチルァミン 4mg/mL溶液 (可溶化剤として、ガンマシクロ デキストリン (禾卩光: Lot丄 DK1242)を 4mg/mLの濃度で含有)およびジエトキシェチルジ チォカルバメイト (DBODC) 4mg/mL溶液をそれぞれ 0.5mLずつ加え、さらに 0.1 mol/ L水酸化ナトリウムを 20 μ L添カ卩して pHを約 9に調製した。この溶液を 100°Cで 15分力口 熱して99 mTcN-PNP5溶液を調製した。この99 mTcN-PNP5溶液を S印- Pak (登録商標、ゥ オターズ'インヴエストメンッ'リミテッド) C18カートリッジ(商品名、 日本ウォーターズ株 式会社製)に通し、 "mTcN_PNP5をカラムに吸着させ、水および 80%エタノール溶液 で洗浄した。その後、 0.1 mol/Lテトラプチルアンモニゥムブロマイド溶液 Zエタノール (10/90)で溶出し、溶出液に生理食塩液をカ卩えてエタノール濃度が 10%となるよう に調整した。最終的に得られた溶液の放射能濃度は、体内動態測定用については 3 50 MBq/mL, FPEF測定用については 493 MBq/mLであった。 Tin chloride (anhydrous) O. lmg (Nacalai Testa Lot. VIP5014), succinic acid dihydrazide (SDH) recrystallized product lmg (Aldrich Lot.00229EQ) and ethylenediammine tetraacetate disohydrate lmg (Dojindo: Lot. KK078) is dissolved in physiological saline O. lmL, and pertechnetium _99m acid (" m TcO-) solution is 1.5 mL for measuring pharmacokinetics (radioactivity concentration: 3754 MBq / mL ), 3.2 mL (radioactive concentration: 2945 MBq / mL) was added for FPEF measurement and allowed to stand at room temperature for 15 minutes. At this time, 0.1 mol / L sodium hydroxide 20 was added to adjust the pH to about 6.5. (This solution was designated as “ m TcN intermediate solution”). In this 99 m TcN intermediate solution, bis (dimethoxypropylphosphinoethyl) ethoxyethylamine 4 mg / mL solution (as a solubilizer, gammacyclodextrin (Lumitsu DK1242) at a concentration of 4 mg / mL And 0.5 mg each of 4 mg / mL solution of diethoxyethyl dithiocarbamate (DBODC) and 20 μL of 0.1 mol / L sodium hydroxide was added to adjust the pH to about 9. This solution was heated at 100 ° C. for 15 minutes to prepare a 99 m TcN-PNP5 solution. This 99 m TcN-PNP5 solution was passed through an S-Pak (registered trademark, Waters' Investment Limited) C18 cartridge (trade name, manufactured by Nippon Waters Co., Ltd.), and " m TcN_PNP5 was adsorbed onto the column. After washing with water and 80% ethanol solution, elute with 0.1 mol / L tetraptylammonium bromide solution Z ethanol (10/90), add physiological saline to the eluate and adjust the ethanol concentration to 10%. The final solution had a radioactivity concentration of 350 MBq / mL for pharmacokinetic measurements and 493 MBq / mL for FPEF measurements.
調製した99 mTcN_PNP5にっき、以下の条件で TLC分析を行い、ピークの面積%を求 めて放射化学的純度とした。放射化学的純度純度は体内動態測定用については 94. 4 %、 FPEF測定用については 95.2 %であった。 The prepared 99 m TcN_PNP5 was subjected to TLC analysis under the following conditions, and the area% of the peak was determined to obtain the radiochemical purity. The radiochemical purity was 94.4% for pharmacokinetic measurements and 95.2% for FPEF measurements.
[0072] TLC条件: [0072] TLC conditions:
TLCプレート:シリカゲル 60 (製品名、 Merck社製)  TLC plate: Silica gel 60 (Product name, Merck)
展開相:エタノール/クロ口ホルム/トルエン /0.5M酢酸アンモニゥム =5/3/3/0.5 展開長: 10 cm  Deployment phase: Ethanol / Black mouth form / Toluene / 0.5M ammonium acetate = 5/3/3 / 0.5 Deployment length: 10 cm
検出器:ラジオクロマトグラムスキャナ(ァロカ株式会社製、 PS- 201型)  Detector: Radiochromatogram scanner (manufactured by Aroka, PS-201)
[0073] [比較例 2] [0073] [Comparative Example 2]
In_DTPA_HSAの合成  Synthesis of In_DTPA_HSA
[0074] ジエチレントリアミン五酢酸結合ヒト血清アルブミン 10mgを、 0.1mol/Lクェン酸溶液 (p H5.9)0.5mLに溶解した。この溶液 0.2mLと塩ィ匕インジウム一 111(調製時放射能濃度 : 354·4〜563·7 MBq/mL) 0.15mLとを混合し、 mIn-DTPA_HSAを調製した。 [0074] 10 mg of diethylenetriaminepentaacetic acid-conjugated human serum albumin was dissolved in 0.5 mL of a 0.1 mol / L citrate solution (pH 5.9). 0.2 mL of this solution was mixed with 0.15 mL of indium chloride salt 111 (activity concentration at the time of preparation: 354 · 4 to 563 · 7 MBq / mL) to prepare m In-DTPA_HSA.
[0075] [実施例 1] テクネチウムトリカルボ二ル物ービス(ジメトキシプロピルホスフィノエチル)エトキシェ チルアミン錯体 ( FPEF測定用)の合成 [0075] [Example 1] Synthesis of technetium tricarbonyl-bis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex (for FPEF measurement)
[0076] 四ホウ酸ナトリウム 10水和物 2.8 mg、酒石酸ナトリウム 2水和物 8.5 mgおよび炭酸ナト リウム 7.3mgを生理食塩液(0.9%塩ィ匕ナトリウム水溶液) 2mLに溶解させた液 1 mLを、 ボラノ炭酸ニナトリウム 2.3mgに加えた。この液に、過テクネチウム一 99m酸 ("mTc〇― [0076] Sodium tetraborate decahydrate 2.8 mg, sodium tartrate dihydrate 8.5 mg, and sodium carbonate 7.3 mg dissolved in 2 mL of physiological saline (0.9% sodium chloride aqueous solution) Boranoic disodium carbonate was added to 2.3 mg. To this solution, pertechnetium mono-99m acid (" m Tc ○ ―
4 Four
)溶液 (放射能濃度: 2334MBq /mL) 2 mLを加え、 100°Cで 22分加熱した(この液を、「 テクネチウム— 99mトリカルボニル物溶液」とした)。 ) Solution (radioactive concentration: 2334 MBq / mL) 2 mL was added and heated at 100 ° C. for 22 minutes (this solution was referred to as “technetium-99m tricarbonyl solution”).
[0077] 別に、ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン 4mg/mL溶液 0. [0077] Separately, a bis (dimethoxypropylphosphinoethyl) ethoxyethylamine 4 mg / mL solution
05mLに、生理食塩液 0.79 mL及び 0.5mol/L塩酸 0.16 mLを加えた液を調製した。こ の液 0.5mLに、上で調製したテクネチウム— 99mトリカルボニル物溶液 1.5 mLを加え て 100。Cで 15分加熱し、テクネチウム一 99mトリカルボニル物一ビス(ジメトキシプロピ ルホスフィノエチル)エトキシェチルアミン錯体(以下、「99mTc(CO) PNP5」とする)を合 A solution was prepared by adding 0.79 mL of physiological saline and 0.16 mL of 0.5 mol / L hydrochloric acid to 05 mL. Add 0.5 mL of the technetium-99m tricarbonyl solution prepared above to 100 mL of this solution to 100 mL. Heat at C for 15 minutes and combine technetium-99m tricarbonyl monobis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex (hereinafter referred to as “ 99m Tc (CO) PNP5”).
3  Three
成した。得られた99 mTc(CO) PNP5の放射能濃度は、 1060 MBq/mLであった。 Made. The radioactivity concentration of the obtained 99 m Tc (CO) PNP5 was 1060 MBq / mL.
3  Three
[0078] 得られたテクネチウム 99mトリカルボニル物溶液および99 mTc(C〇) PNP5にっき、 [0078] The obtained technetium 99m tricarbonyl compound solution and 99 m Tc (C0) PNP5 were washed.
3  Three
下記の条件にて TLC分析を行った。その結果、 Rf値はテクネチウム— 99mトリカルボ ニル物溶液における 0.38から99 mTc(CO) PNP5では 0.50に変化し、テクネチウム— 99 TLC analysis was performed under the following conditions. As a result, the Rf value changed from 0.38 in technetium-99m tricarbonyl solution to 0.50 for 99 m Tc (CO) PNP5, and technetium- 99
3  Three
mトリカルボニル物がビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンと の間で錯体を形成していることが確認された。前記 TLC分析の結果より99 mTc(CO) PN It was confirmed that the m-tricarbonyl compound formed a complex with bis (dimethoxypropylphosphinoethyl) ethoxyethylamine. 99 m Tc (CO) PN from the result of TLC analysis
3 Three
P5ピークの面積%を求め、放射化学的純度とした。得られた99 mTc(CO) PNP5の放射 The area percentage of the P5 peak was determined and used as the radiochemical purity. The resulting 99 m Tc (CO) PNP5 radiation
3  Three
化学的純度は、 88.7%であった。また、溶液の pHは 7.17であった。  The chemical purity was 88.7%. The pH of the solution was 7.17.
[0079] TLC分析条件: [0079] TLC analysis conditions:
TLCプレート:シリカゲル 60 (製品名、 Merck社製)  TLC plate: Silica gel 60 (Product name, Merck)
展開相:メタノール/濃塩酸 =99/1  Developing phase: Methanol / concentrated hydrochloric acid = 99/1
展開長: 10 cm  Deployment length: 10 cm
検出器:ラジオクロマトグラムスキャナ(ァロカ株式会社製、形式: PS - 201型)  Detector: Radiochromatogram scanner (manufactured by Aroka, model: PS-201 type)
[0080] [実施例 2] [0080] [Example 2]
テクネチウムトリカルボ二ル物一ビス(ジメトキシプロピルホスフィノエチル)エトキシェ チルアミン錯 {本 (ラッ M本 ¾ 測定用)の [0081] 四ホウ酸ナトリウム 10水和物 2.8 mg、酒石酸ナトリウム 2水和物 8.5 mgおよび炭酸ナト リウム 7.2mgを生理食塩液(0.9%塩ィ匕ナトリウム水溶液) 3 mLに溶解させた液 1.5 mLを 、ボラノ炭酸ニナトリウム 2.3mgに加えた。この液に、過テクネチウム一 99m酸 ("mTc 0―)溶液(放射能濃度: 2162MBq/mL) 0.5 mLをカ卩え、 100°Cで 20分加熱した(この液 を、「テクネチウム一 99mトリカルボニル物溶液」とした)。 Technetium tricarbonyl monobis (dimethoxypropylphosphinoethyl) ethoxyethylamine complex [0081] Sodium tetraborate decahydrate 2.8 mg, sodium tartrate dihydrate 8.5 mg, and sodium carbonate 7.2 mg dissolved in 3 mL of physiological saline (0.9% sodium chloride aqueous solution) 1.5 mL Was added to 2.3 mg of disodium boranocarbonate. To this solution, 0.5 mL of a pertechnetium mono-99m acid (" m Tc 0-) solution (radioactive concentration: 2162MBq / mL) was added and heated at 100 ° C for 20 minutes. Tricarbonyl compound solution ”).
別に、ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン 4mg/mL溶液 0. 025mLに、生理食塩液 0.87 mL、 0.5mol/L塩酸 0.08 mLを加えた液を調製した。この 溶液に、上で調製したテクネチウム— 99mトリカルボニル物溶液 lmLを加え 100°Cで 1 5分加熱し、 "mTc(CO) PNP5を合成した。得られた99"1 Tc(CO) PNP5の放射能濃度は、Separately, a solution obtained by adding 0.87 mL of physiological saline and 0.08 mL of 0.5 mol / L hydrochloric acid to 0.025 mL of a bis (dimethoxypropylphosphinoethyl) ethoxyethylamine 4 mg / mL solution was prepared. To this solution was added 1 mL of the technetium-99m tricarbonyl compound solution prepared above and heated at 100 ° C. for 15 minutes to synthesize “ m Tc (CO) PNP5. The resulting 991 Tc (CO) PNP5 The radioactivity concentration of
243.5 MBq/mLであった。 It was 243.5 MBq / mL.
[0082] 得られたテクネチウム— 99mトリカルボニル物溶液および99 mTc(C〇) PNP5にっき、 実施例 1と同様の条件での TLC分析を行レ、、テクネチウム— 99mトリカルボニル物が ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミンとの間で錯体を形成し ていることを確認した。また、 TLC分析の結果から、 "mTc(CO) PNP5におけるピークの 面積%の値を求め、放射化学的純度とした。得られた99 mTc(CO) PNP5の放射化学的 純度は、 90.1%であった。また、溶液の pHの値は 6.56であった。 [0082] The obtained technetium-99m tricarbonyl compound solution and 99 m Tc (CO) PNP5 were subjected to TLC analysis under the same conditions as in Example 1, and the technetium-99m tricarbonyl compound was bis (dimethoxy). It was confirmed that a complex was formed with propylphosphinoethyl) ethoxyethylamine. In addition, from the results of TLC analysis, the value of the area% of the peak in m Tc (CO) PNP5 was obtained and defined as radiochemical purity. The radiochemical purity of the obtained 99 m Tc (CO) PNP5 was 90.1 The pH value of the solution was 6.56.
[0083] [実施例 3、比較例 3〜6] [0083] [Example 3, Comparative Examples 3 to 6]
ラット体内分布の沏 I定  Rat body distribution
[0084] ラット(SD系、メス、 9週齢)に、ケタミンおよびキシラジンを、ラットの体重に対し、それ ぞれ 80 mg/kgおよび 19 mg/kgとなるように腹腔内投与し、麻酔を導入した。麻酔導 入 45分後に、 "mTc(CO) PNP5 0.1 mL (使用時放射能濃度: 217.2MBq/mL)をラット 尾静脈より投与した。投与後 2分後および 60分後に、ラットの腹大動脈より採血して安 楽死させ、臓器を摘出した。摘出後に各臓器重量および放射能を測定した。放射能 の測定は、シングルチャンネルアナライザ (応用光研工業株式会社製、形式 : 701_1C )を用いた。放射能の測定値を用い、下記数式 (I)に従って、各臓器の集積率(%10 )を算出した。また、各臓器について求めた集積率の値を用い、集積率の心臓/肺 比および心臓/肝臓比を算出した(実施例 3)。測定は 4回繰り返し行った。 [0084] Rats (SD system, female, 9 weeks old) were administered intraperitoneally with ketamine and xylazine at 80 mg / kg and 19 mg / kg of the body weight of the rats, respectively, and anesthetized. Introduced. 45 minutes after the introduction of anesthesia, 0.1 mL of m Tc (CO) PNP5 (activity concentration during use: 217.2MBq / mL) was administered from the tail vein of the rat. 2 and 60 minutes after administration, the rat abdominal aorta Blood was collected and euthanized, and the organs were removed, and the weight and radioactivity of each organ were measured after removal, using a single channel analyzer (Applied Koken Kogyo Co., Ltd., model: 701_1C). Using the measured radioactivity, the accumulation rate (% 10) of each organ was calculated according to the following formula (I), and the accumulation rate value obtained for each organ was used to calculate the accumulation rate of the heart / lung. Ratio and heart / liver ratio were calculated (Example 3) Measurements were repeated four times.
[0085] [数 1] ^ ^ t 、 各臟器の放射能 (時間補正値) Zcpm バックグラウンド/ cpm ,、 各臓器の集稹率 (%ID/g)= (I) 各臓器の放射能総和 (時間補正値) X (各臓器の重量 Zg) [0085] [Equation 1] ^ ^ t , Radioactivity of each organ (Time correction value) Zcpm Background / cpm, Concentration rate of each organ (% ID / g ) = (I) Total radioactivity of each organ (Time correction value) X (Weight of each organ Zg)
[0086] また、比較として、上記と同様の条件にて、 "mTcN- PNP5(使用時濃度 287.1MBq/mL )、 MIBI (第一ラジオアイソトープ研究所製、ロット番号 214、検定時 300MBq/mL) (使 用時濃度: 385.2 MBq/mL)、テトロフォスミン(日本メジフィジックス株式会社製、ロット 番号 TMV_C2085、検定時 592MBq/mL) (使用時濃度 851.3MBq/mL)および塩化タリ ゥム 201注射液(商品名、 日本メジフィジックス株式会社製、ロット番号 2104、検定 時 74MBq/mL) (使用時濃度 76MBq/mL)を、それぞれラット尾静脈より投与し、各臓器 の集積率 (%ID/g)を算出した (それぞれ、比較例 3、 4、 5、 6)。それぞれの製剤の投 与量は、 99mTcN_PNP5は 0.1mL、 MIBIおよび塩化タリウム— 201注射液は 0.05mL、テ トロフォスミンは 0.025mLとした。また、測定は各製剤ともに 5回繰り返し行った。 [0086] Further, as a comparison, at the same conditions, "m TcN- PNP5 (when using concentration 287.1MBq / mL), MIBI (Daiichirajioaisotopukenkyujo Ltd., Lot No. 214, test time 300MBq / mL ) (Concentration at use: 385.2 MBq / mL), tetrofosmin (manufactured by Mediphysix of Japan, lot number TMV_C2085, 592MBq / mL at test) (concentration at use 851.3MBq / mL) and Thallium chloride 201 injection ( (Product name, manufactured by Nippon Physics Co., Ltd., lot number 2104, 74MBq / mL at the time of test) (concentration 76MBq / mL at the time of use) was administered from the rat tail vein, and the accumulation rate (% ID / g) of each organ was determined. (Comparative Examples 3, 4, 5, and 6 respectively) The dosage of each formulation was 0.1 mL for 99m TcN_PNP5, 0.05 mL for MIBI and Thallium Chloride-201 Injection, and 0.025 mL for Tetrofosmin. The measurement was repeated 5 times for each preparation.
[0087] 結果を、表 2に示す。 "mTc(CO) PNP5の心筋集積率 (%ID/g)の値 (実施例 3)は、 2分 [0087] The results are shown in Table 2. " m Tc (CO) PNP5 myocardial accumulation rate (% ID / g) (Example 3) is 2 minutes
3  Three
点、 60分点ともに、他のテクネチウム製剤(比較例 3〜5)と同等以上の値を示してい た。この結果より、 "mTc(CO) PNP5は、他のテクネチウム製剤同様、心筋への高い集 Both the score and the 60-minute score were equal to or higher than those of other technetium preparations (Comparative Examples 3 to 5). From this result, “ m Tc (CO) PNP5 is highly concentrated in the myocardium, like other technetium preparations.
3  Three
積を示すことが確認された。 "mTc(CO) PNP5における集積率の心臓/肺比および心 It was confirmed to show a product. " m Tc (CO) PNP5 accumulation rate heart / lung ratio and heart
3  Three
臓/肝臓比の値は、特に 60分点において、他の心筋血流製剤(比較例 3〜6)と比較 して、最も高い値を示していた。この結果より、 99mTc(C〇) PNP5は、肺および肝臓から The value of the viscera / liver ratio was the highest, especially at 60 minutes, compared with other myocardial blood flow products (Comparative Examples 3 to 6). From this result, 99m Tc (C〇) PNP5 is
3  Three
のクリアランスが早レ、ことが示された。  It was shown that the clearance was early.
[0088] [表 2] [0088] [Table 2]
^»Tc(CO)sPNP5および他の心筋血流製剤の心筋集積率、 集積率の心臓 Z肺比 および心臓/肝臓比 ^ »Myocardial accumulation rate of Tc (CO) sPNP5 and other myocardial perfusion products, heart Z lung ratio and heart / liver ratio of accumulation rate
Figure imgf000023_0001
Figure imgf000023_0001
[0089] [実施例 4、比較例 7〜: 10] ラット摘出還流心臓を用いた FPEFの測定 [0089] [Example 4, Comparative Examples 7 to 10] Measurement of FPEF using isolated perfused rat heart
[0090] ラット(SD系、ォス、 13〜15週齢)に、へパリン 0.5 mLを腹腔内投与し、次いでチオペ ンタール 2 mL/kgを腹腔内投与することにより、麻酔を導入した。その後、開胸して心 臓を摘出し、 自作の灌流装置(図 1参照)に装着した。 Anesthesia was introduced into rats (SD system, male, 13-15 weeks old) by intraperitoneally administering 0.5 mL heparin and then intraperitoneally 2 mL / kg thiopental. After that, the chest was opened and the heart was removed and attached to a self-made perfusion device (see Fig. 1).
別に、上記と別のラットの血液を採取し、血液 lOOmLに対してへパリン 5mLを加えて 灌流液調製用の血液とした。さらに、灌流液調製用血液と 5 mmol/L 2_[4_(2 -ヒドロキ シェチル)- 1 -ピぺラジュル]エタンスルホン酸緩衝液(以下、 HEPES緩衝液とする)を 混合してへマトクリット値が 20 %となるように調整した液を調製し、灌流用血液とした。 また、上記灌流用血液に、 "mTc(CO) PNP5、 mIn_DTPA- HSAおよび塩化タリウム— 2 Separately, the blood of a rat different from the above was collected, and 5 mL of heparin was added to 10 mL of blood to obtain blood for preparing a perfusate. In addition, the hematocrit value is increased by mixing the blood for perfusate preparation with 5 mmol / L 2_ [4_ (2-hydroxyschetil) -1-piperajuryl] ethanesulfonic acid buffer (hereinafter referred to as HEPES buffer). A solution adjusted to 20% was prepared and used as blood for perfusion. In addition, to the above blood for perfusion, " m Tc (CO) PNP5, m In_DTPA- HSA and thallium chloride-2
3  Three
01を、それぞれ放射能濃度が 110〜120 MBq/mL, 18〜19 MBq/mL, 110〜120 MBq /mLとなるように混合した液を調製し、 "mTc(CO) PNP5投与液とした。 01, the radioactivity concentration each 110~120 MBq / mL, 18~19 MBq / mL, the mixed liquid so that 110 to 120 MBq / mL was prepared and the "m Tc (CO) PNP5 dosing solution .
3  Three
図 1に示されるように、上記灌流装置は、灌流液を灌流心臓 9の大動脈に供給し、該 灌流心臓 9の冠循環血液を肺動脈からサンプリングできるように構成されている。具 体的には、灌流液は、酸素ボンべ(図示せず)から導管 1を介して酸素ガスが供給さ れている灌流液容器 13からポンプ 3により送液ライン 2を介して灌流心臓 9に供給され る。送液ライン 2には、ポンプ 3と灌流心臓 9との間にフィルター 4及びエアートラップ 5 が設けられており、灌流液中の異物およびエアーを除去するようにされている。また、 送液ライン 2には、エアートラップ 5と灌流心臓 9との間に、灌流圧測定装置 7が接続 され、実験中の灌流圧をモニターすることができるようにされている。また、送液ライン 2には、灌流圧測定装置 7と灌流心臓 9との間に、投与液注入口 8が設けられており、 そこから投与液を送液ライン 2に注入できる。また、灌流心臓 9には、心拍を一定に保 つ目的で、心臓のぺーシング装置 6が接続されている。そして、灌流心臓 9の肺動脈 にカテーテル 10を接続することにより、冠循環血液をサンプノレ容器 11にサンプリング すること力 Sできる。なお、灌流液の逆流を防ぐために、灌流心臓 9の心尖部にニード ノレ (21ゲージ)で穴を空け、心臓の下方に廃液溜め 12を設置した。  As shown in FIG. 1, the perfusion apparatus is configured to supply perfusate to the aorta of the perfusion heart 9 and to sample coronary circulation blood of the perfusion heart 9 from the pulmonary artery. More specifically, the perfusate is supplied from an oxygen tank (not shown) via a conduit 1 through a conduit 1 from a perfusate container 13 through a pump 3 to a perfusion heart 9 via a delivery line 2. To be supplied. The liquid feed line 2 is provided with a filter 4 and an air trap 5 between the pump 3 and the perfusion heart 9 so as to remove foreign substances and air in the perfusion liquid. In addition, a perfusion pressure measuring device 7 is connected to the liquid supply line 2 between the air trap 5 and the perfusion heart 9 so that the perfusion pressure during the experiment can be monitored. In addition, the liquid feeding line 2 is provided with an administration liquid injection port 8 between the perfusion pressure measuring device 7 and the perfusion heart 9, from which the administration liquid can be injected into the liquid feeding line 2. In addition, a pacing device 6 for the heart is connected to the perfusion heart 9 for the purpose of keeping the heart rate constant. Then, by connecting the catheter 10 to the pulmonary artery of the perfused heart 9, the force S for sampling the coronary blood into the Sampnore vessel 11 can be obtained. In order to prevent the backflow of the perfusate, a hole was made in the apex of the perfused heart 9 with a needle (21 gauge), and a waste reservoir 12 was placed below the heart.
[0091] 灌流液を 5 mmol/L HEPES緩衝液として流速 2 mL/分で灌流を行レ、、心臓に付着し ていた他の臓器 (肺等)の断片等を除去した。その後、流速を 4 mL/分とし、肺動脈 に冠循環血液採取用のカテーテル 10を揷入し、血液を取り出した。その後、肺静脈 を結紮し、灌流液を上記灌流用血液に交換した後、流速を 1 mL/分に設定した。そ の後、冠循環血液流量が約 1 mL/分/ gとなるように灌流装置の流速を調節した。灌 流液を上記灌流用血液に交換してから約 30分後、上記99 mTc(CO) PNP5投与液 0.1 m [0091] The perfusate was perfused with a 5 mmol / L HEPES buffer at a flow rate of 2 mL / min, and fragments of other organs (lungs, etc.) attached to the heart were removed. Thereafter, the flow rate was set to 4 mL / min, and a catheter 10 for collecting coronary blood was inserted into the pulmonary artery to remove blood. Then the pulmonary vein After ligating and replacing the perfusate with the blood for perfusion, the flow rate was set to 1 mL / min. Thereafter, the flow rate of the perfusion apparatus was adjusted so that the coronary blood flow rate was about 1 mL / min / g. About 30 minutes after replacing the perfusate with the blood for perfusion, 99 m Tc (CO) PNP5 administration solution 0.1 m
3  Three
Lを投与液注入口 8から送液ライン 2に直接投与し、投与約 10秒後から 50秒後にかけ 、サンプノレ容器 11に冠循環血液を 1滴ずつ採取した。その後、 1分後まで 5秒ずつ、 1 分後から 2分後までは 10秒ずつ、 3分後から 5分後までは 15秒ずつ冠循環血液を採取 した。採取した冠循環血液につき、ガンマ線スぺクトリメータ(EG&G ORTEC社製、形 式: GMX-10180-P)を用いてインジウム一 111、タリウム一 201およびテクネチウム一 99mの放射能を同時に測定した。下記式 (II)および (III)を用い、 "mTc(CO) PNP5お L was administered directly from the administration liquid injection port 8 to the liquid delivery line 2, and about 10 to 50 seconds after administration, coronary circulation blood was collected drop by drop in the Sampnore container 11. Thereafter, coronary blood was collected every 5 seconds until 1 minute, every 10 seconds from 1 minute to 2 minutes, and every 15 seconds from 3 minutes to 5 minutes. The collected coronary blood was simultaneously measured for radioactivity of indium 111, thallium 201 and technetium 99m using a gamma ray spectrometer (EG & G ORTEC, model: GMX-10180-P). Using the following formulas (II) and (III), " m Tc (CO) PNP5
3 よびタリウム— 201の抽出率 E(t)をそれぞれ求めた。 99mTc(C〇) PNP5およびタリウム— 3 and the extraction rate E (t) of thallium-201 were determined. 99m Tc (C〇) PNP5 and thallium—
3  Three
201のそれぞれにっき、 mIn-DTPA- HSAの h(t)がピークに達する時間以前で最も高 レ、 E(t)を求め、 FPEFとした(実施例 4および比較例 10)。測定は、 6回繰り返し行った [数 2] ft(r) = ^ (II) For each of 201, the highest level, E (t), was obtained before the time at which h (t) of m In-DTPA-HSA reached its peak, and was designated as FPEF (Example 4 and Comparative Example 10). The measurement was repeated 6 times. [Equation 2] ft (r) = ^ (II)
?0  ? 0
Figure imgf000025_0001
Figure imgf000025_0001
C{t) : 時間点 tにおける試料の放射能の測定値 q0 : 投与液 0.1 mL中の放射能の測定値 hHSA (t) : min-DTPA-HSAにおける Α( ) C {t): Measured value of sample radioactivity at time point t q 0 : Measured value of radioactivity in 0.1 mL of administration solution h HSA (t): Α () in min-DTPA-HSA
E{t) : 時間点 tにおける抽出率 [0093] また、 Tc(CO) PNP5の代わりに、 TcN_PNP5 (使用時濃度 409. lMBq/mL)、 MIBI E {t): Extraction rate at time point t [0093] Also, instead of Tc (CO) PNP5, TcN_PNP5 (concentration in use: 409. lMBq / mL), MIBI
3  Three
(第一ラジオアイソトープ研究所製凍結乾燥キット (ロット番号 304)を用いて調製、調 製時: 1160Bq/mL) ("mTcO—溶出時濃度: 1242.6MBq/mL、使用時濃度 955.4MBq/ (Prepared and prepared using a lyophilization kit manufactured by Daiichi Radioisotope Laboratories (Lot No. 304): 1160Bq / mL) (" m TcO—elution concentration: 1242.6MBq / mL, use concentration 955.4MBq /
4  Four
mL)、テトロフォスミン(日本メジフィジックス株式会社製、ロット番号 TMV_C4253、検 定時 592MBq/mL) (使用時濃度 733.9MBq/mL)を用レ、、 "mTc(CO) PNP5投与液(実 mL), Tetrofosmin (manufactured by Mediphysix of Japan, lot number TMV_C4253, 592MBq / mL at the time of test) (concentration 733.9MBq / mL at the time of use), " m Tc (CO) PNP5 administration solution (actual
3  Three
施例 4)と同様の要領にて投与液を調製し、それぞれ99 mTcN_PNP5投与液 (比較例 7) 、 MIBI投与液(比較例 8)およびテトロフォスミン投与液(比較例 9)とした。なお、各投 与液中の放射性テクネチウム化合物の放射能濃度は、99"1 TcN_PNP5投与液および M IBI投与液については 110〜120 MBq/mL,テトロフォスミン投与液については 89〜97 MBq/mLとした。各投与液 0.1 mLを用レ、、実施例 4と同様の方法にて実験を行レ、、冠 循環血液の放射能の測定を行って、 FPEFを求めた(比較例 7〜9)。測定は、 "mTcN -PNP5投与液にっレ、ては 4回、その他の投与液にっレ、ては 5回繰り返し行った。 An administration solution was prepared in the same manner as in Example 4), and a 99 m TcN_PNP5 administration solution (Comparative Example 7), a MIBI administration solution (Comparative Example 8) and a tetrofosmin administration solution (Comparative Example 9) were used. The radioactivity concentration of the radioactive technetium compound in each administration solution was 110 to 120 MBq / mL for 99 " 1 TcN_PNP5 administration solution and MIBI administration solution, and 89 to 97 MBq / mL for tetrofosmin administration solution. Experiments were carried out in the same manner as in Example 4 using 0.1 mL of each administered solution, and the radioactivity of the coronary blood was measured to determine FPEF (Comparative Examples 7 to 9). The measurement was repeated 4 times for m TcN -PNP5 administration solution and 5 times for other administration solutions.
[0094] 結果を、表 3に示す。 "mTc(CO) PNP5の FPEFは、 "mTcN_PNP5およびテトロフォスミ The results are shown in Table 3. " m Tc (CO) PNP5 FPEF is" m TcN_PNP5 and Tetrofosmi
3  Three
ンより高く(Pく 0.05)、 MIBIと同等以上の値であった。  (P> 0.05), equivalent to or better than MIBI.
以上の結果より、 "mTc(CO) PNP5は、 MIBI同様の高い FPEFを有していることが示さ The above results indicate that “ m Tc (CO) PNP5 has a high FPEF similar to MIBI.
3  Three
れた。  It was.
[0095] [表 3]  [0095] [Table 3]
99mTc(CO)3PNP5およびその他の心筋血流製剤における FPEFの測定結果FPEF measurement results for 99 m Tc (CO) 3 PNP5 and other myocardial perfusion products
Figure imgf000026_0001
Figure imgf000026_0001
産業上の利用可能性  Industrial applicability
本発明に係るテクネチウム 99mトリカルボ二ル物錯体及び本発明に係るキットは、 種々の疾患の画像診断剤として用いることができ、特に、 SPECT画像における心臓 /肝臓比および心臓/肺比が高ぐかつ、 FPEFが高いため、腫瘍診断剤および心 筋血流診断剤として好適に用いることができる。 図面の簡単な説明 The technetium 99m tricarbonyl complex according to the present invention and the kit according to the present invention can be used as diagnostic imaging agents for various diseases, and in particular, have a high heart / liver ratio and heart / lung ratio in SPECT images. Since FPEF is high, it can be suitably used as a tumor diagnostic agent and a cardiac muscle blood flow diagnostic agent. Brief Description of Drawings
[0097] [図 1]初回循環抽出率測定用の装置を示す図。  FIG. 1 is a diagram showing an apparatus for measuring an initial circulation extraction rate.
符号の説明  Explanation of symbols
[0098] 1 導管 [0098] 1 conduit
2 送液ライン  2 Liquid feed line
3 ポンプ  3 Pump
4 フイノレター  4 Huino Letter
5 エアートラップ  5 Air trap
6 心臓のぺーシング装置  6 Heart pacing device
7 灌流圧測定装置  7 Perfusion pressure measuring device
8 投与液注入口  8 Injection port
9 灌流心臓  9 Perfused heart
10 力テーテノレ  10 Power Tetenor
11 サンプル容器  11 Sample container
12 廃液溜め  12 Waste liquid reservoir
13 灌流液容器  13 Perfusate container

Claims

請求の範囲 テクネチウム一 99mトリカルボニル物に、ビスホスフィノアミン化合物が配位した、下 記式(1) : [化 1] Claims Bisphosphinoamine compound is coordinated to technetium-99m tricarbonyl compound, the following formula (1):
(式(1)において、 99mTc(C〇)はテクネチウム一 99mトリカルボニル物、 Lはビスホス (In the formula (1), 99mTc (C〇) is technetium-99m tricarbonyl, L is bisphosphine.
3  Three
フィノアミンィ匕合物を示す)で表されるテクネチウム一 99mトリカルボ二ル物錯体。 ビスホスフィノアミン化合物 Lが、下記式(2): A technetium-99m tricarbonyl complex represented by a finoamine compound. The bisphosphinoamine compound L is represented by the following formula (2):
[化 2] [Chemical 2]
Figure imgf000028_0002
Figure imgf000028_0002
PCH2CH2NCH2CH2P
Figure imgf000028_0003
PCH 2 CH 2 NCH 2 CH 2 P
Figure imgf000028_0003
Ri, Ri'"  Ri, Ri '"
(式(2)において、
Figure imgf000028_0004
R1' R1' 'および R1' ' 'は、同じでも異なっていてもよぐそれぞ れ、炭素数 1から 4のアルキル基、フヱニル基、下記式(3):
(In Formula (2),
Figure imgf000028_0004
R 1 'R 1 ''and R 1 ''' may be the same or different, and each is an alkyl group having 1 to 4 carbon atoms, a phenyl group, the following formula (3):
[化 3] [Chemical 3]
•(CH2)iO(CH2)i'CH3 ( 3 ) • (CH 2 ) iO (CH 2 ) i'CH 3 (3)
(式(3)において、 1は 0≤1≤4、 は 0≤1'≤ 3の整数を示す)で表される基、または下 記式 (4) : (In formula (3), 1 is an integer of 0≤1≤4, is an integer of 0≤1'≤3) or the following formula (4):
[化 4] ■[Chemical 4] ■
Figure imgf000029_0001
Figure imgf000029_0001
(式(4)において、 mは 0≤m≤4、 m'は 0≤m'≤4、 m',は 0≤m',≤3の整数を示す) で表される基であり、 R2は水素、炭素数 1から 4のアルキル基、炭素数 1から 4の置換ァ ルキル基、ァリール基、置換ァリール基、アミノ基、前記式(3)で表される基または前 記式 (4)で表される基を示す)で表される請求項 1記載のテクネチウム— 99mトリカル ボニル物錯体。 (In Equation (4), m is 0≤m≤4, m 'is 0≤m'≤4, m', is an integer of 0≤m ', ≤3) and R 2 represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted alkyl group having 1 to 4 carbon atoms, an aryl group, a substituted aryl group, an amino group, a group represented by the above formula (3), or the formula (4 2. The technetium-99m tricarbonyl complex according to claim 1, which is a group represented by
[3] ビスホスフィノアミン化合物 Lが、  [3] The bisphosphinoamine compound L is
ビス(ジフエニルホスフィノエチル)ァミン、  Bis (diphenylphosphinoethyl) amine,
ビス(ジフエニルホスフイノェチノレ)メチルァミン、  Bis (diphenylphosphinochinole) methylamine,
ビス(ジフエニルホスフイノェチノレ)ェチルァミン、  Bis (diphenylphosphinoetinole) ethylamine,
ビス(ジフエニルホスフイノェチノレ)プロピルァミン、  Bis (diphenylphosphinochinole) propylamine,
ビス(ジフエニルホスフイノェチノレ)メトキシェチルァミン、  Bis (diphenylphosphinoetinole) methoxyethylamine,
ビス(ジフエニルホスフイノェチノレ)ブチルァミン、  Bis (diphenylphosphinochinole) butyramine,
ビス(ジフエニルホスフイノェチノレ)ァセトニルァミン、  Bis (diphenylphosphinoetinole) acetonylamine,
ビス(ジメトキシホスフィノエチル)ァミン、  Bis (dimethoxyphosphinoethyl) amine,
ビス(ジメトキシホスフィノエチル)メチノレアミン、  Bis (dimethoxyphosphinoethyl) methylolamine,
ビス(ジメトキシホスフィノエチル)ェチルァミン、  Bis (dimethoxyphosphinoethyl) ethylamine,
ビス(ジメトキシホスフィノエチル)プロピルァミン、  Bis (dimethoxyphosphinoethyl) propylamine,
ビス(ジメトキシメチルホスフィノエチル)ァミン、  Bis (dimethoxymethylphosphinoethyl) amine,
ビス(ジメトキシメチルホスフィノエチル)メチルァミン、  Bis (dimethoxymethylphosphinoethyl) methylamine,
ビス(ジメトキシメチルホスフィノエチル)ェチルァミン、  Bis (dimethoxymethylphosphinoethyl) ethylamine,
ビス(ジメトキシメチルホスフィノエチル)プロピルァミン、  Bis (dimethoxymethylphosphinoethyl) propylamine,
ビス(ジメトキシェチルホスフィノエチル)ァミン、  Bis (dimethoxyethylphosphinoethyl) amine,
ビス(ジメトキシェチルホスフィノエチル)メチルァミン、  Bis (dimethoxyethylphosphinoethyl) methylamine,
ビス(ジメトキシェチルホスフィノエチル)ェチルァミン、 ビス(ジメトキシェチルホスフイノェチノレ)プロピルァミン、 Bis (dimethoxyethylphosphinoethyl) ethylamine, Bis (dimethoxyethylphosphinoetinole) propylamine,
ビス(ジメトキシプロピルホスフィノエチル)ェチルァミン、  Bis (dimethoxypropylphosphinoethyl) ethylamine,
ビス(ジメトキシプロピルホスフィノエチル)プロピルァミン、  Bis (dimethoxypropylphosphinoethyl) propylamine,
ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) methoxyethylamine,
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine,
ビス(ジエトキシプロピルホスフィノエチル)エトキシェチルァミン、  Bis (diethoxypropylphosphinoethyl) ethoxyethylamine,
ビス(ジエトキシェチノレホスフイノェチノレ)ェチノレアミン、  Bis (diethoxyethylenophosphosinoetinole) ethenoreamine,
ビス(ジエトキシェチルホスフィノエチル)プロピルァミン、  Bis (diethoxyethylphosphinoethyl) propylamine,
ビス(ジエトキシェチルホスフィノエチル)メトキシェチルァミン、  Bis (diethoxyethylphosphinoethyl) methoxyethylamine,
ビス(ジメチルホスフィノエチル)メチルァミン、  Bis (dimethylphosphinoethyl) methylamine,
およびビス(ジプロポキシメチルホスフィノエチル)エトキシェチルァミンからなる群より 選ばれる請求項 1または 2に記載のテクネチウム— 99mトリカルボ二ル物錯体。  3. The technetium-99m tricarbonyl complex according to claim 1, which is selected from the group consisting of bis (dipropoxymethylphosphinoethyl) ethoxyethylamine.
[4] ビスホスフィノアミン化合物 Lが、  [4] The bisphosphinoamine compound L is
ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) methoxyethylamine,
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine,
およびビス(ジエトキシプロピルホスフィノエチル)エトキシェチルァミンからなる群より 選ばれる請求項 3に記載のテクネチウム 99mトリカルボ二ル物錯体。  The technetium 99m tricarbonyl complex according to claim 3, selected from the group consisting of bis (diethoxypropylphosphinoethyl) ethoxyethylamine.
[5] テクネチウム一 99mトリカルボニル物に、ビスホスフィノアミン化合物が配位した、下 記式(1) :  [5] Bisphosphinoamine compound coordinated to technetium-99m tricarbonyl compound, the following formula (1):
[化 5]  [Chemical 5]
〖"mTc(CO)3(L)] ( 1 ) 〖"MTc (CO) 3 (L)] (1)
(式(1)において、 99mTc(C〇)はテクネチウム一 99mトリカルボニル物、 Lはビスホス (In the formula (1), 99mTc (C〇) is technetium-99m tricarbonyl, L is bisphosphine.
3  Three
フィノアミンィ匕合物を示す)で表されるテクネチウム 99mトリカルボ二ル物錯体を含 むことを特徴とする、放射性画像診断剤。  A radioactive diagnostic imaging agent comprising a technetium 99m tricarbonyl complex represented by the formula:
[6] ビスホスフィノアミン化合物 Lが、下記式(2): [6] The bisphosphinoamine compound L is represented by the following formula (2):
[化 6]
Figure imgf000031_0001
[Chemical 6]
Figure imgf000031_0001
(式(2)において、 R1 R1 ' R1 ' 'および R1 ' ' 'は、同じでも異なっていてもよぐそれぞ れ、炭素数 1から 4のアルキル基、フエ二ル基、下記式(3): (In the formula (2), R 1 R 1 'R 1 ''and R 1 ''' may be the same or different, and each represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, Following formula (3):
[化 7] [Chemical 7]
•(CH2)iO(CH2)i'CH3 ( 3 ) • (CH 2 ) iO (CH 2 ) i'CH 3 (3)
(式(3)において、 1は 0≤1≤4、 は 0≤1'≤ 3の整数を示す)で表される基、または下 記式 (4) : (In formula (3), 1 is an integer of 0≤1≤4, is an integer of 0≤1'≤3) or the following formula (4):
[化 8] [Chemical 8]
Figure imgf000031_0002
Figure imgf000031_0002
(式(4)において、 mは 0≤m≤4、 m'は 0≤m'≤4、 m',は 0≤m',≤3の整数を示す) で表される基であり、 R2は水素、炭素数 1から 4のアルキル基、炭素数 1から 4の置換ァ ルキル基、ァリール基、置換ァリール基、アミノ基、前記式(3)で表される基または前 記式 (4)で表される基を示す)で表されるテクネチウム 99mトリカルボ二ル物錯体を 含むことを特徴とする、請求項 5記載の放射性画像診断剤。 (In formula (4), m is 0≤m≤4, m 'is 0≤m'≤4, m', is an integer of 0≤m ', ≤3) and R 2 represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted alkyl group having 1 to 4 carbon atoms, an aryl group, a substituted aryl group, an amino group, a group represented by the above formula (3), or the formula (4 6. The radiodiagnostic agent according to claim 5, which comprises a technetium 99m tricarbonyl complex represented by 1).
ビスホスフィノアミン化合物 Lが、 The bisphosphinoamine compound L is
ビス(ジフエニルホスフイノェチノレ)ァミン、 Bis (diphenylphosphinoetinole) amine,
ビス(ジフエニルホスフイノェチノレ)メチルァミン、 Bis (diphenylphosphinochinole) methylamine,
ビス(ジフエニルホスフイノェチノレ)ェチルァミン、 ビス(ジフエニルホスフイノェチノレ)プロピルァミン、 Bis (diphenylphosphinoetinole) ethylamine, Bis (diphenylphosphinochinole) propylamine,
ビス(ジフエニルホスフイノェチノレ)メトキシェチルァミン、 Bis (diphenylphosphinochinole) methoxyethylamine,
ビス(ジフエニルホスフイノェチノレ)ブチルァミン、 Bis (diphenylphosphinochinole) butyramine,
ビス(ジフエニルホスフィノエチル)ァセトニルァミン、 Bis (diphenylphosphinoethyl) acetonylamine,
ビス(ジメトキシホスフィノエチル)ァミン、 Bis (dimethoxyphosphinoethyl) amine,
ビス(ジメトキシホスフィノエチル)メチルァミン、 Bis (dimethoxyphosphinoethyl) methylamine,
ビス(ジメトキシホスフィノエチル)ェチルァミン、 Bis (dimethoxyphosphinoethyl) ethylamine,
ビス(ジメトキシホスフィノエチル)プロピルァミン、 Bis (dimethoxyphosphinoethyl) propylamine,
ビス(ジメトキシメチルホスフィノエチル)ァミン、 Bis (dimethoxymethylphosphinoethyl) amine,
ビス(ジメトキシメチルホスフィノエチル)メチルァミン、 Bis (dimethoxymethylphosphinoethyl) methylamine,
ビス(ジメトキシメチルホスフィノエチル)ェチルァミン、 Bis (dimethoxymethylphosphinoethyl) ethylamine,
ビス(ジメトキシメチルホスフィノエチル)プロピルァミン、 Bis (dimethoxymethylphosphinoethyl) propylamine,
ビス(ジメトキシェチルホスフィノエチル)ァミン、 Bis (dimethoxyethylphosphinoethyl) amine,
ビス(ジメトキシェチルホスフィノエチル)メチノレアミン、 Bis (dimethoxyethylphosphinoethyl) methylolamine,
ビス(ジメトキシェチルホスフイノェチノレ)ェチルァミン、 Bis (dimethoxyethylphosphinoetinole) ethylamine,
ビス(ジメトキシェチルホスフイノェチノレ)プロピルァミン、 Bis (dimethoxyethylphosphinoetinole) propylamine,
ビス(ジメトキシプロピルホスフィノエチル)ェチルァミン、 Bis (dimethoxypropylphosphinoethyl) ethylamine,
ビス(ジメトキシプロピルホスフィノエチル)プロピルァミン、 Bis (dimethoxypropylphosphinoethyl) propylamine,
ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン、 Bis (dimethoxypropylphosphinoethyl) methoxyethylamine,
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、 Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine,
ビス(ジエトキシプロピノレホスフイノェチノレ)エトキシェチノレアミン、 Bis (diethoxypropinorephosphinoetinore) ethoxyethoxyreamine,
ビス(ジエトキシェチノレホスフイノェチノレ)ェチノレアミン、 Bis (diethoxyethinorephosphinoetinole) ethenoreamine,
ビス(ジエトキシェチルホスフィノエチル)プロピルァミン、 Bis (diethoxyethylphosphinoethyl) propylamine,
ビス(ジエトキシェチルホスフィノエチル)メトキシェチルァミン、 Bis (diethoxyethylphosphinoethyl) methoxyethylamine,
ビス(ジメチルホスフィノエチル)メチルァミン、 Bis (dimethylphosphinoethyl) methylamine,
およびビス(ジプロポキシメチルホスフィノエチル)エトキシェチルァミンからなる群より 選ばれるテクネチウム— 99mトリカルボ二ル物錯体を含むことを特徴とする、請求項 5 または 6に記載の放射性画像診断剤。 [8] ビスホスフィノアミン化合物 Lが、 The radiodiagnostic agent according to claim 5 or 6, comprising a technetium-99m tricarbonyl complex selected from the group consisting of bis (dipropoxymethylphosphinoethyl) ethoxyethylamine. [8] The bisphosphinoamine compound L is
ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) methoxyethylamine,
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine,
およびビス(ジエトキシプロピルホスフィノエチル)エトキシェチルァミンからなる群より 選ばれるテクネチウム— 99mトリカルボ二ル物錯体を含むことを特徴とする、請求項 7 記載の放射性画像診断剤。  The radioactive diagnostic imaging agent according to claim 7, comprising a technetium-99m tricarbonyl complex selected from the group consisting of bis (diethoxypropylphosphinoethyl) ethoxyethylamine.
[9] 一酸化炭素源、還元剤及び塩基を含有する第一の容器と、ビスホスフィノアミン化合 物を含有する第二の容器を含むことを特徴とする、放射性画像診断剤調製用キット。  [9] A kit for preparing a diagnostic imaging agent comprising a first container containing a carbon monoxide source, a reducing agent and a base, and a second container containing a bisphosphinoamine compound.
[10] 前記第一の容器がさらに安定化剤を含有したものである、請求項 9記載の放射性画 像診断剤調製用キット。  [10] The radioactive diagnostic imaging agent preparation kit according to claim 9, wherein the first container further contains a stabilizer.
[11] 塩基が、無機塩である、請求項 9または 10に記載の放射性画像診断剤調製用キット  [11] The kit for preparing a radioactive diagnostic imaging agent according to claim 9 or 10, wherein the base is an inorganic salt.
[12] 塩基が、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸 水素カリウム、炭酸カリウム、水酸化カルシウムおよび水酸化マグネシウムからなる群 より選ばれたものである、請求項 11記載の放射性画像診断剤調製用キット。 [12] The base according to claim 11, wherein the base is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, calcium hydroxide and magnesium hydroxide. A kit for preparing a diagnostic imaging agent for radioactive imaging.
[13] 還元剤が、水素化ホウ素ァニオン、及び、水素化ホウ素ァニオンであって該ァニオン を構成する水素原子の 3つまでが不活性置換基で置換されている置換水素化ホウ素 ァニオンからなる群より選ばれたものである、請求項 9なレ、し 12のレ、ずれかに記載の 放射性画像診断剤調製用キット。  [13] The reducing agent is a group consisting of a borohydride anion, and a substituted borohydride anion in which up to three of the hydrogen atoms constituting the anion are substituted with an inert substituent. The kit for preparing a diagnostic imaging agent for radiodiagnostics according to any one of claims 9 and 12, which is selected from the above.
[14] 前記水素化ホウ素ァニオン力 水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素 化ホウ素リチウム、及び水素化ホウ素亜鉛からなる群より選択された塩により誘導され たものである、請求項 13に記載の放射性画像診断剤調製用キット。  [14] The borohydride anion force is derived from a salt selected from the group consisting of sodium borohydride, potassium borohydride, lithium borohydride, and zinc borohydride. A kit for preparing a diagnostic imaging agent for radioactive imaging.
[15] 塩基の還元剤に対するモル比が 0. 1から 2の間である、請求項 9から 14のいずれか に記載の放射性画像診断剤調製用キット。  [15] The kit for preparing a diagnostic radiodiagnostic agent according to any one of [9] to [14], wherein the molar ratio of the base to the reducing agent is between 0.1 and 2.
[16] ビスホスフィノアミン化合物力 下記式(2):  [16] Bisphosphinoamine compound power Formula (2):
[化 7]
Figure imgf000034_0001
[Chemical 7]
Figure imgf000034_0001
(式(2)において、 R1 R1 ' R1 ' 'および R1 ' ' 'は、同じでも異なっていてもよぐそれぞ れ、炭素数 1から 4のアルキル基、フエ二ル基、下記式(3): (In the formula (2), R 1 R 1 'R 1 ''and R 1 ''' may be the same or different, and each has an alkyl group having 1 to 4 carbon atoms, a phenyl group, Following formula (3):
[化 10] [Chemical 10]
•(CH2)iO(CH2)i'CH3 ( 3 ) • (CH 2 ) iO (CH 2 ) i'CH 3 (3)
(式(3)において、 1は 0≤1≤4、 は 0≤1'≤ 3の整数を示す)で表される基、または下 記式 (4) : (In formula (3), 1 is an integer of 0≤1≤4, is an integer of 0≤1'≤3) or the following formula (4):
[化 11] [Chemical 11]
Figure imgf000034_0002
Figure imgf000034_0002
(式(4)において、 mは 0≤m≤4、 m'は 0≤m'≤4、 m',は 0≤m',≤3の整数を示す) で表される基であり、 R2は水素、炭素数 1から 4のアルキル基、炭素数 1から 4の置換ァ ルキル基、ァリール基、置換ァリール基、アミノ基、前記式(3)で表される基または前 記式 (4)で表される基を示す)で表される化合物である、請求項 9から 15のレ、ずれか に記載の放射性画像診断剤調製用キット。 (In formula (4), m is 0≤m≤4, m 'is 0≤m'≤4, m', is an integer of 0≤m ', ≤3) and R 2 represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted alkyl group having 1 to 4 carbon atoms, an aryl group, a substituted aryl group, an amino group, a group represented by the above formula (3), or the formula (4 The kit for preparing a diagnostic radiodiagnostic agent according to any one of claims 9 to 15, wherein the kit is a compound represented by
ビスホスフィノアミン化合物が、 The bisphosphinoamine compound is
ビス(ジフエニルホスフイノェチノレ)ァミン、 Bis (diphenylphosphinoetinole) amine,
ビス(ジフエニルホスフイノェチノレ)メチルァミン、 Bis (diphenylphosphinochinole) methylamine,
ビス(ジフエニルホスフイノェチノレ)ェチルァミン、 ビス(ジフエニルホスフイノェチノレ)プロピルァミン、 Bis (diphenylphosphinoetinole) ethylamine, Bis (diphenylphosphinochinole) propylamine,
ビス(ジフエニルホスフイノェチノレ)メトキシェチルァミン、 Bis (diphenylphosphinoetinole) methoxyethylamine,
ビス(ジフエニルホスフイノェチノレ)ブチルァミン、 Bis (diphenylphosphinochinole) butyramine,
ビス(ジフエニルホスフィノエチル)ァセトニルァミン、 Bis (diphenylphosphinoethyl) acetonylamine,
ビス(ジメトキシホスフィノエチル)ァミン、 Bis (dimethoxyphosphinoethyl) amine,
ビス(ジメトキシホスフィノエチル)メチルァミン、 Bis (dimethoxyphosphinoethyl) methylamine,
ビス(ジメトキシホスフィノエチル)ェチルァミン、 Bis (dimethoxyphosphinoethyl) ethylamine,
ビス(ジメトキシホスフィノエチル)プロピルァミン、 Bis (dimethoxyphosphinoethyl) propylamine,
ビス(ジメトキシメチルホスフィノエチル)ァミン、 Bis (dimethoxymethylphosphinoethyl) amine,
ビス(ジメトキシメチルホスフィノエチル)メチルァミン、 Bis (dimethoxymethylphosphinoethyl) methylamine,
ビス(ジメトキシメチルホスフィノエチル)ェチルァミン、 Bis (dimethoxymethylphosphinoethyl) ethylamine,
ビス(ジメトキシメチルホスフィノエチル)プロピルァミン、 Bis (dimethoxymethylphosphinoethyl) propylamine,
ビス(ジメトキシェチルホスフィノエチル)ァミン、 Bis (dimethoxyethylphosphinoethyl) amine,
ビス(ジメトキシェチルホスフィノエチル)メチノレアミン、 Bis (dimethoxyethylphosphinoethyl) methylolamine,
ビス(ジメトキシェチルホスフイノェチノレ)ェチルァミン、 Bis (dimethoxyethylphosphinoetinole) ethylamine,
ビス(ジメトキシェチルホスフイノェチノレ)プロピルァミン、 Bis (dimethoxyethylphosphinoetinole) propylamine,
ビス(ジメトキシプロピルホスフィノエチル)ェチルァミン、 Bis (dimethoxypropylphosphinoethyl) ethylamine,
ビス(ジメトキシプロピルホスフィノエチル)プロピルァミン、 Bis (dimethoxypropylphosphinoethyl) propylamine,
ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン、 Bis (dimethoxypropylphosphinoethyl) methoxyethylamine,
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、 Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine,
ビス(ジエトキシプロピノレホスフイノェチノレ)エトキシェチノレアミン、 Bis (diethoxypropinorephosphinoetinore) ethoxyethoxyreamine,
ビス(ジエトキシェチノレホスフイノェチノレ)ェチノレアミン、 Bis (diethoxyethinorephosphinoetinole) ethenoreamine,
ビス(ジエトキシェチルホスフィノエチル)プロピルァミン、 Bis (diethoxyethylphosphinoethyl) propylamine,
ビス(ジエトキシェチルホスフィノエチル)メトキシェチルァミン、 Bis (diethoxyethylphosphinoethyl) methoxyethylamine,
ビス(ジメチルホスフィノエチル)メチルァミン、 Bis (dimethylphosphinoethyl) methylamine,
およびビス(ジプロポキシメチルホスフィノエチル)エトキシェチルァミンからなる群より 選ばれたものであることを特徴とする、請求項 16記載の放射性画像診断剤調製用キ ッ卜。 The kit for preparing a diagnostic imaging agent according to claim 16, wherein the kit is selected from the group consisting of bis (dipropoxymethylphosphinoethyl) ethoxyethylamine.
[18] ビスホスフィノアミン化合物が、 [18] A bisphosphinoamine compound is
ビス(ジメトキシプロピルホスフィノエチル)メトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) methoxyethylamine,
ビス(ジメトキシプロピルホスフィノエチル)エトキシェチルァミン、  Bis (dimethoxypropylphosphinoethyl) ethoxyethylamine,
およびビス(ジエトキシプロピルホスフィノエチル)エトキシェチルァミンからなる群より 選ばれたものであることを特徴とする、請求項 17記載の放射性画像診断剤調製用キ ッ卜。  The kit for preparing a diagnostic imaging agent according to claim 17, wherein the kit is selected from the group consisting of bis (diethoxypropylphosphinoethyl) ethoxyethylamine.
[19] 容器の内容物が凍結乾燥されている、請求項 9ないし 18に記載の放射性画像診断 剤調製用キット。  [19] The diagnostic imaging agent preparation kit according to any one of [9] to [18], wherein the contents of the container are freeze-dried.
PCT/JP2005/020522 2004-11-19 2005-11-09 Novel radioactive technetium/bisphosphinoamine complex and radioactive imaging diagnostic agent containing the complex WO2006054466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004336544A JP2008037752A (en) 2004-11-19 2004-11-19 New radioactive technetium/bisphosphinoamine complex and radioactive imaging diagnostic agent containing the complex
JP2004-336544 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006054466A1 true WO2006054466A1 (en) 2006-05-26

Family

ID=36407009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020522 WO2006054466A1 (en) 2004-11-19 2005-11-09 Novel radioactive technetium/bisphosphinoamine complex and radioactive imaging diagnostic agent containing the complex

Country Status (2)

Country Link
JP (1) JP2008037752A (en)
WO (1) WO2006054466A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11160886B2 (en) 2016-12-15 2021-11-02 Bracco Imaging Spa Method for labeling of sensitive and thermosensitive targeting biomolecules with technetium based compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027100A1 (en) * 1996-12-18 1998-06-25 Nihon Medi-Physics Co., Ltd. Radioactive transition metal nitride hetero-complex
JP2002512616A (en) * 1997-04-25 2002-04-23 マリンクロッド・インコーポレイテッド Process for preparing fac-type metal tricarbonyl compounds and their use in labeling bioactive substrates
WO2003084575A1 (en) * 2002-04-01 2003-10-16 Biostream, Inc. Pendant fatty acid imaging agents
JP2003535005A (en) * 2000-05-24 2003-11-25 マリンクロッド・インコーポレイテッド Formulation of Tc and Re carbonyl complexes using tin ions as pertechnetate and perrhenate reducing agents
JP2004505064A (en) * 2000-07-28 2004-02-19 日本メジフィジックス株式会社 Radioactive diagnostic imaging agent containing technetium-99m nitride heterocomplex

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027100A1 (en) * 1996-12-18 1998-06-25 Nihon Medi-Physics Co., Ltd. Radioactive transition metal nitride hetero-complex
JP2002512616A (en) * 1997-04-25 2002-04-23 マリンクロッド・インコーポレイテッド Process for preparing fac-type metal tricarbonyl compounds and their use in labeling bioactive substrates
JP2003535005A (en) * 2000-05-24 2003-11-25 マリンクロッド・インコーポレイテッド Formulation of Tc and Re carbonyl complexes using tin ions as pertechnetate and perrhenate reducing agents
JP2004505064A (en) * 2000-07-28 2004-02-19 日本メジフィジックス株式会社 Radioactive diagnostic imaging agent containing technetium-99m nitride heterocomplex
WO2003084575A1 (en) * 2002-04-01 2003-10-16 Biostream, Inc. Pendant fatty acid imaging agents

Also Published As

Publication number Publication date
JP2008037752A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
DK2013221T3 (en) Compositions and methods for cellular imaging and therapy
JPH0764802B2 (en) Ester-substituted diaminedithiols and their radiolabeled complex compounds
US20080124273A1 (en) Novel cationic metal complex radiopharmaceuticals
EP2468760B1 (en) Bisphosphonic acid derivative and compound thereof labeled with radioactive metal nuclide
JP2860157B2 (en) Method for producing radioactively labeled technetium chelate injection for renal function measurement
US6255519B1 (en) Radioiodinated phospholipid ether analogs and methods of using the same
JPH04500072A (en) New Tc-99m complex
Paparidis et al. Synthesis and evaluation of 99mTc/Re-tricarbonyl complexes of the triphenylphosphonium cation for mitochondrial targeting
Wang et al. Animal studies of 99mTc–i-PIDP: A new bone imaging agent
JPH11504002A (en) Hydroxyalkylphosphine compounds for use as diagnostics and therapeutics and methods for their preparation
EP1192166B1 (en) Group(vii) transition-metal complexes with multidentate aminopolycarboxylate ligands and a kit for producing them
WO2006054466A1 (en) Novel radioactive technetium/bisphosphinoamine complex and radioactive imaging diagnostic agent containing the complex
WO2000043004A1 (en) 1,4,8,11-tetraazacyclotetradecane derivatives as radiodiganostic agents and their use in determining hypoxia and radioresistance of tumors
US20030120046A1 (en) Radioisotope-labeled complexes of glucose derivatives and kits for the preparation thereof
US4781912A (en) Cationic complex of technetium-99m.
US6926883B1 (en) Group (VII) transition-metal complexes with multidentate aminopolycarboxylate ligands and a kit for producing them
WO1991017168A1 (en) Gallium-labelled imaging agents
JP2003535005A (en) Formulation of Tc and Re carbonyl complexes using tin ions as pertechnetate and perrhenate reducing agents
HU221858B1 (en) Tris(isonitrile)copper(i) sulfat complexes for preparing radionuclide complexes, process for producing them, and pharmaceutical compositions containing tris(isonitrile)-copper(i)-sulfate complexes
US20120065367A1 (en) Radioactively Labeled Substance
EP1009447B1 (en) Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same
Wang et al. Synthesis and biological evaluation of 99mTc (CO) 3 (His–CB) as a tumor imaging agent
US20150132229A1 (en) Bis azainositol heavy metal complexes for x-ray imaging
JPH0797361A (en) New chelate-forming compound and its use
WO2002087633A1 (en) Myocardial imaging agent and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP