WO2006051908A1 - Cell-free protein synthesizing process - Google Patents

Cell-free protein synthesizing process Download PDF

Info

Publication number
WO2006051908A1
WO2006051908A1 PCT/JP2005/020727 JP2005020727W WO2006051908A1 WO 2006051908 A1 WO2006051908 A1 WO 2006051908A1 JP 2005020727 W JP2005020727 W JP 2005020727W WO 2006051908 A1 WO2006051908 A1 WO 2006051908A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
synthesis
phase
supply
cell
Prior art date
Application number
PCT/JP2005/020727
Other languages
French (fr)
Japanese (ja)
Inventor
Yaeta Endo
Tatsuya Sawasaki
Tomio Ogasawara
Original Assignee
Cellfree Sciences Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellfree Sciences Co., Ltd. filed Critical Cellfree Sciences Co., Ltd.
Publication of WO2006051908A1 publication Critical patent/WO2006051908A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for repeated protein synthesis using a cell-free protein synthesis system.
  • the cell extract or biological tissue extract for protein synthesis used in this cell-free protein synthesis system is prepared using Escherichia coli, wheat germ, rabbit reticulocyte or the like as a raw material.
  • the cell-free protein synthesis system maintains performance comparable to that of living cells in two respects: the peptide synthesis rate and the accuracy of the translation reaction.
  • This system does not require complicated chemical reaction steps or complicated cell culture steps. Because of this advantage, this system
  • the practical system has been developed. However, in general, cell extracts extracted from biological cells have low protein synthesis efficiency due to their extremely unstable protein synthesis ability. In addition, the quality of the cell extract during storage was significantly reduced. For this reason, the amount of the compound obtained by the cell-free protein synthesis system was small enough to be detectable by radioisotope labeling or the like. As a result, this system could not be used as a practical protein production tool.
  • the present inventors previously provided the following as a method for solving the drawbacks of the conventional cell-free protein synthesis system.
  • Patent Document 6 Cell extract preparation for cell-free protein synthesis and cell-free protein synthesis method
  • Patent Document 7 Spider-type molecule with versatility and high-efficiency function, and cell-free protein synthesis method using the same
  • Patent Document 8 Diffusion continuous batch method (sometimes called multi-layer method)
  • the inventors have previously invented a diffusion continuous batch cell-free protein synthesis method (multilayer method) and a repetitive batch method as novel cell-free protein synthesis reaction methods. Even using these methods that surpassed conventional synthesis efficiency, there was a limit to the amount of protein synthesis. Therefore, there has been a need to develop elemental technologies for establishing a high-throughput protein synthesis method that enables highly efficient protein production from a large number of genes with simpler operations.
  • Non-Patent Document 1 Spirin, A., et al., (1993) Methods in Enzymology, 217, 123-142
  • Patent Document 1 JP-A-6-98790
  • Patent Document 2 JP-A-6-225783
  • Patent Document 3 JP-A-7-194
  • Patent Document 4 JP-A-9 291
  • Patent Document 5 JP-A-7_147992
  • Patent Document 6 WO00 / 68412
  • Patent Document 7 WOOlZ27260
  • Patent Document 8 WO02Z24939
  • An object of the present invention is to provide a protein synthesis method that enables simple and large-scale synthesis in a cell-free protein synthesis means and a cell-free protein synthesis apparatus using the method.
  • the present inventor has studied a means for supplying a supply liquid and a method for repeatedly synthesizing a protein using a multilayer method. As a result, the inventors have found a cell-free protein synthesis method in which the layering method and the supply batch method are repeated, thereby completing the present invention.
  • the present invention comprises:
  • a cell-free protein synthesis method by an iterative method including at least the following steps;
  • a synthesis method consisting of upper and lower two layers via an interface, with the upper layer as the supply phase and the lower layer as the reaction phase, comprising the following steps and a cell-free protein synthesis method by the repeated layer method;
  • Cell-free protein synthesis method by repeated feeding batch method including the following steps;
  • Step of restarting the synthesis reaction by supplying the reaction solution to the reaction phase continuously or discontinuously
  • reaction phase reaction solution comprises a transcription solution containing unpurified mRNA after the transcription reaction and a wheat seed embryo-derived extract.
  • the wheat seed germ extract is a wheat seed germ extract from which the wheat endosperm component and the low-molecular protein synthesis inhibitor are substantially removed. Synthesis method.
  • a synthesis kit comprising at least 1 of the reagents used in the synthesis method according to any one of 4 to 12 in the preceding paragraph.
  • An apparatus for carrying out the cell-free protein synthesis method according to the repeated layering method according to any one of the preceding paragraphs 2, 6-12, and a cell-free protein synthesis apparatus comprising at least the following control means;
  • the cell-free protein synthesis means of the present invention has achieved an unprecedented simplicity and mass synthesis of cell-free protein synthesis means, and has cleared the most important issue in the automated protein synthesis method.
  • the present invention is a cell-free protein synthesis method by an iterative method including at least the following steps in a cell-free protein synthesis system using mRNA as a raw material.
  • the present invention provides characteristics of the initial phase of the synthesis reaction having a high reaction rate by supplying the supply liquid continuously or discontinuously. It is a synthesis method characterized by maximum utilization.
  • the means is to repeatedly supply the supply liquid before or after substantially decreasing the synthesis rate, before or after substantially stopping the synthesis reaction, or in the middle thereof. This method can be applied by either a batch method or a multilayer method.
  • reaction phase a supply solution is supplied continuously or discontinuously to a reaction phase that is a reaction solution, leading to a synthesis reaction. On the way, the supply of supply liquid is stopped. Subsequently, the reaction solution (reaction phase) is concentrated. The concentrated reaction solution (reaction phase) is diluted by continuous or discontinuous supply of the supply solution. This dilution process replenishes components such as substrates, energy sources, ions, buffers, and saddle-type substances required for synthesis using mRNA as a raw material. By this treatment, the reaction solution (reaction phase) is returned to the original optimal concentration, and protein synthesis is reactivated.
  • This dilution and concentration treatment can be repeated discontinuously to synthesize a large amount of protein.
  • the present invention also relates to a synthesis method characterized by making the best use of the characteristics of the initial phase of the synthesis reaction having a high reaction rate of the multilayer method in a cell-free protein synthesis system using mRNA as a raw material (hereinafter, repeated Sometimes called the multi-layer method).
  • the supply phase and the reaction phase are mixed before and after the synthesis rate is substantially reduced or before or after the synthesis reaction is substantially stopped. Subsequently, a concentration process is performed. After concentration, the feed phase is subsequently layered.
  • This multi-layer treatment replenishes protein synthesis by replenishing components such as substrates, energy sources, ions, and buffers required for synthesis using mRNA as a raw material.
  • This mixing, concentration, and multi-layer treatment is repeated discontinuously, so that a large amount of protein can be synthesized.
  • reaction solution or the supply phase and the reaction phase A dilution operation can be added to the mixed solution as necessary.
  • the dilution operation can be performed before or after the concentration treatment.
  • the present invention is a cell-free protein synthesizer characterized in that a synthesis method that makes the best use of the characteristics of the above two synthesis methods can be automatically made.
  • the “transcription type” refers to a DNA that can be used as a type molecule in an in vitro transcription reaction, and has at least a base sequence encoding a target protein downstream of an appropriate promoter sequence.
  • Suitable promoter sequences include promoter sequences that can be recognized by RNA polymerase used in the transcription reaction, and examples thereof include SP6 promoter and T7 promoter. Any DNA encoding the target protein may be used.
  • the transcription type has a base sequence having an activity to control translation efficiency between the promoter sequence and the base sequence encoding the target protein.
  • a base sequence having an activity to control translation efficiency between the promoter sequence and the base sequence encoding the target protein For example, derived from RNA virus such as ⁇ sequence derived from tobacco mosaic virus 5 'untranslated region and / or Kozak sequence can be used.
  • the transcription type includes a 3 ′ untranslated region including a transcription termination region and the like downstream of the base sequence encoding the target protein. As the 3 ′ untranslated region, about 1.0 to about 3.0 kilobases downstream from the stop codon is preferably used. These 3 'untranslated regions are not necessarily those of the gene encoding the target protein.
  • One of the preferred embodiments of the method of the present invention is to amplify and synthesize a transcription cage that encodes the target protein by a PCR method, and directly convert it into a transcription cage without purification.
  • a promoter-splitting primer described in International Publication No. WO02Z18586 may be used. it can.
  • the transcription type DNA obtained as described above may be subjected to transcription reaction after purification by chloroform extraction or alcohol precipitation, but in the protein synthesis method of the present invention, the reaction solution after the PCR reaction is used as it is. It can be used as a transfer mold solution.
  • Transcription In the production of a saddle type since the type DNA is not introduced into the plasmid, the steps can be greatly omitted compared to a method in which a large amount of plasmid is prepared and treated with a restriction enzyme to obtain a transcription type. This makes it possible to synthesize a large number of transfer molds in a short time with a small number of steps.
  • a step of preparing a plasmid incorporating a DNA encoding the target protein is not required, the time required for ultracentrifugation for plasmid purification can be shortened.
  • restriction enzyme treatment to cut out the transcript from the plasmid phenol treatment to remove the restriction enzyme, etc.
  • chloroform treatment alcohol precipitation for purification of the transcript, DNA that is a transcription template
  • the step of dissolving the precipitate can be omitted, so that there is no inhibition of the transcription reaction due to residual phenol / chloroform, and there is no loss of transcription type due to the multi-step purification operation.
  • the number of steps required for the reaction can be reduced, there is an additional advantage that the number of chips used can be reduced.
  • Transcription mold is a solution (also called transcription reaction solution) that contains components necessary for transcription reaction, such as RNA polymerase compatible with the promoter in the transcription mold (4 types of ribonucleoside triphosphates). ) And incubating at about 20 to about 60 ° C., preferably about 30 to about 42 ° C., for about 30 minutes to about 16 hours, more preferably about 2 to 5 hours to initiate the transcription reaction. Nau.
  • the transcription type DNA encoding the target protein prepared by a method known per se or the DNA type amplified and synthesized by the PCR method described in (1) is purified.
  • mRNA that is a translation type is generated by in vitro transcription reaction from transcription type DNA encoding the target protein prepared as it is as a transcription type.
  • the transcription reaction is performed using a solution containing a transcription template (transcription solution containing unpurified mRNA) provided in a reaction system (eg, a commercially available container such as a 96-well titer plate), preferably a PCR reaction solution and a transcription template.
  • RNA polymerase for example, SP6 RNA polymerase
  • RNA polymerase for example, SP6 RNA polymerase
  • RNA polymerase compatible with the promoter in the medium and substrate for RNA synthesis (4 types of ribonucleoside triphosphates)
  • RNA polymerase for example, SP6 RNA polymerase
  • RNA synthesis 4 types of ribonucleoside triphosphates
  • about 20 ° C to about 60 ° C preferably about 30 ° C to about 42 ° C for about 30 minutes to about 16 hours, preferably about 2 hours to about 5 hours. This is done by incubating the mixture.
  • the GFP gene DNA (Chiu, W. Ed. 211; L "et al., Curr. Biol. 6, 325-330 (1996)) is inserted into the mRNA that is the translation type used in the examples of the present invention.
  • PEU-GFP vector (Sawasaki, T.
  • the ⁇ sequence portion is represented by SEQ ID NO: 136 described in WOO 3/056009. Transcription was carried out using SP6 RNApolymerase (Promega) with the circular plasmid DNA replaced with the nucleotide sequence of ⁇ as a saddle type.
  • a transcription solution containing unpurified mRNA or purified mRNA is directly added to the cell extract for protein synthesis.
  • the cell extract for protein synthesis used here may be any one as long as it can produce a protein encoded by the translation form by translating the translation form.
  • Cell extracts such as Escherichia coli, plant seed germs, and rabbit reticulocytes are used. These may be commercially available, and are known per se. Specifically, in the case of an E.
  • cell extracts for protein synthesis include those attached to E.coli S30 extract sy stem (Promega) and RTS 500 Rapid Translation System (Roche) from E. coli. Examples of the origin include those attached to Rabbit Reticulocyte Lysate System (Promega), and those derived from wheat germ include those attached to PROTEIOS TM (TOYOBO).
  • the plant seed germ extract is preferably used as the plant seeds such as wheat, barley, rice, corn, etc., and seeds such as spinach are preferred. Those using an embryo extract are preferred. Further preferred is a wheat seed germ extract from which the endosperm components of germ and low molecular weight protein synthesis inhibitors have been substantially removed. This is because the components and substances involved in protein synthesis inhibition in the extract are reduced as compared with the conventional wheat seed germ extract.
  • the best cell extract of the present invention is an extract derived from wheat germ, and further metabolites such as gnolecose that causes protein synthesis inhibition in the mixed endosperm components and germ tissue cells have been substantially removed. Since this is an extract, the method for preparing the raw material will be described below using this as an example. [0018] Usually, the portion of the germ is very small, so in order to obtain the germ efficiently, it is preferable to remove the portion other than the germ as much as possible.
  • a mechanical force is first applied to wheat seeds to obtain a mixture containing germ, endosperm crushed material, and seed coat crushed material, and from this mixture, a crude embryo fraction (embryo is the main component, endosperm crushed material, To obtain a mixture containing crushed seed coat).
  • the force applied to the seeds only needs to be strong enough to separate the germ from the seeds.
  • a seed mixture is pulverized using a known pulverizer to obtain a mixture containing germ, endosperm crushed material, and seed coat crushed material.
  • the seeds can be pulverized using a generally known pulverizer, but it is preferable to use a pulverizer of a type that can apply impact force to the material to be pulverized, such as a pin mill or a hammer mill. .
  • the degree of pulverization may be appropriately selected according to the size of the seed germ to be used. For example, in the case of wheat, it is usually pulverized to a maximum length of 4 mm or less, preferably a maximum length of 2 mm or less.
  • the pulverization is preferably performed by a dry method.
  • a crude germ fraction is obtained from the obtained seed flour cake using a generally known classifier, for example, a sieve.
  • a generally known classifier for example, a sieve.
  • Om m, preferably 0.7 mm to: 1.4 mm is usually obtained.
  • seed coat, endosperm, dust, etc. contained in the obtained crude germ fraction may be removed using wind power or electrostatic force.
  • a crude embryo fraction can also be obtained by a method utilizing the difference in specific gravity between embryo, seed coat, and endosperm, for example, heavy liquid sorting.
  • a method utilizing the difference in specific gravity between embryo, seed coat, and endosperm for example, heavy liquid sorting.
  • a plurality of the above methods may be combined.
  • the germ is selected from the obtained crude germ fraction using, for example, visual observation or a color sorter.
  • the embryo fraction obtained in this manner may have an endosperm component attached thereto, it is usually preferable to further perform a washing treatment for germ purification.
  • the washing treatment the embryo fraction is dispersed and suspended in water cooled to 10 ° C or lower, preferably 4 ° C or lower, or an aqueous solution or an aqueous solution containing a surfactant, and washed until the washing solution does not become cloudy. I prefer to do it.
  • it is more preferable to disperse and suspend the embryo fraction in an aqueous solution containing a surfactant usually at 10 ° C or lower, preferably at 4 ° C or lower, and wash until the cleaning solution does not become cloudy. ,.
  • a nonionic surfactant is preferred which is preferably a nonionic one. As long as it is, it can be widely used. Specifically, for example, bridges (Brij), Triton, Nonidet P40, Tween, etc., which are polyoxyethylene derivatives, are exemplified as preferable examples. Of these, Nonidet P40 is the best choice.
  • These nonionic surfactants can be used at a concentration sufficient to remove the endosperm component and not adversely affect the protein synthesis activity of the germ component, but may be used at a concentration of 0.5%, for example. it can. Either or both of the washing treatment with water or an aqueous solution and the washing treatment with a surfactant may be performed. These cleaning treatments may be performed in combination with ultrasonic treatment.
  • the germ extract having the germination ability obtained by selecting from the seed pulverized product and washing as described above is preferably subdivided in the presence of an extraction solvent, and then the germ extract obtained. Is separated and further purified to obtain an extract for cell-free protein synthesis.
  • an aqueous solution containing a buffer solution, potassium ions, magnesium ions and / or a thiol group antioxidant can be used. If necessary, you can add more power ions, L-amino acids, etc.
  • HEPES N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid
  • a partially modified solution (a solution containing HEPES-KOH, potassium acetate, magnesium acetate, calcium chloride salt, L-type amino acid and / or dithiothreitol) can be used as an extraction solvent.
  • the composition and concentration of each component in the extraction solvent are known per se, and those used for the production of cell extracts for cell-free protein synthesis may be employed.
  • the required amount of extraction solvent is added to the germ and the embryo is subdivided in the presence of the extraction solvent.
  • the amount of the extraction solvent is usually 0.1 milliliters or more, preferably 0.5 milliliters or more, more preferably 1 milliliter or more, relative to the germ lg before washing.
  • the upper limit of the amount of the extraction solvent is not particularly limited, but is usually 10 milliliters or less, preferably 5 milliliters or less with respect to the germ lg before washing.
  • the embryos to be subdivided may be frozen as in the past, but it is more preferable to use those that have not been frozen.
  • fragmentation method conventionally known grinding methods such as grinding and crushing can be adopted.
  • method of subdividing embryos by impact or cutting developed by the present inventors (WO03 / 06 4671) is preferred.
  • subdivide by impact or cutting means the destruction of cell nuclei of plant embryos, organelles such as mitochondria, chloroplasts, cell membranes, cell walls, etc., with conventional grinding or crushing. This means that the plant germ is destroyed under conditions that can be minimized.
  • the apparatus and method that can be used when subdividing are not particularly limited as long as the above conditions are satisfied.
  • an apparatus having a blade that rotates at high speed such as a Warinda blender.
  • the rotation speed of the blade is usually lOOOOrpm or more, preferably ⁇ 5000rpm or more, and usually 30000rpm or less, preferably ⁇ is 25000i "pm or less.
  • the rotation time of the blade is usually 5 seconds or more.
  • the upper limit of the rotation time is not particularly limited, but is usually 10 minutes or less, preferably 5 minutes or less, and the operation temperature is preferably 10 ° C. or less. Within the possible range, particularly preferably around 4 ° C is suitable.
  • the cell nucleus and cell wall of the embryo are not completely destroyed, and at least part of them remains without being destroyed.
  • organelles such as embryonic cell nuclei, cell membranes and cell walls are not destroyed more than necessary, the synthesis of proteins localized in the cytoplasm is less contaminated with impurities such as DNA and lipids contained in them.
  • Necessary RNA, ribosome, etc. can be efficiently extracted from the embryo with high purity
  • an extraction solvent can be added after fragmentation, but the extraction solvent More preferably, it is carried out in the presence.
  • the conventional process of pulverizing the germ and the process of obtaining the germ extract by simultaneously adding the extraction solvent to the pulverized germ can be performed efficiently as one process.
  • a wheat germ extract can be obtained.
  • the above method may be referred to as a “pender method”.
  • the embryo extract is centrifuged at 20,000 to 40,000 G, preferably 2.5 to 350,000 G, more preferably 30,000 G, and a centrifugal supernatant is obtained.
  • an inorganic carrier as a precipitation aid to separate the precipitate from the supernatant.
  • It contains a complex of calcium and enzymes such as glycosidases. Preliminarily removing glycosidase helps to minimize glucose production from starch.
  • suitable inorganic carriers include bentonite, activated carbon, silica gel, sea sand and the like. By introducing this inorganic carrier, it is possible to almost completely prevent the precipitate from being mixed into the supernatant.
  • the wheat germ extract can be further purified by gel filtration or the like.
  • the gel filtration can be performed using, for example, a gel filtration device that has been equilibrated in advance with an appropriate solution.
  • the composition / concentration of each component in the gel filtration solution is known per se, and is used for the production of cell germ extract for cell-free protein synthesis (eg, HEPES_KOH, potassium acetate, magnesium acetate, A solvent containing dithiothreitol or L-type amino acid) may be employed.
  • the germ cell extract thus obtained has extremely reduced RNase activity and phosphatase activity.
  • the germ extract-containing solution after gel filtration may contain microorganisms or spores such as filamentous fungi, it is preferable to exclude these microorganisms. In particular, it is important to prevent the growth of microorganisms during the long-term (one day or longer) cell-free protein synthesis reaction.
  • the means for eliminating microorganisms is not particularly limited, but it is preferable to use a filter sterilization filter.
  • the pore size of the filter is not particularly limited as long as microorganisms that may be mixed can be removed, but it is usually 0.:! To 1 micrometer, preferably 0.2 to 0.5. A micrometer is appropriate.
  • the spore size of Bacillus subtilis is 0.5 ⁇ ⁇ 1 ⁇ ⁇ , and the use of a 0.20 micrometer filter (such as the Minisart TM from Sartorius) is also effective for removing spores. Is.
  • a 0.20 micrometer filter such as the Minisart TM from Sartorius
  • filtering it is preferable to first filter with a large pore size filter, and then filter with a pore size filter that can remove possible microorganisms.
  • the cell extract obtained in this way is a substance that suppresses the protein synthesis function contained or retained by the raw wheat itself (acting on various RNAs, translated protein factors, ribosomes, etc.
  • Substances to be suppressed for example, various ribonucleases, various proteases, tritin, thionine, etc. That is, the endosperm where these inhibitors are localized is almost completely removed and purified.
  • the degree of endosperm removal can be evaluated by monitoring the activity of tritin contaminated in the wheat germ extract, that is, the activity of deadenating ribosomes. If the ribosome is not substantially deadenified, it is judged that there is no contaminating endosperm-derived component in the germ extract, that is, the endosperm is almost completely removed and purified.
  • the extent to which the ribosome is not substantially deadenylated is the ribosome deadenination rate of 7% or less, preferably 1. / Indicates that the value is 0 or less.
  • This fractionation treatment is preferably performed a plurality of times, and in particular, it is preferable to substantially remove substances having a molecular weight of 1 kDa or less.
  • the specific number of times is:! To 10 times, preferably 2 to 9 times, more preferably 3 to 8 times, most preferably 4 to 7 times.
  • the cell extract thus prepared has substantially reduced sugar and phosphorylated saccharide to 10 mM or less, preferably 6 mM or less (glucose concentration in the extract with an absorbance of 200 D / ml at 260 nm). As).
  • the extract with reduced glucose concentration obtained by force possesses an unprecedented high cell-free protein synthesis ability.
  • amino acid as substrate, energy source, various ions, buffer solution, ATP regeneration system, nucleolytic fermentation Containing inhibitors, t RNA, a reducing agent, polyethylene glycol, 3 ', 5'cAMP, folate, such as antimicrobial agents, referred solution ( "for translation reaction solution” together containing necessary or suitable ingredients to translation reaction ) And incubating at a temperature suitable for the translation reaction for an appropriate time, the translation reaction can be carried out.
  • the substrate amino acids are usually 20 kinds of natural amino acids constituting proteins, but analogs and isomers thereof can be used depending on the purpose.
  • Energy sources include ATP and Z or GTP.
  • Examples of various ions include acetates such as potassium acetate, magnesium acetate, and ammonium acetate, and glutamates.
  • As the buffer Hepes-KOH, Tris-acetic acid or the like is used.
  • Examples of the ATP regeneration system include a combination of phosphoenolpyruvate and pyruvate kinase, or a combination of creatine phosphate (creatine phosphate) and creatine kinase.
  • Examples of the nucleolytic enzyme inhibitor include a ribonuclease inhibitor and a nuclease inhibitor. Among these, examples of ribonuclease inhibitors include human placenta-derived RNase inhibitors (such as those manufactured by TOYOBO).
  • tRNA can be obtained by the method described in Moniter, R., et al "Biochim. Biophys. Acta., 43, 1 (1960), etc., or a commercially available one can be used. Examples thereof include dithiothreitol, etc. Examples of the antibacterial agent include sodium azide, ampicillin, etc. The amount of these added can be appropriately selected within the range that can be usually used in cell-free protein synthesis. Specifically, it is as follows.
  • One of the essential means is to superimpose the supply phase on the reaction phase and lead it to the protein synthesis reaction system.
  • the synthesis reaction is usually performed for about 10 minutes to 20 hours, more preferably 20 minutes to 10 hours. This time can be changed for each system, and the optimum time can be adjusted by experimental repetition. In the discontinuous repetitive synthesis method of the present invention, it is particularly preferable that the one-cool processing time is relatively short.
  • protein synthesis is performed by overlaying a translation reaction solution on a protein synthesis cell extract directly added with a transcription solution so as not to disturb the interface.
  • a protein synthesis cell extract preincubated for an appropriate period of time as necessary is added to a translational trapezoidal precipitate and dissolved to form a reaction phase.
  • the translation reaction solution (feed phase) is layered on top of this reaction phase so as not to disturb the interface.
  • the interface between both phases does not necessarily have to be formed in a horizontal plane by means of multiple layers. It is also possible to form a horizontal plane by centrifuging the mixed solution containing both phases.
  • the volume ratio of the reaction phase to the supply phase is suitably from 1: 4 to 1: 8, but 1: 5 is preferred.
  • the translation reaction is performed at about 10 to about 40 ° C, preferably about 18 to about 30 ° C, more preferably about 20 to about 26 ° C under static conditions. Can be done.
  • the reaction temperature is suitably about 30 ° C to about 37 ° C.
  • Indispensable means 2 is a step of mixing the supply phase and the reaction phase as the above reaction time, before and after substantially reducing the synthesis rate, before and after almost stopping the synthesis reaction, or in the middle thereof.
  • the approximate decrease in the synthesis rate means the timing at which the amount of protein synthesized over time tends to decrease from the maximum amount over time, and is generally understood as a line rather than a point.
  • the term “before and after substantially stopping the synthesis reaction” refers to a level at which the amount of synthesis falls to a level where it cannot be substantially detected. On the way, it means the period from when the synthesis rate starts to decrease until the synthesis reaction stops. In order to obtain a more favorable synthesis efficiency, it is necessary to perform a mixing process on the reaction system before and after substantially reducing the synthesis rate. This time is optimally 10 minutes to 10 hours.
  • the mixing treatment can be performed by mixing the reaction phase and the mixed phase by putting a stirring bar in the reaction solution and stirring the reaction solution.
  • the essential means 3 is the concentration treatment after the mixing treatment. Further, the dilution operation can be performed before and after the concentration treatment as necessary.
  • Concentration to the reaction system is performed as follows. Concentration means that when a reaction solution is removed from the reaction system, substances that cannot pass through the reaction solution (for example, synthetic proteins, ribosomes, magnesium ions and / or nucleotides derived from a transcription solution) are contained in the reaction system. Any concentration means known per se, which can be concentrated, can be used. Preferable examples include filtration using an ultrafiltration membrane, treatment using a centrifuge, gel filtration, a suction pump, and a method of generating a pressure difference in the liquid phase or gas phase.
  • the reaction product and reaction by-products are separated and removed by centrifugation or molecular sieve by adjusting the passage diameter of the membrane.
  • the molecular weight cut size of the membrane, the centrifugal speed, and the gel filtration conditions can be optimally adjusted depending on the physical properties of the product to be processed known per se.
  • a membrane having a molecular weight cut of 10,000 to 100,000 Da is preferably used.
  • the reaction solution is concentrated to 1/5 to 2/3 volume of the original volume, and as a result, the optimum synthesis concentration of each synthesis factor is greatly shifted.
  • the reaction system is remarkably reduced in its synthesis ability. With this state, the present invention is called discontinuity.
  • the dilution operation is performed by adding about 1 to 20 times, preferably about 2 to 10 times the volume of aqueous solution to the reaction system.
  • the aqueous solution contains a substrate and a reaction solution as desired. Particularly preferably, a solution containing a substrate, an energy source and the like is used.
  • Indispensable means 4 is to reactivate the synthesis reaction by superimposing the supply phase on the reaction phase. Concentration treatment and supply layer superposition are performed. Concentration here means returning the volume of the reaction system increased by dilution to the original volume.
  • the concentration means is not particularly limited, and any concentration means known per se can be used. Further, the method of superposing the supply phase on the reaction phase is as described in (Process leading to synthesis reaction).
  • the reaction system that has been restored to the optimum concentration of the reaction system is adjusted to the optimum reaction temperature again, and the reaction system is reactivated.
  • the optimum temperature is 15-25 ° C.
  • affinity substance For separation / recovery / removal of reaction products and / or reaction by-products, treatment based on affinity with the treatment object can be suitably performed. Based on affinity, an affinity substance is immobilized, brought into contact with the target substance, and then bound. The method of elution 'recovering is illustrated.
  • the affinity substance include an antibody against a protein, a ligand for a receptor, a nuclear acid for a transcription factor, and the like if the recovered substance is a protein.
  • the target product is modified with an appropriate tag marker (for example, streptavidin, histidine tag, GST, maltose-binding protein, etc.), and a substance that can specifically bind to the modified substance (for example, piotin, divalent metal ion, etc.) , Gnorethione, maltose, etc.).
  • an appropriate tag marker for example, streptavidin, histidine tag, GST, maltose-binding protein, etc.
  • a substance that can specifically bind to the modified substance for example, piotin, divalent metal ion, etc.
  • Gnorethione for example, Gnorethione, maltose, etc.
  • mixing, concentration, and multi-layer processing can be repeated discontinuously multiple times, and by this repetition, regeneration of the cell-free synthesis system is achieved multiple times (see FIG. 1A). .
  • This regeneration achieves mass protein synthesis.
  • the repeated layering method of the present invention is a novel cell-free protein synthesis method that combines the advantages of the simple and high efficiency of the conventional layering method with the advantages of the large-scale synthesis of the repeated layered method. is there.
  • One essential means is to add the translation reaction solution to the protein synthesis cell extract to which the transcription solution is directly added, and mix them.
  • a supply amount and a supply timing can be adjusted using a peristaltic pump or the like.
  • the addition of the translation reaction solution can be omitted.
  • a ⁇ translation reaction solution '' obtained by mixing a protein synthesis cell extract directly added with a transcription solution and a translation reaction solution for example, when a wheat germ extract is used as a protein synthesis cell extract, 10-50 mM HEPES-KOH (pH 7.8), 55-120 mM potassium acetate, 1-5 mM magnesium acetate, 0.1-0.6 mM spermidine, 0.025-lmM L-amino acid, 20-70 ⁇ , preferably f 30-30 ⁇ ⁇ DTT, 1–1.5 mM ATP, 0.2–0.5 mM GTP, 10–20 mM creatine phosphate, 0.5–1.
  • OunitsMZ xl ribonuclease inhibitor 0.01–: ⁇ Those containing ⁇ protein disulfide isomerase and 24-75% wheat germ extract are used.
  • the preincubation is performed at about 10 to about 40 ° C. for about 5 to about 1
  • Incubation in this reaction (translation reaction) for 0 minute is also carried out at about 10 to about 40 ° C, preferably about 18 to about 30 ° C, more preferably about 20 to about 26 ° C.
  • the essential means 2 is a step of stopping the supply of the supply liquid as the above reaction time, before or after substantially reducing the synthesis rate, before or after substantially stopping the synthesis reaction, or in the middle thereof.
  • the stop process can be adjusted using, for example, a peristaltic pump.
  • the essential means 3 is to concentrate the reaction phase after stopping the feed solution.
  • the dilution operation can be performed before and after the concentration treatment as necessary. Concentration of the reaction phase is performed as follows.
  • Concentration means that when a reaction solution is removed from the reaction system, substances that cannot pass through the reaction solution (for example, synthetic proteins, ribosomes, magnesium ions and / or nucleotides derived from a transcription solution) are contained in the reaction system.
  • Any concentration means known per se, which can be concentrated, can be used.
  • Preferable examples include filtration using an ultrafiltration membrane, treatment using a centrifuge, gel filtration, a suction pump, and a method of generating a pressure difference in the liquid phase or gas phase. In this treatment, the reaction product and reaction by-products are separated and removed by centrifugation or molecular sieve by adjusting the passage diameter of the membrane.
  • the molecular weight cut size of the membrane, the centrifugal speed, and the gel filtration conditions can be optimally adjusted depending on the physical properties of the product to be processed known per se.
  • a membrane having a molecular weight cut of 10,000 to 100,000 Da is preferably used.
  • the reaction solution is concentrated to 1/5 to 2/3 volume of the original volume, and as a result, the optimum synthesis concentration of each synthesis factor is greatly shifted.
  • the reaction system is remarkably reduced in its synthesis ability. With this state, the present invention is called discontinuity.
  • the dilution operation is performed by adding about 1 to 20 times, preferably about 2 to 10 times the volume of aqueous solution to the reaction system.
  • the aqueous solution contains a substrate and a reaction solution as desired. Particularly preferably, a solution containing a substrate, an energy source and the like is used. [0039] (Reactivation of the synthesis reaction by supplying the supply liquid to the reaction phase)
  • the essential means 4 is reactivation of the synthesis reaction. After the concentration process in the previous stage, the supply liquid is supplied to the reaction phase.
  • the reaction system that has been restored to the optimum concentration of the reaction system by supplying the supply liquid is adjusted to the optimum reaction temperature again, and the reaction system is reactivated.
  • the optimum temperature is 15-25 ° C.
  • affinity For separation / recovery / removal of reaction products and / or reaction by-products, treatment based on affinity with the treatment object can be suitably performed.
  • affinity a method in which an affinity substance is immobilized, brought into contact with the target substance and bound thereto, and then the target substance is eluted and recovered is exemplified.
  • the affinity substance include an antibody against a protein, a ligand for a receptor, a nuclear acid for a transcription factor, and the like if the recovered substance is a protein.
  • the target product is modified with an appropriate tag 'marker (for example, streptavidin, histidine tag, GST, maltose-binding protein, etc.), and a substance that can specifically bind to the modified substance (for example, piotin, divalent metal ion, etc.) , Gnorethione, maltose, etc.).
  • an appropriate tag 'marker for example, streptavidin, histidine tag, GST, maltose-binding protein, etc.
  • a substance that can specifically bind to the modified substance for example, piotin, divalent metal ion, etc.
  • Gnorethione for example, Gnorethione, maltose, etc.
  • the repeated feeding batch method of the present invention there is no restriction on the size of the reaction tank due to liquid feeding from the feeding phase, and further, both liquids, which are important rate-limiting parameters of protein synthesis rate, are used.
  • the mixing speed can be freely controlled and optimized, and highly efficient large-scale protein production becomes possible.
  • the efficiency of the synthesis reaction can be further increased by using a supply phase with added mRNA.
  • the supply rate of the specific feed solution should be such that the same amount as that at the start of the reaction can be continuously or discontinuously supplied for 5 minutes to 15 hours, preferably 10 minutes to 10 hours.
  • the repetitive feeding batch method of the present invention uses a semipermeable membrane developed by Spirin et al. To continuously replenish substrates and energy sources and discard metabolites. The principle is different, and the effect of the synthesis is several tens to several thousand times, and has a great difference in quality.
  • a filtration membrane preferably an ultrafiltration membrane
  • a space is formed between the filtration membrane and the bottom of the reaction vessel.
  • a synthesis reaction is performed so as to include the following steps.
  • Each reaction vessel is preferably of a size that can be centrifuged with a known centrifuge.
  • reaction phase Add feed to reaction phase.
  • the supply liquid as the supply phase is overlaid on the upper layer of the reaction phase.
  • the supply liquid is added to the reaction phase continuously or discontinuously.
  • the synthesis reaction (translation) begins.
  • the process of layering, mixing, dilution and concentration can be performed as an automatic cell-free protein synthesizer (repetitive multi-layer method, repetitive feeding batch method) as a series of steps in combination with the control means.
  • the drive source motor, pneumatic 'hydraulic equipment, other operation-controllable actuator, etc.
  • control circuit by computer control, sequence control circuit, etc.
  • the operation speed and operation interval are adjusted.
  • a signal transfer driver, an operation confirmation sensor, an operation control switch, a timer, and the like can be appropriately provided as desired.
  • the cell-free protein synthesizer of the present invention discontinuously dilutes and concentrates.
  • the regeneration of the cell-free synthesis system is achieved by repeating multiple times. The effect will be explained more specifically as follows.
  • the cell-free protein synthesizer according to the present invention provides a method for automatically performing a series of reaction operations of a synthesis method in which protein synthesis is performed by mixing, concentrating, and repeatedly layering discontinuously.
  • the cell-free protein synthesizer according to the repetitive feeding batch method of the present invention performs a series of reaction operations of a synthetic method in which protein synthesis is repeatedly concentrated and diluted (continuous or discontinuous supply of supply solution) repeatedly.
  • an automatic method is provided by mixing, concentrating, and repeatedly layering discontinuously.
  • “automatic operation” means that the experimenter does not directly apply a manual operation to the reaction system (reaction vessel) during a series of steps. Therefore, when performing each step, it is necessary for the experimenter to manually operate the predetermined operation buttons and switches provided in the automatic synthesizer of the present invention to be used. It is not a loss.
  • the apparatus for automatically performing the reaction operation from the synthesized transcriptional cage to the production of the protein encoded by the cage comprises at least the following means (a) to (f). It is the feature.
  • the method of the present invention is not limited thereto as long as it has the feature of repeating dilution and concentration a plurality of times discontinuously.
  • this process does not necessarily need to be performed automatically.
  • the transfer mold obtained manually can also be used for the following automated process. It is more preferable to automatically perform a series of steps up to the production of the protein encoded in the saddle type.
  • Dispensing and mixing of the transfer cage solution and the transcription reaction solution into the reaction vessel are carried out by means of the automatic synthesizer described later (for example, using a pipetter (a commercially available 96-well titer plate is used as the reaction vessel). In some cases, it is preferable to use one having 8 or 12 dispensing tips adapted to the well interval). Incubation for the transcription reaction can be performed while the temperature is controlled at a constant temperature by the temperature control means of the synthesizer described later.
  • Operations such as dispensing of unpurified mRNA-containing transfer solution, supply solution, and reaction solution into the reaction vessel are performed by dispensing means of an automatic synthesizer described later (for example, pipetter (96-well titer commercially available as a reaction vessel).
  • an automatic synthesizer for example, pipetter (96-well titer commercially available as a reaction vessel).
  • the reaction phase and the supply phase are mixed by means of a synthesizer described later, the concentration is concentrated by a synthesizer described later, and the incubation for translation is performed at a constant temperature by a synthesizer temperature control means described later. It can be performed while controlling.
  • the above-described cell-free protein synthesizer of the present invention using the repeated layering method comprises at least the following means (a) to (f) in order to perform protein synthesis by mixing, concentrating, and repeatedly layering discontinuously. It is characterized by having.
  • the cell-free protein synthesizer according to the repetitive supply batch method of the present invention performs the following steps (b) in order to perform protein synthesis in a discontinuous and repeated manner of concentration and dilution (continuous or discontinuous supply solution supply). It has at least the means of (f).
  • Control means for controlling the means (a) to (e) or (b) to (e) to operate in accordance with the method of the present invention described above.
  • the means for mixing the supply phase and the reaction phase means that the substances contained in both phases are homogenized by stirring the supply phase and the reaction phase. Therefore, any means can be used as long as it can achieve the homogenization of both phases. Specifically, if a stirrer is introduced into the reaction vessel, mixing of both phases can be easily achieved.
  • the means for variably controlling the temperature in the reaction vessel is the transcription reaction, the incubation of the translation reaction and the termination of the translation reaction, or the transcription slab-type preparation process by the PCR method using the automatic synthesizer of the present invention.
  • it is a means for adjusting the liquid temperature in the reaction vessel to an appropriate temperature condition in the amplification reaction of the PCR method.
  • the temperature range to be variably controlled is not particularly limited, but the temperature range normally required in a series of reaction operations for cell-free protein synthesis including preparation of a transcription cage (for example, about 4 ° C to about 100 ° C, Any means capable of variably controlling the liquid temperature in the reaction vessel within a range of preferably about 26 ° C. to about 99 ° C. is not particularly limited.
  • the conventionally known Takara PCR thermal cycler MP manufactured by Takara Bio Inc.
  • Gene Amp PCR System 9700 manufactured by Applied Biosystems In, Inc.
  • the temperature is variably controlled, and as a result, the temperature in the reaction vessel is variably controlled.
  • the means for dispensing a sample or reagent into a reaction vessel is to dispense a sample or reagent into a reaction vessel in order to perform a series of cell-free protein synthesis reactions such as transcription, translation, and PCR. It is means to do.
  • the “sample” refers to a transcription type, a translation type, a PCR type plasmid (or a host (eg, E. coli) having the plasmid), etc.
  • Reagent refers to a transcription reaction solution, translation reaction solution, translation reaction solution, dilution solution, alcohol, salt solution, PCR reaction solution, supply solution, reaction solution, and the like.
  • a pipette arm (dispensing machine) that can be automatically dispensed as known in the art can be used as long as it can be dispensed by adjusting the amount of sample and reagent according to the process. It can be realized with no particular restrictions.
  • the pipette arm can have a function of discarding a used tip at the tip disposal port of the synthesizer and a function of discharging the sucked filtrate or the like to the waste solution port.
  • the dispensing means preferably has a mixing function (eg, pipetting, stirring, etc.) for homogenizing two or more types of solutions and for dissolving the precipitate. Furthermore, by adding a substrate solution or a diluting solution to each cell of the reaction vessel with a pipette arm, a dilution process for the reaction solution can be performed.
  • a mixing function eg, pipetting, stirring, etc.
  • the means for transporting the reaction container is a means for moving the reaction container to each stage, centrifuge, elevator, and thermostat.
  • the means for transporting the strong reaction container is not particularly limited as long as the reaction container can be transported to the target location, and can be realized by any conventionally known appropriate means. For example, this can be realized by using a robot arm used in a conventional synthesizer.
  • Concentration filtration means is means for concentrating and filtering the reaction solution during repeated translation reactions.
  • Such means can be realized by any conventionally known appropriate means without particular limitation as long as the reaction solution can be concentrated during repeated translation reactions.
  • a conventionally known centrifuge other appropriate devices that have also been used for filtration and lyophilization, such as Amicon Ultra concentrated membrane (Milipore), Vivaflow (sart orius), etc. Can be realized.
  • control means As the control means, the above-mentioned means (a) to (e) or (b) to (e) are used for each means to operate. It includes a control device that controls on / off of the operation of the possible actuators, etc.), and the degree and state of the operation. So The control configuration of (a) to () can achieve the purpose of automatically performing the reaction operation from the synthesized transcription mold to the production of the protein encoded by the mold. It is.
  • the control device may be configured by combining control devices necessary for controlling the operation of each means, such as a control circuit including a computer having a control program, a sequence control circuit, and the like.
  • the control configuration is such that power, air pressure, hydraulic pressure, and the like can be supplied to each means so that each means operates in order.
  • a driver necessary for directly sending a drive signal to the drive source of each of the above means, various sensors and switches necessary for detecting the operation state of the drive source of each of the above means may be added as appropriate.
  • the reaction vessel applicable to the synthesizer of the present invention can be any of various well-known reaction vessels that have been used for cell-free protein synthesis reactions without particular limitations.
  • a 6-well plate, 24 Hole plates, 96-well plates, 384-well plates, 96-well PCR plates, 96-well titer plates, 8-strip tubes and tubes (1.5 mL, 15 mL, 50 mL, etc.) are examples.
  • a small reaction system such as a 96-well plate or a 384-well plate
  • the transcription reaction can be performed in a small reaction system according to the synthesis apparatus of the present invention.
  • a synthesis kit containing at least one of the reagents used in the cell-free protein synthesis method of the present invention is useful because it can easily provide the cell-free protein synthesis of the present invention.
  • This color sorter includes means for irradiating light to the crude germ fraction, means for detecting reflected light and Z or transmitted light from the crude germ fraction, means for comparing the detected value with the reference value, Supply the crude germ fraction to 1000 to 5000 grains / cm 2 on the beige belt of the color sorter, which is a device that has a means to sort out and remove those that fall outside or within the reference value.
  • the reflected light was detected by irradiating the upper crude germ fraction with a fluorescent lamp.
  • the belt conveyance speed was 50 m / min.
  • a monochrome CCD line sensor (2048 pixels) was used as the light receiving sensor.
  • a reference value was set between the brightness of the germ and the brightness of the seed coat, and those that deviated from the reference value were removed by suction.
  • a reference value was set between the brightness of the germ and the brightness of the endosperm, and anything that deviated from the reference value was removed by suction.
  • Suction was performed using 30 suction nozzles (one suction nozzle per 1 cm length) placed approximately 1 cm above the conveyor belt. By repeating this method, the germs were selected until the purity of the germs (the weight ratio of the germs contained in an arbitrary sample lg) reached 98% or more.
  • the obtained wheat germ fraction was suspended in distilled water at 4 ° C, and washed with an ultrasonic washing machine until the washing solution did not become cloudy. Subsequently, it was suspended in a 0.5% by volume solution of Nonidet P40 (Nonidet: manufactured by Nacalai Tectonics), and washed with an ultrasonic cleaner until the cleaning solution did not become cloudy to obtain wheat germ.
  • Nonidet P40 Nonidet: manufactured by Nacalai Tectonics
  • the homogenate (crushed material) obtained above was mixed with 20% by weight sea sand or swollen Cefdex G25 particles and mixed. Sea sand was subjected to the following treatment in advance before homogenate addition: water washing ⁇ 5 volumes of 0.1 N NaOH or KOH washing ⁇ water washing ⁇ 0.1 N HC1 washing ⁇ water washing ⁇ 100 ⁇ : 120 ° RNase inactivation treatment by heating C, followed by drying treatment.
  • the obtained S-30 fraction was applied to Sephadex G25 equilibrated with elution solution (40 mM HEPES_KOH, pH 7.8, 200 mM potassium acetate, lOmM magnesium acetate, 4 mM DTT), gel filtered, and molecular weight below 1000 Dalton An embryo extract from which low molecular weight substances were excluded was prepared.
  • elution solution 40 mM HEPES_KOH, pH 7.8, 200 mM potassium acetate, lOmM magnesium acetate, 4 mM DTT
  • the transcription reaction was incubated at 37 degrees for 2.5 hours.
  • the transcription reaction solution is as follows.
  • Transcription reaction composition 75 ⁇ ⁇ 5 ⁇ transcription buffer (400 mM HEPES, H 7.6; 80 mM Magnesium acetate; 10 mM Spermidine; 50 mM DTT), 37.5 ⁇ 1 25 mM 4NTPs, 3.7 5 ⁇ 1 RNAsin ( 80 Units), 25 ⁇ 1 PCR product (GFP transcription type: pEU_E01_GFP (SP6 promoter-EOl-GFP)), two primers on the 5 'side and 3' side. 30 cycles) was used to construct a transcription mold, and water (85 1.25 ⁇ 1) was added to 7.5 ⁇ 1 of SP6 polymerase (80 units) to make a total volume of 1 ml.
  • GFP transcription type pEU_E01_GFP (SP6 promoter-EOl-GFP)
  • Transcription reaction composition 300 5x transcription buffer (400 mM HEPES, pH 7.6; 80 mM Magnesium acetate; 10 mM Spermidine; 50 mM DTT), 150 ⁇ 1 25 mM 4NTPs, 15 ⁇ 1 RNAsin (1200 Units) ⁇ 44 ⁇ 1 pEU (including GFP gene clone, 150 ⁇ g), 3
  • the transcription solution containing purified mRNA was subjected to ethanol precipitation after the transcription reaction, and the supernatant was removed and dried.
  • a 6-hole titer plate (TPP, Switzerland) was used as a reaction vessel.
  • a supply solution containing 220 creatine kinase (a solution containing amino acids, ATP, GTP, creatine-phosphate, ions, and HEPES buffer), and add 0.5 ml of a reaction solution (230 ⁇ 1 of 260 ⁇ 260 nm).
  • Embryo transfer solution 250 / i 1 transcription solution containing unpurified mRNA, 10 g / zi l ere atine kinase 2 ⁇ 1 (20 / ⁇ ⁇ ) and 18 / i 1 feed solution mixed was carefully and gently added to the bottom of the titer plate.
  • the reaction was allowed to stand for 10 hours at 26 degrees and total. After 5 hours of the synthesis reaction, the feed phase and the reaction phase were mixed by pipetting. After mixing, the mixture was concentrated to 0.5 ml, which is the liquid volume of the starting reaction phase, using an Amicon Ultra concentrated membrane (Millipore) having a molecular weight of 10,000 cut-off. After concentrating, 5.5 ml of feed solution (not containing creatine kinase) was overlaid to resume protein synthesis and synthesized for another 5 hours.
  • Protein synthesis was measured by measuring the incorporation of radioactivity into the acid-insoluble fraction of 14 C-labeled leucine as follows: 5 microliters of the reaction mixture was spotted onto 3MM Whatman filter paper, 10% After soaking in ice-cold TCA (triclo-mouth acetic acid) for 1 hour, it was boiled in 5% TCA solution for 10 minutes. Take out this filter, remove TCA and water with ethanol ether (50:50 volume), and after drying, measure the radioactivity incorporated into the hot TCA insoluble fraction with a liquid scintillation counter (toluene scintillator). did.
  • Fig. 3 shows the results of highly efficient cell-free protein synthesis by the repeated layering method and the repeated feeding batch method.
  • the amount of synthesis is increased by the second synthesis reaction (number of repetitions: one lane 2) compared to the first reaction synthesis (lane 1).
  • the * mark shown in the figure is an endogenous protein band derived from germ, and this is used as an internal standard to compare the staining intensity of the synthetic GFP band of the arrow to obtain a more reliable determination).
  • Purified GFP was separated and stained by the same gel electrophoresis.
  • the amount of the synthesized product obtained in the second synthesis reaction was determined based on the band staining intensity.
  • the amount of product per 1 ml was 1 mg in the repeated layer method and 1.2 mg in the repeated feed batch method.
  • the repetitive multi-layer method and repetitive supply batch method are more effective than the conventional multi-layer method and repetitive batch method.
  • RNA molecules are thought to be digested by trace amounts of the enzyme, even in mRNAs that are generally sensitive to ribonucleases, and lose their translational activity. As a result, the decrease in the synthesis reaction accompanying the degradation of mRNA is strongly influenced as the synthesis reaction takes longer. Therefore, the effect of adding mRNA to the supply solution and affecting the amount of protein synthesis was repeatedly examined by the supply batch method (Fig. 3: lanes 5 and 6: the amount of mRNA is the same). According to the results in Figure 3, mRNA is not contained in the feed solution.
  • the second synthesis reaction (must be repeated once: large arrow in lane 6) contains mRNA in the feed solution. It can be seen from the CBB staining intensity of the band that the amount of GFP synthesis is high. In the single synthesis reaction (lanes 1 and 3), no significant difference was found in the amount of protein synthesis.
  • the second synthesis reaction that contains mRNA in the feed solution (repeated once: large arrow in lane 6) does not contain mRNA in the feed solution 2
  • a protein synthesis amount 1.3 times that of the first synthesis reaction (one iteration: small arrow in lane 4) was obtained (in other words, the amount of product per 1 ml (lower reaction solution at the start of synthesis) was 1.5mg).
  • Transcription molds are prepared by the two methods described in the transcription reaction step of Example 1 (method of amplification or synthesis of DNA clones synthesized by PCR method or transcription clones by introducing them into plasmids) did. In both cases, mRNA in the transcription solution after the transcription reaction was not purified.
  • the multilayer method was repeated by the same method as in Example 2.
  • the number of repetitions is 3 (the synthesis reaction is 4 times).
  • the number of GFP synthesis obtained by the repeated layering method until the 4th reaction was about 1.8 mg per ml of reaction solution at the start of the synthesis reaction, comparing the intensity of the staining band on the electrophoresis gel with that of the standard GFP band.
  • the cell-free protein synthesis method according to the present invention includes a complicated method such as an ultrafiltration membrane method using a semipermeable membrane, a dialysis membrane method, or a column chromatography method in which a translation cage is immobilized on a resin.
  • a complicated method such as an ultrafiltration membrane method using a semipermeable membrane, a dialysis membrane method, or a column chromatography method in which a translation cage is immobilized on a resin.
  • the technology according to the present invention will be a basic element technology for automating the production of gene products (proteins) that will serve as the basis for functional analysis and structural analysis of a huge number of genes that will be brought forward with the completion of future genome projects. .
  • it can be said that it is indispensable as an elemental technology for automating cell-free protein synthesis systems, such as the development of fully automated cell-free protein synthesis robots for multiple specimens.
  • FIG. 1 shows the principle of the repeated multi-layer method (A) and the repeated feed batch method (B).
  • FIG. 2 is a schematic diagram of a synthesis method by a preferred repeated multi-layer method and repeated feed batch method. is there.
  • Fig. 3 shows the results of highly efficient cell-free protein synthesis by the repeated layering method and repeated feeding batch method.
  • Fig. 4 compares the efficiency of protein synthesis between a DNA template amplified and synthesized by PCR and a transcription template using a plasmid.

Abstract

A protein synthesizing process in which simple and easy mass synthesis of proteins can be carried out by cell-free protein synthesizing means; and a cell-free protein synthesizing apparatus utilizing the process. To realize these, study has been made on means for feeding a supply solution and on a protein synthesizing process in which a synthetic reaction utilizing an overlay technique is repeated. As a result, a cell-free protein synthesizing process in which an overlay technique and a supply batch technique are repeated has been found, leading to completion of this invention.

Description

明 細 書  Specification
無細胞タンパク質合成方法  Cell-free protein synthesis method
技術分野  Technical field
[0001] 本出願は、参照によりここに援用されるところ、 日本特許出願番号 2004-329798から の優先権を請求する。  [0001] This application, which is incorporated herein by reference, claims priority from Japanese Patent Application No. 2004-329798.
本発明は、無細胞タンパク質合成システムを利用したタンパク質の繰り返し合成方 法に関する。  The present invention relates to a method for repeated protein synthesis using a cell-free protein synthesis system.
背景技術  Background art
[0002] ゲノム計画の完了を間近に控えて、研究課題の中心は遺伝子構造解析から遺伝 子機能解析へ急速に展開している。細胞内におけるタンパク質は、単独で機能して いるのではない。それは、多種多様なタンパク質因子、核酸、低分子生理活性物質 及び細胞膜成分等と協調して相互作用することによって機能が発現し、そして、それ らの相互作用の総和として生物学的機能が営まれているものと考えられている。 ポストゲノム計画の中心課題の一つは、多種多様なタンパク質因子の複合体の構 造と機能の関係を解析することである。ここから得られる成果は、構造生物学や生化 学を含む基礎生物学などの研究、医学分野における遺伝子翻訳産物と病因との関 係解明、そして医薬の開発における広い分野において極めて重要な知見を提供す るものと期待されている。  [0002] With the completion of the genome project coming soon, the focus of research is rapidly expanding from gene structure analysis to gene function analysis. Proteins in cells are not functioning alone. It functions by interacting with a wide variety of protein factors, nucleic acids, low molecular weight biologically active substances, cell membrane components, etc., and the biological function is performed as the sum of these interactions. It is thought that One of the main tasks of the post-genome project is to analyze the relationship between the structure and function of various protein factor complexes. The results obtained here provide extremely important knowledge in a wide range of research fields such as structural biology and basic biology including biochemistry, elucidation of the relationship between gene translation products and pathogenesis in the medical field, and drug development. It is expected to be.
タンパク質合成反応を生体外で行う方法として、細胞抽出液に翻訳铸型、基質とな るアミノ酸、エネルギー源、各種イオン、緩衝液、及びその他の有効因子を加えて試 験管内でタンパク質を合成する、いわゆる無細胞タンパク質合成法等の研究が盛ん に行われてきてレ、る(特許文献:!〜 5)。  As a method for conducting protein synthesis reactions in vitro, protein is synthesized in vitro by adding translational trapezoids, amino acids serving as substrates, energy sources, various ions, buffers, and other effective factors to cell extracts. Researches such as so-called cell-free protein synthesis methods have been actively conducted (Patent Documents:! To 5).
この無細胞タンパク質合成系に用いるタンパク質合成用の細胞抽出液または生体 組織抽出液は、大腸菌、コムギ胚芽、または家兎網状赤血球等を原料として調製さ れる。無細胞タンパク質合成系は、〃ペプチド合成速度〃ど'翻訳反応の正確性〃の 2 点において、生細胞に匹敵する性能を保持している。そして、この系は複雑な化学 反応工程や煩雑な細胞培養工程を必要としない。この利点を有するため、この系は その実用的なシステムの開発がなされてきた。し力しながら、一般的に、生物体の細 胞から抽出した細胞抽出液は、そのタンパク質合成能が極めて不安定なためにタン パク質合成効率が低かった。さらに、保存中の細胞抽出液の品質低下も著しかった 。そのため、無細胞タンパク質合成系によって得られる合成物の量は、放射性同位 体標識等によって検出可能な程度の少量であった。その結果、この系は実用的なタ ンパク質の生産手段としては利用できなかった。 The cell extract or biological tissue extract for protein synthesis used in this cell-free protein synthesis system is prepared using Escherichia coli, wheat germ, rabbit reticulocyte or the like as a raw material. The cell-free protein synthesis system maintains performance comparable to that of living cells in two respects: the peptide synthesis rate and the accuracy of the translation reaction. This system does not require complicated chemical reaction steps or complicated cell culture steps. Because of this advantage, this system The practical system has been developed. However, in general, cell extracts extracted from biological cells have low protein synthesis efficiency due to their extremely unstable protein synthesis ability. In addition, the quality of the cell extract during storage was significantly reduced. For this reason, the amount of the compound obtained by the cell-free protein synthesis system was small enough to be detectable by radioisotope labeling or the like. As a result, this system could not be used as a practical protein production tool.
[0003] 本発明者等は先に、従来の無細胞タンパク質合成系の欠点を解決する方法として 、以下を提供した。  [0003] The present inventors previously provided the following as a method for solving the drawbacks of the conventional cell-free protein synthesis system.
(1)無細胞タンパク質合成用細胞抽出物製剤および無細胞タンパク質合成方法 (特 許文献 6)、(2)汎用性および高効率機能を備えた錡型分子並びにこれを利用する 無細胞タンパク質合成方法 (特許文献 7)、 (3)拡散連続バッチ法 (重層法と呼ぶこと がある)(特許文献 8)。  (1) Cell extract preparation for cell-free protein synthesis and cell-free protein synthesis method (Patent Document 6), (2) Spider-type molecule with versatility and high-efficiency function, and cell-free protein synthesis method using the same (Patent Document 7), (3) Diffusion continuous batch method (sometimes called multi-layer method) (Patent Document 8).
また、タンパク質合成の効率を上げるための、無細胞タンパク質合成を連続して行 う装置が報告されている。従来の連続式無細胞タンパク質合成装置としては、限外ろ 過膜法、透析膜法、及び樹脂に翻訳铸型を固定化したカラムクロマト法等 (非特許文 献 1)を利用したものがある。特に、限外ろ過膜法と透析膜法は取り扱いが簡便なた め汎用されている。し力 これらの膜を用いる連続法には、以下のような解決すべき 課題が残されている、(1)使用する膜の材質強度が低いこと;(2)目詰まりによる膜機 能の低下がおこること;(3)操作が複雑であるために熟練した技術を要すること。  In addition, a device that continuously performs cell-free protein synthesis to increase the efficiency of protein synthesis has been reported. Conventional continuous cell-free protein synthesizers include those using an ultrafiltration membrane method, a dialysis membrane method, and a column chromatography method in which a translation cage is immobilized on a resin (Non-patent Document 1). . In particular, the ultrafiltration membrane method and the dialysis membrane method are widely used because they are easy to handle. The continuous process using these membranes still has the following problems to be solved: (1) The material strength of the membrane used is low; (2) Deterioration of membrane function due to clogging (3) The skill is required because the operation is complicated.
[0004] 発明者らは先に新規な無細胞タンパク質合成反応方法として、拡散連続バッチ式 無細胞タンパク質合成法 (重層法)及び繰り返しバッチ法を発明している。従来の合 成効率を凌駕するこれらの方法を用いても、タンパク質合成量に限界があった。そこ で、より単純な操作で多数の遺伝子からのタンパク質生産を高効率で行うことを可能 にするハイスループットタンパク質合成方法の確立に向けた要素技術の開発が必要 とされてきた。 [0004] The inventors have previously invented a diffusion continuous batch cell-free protein synthesis method (multilayer method) and a repetitive batch method as novel cell-free protein synthesis reaction methods. Even using these methods that surpassed conventional synthesis efficiency, there was a limit to the amount of protein synthesis. Therefore, there has been a need to develop elemental technologies for establishing a high-throughput protein synthesis method that enables highly efficient protein production from a large number of genes with simpler operations.
非特許文献 1: Spirin, A. , et al. , (1993) Methods in Enzymology, 217, 123 - 142  Non-Patent Document 1: Spirin, A., et al., (1993) Methods in Enzymology, 217, 123-142
特許文献 1 :特開平 6— 98790 特許文献 2:特開平 6— 225783 Patent Document 1: JP-A-6-98790 Patent Document 2: JP-A-6-225783
特許文献 3 :特開平 7— 194  Patent Document 3: JP-A-7-194
特許文献 4 :特開平 9 291  Patent Document 4: JP-A-9 291
特許文献 5:特開平 7_ 147992  Patent Document 5: JP-A-7_147992
特許文献 6: WO00/68412号号公報  Patent Document 6: WO00 / 68412
特許文献 7 :W〇0lZ27260号公報  Patent Document 7: WOOlZ27260
特許文献 8 :WO02Z24939号公報  Patent Document 8: WO02Z24939
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の課題は、無細胞タンパク質合成手段において、簡便かつ大量合成を可能 とするタンパク質合成方法及び該方法を用いた無細胞タンパク質合成装置を提供す るものである。 [0005] An object of the present invention is to provide a protein synthesis method that enables simple and large-scale synthesis in a cell-free protein synthesis means and a cell-free protein synthesis apparatus using the method.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者は、 自動化の重要ファクタ一として、供給液の供給手段の検討及び重層 法を用いた合成反応の繰り返しタンパク質合成法の検討をおこなった。その結果、重 層法及び供給バッチ法を繰り返し行う無細胞タンパク質合成方法を見出し、本発明 を完成した。 [0006] As an important factor for automation, the present inventor has studied a means for supplying a supply liquid and a method for repeatedly synthesizing a protein using a multilayer method. As a result, the inventors have found a cell-free protein synthesis method in which the layering method and the supply batch method are repeated, thereby completing the present invention.
[0007] つまり、本発明は以下からなる; [0007] That is, the present invention comprises:
1.少なくとも以下の工程を含む、繰り返し法による無細胞タンパク質合成方法; 1. a cell-free protein synthesis method by an iterative method including at least the following steps;
1 )反応液である反応相に供給相から供給液を供給して合成反応に導く工程1) The process of supplying the supply liquid from the supply phase to the reaction phase, which is the reaction liquid, leading to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 相と反応相を混合処理するか又は供給液の供給を停止する工程 2) A process of mixing the supply phase and the reaction phase, or stopping the supply of the supply liquid, before or after substantially decreasing the synthesis rate, before or after substantially stopping the synthesis reaction
3)濃縮処理する工程  3) Concentration process
4)供給相から供給液を反応相に供給させて合成反応を再開させる工程 4) The process of restarting the synthesis reaction by supplying the supply liquid from the supply phase to the reaction phase
2.界面を介する上下 2層からなり、上層を供給相、下層を反応相とする合成方法で あって、以下の工程を含む、繰り返し重層法による無細胞タンパク質合成方法;2. A synthesis method consisting of upper and lower two layers via an interface, with the upper layer as the supply phase and the lower layer as the reaction phase, comprising the following steps and a cell-free protein synthesis method by the repeated layer method;
1 )反応液である反応相に供給相となる供給液を重層させて合成反応に導く工程1) The process of superposing the supply liquid that is the supply phase on the reaction phase that is the reaction liquid to lead to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 相と反応相を混合処理する工程 2) Supply before or after substantially lowering the synthesis rate, before or after the stop of the synthesis reaction, or on the way Process of mixing the reaction phase and the reaction phase
3)濃縮処理する工程  3) Concentration process
4)供給相となる供給液を反応相に重層させて合成反応を再開させる工程  4) The process of resuming the synthesis reaction by overlaying the supply liquid as the supply phase on the reaction phase
3.以下の工程を含む繰り返し供給バッチ法による無細胞タンパク質合成法;  3. Cell-free protein synthesis method by repeated feeding batch method including the following steps;
1)反応液である反応相に供給液を連続又は不連続に供給して合成反応に導くェ 程  1) Process of supplying the supply liquid continuously or discontinuously to the reaction phase, which is the reaction liquid, leading to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 液の供給を停止する工程  2) A process of stopping the supply of the feed liquid before or after substantially lowering the synthesis rate, before or after substantially stopping the synthesis reaction
3)濃縮処理する工程  3) Concentration process
4)反応相に供給液を連続又は不連続に供給して合成反応を再開させる工程 4) Step of restarting the synthesis reaction by supplying the reaction solution to the reaction phase continuously or discontinuously
4.供給液の供給添加速度 (供給液量 Z秒)で合成反応の制御が行われる前項 3に 記載の合成方法。 4. The synthesis method according to item 3 above, wherein the synthesis reaction is controlled at the feed addition rate (feed solution amount Z seconds).
5.反応開始時の反応相と同量の供給液を、 10分〜 10時間で反応相に連続又は不 連続で供給する前項 4に記載の方法。  5. The method according to item 4 above, wherein the same amount of the supply liquid as the reaction phase at the start of the reaction is continuously or discontinuously supplied to the reaction phase in 10 minutes to 10 hours.
6. 2)— 4)の工程を複数回繰り返すことを特徴とする前項 1 5のいずれ力 1に記載 の合成方法。  6. The synthesis method according to any one of 1 to 15 above, wherein the step 2) —4) is repeated a plurality of times.
7.反応相の反応液が、転写反応後の未精製 mRNAを含む転写溶液及びコムギ種子 胚芽由来抽出液を含む前項 1 6のいずれ力 1に記載の合成方法。  7. The synthesis method according to any one of 1 to 16, wherein the reaction phase reaction solution comprises a transcription solution containing unpurified mRNA after the transcription reaction and a wheat seed embryo-derived extract.
8.転写反応後の未精製 mRNAを含む転写溶液又は精製 mRNAを、用時、供給相に 補充添加する前項 1 7のレ、ずれか 1に記載の合成方法。  8. The synthesis method according to 1 or 7 of item 17 above, wherein a transcription solution containing purified mRNA after the transcription reaction or purified mRNA is supplemented and added to the supply phase at the time of use.
9.濃縮処理により、反応相の副産物を除去する前項 1 8のいずれ力 1に記載の合 成方法。  9. The synthesis method according to any one of 1 to 8, wherein the by-product of the reaction phase is removed by concentration treatment.
10.濃縮処理により、転写溶液由来のマグネシウムイオン及び Z又はヌクレオチド類 を除去する前項 1一 8のいずれ力 4に記載の合成方法。  10. The synthesis method according to any one of 4 above, wherein magnesium ions and Z or nucleotides derived from the transcription solution are removed by concentration treatment.
11.コムギ種子胚芽由来抽出液が、混入するコムギ胚乳成分および低分子タンパク 質合成阻害物質が実質的に除去されたコムギ種子胚芽抽出液である前項 1一 10の レ、ずれか 1に記載の合成方法。  11. The wheat seed germ extract is a wheat seed germ extract from which the wheat endosperm component and the low-molecular protein synthesis inhibitor are substantially removed. Synthesis method.
12.コムギ種子胚芽由来抽出液から、以下のいずれか 1から選ばれる ATPを介する 糖のリン酸化系の制御が行われてレ、る前項 11に記載の合成方法;12. From an extract derived from wheat seed germ, via one of the following ATP The synthesis method according to item 11 above, wherein the sugar phosphorylation system is controlled;
1)単糖類の除去、 1) removal of monosaccharides,
2)リン酸化糖の除去、  2) removal of phosphorylated sugar,
3)多糖類から単糖類の生成の制御、  3) control of the production of monosaccharides from polysaccharides,
4)単糖類からリン酸化糖の生成の制御。  4) Control of production of phosphorylated saccharide from monosaccharides.
13.前項 1〜: 12のいずれ力 4に記載の合成方法に用いられる試薬のすくなくとも 1を 含む合成キット。  13. A synthesis kit comprising at least 1 of the reagents used in the synthesis method according to any one of 4 to 12 in the preceding paragraph.
14.前項 2、 6— 12のいずれ力、 1に記載の繰り返し重層法による無細胞タンパク質合 成方法を実施するための装置であって、以下の制御手段を少なくとも備える無細胞 タンパク質合成用装置;  14. An apparatus for carrying out the cell-free protein synthesis method according to the repeated layering method according to any one of the preceding paragraphs 2, 6-12, and a cell-free protein synthesis apparatus comprising at least the following control means;
(1)反応相に供給相を重層する手段  (1) Means to overlay the supply phase on the reaction phase
(2)混合処理する手段  (2) Means for mixing
(3)濃縮する手段  (3) Means for concentration
15.前項 3— 12のいずれ力 1に記載の繰り返し供給バッチ法による無細胞タンパク 質合成方法を実施するための装置であって、以下の制御手段を少なくとも備える無 細胞タンパク質合成用装置;  15. A device for cell-free protein synthesis by the repetitive supply batch method according to any one of the preceding paragraphs 3-12, wherein the cell-free protein synthesis device comprises at least the following control means;
(1)反応相に供給液を連続又は不連続に供給する手段  (1) Means for continuously or discontinuously supplying the supply liquid to the reaction phase
(2)濃縮する手段  (2) Means for concentration
発明の効果  The invention's effect
[0008] 本発明の無細胞タンパク質合成手段は、従来にない簡便性と大量合成の無細胞タ ンパク質合成手段を達成し、 自動化タンパク質合成法における最重要課題のーをク リア一した。  [0008] The cell-free protein synthesis means of the present invention has achieved an unprecedented simplicity and mass synthesis of cell-free protein synthesis means, and has cleared the most important issue in the automated protein synthesis method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明は、 mRNAを原料にする無細胞タンパク質合成系において、少なくとも以下 の工程を含む、繰り返し法による無細胞タンパク質合成方法である。 [0009] The present invention is a cell-free protein synthesis method by an iterative method including at least the following steps in a cell-free protein synthesis system using mRNA as a raw material.
1 )反応液である反応相に供給相から供給液を供給して合成反応に導く工程 1) The process of supplying the supply liquid from the supply phase to the reaction phase, which is the reaction liquid, leading to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 相と反応相を混合処理するか又は供給液の供給を停止する工程 3)濃縮処理する工程 2) A process of mixing the supply phase and the reaction phase, or stopping the supply of the supply liquid, before or after substantially decreasing the synthesis rate, before or after substantially stopping the synthesis reaction 3) Concentration process
4)供給相から供給液を反応相に供給させて合成反応を再開させる工程 つまり本発明は、連続又は不連続に供給液を供給することによって、反応速度の高 い合成反応初期相の特性を最大限に利用することを特徴とする合成法である。その 手段は、合成速度の略低下前後又は合成反応の略停止前後、又はそれらの途上に 、供給液を繰り返し供給することである。この方法はバッチ法でも、重層法でも適用可 能である。  4) Step of restarting the synthesis reaction by supplying the supply liquid from the supply phase to the reaction phase In other words, the present invention provides characteristics of the initial phase of the synthesis reaction having a high reaction rate by supplying the supply liquid continuously or discontinuously. It is a synthesis method characterized by maximum utilization. The means is to repeatedly supply the supply liquid before or after substantially decreasing the synthesis rate, before or after substantially stopping the synthesis reaction, or in the middle thereof. This method can be applied by either a batch method or a multilayer method.
[0010] 繰り返し供給バッチ法では、反応液である反応相に供給液を連続又は不連続に供 給して合成反応に導き、合成速度の略低下前後、合成反応の略停止前後、又はそ れらの途上に、供給液の供給を停止する。続いて、反応溶液 (反応相)の濃縮処理を 行う。濃縮された反応溶液 (反応相)は、供給液の連続又は不連続の供給により、反 応溶液 (反応相)の希釈処理を行う。この希釈処理で、 mRNAを原料とする合成に必 要とされる基質、エネルギー源、イオン類、緩衝液及び铸型物質などの成分が補充さ れる。この処理で、反応溶液 (反応相)は元の反応至適濃度にもどされ、タンパク質 合成が再活性化される。  [0010] In the repetitive supply batch method, a supply solution is supplied continuously or discontinuously to a reaction phase that is a reaction solution, leading to a synthesis reaction. On the way, the supply of supply liquid is stopped. Subsequently, the reaction solution (reaction phase) is concentrated. The concentrated reaction solution (reaction phase) is diluted by continuous or discontinuous supply of the supply solution. This dilution process replenishes components such as substrates, energy sources, ions, buffers, and saddle-type substances required for synthesis using mRNA as a raw material. By this treatment, the reaction solution (reaction phase) is returned to the original optimal concentration, and protein synthesis is reactivated.
そして、この希釈及び濃縮処理は、不連続に繰り返しおこなうことで、大量のタンパ ク質の合成を可能とする。  This dilution and concentration treatment can be repeated discontinuously to synthesize a large amount of protein.
[0011] また本発明は、 mRNAを原料にする無細胞タンパク質合成系において重層法の反 応速度の高い合成反応初期相の特性を最大限に利用することを特徴とする合成法( 以後、繰り返し重層法と呼ぶことがある)である。 [0011] The present invention also relates to a synthesis method characterized by making the best use of the characteristics of the initial phase of the synthesis reaction having a high reaction rate of the multilayer method in a cell-free protein synthesis system using mRNA as a raw material (hereinafter, repeated Sometimes called the multi-layer method).
その手段は、合成速度の略低下前後又は合成反応の略停止前後、又はそれらの 途上に、供給相と反応相の混合処理を行う。続いて、濃縮処理を行う。濃縮後、続い て供給相の重層が施される。  That means is that the supply phase and the reaction phase are mixed before and after the synthesis rate is substantially reduced or before or after the synthesis reaction is substantially stopped. Subsequently, a concentration process is performed. After concentration, the feed phase is subsequently layered.
この重層処理で、 mRNAを原料とする合成に必要とされる基質、エネルギー源、ィォ ン類、緩衝液などの成分が補充され、タンパク質合成が再活性化される。  This multi-layer treatment replenishes protein synthesis by replenishing components such as substrates, energy sources, ions, and buffers required for synthesis using mRNA as a raw material.
そして、この混合、濃縮、重層処理は、不連続に繰り返しおこなうことで、大量のタン パク質を合成可能とする。  This mixing, concentration, and multi-layer treatment is repeated discontinuously, so that a large amount of protein can be synthesized.
[0012] なお、合成反応の効率を上げるために、上記反応溶液又は上記供給相と反応相の 混合溶液に、必要に応じて希釈操作を加えることができる。希釈操作は、濃縮処理 の前後を問わず行うことができる。 [0012] In order to increase the efficiency of the synthesis reaction, the reaction solution or the supply phase and the reaction phase A dilution operation can be added to the mixed solution as necessary. The dilution operation can be performed before or after the concentration treatment.
[0013] さらに、本発明は上記 2つの合成法の特性を最大に利用した合成法を自動可能化 することを特徴とした無細胞タンパク質合成装置である。  [0013] Further, the present invention is a cell-free protein synthesizer characterized in that a synthesis method that makes the best use of the characteristics of the above two synthesis methods can be automatically made.
[0014] (1)転写铸型の作製工程  [0014] (1) Production process of transfer mold
本明細書において「転写錡型」とは、インビトロ転写反応の錡型分子として使用し得 る DNAをいい、適当なプロモーター配列の下流に目的蛋白質をコードする塩基配 列を少なくとも有する。適当なプロモーター配列とは、転写反応において使用される RNAポリメラーゼが認識し得るプロモーター配列をレ、い、例えば、 SP6プロモーター、 T7プロモーター等が挙げられる。 目的蛋白質をコードする DNAはいかなるものであ つてもよい。  In the present specification, the “transcription type” refers to a DNA that can be used as a type molecule in an in vitro transcription reaction, and has at least a base sequence encoding a target protein downstream of an appropriate promoter sequence. Suitable promoter sequences include promoter sequences that can be recognized by RNA polymerase used in the transcription reaction, and examples thereof include SP6 promoter and T7 promoter. Any DNA encoding the target protein may be used.
転写铸型は、プロモーター配列と目的蛋白質をコードする塩基配列との間に翻訳 効率を制御する活性を有する塩基配列を有することが好ましぐ例えば、タバコモザ イクウィルス由来の Ω配列などの RNAウィルス由来の 5'非翻訳領域、及び/又はコ ザック配列等を用いることができる。さらに、転写铸型は、 目的蛋白質をコードする塩 基配列の下流に転写ターミネーシヨン領域等を含む 3'非翻訳領域を含むことが好ま しレ、。 3'非翻訳領域としては、終止コドンより下流の約 1. 0〜約 3. 0キロベース程度 が好ましく用いられる。これらの 3'非翻訳領域は必ずしも目的蛋白質をコードする遺 伝子本来のそれである必要はない。  It is preferable that the transcription type has a base sequence having an activity to control translation efficiency between the promoter sequence and the base sequence encoding the target protein. For example, derived from RNA virus such as Ω sequence derived from tobacco mosaic virus 5 'untranslated region and / or Kozak sequence can be used. Furthermore, it is preferable that the transcription type includes a 3 ′ untranslated region including a transcription termination region and the like downstream of the base sequence encoding the target protein. As the 3 ′ untranslated region, about 1.0 to about 3.0 kilobases downstream from the stop codon is preferably used. These 3 'untranslated regions are not necessarily those of the gene encoding the target protein.
本発明の方法の好ましい実施態様の一つとして、 目的タンパク質をコードする転写 铸型を PCR法によって増幅 ·合成した DNA铸型を精製することなくそのまま転写铸型 とすることである。  One of the preferred embodiments of the method of the present invention is to amplify and synthesize a transcription cage that encodes the target protein by a PCR method, and directly convert it into a transcription cage without purification.
尚、非特異的増幅により生じる短鎖 DNA (結果として目的産物の収量低下及び低 分子翻訳産物ノイズを生じる)の生成を防ぐために、国際公開第 WO02Z18586号 に記載のプロモーター分断型プライマーを用いることもできる。  In order to prevent the production of short-chain DNA (resulting in a decrease in yield of the target product and resulting in low-molecular translation product noise) generated by non-specific amplification, a promoter-splitting primer described in International Publication No. WO02Z18586 may be used. it can.
上記のようにして得られる転写铸型 DNAはクロ口ホルム抽出やアルコール沈殿に より精製した後に転写反応に供してもよいが、本発明のタンパク質合成方法では、 P CR反応後の反応液をそのまま転写錡型溶液として使用することが可能である。転写 铸型の作製において、铸型 DNAをプラスミドに導入しないので、ー且プラスミドを大 量調製して、これを制限酵素処理して転写铸型を得る方法と比較して、工程を格段 に省略でき、少ない工程数で短時間での転写铸型の大量合成が可能となる。すなわ ち、 目的タンパク質をコードする DNAを組み込んだプラスミドを調製する工程を必要と しないので、プラスミド精製のための超遠心に要する時間を短縮することができる。ま た、プラスミドから転写铸型を切り出すための制限酵素処理、及び制限酵素等を除去 するためのフヱノール処理、クロ口ホルム処理、転写錡型の精製のためのアルコール 沈殿、転写铸型である DNAの沈殿を溶解する工程を省略することができるので、フ ヱノール/クロ口ホルムの残存による転写反応の阻害や、多工程の精製操作による 転写铸型のロスがなレ、。また、反応に要するステップ数を少なくすることができるので 使用するチップ数なども少なくて済むというさらなる利点を有する。 The transcription type DNA obtained as described above may be subjected to transcription reaction after purification by chloroform extraction or alcohol precipitation, but in the protein synthesis method of the present invention, the reaction solution after the PCR reaction is used as it is. It can be used as a transfer mold solution. Transcription In the production of a saddle type, since the type DNA is not introduced into the plasmid, the steps can be greatly omitted compared to a method in which a large amount of plasmid is prepared and treated with a restriction enzyme to obtain a transcription type. This makes it possible to synthesize a large number of transfer molds in a short time with a small number of steps. That is, since a step of preparing a plasmid incorporating a DNA encoding the target protein is not required, the time required for ultracentrifugation for plasmid purification can be shortened. In addition, restriction enzyme treatment to cut out the transcript from the plasmid, phenol treatment to remove the restriction enzyme, etc., chloroform treatment, alcohol precipitation for purification of the transcript, DNA that is a transcription template The step of dissolving the precipitate can be omitted, so that there is no inhibition of the transcription reaction due to residual phenol / chloroform, and there is no loss of transcription type due to the multi-step purification operation. In addition, since the number of steps required for the reaction can be reduced, there is an additional advantage that the number of chips used can be reduced.
(2)転写反応工程  (2) Transcription reaction process
転写铸型を、転写铸型中のプロモーターに適合する RNAポリメラーゼゃ RNA合成 用の基質 (4種類のリボヌクレオシド三リン酸)等の転写反応に必要な成分を含む溶 液(転写反応溶液ともいう)と混合し、これを約 20〜約 60°C、好ましくは約 30〜約 42°C で、約 30分〜約 16時間、より好ましくは約 2〜5時間インキュベートして転写反応をお こなう。  Transcription mold is a solution (also called transcription reaction solution) that contains components necessary for transcription reaction, such as RNA polymerase compatible with the promoter in the transcription mold (4 types of ribonucleoside triphosphates). ) And incubating at about 20 to about 60 ° C., preferably about 30 to about 42 ° C., for about 30 minutes to about 16 hours, more preferably about 2 to 5 hours to initiate the transcription reaction. Nau.
また、好ましい実施態様の一つとして、自体公知の方法を用いて調製された目的蛋 白質をコードする転写铸型 DNA又は(1)に記載の PCR法によって増幅 ·合成した D NA铸型を精製することなくそのまま転写铸型として調製された目的蛋白質をコードす る転写铸型 DNAから、インビトロ転写反応により翻訳铸型である mRNAを生成させ るものである。転写反応は、反応系(例えば、 96穴タイタープレートなどの市販の容 器)に提供された転写錡型を含む溶液 (未精製 mRNAを含む転写溶液)、好ましくは PCR反応液と、転写錡型中のプロモーターに適合する RNAポリメラーゼ(例えば、 S P6 RNAポリメラーゼなど)や RNA合成用の基質(4種類のリボヌクレオシド 3リン酸) 等の転写反応に必要な成分を含む溶液(「転写反応用溶液」ともいう)とを混合した後 、約 20°C〜約 60°C、好ましくは約 30°C〜約 42°Cで約 30分間〜約 16時間、好ましく は約 2時間〜約 5時間該混合液をインキュベートすることにより行われる。 なお、本発明の実施例で使用した翻訳铸型となる mRNAは、 GFP遺伝子 DNA (Chiu , W.編 211 ;L"et al., Curr. Biol. 6, 325-330 (1996))が挿入された pEU- GFPベクタ 一(Sawasaki, T. et al.,PNAS, 99 (23), 14652-7 (2002) )を基に、 Ω配列部分を WOO 3/056009号公報に記載の配列番号 136の塩基配列に置き換えた環状プラスミド D NAを铸型として、 SP6 RNApolymerase (Promega社製)を用いて転写を行った。 Further, as one of the preferred embodiments, the transcription type DNA encoding the target protein prepared by a method known per se or the DNA type amplified and synthesized by the PCR method described in (1) is purified. Thus, mRNA that is a translation type is generated by in vitro transcription reaction from transcription type DNA encoding the target protein prepared as it is as a transcription type. The transcription reaction is performed using a solution containing a transcription template (transcription solution containing unpurified mRNA) provided in a reaction system (eg, a commercially available container such as a 96-well titer plate), preferably a PCR reaction solution and a transcription template. Solution containing components necessary for transcription reaction such as RNA polymerase (for example, SP6 RNA polymerase) compatible with the promoter in the medium and substrate for RNA synthesis (4 types of ribonucleoside triphosphates) And about 20 ° C to about 60 ° C, preferably about 30 ° C to about 42 ° C for about 30 minutes to about 16 hours, preferably about 2 hours to about 5 hours. This is done by incubating the mixture. In addition, the GFP gene DNA (Chiu, W. Ed. 211; L "et al., Curr. Biol. 6, 325-330 (1996)) is inserted into the mRNA that is the translation type used in the examples of the present invention. PEU-GFP vector (Sawasaki, T. et al., PNAS, 99 (23), 14652-7 (2002)), the Ω sequence portion is represented by SEQ ID NO: 136 described in WOO 3/056009. Transcription was carried out using SP6 RNApolymerase (Promega) with the circular plasmid DNA replaced with the nucleotide sequence of 铸 as a saddle type.
[0016] 以下の翻訳反応工程に供するため、未精製 mRNAを含む転写溶液又は精製 mRN Aを蛋白質合成用細胞抽出液に直接添加する。ここで用レヽられる蛋白質合成用細胞 抽出液としては、翻訳錡型を翻訳して該铸型にコードされる蛋白質を生成させ得るも のであれば如何なるものであってもよいが、具体的には、大腸菌、植物種子の胚芽、 ゥサギ網状赤血球等の細胞抽出液等が用いられる。これらは市販のものを用いること もできるし、それ自体既知の方法、具体的には、大腸菌抽出液の場合、 Pratt, J. M. et al, franscnption and T ranslation, Hames, 179-209, B. D. & Higgins, S. J. , edsノ, IRL Press, Oxford (1984)に記載の方法等に準じて調製することもできる。 [0016] For use in the following translation reaction step, a transcription solution containing unpurified mRNA or purified mRNA is directly added to the cell extract for protein synthesis. The cell extract for protein synthesis used here may be any one as long as it can produce a protein encoded by the translation form by translating the translation form. Specifically, Cell extracts such as Escherichia coli, plant seed germs, and rabbit reticulocytes are used. These may be commercially available, and are known per se. Specifically, in the case of an E. coli extract, Pratt, JM et al, franscnption and Translation, Hames, 179-209, BD & Higgins, It can also be prepared according to the method described in SJ, edsno, IRL Press, Oxford (1984).
市販の蛋白質合成用細胞抽出液としては、大腸菌由来では、 E.coli S30 extract sy stem (Promega社製)や RTS 500 Rapid Translation System (Roche社製)に添付のもの 等が挙げられ、ゥサギ網状赤血球由来では Rabbit Reticulocyte Lysate Sytem (Prome ga社製)に添付のもの等、更にコムギ胚芽由来では PROTEIOS™(TOYOBO社製)に 添付のもの等が挙げられる。このうち、植物種子の胚芽抽出液の系を用いることが好 ましぐ植物種子としては、コムギ、ォォムギ、イネ、コーン等のイネ科の植物、及びホ ウレンソゥ等の種子が好ましぐ特にコムギ種子胚芽抽出液を用いたものが好適であ る。さらに胚芽の胚乳成分および低分子の蛋白質合成阻害剤物質が実質的に除去 されたコムギ種子胚芽抽出液抽出液がより好適である。これらは従来のコムギ種子胚 芽抽出液と比較して、抽出液中の蛋白質合成阻害に関与する成分及び物質が低減 されているからである。  Commercially available cell extracts for protein synthesis include those attached to E.coli S30 extract sy stem (Promega) and RTS 500 Rapid Translation System (Roche) from E. coli. Examples of the origin include those attached to Rabbit Reticulocyte Lysate System (Promega), and those derived from wheat germ include those attached to PROTEIOS ™ (TOYOBO). Of these, the plant seed germ extract is preferably used as the plant seeds such as wheat, barley, rice, corn, etc., and seeds such as spinach are preferred. Those using an embryo extract are preferred. Further preferred is a wheat seed germ extract from which the endosperm components of germ and low molecular weight protein synthesis inhibitors have been substantially removed. This is because the components and substances involved in protein synthesis inhibition in the extract are reduced as compared with the conventional wheat seed germ extract.
[0017] 本発明の最良の細胞抽出液は、コムギ胚芽由来の抽出液であり、さらに混入する 胚乳成分や胚芽組織細胞中のタンパク質合成阻害をもたらすグノレコースなどの代謝 物質が実質的に除去された抽出液であるので、これを例にとって原料の調製方法を 以下説明する。 [0018] 通常、胚芽の部分は非常に小さいので胚芽を効率的に取得するためには胚芽以 外の部分をできるだけ除去しておくことが好ましい。通常、まずコムギ種子に機械的 な力を加えることにより、胚芽、胚乳破砕物、種皮破砕物を含む混合物を得、該混合 物から、粗胚芽画分 (胚芽を主成分とし、胚乳破砕物、種皮破砕物を含む混合物)を 得る。種子に加える力は、種子から胚芽を分離することができる程度の強さであれば よい。具体的には、公知の粉砕装置を用いて、種子を粉砕することにより、胚芽、胚 乳破砕物、種皮破砕物を含む混合物を得る。 [0017] The best cell extract of the present invention is an extract derived from wheat germ, and further metabolites such as gnolecose that causes protein synthesis inhibition in the mixed endosperm components and germ tissue cells have been substantially removed. Since this is an extract, the method for preparing the raw material will be described below using this as an example. [0018] Usually, the portion of the germ is very small, so in order to obtain the germ efficiently, it is preferable to remove the portion other than the germ as much as possible. Usually, a mechanical force is first applied to wheat seeds to obtain a mixture containing germ, endosperm crushed material, and seed coat crushed material, and from this mixture, a crude embryo fraction (embryo is the main component, endosperm crushed material, To obtain a mixture containing crushed seed coat). The force applied to the seeds only needs to be strong enough to separate the germ from the seeds. Specifically, a seed mixture is pulverized using a known pulverizer to obtain a mixture containing germ, endosperm crushed material, and seed coat crushed material.
種子の粉砕は、通常公知の粉砕装置を用レ、て行うことができるが、被粉砕物に対し て衝撃力をカ卩えるタイプの粉砕装置、例えばピンミル、ハンマーミルを用いることが好 ましい。粉砕の程度は、使用する種子胚芽の大きさに応じて適宜選択すればよいが 、例えばコムギの場合は、通常、最大長さ 4mm以下、好ましくは最大長さ 2mm以下 の大きさに粉砕する。また、粉砕は乾式で行うのが好ましい。  The seeds can be pulverized using a generally known pulverizer, but it is preferable to use a pulverizer of a type that can apply impact force to the material to be pulverized, such as a pin mill or a hammer mill. . The degree of pulverization may be appropriately selected according to the size of the seed germ to be used. For example, in the case of wheat, it is usually pulverized to a maximum length of 4 mm or less, preferably a maximum length of 2 mm or less. The pulverization is preferably performed by a dry method.
次いで、得られた種子粉碎物から、通常公知の分級装置、例えば、篩を用いて粗 胚芽画分を取得する。例えば、コムギの場合、通常、メッシュサイズ 0. 5mm〜2. Om m、好ましくは 0. 7mm〜: 1. 4mmの粗胚芽画分を取得する。さらに、必要に応じて、 得られた粗胚芽画分に含まれる種皮、胚乳、ゴミ等を風力、静電気力を利用して除 去してもよい。  Next, a crude germ fraction is obtained from the obtained seed flour cake using a generally known classifier, for example, a sieve. For example, in the case of wheat, a crude embryo fraction having a mesh size of 0.5 mm to 2. Om m, preferably 0.7 mm to: 1.4 mm is usually obtained. Further, if necessary, seed coat, endosperm, dust, etc. contained in the obtained crude germ fraction may be removed using wind power or electrostatic force.
また、胚芽と種皮、胚乳の比重の違いを利用する方法、例えば重液選別により、粗 胚芽画分を得ることもできる。より多くの胚芽を含有する粗胚芽画分を得るために、上 記の方法を複数組み合わせてもよい。さらに、得られた粗胚芽画分から、例えば目視 や色彩選別機等を用いて胚芽を選別する。  In addition, a crude embryo fraction can also be obtained by a method utilizing the difference in specific gravity between embryo, seed coat, and endosperm, for example, heavy liquid sorting. In order to obtain a crude germ fraction containing more germs, a plurality of the above methods may be combined. Furthermore, the germ is selected from the obtained crude germ fraction using, for example, visual observation or a color sorter.
[0019] このようにして得られた胚芽画分は、胚乳成分が付着している場合があるため、通 常胚芽純化のために更に洗浄処理することが好ましい。洗浄処理としては、通常 10 °C以下、好ましくは 4°C以下に冷却した水または水溶液もしくは界面活性剤を含有す る水溶液に胚芽画分を分散'懸濁させ、洗浄液が白濁しなくなるまで洗浄することが 好ましレ、。また、通常 10°C以下、好ましくは 4°C以下で、界面活性剤を含有する水溶 液に胚芽画分を分散'懸濁させて、洗浄液が白濁しなくなるまで洗浄することがより 好ましレ、。界面活性剤としては、非イオン性のものが好ましぐ非イオン性界面活性剤 であるかぎりは、広く利用ができる。具体的には、例えば、好適なものとして、ポリオキ シエチレン誘導体であるブリッジ(Brij)、トリトン(Triton)、ノニデット(Nonidet) P40 、ツイーン (Tween)等が例示される。なかでも、ノニデット(Nonidet) P40が最適で ある。これらの非イオン性界面活性剤は、胚乳成分の除去に十分且つ胚芽成分のタ ンパク質合成活性に悪影響を及ぼさない濃度で使用され得るが、例えば 0. 5%の濃 度で使用することができる。水または水溶液による洗浄処理及び界面活性剤による 洗浄処理は、どちらか一方でもよいし、両方実施してもよい。また、これらの洗浄処理 は、超音波処理との組み合わせで実施してもよい。 [0019] Since the embryo fraction obtained in this manner may have an endosperm component attached thereto, it is usually preferable to further perform a washing treatment for germ purification. In the washing treatment, the embryo fraction is dispersed and suspended in water cooled to 10 ° C or lower, preferably 4 ° C or lower, or an aqueous solution or an aqueous solution containing a surfactant, and washed until the washing solution does not become cloudy. I prefer to do it. In addition, it is more preferable to disperse and suspend the embryo fraction in an aqueous solution containing a surfactant, usually at 10 ° C or lower, preferably at 4 ° C or lower, and wash until the cleaning solution does not become cloudy. ,. As a surfactant, a nonionic surfactant is preferred which is preferably a nonionic one. As long as it is, it can be widely used. Specifically, for example, bridges (Brij), Triton, Nonidet P40, Tween, etc., which are polyoxyethylene derivatives, are exemplified as preferable examples. Of these, Nonidet P40 is the best choice. These nonionic surfactants can be used at a concentration sufficient to remove the endosperm component and not adversely affect the protein synthesis activity of the germ component, but may be used at a concentration of 0.5%, for example. it can. Either or both of the washing treatment with water or an aqueous solution and the washing treatment with a surfactant may be performed. These cleaning treatments may be performed in combination with ultrasonic treatment.
[0020] 本発明においては、上記のように種子粉砕物から選別し、洗浄して得られた発芽能 を有する胚芽を好ましくは抽出溶媒の存在下に細分化した後、得られた胚芽抽出液 を分離し、更に精製することにより無細胞タンパク質合成用抽出液を得る。  [0020] In the present invention, the germ extract having the germination ability obtained by selecting from the seed pulverized product and washing as described above is preferably subdivided in the presence of an extraction solvent, and then the germ extract obtained. Is separated and further purified to obtain an extract for cell-free protein synthesis.
[0021] 抽出溶媒としては、緩衝液、カリウムイオン、マグネシウムイオンおよび/またはチ オール基の酸化防止剤を含む水溶液を用いることができる。また、必要に応じて、力 ノレシゥムイオン、 L型アミノ酸等をさらに添加してもよレ、。例えば、 N— 2—ヒドロキシェ チルピペラジン N'— 2—エタンスルホン酸(HEPES)—KOH、酢酸カリウム、酢酸 マグネシウム、 L型アミノ酸および/またはジチオスレィトールを含む溶液や、 Patter sonらの方法を一部改変した溶液(HEPES— K〇H、酢酸カリウム、酢酸マグネシゥ ム、塩ィ匕カルシウム、 L型アミノ酸および/またはジチオスレィトールを含む溶液)を 抽出溶媒として使用することができる。抽出溶媒中の各成分の組成 ·濃度はそれ自 体既知であり、無細胞タンパク質合成用の細胞抽出液の製造に用いられるものを採 用すればよい。  [0021] As the extraction solvent, an aqueous solution containing a buffer solution, potassium ions, magnesium ions and / or a thiol group antioxidant can be used. If necessary, you can add more power ions, L-amino acids, etc. For example, a solution containing N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES) -KOH, potassium acetate, magnesium acetate, L-type amino acids and / or dithiothreitol, or the method of Patterson et al. A partially modified solution (a solution containing HEPES-KOH, potassium acetate, magnesium acetate, calcium chloride salt, L-type amino acid and / or dithiothreitol) can be used as an extraction solvent. The composition and concentration of each component in the extraction solvent are known per se, and those used for the production of cell extracts for cell-free protein synthesis may be employed.
必要量の抽出溶媒を胚芽に加え、抽出溶媒の存在下に胚芽を細分化する。抽出 溶媒の量は、洗浄前の胚芽 lgに対して、通常 0. 1ミリリットル以上、好ましくは 0. 5ミ リリットル以上、より好ましくは 1ミリリットル以上である。抽出溶媒量の上限は特に限定 されないが、通常、洗浄前の胚芽 lgに対して、 10ミリリットル以下、好ましくは 5ミリリツ トル以下である。また、細分化しようとする胚芽は従来のように凍結させたものを用い てもよいが、凍結させていなレ、ものを用いるのがより好ましい。  The required amount of extraction solvent is added to the germ and the embryo is subdivided in the presence of the extraction solvent. The amount of the extraction solvent is usually 0.1 milliliters or more, preferably 0.5 milliliters or more, more preferably 1 milliliter or more, relative to the germ lg before washing. The upper limit of the amount of the extraction solvent is not particularly limited, but is usually 10 milliliters or less, preferably 5 milliliters or less with respect to the germ lg before washing. In addition, the embryos to be subdivided may be frozen as in the past, but it is more preferable to use those that have not been frozen.
[0022] 細分化の方法としては、摩砕、圧砕等、従来公知の粉砕方法を採用することができ るが、本発明者が開発した衝撃または切断により胚芽を細分化する方法 (WO03/06 4671)が好ましい。ここで、「衝撃または切断により細分化する」とは、植物胚芽の細胞 核、ミトコンドリア、葉緑体等の細胞小器官 (オルガネラ)、細胞膜や細胞壁等の破壊 を、従来の摩砕または圧砕と比べて最小限に止めうる条件で植物胚芽を破壊するこ とを意味する。 [0022] As the fragmentation method, conventionally known grinding methods such as grinding and crushing can be adopted. However, the method of subdividing embryos by impact or cutting developed by the present inventors (WO03 / 06 4671) is preferred. Here, “subdivide by impact or cutting” means the destruction of cell nuclei of plant embryos, organelles such as mitochondria, chloroplasts, cell membranes, cell walls, etc., with conventional grinding or crushing. This means that the plant germ is destroyed under conditions that can be minimized.
細分化する際に用いることのできる装置や方法は、上記条件を満たすものであれ ば特に限定されないが、例えば、ワーリンダブレンダ一のような高速回転する刃状物 を有する装置を用いることが好ましい。刃状物の回転数は、通常 lOOOrpm以上、好 まし < 5000rpm以上であり、また、通常 30000rpm以下、好まし <は 25000i"pm以 下である。刃状物の回転時間は、通常 5秒以上、好ましくは 10秒以上である。回転時 間の上限は特に限定されないが、通常 10分以下、好ましくは 5分以下である。細分 化する際の温度は、好ましくは 10°C以下で操作が可能な範囲内、特に好ましくは 4 °C程度が適当である。  The apparatus and method that can be used when subdividing are not particularly limited as long as the above conditions are satisfied. For example, it is preferable to use an apparatus having a blade that rotates at high speed, such as a Warinda blender. . The rotation speed of the blade is usually lOOOOrpm or more, preferably <5000rpm or more, and usually 30000rpm or less, preferably <is 25000i "pm or less. The rotation time of the blade is usually 5 seconds or more. The upper limit of the rotation time is not particularly limited, but is usually 10 minutes or less, preferably 5 minutes or less, and the operation temperature is preferably 10 ° C. or less. Within the possible range, particularly preferably around 4 ° C is suitable.
このような衝撃または切断による胚芽の細分化では、胚芽の細胞核や細胞壁は全 て破壊されず、少なくともその一部は破壊されることなく残る。即ち、胚芽の細胞核等 の細胞小器官、細胞膜や細胞壁が必要以上に破壊されることがないため、それらに 含まれる DNAや脂質等の不純物の混入が少なぐ細胞質に局在するタンパク質合 成に必要な RNAやリボソーム等を高純度で効率的に胚芽から抽出することができる このような衝撃または切断による細分化においては、細分化した後に抽出溶媒を添 加することもできるが、抽出溶媒の存在下に行うことがより好ましい。  In such subdivision of the embryo by impact or cutting, the cell nucleus and cell wall of the embryo are not completely destroyed, and at least part of them remains without being destroyed. In other words, since organelles such as embryonic cell nuclei, cell membranes and cell walls are not destroyed more than necessary, the synthesis of proteins localized in the cytoplasm is less contaminated with impurities such as DNA and lipids contained in them. Necessary RNA, ribosome, etc. can be efficiently extracted from the embryo with high purity In such fragmentation by impact or cutting, an extraction solvent can be added after fragmentation, but the extraction solvent More preferably, it is carried out in the presence.
このような方法によれば、従来の胚芽を粉砕する工程と、粉砕された胚芽に抽出溶 媒をカ卩えて胚芽抽出液を得る工程とを同時に一つの工程として行うことができるため 効率的にコムギ胚芽抽出液を得ることができる。上記の方法を、以下「プレンダ一法」 と称することがある。  According to such a method, the conventional process of pulverizing the germ and the process of obtaining the germ extract by simultaneously adding the extraction solvent to the pulverized germ can be performed efficiently as one process. A wheat germ extract can be obtained. Hereinafter, the above method may be referred to as a “pender method”.
次いで、胚芽抽出液について 2〜4万 G、好ましくは 2. 5〜3. 5万 G、さらに好ましく は 3万 Gの遠心分離を行い、遠心上清を取得する。この際、沈殿助剤として無機担体 をいれておくことは沈殿物と上清との分離のためにより好ましい。この沈殿物中には、 グリコシダーゼなどの酵素とカルシウムの複合体が含まれてレ、る。グリコシダーゼをぁ らカじめ除いておくことは、澱粉からグルコースの生成を最小限に抑えることに役立 つ。好適な無機担体としては、ベントナイト、活性炭素、シリカゲル、海砂等が例示さ れる。この無機担体の導入により、沈殿物が上清へ混入することをほぼ完全に防ぐこ とが出来る。沈殿助剤を遠心時に加えない場合は、沈殿物の上部に不溶性スラリー が存在し、これが混入した S-30画分力も調製した抽出液のタンパク質合成活性は低 くなる。そこで、遠心後の遠心管からの S-30画分の回収に当たっては混入を避ける ために細心の注意が必要となる。 Then, the embryo extract is centrifuged at 20,000 to 40,000 G, preferably 2.5 to 350,000 G, more preferably 30,000 G, and a centrifugal supernatant is obtained. At this time, it is more preferable to add an inorganic carrier as a precipitation aid to separate the precipitate from the supernatant. In this deposit, It contains a complex of calcium and enzymes such as glycosidases. Preliminarily removing glycosidase helps to minimize glucose production from starch. Examples of suitable inorganic carriers include bentonite, activated carbon, silica gel, sea sand and the like. By introducing this inorganic carrier, it is possible to almost completely prevent the precipitate from being mixed into the supernatant. When the precipitation aid is not added during centrifugation, an insoluble slurry exists at the top of the precipitate, and the protein synthesis activity of the extract prepared with the S-30 fractional force mixed with it becomes low. Therefore, when collecting the S-30 fraction from the centrifuge tube after centrifugation, extreme care must be taken to avoid contamination.
コムギ胚芽抽出液は、ゲルろ過等によりさらに精製することができる。ゲルろ過は、 例えば予め適当な溶液で平衡ィ匕しておいたゲルろ過装置を用いて行うことができる。 ゲルろ過溶液中の各成分の組成 ·濃度はそれ自体既知であり、無細胞タンパク合成 用の細胞胚芽抽出液の製造に用いられるもの(例えば、 HEPES _K〇H、酢酸カリ ゥム、酢酸マグネシウム、ジチオスレィトールまたは L型アミノ酸を含む溶媒)を採用す ればよい。  The wheat germ extract can be further purified by gel filtration or the like. The gel filtration can be performed using, for example, a gel filtration device that has been equilibrated in advance with an appropriate solution. The composition / concentration of each component in the gel filtration solution is known per se, and is used for the production of cell germ extract for cell-free protein synthesis (eg, HEPES_KOH, potassium acetate, magnesium acetate, A solvent containing dithiothreitol or L-type amino acid) may be employed.
このようにして得られた胚芽細胞抽出物は、 RNase活性及びホスファターゼ活性が 極めて低減されたものである。  The germ cell extract thus obtained has extremely reduced RNase activity and phosphatase activity.
ゲルろ過後の胚芽抽出物含有液には、微生物あるいは糸状菌(力ビ)などの胞子が 混入していることがあるためこれら微生物などを排除しておくことが好ましい。特に長 期(1日以上)の無細胞タンパク質合成反応中に微生物の繁殖が見られることがある ので、これを阻止することは重要である。微生物の排除手段は特に限定されないが、 ろ過滅菌フィルターを用いるのが好ましい。フィルターのポアサイズとしては、混入の 可能性のある微生物が除去可能なものであれば特に制限はなレ、が、通常 0.:!〜 1マ イク口メーター、好ましくは 0. 2〜0. 5マイクロメーターが適当である。ちなみに、枯草 菌の胞子のサイズは 0. 5 μ πιχ1 μ ΐηであること力、ら、 0. 20マイクロメーターのフィル ター(例えば Sartorius製の Minisart™等)を用いるのが胞子の除去にも有効である 。ろ過に際して、まずポアサイズの大きめのフィルターでろ過し、次に混入の可能性 のある微生物が除去可能であるポアサイズのフィルターを用いてろ過するのが好まし レ、。 [0025] このようにして得られた細胞抽出液は、原料であるコムギ自身が含有または保持す るタンパク質合成機能を抑制する物質 (各種 RNA、翻訳タンパク質因子やリボソーム 等に作用してその機能を抑制する物質。例えば各種リボヌクレアーゼ、各種プロテア ーゼ、トリチン、チォニン等)力 ほぼ完全に取り除かれている。すなわち、これらの阻 害物質が局在する胚乳がほぼ完全に取り除かれ純化されている。胚乳の除去の程 度は、コムギ胚芽抽出液中に夾雑するトリチンの活性、すなわちリボソームを脱アデ ニンィ匕する活性をモニターすることにより評価できる。リボソームが実質的に脱アデ二 ン化されていなければ、胚芽抽出液中に夾雑する胚乳由来成分がない、すなわち胚 乳がほぼ完全に取り除かれ純化されていると判断される。リボソームが実質的に脱ァ デニンィ匕されていない程度とは、リボソームの脱アデニンィ匕率が 7%以下、好ましくは 1。/0以下になっていることをいう。 Since the germ extract-containing solution after gel filtration may contain microorganisms or spores such as filamentous fungi, it is preferable to exclude these microorganisms. In particular, it is important to prevent the growth of microorganisms during the long-term (one day or longer) cell-free protein synthesis reaction. The means for eliminating microorganisms is not particularly limited, but it is preferable to use a filter sterilization filter. The pore size of the filter is not particularly limited as long as microorganisms that may be mixed can be removed, but it is usually 0.:! To 1 micrometer, preferably 0.2 to 0.5. A micrometer is appropriate. By the way, the spore size of Bacillus subtilis is 0.5 μ πιχ1 μ ΐη, and the use of a 0.20 micrometer filter (such as the Minisart ™ from Sartorius) is also effective for removing spores. Is. When filtering, it is preferable to first filter with a large pore size filter, and then filter with a pore size filter that can remove possible microorganisms. [0025] The cell extract obtained in this way is a substance that suppresses the protein synthesis function contained or retained by the raw wheat itself (acting on various RNAs, translated protein factors, ribosomes, etc. Substances to be suppressed (for example, various ribonucleases, various proteases, tritin, thionine, etc.) That is, the endosperm where these inhibitors are localized is almost completely removed and purified. The degree of endosperm removal can be evaluated by monitoring the activity of tritin contaminated in the wheat germ extract, that is, the activity of deadenating ribosomes. If the ribosome is not substantially deadenified, it is judged that there is no contaminating endosperm-derived component in the germ extract, that is, the endosperm is almost completely removed and purified. The extent to which the ribosome is not substantially deadenylated is the ribosome deadenination rate of 7% or less, preferably 1. / Indicates that the value is 0 or less.
[0026] このような胚芽抽出液を原料にして、さらに「胚芽組織細胞内因性の解糖系などの 代謝経路や翻訳反応制御機構の排除」のために糖、リン酸化糖、糖のリン酸化酵素 、糖分解酵素等を低減した無細胞タンパク質合成用の細胞抽出液調製のための処 理を行うこともできる。処理工程の概要は以下である。得られた細胞抽出液、あるい はこの抽出液について、ゲルろ過による溶液の交換あるいは必要成分の添加などに より翻訳反応液としたものを、分子量 lOkDaカットで分子量分画し、低分子画分を排 除する。あるいは、分子量 lOkDa以上の物質を分子量分画し、回収することも可能 である。この分画処理は複数回行い、特に分子量 lOkDa以下の物質を実質的に除 去することが好ましい。複数回の具体的回数としては、:!〜 10回、好ましくは 2〜9回 、さらに好ましくは 3〜8回、最も好ましいくは 4〜7回である。このように調製された細 胞抽出液は、実質的に糖、リン酸化糖が lOmM以下、好ましくは 6mM以下まで低減さ れている(260nmにおける吸光度 200〇D/mlの抽出液中のグルコース濃度として) 。力べして得られたグルコース濃度が低減された抽出液は、従来にない高い無細胞タ ンパク質合成能を保有する。  [0026] Using such an embryo extract as a raw material, saccharides, phosphorylated saccharides, and phosphorylation of saccharides for the purpose of “eliminating metabolic pathways and translational reaction control mechanisms such as endogenous glycolysis of embryonic tissue cells” Processing for preparing a cell extract for cell-free protein synthesis with reduced enzymes, glycolytic enzymes and the like can also be performed. The outline of the processing steps is as follows. The obtained cell extract or this extract is used as a translation reaction solution by exchanging the solution by gel filtration or adding necessary components. Is eliminated. Alternatively, a substance having a molecular weight of lOkDa or more can be fractionated and recovered. This fractionation treatment is preferably performed a plurality of times, and in particular, it is preferable to substantially remove substances having a molecular weight of 1 kDa or less. The specific number of times is:! To 10 times, preferably 2 to 9 times, more preferably 3 to 8 times, most preferably 4 to 7 times. The cell extract thus prepared has substantially reduced sugar and phosphorylated saccharide to 10 mM or less, preferably 6 mM or less (glucose concentration in the extract with an absorbance of 200 D / ml at 260 nm). As). The extract with reduced glucose concentration obtained by force possesses an unprecedented high cell-free protein synthesis ability.
[0027] (3)翻訳反応工程  [0027] (3) Translation reaction process
上記のようにして得られる転写溶液を直接添加した蛋白質合成用細胞抽出液に、 基質となるアミノ酸、エネルギー源、各種イオン、緩衝液、 ATP再生系、核酸分解酵 素阻害剤、 tRNA、還元剤、ポリエチレングリコール、 3', 5'— cAMP、葉酸塩、抗菌剤 等の、翻訳反応に必要もしくは好適な成分を含有する溶液(「翻訳反応用溶液」とも いう)を添加して、翻訳反応に適した温度で適当な時間インキュベートすることにより 翻訳反応を行うことができる。基質となるアミノ酸は、通常、蛋白質を構成する 20種類 の天然アミノ酸であるが、 目的に応じてそのアナログや異性体を用いることもできる。 また、エネルギー源としては、 ATP及び Z又は GTPが挙げられる。各種イオンとして は、酢酸カリウム、酢酸マグネシウム、酢酸アンモニゥム等の酢酸塩、グルタミン酸塩 等が挙げられる。緩衝液としては、 Hepes-KOH, Tris—酢酸等が用いられる。また A TP再生系としては、ホスホェノールピルペートとピルビン酸キナーゼの組み合わせ、 またはクレアチンリン酸(クレアチンホスフェート)とクレアチンキナーゼの組み合わせ 等が挙げられる。核酸分解酵素阻害剤としては、リボヌクレアーゼインヒビターや、ヌ クレアーゼインヒビター等が挙げられる。このうち、リボヌクレアーゼインヒビターの具 体例としては、ヒト胎盤由来の RNase inhibitor (TOYOBO社製等)等が用いられる。 t RNAは、 Moniter, R., et al" Biochim. Biophys. Acta., 43, 1 (1960)等に記載の方法 により取得することができ、あるいは市販のものを用いることもできる。還元剤としては 、ジチオスレィトール等が挙げられる。抗菌剤としては、アジ化ナトリウム、アンピシリン 等が挙げられる。これらの添加量は、無細胞蛋白質合成において通常使用され得る 範囲で適宜選択することができる。具体的には、以下の通りである。 To the cell synthesis solution for protein synthesis to which the transcription solution obtained as described above is added directly, amino acid as substrate, energy source, various ions, buffer solution, ATP regeneration system, nucleolytic fermentation Containing inhibitors, t RNA, a reducing agent, polyethylene glycol, 3 ', 5'cAMP, folate, such as antimicrobial agents, referred solution ( "for translation reaction solution" together containing necessary or suitable ingredients to translation reaction ) And incubating at a temperature suitable for the translation reaction for an appropriate time, the translation reaction can be carried out. The substrate amino acids are usually 20 kinds of natural amino acids constituting proteins, but analogs and isomers thereof can be used depending on the purpose. Energy sources include ATP and Z or GTP. Examples of various ions include acetates such as potassium acetate, magnesium acetate, and ammonium acetate, and glutamates. As the buffer, Hepes-KOH, Tris-acetic acid or the like is used. Examples of the ATP regeneration system include a combination of phosphoenolpyruvate and pyruvate kinase, or a combination of creatine phosphate (creatine phosphate) and creatine kinase. Examples of the nucleolytic enzyme inhibitor include a ribonuclease inhibitor and a nuclease inhibitor. Among these, examples of ribonuclease inhibitors include human placenta-derived RNase inhibitors (such as those manufactured by TOYOBO). tRNA can be obtained by the method described in Moniter, R., et al "Biochim. Biophys. Acta., 43, 1 (1960), etc., or a commercially available one can be used. Examples thereof include dithiothreitol, etc. Examples of the antibacterial agent include sodium azide, ampicillin, etc. The amount of these added can be appropriately selected within the range that can be usually used in cell-free protein synthesis. Specifically, it is as follows.
[0028] 本発明の繰り返し重層法においては、以下の処理、手段又はこれらの組合せを含 むシステムが遂行される。  [0028] In the repeated layering method of the present invention, a system including the following processes, means, or a combination thereof is performed.
[0029] (合成反応に導く処理)  [0029] (Process leading to synthesis reaction)
必須の手段の 1は、反応相に供給相を重層させてタンパク質合成反応系に導くこと である。合成反応は、通常、約 10分〜 20時間、より好ましくは 20分〜 10時間行う。この 時間は、各系に応じて変更可能であり、実験的繰り返しにより最適時間は調製可能 である。本発明の、不連続繰り返し合成法にあっては、特にこのワンクールの処理時 間は比較的短持間であることが好ましい。  One of the essential means is to superimpose the supply phase on the reaction phase and lead it to the protein synthesis reaction system. The synthesis reaction is usually performed for about 10 minutes to 20 hours, more preferably 20 minutes to 10 hours. This time can be changed for each system, and the optimum time can be adjusted by experimental repetition. In the discontinuous repetitive synthesis method of the present invention, it is particularly preferable that the one-cool processing time is relatively short.
本発明の好ましい実施態様として、転写溶液を直接添加した蛋白質合成用細胞抽 出液上に、翻訳反応用溶液を界面を乱さないように重層することにより蛋白質合成を 行う。具体的には、例えば、必要に応じて適当時間プレインキュペートした蛋白質合 成用細胞抽出液を翻訳铸型の沈殿に添加してこれを溶解し、反応相とする。この反 応相の上層に翻訳反応用溶液 (供給相)を、界面を乱さないように重層して反応を行 う。両相の界面は必ずしも重層によって水平面状に形成させる必要はなぐ両相を含 む混合液を遠心分離することによって、水平面を形成することも可能である。両相の 円形界面の直径が 7mmの場合、反応相と供給相の容量比は 1 : 4〜: 1 : 8が適当であ るが、 1 : 5が好適である。両相からなる界面面積は大きいほど拡散による物質交換率 が高ぐ蛋白質合成効率が上昇する。従って、両相の容量比は、両相の界面面積に よって変化する。翻訳反応は、例えばコムギ胚芽抽出液を用いた系においては、静 置条件下、約 10〜約 40°C、好ましくは約 18〜約 30°C、さらに好ましくは約 20〜約 2 6°Cで行うことができる。また、大腸菌抽出液を用いる場合、反応温度は約 30°C〜約 37°Cが適当である。 In a preferred embodiment of the present invention, protein synthesis is performed by overlaying a translation reaction solution on a protein synthesis cell extract directly added with a transcription solution so as not to disturb the interface. Do. Specifically, for example, a protein synthesis cell extract preincubated for an appropriate period of time as necessary is added to a translational trapezoidal precipitate and dissolved to form a reaction phase. The translation reaction solution (feed phase) is layered on top of this reaction phase so as not to disturb the interface. The interface between both phases does not necessarily have to be formed in a horizontal plane by means of multiple layers. It is also possible to form a horizontal plane by centrifuging the mixed solution containing both phases. When the diameter of the circular interface of both phases is 7 mm, the volume ratio of the reaction phase to the supply phase is suitably from 1: 4 to 1: 8, but 1: 5 is preferred. The larger the interfacial area of both phases, the higher the efficiency of protein synthesis, which increases the mass exchange rate by diffusion. Therefore, the capacity ratio of both phases varies depending on the interface area between both phases. For example, in a system using a wheat germ extract, the translation reaction is performed at about 10 to about 40 ° C, preferably about 18 to about 30 ° C, more preferably about 20 to about 26 ° C under static conditions. Can be done. When using an E. coli extract, the reaction temperature is suitably about 30 ° C to about 37 ° C.
[0030] (供給相と反応相の混合処理)  [0030] (Mixing process of supply phase and reaction phase)
必須の手段の 2は、上記反応時間として、合成速度の略低下前後又は合成反応の 略停止前後、又はそれらの途上に、供給相と反応相を混合処理する工程である。合 成速度の略低下前後とは、経時的にタンパク質の時間当たり合成量が、最大量から 減少傾向がみえるタイミングを意味し、一般には点ではなく線として理解される。また 、合成反応の略停止前後とは、合成量が実質的に検出できない程度に落ちたレべ ルをいうが、この場合も一般には点ではなく線として理解される。それらの途上とは、 合成速度が低下をしはじめ、合成反応が停止するまでの間をいう。なお、より好まし レ、合成効率を得るためには、合成速度の略低下前後に反応系に対して混合処理を おこなうことである。この時間としては、最適には 10分〜 10時間である。  Indispensable means 2 is a step of mixing the supply phase and the reaction phase as the above reaction time, before and after substantially reducing the synthesis rate, before and after almost stopping the synthesis reaction, or in the middle thereof. The approximate decrease in the synthesis rate means the timing at which the amount of protein synthesized over time tends to decrease from the maximum amount over time, and is generally understood as a line rather than a point. In addition, the term “before and after substantially stopping the synthesis reaction” refers to a level at which the amount of synthesis falls to a level where it cannot be substantially detected. On the way, it means the period from when the synthesis rate starts to decrease until the synthesis reaction stops. In order to obtain a more favorable synthesis efficiency, it is necessary to perform a mixing process on the reaction system before and after substantially reducing the synthesis rate. This time is optimally 10 minutes to 10 hours.
混合処理は、反応溶液中に、攪拌子を入れることによって、反応溶液中を攪拌する ことによって反応相と混合相の混合処理をすることができる。  The mixing treatment can be performed by mixing the reaction phase and the mixed phase by putting a stirring bar in the reaction solution and stirring the reaction solution.
[0031] (濃縮処理)  [0031] (Concentration treatment)
必須の手段の 3は、上記混合処理した後に濃縮処理することである。また、必要に 応じて、希釈操作を濃縮処理の前後を問わず行うことができる。反応系に対する濃縮 は以下のように行われる。 濃縮は、反応液を反応系外に除去する際に、反応液中の通過不能な物質 (例えば 、合成タンパク質、リボソーム、転写溶液由来のマグネシウムイオン及び/又はヌクレ ォチド類等)が反応系内に濃縮されうる、 自体公知のあらゆる濃縮手段を利用可能で ある。好適には、限外ろ過膜を使ったろ過処理、遠心分離機による処理、ゲルろ過処 理、吸引ポンプ、液相もしくは気相に圧力差を発生させる方法等が例示される。この 処理にあっては、膜の通過口径を調節することで、遠心分離操作、或は分子篩によ つて、反応産物、反応副産物を分離'除去する。膜の分子量カットサイズ、遠心速度 、ゲルろ過条件は、 自体公知の処理目的産物の物性によって最適調製可能である。 本発明においては、好適には 10,000〜100,000 Daの分子量カットの膜が好適に利 用される。 The essential means 3 is the concentration treatment after the mixing treatment. Further, the dilution operation can be performed before and after the concentration treatment as necessary. Concentration to the reaction system is performed as follows. Concentration means that when a reaction solution is removed from the reaction system, substances that cannot pass through the reaction solution (for example, synthetic proteins, ribosomes, magnesium ions and / or nucleotides derived from a transcription solution) are contained in the reaction system. Any concentration means known per se, which can be concentrated, can be used. Preferable examples include filtration using an ultrafiltration membrane, treatment using a centrifuge, gel filtration, a suction pump, and a method of generating a pressure difference in the liquid phase or gas phase. In this treatment, the reaction product and reaction by-products are separated and removed by centrifugation or molecular sieve by adjusting the passage diameter of the membrane. The molecular weight cut size of the membrane, the centrifugal speed, and the gel filtration conditions can be optimally adjusted depending on the physical properties of the product to be processed known per se. In the present invention, a membrane having a molecular weight cut of 10,000 to 100,000 Da is preferably used.
この濃縮処理で、反応溶液は、元の容量の 1/5〜2/3容量にまで濃縮され、その結 果、各合成因子の合成至適濃度が大きくずれることとなる。この濃縮によって、反応 系は著しくその合成能力は低下された状態となる。この状態をもって、本発明は不連 続と呼ぶ。  By this concentration treatment, the reaction solution is concentrated to 1/5 to 2/3 volume of the original volume, and as a result, the optimum synthesis concentration of each synthesis factor is greatly shifted. By this concentration, the reaction system is remarkably reduced in its synthesis ability. With this state, the present invention is called discontinuity.
希釈操作は、反応系に約 1〜20倍、好ましくは約 2〜 10倍容量の水溶液を添加して 行う。水溶液には、基質、反応溶液を所望により含有させる。特に好適には、基質、 エネルギー源等を含む溶液が用いられる。  The dilution operation is performed by adding about 1 to 20 times, preferably about 2 to 10 times the volume of aqueous solution to the reaction system. The aqueous solution contains a substrate and a reaction solution as desired. Particularly preferably, a solution containing a substrate, an energy source and the like is used.
[0032] (供給相を反応相に重層させて合成反応の再活性化)  [0032] (Reactivation of the synthesis reaction by overlaying the supply phase on the reaction phase)
必須の手段の 4は、供給相を反応相に重層させて合成反応の再活性化することで あり、濃縮処理、供給相の重層を行う。ここで濃縮とは、希釈によって増量された反応 系の液量を、元の液量に戻すことを意味する。濃縮手段は、特に限定されるものでは なぐ 自体公知のあらゆる濃縮手段を利用可能である。また、供給相を反応相に重層 させる方法は、(合成反応に導く処理)に記載通りである。  Indispensable means 4 is to reactivate the synthesis reaction by superimposing the supply phase on the reaction phase. Concentration treatment and supply layer superposition are performed. Concentration here means returning the volume of the reaction system increased by dilution to the original volume. The concentration means is not particularly limited, and any concentration means known per se can be used. Further, the method of superposing the supply phase on the reaction phase is as described in (Process leading to synthesis reaction).
[0033] 力べして、反応系の至適濃度に復活した反応系は、再び温度を反応至適温度に調 製され、反応系が再活性化される。至適温度は、 15〜25°Cである。 [0033] The reaction system that has been restored to the optimum concentration of the reaction system is adjusted to the optimum reaction temperature again, and the reaction system is reactivated. The optimum temperature is 15-25 ° C.
なお、反応産物及び/又は反応副産物の分離 ·回収 ·除去等のためには、処理対 象物との親和性に基づく処理も好適に実施可能である。親和性に基づくとは、親和 性物質を固定化しておき、これと目的物質を接触させて結合させ、その後目的物質 を溶離 '回収する方法が例示される。親和性物質とは、例えば回収物質がタンパク質 であれば、タンパク質に対する抗体、受容体に対するリガンド、転写因子に対する核 酸等が例示される。なお、 目的産物を適当なタグ ·マーカーで修飾し (例えば、ストレ プトアビジン、ヒスチジンタグ、 GST、マルトース結合タンパク質等)、この修飾物質と 特異的に結合しうる物質(例えば、ピオチン、 2価金属イオン、グノレタチオン、マルトー ス等)を使って精製することも可能である。 For separation / recovery / removal of reaction products and / or reaction by-products, treatment based on affinity with the treatment object can be suitably performed. Based on affinity, an affinity substance is immobilized, brought into contact with the target substance, and then bound. The method of elution 'recovering is illustrated. Examples of the affinity substance include an antibody against a protein, a ligand for a receptor, a nuclear acid for a transcription factor, and the like if the recovered substance is a protein. The target product is modified with an appropriate tag marker (for example, streptavidin, histidine tag, GST, maltose-binding protein, etc.), and a substance that can specifically bind to the modified substance (for example, piotin, divalent metal ion, etc.) , Gnorethione, maltose, etc.).
本発明の繰り返し重層法では、混合、濃縮、重層の処理を不連続に複数回繰り返 すことが可能であり、この繰り返しによって、無細胞合成系の再生を複数回達成する( 図 1A参照)。この再生により、タンパク質の大量合成が達成されるのである。  In the repeated multi-layer method of the present invention, mixing, concentration, and multi-layer processing can be repeated discontinuously multiple times, and by this repetition, regeneration of the cell-free synthesis system is achieved multiple times (see FIG. 1A). . This regeneration achieves mass protein synthesis.
[0034] 以上により、本発明の繰り返し重層法では、従来の重層法の簡便かつ高効率の利 点、繰り返レ ノチ法の大量合成できる利点とを組み合わせた新規な無細胞タンパク 質合成方法である。 [0034] As described above, the repeated layering method of the present invention is a novel cell-free protein synthesis method that combines the advantages of the simple and high efficiency of the conventional layering method with the advantages of the large-scale synthesis of the repeated layered method. is there.
[0035] 本発明の繰り返し供給バッチ法においては、以下の処理、手段又はこれらの組合 せを含むシステムが遂行される。  [0035] In the repeated feeding batch method of the present invention, a system including the following processes, means, or a combination thereof is performed.
[0036] (合成反応に導く処理)  [0036] (Process leading to synthesis reaction)
必須の手段の 1は、翻訳反応用溶液を、転写溶液を直接添加した蛋白質合成用細 胞抽出液に添カ卩して混合すればよい。添加方法としては、ペリスタポンプなどを用い て供給量と供給時期を調節できる。あるいは翻訳反応用溶液に含まれる成分を予め 蛋白質合成用細胞抽出液と混合した場合には、翻訳反応用溶液の添加を省略する こともできる。転写溶液を直接添加した蛋白質合成用細胞抽出液と翻訳反応用溶液 とを混合して得られる「翻訳反応液」としては、例えば蛋白質合成用細胞抽出液とし てコムギ胚芽抽出液を用いた場合、 10〜50mM HEPES -KOH (pH7. 8)、 55〜 120mM酢酸カリウム、 l〜5mM酢酸マグネシウム、 0. 1〜0. 6mMスペルミジン 、各 0. 025~lmM L—アミノ酸、 20〜70 μ Μ、好ましく fま 30〜50 μ Μの DTT、 1 〜1. 5mM ATP、 0. 2〜0. 5mM GTP、 10〜20mMクレアチンリン酸、 0. 5〜1 . OunitsMZ x lリボヌクレアーゼインヒビター、 0. 01〜: ίΟ μ Μ蛋白質ジスルフイド イソメラーゼ、及び 24〜75%コムギ胚芽抽出液を含むもの等が用いられる。このよう な翻訳反応液を用いた場合、プレインキュベーションは約 10〜約 40°Cで約 5〜約 1 0分間、本反応 (翻訳反応)におけるインキュベーションは同じく約 10〜約 40°C、好 ましくは約 18〜約 30°C、さらに好ましくは約 20〜約 26°Cで行う。 One essential means is to add the translation reaction solution to the protein synthesis cell extract to which the transcription solution is directly added, and mix them. As an addition method, a supply amount and a supply timing can be adjusted using a peristaltic pump or the like. Alternatively, when the components contained in the translation reaction solution are previously mixed with the protein synthesis cell extract, the addition of the translation reaction solution can be omitted. As a `` translation reaction solution '' obtained by mixing a protein synthesis cell extract directly added with a transcription solution and a translation reaction solution, for example, when a wheat germ extract is used as a protein synthesis cell extract, 10-50 mM HEPES-KOH (pH 7.8), 55-120 mM potassium acetate, 1-5 mM magnesium acetate, 0.1-0.6 mM spermidine, 0.025-lmM L-amino acid, 20-70 μΜ, preferably f 30-30 μ μ DTT, 1–1.5 mM ATP, 0.2–0.5 mM GTP, 10–20 mM creatine phosphate, 0.5–1. OunitsMZ xl ribonuclease inhibitor, 0.01–: ίΟ Those containing μΜ protein disulfide isomerase and 24-75% wheat germ extract are used. When such a translation reaction solution is used, the preincubation is performed at about 10 to about 40 ° C. for about 5 to about 1 Incubation in this reaction (translation reaction) for 0 minute is also carried out at about 10 to about 40 ° C, preferably about 18 to about 30 ° C, more preferably about 20 to about 26 ° C.
[0037] (供給液の供給を停止する処理) [0037] (Process for stopping supply of supply liquid)
必須の手段の 2は、上記反応時間として、合成速度の略低下前後又は合成反応の 略停止前後、又はそれらの途上に、供給液の供給を停止する工程である。停止工程 は、供給方法によって異なるが、例えばペリスタポンプを用いてに停止時期を調節で きる。  The essential means 2 is a step of stopping the supply of the supply liquid as the above reaction time, before or after substantially reducing the synthesis rate, before or after substantially stopping the synthesis reaction, or in the middle thereof. Although the stop process varies depending on the supply method, the stop time can be adjusted using, for example, a peristaltic pump.
[0038] (濃縮処理)  [0038] (Concentration treatment)
必須の手段の 3は、上記供給液の停止後、反応相を濃縮することである。また、必 要に応じて、希釈操作を濃縮処理の前後を問わず行うことができる。反応相に対する 濃縮は以下のように行われる。  The essential means 3 is to concentrate the reaction phase after stopping the feed solution. In addition, the dilution operation can be performed before and after the concentration treatment as necessary. Concentration of the reaction phase is performed as follows.
濃縮は、反応液を反応系外に除去する際に、反応液中の通過不能な物質 (例えば 、合成タンパク質、リボソーム、転写溶液由来のマグネシウムイオン及び/又はヌクレ ォチド類等)が反応系内に濃縮されうる、 自体公知のあらゆる濃縮手段を利用可能で ある。好適には、限外ろ過膜を使ったろ過処理、遠心分離機による処理、ゲルろ過処 理、吸引ポンプ、液相もしくは気相に圧力差を発生させる方法等が例示される。この 処理にあっては、膜の通過口径を調節することで、遠心分離操作、或は分子篩によ つて、反応産物、反応副産物を分離'除去する。膜の分子量カットサイズ、遠心速度 、ゲルろ過条件は、 自体公知の処理目的産物の物性によって最適調製可能である。 本発明においては、好適には 10,000〜100,000 Daの分子量カットの膜が好適に利 用される。  Concentration means that when a reaction solution is removed from the reaction system, substances that cannot pass through the reaction solution (for example, synthetic proteins, ribosomes, magnesium ions and / or nucleotides derived from a transcription solution) are contained in the reaction system. Any concentration means known per se, which can be concentrated, can be used. Preferable examples include filtration using an ultrafiltration membrane, treatment using a centrifuge, gel filtration, a suction pump, and a method of generating a pressure difference in the liquid phase or gas phase. In this treatment, the reaction product and reaction by-products are separated and removed by centrifugation or molecular sieve by adjusting the passage diameter of the membrane. The molecular weight cut size of the membrane, the centrifugal speed, and the gel filtration conditions can be optimally adjusted depending on the physical properties of the product to be processed known per se. In the present invention, a membrane having a molecular weight cut of 10,000 to 100,000 Da is preferably used.
この濃縮処理で、反応溶液は、元の容量の 1/5〜2/3容量にまで濃縮され、その結 果、各合成因子の合成至適濃度が大きくずれることとなる。この濃縮によって、反応 系は著しくその合成能力は低下された状態となる。この状態をもって、本発明は不連 続と呼ぶ。  By this concentration treatment, the reaction solution is concentrated to 1/5 to 2/3 volume of the original volume, and as a result, the optimum synthesis concentration of each synthesis factor is greatly shifted. By this concentration, the reaction system is remarkably reduced in its synthesis ability. With this state, the present invention is called discontinuity.
希釈操作は、反応系に約 1〜20倍、好ましくは約 2〜 10倍容量の水溶液を添加して 行う。水溶液には、基質、反応溶液を所望により含有させる。特に好適には、基質、 エネルギー源等を含む溶液が用いられる。 [0039] (供給液を反応相に供給して合成反応の再活性化) The dilution operation is performed by adding about 1 to 20 times, preferably about 2 to 10 times the volume of aqueous solution to the reaction system. The aqueous solution contains a substrate and a reaction solution as desired. Particularly preferably, a solution containing a substrate, an energy source and the like is used. [0039] (Reactivation of the synthesis reaction by supplying the supply liquid to the reaction phase)
必須の手段の 4は、合成反応の再活性化である。前段階で濃縮処理された後に、 供給液の反応相への供給が施される。  The essential means 4 is reactivation of the synthesis reaction. After the concentration process in the previous stage, the supply liquid is supplied to the reaction phase.
[0040] 力べして、供給液の供給により、反応系の至適濃度に復活した反応系は、再び温度 を反応至適温度に調製され、反応系が再活性化される。至適温度は、 15〜25°Cで ある。 [0040] The reaction system that has been restored to the optimum concentration of the reaction system by supplying the supply liquid is adjusted to the optimum reaction temperature again, and the reaction system is reactivated. The optimum temperature is 15-25 ° C.
なお、反応産物及び/又は反応副産物の分離 ·回収 ·除去等のためには、処理対 象物との親和性に基づく処理も好適に実施可能である。親和性に基づくとは、親和 性物質を固定化しておき、これと目的物質を接触させて結合させ、その後目的物質 を溶離 ·回収する方法が例示される。親和性物質とは、例えば回収物質がタンパク質 であれば、タンパク質に対する抗体、受容体に対するリガンド、転写因子に対する核 酸等が例示される。なお、 目的産物を適当なタグ'マーカーで修飾し (例えば、ストレ プトアビジン、ヒスチジンタグ、 GST、マルトース結合タンパク質等)、この修飾物質と 特異的に結合しうる物質(例えば、ピオチン、 2価金属イオン、グノレタチオン、マルトー ス等)を使って精製することも可能である。  For separation / recovery / removal of reaction products and / or reaction by-products, treatment based on affinity with the treatment object can be suitably performed. Based on affinity, a method in which an affinity substance is immobilized, brought into contact with the target substance and bound thereto, and then the target substance is eluted and recovered is exemplified. Examples of the affinity substance include an antibody against a protein, a ligand for a receptor, a nuclear acid for a transcription factor, and the like if the recovered substance is a protein. The target product is modified with an appropriate tag 'marker (for example, streptavidin, histidine tag, GST, maltose-binding protein, etc.), and a substance that can specifically bind to the modified substance (for example, piotin, divalent metal ion, etc.) , Gnorethione, maltose, etc.).
本発明の繰り返し供給バッチ法では、供給液の停止、濃縮、供給液の供給の処理 を不連続に複数回繰り返すことが可能であり、この繰り返しによって、無細胞合成系 の再生を複数回達成する(図 1B参照)。この再生により、タンパク質の大量合成が達 成されるのである。  In the repeated feeding batch method of the present invention, it is possible to repeat the process of stopping the feed liquid, concentrating, and feeding the feed liquid a plurality of times discontinuously. By this repetition, the regeneration of the cell-free synthesis system is achieved a plurality of times. (See Figure 1B). This regeneration achieves massive protein synthesis.
[0041] また、本発明の繰り返し供給バッチ法では、供給相からの送液により、反応槽のサ ィズゃ形態には制約がなぐさらに、タンパク質合成速度の重要な律速パラメーター である両液の混合速度を自由に制御、至適化することが可能となり、効率の高い大 規模なタンパク質製造が可能となる。さらに、 mRNAを追加した供給相とすることにより 、合成反応の効率をさらに高めることができる。具体的な供給液の添加速度は、反応 開始時の液量と同量を 5分から 15時間の間、好ましくは 10分から 10時間の間に連 続又は不連続に供給できる範囲の流速がよい。  [0041] Further, in the repeated feeding batch method of the present invention, there is no restriction on the size of the reaction tank due to liquid feeding from the feeding phase, and further, both liquids, which are important rate-limiting parameters of protein synthesis rate, are used. The mixing speed can be freely controlled and optimized, and highly efficient large-scale protein production becomes possible. Furthermore, the efficiency of the synthesis reaction can be further increased by using a supply phase with added mRNA. The supply rate of the specific feed solution should be such that the same amount as that at the start of the reaction can be continuously or discontinuously supplied for 5 minutes to 15 hours, preferably 10 minutes to 10 hours.
[0042] 以上により、本発明の繰り返し供給バッチ法では、 Spirinらの開発した半透膜を使い 連続的に基質、エネルギー源の補給と代謝産物の廃棄をおこなう、いわゆる連続法 とはその原理を異にし、その合成の効果は、数十から数千倍に達するもので質にお いて大きな差異をもつ。 [0042] As described above, the repetitive feeding batch method of the present invention uses a semipermeable membrane developed by Spirin et al. To continuously replenish substrates and energy sources and discard metabolites. The principle is different, and the effect of the synthesis is several tens to several thousand times, and has a great difference in quality.
なお、本原理を用いるタンパク質合成手段において、使用するろ過膜の分画分子 量サイズを選択することによって、副生成物の排除と同時に合成タンパク質を選択的 に反応系から分画単離することを可能となる。  In the protein synthesis method using this principle, by selecting the fractional molecular weight size of the filtration membrane to be used, it is possible to selectively isolate the synthesized protein from the reaction system simultaneously with the elimination of by-products. It becomes possible.
[0043] 本発明の繰り返し重層法及び本発明の繰り返し供給バッチ法の好適な合成方法の 実施態様は、図 2に記載した通りである。  [0043] An embodiment of a preferred synthesis method of the repeated multi-layer method of the present invention and the repeated feed batch method of the present invention is as described in FIG.
具体的には、ろ過膜好適には限外ろ過膜が、反応容器中に存在する。そして、反 応容器のろ過膜と底の間は、空間となっている。そして、以下の工程を含むように合 成反応 (翻訳)を行う。カロえて、各反応容器は、公知の遠心分離機で遠心操作を行え るサイズが好ましい。  Specifically, a filtration membrane, preferably an ultrafiltration membrane, is present in the reaction vessel. A space is formed between the filtration membrane and the bottom of the reaction vessel. Then, a synthesis reaction (translation) is performed so as to include the following steps. Each reaction vessel is preferably of a size that can be centrifuged with a known centrifuge.
1.ろ過膜の上に反応相である反応液を添加する。  1. Add the reaction solution that is the reaction phase on the filter membrane.
2.供給液を反応相に添加する。ここで、繰り返し重層法の場合では、反応相の上層 に供給相である供給液を重層させる。また、繰り返し供給バッチ法では、連続又は不 連続に供給液を反応相に添加する。合成反応 (翻訳)が開始する。  2. Add feed to reaction phase. Here, in the case of the repeated multi-layer method, the supply liquid as the supply phase is overlaid on the upper layer of the reaction phase. In the repeated supply batch method, the supply liquid is added to the reaction phase continuously or discontinuously. The synthesis reaction (translation) begins.
3.遠心分離により、反応相の副産物をろ過膜の下に除去する。ここで、繰り返し重層 法の場合では、反応相と供給相を混合した後に、遠心分離する。  3. Remove the reaction phase by-products under the filter membrane by centrifugation. Here, in the repeated layer method, the reaction phase and the feed phase are mixed and then centrifuged.
4.遠心分離した後、供給液を添加する。合成反応 (翻訳)が再開する。  4. After centrifugation, add the feed solution. The synthesis reaction (translation) resumes.
5. 3— 4の工程を繰り返す。  5. Repeat steps 3-4.
6.反応容器の温度を下げて、合成反応 (翻訳)を停止する。  6. Lower the temperature of the reaction vessel to stop the synthesis reaction (translation).
[0044] 本発明では、重層、混合、希釈及び濃縮の処理を、一連の工程として制御手段と 組み合わせて自動無細胞タンパク質合成装置 (繰り返し重層法、繰り返し供給バッチ 法)として遂行可能である。この制御のためには、駆動源 (モータ、空圧'油圧機器、 その他の動作制御可能なァクチユエータ等)及びコンピュータ制御による制御回路、 シーケンス制御回路等により、動作のオン'オフ、動作の程度、動作スピード、動作間 隔が調節される。また、信号転送用ドライバー、動作確認用センサー、動作制御用ス イッチ、タイマー等は適宜所望により装備可能である。  [0044] In the present invention, the process of layering, mixing, dilution and concentration can be performed as an automatic cell-free protein synthesizer (repetitive multi-layer method, repetitive feeding batch method) as a series of steps in combination with the control means. For this control, the drive source (motor, pneumatic 'hydraulic equipment, other operation-controllable actuator, etc.) and control circuit by computer control, sequence control circuit, etc. The operation speed and operation interval are adjusted. In addition, a signal transfer driver, an operation confirmation sensor, an operation control switch, a timer, and the like can be appropriately provided as desired.
[0045] 本発明の無細胞タンパク質合成装置は上記説明のように、希釈と濃縮を不連続に 複数回繰り返すことによって、無細胞合成系の再生を達成するものであるが、より具 体的にその効果を説明すると以下となる。 [0045] As described above, the cell-free protein synthesizer of the present invention discontinuously dilutes and concentrates. The regeneration of the cell-free synthesis system is achieved by repeating multiple times. The effect will be explained more specifically as follows.
[0046] 本発明の繰り返し重層法による無細胞タンパク質合成装置は、タンパク質合成を、 混合、濃縮、重層を不連続に繰り返し行う合成法の一連の反応操作を自動で行わせ る方法を提供する。また、本発明の繰り返し供給バッチ法による無細胞タンパク質合 成装置は、タンパク質合成を、濃縮、希釈 (連続又は不連続による供給液の供給)を 不連続に繰り返し行う合成法の一連の反応操作を自動で行わせる方法を提供する。  [0046] The cell-free protein synthesizer according to the present invention provides a method for automatically performing a series of reaction operations of a synthesis method in which protein synthesis is performed by mixing, concentrating, and repeatedly layering discontinuously. In addition, the cell-free protein synthesizer according to the repetitive feeding batch method of the present invention performs a series of reaction operations of a synthetic method in which protein synthesis is repeatedly concentrated and diluted (continuous or discontinuous supply of supply solution) repeatedly. Provide an automatic method.
[0047] ここで「操作を自動で行わせる」とは、一連の工程中に、実験者が反応系(反応容 器)に直接的に手動の操作を加えないことを意味する。従って、各工程を実行させる に際し、用いられる本発明の自動合成装置に設けられた所定の操作ボタンゃスイツ チなどの操作を実験者が手動で行うことは、本発明における「自動」の要件を損なうも のではない。  [0047] Here, "automatic operation" means that the experimenter does not directly apply a manual operation to the reaction system (reaction vessel) during a series of steps. Therefore, when performing each step, it is necessary for the experimenter to manually operate the predetermined operation buttons and switches provided in the automatic synthesizer of the present invention to be used. It is not a loss.
本発明においては、合成した転写铸型から該铸型にコードされるタンパク質を生成 するまでの反応操作を自動で行わせる装置は、以下の(a)〜(f)の手段を少なくとも 有することをその特徴とするものである。  In the present invention, the apparatus for automatically performing the reaction operation from the synthesized transcriptional cage to the production of the protein encoded by the cage comprises at least the following means (a) to (f). It is the feature.
以下、各工程について具体的な実施態様を挙げて詳述するが、本発明の方法は、 希釈と濃縮を不連続に複数回繰り返すことの特徴を有する限り、それらに制限される ものではない。  Hereinafter, although each embodiment will be described in detail with specific embodiments, the method of the present invention is not limited thereto as long as it has the feature of repeating dilution and concentration a plurality of times discontinuously.
[0048] (1)転写铸型の作製工程 [0048] (1) Production process of transfer mold
本発明の自動合成装置において、本工程は必ずしも自動で行う必要はなぐ手動 により得られた転写铸型を以下の自動化工程に用いることもできる力 本工程を含め て、転写铸型の作製から該铸型にコードされる蛋白質の生成までの一連の工程を自 動で行わせることがより好ましレ、。  In the automatic synthesizer of the present invention, this process does not necessarily need to be performed automatically. The transfer mold obtained manually can also be used for the following automated process. It is more preferable to automatically perform a series of steps up to the production of the protein encoded in the saddle type.
かかる一連の操作を自動もしくは半自動(工程の一部に実験者が反応系に直接的 に手動の操作をカ卩える態様をレ、うものとする)で実施するための装置は知られており 、これを本発明の自動合成装置に組み込むことにより、転写铸型の作製から目的蛋 白質の生成までを自動で行わせることが可能である。し力し、ハイスループット解析の ためのハイスループット合成システムの提供という本発明の目的と、装置の単純化、 所要時間の短縮化等を考慮すれば、以下のポリメラーゼ ·チェイン反応(PCR)法に より転写铸型を作製する方法を利用することがより好ましい。 There are known apparatuses for performing such a series of operations automatically or semi-automatically (in a part of the process, an experimenter can directly apply manual operations to the reaction system). By incorporating this into the automatic synthesizer of the present invention, it is possible to automatically perform from the production of the transcription mold to the production of the target protein. The purpose of the present invention to provide a high-throughput synthesis system for high-throughput analysis, simplification of the apparatus, In consideration of shortening of the required time, it is more preferable to use the following method for preparing a transcription mold by the polymerase chain reaction (PCR) method.
[0049] (2)転写反応工程  [0049] (2) Transcription reaction process
転写铸型溶液、転写反応用溶液の反応容器への分注、混合等の操作は後述の自 動合成装置の分注手段 (例えば、ピぺッター(反応容器として市販の 96穴タイタープ レートを用いる場合には、ゥエル間隔に適合した 8連もしくは 12連の分注チップを有 するものが好ましく用いられる)など)を用いて行うことができる。また転写反応のため のインキュベーションは、後述の合成装置の温度制御手段により一定温度に制御し ながら行うことができる。  Dispensing and mixing of the transfer cage solution and the transcription reaction solution into the reaction vessel are carried out by means of the automatic synthesizer described later (for example, using a pipetter (a commercially available 96-well titer plate is used as the reaction vessel). In some cases, it is preferable to use one having 8 or 12 dispensing tips adapted to the well interval). Incubation for the transcription reaction can be performed while the temperature is controlled at a constant temperature by the temperature control means of the synthesizer described later.
[0050] (3)翻訳反応工程  [0050] (3) Translation reaction process
未精製 mRNAを含む転写溶液、供給溶液、反応溶液の反応容器への分注等の操 作は後述の自動合成装置の分注手段 (例えば、ピぺッター(反応容器として市販の 9 6穴タイタープレートを用いる場合には、ゥエル間隔に適合した 8連もしくは 12連の分 注チップを有するものが好ましく用いられる)など)を用いて行うことができる。また、反 応相と供給相の混合は後述の合成装置の混合する手段、濃縮は後述の合成装置の 濃縮ろ過手段、また翻訳のためのインキュベーションは、後述の合成装置の温度制 御手段により一定温度に制御しながら行うことができる。  Operations such as dispensing of unpurified mRNA-containing transfer solution, supply solution, and reaction solution into the reaction vessel are performed by dispensing means of an automatic synthesizer described later (for example, pipetter (96-well titer commercially available as a reaction vessel). In the case of using a plate, it is preferable to use a plate having 8 or 12 dispensing tips adapted to the well interval. In addition, the reaction phase and the supply phase are mixed by means of a synthesizer described later, the concentration is concentrated by a synthesizer described later, and the incubation for translation is performed at a constant temperature by a synthesizer temperature control means described later. It can be performed while controlling.
[0051] 上述した本発明の繰り返し重層法による無細胞タンパク質合成装置は、タンパク質 合成を、混合、濃縮、重層を不連続に繰り返し行うために、以下の(a) - (f)の手段を 少なくとも有することを特徴とする。また、本発明の繰り返し供給バッチ法による無細 胞タンパク質合成装置は、タンパク質合成を、濃縮、希釈 (連続又は不連続の供給 液の供給)を不連続に繰り返し行うために、以下の (b) _ (f)の手段を少なくとも有する ことを特徴とする。  [0051] The above-described cell-free protein synthesizer of the present invention using the repeated layering method comprises at least the following means (a) to (f) in order to perform protein synthesis by mixing, concentrating, and repeatedly layering discontinuously. It is characterized by having. In addition, the cell-free protein synthesizer according to the repetitive supply batch method of the present invention performs the following steps (b) in order to perform protein synthesis in a discontinuous and repeated manner of concentration and dilution (continuous or discontinuous supply solution supply). It has at least the means of (f).
(a)供給相と反応相を混合する手段;  (a) means for mixing the feed phase and the reaction phase;
(b)反応容器内の温度を可変制御する手段;  (b) means for variably controlling the temperature in the reaction vessel;
(c)反応容器にサンプルまたは試薬を分注する手段;  (c) means for dispensing the sample or reagent into the reaction vessel;
(d)反応容器を搬送する手段;  (d) means for transporting the reaction vessel;
(e)濃縮ろ過手段; 及び (e) Concentration filtration means; as well as
(f)上記 (a)〜(e)又は (b)〜(e)の手段を上述してきた本発明の方法に沿って動作 させるように制御する制御手段。  (f) Control means for controlling the means (a) to (e) or (b) to (e) to operate in accordance with the method of the present invention described above.
以下、各構成について具体的に詳述する。  Hereinafter, each configuration will be specifically described in detail.
[0052] (a)供給相と反応相を混合する手段 [0052] (a) Means for mixing the supply phase and the reaction phase
供給相と反応相を混合する手段とは、供給相と反応相を攪拌することにより、両相 に含まれる物質を均一化することを意味する。よって、両相の均一化を達成できるよう な手段であればレ、かなるものでもよい。具体的には、反応容器中に攪拌子を導入す れば、容易に両相の混合が達成される。  The means for mixing the supply phase and the reaction phase means that the substances contained in both phases are homogenized by stirring the supply phase and the reaction phase. Therefore, any means can be used as long as it can achieve the homogenization of both phases. Specifically, if a stirrer is introduced into the reaction vessel, mixing of both phases can be easily achieved.
[0053] (b)反応容器内の温度を可変制御する手段 [0053] (b) Means for variably controlling the temperature in the reaction vessel
反応容器内の温度を可変制御する手段とは、転写反応、翻訳反応のインキュベー シヨン及び翻訳反応の停止、または本発明の自動合成装置を用いて PCR法による 転写铸型の作製工程を自動で実施する場合には該 PCR法の増幅反応などにおい て、反応容器内の液温を適当な温度条件に調整するための手段である。可変制御 する温度範囲は、特に制限はないが、転写铸型の作製を含む無細胞蛋白質合成の 一連の反応操作において通常必要とされる温度範囲(例えば、約 4°C〜約 100°C、 好ましくは約 26°C〜約 99°C)内で反応容器内の液温を可変制御し得る手段であれ ば、これを実現し得る手段としては特に制限されるものではない。たとえば、従来公知 のタカラ PCRサーマルサイクラ一 MP (タカラバイオ株式会社製)、 Gene Amp PCR Sy stem 9700 (Applied Biosystems In ,製)などが挙げられる。具体的には、ピぺッティン グなどを行う場所であって反応容器を載置するための作業ステージとは別に、装置 内に反応容器を載置するステージを複数設け、ステージ上の空間全体の温度を可 変制御し、結果的に反応容器内の温度を可変制御するように実現される。  The means for variably controlling the temperature in the reaction vessel is the transcription reaction, the incubation of the translation reaction and the termination of the translation reaction, or the transcription slab-type preparation process by the PCR method using the automatic synthesizer of the present invention. In this case, it is a means for adjusting the liquid temperature in the reaction vessel to an appropriate temperature condition in the amplification reaction of the PCR method. The temperature range to be variably controlled is not particularly limited, but the temperature range normally required in a series of reaction operations for cell-free protein synthesis including preparation of a transcription cage (for example, about 4 ° C to about 100 ° C, Any means capable of variably controlling the liquid temperature in the reaction vessel within a range of preferably about 26 ° C. to about 99 ° C. is not particularly limited. For example, the conventionally known Takara PCR thermal cycler MP (manufactured by Takara Bio Inc.), Gene Amp PCR System 9700 (manufactured by Applied Biosystems In, Inc.) and the like can be mentioned. Specifically, in addition to the work stage where the reaction vessel is placed, which is a place where pipetting is performed, a plurality of stages for placing the reaction vessel are provided in the apparatus, and the entire space on the stage is set. It is realized that the temperature is variably controlled, and as a result, the temperature in the reaction vessel is variably controlled.
[0054] (c)反応容器にサンプルまたは試薬を分注する手段 [0054] (c) Means for dispensing sample or reagent into reaction vessel
反応容器にサンプルまたは試薬を分注する手段とは、反応容器内で転写反応、翻 訳反応、 PCRなどの一連の無細胞蛋白質合成反応を行わしめるために、反応容器 にサンプルまたは試薬を分注する手段である。ここで「サンプル」は転写錡型、翻訳 铸型、 PCR用錡型プラスミド (又は該プラスミドを有する宿主 (例、大腸菌))等を指し 、「試薬」は、転写反応用溶液、翻訳反応用溶液、翻訳反応溶液、希釈溶液、アルコ ール、塩溶液、 PCR反応用溶液、供給液、反応液などを指す。かかる分注手段とし ては、工程に応じてサンプル、試薬の分量を調整して分注し得るものであれば、従来 公知の適宜の自動で分注し得るピペットアーム(分注機)などを特に制限なく使用し て実現すること力 Sできる。また、ピペットアームは、使用済みチップを合成機のチップ 廃棄口に廃棄する機能及び吸引したろ液等を廃液口に吐出する機能を備えることが できる。 The means for dispensing a sample or reagent into a reaction vessel is to dispense a sample or reagent into a reaction vessel in order to perform a series of cell-free protein synthesis reactions such as transcription, translation, and PCR. It is means to do. Here, the “sample” refers to a transcription type, a translation type, a PCR type plasmid (or a host (eg, E. coli) having the plasmid), etc. “Reagent” refers to a transcription reaction solution, translation reaction solution, translation reaction solution, dilution solution, alcohol, salt solution, PCR reaction solution, supply solution, reaction solution, and the like. As such a dispensing means, a pipette arm (dispensing machine) that can be automatically dispensed as known in the art can be used as long as it can be dispensed by adjusting the amount of sample and reagent according to the process. It can be realized with no particular restrictions. In addition, the pipette arm can have a function of discarding a used tip at the tip disposal port of the synthesizer and a function of discharging the sucked filtrate or the like to the waste solution port.
また、当該分注手段は、上記機能に加えて 2種以上の溶液の均一化や沈殿溶解の ための混合機能(例、ピペッティング、撹拌など)を備えていることがより好ましい。 さらに、ピペットアームにより、反応容器の各セル中に基質溶液又は希釈溶液を添 加することにより、反応液の希釈処理が実行可能となる。  In addition to the above functions, the dispensing means preferably has a mixing function (eg, pipetting, stirring, etc.) for homogenizing two or more types of solutions and for dissolving the precipitate. Furthermore, by adding a substrate solution or a diluting solution to each cell of the reaction vessel with a pipette arm, a dilution process for the reaction solution can be performed.
[0055] (d)反応容器を搬送する手段 [0055] (d) Means for transporting reaction vessel
反応容器を搬送する手段とは、反応容器を、各ステージ、遠心機、昇降台、恒温槽 に移動させる手段である。力かる反応容器を搬送する手段は、反応容器を目的の場 所に搬送可能であれば、特に制限されることなく従来公知の適宜の手段にて実現す ること力 Sできる。たとえば、従来の合成装置に使用されているロボットアームを用いて 実現できる。  The means for transporting the reaction container is a means for moving the reaction container to each stage, centrifuge, elevator, and thermostat. The means for transporting the strong reaction container is not particularly limited as long as the reaction container can be transported to the target location, and can be realized by any conventionally known appropriate means. For example, this can be realized by using a robot arm used in a conventional synthesizer.
[0056] (e)濃縮ろ過手段 [0056] (e) Concentration filtration means
濃縮ろ過手段とは、繰り返し翻訳反応時の反応液を濃縮ろ過する手段である。かか る手段は、繰り返し翻訳反応時の反応液の濃縮を可能とするものであれば、特に制 限されることなぐ従来公知の適宜の手段にて実現することができる。たとえば、従来 公知の遠心分離機、その他、アミコンウルトラ濃縮膜 (milipore社製)、ビバフロー(sart orius社製)など、ろ過や凍結乾燥に従来力も使用されている適宜の装置を用いて、 該手段を実現できる。  Concentration filtration means is means for concentrating and filtering the reaction solution during repeated translation reactions. Such means can be realized by any conventionally known appropriate means without particular limitation as long as the reaction solution can be concentrated during repeated translation reactions. For example, using a conventionally known centrifuge, other appropriate devices that have also been used for filtration and lyophilization, such as Amicon Ultra concentrated membrane (Milipore), Vivaflow (sart orius), etc. Can be realized.
[0057] (f)制御手段 [0057] (f) Control means
制御手段には、上記 (a)〜(e)又は (b)〜(e)の手段が動作するために各手段に用 レ、られる駆動源 (モータ、空圧'油圧機器、その他の動作制御可能なァクチユエータ など)の動作の入切、動作の程度及び状態などを制御する制御装置が含まれる。そ の制御の構成は、上記(a)〜( の手段の動作を、合成した転写铸型から該铸型に コードされるタンパク質を生成するまでの反応操作を自動で行わせる目的が達成で きるものである。 As the control means, the above-mentioned means (a) to (e) or (b) to (e) are used for each means to operate. It includes a control device that controls on / off of the operation of the possible actuators, etc.), and the degree and state of the operation. So The control configuration of (a) to () can achieve the purpose of automatically performing the reaction operation from the synthesized transcription mold to the production of the protein encoded by the mold. It is.
前記制御装置は、例えば、制御プログラムを有するコンピュータを含んだ制御回路 、シーケンス制御回路など、上記各手段の動作の制御に必要な制御機器を組み合 わせて構成してもよぐ 目的に沿った順番で上記各手段が動作するよう、各手段に対 して信号や必要に応じて電力、空圧、油圧等を供給し得る制御構成とする。また、上 記各手段の駆動源に直接駆動信号を送るために必要なドライバー、上記各手段の 駆動源の動作状態を検出するために必要な各種センサー、スィッチなどは適宜加え てよい。  The control device may be configured by combining control devices necessary for controlling the operation of each means, such as a control circuit including a computer having a control program, a sequence control circuit, and the like. The control configuration is such that power, air pressure, hydraulic pressure, and the like can be supplied to each means so that each means operates in order. In addition, a driver necessary for directly sending a drive signal to the drive source of each of the above means, various sensors and switches necessary for detecting the operation state of the drive source of each of the above means may be added as appropriate.
なお本発明の合成装置に適用できる反応容器には特に制限はなぐ無細胞蛋白 質合成反応に使用されてきた従来公知の種々の反応容器を使用することが可能で あり、例えば 6穴プレート、 24穴プレート、 96穴プレート、 384穴プレート、 96穴 PCR 用プレート、 96穴タイタープレート、 8連チューブやチューブ(1 · 5mL、 15mL、 50m Lなど)等が挙げられるが、例えば翻訳反応系としてバッチ法や重層法を用いる場合 、 96穴プレート、 384穴プレートなどの小さな反応系で翻訳反応を行うことができ、ま た、本発明の合成装置によれば転写反応も小さな反応系で行うことができるので、転 写反応'翻訳铸型の精製、翻訳反応、所望によりさらに転写反応に供する転写铸型 作製のための PCRを含む一連の無細胞蛋白質合成法の反応操作を、複数の反応 系で複数種の蛋白質について同時に行うことができ、短時間に多数の蛋白質を合成 すること力 Sできる。  The reaction vessel applicable to the synthesizer of the present invention can be any of various well-known reaction vessels that have been used for cell-free protein synthesis reactions without particular limitations. For example, a 6-well plate, 24 Hole plates, 96-well plates, 384-well plates, 96-well PCR plates, 96-well titer plates, 8-strip tubes and tubes (1.5 mL, 15 mL, 50 mL, etc.) are examples. Can be performed in a small reaction system such as a 96-well plate or a 384-well plate, and the transcription reaction can be performed in a small reaction system according to the synthesis apparatus of the present invention. It is possible to perform a series of cell-free protein synthesis methods, including transcription reactions, purification of translation variants, translation reactions, and PCR for the preparation of transcription variants for further transcription reactions, if desired. Can be performed simultaneously for several proteins, can be force S to synthesize a large number of proteins in a short time.
[0058] さらに、本発明の無細胞タンパク質合成法に用いられる試薬の少なくとも 1を含む 合成キットは、本発明の無細胞タンパク質合成を簡便に提供できるので有用である。  [0058] Furthermore, a synthesis kit containing at least one of the reagents used in the cell-free protein synthesis method of the present invention is useful because it can easily provide the cell-free protein synthesis of the present invention.
[0059] 以下、実施例を挙げて本発明を詳細に説明するが、本発明の範囲はこれらの実施 例により限定されるものではなレ、。  [0059] Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited by these examples.
実施例 1  Example 1
[0060] コムギ胚芽抽出液の調製 [0060] Preparation of wheat germ extract
(1)コムギ胚芽の調製 北海道産チホクコムギ種子または愛媛産チクゴィズミ種子を 1分間に lOOgの割合 でミル(Fritsch社製: Rotor Speed Mill pulverisettel4型)に添カロし、回転数 8, 000卬 mで種子を温和に粉碎した。篩レ、で発芽能を有する胚芽を含む画分 (メッシュサイズ 0. 7〜: 1. 00mm)を回収した後、四塩化炭素とシクロへキサンの混合液 (容量比 = 四塩化炭素:シクロへキサン = 2. 4 : 1)を用いた浮選によって、発芽能を有する胚芽 を含む浮上画分を回収し、室温乾燥によって有機溶媒を除去した後、室温送風によ つて混在する種皮等の不純物を除去して粗胚芽画分を得た。 (1) Preparation of wheat germ Hokkaido chihoku wheat or Ehime chikugozumi seeds were added to a mill (made by Fritsch: Rotor Speed Mill pulverisettel4) at a rate of lOOg per minute, and the seeds were gently pulverized at a rotational speed of 8,000 mm. After collecting the fraction containing germinating ability (mesh size 0.7 to 1.00 mm) in sieve sieve, a mixture of carbon tetrachloride and cyclohexane (volume ratio = carbon tetrachloride: cyclohex The floating fraction containing germinating embryos was collected by flotation using Xan = 2.4: 1), and the organic solvent was removed by drying at room temperature. Was removed to obtain a crude germ fraction.
次に、ベルト式色彩選別機 BLM— 300K (製造元:株式会社安西製作所、発売元: 株式会社安西総業)を用いて、次の通り、色彩の違いを利用して粗胚芽画分から胚 芽を選別した。この色彩選別機は、粗胚芽画分に光を照射する手段、粗胚芽画分か らの反射光及び Z又は透過光を検出する手段、検出値と基準値とを比較する手段、 基準値より外れたもの又は基準値内のものを選別除去する手段を有する装置である 色彩選別機のベージュ色のベルト上に粗胚芽画分を 1000乃至 5000粒/ cm2とな るように供給し、ベルト上の粗胚芽画分に蛍光灯で光を照射して反射光を検出した。 ベルトの搬送速度は、 50m/分とした。受光センサーとして、モノクロの CCDラインセ ンサー(2048画素)を用いた。 Next, using a belt type color sorter BLM-300K (manufacturer: Anzai Manufacturing Co., Ltd., distributor: Anzai Sogyo Co., Ltd.), the germs are selected from the crude germ fraction using the color difference as follows. did. This color sorter includes means for irradiating light to the crude germ fraction, means for detecting reflected light and Z or transmitted light from the crude germ fraction, means for comparing the detected value with the reference value, Supply the crude germ fraction to 1000 to 5000 grains / cm 2 on the beige belt of the color sorter, which is a device that has a means to sort out and remove those that fall outside or within the reference value. The reflected light was detected by irradiating the upper crude germ fraction with a fluorescent lamp. The belt conveyance speed was 50 m / min. A monochrome CCD line sensor (2048 pixels) was used as the light receiving sensor.
まず、胚芽より色の黒い成分 (種皮等)を除去するために、胚芽の輝度と種皮の輝 度の間に基準値を設定し、基準値から外れるものを吸引により取り除いた。次いで、 胚乳を選別するために、胚芽の輝度と胚乳の輝度の間に基準値を設定し、基準値か ら外れるものを吸引により取り除いた。吸引は、搬送ベルト上方約 lcm位置に設置し た吸引ノズノレ 30個(長さ 1 cm当たり吸引ノズノレ 1個並べたもの)を用レ、て行った。 この方法を繰り返すことにより胚芽の純度 (任意のサンプル lg当たりに含まれる胚 芽の重量割合)が 98%以上になるまで胚芽を選別した。  First, in order to remove dark-colored components (seed coat etc.) from the germ, a reference value was set between the brightness of the germ and the brightness of the seed coat, and those that deviated from the reference value were removed by suction. Next, in order to sort out the endosperm, a reference value was set between the brightness of the germ and the brightness of the endosperm, and anything that deviated from the reference value was removed by suction. Suction was performed using 30 suction nozzles (one suction nozzle per 1 cm length) placed approximately 1 cm above the conveyor belt. By repeating this method, the germs were selected until the purity of the germs (the weight ratio of the germs contained in an arbitrary sample lg) reached 98% or more.
得られたコムギ胚芽画分を 4°Cの蒸留水に懸濁し、超音波洗浄機を用いて洗浄液 が白濁しなくなるまで洗浄した。次いで、ノニデット P40 (Nonidet :ナカライ'テクトニク ス社製)の 0. 5容量%溶液に懸濁し、超音波洗浄機を用いて洗浄液が白濁しなくな るまで洗浄してコムギ胚芽を得た。回収した胚芽湿重量に対して 2倍容量の抽出溶 媒(80mM HEPES— KOH、 pH7. 8、 200mM酢酸カリウム、 lOmM酢酸マグネ シゥム、 8mMジチオスレィトール、 4mM塩化カルシウム、各 0. 6mM20種類の L型 アミノ酸、さらに 2· 5mM ATP)をカロえ、ワーリングブレンダーを用レ、、 5, 000〜20 , OOOrpmで 30秒間ずつ 3回の胚芽の限定破砕を行った。 The obtained wheat germ fraction was suspended in distilled water at 4 ° C, and washed with an ultrasonic washing machine until the washing solution did not become cloudy. Subsequently, it was suspended in a 0.5% by volume solution of Nonidet P40 (Nonidet: manufactured by Nacalai Tectonics), and washed with an ultrasonic cleaner until the cleaning solution did not become cloudy to obtain wheat germ. 2 times the volume of the extracted germ solution Medium (80mM HEPES—KOH, pH7.8, 200mM potassium acetate, lOmM magnesium acetate, 8mM dithiothreitol, 4mM calcium chloride, 0.6mM, 20 L-type amino acids, and 2.5mM ATP) Using a Waring blender, limited disruption of the embryo was performed three times at 5,000-20, OOOrpm for 30 seconds each.
[0061] (2)沈殿助剤を用いた S-30画分の調製  [0061] (2) Preparation of S-30 fraction using precipitation aid
上記得られたホモゲネート(破砕物)に、 20%重量の海砂あるいは膨潤させたセフ アデックス G25粒子をカ卩え、混合した。海砂は、ホモゲネート添カ卩前にあらかじめ以下 の処理を行った:水洗→5容の 0. 1規定の NaOH又は KOH洗浄→水洗→0. 1規定 の HC1洗浄→水洗→100〜: 120°Cの加熱により RNase失活処理後、乾燥処理。  The homogenate (crushed material) obtained above was mixed with 20% by weight sea sand or swollen Cefdex G25 particles and mixed. Sea sand was subjected to the following treatment in advance before homogenate addition: water washing → 5 volumes of 0.1 N NaOH or KOH washing → water washing → 0.1 N HC1 washing → water washing → 100 ~: 120 ° RNase inactivation treatment by heating C, followed by drying treatment.
海砂を混合したホモゲネートを 3万 xg、 30分で 2回遠心、続いて 12分間 1回の遠心 で、半透明な遠心上清を得た(S-30画分)。海砂あるいはセフアデックス粒子を遠心 前に加えない場合は、沈殿物の上部に不溶性スラリーが存在し、これが混入した S- 30画分から調製した抽出液のタンパク質合成活性は低くなつた。得られた S-30画分 を、溶出溶液(40mM HEPES_KOH、 pH7.8、 200mM酢酸カリウム、 lOmM酢酸マグネ シゥム、 4mM DTT)で平衡化したセフアデックス G25にかけ、ゲルろ過し、分子量 100 0ダルトン以下の低分子物質を排除した胚芽抽出液を調製した。  Homogenate mixed with sea sand was centrifuged twice at 30,000 xg for 30 minutes and then once for 12 minutes to obtain a translucent centrifugal supernatant (S-30 fraction). When sea sand or cefadex particles were not added before centrifugation, an insoluble slurry was present at the top of the precipitate, and the protein synthesis activity of the extract prepared from the S-30 fraction contaminated with this was low. The obtained S-30 fraction was applied to Sephadex G25 equilibrated with elution solution (40 mM HEPES_KOH, pH 7.8, 200 mM potassium acetate, lOmM magnesium acetate, 4 mM DTT), gel filtered, and molecular weight below 1000 Dalton An embryo extract from which low molecular weight substances were excluded was prepared.
[0062] (3)転写反応工程  [0062] (3) Transcription reaction process
転写反応は、 37度で 2. 5時間インキュベートした。なお、転写反応液は以下の通り である。  The transcription reaction was incubated at 37 degrees for 2.5 hours. The transcription reaction solution is as follows.
1. PCR法によって増幅 '合成した DNA铸型を転写铸型とした方法  1. Amplification by PCR method 'Synthesized DNA template to transcription template
転写反応液組成: 75 μ \の 5χ転写バッファー(400 mM HEPES, H 7.6; 80 mM M agnesium acetate; 10 mM Spermidine; 50 mM DTT)、 37.5 μ 1の 25 mM 4NTPs、 3.7 5 μ 1の RNAsin (80 Units), 25 μ 1の PCR産物(GFP転写铸型: pEU_E01_GFP(SP6 promoter-EOl-GFP)を錡型とし、プライマーは 5'側と 3'側の 2本で、 one- st印 PCR( 30 cycles)により転写錡型を構築した)、 7.5 μ 1の SP6 polymerase (80 units)に水 85 1.25 μ 1を加え、総量 1 mlとした。  Transcription reaction composition: 75 μ \ 5χ transcription buffer (400 mM HEPES, H 7.6; 80 mM Magnesium acetate; 10 mM Spermidine; 50 mM DTT), 37.5 μ 1 25 mM 4NTPs, 3.7 5 μ 1 RNAsin ( 80 Units), 25 μ 1 PCR product (GFP transcription type: pEU_E01_GFP (SP6 promoter-EOl-GFP)), two primers on the 5 'side and 3' side. 30 cycles) was used to construct a transcription mold, and water (85 1.25 μ1) was added to 7.5 μ1 of SP6 polymerase (80 units) to make a total volume of 1 ml.
2.プラスミドに導入して転写铸型とした方法  2. A method of introducing a transcription cage into a plasmid
転写反応液組成: 300 の 5x転写バッファー(400 mM HEPES, pH 7.6; 80 mM Magnesium acetate; 10 mM Spermidine; 50 mM DTT)、 150 μ 1の 25 mM 4NTPs、 15 μ 1の RNAsin (1200 Units)ヽ 44 β 1の pEU (GFP遺伝子クローンを含み、 150 μ g)、 3Transcription reaction composition: 300 5x transcription buffer (400 mM HEPES, pH 7.6; 80 mM Magnesium acetate; 10 mM Spermidine; 50 mM DTT), 150 μ1 25 mM 4NTPs, 15 μ1 RNAsin (1200 Units) ヽ 44 β 1 pEU (including GFP gene clone, 150 μg), 3
0 μ 1の SP6 polymerase (2400 units)に水 461 μ 1を加え、総量 1 mlとした。 461 μ1 of water was added to 0 μ1 of SP6 polymerase (2400 units) to make a total volume of 1 ml.
なお、未精製 mRNAを含む転写溶液は、転写反応後において操作を行わなかった Note that the transcription solution containing unpurified mRNA was not manipulated after the transcription reaction.
。一方、精製 mRNAを含む転写溶液は、転写反応後において、エタノール沈殿により mRNAを沈殿し、上清を除去し、乾燥した。 . On the other hand, the transcription solution containing purified mRNA was subjected to ethanol precipitation after the transcription reaction, and the supernatant was removed and dried.
実施例 2 Example 2
繰り返し重層法及び繰り返し供給バッチ法によるタンパク質合成  Protein synthesis by repeated layering and repeated feeding batch methods
1 - 1.プラスミドに導入して転写铸型とした未精製 mRNAを用いた繰り返し重層法 によるタンパク質合成  1-1.Protein synthesis by repetitive layering using unpurified mRNA introduced into a plasmid to form a transcriptional cage
6穴タイタープレート(TPP社製、スイス)を反応容器として用いた。先ず、 220 の creatine kinaseを含む 5 · 5mlの供給溶液(アミノ酸、 ATP、 GTP、 creatine-phosphate 、イオン類、 HEPES bufferを含む液)を入れ、 0· 5mlの反応溶液(230 μ 1の 260Α260 nmの胚芽抽出液)、 250 /i 1の上記未精製 mRNAを含む転写溶液、 10 g/ zi lの ere atine kinaseを 2 μ 1(20 /ι §)と 18 /i 1の供給溶液を混合したもの)を注意深く静かにタ イタ一プレートの底に加えた。反応は、 26度、 totalで 10時間の静置で行った。合成 反応 5時間後に、ピペッティングにより供給相と反応相を混合した。混合後に分子量 1 0000カットオフの Amicon Ultra濃縮膜(Millipore社製)を用いて、開始反応相の液量 である 0.5mlにまで濃縮を行った。濃縮後に、供給液 5.5ml (creatine kinaseは含まな い)を重層して、タンパク質合成を再開させて、さらに 5時間合成した。 A 6-hole titer plate (TPP, Switzerland) was used as a reaction vessel. First, add 5 · 5 ml of a supply solution containing 220 creatine kinase (a solution containing amino acids, ATP, GTP, creatine-phosphate, ions, and HEPES buffer), and add 0.5 ml of a reaction solution (230 μ 1 of 260Α260 nm). Embryo transfer solution), 250 / i 1 transcription solution containing unpurified mRNA, 10 g / zi l ere atine kinase 2 μ 1 (20 / ι § ) and 18 / i 1 feed solution mixed Was carefully and gently added to the bottom of the titer plate. The reaction was allowed to stand for 10 hours at 26 degrees and total. After 5 hours of the synthesis reaction, the feed phase and the reaction phase were mixed by pipetting. After mixing, the mixture was concentrated to 0.5 ml, which is the liquid volume of the starting reaction phase, using an Amicon Ultra concentrated membrane (Millipore) having a molecular weight of 10,000 cut-off. After concentrating, 5.5 ml of feed solution (not containing creatine kinase) was overlaid to resume protein synthesis and synthesized for another 5 hours.
1 - 2.プラスミドに導入して転写铸型とした未精製 mRNAを用いた繰り返し濃縮供 給バッチ法によるタンパク質合成  1-2. Protein synthesis by repetitive concentration and supply batch method using unpurified mRNA introduced into plasmid and transformed into transcriptional cage
1 - 1と同じ容量の試験管(FALCON社製、 USA:攪拌のために小型回転子を置レヽ た)に、 0.5mlの反応液を入れ、微速で小型回転子により攪拌しながら、ペリスタボン プを用いて 5.5mlの供給液を 1時間当たり 1.2mlの速度( 1.2ml/時)で反応液に連続 的に供給した (供給総量 5.5ml)。合成反応 5時間後に、反応相への供給を停止した。 停止後に分子量 10000カットオフの Amicon Ultra濃縮膜(Millipore社製)を用いて、開 始反応相の液量である 0.5mlにまで濃縮を行った。濃縮後に、供給液 5.5ml (creatine kinaseは含まなレ、)を連続供給(1.2ml/時)して、タンパク質合成を再開させて、 5時 間合成した(図 3 :レーン 5)。なお、反応液中の mRNAを 50%とし、供給液に残りの 50% の mRNAを含有させてタンパク質合成も行った(図 3:レーン 6)。 Place a 0.5 ml reaction solution in a test tube (FALCON, USA: a small rotor placed for stirring) with the same capacity as 1-1, and stir with a small rotor at a slow speed while mixing the peristal Was used to continuously feed 5.5 ml of the feed solution to the reaction solution at a rate of 1.2 ml per hour (1.2 ml / hour) (total feed amount: 5.5 ml). After 5 hours of the synthesis reaction, the supply to the reaction phase was stopped. After stopping, concentration was performed to 0.5 ml, which is the liquid volume of the starting reaction phase, using an Amicon Ultra concentration membrane (Millipore) having a molecular weight of 10,000 cut-off. After concentration, supply solution 5.5ml (creatine The protein synthesis was resumed by continuously supplying (1.2 ml / hour) without kinase, and synthesized for 5 hours (Fig. 3: Lane 5). Protein synthesis was also performed with 50% of the mRNA in the reaction solution and the remaining 50% of the mRNA contained in the supply solution (FIG. 3: lane 6).
[0064] 2.タンパク質合成量測定  [0064] 2. Measurement of protein synthesis
タンパク合成量は、以下のように14 C標識ロイシンの酸不溶性画分への放射能の取 り込みを測定することによって行った:反応液 5マイクロリツターを 3MMワットマン濾紙 にスポットし、 10%氷冷 TCA (トリクロ口酢酸)に 1時間浸した後、 5%の TCA液中で 10 分間煮沸した。このフィルターを取り出しエタノール 'エーテル(50 : 50容)で TCAと水 分を除去し、乾燥後、液体シンチレーシヨンカウンター(トルエンシンチレ一ター)で、 熱 TCA不溶画分へ取り込まれた放射能を計測した。 Protein synthesis was measured by measuring the incorporation of radioactivity into the acid-insoluble fraction of 14 C-labeled leucine as follows: 5 microliters of the reaction mixture was spotted onto 3MM Whatman filter paper, 10% After soaking in ice-cold TCA (triclo-mouth acetic acid) for 1 hour, it was boiled in 5% TCA solution for 10 minutes. Take out this filter, remove TCA and water with ethanol ether (50:50 volume), and after drying, measure the radioactivity incorporated into the hot TCA insoluble fraction with a liquid scintillation counter (toluene scintillator). did.
[0065] 図 3は、繰り返し重層法、繰り返し供給バッチ法による高効率無細胞タンパク質合 成結果を示すものである。両合成法とも、 2回目の合成反応(繰り返し回数 1回:レー ン 2)によって 1回反応合成(レーン 1)に比べて合成量が増加していることが、 GFP染 色強度の増大から分かる(図に示した *印は胚芽由来の内因性タンパク質バンドで 、これを内部標準として矢印の合成 GFPバンドの染色強度の比較すればより確かな 判定を得る)。精製した GFPを同様なゲル電気泳動によって分離、染色し、この染色 強度を標準として、 2回目の合成反応 (繰り返し回数 1回:レーン 2)で得た合成産物 量をバンド染色強度からデンシトメ一ターを用いて測定したところ、 1ml (合成開始時 の下層の反応液)当たりの産物量は、繰り返し重層法では l.lmg、繰り返し供給バッ チ法では 1.2mgとなった。以上により、繰り返し重層法、繰り返し供給バッチ法は、従 来の重層法及び繰り返しバッチ法として比較して有効である。  [0065] Fig. 3 shows the results of highly efficient cell-free protein synthesis by the repeated layering method and the repeated feeding batch method. In both synthesis methods, it can be seen from the increase in the intensity of GFP staining that the amount of synthesis is increased by the second synthesis reaction (number of repetitions: one lane 2) compared to the first reaction synthesis (lane 1). (The * mark shown in the figure is an endogenous protein band derived from germ, and this is used as an internal standard to compare the staining intensity of the synthetic GFP band of the arrow to obtain a more reliable determination). Purified GFP was separated and stained by the same gel electrophoresis. Using this staining intensity as a standard, the amount of the synthesized product obtained in the second synthesis reaction (repeated once: lane 2) was determined based on the band staining intensity. As a result, the amount of product per 1 ml (lower layer reaction solution at the start of synthesis) was 1 mg in the repeated layer method and 1.2 mg in the repeated feed batch method. As described above, the repetitive multi-layer method and repetitive supply batch method are more effective than the conventional multi-layer method and repetitive batch method.
無細胞タンパク質合成反応における合成反応持続の律速因子として、翻訳铸型で ある mRNAの安定性を挙げることができる。 RNA分子は、一般的にリボヌクレアーゼに 対して感受性が高ぐ mRNAにおいても極微量の同酵素によって消化され、その翻訳 铸型活性を消失すると考えられる。これにより、 mRNAの分解に伴う合成反応の低下 現象は、合成反応が長時間になるほど強く影響される。よって、 mRNAを供給液に含 有させ、タンパク質合成量に与える効果を繰り返し供給バッチ法により検討した(図 3 :レーン 5、 6 : mRNA量は同じ)。図 3中の結果により、 mRNAを供給液に含有してない 2回目の合成反応 (繰り返し回数 1回:レーン 4の小矢印)よりも、 mRNAを供給液に含 有してレ、る 2回目の合成反応 (繰り返し回数 1回:レーン 6の大矢印)の GFP合成量が 高いことがバンドの CBB染色強度から分かる。 1回合成反応(レーン 1、 3)においては 、タンパク質合成量に有意な差は認められなかった。デンシトメ一ターによるバンド染 色強度の測定から、 mRNAを供給液に含有している 2回目の合成反応 (繰り返し回数 1回:レーン 6の大矢印)が、 mRNAを供給液に含有してない 2回目の合成反応 (繰り 返し回数 1回:レーン 4の小矢印)に比べて 1.3倍のタンパク質合成量を得た (すなわ ち、 1ml (合成開始時の下層の反応液)当たりの産物量は 1.5mgとなる)。 As a rate-determining factor for the duration of the synthesis reaction in the cell-free protein synthesis reaction, the stability of the translational type mRNA can be mentioned. RNA molecules are thought to be digested by trace amounts of the enzyme, even in mRNAs that are generally sensitive to ribonucleases, and lose their translational activity. As a result, the decrease in the synthesis reaction accompanying the degradation of mRNA is strongly influenced as the synthesis reaction takes longer. Therefore, the effect of adding mRNA to the supply solution and affecting the amount of protein synthesis was repeatedly examined by the supply batch method (Fig. 3: lanes 5 and 6: the amount of mRNA is the same). According to the results in Figure 3, mRNA is not contained in the feed solution. Rather than the second synthesis reaction (repeated once: small arrow in lane 4), the second synthesis reaction (must be repeated once: large arrow in lane 6) contains mRNA in the feed solution. It can be seen from the CBB staining intensity of the band that the amount of GFP synthesis is high. In the single synthesis reaction (lanes 1 and 3), no significant difference was found in the amount of protein synthesis. Based on the measurement of band color intensity using densitometer, the second synthesis reaction that contains mRNA in the feed solution (repeated once: large arrow in lane 6) does not contain mRNA in the feed solution 2 A protein synthesis amount 1.3 times that of the first synthesis reaction (one iteration: small arrow in lane 4) was obtained (in other words, the amount of product per 1 ml (lower reaction solution at the start of synthesis) was 1.5mg).
以上により、繰り返し重層法及び繰り返し供給バッチ法において、 mRNAを含有させ た供給液を用いることによって、基質及びエネルギー源分子の供給と副生成物の希 釈に加えた、 mRNAの供給をはかることによって、反応液中で分解され濃度低下した mRNAを補充することによって、タンパク質合成量の効率化を実現することができる。 実施例 3  As described above, in the repeated layering method and the repeated feeding batch method, by using the supply solution containing mRNA, by supplying the mRNA in addition to the supply of the substrate and the energy source molecule and the dilution of the by-product. By replenishing mRNA that has been degraded and reduced in concentration in the reaction solution, it is possible to achieve efficient protein synthesis. Example 3
[0066] PCR法によって増幅 '合成した DNA铸型とプラスミドを用いた転写铸型によるタンパ ク質合成効率の比較  [0066] Amplification by PCR method 'Comparison of protein synthesis efficiency between the synthesized DNA template and the transcription template using plasmid
1.転写铸型  1.Transcription type
実施例 1の転写反応工程に記載の 2つの方法 (PCR法によって増幅 ·合成した DNA 铸型を転写錡型とした方法又はプラスミドに導入して転写铸型とした方法)により転写 铸型を作製した。なお、両方ともに、転写反応後の転写溶液中 mRNAの精製を行わ なかった。  Transcription molds are prepared by the two methods described in the transcription reaction step of Example 1 (method of amplification or synthesis of DNA clones synthesized by PCR method or transcription clones by introducing them into plasmids) did. In both cases, mRNA in the transcription solution after the transcription reaction was not purified.
2.繰り返し重層法  2.Repeated multi-layer method
実施例 2と同様な方法により繰り返し重層法を行った。なお、繰り返し回数は 3回で ある(合成反応は 4回となる)。  The multilayer method was repeated by the same method as in Example 2. The number of repetitions is 3 (the synthesis reaction is 4 times).
[0067] 図 4が示すように、反応回数 4回まで GFP合成が持続することが、ポリアクリルアミド 未変性ゲル電気泳動上の CBB染色 GFPバンド(図 4中:矢印)の染色強度の増大から 確認できた(図 4中:レーン 5、 9)。合成反応開始前には、 GFPバンドが存在しない( 図 4中: 1レーン)。また、 PCRからの転写物を用いたタンパク質合成方法は、図 4中の PCRとプラスミド泳動ゲル上の GFP染色強度の比較から、プラスミドを転写铸型として 得た転写溶液を用いるタンパク質合成方法と同等以上の GFP合成効率を示すことが わかった。反応回数 4回目までの繰り返し重層法によって得られた GFP合成量は、電 気泳動ゲル上の染色バンド強度を標準 GFPバンドとの比較から、合成反応開始時の 反応液 lml当たり、約 1.8mgであった (泳動に用いた各レーンの試料容量は、反応開 始時の反応溶液の 0.167 μ湘当である。従って、標準 GFP0.3 x gと同様の染色強度 を示すバンドの GFP量は、 0.370.167 1=
Figure imgf000033_0001
[0067] As shown in Fig. 4, it was confirmed from the increase in the intensity of staining of the CBB-stained GFP band (arrow in Fig. 4) on polyacrylamide native gel electrophoresis that GFP synthesis lasted up to 4 times. (In Fig. 4: lanes 5 and 9). There is no GFP band before the start of the synthesis reaction (in Fig. 4, 1 lane). In addition, the protein synthesis method using transcripts from PCR is based on the comparison of PCR and the intensity of GFP staining on the plasmid electrophoresis gel in Fig. 4. It was found that the GFP synthesis efficiency was equivalent to or better than the protein synthesis method using the obtained transcription solution. The number of GFP synthesis obtained by the repeated layering method until the 4th reaction was about 1.8 mg per ml of reaction solution at the start of the synthesis reaction, comparing the intensity of the staining band on the electrophoresis gel with that of the standard GFP band. (The sample volume in each lane used for electrophoresis was 0.167 μ 湘 of the reaction solution at the start of the reaction. Therefore, the amount of GFP in the band showing the same staining intensity as standard GFP 0.3 xg was 0.370. .167 1 =
Figure imgf000033_0001
.
以上により、繰り返し重層法では、 PCRからの転写物を用いて合成した mRNAを転 写溶液から精製することなくタンパク質を高効率で合成することが可能であることを確 認した。  Based on the above, it was confirmed that it was possible to synthesize proteins with high efficiency without refining mRNA synthesized using transcripts from PCR from the transcription solution in the repeated layer method.
産業上の利用可能性  Industrial applicability
[0068] 本発明に係る上記無細胞タンパク質合成方法は、半透膜を利用した限外ろ過膜法 や透析膜法、さらに樹脂に翻訳铸型を固定化したカラムクロマト法等の複雑な手法を 用いることなぐ従来からの無細胞タンパク質合成系に合成反応の効率化技術をそ れぞれ導入することによって、いずれの手段によっても、組織 ·細胞抽出物を利用す る無細胞系におけるタンパク質の合成を高効率で行うことが可能であることを示した。 上記本発明に係る無細胞タンパク質合成方法は、従来行われていた膜を用いる連 続式無細胞タンパク質合成法に見られる膜の材質強度の低さ、 目詰まりによる膜機 能の低下、および操作の煩雑性等の欠点を持たず、そのため従来法と比較して格段 に高い効率でタンパク質合成を行うことができる。従って、上記本発明に係る技術は 今後のゲノムプロジェクト完了と共にもたらされる膨大な数の遺伝子についての機能 解析や構造解析の基盤となる遺伝子産物(タンパク質)生産の自動化に向けた基本 要素技術となろう。特に、多検体用全自動無細胞タンパク質合成ロボット開発等、無 細胞タンパク質合成システムの自動化に向けた要素技術として不可欠であると言え る。 [0068] The cell-free protein synthesis method according to the present invention includes a complicated method such as an ultrafiltration membrane method using a semipermeable membrane, a dialysis membrane method, or a column chromatography method in which a translation cage is immobilized on a resin. By introducing the efficiency of the synthesis reaction into the conventional cell-free protein synthesis system without using it, the synthesis of proteins in the cell-free system using tissue / cell extract is possible by any means. It was shown that it is possible to carry out with high efficiency. The cell-free protein synthesis method according to the present invention described above is a low membrane material strength, a decrease in membrane function due to clogging, and an operation, as observed in the conventional cell-free protein synthesis method using a conventional membrane. Therefore, protein synthesis can be carried out with much higher efficiency than the conventional method. Therefore, the technology according to the present invention will be a basic element technology for automating the production of gene products (proteins) that will serve as the basis for functional analysis and structural analysis of a huge number of genes that will be brought forward with the completion of future genome projects. . In particular, it can be said that it is indispensable as an elemental technology for automating cell-free protein synthesis systems, such as the development of fully automated cell-free protein synthesis robots for multiple specimens.
図面の簡単な説明  Brief Description of Drawings
[0069] [図 1]図 1は、繰り返し重層法 (A)、繰り返し供給バッチ法 (B)の原理を示したものであ る。  [0069] [FIG. 1] FIG. 1 shows the principle of the repeated multi-layer method (A) and the repeated feed batch method (B).
[図 2]図 2は、好適な繰り返し重層法、繰り返し供給バッチ法による合成法の概略図で ある。 [FIG. 2] FIG. 2 is a schematic diagram of a synthesis method by a preferred repeated multi-layer method and repeated feed batch method. is there.
園 3]図 3は、繰り返し重層法、繰り返し供給バッチ法による高効率無細胞タンパク質 合成結果を示すものである。 3] Fig. 3 shows the results of highly efficient cell-free protein synthesis by the repeated layering method and repeated feeding batch method.
[図 4]図 4は、 PCR法によって増幅 '合成した DNA錡型とプラスミドを用いた転写錡型 によるタンパク質合成効率を比較したものである。  [Fig. 4] Fig. 4 compares the efficiency of protein synthesis between a DNA template amplified and synthesized by PCR and a transcription template using a plasmid.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも以下の工程を含む、繰り返し法による無細胞タンパク質合成方法;  [1] A cell-free protein synthesis method by an iterative method including at least the following steps;
1 )反応液である反応相に供給相から供給液を供給して合成反応に導く工程 1) The process of supplying the supply liquid from the supply phase to the reaction phase, which is the reaction liquid, leading to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 相と反応相を混合処理するか又は供給液の供給を停止する工程 2) A process of mixing the supply phase and the reaction phase, or stopping the supply of the supply liquid, before or after substantially decreasing the synthesis rate, before or after substantially stopping the synthesis reaction
3)濃縮処理する工程  3) Concentration process
4)供給相から供給液を反応相に供給させて合成反応を再開させる工程 4) The process of restarting the synthesis reaction by supplying the supply liquid from the supply phase to the reaction phase
[2] 界面を介する上下 2層からなり、上層を供給相、下層を反応相とする合成方法であつ て、以下の工程を含む、繰り返し重層法による無細胞タンパク質合成方法; [2] A synthesis method comprising two upper and lower layers through an interface, wherein the upper layer is a supply phase and the lower layer is a reaction phase, and includes a cell-free protein synthesis method by a repeated multi-layer method including the following steps;
1)反応液である反応相に供給相となる供給液を重層させて合成反応に導く工程 1) The process of superposing the supply liquid that becomes the supply phase on the reaction phase that is the reaction liquid to lead to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 相と反応相を混合処理する工程 2) A process of mixing the supply phase and the reaction phase before and after substantially lowering the synthesis rate, before and after the synthesis reaction is almost stopped, or in the middle thereof
3)濃縮処理する工程  3) Concentration process
4)供給相となる供給液を反応相に重層させて合成反応を再開させる工程 [3] 以下の工程を含む繰り返し供給バッチ法による無細胞タンパク質合成法;  4) Step of resuming the synthesis reaction by overlaying the feed solution as the feed phase on the reaction phase [3] Cell-free protein synthesis method by repeated feed batch method including the following steps;
1)反応液である反応相に供給液を連続又は不連続に供給して合成反応に導くェ 程  1) Process of supplying the supply liquid continuously or discontinuously to the reaction phase, which is the reaction liquid, leading to the synthesis reaction
2)合成速度の略低下前後、合成反応の略停止前後、又はそれらの途上に、供給 液の供給を停止する工程  2) A process of stopping the supply of the feed liquid before or after substantially lowering the synthesis rate, before or after substantially stopping the synthesis reaction
3)濃縮処理する工程  3) Concentration process
4)反応相に供給液を連続又は不連続に供給して合成反応を再開させる工程 [4] 供給液の供給添加速度 (供給液量 Z秒)で合成反応の制御が行われる請求項 3に 記載の合成方法。  4) The step of resuming the synthesis reaction by continuously or discontinuously supplying the supply liquid to the reaction phase. [4] The synthesis reaction is controlled at the supply addition rate of the supply liquid (feed liquid volume Z seconds). The synthesis method described.
[5] 反応開始時の反応相と同量の供給液を、 10分〜 10時間で反応相に連続又は不連 続で供給する請求項 4に記載の方法。  [5] The method according to claim 4, wherein the same amount of the supply liquid as the reaction phase at the start of the reaction is continuously or discontinuously supplied to the reaction phase in 10 minutes to 10 hours.
[6] 2)— 4)の工程を複数回繰り返すことを特徴とする請求項 1 5のいずれ力 1に記載 の合成方法。 [6] The synthesis method according to any one of claims 1 to 5, wherein the step 2) —4) is repeated a plurality of times.
[7] 反応相の反応液が、転写反応後の未精製 mRNAを含む転写溶液及びコムギ種子胚 芽由来抽出液を含む請求項 1 6のいずれ力 1に記載の合成方法。 [7] The reaction solution is a transcription solution containing unpurified mRNA after the transcription reaction and wheat seed embryo The synthesis method according to any one of claims 16 to 16, comprising a bud-derived extract.
[8] 転写反応後の未精製 mRNAを含む転写溶液又は精製 mRNAを、用時、供給相に補 充添加する請求項 1 7のレ、ずれか 1に記載の合成方法。 [8] The synthesis method according to [1], [1] or [1], wherein the transcription solution or the purified mRNA containing the unpurified mRNA after the transcription reaction is supplemented and added to the supply phase at the time of use.
[9] 濃縮処理により、反応相の副産物を除去する請求項 1一 8のいずれ力、 1に記載の合 成方法。 [9] The synthesis method according to [1], wherein the by-product of the reaction phase is removed by concentration treatment.
[10] 濃縮処理により、転写溶液由来のマグネシウムイオン及び/又はヌクレオチド類を除 去する請求項 1一 8のいずれ力、 1に記載の合成方法。  [10] The synthesis method according to any one of [1] to [8], wherein magnesium ions and / or nucleotides derived from the transfer solution are removed by concentration treatment.
[11] コムギ種子胚芽由来抽出液が、混入するコムギ胚乳成分および低分子タンパク質合 成阻害物質が実質的に除去されたコムギ種子胚芽抽出液である請求項 1 _ 10のい ずれか 1に記載の合成方法。 [11] The wheat seed germ extract according to any one of claims 1 to 10, wherein the wheat seed germ extract is a wheat seed germ extract from which a mixed wheat endosperm component and a low molecular weight protein synthesis inhibitor are substantially removed. Synthesis method.
[12] コムギ種子胚芽由来抽出液から、以下のいずれか 1から選ばれる ATPを介する糖の リン酸化系の制御が行われてレ、る請求項 11に記載の合成方法; [12] The synthesis method according to claim 11, wherein the sugar phosphorylation system via ATP is selected from any one of the following from an extract derived from wheat seed germ:
1)単糖類の除去、  1) removal of monosaccharides,
2)リン酸化糖の除去、  2) removal of phosphorylated sugar,
3)多糖類から単糖類の生成の制御、  3) control of the production of monosaccharides from polysaccharides,
4)単糖類からリン酸化糖の生成の制御。  4) Control of production of phosphorylated saccharide from monosaccharides.
[13] 請求項 1〜: 12のいずれ力 1に記載の合成方法に用いられる試薬のすくなくとも 1を含 む合成キット。  [13] A synthesis kit comprising at least 1 of the reagent used in the synthesis method according to any one of claims 1 to 12.
[14] 請求項 2、 6— 12のいずれ力 1に記載の繰り返し重層法による無細胞タンパク質合成 方法を実施するための装置であって、以下の制御手段を少なくとも備える無細胞タン パク質合成用装置;  [14] An apparatus for carrying out the cell-free protein synthesis method by the repeated multi-layer method according to any one of claims 2, 6-12, and for cell-free protein synthesis comprising at least the following control means: Equipment;
(1)反応相に供給相を重層する手段  (1) Means to overlay the supply phase on the reaction phase
(2)混合処理する手段  (2) Means for mixing
(3)濃縮する手段  (3) Means for concentration
[15] 請求項 3—12のいずれ力 4に記載の繰り返し供給バッチ法による無細胞タンパク質 合成方法を実施するための装置であって、以下の制御手段を少なくとも備える無細 胞タンパク質合成用装置;  [15] An apparatus for carrying out a cell-free protein synthesis method according to the repeated feeding batch method according to any one of claims 3-12, wherein the apparatus for cell-free protein synthesis comprises at least the following control means;
(1)反応相に供給液を連続又は不連続に供給する手段 (2)濃縮する手段 (1) Means for continuously or discontinuously supplying the supply liquid to the reaction phase (2) Means for concentration
[図 1] [Figure 1]
(A) «り返し苗屑方式 細胞タンパク質合成反応法 (A) «Reversed seedling waste method Cell protein synthesis reaction method
Figure imgf000038_0001
Figure imgf000038_0001
(Dと問搽に供 9ンバウ贸合成反応に綾ぐ;!合-激锭.  (Used for questions with D. 9 Ambush synthesis reaction !!
供給相の芘©、の一速の操作を錄り返す  The supply phase 芘 © reiterates the first speed operation
(B)繰り返し供給方式無細胞タンパク質合成反応法  (B) Repetitive feeding method Cell-free protein synthesis reaction method
供給式タンパゥ賈合成反応
Figure imgf000038_0004
Figure imgf000038_0002
Feeding tampow synthesis reaction
Figure imgf000038_0004
Figure imgf000038_0002
くり返す 画  Repeat
Figure imgf000038_0003
S度低下
)
Figure imgf000038_0003
S degree decrease
t 合成反応(翻訳) 止  t Synthesis reaction (translation)
etり し  et Rishi
差換え .抵 歸 2/3 Replacement. 2/3
WO 2006/051908 PCT/JP2005/020727 WO 2006/051908 PCT / JP2005 / 020727
[図 3] [Figure 3]
繰り返し重層法 繰り返し供給バウチ法  Repeated layer method Repeated supply bouch method
mRNA  mRNA
Figure imgf000039_0001
Figure imgf000039_0001
mm % t mm% t
3/3 3/3
WO 2006/051908 PCT/JP2005/020727 WO 2006/051908 PCT / JP2005 / 020727
[図 4] [Figure 4]
プラス : ド μ§
Figure imgf000040_0001
Plus: de μ§
Figure imgf000040_0001
PCT/JP2005/020727 2004-11-12 2005-11-11 Cell-free protein synthesizing process WO2006051908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-329798 2004-11-12
JP2004329798A JP2008029204A (en) 2004-11-12 2004-11-12 Method for synthesizing cell-free protein

Publications (1)

Publication Number Publication Date
WO2006051908A1 true WO2006051908A1 (en) 2006-05-18

Family

ID=36336582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020727 WO2006051908A1 (en) 2004-11-12 2005-11-11 Cell-free protein synthesizing process

Country Status (2)

Country Link
JP (1) JP2008029204A (en)
WO (1) WO2006051908A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283716A (en) * 2019-06-20 2019-09-27 清华大学 A kind of device and method continuously synthesized for cell-free protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426764B1 (en) 2023-06-05 2024-02-02 NUProtein株式会社 Protein production methods, cultured meat production methods, additives used in cultured meat production methods, and kits used in protein production methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503119A (en) * 1987-04-29 1989-10-26 インスティテュト ベルカ ロシイスコイ アカデミイ ナウク Method for producing polypeptides in a cell-free translation system
JPH07508158A (en) * 1990-05-29 1995-09-14 インスティテュト、ベルカ、ロシイスコイ、アカデミイ、ナウク Method for producing polypeptides in a cell-free translation system
JP2000175695A (en) * 1998-12-14 2000-06-27 Inst Of Physical & Chemical Res Production of polypeptide by acellular protein synthetic system
WO2002024939A1 (en) * 2000-08-29 2002-03-28 Wakenyaku Co Ltd Methods of synthesizing cell-free protein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503119A (en) * 1987-04-29 1989-10-26 インスティテュト ベルカ ロシイスコイ アカデミイ ナウク Method for producing polypeptides in a cell-free translation system
JPH07508158A (en) * 1990-05-29 1995-09-14 インスティテュト、ベルカ、ロシイスコイ、アカデミイ、ナウク Method for producing polypeptides in a cell-free translation system
JP2000175695A (en) * 1998-12-14 2000-06-27 Inst Of Physical & Chemical Res Production of polypeptide by acellular protein synthetic system
WO2002024939A1 (en) * 2000-08-29 2002-03-28 Wakenyaku Co Ltd Methods of synthesizing cell-free protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110283716A (en) * 2019-06-20 2019-09-27 清华大学 A kind of device and method continuously synthesized for cell-free protein

Also Published As

Publication number Publication date
JP2008029204A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
RU2615446C2 (en) Devices for automatic cell-free production of proteins and methods for proteins production using this product
Shirokov et al. Continuous-exchange protein-synthesizing systems
JP3675804B2 (en) Cell extract for cell-free protein synthesis and production method thereof
JP3753358B2 (en) Germ extract for cell-free protein synthesis, method for producing the same, and method for protein synthesis using the same
KR100911516B1 (en) High throughput synthesis system and synthesizer for automatically performing the system
WO2006051908A1 (en) Cell-free protein synthesizing process
US7273615B2 (en) Reaction solution for cell-free protein synthesis, method of preparing the same, and protein synthesis method using the same
WO2006051901A1 (en) Cell-free protein synthesizing process
WO2006054683A1 (en) Method of detecting antibody with the use of cell-free protein synthesis system and method of screening specific protein
US20070141661A1 (en) Cell extract for high-functioned cell-free protein synthesis and method of preparing the extract
JP3746780B2 (en) Embryo extract for cell-free protein synthesis and method for producing the same
JP5010269B2 (en) Protein synthesis / recovery integrated cell-free protein synthesis method
CN110785178A (en) Novel eukaryotic cell-free expression system without artificial energy regeneration system
JP4643444B2 (en) High-throughput synthesis system and synthesis apparatus for automatically performing the system
JPWO2004070047A1 (en) Automatic protein synthesis method and apparatus for performing the same
US20070134734A1 (en) Novel screening method of indicator substance
JP2005218357A (en) Method for synthesizing cell-free protein
WO2003095661A1 (en) Lyophilized preparation for synthesis of cell-free protein
WO2006043675A9 (en) Cell extract for cell-free protein synthesis and method of preparing the extract
JP4148962B2 (en) Germ extract for cell-free protein synthesis, method for producing the same, and method for protein synthesis using the same
WO2023278593A1 (en) Soybean and maize cell-free expression systems
JP2006288320A (en) Method for producing germ extract for cell free protein synthesis
JP2005211074A (en) Embryo extract liquid for acellular protein synthesis and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05806122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP