WO2006051988A1 - Method of nucleic acid amplification - Google Patents

Method of nucleic acid amplification Download PDF

Info

Publication number
WO2006051988A1
WO2006051988A1 PCT/JP2005/020960 JP2005020960W WO2006051988A1 WO 2006051988 A1 WO2006051988 A1 WO 2006051988A1 JP 2005020960 W JP2005020960 W JP 2005020960W WO 2006051988 A1 WO2006051988 A1 WO 2006051988A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
strand
primer
nucleotide molecule
sequence
Prior art date
Application number
PCT/JP2005/020960
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihide Hayashizaki
Toshizo Hayashi
Yasumasa Mitani
Original Assignee
Riken
Kabushiki Kaisha Dnaform
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004380275A external-priority patent/JP2007330101A/en
Application filed by Riken, Kabushiki Kaisha Dnaform filed Critical Riken
Publication of WO2006051988A1 publication Critical patent/WO2006051988A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Definitions

  • the present invention relates to a method for amplifying a target nucleic acid sequence of interest.
  • nucleic acid detection methods have been widely used in genetic diagnosis, nucleic acid testing of agricultural products, infectious disease diagnosis, and the like, and nucleic acid amplification technology is the basic technology for these.
  • a nucleic acid amplification method As a nucleic acid amplification method, an isothermal amplification method that does not require complicated temperature control as in the PCR method is known.
  • a strand displacement amplification method SDA method; Japanese Patent Publication No. 7-114718) Publication
  • self-sustained sequence amplification method (3SR method)
  • Q ⁇ replicase method Japanese Patent No. 2710159 publication
  • NASBA method Japanese Patent No. 2650159 publication
  • LAMP method International Publication No. ⁇ 28082 pamphlet
  • ICAN method WO02Z16639 pamphlet
  • the rolling circle method and the WO2004Z040019 pamphlet are known. These methods still have some points to be improved, such as complicated reaction, difficult primer design, and low amplification efficiency.
  • the present inventors have added a nucleotide molecule intervening between both strands of a double-stranded target nucleic acid to be amplified to a reaction solution to add a nucleic acid.
  • amplification reaction it was found that the primer binding region in the double-stranded target nucleic acid can be dissociated into a single-stranded state, thereby significantly improving the amplification efficiency of the nucleic acid amplification reaction.
  • the present invention is based on these findings.
  • an object of the present invention is to provide a nucleic acid amplification method having high amplification efficiency.
  • the nucleic acid amplification method is a method for amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a truncated nucleic acid using a nucleic acid synthetase and a primer, and comprising the steps of (i) Providing at least one nucleotide molecule capable of dissociating the primer-binding region of either strand into a single strand by intervening between both strands of the double-stranded target nucleic acid; and (ii ) Comprising a step of preparing a nucleic acid amplification reaction solution containing at least one kind of the aforementioned nucleotide molecule, cage nucleic acid, primer and nucleic acid synthase, and performing a nucleic acid amplification reaction using the solution.
  • the amplification efficiency can be improved, and misannealing of a primer to a non-target region can be reduced. Furthermore, since the nucleic acid amplification method according to the present invention can be carried out under isothermal conditions, complicated temperature control is not required.
  • FIG. 1 is a diagram schematically showing a possible mechanism of action for a nucleic acid amplification method according to the present invention.
  • FIG. 2 is a diagram showing the structure of a bridged nucleotide molecule according to a preferred embodiment.
  • FIG. 3 shows a partial sequence (SEQ ID NO: 1) of Ascl3 gene targeted for amplification in the Examples, and each region used for designing bridge nucleotide molecules and primers. It is a figure which shows the position of an area
  • FIG. 4 is a diagram showing the nucleotide sequences of the bridged nucleotide molecules used in the Examples and their positions on the target nucleic acid sequence to be hybridized.
  • FIG. 5 is an electrophoretogram showing the results of the amplification reaction in the examples.
  • nucleic acid amplification method first, by intervening between both strands of a double-stranded target nucleic acid, the primer-binding region in any strand can be dissociated into a single-stranded state.
  • Nucleotide molecules hereinafter “bridge nucleotide molecules”.
  • nucleotide molecule is used in the meaning including DNA, RNA, and PNA (peptide nucleic acid add). According to a preferred embodiment of the invention, the nucleotide molecule is DNA.
  • the bridge nucleotide molecule can intervene between the two strands in a partial region of the double-stranded target nucleic acid and unravel the double-stranded structure of that portion without destroying the nucleic acid molecule itself. To do. By such intervention of the bridge nucleotide molecule, the double-stranded structure in the peripheral part of the region is unwound and partially becomes a single-stranded state. Bridged nucleotide molecules contain a primer binding region in the single-stranded part in this way. Designed to be rare.
  • the bridged nucleotide molecule has a first binding sequence that hybridizes to the first strand of the double-stranded target nucleic acid at one end, and the second It has a second binding sequence that hybridizes to the strand at the other end.
  • Figure 1 shows the mechanism of action of these two types of bridged nucleotide molecules.
  • the first bridging nucleotide molecule (4) and the second bridging nucleotide molecule (5) present in the reaction solution enter the target region in the double-stranded nucleic acid (1), which is a cage, A structure as shown in 1 (a) is formed.
  • the forward primer (6) and the reverse primer (7) hybridize to the primer binding region in a single-stranded state, and then a primer extension reaction by a nucleic acid synthase occurs.
  • the main type is an amplification product (8 and 9) having only the sequence of the target region (2 and 3) (FIG. 1 (b)).
  • the pride nucleotide molecules (4 and 5) also act on these amplification products in the form of cages to form a structure as shown in FIG. 1 (c).
  • the forward primer (6) and the reverse primer (7) hybridize to the primer binding region in a single-stranded state, and then a primer extension reaction by a nucleic acid synthase occurs. By repeating such a reaction, a large amount of amplification product (10) is efficiently formed (Fig. L (d)).
  • nucleotide molecule hybridizes to a target nucleotide molecule under stringent conditions and does not hybridize to nucleotide molecules other than the target nucleotide molecule.
  • Stringent conditions can be determined depending on the melting temperature Tm (° C) of the duplex of the specific nucleotide molecule and its complementary strand, the salt concentration of the hybridization solution, etc.
  • Tm melting temperature
  • the nucleotide molecule when hybridization is performed at a temperature slightly lower than the melting temperature of the nucleic acid molecule to be used, the nucleotide molecule can be specifically hybridized to the target nucleotide molecule.
  • a child is said to comprise a sequence of all or part of a nucleotide molecule complementary to its target nucleotide molecule.
  • the first binding sequence or the second binding sequence hybridizes to a region adjacent to the primer binding region in the first strand or the second strand of the double-stranded target nucleic acid.
  • the bridge nucleotide molecule is such that the 3 ′ terminal residue of the region on the first strand where the first binding sequence is hybridized is on the first strand. Designed to be located 20 nucleotides downstream to 100 nucleotides upstream, more preferably 10 nucleotides downstream to 50 nucleotides upstream, more preferably 1 to 20 nucleotides upstream from the 5 'terminal residue of the primer binding region. Is done.
  • the bridge nucleotide molecule is such that the 3 ′ terminal residue of the region on the second strand to which the second binding sequence hybridizes is on the second strand. Designed to be located 20 nucleotides downstream to 100 nucleotides upstream, more preferably 10 nucleotides downstream to 50 nucleotides upstream, even more preferably 1 to 20 nucleotides upstream with respect to the 5 'terminal residue of the primer binding region .
  • the chain lengths of the first binding sequence and the second binding sequence are particularly limited as long as the binding specificity is not impaired between the nucleic acid sequences present in the reaction solution. Nah,.
  • the chain lengths of the first binding sequence and the second binding sequence are each independently 5 to 100 nucleotides, preferably 5 to 50 nucleotides, more preferably 5 to 30 nucleotides, and even more preferably 7 It can be -20 nucleotides, more preferably 8-15 nucleotides.
  • the bridge nucleotide molecule may include an intervening sequence between the first binding sequence and the second binding sequence.
  • the chain length of such intervening sequences is 1 or more nucleotides, preferably 3 to: L00 nucleotides, more preferably 5 to 50 nucleotides, and even more preferably 8 to 30 nucleotides.
  • the specific nucleotide sequence of the intervening sequence is not particularly limited as long as it is a sequence that does not affect the mechanism of action of the bridge nucleotide molecule as shown in FIG.
  • the nucleotide sequence of the intervening sequence can be a sequence that is not found in either the target nucleic acid sequence or its complement.
  • the intervening sequence This sequence is not found in the nucleic acid sequence present in the reaction solution! It may be a / ⁇ array.
  • first binding sequence and the second binding sequence are not complementary to each other. As a result, bridging nucleotide molecules in a single molecule are avoided. When using multiple types of bridged nucleotide molecules, it is preferable to design each bridged nucleotide molecule so that hybridization between these molecules does not occur.
  • the bridged nucleotide molecule is modified so that an extension reaction by a nucleic acid synthase from the 3 'end does not occur after hybridization to the target nucleic acid sequence.
  • modification may be performed by any method known to those skilled in the art.
  • An example of such a method is a method in which the 3 ′ end of the nucleotide molecule is amination modified.
  • the bridge nucleotide molecule is designed as shown in FIG.
  • a region used for designing the bridge nucleotide molecule is selected.
  • Fw represents a sequence contained in the first primer
  • Fw ′ represents a sequence complementary thereto.
  • Rv represents a sequence contained in the reverse primer
  • Rv ′ represents a sequence complementary thereto.
  • A1, A2, Al, A2, Cl, C2, CI, and C2 indicate the regions used in the design of bridged nucleotide molecules.
  • the sequence of these regions is then used to design bridged nucleotide molecules as shown in FIG. 2 (b).
  • ten thymine residues (T) are used as examples of intervening sequences! /, But this is not a limitation! /.
  • nucleic acid amplification reaction solution containing at least one kind of bridged nucleotide molecule, cage nucleic acid, primer and nucleic acid synthase is prepared, and a nucleic acid amplification reaction using this solution is performed.
  • the nucleic acid amplification reaction solution contains two or more kinds of bridged nucleotide molecules.
  • one bridge nucleotide molecule is designed so that the primer binding region on the first strand of the double-stranded target nucleic acid can be dissociated into a single-stranded state, and another bridge nucleotide is obtained.
  • Molecule, double-stranded target It is possible to design the primer binding region on the second strand of the nucleic acid so that it can be dissociated into a single strand.
  • the primer contained in the nucleic acid amplification reaction solution may be any primer that can amplify the target nucleic acid sequence.
  • Such primers are appropriately designed by those skilled in the art.
  • a primer set comprising a primer that hybridizes to the 3 ′ end portion of the target nucleic acid sequence and a primer that hybridizes to the 3 ′ end portion of the complementary sequence of the target nucleic acid sequence is typically used. be able to.
  • the nucleic acid synthase (polymerase) contained in the nucleic acid amplification reaction solution may be any one having normal temperature, medium temperature, or heat resistance, as long as it is generally used in nucleic acid amplification reactions. Possible force Preferably, it has strand displacement activity (strand displacement ability). In addition, this polymerase may be either a natural body or a mutant with artificial mutations. Examples of such a polymerase include DNA polymerase. Furthermore, it is preferable that this DNA polymerase has substantially no 5 ′ ⁇ 3 ′ exonuclease activity. Such DNA polymerases are thermophilic, such as Bacillus stearothermophilus (hereinafter referred to as “B.
  • B. ca Notell's caldotenax
  • Examples include 5 ′ ⁇ 3 of DNA polymerase derived from Bacillus bacteria, mutants lacking exonuclease activity, and Tarenow fragment of DNA polymerase I derived from E. coli.
  • the DNA polymerases used in the nucleic acid amplification reaction include Vent DNA polymerase, Vent (Exo-) DNA polymerase, DeepVent DNA polymerase, DeepVent (Exo-) DNA polymerase, ⁇ 29 phage DNA polymerase, MS-2 phage Examples include DNA polymerase, Z-Taq DNA polymerase, Pfo DNA polymerase, Pfo turbo DNA polymerase, KOD DNA polymerase, 9 ° Nm DNA polymerase, and Therminater DNA polymerase.
  • the nucleic acid amplification reaction can be performed under isothermal conditions.
  • isothermal refers to maintaining an approximately constant temperature condition such that the enzyme and the primer can substantially function.
  • substantially constant temperature conditions means not only maintaining the set temperature accurately, but also not impairing the substantial functions of the enzyme and the primer! Means allowed.
  • the nucleic acid amplification reaction under a certain temperature condition can be carried out by keeping the temperature at which the activity of the enzyme used can be maintained.
  • the reaction temperature is preferably set to a temperature close to or below the melting temperature (Tm) of the primer. It is preferable to set the stringency level in consideration of the melting temperature (Tm) of the primer. Therefore, this temperature is preferably about 20 ° C to about 75 ° C, more preferably about 35 ° C to about 65 ° C.
  • reagents used in the nucleic acid amplification reaction include, for example, catalysts such as magnesium chloride, magnesium acetate, and magnesium sulfate, substrates such as dNTP mix, tris-hydrochloric acid noffer, tricine buffer, sodium phosphate buffer, phosphorus A buffer such as potassium acid buffer can be used.
  • catalysts such as magnesium chloride, magnesium acetate, and magnesium sulfate
  • substrates such as dNTP mix
  • tris-hydrochloric acid noffer such as tris-hydrochloric acid noffer
  • tricine buffer such as sodium phosphate buffer
  • phosphorus A buffer such as potassium acid buffer
  • additives such as dimethyl sulfoxide and betaine ( ⁇ , ⁇ , ⁇ -trimethylglycine), acidic substances described in WO 99/54455 pamphlets, cation complexes, etc. may be used.
  • kits for amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a vertical nucleic acid using a nucleic acid synthase and a primer and the kit includes at least one kind. Of the bridged nucleotide molecule.
  • the kit according to the present invention comprises two or more bridged nucleotide molecules as described above. According to another preferred embodiment of the present invention, the kit according to the present invention further comprises the above-mentioned nucleic acid synthase having strand displacement activity.
  • the kit according to the present invention may further contain the above-mentioned reagents such as dNTP and buffer, reaction containers, instructions, and the like.
  • Example 1 Amplification of target nucleic acid sequence in Ascl3 gene using bridged nucleotide molecule
  • a bridged nucleotide molecule was used to amplify the target nucleic acid sequence in the Ascl3 gene by a reaction under isothermal conditions.
  • a plasmid was prepared for use as a cage in the amplification reaction. Specifically, a pUC19 vector into which a partial sequence (SEQ ID NO: 1) of the Ascl3 gene (Mus musculus achaete—scute complex nomolog—like 3 (Drosophila); E. coli was transformed.
  • SEQ ID NO: 1 a partial sequence of the Ascl3 gene (Mus musculus achaete—scute complex nomolog—like 3 (Drosophila); E. coli was transformed.
  • each region to be used for designing the bridged nucleotide molecule and the primer was determined as shown in FIG.
  • Al, A2, CI, and C2 represent regions used for designing the bridge nucleotide molecule
  • Fw and Rv represent the forward primer and the reverse primer, respectively.
  • an oligonucleotide having the following sequence was synthesized. The relationship between these sequences and each region shown in FIG. 3 is shown in FIG. In FIG. 4, A2 ′ and C1 ′ represent complementary sequences of A2 and C1, respectively. In addition, each 3 ′ end was aminated so that no extension reaction from each oligonucleotide occurred during the amplification reaction.
  • Oligo 1-1 5 tggagggctg ttttttttttt gacaggctct-3 '(SEQ ID NO: 2);
  • Oligo 1-2 5 and tccctggacc ttttttttttttt gccgcagctg-3 '(SEQ ID NO: 3).
  • Oligo 2-1 5'- gacaggctct ttttttttttttttt tggagggctg-3 '(SEQ ID NO: 4);
  • Oligo 2-2 5 '-gccgcagctg tttttttttttt tccctggacc- 3' ( ⁇ ⁇ 5 [J number 5).
  • oligonucleotides having the following sequences were synthesized:
  • Amplification reaction Reaction solution (25 ⁇ L) with the following composition: Tris—HCl (20 mM, pH 8.8), KCl (10 mM), (NH 2) SO (10 mM) M MgSO (8 mM) M DMSO (3%), Triton X — 100 (1%
  • the bridge nucleotide molecule is not included! /, A small band (about 500 bp) corresponding to the target amplification product is observed in the sample, and the target nucleic acid sequence is slightly amplified. You can see that In contrast, the sample containing the bridged nucleotide molecule showed a remarkably large band corresponding to the target amplification product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method of nucleic acid amplification exhibiting a high amplification efficiency. There is provided a method of amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a template nucleic acid with the use of a nucleic acid synthetase and a primer, comprising the step (i) of providing at least one nucleotide molecule capable of interposing between the two strands of the double-stranded target nucleic acid to thereby attain dissociation of a primer binding region of either of the strands into a single stranded form and the step (ii) of preparing a nucleic acid amplification reaction mixture containing the above at least one nucleotide molecule, template nucleic acid, primer and nucleic acid synthetase and carrying out a nucleic acid amplification reaction with the use of the nucleic acid amplification reaction mixture.

Description

明 細 書  Specification
核酸の増幅方法  Nucleic acid amplification method
関連出願の参照  Reference to related applications
[0001] 本特許出願は、先に出願された米国仮出願第 60Z627, 182号(出願日:2004 年 11月 15日)および日本国特許出願である特願 2004— 380275号(出願日: 200 4年 12月 28日)に基づく優先権の主張を伴うものである。これら先の特許出願におけ る全開示内容は、引用することにより本明細書の一部とされる。  [0001] This patent application consists of previously filed US Provisional Application No. 60Z627,182 (filing date: November 15, 2004) and Japanese Patent Application No. 2004-380275 (filing date: 200). This is accompanied by a priority claim based on December 28, 4 years). The entire disclosure of these earlier patent applications is hereby incorporated by reference.
発明の背景  Background of the Invention
[0002] 発明の分野 [0002] Field of the Invention
本発明は、目的とする標的核酸配列の増幅法に関する。  The present invention relates to a method for amplifying a target nucleic acid sequence of interest.
[0003] 普晋 術 [0003] Art of Putuo
近年、遺伝子診断、農作物の核酸検査、感染症診断などにおいて、核酸検出法が 幅広く利用されており、核酸増幅技術はこれらの基幹となる技術である。  In recent years, nucleic acid detection methods have been widely used in genetic diagnosis, nucleic acid testing of agricultural products, infectious disease diagnosis, and the like, and nucleic acid amplification technology is the basic technology for these.
[0004] 従来の核酸増幅法としては、最も良く知られている PCR法 (米国特許第 4683195 号明細書;米国特許第 4683202号明細書;および米国特許第 4800159号明細書 )をはじめとして、 RNAを铸型とする RT—PCR法(Trends in Biotechnology 10, ppl4 6-152, 1992)などが知られている。これらの方法には、複雑な温度制御を必要とする こと、プライマーのミスアニーリングによる非特異的な増幅産物が混入することなどの 問題がある。 [0004] Conventional nucleic acid amplification methods include the most well-known PCR methods (US Pat. No. 4,683,195; US Pat. No. 4,683,202; and US Pat. No. 4,800,159), RNA An RT-PCR method (Trends in Biotechnology 10, ppl4 6-152, 1992) is known. These methods have problems such as requiring complex temperature control and contamination with non-specific amplification products due to primer misannealing.
[0005] 核酸増幅方法としてはまた、 PCR法のような複雑な温度調節を必要としな 、等温増 幅法が知られており、例えば、鎖置換増幅法 (SDA法;特公平 7— 114718号公報) 、自己維持配列増幅法(3SR法)、 Q βレプリカーゼ法(日本国特許第 2710159号 公報)、 NASBA法(日本国特許第 2650159号公報)、 LAMP法(国際公開第 ΟθΖ 28082号パンフレット)、 ICAN法(国際公開第 02Z16639号パンフレット)、ローリ ングサークル法、国際公開第 2004Z040019号パンフレットに記載の方法などが知 られている。これらの方法にも、反応が複雑であること、プライマーの設計が困難であ ること、増幅効率が低いことなど、それぞれに改善すべき点が残されている。 [0006] 迅速かつ正確な検査および診断のためには、これらの問題を解決することが必要と されてさた。 [0005] As a nucleic acid amplification method, an isothermal amplification method that does not require complicated temperature control as in the PCR method is known. For example, a strand displacement amplification method (SDA method; Japanese Patent Publication No. 7-114718) Publication), self-sustained sequence amplification method (3SR method), Q β replicase method (Japanese Patent No. 2710159 publication), NASBA method (Japanese Patent No. 2650159 publication), LAMP method (International Publication No. ΟθΖ28082 pamphlet) The methods described in the ICAN method (WO02Z16639 pamphlet), the rolling circle method, and the WO2004Z040019 pamphlet are known. These methods still have some points to be improved, such as complicated reaction, difficult primer design, and low amplification efficiency. [0006] For quick and accurate examination and diagnosis, it was necessary to solve these problems.
発明の概要  Summary of the Invention
[0007] 本発明者らは、核酸合成酵素およびプライマーを用いる核酸増幅法において、増 幅の対象となる二本鎖標的核酸の両鎖の間に介入するヌクレオチド分子を反応液に 添加して核酸増幅反応を行なうことにより、前記二本鎖標的核酸におけるプライマー 結合領域を一本鎖の状態に解離させることができ、これにより、核酸増幅反応の増幅 効率が顕著に向上することを見出した。本発明はこれら知見に基づくものである。  [0007] In the nucleic acid amplification method using a nucleic acid synthase and a primer, the present inventors have added a nucleotide molecule intervening between both strands of a double-stranded target nucleic acid to be amplified to a reaction solution to add a nucleic acid. By carrying out the amplification reaction, it was found that the primer binding region in the double-stranded target nucleic acid can be dissociated into a single-stranded state, thereby significantly improving the amplification efficiency of the nucleic acid amplification reaction. The present invention is based on these findings.
[0008] 従って、本発明は、高い増幅効率を有する核酸増幅法を提供することを目的とする  [0008] Accordingly, an object of the present invention is to provide a nucleic acid amplification method having high amplification efficiency.
[0009] そして、本発明による核酸増幅法は、核酸合成酵素およびプライマーを用いて铸 型核酸中に含まれる標的核酸配列を含む二本鎖標的核酸を増幅する方法であって 、(i)前記二本鎖標的核酸の両鎖の間に介入することにより、いずれかの鎖における プライマー結合領域を一本鎖の状態に解離させうる、少なくとも 1種のヌクレオチド分 子を用意する工程、ならびに (ii)少なくとも 1種の前記ヌクレオチド分子、铸型核酸、 プライマーおよび核酸合成酵素を含む核酸増幅反応液を調製し、これを用いた核酸 増幅反応を行なう工程を含んでなるものである。 [0009] The nucleic acid amplification method according to the present invention is a method for amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a truncated nucleic acid using a nucleic acid synthetase and a primer, and comprising the steps of (i) Providing at least one nucleotide molecule capable of dissociating the primer-binding region of either strand into a single strand by intervening between both strands of the double-stranded target nucleic acid; and (ii ) Comprising a step of preparing a nucleic acid amplification reaction solution containing at least one kind of the aforementioned nucleotide molecule, cage nucleic acid, primer and nucleic acid synthase, and performing a nucleic acid amplification reaction using the solution.
[0010] 本発明によれば、核酸増幅法において、その増幅効率を向上させることが可能とな り、また、プライマーの非標的領域へのミスアニーリングを減少させることが可能となる 。さらに、本発明による核酸増幅法は、等温下で実施することが可能であるため、複 雑な温度制御を必要としな 、。  [0010] According to the present invention, in the nucleic acid amplification method, the amplification efficiency can be improved, and misannealing of a primer to a non-target region can be reduced. Furthermore, since the nucleic acid amplification method according to the present invention can be carried out under isothermal conditions, complicated temperature control is not required.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、本発明による核酸増幅法について考えられる作用機序を模式的に示 す図である。  FIG. 1 is a diagram schematically showing a possible mechanism of action for a nucleic acid amplification method according to the present invention.
[図 2]図 2は、好ましい実施態様によるブリッジヌクレオチド分子の構造を示す図であ る。  FIG. 2 is a diagram showing the structure of a bridged nucleotide molecule according to a preferred embodiment.
[図 3]図 3は、実施例において増幅の対象とした Ascl3遺伝子の部分配列(配列番号 1)、ならびにブリッジヌクレオチド分子およびプライマーの設計に用いるための各領 域の位置を示す図である。 [FIG. 3] FIG. 3 shows a partial sequence (SEQ ID NO: 1) of Ascl3 gene targeted for amplification in the Examples, and each region used for designing bridge nucleotide molecules and primers. It is a figure which shows the position of an area | region.
[図 4]図 4は、実施例にお!、て用いられたブリッジヌクレオチド分子のヌクレオチド配列 、およびこれらがノ、イブリダィズする標的核酸配列上の位置を示す図である。  [FIG. 4] FIG. 4 is a diagram showing the nucleotide sequences of the bridged nucleotide molecules used in the Examples and their positions on the target nucleic acid sequence to be hybridized.
[図 5]図 5は、実施例における増幅反応の結果を示す電気泳動写真である。  FIG. 5 is an electrophoretogram showing the results of the amplification reaction in the examples.
符号の説明  Explanation of symbols
[0012] 1 铸型となる二本鎖核酸 [0012] 1 Double-stranded nucleic acid to be cage-shaped
2 アンチセンス鎖上の標的領域  2 Target region on the antisense strand
3 センス鎖上の標的領域  3 Target region on the sense strand
4 第一のブリッジヌクレオチド分子  4 First bridge nucleotide molecule
5 第二のブリッジヌクレオチド分子  5 Second bridged nucleotide molecule
6 フォワードプライマー  6 Forward primer
7 リバースプライマー  7 Reverse primer
8 標的核酸配列を有する増幅産物(アンチセンス)  8 Amplification product with target nucleic acid sequence (antisense)
9 標的核酸配列を有する増幅産物 (センス)  9 Amplification product with target nucleic acid sequence (sense)
10 増幅産物  10 Amplification products
発明の具体的説明  Detailed description of the invention
[0013] 本発明による核酸増幅法では、まず、二本鎖標的核酸の両鎖の間に介入すること により、いずれかの鎖におけるプライマー結合領域を一本鎖の状態に解離させうる、 少なくとも 1種のヌクレオチド分子 (以下「ブリッジヌクレオチド分子」という)が用意され る。  [0013] In the nucleic acid amplification method according to the present invention, first, by intervening between both strands of a double-stranded target nucleic acid, the primer-binding region in any strand can be dissociated into a single-stranded state. Nucleotide molecules (hereinafter “bridge nucleotide molecules”) are prepared.
[0014] 本発明にお 、て「ヌクレオチド分子」は、 DNA、 RNA、および PNA (peptide nuclei c add)を含む意味で用いられる。本発明の好ましい実施態様によれば、ヌクレオチド 分子は DNAである。  In the present invention, “nucleotide molecule” is used in the meaning including DNA, RNA, and PNA (peptide nucleic acid add). According to a preferred embodiment of the invention, the nucleotide molecule is DNA.
[0015] ブリッジヌクレオチド分子は、二本鎖標的核酸の一部の領域においてその 2本の鎖 の間に入り込み、核酸分子自体を破壊することなぐその部分の二本鎖構造をほどく ことを可能とするものである。このようなブリッジヌクレオチド分子の介入により、その領 域の周辺部分の二本鎖構造がほどかれ、部分的に一本鎖の状態となる。ブリッジヌク レオチド分子は、このようにして一本鎖の状態となる部分にプライマー結合領域が含 まれるように設計される。 [0015] The bridge nucleotide molecule can intervene between the two strands in a partial region of the double-stranded target nucleic acid and unravel the double-stranded structure of that portion without destroying the nucleic acid molecule itself. To do. By such intervention of the bridge nucleotide molecule, the double-stranded structure in the peripheral part of the region is unwound and partially becomes a single-stranded state. Bridged nucleotide molecules contain a primer binding region in the single-stranded part in this way. Designed to be rare.
[0016] 本発明の好ま ヽ実施態様によれば、ブリッジヌクレオチド分子は、前記二本鎖標 的核酸の第一鎖にハイブリダィズする第一の結合性配列を一方の末端部に有し、第 二鎖にハイブリダィズする第二の結合性配列を他方の末端部に有するものとされる。 このような 2種のブリッジヌクレオチド分子を使用する場合におけるこれらの作用機序 を図 1に模式的に示す。  [0016] According to a preferred embodiment of the present invention, the bridged nucleotide molecule has a first binding sequence that hybridizes to the first strand of the double-stranded target nucleic acid at one end, and the second It has a second binding sequence that hybridizes to the strand at the other end. Figure 1 shows the mechanism of action of these two types of bridged nucleotide molecules.
[0017] 反応溶液中に存在する第一のブリッジヌクレオチド分子 (4)および第二のブリッジヌ クレオチド分子(5)は、铸型となる二本鎖核酸(1)中の標的領域中に入り込み、図 1( a)に示すような構造を形成する。これにより一本鎖の状態となっているプライマー結合 領域にフォワードプライマー(6)およびリバースプライマー(7)がハイブリダィズし、そ の後、核酸合成酵素によるプライマー伸長反応が起こる。このような反応が繰り返さ れる結果として、主要な铸型は標的領域(2および 3)の配列のみを有する増幅産物( 8および 9)となる(図 1(b))。次いで、铸型としてのこれらの増幅産物に対しても、プリ ッジヌクレオチド分子 (4および 5)は同様に作用し、図 1(c)に示すような構造を形成す る。これにより一本鎖の状態となっているプライマー結合領域にフォワードプライマー (6)およびリバースプライマー(7)がハイブリダィズし、その後、核酸合成酵素による プライマー伸長反応が起こる。このような反応が繰り返されることにより、効率的に大 量の増幅産物(10)が形成される(図 l(d))。  [0017] The first bridging nucleotide molecule (4) and the second bridging nucleotide molecule (5) present in the reaction solution enter the target region in the double-stranded nucleic acid (1), which is a cage, A structure as shown in 1 (a) is formed. As a result, the forward primer (6) and the reverse primer (7) hybridize to the primer binding region in a single-stranded state, and then a primer extension reaction by a nucleic acid synthase occurs. As a result of such a reaction being repeated, the main type is an amplification product (8 and 9) having only the sequence of the target region (2 and 3) (FIG. 1 (b)). Next, the pride nucleotide molecules (4 and 5) also act on these amplification products in the form of cages to form a structure as shown in FIG. 1 (c). As a result, the forward primer (6) and the reverse primer (7) hybridize to the primer binding region in a single-stranded state, and then a primer extension reaction by a nucleic acid synthase occurs. By repeating such a reaction, a large amount of amplification product (10) is efficiently formed (Fig. L (d)).
[0018] 本発明において「ノヽイブリダィズする」とは、あるヌクレオチド分子がストリンジヱント な条件下で標的ヌクレオチド分子にハイブリダィズし、標的ヌクレオチド分子以外のヌ クレオチド分子にはハイブリダィズしな 、ことを意味する。ストリンジェントな条件は、 具体的なヌクレオチド分子とその相補鎖との二重鎖の融解温度 Tm (°C)およびハイ ブリダィゼーシヨン溶液の塩濃度などに依存して決定することができ、例えば、 J. Sam brook, E. F. Frisch, T. Maniatis; Molecularし loning 2nd edition, し old Spring Harbor Laboratory (1989)等を参照することができる。例えば、使用する核酸分子の融解温 度よりわずかに低い温度下でノヽイブリダィゼーシヨンを行なうと、ヌクレオチド分子を 標的ヌクレオチド分子に特異的にハイブリダィズさせることができる。本発明の好まし V、実施態様によれば、ある標的ヌクレオチド分子にハイブリダィズするヌクレオチド分 子は、その標的ヌクレオチド分子に相補的なヌクレオチド分子の全部または一部の配 列を含んでなるものとされる。 [0018] In the present invention, "nobly" means that a nucleotide molecule hybridizes to a target nucleotide molecule under stringent conditions and does not hybridize to nucleotide molecules other than the target nucleotide molecule. Stringent conditions can be determined depending on the melting temperature Tm (° C) of the duplex of the specific nucleotide molecule and its complementary strand, the salt concentration of the hybridization solution, etc. For example, J. Sam brook, EF Frisch, T. Maniatis; Molecular, 2nd edition, old Spring Harbor Laboratory (1989) can be referred to. For example, when hybridization is performed at a temperature slightly lower than the melting temperature of the nucleic acid molecule to be used, the nucleotide molecule can be specifically hybridized to the target nucleotide molecule. According to a preferred V, embodiment of the present invention, the nucleotide moiety that hybridizes to a target nucleotide molecule. A child is said to comprise a sequence of all or part of a nucleotide molecule complementary to its target nucleotide molecule.
[0019] ブリッジヌクレオチド分子において、前記第一の結合性配列または前記第二の結合 性配列は、二本鎖標的核酸の第一鎖または第二鎖におけるプライマー結合領域に 近接した領域にハイブリダィズすることが好ましい。従って、本発明の好ましい実施態 様によれば、ブリッジヌクレオチド分子は、前記第一の結合性配列がノ、イブリダィズ する前記第一鎖上の領域の 3'末端残基が、第一鎖上のプライマー結合領域の 5'末 端残基に対して 20ヌクレオチド下流〜 100ヌクレオチド上流、より好ましくは 10ヌクレ ォチド下流〜 50ヌクレオチド上流、さらに好ましくは 1〜 20ヌクレオチド上流に位置 するものとなるように設計される。また、本発明の他の好ましい実施態様によれば、ブ リッジヌクレオチド分子は、前記第二の結合性配列がハイブリダィズする前記第二鎖 上の領域の 3'末端残基が、第二鎖上のプライマー結合領域の 5'末端残基に対して 20ヌクレオチド下流〜 100ヌクレオチド上流、より好ましくは 10ヌクレオチド下流〜 50 ヌクレオチド上流、さらに好ましくは 1〜 20ヌクレオチド上流に位置するものとなるよう に設計される。  [0019] In the bridged nucleotide molecule, the first binding sequence or the second binding sequence hybridizes to a region adjacent to the primer binding region in the first strand or the second strand of the double-stranded target nucleic acid. Is preferred. Therefore, according to a preferred embodiment of the present invention, the bridge nucleotide molecule is such that the 3 ′ terminal residue of the region on the first strand where the first binding sequence is hybridized is on the first strand. Designed to be located 20 nucleotides downstream to 100 nucleotides upstream, more preferably 10 nucleotides downstream to 50 nucleotides upstream, more preferably 1 to 20 nucleotides upstream from the 5 'terminal residue of the primer binding region. Is done. According to another preferred embodiment of the present invention, the bridge nucleotide molecule is such that the 3 ′ terminal residue of the region on the second strand to which the second binding sequence hybridizes is on the second strand. Designed to be located 20 nucleotides downstream to 100 nucleotides upstream, more preferably 10 nucleotides downstream to 50 nucleotides upstream, even more preferably 1 to 20 nucleotides upstream with respect to the 5 'terminal residue of the primer binding region .
[0020] 前記第一の結合性配列および前記第二の結合性配列の鎖長は、反応液中に存在 する核酸配列の間で、その結合特異性が害されない限りにお 、て特に限定されな 、 。例えば、第一の結合性配列および第二の結合性配列の鎖長は、それぞれ独立し て、 5〜 100ヌクレオチド、好ましくは 5〜50ヌクレオチド、より好ましくは 5〜30ヌクレ ォチド、さらに好ましくは 7〜20ヌクレオチド、さらに好ましくは 8〜15ヌクレオチドとす ることがでさる。  [0020] The chain lengths of the first binding sequence and the second binding sequence are particularly limited as long as the binding specificity is not impaired between the nucleic acid sequences present in the reaction solution. Nah,. For example, the chain lengths of the first binding sequence and the second binding sequence are each independently 5 to 100 nucleotides, preferably 5 to 50 nucleotides, more preferably 5 to 30 nucleotides, and even more preferably 7 It can be -20 nucleotides, more preferably 8-15 nucleotides.
[0021] ブリッジヌクレオチド分子は、第一の結合性配列と第二の結合性配列との間に介在 配列を含むものとすることができる。このような介在配列の鎖長は、 1ヌクレオチド以上 、好ましくは 3〜: L00ヌクレオチド、より好ましくは 5〜50ヌクレオチド、さらに好ましくは 8〜30ヌクレオチドとされる。介在配列の具体的なヌクレオチド配列は、図 1に示され るようなブリッジヌクレオチド分子の作用機序に影響しない配列であればよぐ特に限 定されない。例えば、介在配列のヌクレオチド配列は、標的核酸配列およびその相 補配列のいずれにも見られない配列とすることができる。あるいは、介在配列のヌクレ ォチド配列は、反応液中に存在する核酸配列の ヽずれにも見られな!/ヽ配列としても よい。 [0021] The bridge nucleotide molecule may include an intervening sequence between the first binding sequence and the second binding sequence. The chain length of such intervening sequences is 1 or more nucleotides, preferably 3 to: L00 nucleotides, more preferably 5 to 50 nucleotides, and even more preferably 8 to 30 nucleotides. The specific nucleotide sequence of the intervening sequence is not particularly limited as long as it is a sequence that does not affect the mechanism of action of the bridge nucleotide molecule as shown in FIG. For example, the nucleotide sequence of the intervening sequence can be a sequence that is not found in either the target nucleic acid sequence or its complement. Alternatively, the intervening sequence This sequence is not found in the nucleic acid sequence present in the reaction solution! It may be a / ヽ array.
[0022] 前記第一の結合性配列と前記第二の結合性配列とは、相互に相補的でな!、ものと することが好ましい。これにより、ブリッジヌクレオチド分子の単一分子内でのノ、イブリ ダイゼーシヨンが回避される。また、複数種のブリッジヌクレオチド分子を用いる場合 には、これらの分子間でのハイブリダィゼーシヨンが起こらないようにそれぞれのブリ ッジヌクレオチド分子を設計することが好ま 、。  [0022] It is preferable that the first binding sequence and the second binding sequence are not complementary to each other. As a result, bridging nucleotide molecules in a single molecule are avoided. When using multiple types of bridged nucleotide molecules, it is preferable to design each bridged nucleotide molecule so that hybridization between these molecules does not occur.
[0023] ブリッジヌクレオチド分子は、標的核酸配列にハイブリダィズした後にその 3'末端か らの核酸合成酵素による伸長反応が起こらないように修飾したものであることが好まし い。このような修飾は、当業者に公知のいずれの方法によって行なってもよい。このよ うな方法としては、例えば、ヌクレオチド分子の 3'末端をァミノ化修飾する方法が挙げ られる。  [0023] Preferably, the bridged nucleotide molecule is modified so that an extension reaction by a nucleic acid synthase from the 3 'end does not occur after hybridization to the target nucleic acid sequence. Such modification may be performed by any method known to those skilled in the art. An example of such a method is a method in which the 3 ′ end of the nucleotide molecule is amination modified.
[0024] 本発明の特に好ましい実施態様によれば、ブリッジヌクレオチド分子は図 2に示す ように設計される。まず、標的核酸配列およびその相補配列において、図 2(a)に示す ようにブリッジヌクレオチド分子の設計に用いる領域を選択する。ここで、 Fwはフォヮ 一ドプライマ一に含まれる配列を示し、 Fw'はこれに相補的な配列を示す。また、 Rv はリバースプライマーに含まれる配列を示し、 Rv'はこれに相補的な配列を示す。 A1 、 A2、 Al,、 A2,、 Cl、 C2、 CI,、および C2,はブリッジヌクレオチド分子の設計に 用いられる領域を示す。次いで、これらの領域の配列を用いて、図 2(b)に示すように ブリッジヌクレオチド分子が設計される。ここで、介在配列の例として 10個のチミン残 基 (T)が用いられて!/、るが、これに限定されるものではな!/、。  [0024] According to a particularly preferred embodiment of the present invention, the bridge nucleotide molecule is designed as shown in FIG. First, in the target nucleic acid sequence and its complementary sequence, as shown in FIG. 2 (a), a region used for designing the bridge nucleotide molecule is selected. Here, Fw represents a sequence contained in the first primer, and Fw ′ represents a sequence complementary thereto. Rv represents a sequence contained in the reverse primer, and Rv ′ represents a sequence complementary thereto. A1, A2, Al, A2, Cl, C2, CI, and C2 indicate the regions used in the design of bridged nucleotide molecules. The sequence of these regions is then used to design bridged nucleotide molecules as shown in FIG. 2 (b). Here, ten thymine residues (T) are used as examples of intervening sequences! /, But this is not a limitation! /.
[0025] 本発明による核酸増幅法では、少なくとも 1種のブリッジヌクレオチド分子、铸型核 酸、プライマーおよび核酸合成酵素を含む核酸増幅反応液が調製され、これを用い た核酸増幅反応が行われる。  [0025] In the nucleic acid amplification method according to the present invention, a nucleic acid amplification reaction solution containing at least one kind of bridged nucleotide molecule, cage nucleic acid, primer and nucleic acid synthase is prepared, and a nucleic acid amplification reaction using this solution is performed.
[0026] 本発明の好ましい実施態様によれば、前記核酸増幅反応液は、 2種以上のブリッジ ヌクレオチド分子を含むものとされる。この実施態様では、例えば、一つのブリッジヌ クレオチド分子を、二本鎖標的核酸の第一鎖上のプライマー結合領域を一本鎖の状 態に解離させうるように設計し、他の一つのブリッジヌクレオチド分子を、二本鎖標的 核酸の第二鎖上のプライマー結合領域を一本鎖の状態に解離させうるように設計す ることがでさる。 [0026] According to a preferred embodiment of the present invention, the nucleic acid amplification reaction solution contains two or more kinds of bridged nucleotide molecules. In this embodiment, for example, one bridge nucleotide molecule is designed so that the primer binding region on the first strand of the double-stranded target nucleic acid can be dissociated into a single-stranded state, and another bridge nucleotide is obtained. Molecule, double-stranded target It is possible to design the primer binding region on the second strand of the nucleic acid so that it can be dissociated into a single strand.
[0027] 核酸増幅反応液に含まれるプライマーは、標的核酸配列を増幅しうるものであれば よい。このようなプライマーは、当業者によって適宜設計される。このようなプライマー としては、典型的には、標的核酸配列の 3'末端部分にハイブリダィズするプライマー と、標的核酸配列の相補配列の 3'末端部分にハイブリダィズするプライマーとを含ん でなるプライマーセットを用いることができる。  [0027] The primer contained in the nucleic acid amplification reaction solution may be any primer that can amplify the target nucleic acid sequence. Such primers are appropriately designed by those skilled in the art. As such a primer, a primer set comprising a primer that hybridizes to the 3 ′ end portion of the target nucleic acid sequence and a primer that hybridizes to the 3 ′ end portion of the complementary sequence of the target nucleic acid sequence is typically used. be able to.
[0028] 核酸増幅反応液に含まれる核酸合成酵素 (ポリメラーゼ)は、核酸増幅反応に一般 的に用いられるものであればよぐ常温性、中温性、もしくは耐熱性のいずれのものも 好適に使用できる力 好ましくは鎖置換 (strand displacement)活性 (鎖置換能)を有 するものとされる。また、このポリメラーゼは、天然体もしくは人工的に変異をカ卩えた変 異体のいずれであってもよい。このようなポリメラーゼとしては、 DNAポリメラーゼが挙 げられる。さらに、この DNAポリメラーゼは、実質的に 5 '→3 'ェキソヌクレアーゼ活 性を有しないものであることが好ましい。このような DNAポリメラーゼとしては、バチル ス'ステア口サーモフィルス(Bacillus stearothermophilus,以下「B. st」という)、ノ チ ルス'カルドテナックス(Bacillus caldotenax、以下「B. ca」という)等の好熱性バチル ス属細菌由来 DNAポリメラーゼの 5 '→3,ェキソヌクレアーゼ活性を欠失した変異体 、大腸菌 . coli)由来 DNAポリメラーゼ Iのタレノウフラグメント等が挙げられる。核 酸増幅反応において使用する DNAポリメラーゼとしては、さらに、 Vent DNAポリメラ ーゼ、 Vent (Exo- ) DNAポリメラーゼ、 DeepVent DNAポリメラーゼ、 DeepVent (Exo- ) DNAポリメラーゼ、 Φ 29ファージ DNAポリメラーゼ、 MS— 2ファージ DNAポリメラー ゼ、 Z-Taq DNAポリメラーゼ、 Pfo DNAポリメラーゼ、 Pfo turbo DNAポリメラーゼ、 KO D DNAポリメラーゼ、 9° Nm DNAポリメラーゼ、 Therminater DNAポリメラーゼ等が挙 げられる。  [0028] The nucleic acid synthase (polymerase) contained in the nucleic acid amplification reaction solution may be any one having normal temperature, medium temperature, or heat resistance, as long as it is generally used in nucleic acid amplification reactions. Possible force Preferably, it has strand displacement activity (strand displacement ability). In addition, this polymerase may be either a natural body or a mutant with artificial mutations. Examples of such a polymerase include DNA polymerase. Furthermore, it is preferable that this DNA polymerase has substantially no 5 ′ → 3 ′ exonuclease activity. Such DNA polymerases are thermophilic, such as Bacillus stearothermophilus (hereinafter referred to as “B. st”) and Notell's caldotenax (hereinafter referred to as “B. ca”). Examples include 5 ′ → 3 of DNA polymerase derived from Bacillus bacteria, mutants lacking exonuclease activity, and Tarenow fragment of DNA polymerase I derived from E. coli. The DNA polymerases used in the nucleic acid amplification reaction include Vent DNA polymerase, Vent (Exo-) DNA polymerase, DeepVent DNA polymerase, DeepVent (Exo-) DNA polymerase, Φ 29 phage DNA polymerase, MS-2 phage Examples include DNA polymerase, Z-Taq DNA polymerase, Pfo DNA polymerase, Pfo turbo DNA polymerase, KOD DNA polymerase, 9 ° Nm DNA polymerase, and Therminater DNA polymerase.
[0029] 前記核酸増幅反応は、等温下で行なうことができる。ここで、「等温」とは、酵素およ びプライマーが実質的に機能しうるような、ほぼ一定の温度条件下に保つことをいう。 さらに、「ほぼ一定の温度条件」とは、設定された温度を正確に保持することのみなら ず、酵素およびプライマーの実質的な機能を損なわな!/、程度の温度変化であれば 許容されることを意味する。 [0029] The nucleic acid amplification reaction can be performed under isothermal conditions. Here, “isothermal” refers to maintaining an approximately constant temperature condition such that the enzyme and the primer can substantially function. Furthermore, “substantially constant temperature conditions” means not only maintaining the set temperature accurately, but also not impairing the substantial functions of the enzyme and the primer! Means allowed.
[0030] 一定の温度条件下での核酸増幅反応は、使用する酵素の活性を維持できる温度 に保つことにより実施することができる。また、この核酸増幅反応において、プライマ 一が標的核酸にアニーリングするためには、例えば、反応温度を、そのプライマーの 融解温度 (Tm)付近の温度、もしくはそれ以下に設定することが好ましぐさらには、 プライマーの融解温度 (Tm)を考慮し、ストリンジエンシーのレベルを設定することが 好ましい。従って、この温度は、好ましくは、約 20°C〜約 75°Cであり、さらに好ましく は、約 35°C〜約 65°Cとする。  [0030] The nucleic acid amplification reaction under a certain temperature condition can be carried out by keeping the temperature at which the activity of the enzyme used can be maintained. In this nucleic acid amplification reaction, in order for the primer to anneal to the target nucleic acid, for example, the reaction temperature is preferably set to a temperature close to or below the melting temperature (Tm) of the primer. It is preferable to set the stringency level in consideration of the melting temperature (Tm) of the primer. Therefore, this temperature is preferably about 20 ° C to about 75 ° C, more preferably about 35 ° C to about 65 ° C.
[0031] 核酸増幅反応において使用するその他の試薬としては、例えば、塩化マグネシウム 、酢酸マグネシウム、硫酸マグネシウム等の触媒、 dNTPミックス等の基質、トリス塩酸 ノ ッファー、トライシンバッファー、リン酸ナトリウムバッファー、リン酸カリウムバッファ 一等の緩衝液を使用することができる。さらに、ジメチルスルホキシド (dimethyl sulfoxi de)やべタイン(Ν,Ν,Ν- trimethylglycine)等の添加物、国際公開第 99/54455号パ ンフレットに記載の酸性物質、陽イオン錯体等を使用してもよ!/、。  [0031] Other reagents used in the nucleic acid amplification reaction include, for example, catalysts such as magnesium chloride, magnesium acetate, and magnesium sulfate, substrates such as dNTP mix, tris-hydrochloric acid noffer, tricine buffer, sodium phosphate buffer, phosphorus A buffer such as potassium acid buffer can be used. In addition, additives such as dimethyl sulfoxide and betaine (Ν, Ν, Ν-trimethylglycine), acidic substances described in WO 99/54455 pamphlets, cation complexes, etc. may be used. Yo! /
[0032] 本発明による核酸増幅法を実施するために、必要な試薬等をまとめてキットとするこ とができる。従って、本発明によれば、核酸合成酵素およびプライマーを用いて铸型 核酸中に含まれる標的核酸配列を含む二本鎖標的核酸を増幅するためのキットが 提供され、該キットは、少なくとも 1種のブリッジヌクレオチド分子を含んでなる。  [0032] In order to carry out the nucleic acid amplification method according to the present invention, necessary reagents and the like can be combined into a kit. Therefore, according to the present invention, there is provided a kit for amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a vertical nucleic acid using a nucleic acid synthase and a primer, and the kit includes at least one kind. Of the bridged nucleotide molecule.
[0033] 本発明の好ましい実施態様によれば、本発明によるキットは、上述のような 2種以上 のブリッジヌクレオチド分子を含んでなるものとされる。本発明の他の好ま U、実施態 様によれば、本発明によるキットは、鎖置換活性を有する上述の核酸合成酵素をさら に含んでなるものとされる。  [0033] According to a preferred embodiment of the present invention, the kit according to the present invention comprises two or more bridged nucleotide molecules as described above. According to another preferred embodiment of the present invention, the kit according to the present invention further comprises the above-mentioned nucleic acid synthase having strand displacement activity.
[0034] 本発明によるキットはさらに、 dNTP,緩衝液などの上述の試薬類、反応容器、説明 書等を含んでいてもよい。  [0034] The kit according to the present invention may further contain the above-mentioned reagents such as dNTP and buffer, reaction containers, instructions, and the like.
実施例  Example
[0035] 以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれら実施例 に限定されるものではない。  [0035] The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to these examples.
[0036] 例 1 :ブリッジヌクレオチド分子を用いた Ascl3遺伝子中の標的核酸配列の増幅 本例では、ブリッジヌクレオチド分子を用いて、 Ascl3遺伝子中の標的核酸配列を 等温下での反応により増幅した。 [0036] Example 1: Amplification of target nucleic acid sequence in Ascl3 gene using bridged nucleotide molecule In this example, a bridged nucleotide molecule was used to amplify the target nucleic acid sequence in the Ascl3 gene by a reaction under isothermal conditions.
[0037] (1)铸型として用いられるプラスミドの調製 [0037] (1) Preparation of plasmid used as cage
増幅反応に铸型として用いるためのプラスミドを調製した。具体的には、 Ascl3遺伝 子 (Mus musculus achaete— scute complex nomolog— like 3 (Drosophila) ;NCB丄ァ ~~タ ベースアクセス番号: NM_020051)の部分配列(配列番号 1)を挿入した pUC19ベクタ 一を大腸菌に形質転換した。  A plasmid was prepared for use as a cage in the amplification reaction. Specifically, a pUC19 vector into which a partial sequence (SEQ ID NO: 1) of the Ascl3 gene (Mus musculus achaete—scute complex nomolog—like 3 (Drosophila); E. coli was transformed.
[0038] (2)ブリッジヌクレオチド分子およびプライマーの作製 [0038] (2) Preparation of bridged nucleotide molecules and primers
増幅の対象とする Ascl3遺伝子部分配列(配列番号 1)において、ブリッジヌクレオ チド分子およびプライマーの設計に用いるための各領域を図 3に示すように決定した 。図 3において、 Al、 A2、 CIおよび C2はブリッジヌクレオチド分子の設計に用いる 領域を表し、 Fwおよび Rvはそれぞれフォワードプライマーおよびリバースプライマー を表す。  In the Ascl3 gene partial sequence (SEQ ID NO: 1) to be amplified, each region to be used for designing the bridged nucleotide molecule and the primer was determined as shown in FIG. In FIG. 3, Al, A2, CI, and C2 represent regions used for designing the bridge nucleotide molecule, and Fw and Rv represent the forward primer and the reverse primer, respectively.
[0039] ブリッジヌクレオチド分子としては、下記の配列を有するオリゴヌクレオチドを合成し た。これらの配列と図 3に示される各領域との関係は図 4に示す。図 4において、 A2' および C1 'は、それぞれ A2および C1の相補配列を表す。また、増幅反応中に各ォ リゴヌクレオチドからの伸長反応が起こらないように、それぞれの 3 '末端をアミノ化修 飾した。  [0039] As a bridged nucleotide molecule, an oligonucleotide having the following sequence was synthesized. The relationship between these sequences and each region shown in FIG. 3 is shown in FIG. In FIG. 4, A2 ′ and C1 ′ represent complementary sequences of A2 and C1, respectively. In addition, each 3 ′ end was aminated so that no extension reaction from each oligonucleotide occurred during the amplification reaction.
[0040] オリゴセット 1 :  [0040] Oligo set 1:
Oligo 1- 1 : 5し tggagggctg tttttttttt gacaggctct- 3' (配列番号 2);  Oligo 1-1: 5 tggagggctg tttttttttt gacaggctct-3 '(SEQ ID NO: 2);
Oligo 1- 2 : 5し tccctggacc tttttttttt gccgcagctg- 3' (配列番号 3)。  Oligo 1-2: 5 and tccctggacc tttttttttt gccgcagctg-3 '(SEQ ID NO: 3).
[0041] オリゴセット 2 :  [0041] Oligo set 2:
Oligo 2-1 : 5'- gacaggctct tttttttttt tggagggctg- 3' (配列番号 4);  Oligo 2-1: 5'- gacaggctct tttttttttt tggagggctg-3 '(SEQ ID NO: 4);
Oligo 2-2 : 5 '-gccgcagctg tttttttttt tccctggacc- 3' (酉己歹 [J番号 5)。  Oligo 2-2: 5 '-gccgcagctg tttttttttt tccctggacc- 3' (酉 自 5 [J number 5).
[0042] プライマーとしては、下記の配列を有するオリゴヌクレオチドを合成した:  [0042] As primers, oligonucleotides having the following sequences were synthesized:
Fw: 5 -ATGGACACCAGAAGCTACCC-3' (配列番号 6);  Fw: 5 -ATGGACACCAGAAGCTACCC-3 '(SEQ ID NO: 6);
Rv: 5 -TCAAATGACTCTCAGAGCCG-3' (配列番号 7)。  Rv: 5 -TCAAATGACTCTCAGAGCCG-3 '(SEQ ID NO: 7).
[0043] (3)増幅反応 次の組成を有する反応液(25 μ L): Tris— HCl (20mM, pH8. 8)、 KCl (10mM )、 (NH ) SO (lOmM)ゝ MgSO (8mM)ゝ DMSO (3%)、 Triton X— 100 (1%[0043] (3) Amplification reaction Reaction solution (25 μL) with the following composition: Tris—HCl (20 mM, pH 8.8), KCl (10 mM), (NH 2) SO (10 mM) M MgSO (8 mM) M DMSO (3%), Triton X — 100 (1%
4 2 4 4 4 2 4 4
)、 dNTP (l. 4mM)、それぞれ 2000nMの上記のプライマー対、それぞれ 2000η は両方)、および铸型プラスミド(lng)、さらに 16Uの Bst DNAポリメラーゼ(NEW ENGLAND BioLabs)を含有;を調製し、これを 60°Cで 1時間インキュベートした。 また、対照として、ブリッジヌクレオチド分子を含有しない反応液についても同様に実 験を行なった。  ), DNTP (l. 4 mM), 2000 nM each of the above primer pairs, each 2000η are both), and a truncated plasmid (lng), and 16 U Bst DNA polymerase (NEW ENGLAND BioLabs). Was incubated at 60 ° C for 1 hour. As a control, the same experiment was performed on a reaction solution containing no bridged nucleotide molecule.
[0044] (4)電気泳動  [0044] (4) Electrophoresis
増幅反応後の各反応液 5 μ 1について、 3% NuSieve 3:1 Agarose (BioWhittaker M olecular Applications (BMA)社製;タカラバイオ社より購入;「NuSieve」は BMA社の登 録商標である)を用いて、 80分間、 100Vで電気泳動した。泳動後のゲルをェチジゥ ムブロマイド (EtBr)で染色することにより、核酸を検出した。結果は図 5に示すとおり である。図 5における各レーンのサンプルは次の通りである:レーン 1 :サイズマーカー (pHYマーカー);レーン 2:ブリッジヌクレオチド分子を含まな!/、反応液;レーン 3:ブリ ッジヌクレオチド分子としてオリゴセット 1を含む反応液;レーン 4:ブリッジヌクレオチド 分子としてオリゴセット 2を含む反応液;レーン 5:ブリッジヌクレオチド分子としてオリゴ セット 1およびオリゴセット 2の両方を含む反応液。  For 5 μ1 of each reaction solution after amplification reaction, 3% NuSieve 3: 1 Agarose (manufactured by BioWhittaker Molecular Applications (BMA); purchased from Takara Bio Inc .; “NuSieve” is a registered trademark of BMA) And electrophoresed at 100V for 80 minutes. Nucleic acids were detected by staining the gel after electrophoresis with ethidium bromide (EtBr). The results are shown in Fig. 5. Samples in each lane in Fig. 5 are as follows: Lane 1: Size marker (pHY marker); Lane 2: No bridge nucleotide molecule included! /, Reaction solution; Lane 3: Oligoset 1 as a bridge nucleotide molecule Lane 4: reaction solution containing oligo set 2 as bridge nucleotide molecule; lane 5: reaction solution containing both oligo set 1 and oligo set 2 as bridge nucleotide molecule.
[0045] 図 5によれば、ブリッジヌクレオチド分子を含まな!/、サンプルにお 、ても目的の増幅 産物に対応する少量のバンド (約 500bp)が見られ、標的核酸配列が僅かに増幅さ れたことがわかる。これに対し、ブリッジヌクレオチド分子を含むサンプルでは、 目的 の増幅産物に対応する顕著に多量のバンドが見られた。これらの結果によれば、核 酸増幅反応系にブリッジヌクレオチド分子を添加することにより、標的核酸配列の増 幅量が顕著に増加することが明らかとなる。  [0045] According to FIG. 5, the bridge nucleotide molecule is not included! /, A small band (about 500 bp) corresponding to the target amplification product is observed in the sample, and the target nucleic acid sequence is slightly amplified. You can see that In contrast, the sample containing the bridged nucleotide molecule showed a remarkably large band corresponding to the target amplification product. These results reveal that the amount of amplification of the target nucleic acid sequence is remarkably increased by adding bridge nucleotide molecules to the nucleic acid amplification reaction system.

Claims

請求の範囲 The scope of the claims
[1] 核酸合成酵素およびプライマーを用いて铸型核酸中に含まれる標的核酸配列を 含む二本鎖標的核酸を増幅する方法であって、  [1] A method for amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a vertical nucleic acid using a nucleic acid synthase and a primer,
(i)前記二本鎖標的核酸の両鎖の間に介入することにより、いずれかの鎖におけるプ ライマー結合領域を一本鎖の状態に解離させうる、少なくとも 1種のヌクレオチド分子 を用意する工程、ならびに  (i) a step of preparing at least one nucleotide molecule capable of dissociating a primer binding region in either strand into a single strand state by intervening between both strands of the double-stranded target nucleic acid; And
(ii)少なくとも 1種の前記ヌクレオチド分子、铸型核酸、プライマーおよび核酸合成酵 素を含む核酸増幅反応液を調製し、これを用いた核酸増幅反応を行なう工程 を含んでなる、方法。  (ii) A method comprising a step of preparing a nucleic acid amplification reaction solution containing at least one kind of the above-mentioned nucleotide molecules, a truncated nucleic acid, a primer and a nucleic acid synthesis enzyme, and performing a nucleic acid amplification reaction using the solution.
[2] 前記ヌクレオチド分子が、前記二本鎖標的核酸の第一鎖にハイブリダィズする第一 の結合性配列を一方の末端部に有し、第二鎖にハイブリダィズする第二の結合性配 列を他方の末端部に有するものである、請求項 1に記載の方法。  [2] The nucleotide molecule has a first binding sequence that hybridizes to the first strand of the double-stranded target nucleic acid at one end and a second binding sequence that hybridizes to the second strand. The method according to claim 1, which is at the other end.
[3] 前記第一の結合性配列がノ、イブリダィズする前記第一鎖上の領域の 3 '末端残基 力 第一鎖上のプライマー結合領域の 5'末端残基に対して 20ヌクレオチド下流〜 1 00ヌクレオチド上流に位置するものである、請求項 2に記載の方法。  [3] 3 ′ terminal residue of the region on the first strand where the first binding sequence is hybridized 20 nucleotides downstream from the 5 ′ terminal residue of the primer binding region on the first strand 3. The method according to claim 2, wherein the method is located 100 nucleotides upstream.
[4] 前記第二の結合性配列がノ、イブリダィズする前記第二鎖上の領域の 3 '末端残基 力 第二鎖上のプライマー結合領域の 5'末端残基に対して 20ヌクレオチド下流〜 1 00ヌクレオチド上流に位置するものである、請求項 2に記載の方法。  [4] 3 'terminal residue of the region on the second strand where the second binding sequence is hybridized 20 nucleotides downstream from the 5' terminal residue of the primer binding region on the second strand 3. The method according to claim 2, wherein the method is located 100 nucleotides upstream.
[5] 前記ヌクレオチド分子に含まれる第一の結合性配列と第二の結合性配列とが、相 互に相補的でな 、、請求項 2に記載の方法。  [5] The method according to claim 2, wherein the first binding sequence and the second binding sequence contained in the nucleotide molecule are not complementary to each other.
[6] 前記核酸増幅反応液が、 2種以上の前記ヌクレオチド分子を含むものである、請求 項 1に記載の方法。  [6] The method according to claim 1, wherein the nucleic acid amplification reaction solution contains two or more kinds of the nucleotide molecules.
[7] 前記核酸合成酵素が鎖置換活性を有するものである、請求項 1に記載の方法。  [7] The method according to claim 1, wherein the nucleic acid synthase has a strand displacement activity.
[8] 前記核酸増幅反応が等温下で行われる、請求項 1に記載の方法。 [8] The method according to [1], wherein the nucleic acid amplification reaction is performed isothermally.
[9] 核酸合成酵素およびプライマーを用いて铸型核酸中に含まれる標的核酸配列を 含む二本鎖標的核酸を増幅するためのキットであって、前記二本鎖標的核酸の両鎖 の間に介入することにより、いずれかの鎖におけるプライマー結合領域を一本鎖の状 態に解離させうる、少なくとも 1種のヌクレオチド分子を含んでなる、キット。 [9] A kit for amplifying a double-stranded target nucleic acid containing a target nucleic acid sequence contained in a vertical nucleic acid using a nucleic acid synthase and a primer, between both strands of the double-stranded target nucleic acid A kit comprising at least one nucleotide molecule capable of dissociating a primer binding region in either strand into a single strand by intervening.
[10] 前記ヌクレオチド分子が、前記二本鎖標的核酸の第一鎖にハイブリダィズする第一 の結合性配列を一方の末端部に有し、第二鎖にハイブリダィズする第二の結合性配 列を他方の末端部に有するものである、請求項 9に記載のキット。 [10] The nucleotide molecule has a first binding sequence that hybridizes to the first strand of the double-stranded target nucleic acid at one end, and a second binding sequence that hybridizes to the second strand. 10. The kit according to claim 9, which is at the other end.
[11] 前記第一の結合性配列がハイブリダィズする前記第一鎖上の領域の 3'末端残基 力 第一鎖上のプライマー結合領域の 5'末端残基に対して 20ヌクレオチド下流〜 1 00ヌクレオチド上流に位置するものである、請求項 10に記載のキット。 [11] 3 ′ terminal residue of the region on the first strand to which the first binding sequence hybridizes 20 nucleotides downstream to 5 ′ terminal residue of the primer binding region on the first strand to 100 The kit according to claim 10, which is located upstream of the nucleotide.
[12] 前記第二の結合性配列がノ、イブリダィズする前記第二鎖上の領域の 3'末端残基 力 第二鎖上のプライマー結合領域の 5'末端残基に対して 20ヌクレオチド下流〜 1 00ヌクレオチド上流に位置するものである、請求項 10に記載のキット。 [12] The 3 ′ terminal residue of the region on the second strand where the second binding sequence is hybridized 20 nucleotides downstream from the 5 ′ terminal residue of the primer binding region on the second strand 11. The kit according to claim 10, which is located 100 nucleotides upstream.
[13] 前記ヌクレオチド分子に含まれる第一の結合性配列と第二の結合性配列とが、相 互に相補的でない、請求項 10に記載のキット。 [13] The kit according to claim 10, wherein the first binding sequence and the second binding sequence contained in the nucleotide molecule are not complementary to each other.
[14] 2種以上の前記ヌクレオチド分子を含んでなる、請求項 9に記載のキット。 [14] The kit according to claim 9, comprising two or more kinds of the nucleotide molecules.
[15] 鎖置換活性を有する核酸合成酵素をさらに含んでなる、請求項 9に記載のキット。 [15] The kit according to claim 9, further comprising a nucleic acid synthase having strand displacement activity.
PCT/JP2005/020960 2004-11-15 2005-11-15 Method of nucleic acid amplification WO2006051988A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62718204P 2004-11-15 2004-11-15
US60/627,182 2004-11-15
JP2004-380275 2004-12-28
JP2004380275A JP2007330101A (en) 2004-12-28 2004-12-28 Method for amplifying nucleic acid

Publications (1)

Publication Number Publication Date
WO2006051988A1 true WO2006051988A1 (en) 2006-05-18

Family

ID=36336653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020960 WO2006051988A1 (en) 2004-11-15 2005-11-15 Method of nucleic acid amplification

Country Status (1)

Country Link
WO (1) WO2006051988A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522559A (en) * 2008-06-11 2011-08-04 ジェネフォーム、テクノロジーズ、リミテッド Isothermal nucleic acid amplification
WO2018038232A1 (en) * 2016-08-24 2018-03-01 国立大学法人東北大学 Method for producing amplification product of target nucleic acid, and use of said method
US10227660B2 (en) 2013-04-25 2019-03-12 Orion Diagnostica Oy Strand-invasion based DNA amplification method
US11180787B2 (en) 2014-06-05 2021-11-23 Aidian Oy Strand-invasion based DNA amplification method
CN114045330A (en) * 2021-12-23 2022-02-15 川北医学院附属医院 Nucleic acid isothermal amplification method based on sliding replication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510201A (en) * 1990-05-07 1994-11-17 ダイキン工業株式会社 Diagnostic application of double D-loop formation
JPH07503370A (en) * 1992-01-23 1995-04-13 サイエンティフィック ジェネリクス リミテッド A method for denaturing a nucleic acid-containing solution by electrochemical treatment, and an amplification method, replication method, detection method, and kit using such a denaturation method.
JPH07289298A (en) * 1994-04-18 1995-11-07 Becton Dickinson & Co Chain substitution amplification method using thermophile enzyme
WO2002090538A1 (en) * 2001-05-08 2002-11-14 Eiken Kagaku Kabushiki Kaisha Method of synthesizing nucleic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510201A (en) * 1990-05-07 1994-11-17 ダイキン工業株式会社 Diagnostic application of double D-loop formation
JPH07503370A (en) * 1992-01-23 1995-04-13 サイエンティフィック ジェネリクス リミテッド A method for denaturing a nucleic acid-containing solution by electrochemical treatment, and an amplification method, replication method, detection method, and kit using such a denaturation method.
JPH07289298A (en) * 1994-04-18 1995-11-07 Becton Dickinson & Co Chain substitution amplification method using thermophile enzyme
WO2002090538A1 (en) * 2001-05-08 2002-11-14 Eiken Kagaku Kabushiki Kaisha Method of synthesizing nucleic acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522559A (en) * 2008-06-11 2011-08-04 ジェネフォーム、テクノロジーズ、リミテッド Isothermal nucleic acid amplification
US9062344B2 (en) 2008-06-11 2015-06-23 Geneform Technologies Limited Isothermal nucleic acid amplification
US9657340B2 (en) 2008-06-11 2017-05-23 Orion Pharma (Uk) Limited Isothermal nucleic acid amplification
EP2660336B1 (en) * 2008-06-11 2017-08-16 Orion Pharma (UK) Limited Isothermal nucleic acid amplification
US10472659B2 (en) 2008-06-11 2019-11-12 Geneform Technologies Limited Isothermal nucleic acid amplification
US10227660B2 (en) 2013-04-25 2019-03-12 Orion Diagnostica Oy Strand-invasion based DNA amplification method
US11180787B2 (en) 2014-06-05 2021-11-23 Aidian Oy Strand-invasion based DNA amplification method
WO2018038232A1 (en) * 2016-08-24 2018-03-01 国立大学法人東北大学 Method for producing amplification product of target nucleic acid, and use of said method
CN114045330A (en) * 2021-12-23 2022-02-15 川北医学院附属医院 Nucleic acid isothermal amplification method based on sliding replication
CN114045330B (en) * 2021-12-23 2024-02-09 川北医学院附属医院 Nucleic acid isothermal amplification method based on sliding replication

Similar Documents

Publication Publication Date Title
US11293048B2 (en) Attenuators
EP1712618B1 (en) Method of amplifying nucleic acid and method of detecting mutated nucleic acid using the same
JP6768706B2 (en) Ligation assay in liquid phase
EP2606148B1 (en) Helicase dependent isothermal amplification using nicking enzymes
JP3867926B2 (en) Nucleic acid amplification method
WO1991017267A1 (en) Process for nucleic acid hybridization and amplification
JP2003199592A (en) Reversibly modified thermostable enzyme for dna synthesis and amplification in vitro
WO2008013010A1 (en) Method for amplification of nucleotide sequence
US20100203594A1 (en) High-speed pcr using high-speed dna polymerase
EP2989212B1 (en) Strand-invasion based dna amplification method
JP4235645B2 (en) Primer sets and probe oligonucleotides specific to 10 bacteria associated with respiratory diseases
JP4249186B2 (en) Nucleic acid amplification method
ES2964592T3 (en) Circularization and ligase-assisted nucleic acid amplification
US7713700B2 (en) Method of amplifying nucleic acids, reagent kit for amplifying nucleic acids, method of detecting single nucleotide polymorphism, and reagent kit for detecting single nucleotide polymorphism
JP6847364B2 (en) Isothermal amplification using oligocation composite primer sequences
WO2006051988A1 (en) Method of nucleic acid amplification
US9212378B2 (en) Method of amplifying DNA from RNA in a sample
JP2004290055A (en) Method for producing target, method for detecting target sequence, target and assay kit for detecting target sequence
US20060110745A1 (en) Method for amplifying nucleic acids
EP3252168B1 (en) Pcr primer linked to complementary nucleotide sequence or complementary nucleotide sequence including mis-matched nucleotides and method for amplifying nucleic acid using same
JP2007330101A (en) Method for amplifying nucleic acid
JP4942160B2 (en) Method for isothermal amplification of nucleic acid using RecA protein
US10072290B2 (en) Methods for amplifying fragmented target nucleic acids utilizing an assembler sequence
CA2904863C (en) Methods for amplifying fragmented target nucleic acids utilizing an assembler sequence
JP2024506277A (en) Sequence conversion and signal amplification DNA having abasic nucleic acid, and detection method using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05806764

Country of ref document: EP

Kind code of ref document: A1