WO2006052248A1 - Magnetic tip for tape measure and method of use - Google Patents

Magnetic tip for tape measure and method of use Download PDF

Info

Publication number
WO2006052248A1
WO2006052248A1 PCT/US2004/037273 US2004037273W WO2006052248A1 WO 2006052248 A1 WO2006052248 A1 WO 2006052248A1 US 2004037273 W US2004037273 W US 2004037273W WO 2006052248 A1 WO2006052248 A1 WO 2006052248A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
magnet
end hook
tape measure
magnets
Prior art date
Application number
PCT/US2004/037273
Other languages
French (fr)
Inventor
Michael Jueneman
Original Assignee
Michael Jueneman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Jueneman filed Critical Michael Jueneman
Priority to PCT/US2004/037273 priority Critical patent/WO2006052248A1/en
Publication of WO2006052248A1 publication Critical patent/WO2006052248A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/10Measuring tapes
    • G01B3/1056Tape end arrangements, e.g. end-hooks

Definitions

  • measuring devices People use and have used measuring devices for a very long time. Some measuring devices that are used today are tape measures and rulers. When a
  • Typical tape measures range from a few feet to considerably more than one hundred feet. Tape measures commonly have a tip, or end hook, at one
  • the end hook is placed at one end of a board, pipe, or other
  • the end hook is generally ⁇ A inch to 3 A inch long. A person measuring an object will place the end hook at one end of the
  • a person may drop objects while working on a home improvement project, working in their garage, constructing an object such as a building or other similar activities.
  • Some of the objects that may be dropped are screws, nails, bolts, washers or other objects.
  • these objects will fall into places where people have a very difficult time reaching them such as behind a large object or into a small opening. Recovering the object often requires
  • the present invention allows the person to measure a metal object once
  • the magnetic mechanism releasably attaches to the metal object, thus, securing it to one end of the object
  • the person then stretches out the tape measure and obtains an accurate measurement of the object
  • the present invention further allows the user to easily pick up objects
  • the present invention has a unique structure, embedding the magnets in the tip of the tape measure
  • the magnets of high gauss may remain small and
  • the magnet being shielded by the tip end and being small in size allow the tape to pass the drop test, horizontal extension test and the co-
  • a measuring device comprising
  • a measuring mechanism with an end hook and a magnetic mechanism removably or permanently attached to the end hook.
  • Figure 1 is a top view of the present invention
  • Figure 2 is a side view of the present invention
  • Figure 3A is a top perspective view of the present invention.
  • Figure 3B is a bottom perspective view of the present invention.
  • Figure 4A is a perspective view of an embodiment of the present invention in a
  • FIG. 4B is a side perspective view of an embodiment of the present invention in a Type I tape
  • Figure 5A is a front perspective view of an embodiment of the present invention in a Type V tape
  • Figure 5B is a perspective view of an embodiment of the present invention in a
  • Figure 6 is a diagram showing different shapes of the magnets 30
  • Figure 7 is a perspective view of a tape measure with two pairs of offset round
  • Figure 8 is a perspective view of a tape measure with a rectangular magnet
  • Figure 9 is a perspective view of a tape measure with pentagonal magnets
  • Figure 10 is a perspective view of a tape measure with cross-shaped magnets
  • Figure 1 1 is a perspective view of a tape measure with hexagonal-shaped
  • Figure 12 is a perspective view of a tape measure with oval-shaped magnets
  • Figure 13 is a perspective view of a tape measure with triangular-shaped magnets
  • Figure 14 is a perspective view of a tape measure with octagonal magnets
  • Figure 15 is a perspective view of an embodiment of a tape measure with a pair of square shaped magnets having rounded corners and some round magnets disposed therebetween
  • Figure 16 is a perspective view of an embodiment of a tape measure with a pair of diamond-shaped magnets dispose on either side of a rectangular magnet;
  • Figure 17 is a perspective view of a tape measure with trapezoidal magnets
  • Figure 18 is a perspective view of a tape measure with parallelogram-shaped magnets.
  • Figure 19 is a perspective view of a tape measure with square-shaped magnets. in a Type V tape. Detailed Description
  • the present inventive device 10 shown in Figures 1 through 3, includes a measuring mechanism 12 for measuring objects and a magnetic attraction mechanism 14 for providing a releasable attachment to objects.
  • the measuring mechanism 12 may be a typical tape measure or other
  • the measuring mechanism 12 may be of a variety of lengths, widths, and shapes. The length needs to be long enough to be useful in
  • the measuring mechanism 12 may include indicia using the metric system, the American system or other suitable measuring system
  • the length may range from shorter than six inches to longer than several hundred feet
  • the preferable length ranges from approximately three feet to fifty feet.
  • the width may range from one-quarter inch to more than
  • the measuring mechanism 12 may be of a variety of
  • the preferable shape is rectangular having a first end 16 and a second
  • the measuring mechanism 12 may be made of any suitable material.
  • measuring mechanism 12 preferably is a weight that is easily portable and
  • the measuring mechanism 12 may be made of wood, hard plastic, steel, stainless steel, nylon,
  • the measuring mechanism 12 may include a tape end hook 24
  • the tape end hook 24 may be a standard tape end hook used with typical tape measuring
  • the tape end hook 24 may vary in shape The preferred shape is approximately rectangular
  • the tape end hook 24 may have an attachment end 26 and a hook end 28
  • the attachment end 26 and the hook end 28 may be divided by a bend 34 in the tape end hook 24
  • the length, width, and material of the tape end hook 24 may vary The length of the tape end hook 24 may range from less than one inch to more than three inches The length preferably will be approximately one and three-fourth
  • the width of the tape end hook 24 may be approximately the same width as the measuring mechanism 12 or the width of the tape end hook 24 may be more or less than the width of the measuring mechanism 12 Preferably, the width of the tape end hook 24 will be slightly less than the width of the
  • the tape end hook 24 may be made of hard plastic, steel, stainless steel, nylon, aluminum or any other suitable material
  • the attachment end 26 of the tape end hook 24 may be attached near the
  • first end 16 of the measuring mechanism 12 The first end 16 of the measuring mechanism 12 may lay adjacent to the bend 34 in the tape end hook 24 The
  • attachment end 26 may be attached near the first end 16 using any suitable attachment mechanism such as pins or any other suitable attachment
  • the tape end hook 24 may be permanently attached to the first end 16 or the tape end hook 24 may be removably attached to the first end 16
  • the tape end hook 24 may be permanently attached to the first end 16 or the tape end hook 24 may be removably attached to the first end 16
  • end hook 24 may be removably attached .using at least one snap, a hook and . loop mechanism, a button and buttonhole, or other removable attachment
  • the tape end hook 24 may be permanently attached to the first end
  • the magnetic attraction mechanism 14 may include at least one magnet 30 Preferably, the magnetic attraction mechanism 14 will include at least two magnets 30
  • the magnet material may be any known material that will provide a magnetic attraction including neodymium-iron-boron, samarium cobalt, alnico, ceramic ferrite or any other magnetic material.
  • the magnetic strength may be very slight such as 2,200 gauss to very strong such as 20,000 gauss.
  • neodymium-iron-boron of 11 ,400 to 13,550 gauss, with the
  • the magnets 30 preferably are attached to or in
  • magnets 30 may be attached using any suitable attachment mechanism
  • the preferred embodiment has openings defined in the end hook 28 sized
  • the magnets 30 are approximately the same thickness
  • the magnets 30 are situated in the holes and then pressed, friction fitting them and embedding them
  • the magnets 30 should be generally co-planer with the
  • the magnets 30 which may vary in size, but preferably are between 1/8 inch and 1/2
  • FIG. 6-19 demonstrate various shapes and combinations of shapes of
  • magnets 30 may be used with the present invention Any shape in which
  • magnets may be obtained may be used in the present invention as shown in Figure 6. Numerous magnets 30 may be fit in a single end hook 24 as shown in Figure 7. As few as one magnet 30 may be joined to an end hook 24 as show in Figure 8. The shape may be oriented as a variety of angles as shown in Figure 12 Different shaped magnets may be used in a single end hook as shown in
  • magnets 30 will have a slightly different side profile than hexagonal magnets 30.
  • the magnets 30 of whatever shape are flat.
  • the bottom view is reflective of that shown in Figure 3A, e.g. the shape of the magnet 30 as seen in
  • the front view is the shape seen in the back view
  • the invention 10 is easily used
  • the hook end 28 is placed adjacent to any metal object, such as metal stud framing, needing to be measured.
  • the invention 10 may also be used for reaching and removing nuts, bolts,
  • the end hook 28 may include a magnet 30 embedded in a frame 36, which is joined via a hinge 38 to the end hook.
  • Figure 4 shows a Type 1 class A or B tape measure, which may be 50', 100', 200' or
  • a segment 40 may be joined to the hinge 42 of the end hook 28 and to the hinge 38 of the frame 36.
  • segment 40 allows the magnet 30 to be thicker, but still should remain
  • Figure 5 shows a Type V tape, which has a fixed angle end hook 28.
  • the hinge 38 may join directly to the end hook 28 and the frame 36.
  • the magnet 30 is preferably embedded into the frame 36. In this embodiment, the frame 36 and magnet 30 may be folded out of the way or down into position where they

Abstract

A measuring device including a mechanism for measuring such as a tape measure, the mechanism for measuring having a end hook; and a mechanism for selectively securing, such as a magnet, the tape to an object, such as a pipe, the mechanism for selective securing being attached to the end hook of the mechanism for measuring.

Description

MAGNETIC TIP FOR TAPE MEASURE AND METHOD OF USE
Field of Invention
The present application is a continuation-in-part of and claims from
application serial number 09/686,649, entitled MAGNETIC TIP FOR TAPE
MEASURE AND METHOD OF USE, filed October 10,2000; provisional patent application number 60/164475, entitled MAGNETIC TIP FOR TAPE MEASURE
AND METHOD OF USE, filed November,10, 1999 and from patent application serial number 09/541,491 , entitled MAGNETIC TIP FOR TAPE MEASURE AND METHOD OF USE, filed April 3, 2000. This invention relates to measuring
devices, specifically to such devices with an active mechanism for attachment to
the object being measured
Background
People use and have used measuring devices for a very long time. Some measuring devices that are used today are tape measures and rulers. When a
person is measuring a long distance (more than 12 inches) usually that person will use a tape measure.
Typical tape measures range from a few feet to considerably more than one hundred feet. Tape measures commonly have a tip, or end hook, at one
end of the tape. The end hook is placed at one end of a board, pipe, or other
object being measured. The end hook is generally ΛA inch to 3A inch long. A person measuring an object will place the end hook at one end of the
object. Next, the person stretches out the tape measure to the opposite end of
the object. The end hook of the tape measure will slip off the first end of the object. The person replaces the end hook at the first end and again stretches
out the tape measure. This may. be repeated several times until the person is .able to obtain an accurate measurement of the object. Alternatively, the person
may use a second person with each person holding one end of the tape. What is needed is an improved end hook for securing the end of a tape to an object
being measured.
Frequently, a person may drop objects while working on a home improvement project, working in their garage, constructing an object such as a building or other similar activities. Some of the objects that may be dropped are screws, nails, bolts, washers or other objects. Generally these objects will fall into places where people have a very difficult time reaching them such as behind a large object or into a small opening. Recovering the object often requires
climbing down a ladder to pick it up and back up the ladder to do the job. What
is needed is a common device that a construction worker carries that can more easily retrieve dropped objects.
Several inventions have been designed with a magnetic attachment. Each of these, however, are of an unsound structure that would fail Federal
specifications for tape measuring devices and industry standards. For instance,
many of the prior art devices show the magnet substantially exposed. Magnets are known to be brittle and easily break when dropped. Test 4.4.3.2 of the
Federal standards require a drop test, whereby the tape is dropped ten times
from a height of five feet onto a flat steel plate to strike edgewise against the
plate The tape is then to be examined to determine if any permanent distortion of the tape which would affect the tape has taken place. Drops of this sort crack and destroy the exposed magnets of prior inventions
Other standards require the tape to be accurate to 1/32nd of an inch. Prior art magnets are of such thickness that the tape cannot be accurate. Federal standards require the tape to be extended thirty-six inches, but industry standards require the tape to be extended seven or more feet, with the tip
unsupported. While extended under either standard the tape cannot bend over. Prior magnets are of size and weight that they routinely bend the tape over. Japanese standards, which American products should meet in the ever increasing world market structure, have similar tests. The aforementioned standards generally relate to Type V, classes A and B. Similar federal, trade
and Japanese tests are used on other types and classes of tapes. The prior art fails to meet or provide education on how to meet the standards under the
various types and classes.
What is needed is a tape measure with a magnetic tip that is sized and
structured in a manner that allows the tapes to pass the drop tests, horizontal
extension tests and other U.S. federal, trade and Japanese standards for
performance. Summary
The present invention allows the person to measure a metal object once
by placing the magnetic mechanism on the end hook of the tape measure at one
end The magnetic mechanism releasably attaches to the metal object, thus, securing it to one end of the object The person then stretches out the tape measure and obtains an accurate measurement of the object
The present invention further allows the user to easily pick up objects
dropped into very small openings, behind large objects and otherwise difficult to
reach objects. The person simply places the end hook of the tape measure onto the opening being retrieved The magnetic mechanism will releasably attach to the dropped object The person then retracts the tape measure and removes the
dropped object from the magnetic mechanism
The present invention has a unique structure, embedding the magnets in the tip of the tape measure The magnets of high gauss may remain small and
inserted into openings defined in the tip end These may be set in place and a
flattening force applied to the tip to hold the magnet in with friction force (adhesive, metal plating, coating, and/or welds may also be used if desired, but
are not necessary), and making the magnet generally co-planer with the tip end
of a tape measure The magnet being shielded by the tip end and being small in size allow the tape to pass the drop test, horizontal extension test and the co-
planer feature allows the tape to remain accurate In accordance with the present invention, a measuring device comprising
a measuring mechanism with an end hook and a magnetic mechanism removably or permanently attached to the end hook.
Description of the Figures
Figure 1 is a top view of the present invention,
Figure 2 is a side view of the present invention;
Figure 3A is a top perspective view of the present invention;
Figure 3B is a bottom perspective view of the present invention;
Figure 4A is a perspective view of an embodiment of the present invention in a
Type I tape, Figure 4B is a side perspective view of an embodiment of the present invention in a Type I tape, Figure 5A is a front perspective view of an embodiment of the present invention in a Type V tape; Figure 5B is a perspective view of an embodiment of the present invention in a
Type V tape;
Figure 6 is a diagram showing different shapes of the magnets 30;
Figure 7 is a perspective view of a tape measure with two pairs of offset round
magnets;
Figure 8 is a perspective view of a tape measure with a rectangular magnet;
Figure 9 is a perspective view of a tape measure with pentagonal magnets; Figure 10 is a perspective view of a tape measure with cross-shaped magnets;
Figure 1 1 is a perspective view of a tape measure with hexagonal-shaped
magnets, Figure 12 is a perspective view of a tape measure with oval-shaped magnets
indicating the magnets be oriented in a variety of directions;
Figure 13 is a perspective view of a tape measure with triangular-shaped magnets,
Figure 14 is a perspective view of a tape measure with octagonal magnets, Figure 15 is a perspective view of an embodiment of a tape measure with a pair of square shaped magnets having rounded corners and some round magnets disposed therebetween, Figure 16 is a perspective view of an embodiment of a tape measure with a pair of diamond-shaped magnets dispose on either side of a rectangular magnet;
Figure 17 is a perspective view of a tape measure with trapezoidal magnets;
Figure 18 is a perspective view of a tape measure with parallelogram-shaped magnets; and
Figure 19 is a perspective view of a tape measure with square-shaped magnets. in a Type V tape. Detailed Description
The present inventive device 10, shown in Figures 1 through 3, includes a measuring mechanism 12 for measuring objects and a magnetic attraction mechanism 14 for providing a releasable attachment to objects. These
mechanisms 12 and 14 are described below more fully.
The measuring mechanism 12 may be a typical tape measure or other
suitable measuring device. The measuring mechanism 12 may be of a variety of lengths, widths, and shapes. The length needs to be long enough to be useful in
measuring objects of a variety of sizes. The measuring mechanism 12 may include indicia using the metric system, the American system or other suitable measuring system The length may range from shorter than six inches to longer than several hundred feet The preferable length ranges from approximately three feet to fifty feet. The width may range from one-quarter inch to more than
two inches. The preferable width ranges from approximately one-half inch to approximately one inch. The measuring mechanism 12 may be of a variety of
shapes The preferable shape is rectangular having a first end 16 and a second
end 18, a right side 20, and a left side 22.
The measuring mechanism 12 may be made of any suitable material. The
material needs to avoid degradation so that the measuring mechanism 12 does
not break or crack during use The weight is not overly important, although the
measuring mechanism 12 preferably is a weight that is easily portable and
remains within federal, trade and Japanese standards. The measuring mechanism 12 may be made of wood, hard plastic, steel, stainless steel, nylon,
aluminum, or other suitable materials
The measuring mechanism 12 may include a tape end hook 24 The tape end hook 24 may be a standard tape end hook used with typical tape measuring
devices The tape end hook 24 may vary in shape The preferred shape is approximately rectangular The tape end hook 24 may have an attachment end 26 and a hook end 28 The attachment end 26 and the hook end 28 may be divided by a bend 34 in the tape end hook 24
The length, width, and material of the tape end hook 24 may vary The length of the tape end hook 24 may range from less than one inch to more than three inches The length preferably will be approximately one and three-fourth
inches The width of the tape end hook 24 may be approximately the same width as the measuring mechanism 12 or the width of the tape end hook 24 may be more or less than the width of the measuring mechanism 12 Preferably, the width of the tape end hook 24 will be slightly less than the width of the
measuring mechanism 12 The tape end hook 24 may be made of hard plastic, steel, stainless steel, nylon, aluminum or any other suitable material
The attachment end 26 of the tape end hook 24 may be attached near the
first end 16 of the measuring mechanism 12 The first end 16 of the measuring mechanism 12 may lay adjacent to the bend 34 in the tape end hook 24 The
attachment end 26 may be attached near the first end 16 using any suitable attachment mechanism such as pins or any other suitable attachment
mechanism.
The tape end hook 24 may be permanently attached to the first end 16 or the tape end hook 24 may be removably attached to the first end 16 The tape
end hook 24 may be removably attached .using at least one snap, a hook and . loop mechanism, a button and buttonhole, or other removable attachment
mechanism The tape end hook 24 may be permanently attached to the first end
16 using permanent pins, rivets, permanent glue, or other permanent attachment
mechanism.
The magnetic attraction mechanism 14 may include at least one magnet 30 Preferably, the magnetic attraction mechanism 14 will include at least two magnets 30 The magnet material may be any known material that will provide a magnetic attraction including neodymium-iron-boron, samarium cobalt, alnico, ceramic ferrite or any other magnetic material. The magnetic strength may be very slight such as 2,200 gauss to very strong such as 20,000 gauss. The
preferred magnet is neodymium-iron-boron of 11 ,400 to 13,550 gauss, with the
most preferred 13,550. The magnets 30 preferably are attached to or in
magnetic communication with the hook end 28 of the tape end hook 24. The
magnets 30 may be attached using any suitable attachment mechanism
The preferred embodiment has openings defined in the end hook 28 sized
to receive the magnets. The magnets 30 are approximately the same thickness
of the end hook 24 and the same size as the openings. The magnets 30 are situated in the holes and then pressed, friction fitting them and embedding them
into the end hook 24. Embedding the magnets 30 into the openings provides
sufficient structural integrity to withstand forces encountered in standard drop
tests Welds, adhesives, metal plating (which may be magnetic), coatings or
other securing methods or devices may be used, but have generally been found to be unnecessary. The magnets 30 should be generally co-planer with the
surfaces of the end hook 24, thus maintaining the accuracy of the tape The magnets 30 which may vary in size, but preferably are between 1/8 inch and 1/2
inch in diameter and the thickness of the end hook 24 are found to be of a weight light enough that the invention 10 passes horizontal extension tests.
Figures 6-19 demonstrate various shapes and combinations of shapes of
magnets 30 may be used with the present invention Any shape in which
magnets may be obtained may be used in the present invention as shown in Figure 6. Numerous magnets 30 may be fit in a single end hook 24 as shown in Figure 7. As few as one magnet 30 may be joined to an end hook 24 as show in Figure 8. The shape may be oriented as a variety of angles as shown in Figure 12 Different shaped magnets may be used in a single end hook as shown in
Figure 15. In each end hook, the sides views are much like that shown in Figure 2 with due adjustment for the particular shape of the magnet 30, e.g. triangular
magnets 30 will have a slightly different side profile than hexagonal magnets 30.
Generally, the magnets 30 of whatever shape are flat. The bottom view is reflective of that shown in Figure 3A, e.g. the shape of the magnet 30 as seen in
the front view is the shape seen in the back view
The invention 10 is easily used The hook end 28 is placed adjacent to any metal object, such as metal stud framing, needing to be measured The
magnets 30 are attracted to the metal object, thus, holding the hook end 28 in place The measuring process may then be completed
The invention 10 may also be used for reaching and removing nuts, bolts,
or other metal objects located in small areas where a person may be unable to reach. This may be accomplished by using the measuring mechanism 12 to place the hook end 28 with the magnets 30 into the small area containing the metal object The magnets 30 will attract the metal object The hook end 28 is
then lifted out of the small area using the measuring mechanism 12
In an alternative embodiment, the end hook 28 may include a magnet 30 embedded in a frame 36, which is joined via a hinge 38 to the end hook. Figure 4 shows a Type 1 class A or B tape measure, which may be 50', 100', 200' or
other length together with a hinged end hook 28. A segment 40 may be joined to the hinge 42 of the end hook 28 and to the hinge 38 of the frame 36. The
segment 40 allows the magnet 30 to be thicker, but still should remain
sufficiently thin to allow the tape to pass the applicable accuracy tests for tapes.
Figure 5 shows a Type V tape, which has a fixed angle end hook 28. The hinge 38 may join directly to the end hook 28 and the frame 36. The magnet 30 is preferably embedded into the frame 36. In this embodiment, the frame 36 and magnet 30 may be folded out of the way or down into position where they
function as an end hook 28.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize changes may be
made in form and detail without departing from the spirit and scope, of the
invention.

Claims

Claims
I claim:
1 A measuring device comprising'
means for measuring, the means for measuring having a housing, a tape and an end hook, the end hook being joined to an end of the tape,
while an opposite end of the tape is contained within the housing, means for magnetism, the means for magnetism being joined to the end hook, the means for measuring and means for magnetism being a standard tape measure.
2. The measuring device of Claim 1 wherein' the means for magnetism is at least one magnet.
3. The measuring device of Claim 2 wherein: the tape measure is between three feet and one-hundred feet in length.
4. The measuring device of Claim 2 wherein: the means of magnetism comprises a plurality of magnets.
5. The measuring device of Claim 1 wherein the means for magnetism has a
minimum residual induction Guass of 13,550.
6. A measuring device comprising:
a tape measure having a housing joined to a tape; an end hook joined to an end of the tape; and
a magnet joined to the end hook, the tape measure, end hook and magnet combination has the physical requirements necessary to pass the drop test, extension test and accuracy
test of the Federal Specifications for Tape Measures GCG-
T-106F.
7. The device of claim 6 wherein the magnet is compression fit within the end hook
8. The device of claim 6 further comprising a plurality of magnets.
9. The device of claim 6 wherein the magnet has a minimum residual
induction Guass of 13,550.
10. The device of claim 6 wherein the magnet is permanently attached to the
end hook.
11. The device of claim 6 wherein the magnet is adapted to be selectively attachable to pipes. The device of claim 6 wherein the magnet is adapted to be selectively attachable to metal wall studs
The device of claim 6 wherein the magnet is adapted to be selectively attachable to iron beams. ,
A method of manufacturing a tape measure, comprising
providing a tape measure having a housing joined to a tape, defining at least one aperture into an end hook, such end hook being joined to an end of the tape; and
joining at least one magnet within the at least one aperture such
that the tape measure and magnet combination conform to the physical requirements of Federal Specification GCG-T-
106F (April 12, 1993)
The method of claim 14 further comprising the step of
attaching a magnet through the end hook of a tape measure
The method of claim 14 further comprising the step of
joining a plurality of magnets to the end hook of the tape measure The method of claim 14 wherein the step of joined, further comprises the
step of compression fitting the at least one magnet within the aperture
The method of claim 14 wherein the magnet has a minimum residual
induction Guass of 13,550
PCT/US2004/037273 2004-11-09 2004-11-09 Magnetic tip for tape measure and method of use WO2006052248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2004/037273 WO2006052248A1 (en) 2004-11-09 2004-11-09 Magnetic tip for tape measure and method of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/037273 WO2006052248A1 (en) 2004-11-09 2004-11-09 Magnetic tip for tape measure and method of use

Publications (1)

Publication Number Publication Date
WO2006052248A1 true WO2006052248A1 (en) 2006-05-18

Family

ID=36336807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/037273 WO2006052248A1 (en) 2004-11-09 2004-11-09 Magnetic tip for tape measure and method of use

Country Status (1)

Country Link
WO (1) WO2006052248A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098817A1 (en) * 2006-12-29 2009-09-09 Xiaogang Zhou A magnetic hook of a tape measure and its manufacture method and application
CN104567569A (en) * 2013-10-23 2015-04-29 杭州巨星工具有限公司 Tape measure and blocking part for end part of tape measure
WO2015058371A1 (en) * 2013-10-23 2015-04-30 杭州巨星工具有限公司 Tape measure and stop piece for end portion of ruler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827622A (en) * 1986-08-25 1989-05-09 Marko Makar Tape measure
US4924597A (en) * 1989-09-26 1990-05-15 Angelo Tursi Tape measure device
US5006799A (en) * 1988-12-01 1991-04-09 Pfanstiehl John G Low cost magnetic coating thickness gauge with holding magnet, bias spring and holding force indicator
US5046262A (en) * 1990-09-26 1991-09-10 Kerbaugh Steven M Spherical edge locator for machining
US5103574A (en) * 1991-04-11 1992-04-14 Levy Karen K Measuring tool for hanging up pictures and the like
US5404262A (en) * 1990-12-10 1995-04-04 Nihon Inter Electronics Corporation Apparatus for driving electromagnetic actuator
US5815940A (en) * 1997-04-24 1998-10-06 Valentine, Sr.; Cooper Take-out meter for use in association with a conventional retractable measuring tape
US6226886B1 (en) * 1999-05-06 2001-05-08 General Housewares Corporation Tape measure
US6442863B1 (en) * 1997-12-09 2002-09-03 T-Hook Associates Tape measure endpiece

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827622A (en) * 1986-08-25 1989-05-09 Marko Makar Tape measure
US5006799A (en) * 1988-12-01 1991-04-09 Pfanstiehl John G Low cost magnetic coating thickness gauge with holding magnet, bias spring and holding force indicator
US4924597A (en) * 1989-09-26 1990-05-15 Angelo Tursi Tape measure device
US5046262A (en) * 1990-09-26 1991-09-10 Kerbaugh Steven M Spherical edge locator for machining
US5404262A (en) * 1990-12-10 1995-04-04 Nihon Inter Electronics Corporation Apparatus for driving electromagnetic actuator
US5103574A (en) * 1991-04-11 1992-04-14 Levy Karen K Measuring tool for hanging up pictures and the like
US5815940A (en) * 1997-04-24 1998-10-06 Valentine, Sr.; Cooper Take-out meter for use in association with a conventional retractable measuring tape
US6442863B1 (en) * 1997-12-09 2002-09-03 T-Hook Associates Tape measure endpiece
US6226886B1 (en) * 1999-05-06 2001-05-08 General Housewares Corporation Tape measure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098817A1 (en) * 2006-12-29 2009-09-09 Xiaogang Zhou A magnetic hook of a tape measure and its manufacture method and application
EP2098817A4 (en) * 2006-12-29 2010-09-29 Xiaogang Zhou A magnetic hook of a tape measure and its manufacture method and application
CN104567569A (en) * 2013-10-23 2015-04-29 杭州巨星工具有限公司 Tape measure and blocking part for end part of tape measure
WO2015058371A1 (en) * 2013-10-23 2015-04-30 杭州巨星工具有限公司 Tape measure and stop piece for end portion of ruler
US10168132B2 (en) 2013-10-23 2019-01-01 Hangzhou Great Star Tools Co., Ltd. Tapeline and blocking member for tapeline end

Similar Documents

Publication Publication Date Title
US7124515B2 (en) Magnetic tip for tape measure and method of use
US6663153B2 (en) Removable attachment device for tape measure
US7222437B2 (en) Combined stud finder and tape measure device
CA2391001C (en) Magnetic tip for tape measure and method of use
US9284973B2 (en) Magnetic wall anchoring system
CA2075528C (en) Tape measure attachment
US8307564B1 (en) Deck building assist tool
US5031886A (en) Portable framing aid
US8402671B1 (en) Measuring assistance device
US4947616A (en) Tool for use in mounting a joist hanger
US20020124426A1 (en) Picture-hanging template
US20070068021A1 (en) Chalk layout line
WO2006052248A1 (en) Magnetic tip for tape measure and method of use
US20030067292A1 (en) Magnetic stud locator
US20090094924A1 (en) Sectioning scheme applied to two or four foot cross tee members associated with a ceiling grid system and for resizing both the cross tee and associated ceiling tile for installation at a border cut location between a main tee and parallel extending wall angle
US5079848A (en) Base-point anchor
US6976316B1 (en) Magnetic plumb bob holder
KR200436470Y1 (en) Tape measure having a magnetic tip
US20110267050A1 (en) Magnetic stud finder
US4976041A (en) Base-point anchor
US20070245656A1 (en) In wall support apparatus and method of use
US5232536A (en) Base-point anchor
US8141267B2 (en) Contractor soloist measuring aid and methods of use
US4332088A (en) Stud locater
KR200445810Y1 (en) Plate for spreading adhesives

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04800892

Country of ref document: EP

Kind code of ref document: A1