WO2006051650A1 - Apparatus and method for removing mercury - Google Patents

Apparatus and method for removing mercury Download PDF

Info

Publication number
WO2006051650A1
WO2006051650A1 PCT/JP2005/017156 JP2005017156W WO2006051650A1 WO 2006051650 A1 WO2006051650 A1 WO 2006051650A1 JP 2005017156 W JP2005017156 W JP 2005017156W WO 2006051650 A1 WO2006051650 A1 WO 2006051650A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
gas
treated
exhaust gas
iron
Prior art date
Application number
PCT/JP2005/017156
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Akiho
Shigeo Ito
Takashi Kiga
Noriyuki Iiyama
Kenji Takano
Original Assignee
Central Research Institute Of Electric Power Industry
Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute Of Electric Power Industry, Ishikawajima-Harima Heavy Industries Co., Ltd. filed Critical Central Research Institute Of Electric Power Industry
Publication of WO2006051650A1 publication Critical patent/WO2006051650A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof

Definitions

  • the present invention relates to a mercury removal apparatus and method.
  • Japanese Patent Application Laid-Open No. 10-216476 discloses several exhaust gas treatment apparatus powers S for removing zero-valent mercury Hg in exhaust gas, which is an object to be treated.
  • the exhaust gas treatment device shown in FIG. 3 is an exhaust gas treatment device equipped with a two-column wet desulfurization device comprising a cooling tower and an absorption tower.
  • mercury removal agents such as sodium hypochlorite, copper chloride, manganese chloride, iron chloride, chelating agent, coal ash, etc. are added to the circulating water of the cooling tower placed in the previous stage, so that This product converts and removes the mercury Hg G into water-soluble divalent mercury Hg 2+ .
  • Patent Document 1 Japanese Patent Laid-Open No. 10-216476
  • the exhaust gas treatment apparatus of Patent Document 1 has the following problems.
  • the present invention has been made in view of the above-described circumstances, and aims to suppress and reduce the amount of mercury oxidant used and to separate and remove zero-valent mercury gas at a sufficient removal rate for the gas to be processed. It is a life.
  • zero-valent mercury gas is converted into water-soluble divalent mercury gas and separated from the gas to be treated.
  • the apparatus for removal comprises a reaction separation means for bringing an aqueous solution containing a mercury oxidant composed of trivalent iron Fe 3+ and having a pH of about 1 or less into contact with the gas to be treated.
  • Adopt means for bringing an aqueous solution containing a mercury oxidant composed of trivalent iron Fe 3+ and having a pH of about 1 or less into contact with the gas to be treated.
  • the reaction separating means includes a nozzle for spraying an aqueous solution onto the gas to be treated, and after contacting the gas to be treated by the nozzle.
  • a recovery container for recovering the aqueous solution of the aqueous solution, a circulation pump for supplying the aqueous solution recovered in the recovery container to the nozzle, a mercury oxidant addition device for adding a mercury oxidant to the aqueous solution, and the recovery container A pH meter that measures the pH of the aqueous solution, and a pH adjuster addition unit that adds a pH adjuster to the aqueous solution so that the pH of the aqueous solution sprayed from the nozzle is 1 or less based on the measurement result of the pH meter T ⁇ ⁇
  • the solution method is adopted.
  • the nozzle, the recovery container, and the circulation pump constitute a cooling tower arranged in the preceding stage in the two-column type wet desulfurization apparatus.
  • the reaction separation means adopts the solution means that the cooling tower is configured with a pH measuring device, a pH adjuster addition unit, and a mercury oxidizer addition device.
  • the mercury oxidizing agent is iron chloride FeCl containing iron Fe 3+ as a component.
  • any one of the above first to fourth means is adopted. If the pH adjuster is hydrochloric acid HC1, the solution is adopted.
  • the above-described solving means is adopted in which any one of the above first to fifth means is that the gas to be treated is combustion exhaust gas from a combustion furnace.
  • a method of converting zero-valent mercury gas into water-soluble divalent mercury gas and separating it from the gas to be treated is removed.
  • the zero-valent mercury gas is converted to the divalent mercury gas by contacting an aqueous solution containing a mercury oxidizer containing trivalent iron Fe 3+ and having a pH of about 1 or less with the gas to be treated.
  • a solution is adopted that is dissolved in an aqueous solution and separated and removed from the gas to be treated.
  • a pH adjuster and a mercury oxidant for reducing the pH to about 1 or less are used in a two-stage wet desulfurization apparatus.
  • a solution is adopted in which zero-valent mercury gas is separated and removed from the gas to be treated by adding it to the washing water or circulating water of the cooling tower.
  • a solution is used in which the mercury oxidizer is iron chloride FeCl containing trivalent iron Fe 3+ as a component.
  • any one of the above first to third methods is adopted. If the pH adjuster is hydrochloric acid HC1, the solution is adopted.
  • any one of the above first to fourth means is adopted. If the gas to be treated is combustion exhaust gas from a combustion furnace, the solution is adopted. .
  • the invention's effect is adopted.
  • the zero-valent mercury gas is divalent mercury by bringing an aqueous solution of a mercury oxidizing agent containing trivalent iron Fe 3+ into a pH 1 or lower and bringing it into gas-liquid contact with the gas to be treated. Since it is converted into a gas and dissolved in an aqueous solution and separated from the gas to be treated, zero-valent mercury gas can be separated from the gas to be treated with a sufficient removal rate while suppressing the amount of mercury oxidizing agent used.
  • FIG. 1 is a system diagram of an exhaust gas treatment apparatus to which a mercury removal apparatus according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a detailed configuration of a mercury removing apparatus according to an embodiment of the present invention.
  • FIG. 3 is an experimental result showing the effectiveness of using trivalent iron Fe 3+ as a component as a mercury oxidizing agent in an embodiment of the present invention.
  • FIG. 4 is an experimental result showing the effect of pH on the Hg capture rate when using iron chloride FeCl having excellent oxidation performance against zero-valent mercury Hg according to an embodiment of the present invention. is there.
  • FIG. 5 is an experimental result showing the dependence of the Hg G trapping rate on the concentration of trivalent iron Fe 3+ in one embodiment of the present invention.
  • FIG. 6 In one embodiment of the present invention, simulation according to the circulation rate of an aqueous solution of salted pig iron FeCl
  • FIG. 7 is an experimental result showing the influence of gas-liquid contact on the simulated combustion exhaust gas in one embodiment of the present invention.
  • FIG. 1 is a system diagram of an exhaust gas treatment apparatus to which the mercury removal apparatus according to this embodiment is applied.
  • this exhaust gas treatment device is composed of a boiler 1, a denitration device 2, an electric dust collector 3, a two-column desulfurization device 4 and a chimney 5.
  • the boiler 1 is for generating steam for power generation at, for example, a thermal power plant, and generates steam using oil, natural gas, coal, or the like as fuel. Exhaust gas generated by burning such fuel in the boiler 1 is supplied from the boiler 1 to the denitration device 2.
  • the denitration apparatus 2 removes nitrogen oxides NOx contained in the exhaust gas. This The denitrification apparatus 2 decomposes nitrogen oxides NOx into nitrogen N and water HO, for example, by causing ammonia to act on exhaust gas in the presence of a catalyst.
  • the electric dust collector 3 is
  • the double tower type desulfurization apparatus 4 is a double tower type wet desulfurization apparatus that wet-removes sulfur oxide SOx contained in the exhaust gas, and as shown in the drawing, the cooling tower 4A arranged in the preceding stage and the absorption arranged in the latter stage. It is composed of power with Tower 4B.
  • the cooling tower 4A has both a function of cooling the exhaust gas using circulating water and a function as a mercury removing apparatus according to the present embodiment.
  • the cooling tower in a general two-column desulfurization apparatus aims at cooling and dust removal of exhaust gas
  • the circulating water is general water, but the circulating water W in this embodiment cools and removes the exhaust gas.
  • This is an aqueous solution containing a mercury oxidizer containing iron Fe 3+ as a component.
  • the use of such an aqueous solution as the circulating water W is one of the features of this embodiment.
  • the mercury oxidizer is preferably salted pig iron FeCl, but contains trivalent iron Fe 3+ as a component.
  • the washing water for the cooling tower 4A may be an aqueous solution containing a mercury oxidizing agent.
  • FIG. 2 is a block diagram showing a detailed configuration of the cooling tower 4A, that is, the mercury removing apparatus according to the present embodiment.
  • this mercury removal device is composed of a tower body 6 (collection container), a spray nozzle 7, a circulation pump 8, a pH meter 9, a pH adjuster addition device 10, a mercury oxidant addition device 11 Isometric composition.
  • the tower body 6 is, for example, a hollow cylindrical container.
  • a spray nozzle 7 that injects the circulating water downwards in the upper part of the tower, and a sealed structure that receives and collects the circulating water in the lower part of the inside. It has become.
  • This mercury removal device has the essential components for a cooling tower, that is, the main body 6, the spray nozzle 7 and the circulation pump 8. Agent addition device 10 and mercury oxidant addition device 11 are added.
  • an exhaust gas inlet 6a is provided at the side of the tower body 6, and a treated gas outlet 6b is provided at the upper part.
  • the exhaust gas taken into the tower body 6 from the inlet 6a The circulating water injected from the swell 7 moves upward while making gas-liquid contact, and is discharged to the outside of the tower main body 6 as a treated gas.
  • the spray nozzle 7 is arranged with a spread at the upper part in the tower body 6 so that the circulating water is in uniform gas-liquid contact with the exhaust gas in a wide area in the tower body 6.
  • the circulation pump 8 pumps out the circulating water accumulated in the lower part of the tower body 6 and supplies it to the spray nozzle 7.
  • the circulating pump 8 is continuously operated with respect to the exhaust gas that is continuously supplied into the tower body 6 due to the continuous operation of the thermal power plant, the circulating water is sequentially supplied from the spray nozzle 7 to the exhaust gas. Injected, gas-liquid contact between exhaust gas and circulating water is continuously performed.
  • the pH measuring device 9 is provided between the circulation pump 8 and the spray nozzle 7.
  • the pH measuring device 9 measures the pH value of the circulating water supplied from the circulation pump 8 to the spray nozzle 7, that is, the circulating water injected into the exhaust gas, and outputs the pH value to the pH adjuster adding device 10 as pH information.
  • the pH adjuster addition device 10 supplies the pH adjuster to the circulating water so that the pH value of the circulating water measured by the pH meter 9 is maintained at about 1 or less.
  • This pH adjuster is preferably HC1 hydrochloride.
  • sulfuric acid HSO lowers the removal performance of zero-valent mercury gas.
  • Mercury oxidizer addition device 11 can be used for example,
  • the absorption tower 4B is for removing the oxalic acid SOx from the treated gas discharged from the cooling tower 4A (that is, the mercury removing device).
  • the absorption tower 4B separates the oxalic acid SOx as gypsum Ca SO into the absorption liquid by reacting the exhaust gas with an absorption liquid containing, for example, lime slurry.
  • the chimney 5 has an absorption tower 4B, that is, a two-column desulfurization device 4
  • the exhaust gas exhausted from the power is released to the high air outside.
  • Fig. 3 shows experimental results showing the effectiveness of using a trivalent iron Fe 3+ component as a mercury oxidant. More specifically, salty iron-iron FeCl containing trivalent iron Fe 3+ as a component, iron chloride FeCl containing divalent iron Fe 2+ as a component, tetravalent titanium Ti used in this embodiment. 4+
  • Salt-titanium TiCl as a component
  • Trivalent titanium Ti3 + Salt-titanium TiCl as a component
  • Trivalent titanium Aluminum 3 Aluminum A1C1 with Al 3+ as component
  • phosphoric acid HP with pentavalent phosphorus P 5+ as component
  • the 3rd liquid shows a high Hg G trapping rate, it repels salted iron iron FeCl containing divalent iron Fe2 +.
  • Trivalent iron Fe 3+ is zero-valent mercury Hg.
  • acidity that is, zero-valent mercury Hg.
  • FIG. 4 is an experimental result showing the influence of pH on the Hg trapping rate when iron chloride FeCl having excellent oxidation performance against zero-valent mercury Hg ° as described above is used.
  • the pH was adjusted by keeping it constant and adding HC1 hydrochloric acid.
  • the Hg capture rate hardly increases even when the chlorine C1 concentration, that is, the amount of HC1 added, is increased in the region below pHl. Therefore, the amount of salty pig iron FeCl used as the mercury oxidizer is minimized, and a high Hg capture rate is obtained.
  • the pH is preferable to set the pH to about 1 or less, preferably about 1 or less.
  • FIG. 5 is an experimental result showing the dependence of the Hg G trapping rate on the concentration of trivalent iron Fe 3+ .
  • the Hg capture rate was measured by circulating a mixed gas.
  • a counter-current spray type wet scrubber having the same configuration as the cooling tower 4A described above is used, and the circulation rate of the aqueous solution of iron chloride FeCl as the circulating water is 2 lZmin, 4 lZmin or 5 lZmi.
  • the Hg removal rate of the simulated combustion exhaust gas when switching to n is shown. According to the results of this experiment, it was confirmed that the simulated combustion exhaust gas having substantially the same composition as the exhaust gas of boiler 1 can achieve a Hg removal rate of nearly 80% regardless of the circulation amount. It was done.
  • FIG. 7 shows Experimental Examples 1 and 2 regarding the influence of gas-liquid contact on the simulated combustion exhaust gas.
  • each was filled with 100 ml of absorption liquid (aqueous solution of salted iron iron FeCl).
  • the absorption liquid volume of 100 ml indicates the number of publishing times
  • the absorption liquid volume of 300 ml indicates the publishing frequency of 3
  • the absorption liquid volume of 500 ml indicates the publishing frequency of 5 times.
  • the number of publishing times that is, simulated combustion exhaust gas Hg removal rate increases as the number of gas-liquid contact between the liquid and the absorbent (iron chloride FeCl aqueous solution) increases.
  • salted pig iron FeCl containing trivalent iron Fe 3+ as a component is converted to mercury acid.
  • An aqueous solution that is contained as a soot agent and that has a pH set to about 1 or less by adding a pH adjuster such as hydrochloric acid HC1 is gas-liquid contacted with the gas to be treated such as the exhaust gas (combustion exhaust gas) of boiler 1.
  • a pH adjuster such as hydrochloric acid HC1
  • this mercury removal apparatus is an essential component for the cooling tower, that is, a component for adding a function as a mercury removal apparatus to the tower body 6, the spray nozzle 7 and the circulation pump 8, ie, pH.
  • a measuring instrument 9, a pH adjuster addition device 10 and a mercury oxidant addition device 11 are added. Therefore, by adding a pH meter 9, pH adjuster addition device 10 and mercury oxidizer addition device 11 to an existing thermal power plant, a zero-valent mercury gas removal function can be realized. There are advantages to being able to introduce it easily.
  • Mercury oxidizer is not limited to iron chloride FeCl. It is a compound containing trivalent iron Fe 3+ as a component.
  • the pH adjuster is not limited to HC1 hydrochloric acid, but other ones may be used.
  • the gas to be treated is not limited to the combustion exhaust gas of the combustion furnace of the boiler 1.
  • the configuration of the mercury removal device is not limited to the above embodiment. ⁇ . Any other configuration may be used as long as it can achieve good gas-liquid contact between the gas to be treated and the aqueous solution of the mercury oxidizing agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

A method for separating and removing a zero-valent mercury gas from a gas to be treated, which comprises contacting an aqueous solution having a pH of about 1 or less and containing a mercury-oxidizing agent having a tri-valent iron Fe3+ as a component with the gas to be treated, to thereby convert the zero-valent mercury gas to a di-valent mercury gas and simultaneously dissolve it into the aqueous solution. The above method allows the separation and removal of a zero-valent mercury gas from a gas to be treated with a satisfactory removal percentage while suppressing the amount of the mercury-oxidizing agent to be used.

Description

明 細 書  Specification
水銀除去装置及び方法  Mercury removal apparatus and method
技術分野  Technical field
[0001] 本発明は、水銀除去装置及び方法に関する。  [0001] The present invention relates to a mercury removal apparatus and method.
背景技術  Background art
[0002] 例えば特開平 10— 216476号公報には、処理対象物である排ガス中のゼロ価水 銀 Hgを除去する排ガス処理装置力 Sいくつか開示されている。この特開平 10— 216 476号公報に記載された排ガス処理装置のうち、図 3に記載された排ガス処理装置 は、冷却塔と吸収塔とから成る 2塔式の湿式脱硫装置を備えた排ガス処理装置にお いて、前段に配置された冷却塔の循環水に次亜塩素酸ソーダ、塩化銅、塩化マンガ ン、塩化鉄、キレート剤、石炭灰等の水銀除去剤を添加することにより、排ガス中のゼ 口価水銀 HgGを水溶性の 2価水銀 Hg2+に変換して除去するものである。 [0002] For example, Japanese Patent Application Laid-Open No. 10-216476 discloses several exhaust gas treatment apparatus powers S for removing zero-valent mercury Hg in exhaust gas, which is an object to be treated. Among the exhaust gas treatment devices described in JP-A-10-216476, the exhaust gas treatment device shown in FIG. 3 is an exhaust gas treatment device equipped with a two-column wet desulfurization device comprising a cooling tower and an absorption tower. In the equipment, mercury removal agents such as sodium hypochlorite, copper chloride, manganese chloride, iron chloride, chelating agent, coal ash, etc. are added to the circulating water of the cooling tower placed in the previous stage, so that This product converts and removes the mercury Hg G into water-soluble divalent mercury Hg 2+ .
特許文献 1:特開平 10— 216476号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-216476
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、上記特許文献 1の排ガス処理装置には以下のような問題点がある。 [0003] Incidentally, the exhaust gas treatment apparatus of Patent Document 1 has the following problems.
(1)上記水銀除去剤を低 pHの循環水に添加した場合に水銀除去剤が力なりの割合 で分解してしまうために大量の水銀除去剤を添加する必要がある。  (1) When the above mercury removing agent is added to low pH circulating water, the mercury removing agent decomposes at a strong rate, so it is necessary to add a large amount of mercury removing agent.
(2)処理対象物である排ガス中に二酸化イオウ SOが含まれて ヽた場合に水銀除去  (2) Mercury removal when sulfur dioxide SO is contained in the exhaust gas to be treated
2  2
剤が二酸化イオウ soと反応して消費されてしまうため、やはり大量の水銀除去剤を  Since the agent reacts with sulfur dioxide so that it is consumed, a large amount of mercury removing agent is still used.
2  2
添加する必要がある。  It is necessary to add.
[0004] 本発明は、上述した事情に鑑みてなされたものであり、水銀酸化剤の使用量を抑え 、かつゼロ価水銀ガスを処理対象ガス力 十分な除去率で分離 ·除去することを目的 とするちのである。  [0004] The present invention has been made in view of the above-described circumstances, and aims to suppress and reduce the amount of mercury oxidant used and to separate and remove zero-valent mercury gas at a sufficient removal rate for the gas to be processed. It is a life.
課題を解決するための手段  Means for solving the problem
[0005] 上記目的を達成するために、本発明では、水銀除去装置に係わる第 1の解決手段 として、ゼロ価水銀ガスを水溶性の 2価水銀ガスに変換して処理対象ガスカゝら分離 · 除去する装置において、 3価の鉄 Fe3+を成分とする水銀酸化剤を含むと共に pHが 約 1以下である水溶液を、前記処理対象ガスとを接触させる反応分離手段を具備す る、という解決手段を採用する。 [0005] In order to achieve the above object, according to the present invention, as a first solution for the mercury removal apparatus, zero-valent mercury gas is converted into water-soluble divalent mercury gas and separated from the gas to be treated. The apparatus for removal comprises a reaction separation means for bringing an aqueous solution containing a mercury oxidant composed of trivalent iron Fe 3+ and having a pH of about 1 or less into contact with the gas to be treated. Adopt means.
[0006] 水銀除去装置に係わる第 2の解決手段として、上記第 1の手段において、反応分 離手段は、水溶液を処理対象ガスにスプレーするノズルと、該ノズルによって処理対 象ガスと接触した後の水溶液を回収する回収容器と、該回収容器に回収された水溶 液を前記ノズルに供給する循環ポンプと、水溶液に水銀酸化剤を添加する水銀酸化 剤添加装置と、前記回収容器に回収された水溶液の pHを計測する pH計測器と、該 pH計測器の計測結果に基づいてノズルからスプレーされる水溶液の pHが 1以下を 維持するように pH調整剤を水溶液に添加する pH調整剤添加部とからなる、 t ヽぅ解 決手段を採用する。 [0006] As a second solving means relating to the mercury removing apparatus, in the first means, the reaction separating means includes a nozzle for spraying an aqueous solution onto the gas to be treated, and after contacting the gas to be treated by the nozzle. A recovery container for recovering the aqueous solution of the aqueous solution, a circulation pump for supplying the aqueous solution recovered in the recovery container to the nozzle, a mercury oxidant addition device for adding a mercury oxidant to the aqueous solution, and the recovery container A pH meter that measures the pH of the aqueous solution, and a pH adjuster addition unit that adds a pH adjuster to the aqueous solution so that the pH of the aqueous solution sprayed from the nozzle is 1 or less based on the measurement result of the pH meter T ヽ ぅ The solution method is adopted.
[0007] 水銀除去装置に係わる第 3の解決手段として、上記第 2の手段において、ノズルと 回収容器と循環ポンプとは二塔式の湿式脱硫装置において前段に配置される冷却 塔を構成しており、反応分離手段は、当該冷却塔に pH計測器、 pH調整剤添加部及 び水銀酸化剤添加装置が付加されて構成される、と ヽぅ解決手段を採用する。  [0007] As a third solution relating to the mercury removing apparatus, in the second means, the nozzle, the recovery container, and the circulation pump constitute a cooling tower arranged in the preceding stage in the two-column type wet desulfurization apparatus. The reaction separation means adopts the solution means that the cooling tower is configured with a pH measuring device, a pH adjuster addition unit, and a mercury oxidizer addition device.
[0008] 水銀除去装置に係わる第 4の解決手段として、上記第 1〜第 3いずれかの手段に おいて、水銀酸化剤は鉄 Fe3+を成分とする塩化鉄 FeClであるという解決手段を採 [0008] As a fourth means for solving the mercury removal apparatus, in any one of the above first to third means, the mercury oxidizing agent is iron chloride FeCl containing iron Fe 3+ as a component. Sampling
3  Three
用する。  Use.
[0009] 水銀除去装置に係わる第 5の解決手段として、上記第 1〜第 4いずれかの手段に お!、て、 pH調整剤は塩酸 HC1であると 、う解決手段を採用する。 水銀除去装置に係わる第 6の解決手段として、上記第 1〜第 5いずれかの手段に ぉ 、て、前記処理対象ガスは燃焼炉の燃焼排ガスであると 、う解決手段を採用する  [0009] As a fifth solution relating to the mercury removing apparatus, any one of the above first to fourth means is adopted. If the pH adjuster is hydrochloric acid HC1, the solution is adopted. As a sixth solving means relating to the mercury removing apparatus, the above-described solving means is adopted in which any one of the above first to fifth means is that the gas to be treated is combustion exhaust gas from a combustion furnace.
[0010] 一方、本発明では、水銀除去方法に係わる第 1の解決手段として、ゼロ価水銀ガス を水溶性の 2価水銀ガスに変換して処理対象ガスから分離'除去する方法にぉ ヽて 、 3価の鉄 Fe3+を成分とする水銀酸化剤を含むと共に pHが約 1以下である水溶液を 前記処理対象ガスと接触させることにより前記ゼロ価水銀ガスを 2価水銀ガスに変換 すると共に水溶液中に溶解させて処理対象ガスから分離'除去する、という解決手段 を採用する。 [0010] On the other hand, in the present invention, as a first solution for the mercury removal method, a method of converting zero-valent mercury gas into water-soluble divalent mercury gas and separating it from the gas to be treated is removed. The zero-valent mercury gas is converted to the divalent mercury gas by contacting an aqueous solution containing a mercury oxidizer containing trivalent iron Fe 3+ and having a pH of about 1 or less with the gas to be treated. At the same time, a solution is adopted that is dissolved in an aqueous solution and separated and removed from the gas to be treated.
[0011] 水銀除去方法に係わる第 2の解決手段として、上記第 1の手段において、 pHを約 1 以下とするための pH調整剤及び水銀酸化剤を二塔式の湿式脱硫装置において前 段に配置される冷却塔の洗浄水あるいは循環水に添加することによりゼロ価水銀ガ スを処理対象ガスから分離'除去する、という解決手段を採用する。  [0011] As a second solution for the mercury removal method, in the first means, a pH adjuster and a mercury oxidant for reducing the pH to about 1 or less are used in a two-stage wet desulfurization apparatus. A solution is adopted in which zero-valent mercury gas is separated and removed from the gas to be treated by adding it to the washing water or circulating water of the cooling tower.
[0012] 水銀除去方法に係わる第 3の解決手段として、上記第 1または第 2の手段において 、水銀酸化剤は 3価の鉄 Fe3+を成分とする塩化鉄 FeClであるという解決手段を採 [0012] As a third solution for the mercury removal method, in the first or second method described above, a solution is used in which the mercury oxidizer is iron chloride FeCl containing trivalent iron Fe 3+ as a component.
3  Three
用する。  Use.
[0013] 水銀除去方法に係わる第 4の解決手段として、上記第 1〜第 3いずれかの手段に お!、て、 pH調整剤は塩酸 HC1であると 、う解決手段を採用する。  [0013] As a fourth solution for the mercury removal method, any one of the above first to third methods is adopted. If the pH adjuster is hydrochloric acid HC1, the solution is adopted.
[0014] 水銀除去方法に係わる第 5の解決手段として、上記第 1〜第 4いずれかの手段に お!、て、処理対象ガスは燃焼炉の燃焼排ガスであると 、う解決手段を採用する。 発明の効果  [0014] As a fifth solution relating to the mercury removal method, any one of the above first to fourth means is adopted. If the gas to be treated is combustion exhaust gas from a combustion furnace, the solution is adopted. . The invention's effect
[0015] この発明によれば、 3価の鉄 Fe3+を成分とする水銀酸化剤の水溶液を pHl以下と して処理対象ガスと気液接触させることにより、ゼロ価水銀ガスは 2価水銀ガスに変換 されると共に水溶液中に溶解して処理対象ガスから分離されるので、水銀酸化剤の 使用量を抑えつつゼロ価水銀ガスを十分な除去率で処理対象ガス力 分離すること ができる。 [0015] According to the present invention, the zero-valent mercury gas is divalent mercury by bringing an aqueous solution of a mercury oxidizing agent containing trivalent iron Fe 3+ into a pH 1 or lower and bringing it into gas-liquid contact with the gas to be treated. Since it is converted into a gas and dissolved in an aqueous solution and separated from the gas to be treated, zero-valent mercury gas can be separated from the gas to be treated with a sufficient removal rate while suppressing the amount of mercury oxidizing agent used.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の一実施形態に係わる水銀除去装置が適用された排ガス処理装置の 系統図である。  FIG. 1 is a system diagram of an exhaust gas treatment apparatus to which a mercury removal apparatus according to an embodiment of the present invention is applied.
[図 2]本発明の一実施形態に係わる水銀除去装置の詳細構成を示すブロック図であ る。  FIG. 2 is a block diagram showing a detailed configuration of a mercury removing apparatus according to an embodiment of the present invention.
[図 3]本発明の一実施形態において水銀酸化剤として 3価の鉄 Fe3+を成分とするも のを用いることの有効性を示す実験結果である。 FIG. 3 is an experimental result showing the effectiveness of using trivalent iron Fe 3+ as a component as a mercury oxidizing agent in an embodiment of the present invention.
[図 4]本発明の一実施形態にぉ 、て、ゼロ価水銀 Hgに対する酸化性能の優れた塩 化鉄 FeClを用いる場合における Hg捕捉率に与える pHの影響を示す実験結果で ある。 FIG. 4 is an experimental result showing the effect of pH on the Hg capture rate when using iron chloride FeCl having excellent oxidation performance against zero-valent mercury Hg according to an embodiment of the present invention. is there.
[図 5]本発明の一実施形態において HgG捕捉率の 3価の鉄 Fe3+の濃度に対する依 存性を示す実験結果である。 FIG. 5 is an experimental result showing the dependence of the Hg G trapping rate on the concentration of trivalent iron Fe 3+ in one embodiment of the present invention.
[図 6]本発明の一実施形態において塩ィ匕鉄 FeClの水溶液の循環量に応じた模擬  [FIG. 6] In one embodiment of the present invention, simulation according to the circulation rate of an aqueous solution of salted pig iron FeCl
3  Three
燃焼排ガスの Hg。除去率を示す実験結果である。  Hg of combustion exhaust gas. It is an experimental result which shows a removal rate.
[図 7]本発明の一実施形態において模擬燃焼排ガスに関する気液接触の影響を示 す実験結果である。  FIG. 7 is an experimental result showing the influence of gas-liquid contact on the simulated combustion exhaust gas in one embodiment of the present invention.
符号の説明  Explanation of symbols
[0017] 1 ボイラ [0017] 1 boiler
2 脱硝装置  2 Denitration equipment
ス V しん  Su V Shin
4 二塔式脱硫装置  4 Two-column desulfurization equipment
5 煙突  5 Chimney
6 塔本体 (回収容器)  6 Tower body (collection container)
7 スプレーノズル  7 Spray nozzle
8 循環ポンプ  8 Circulation pump
9 pH計測器  9 pH meter
10 pH調整剤添加装置  10 pH adjuster addition device
11 水銀酸化剤添加装置  11 Mercury oxidizer addition equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、図面を参照して、本発明の一実施形態について説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図 1は、本実施形態に係わる水銀除去装置が適用された排ガス処理装置の系統図 である。この図に示すように、この排ガス処理装置は、ボイラ 1、脱硝装置 2、電気集じ ん器 3、二塔式脱硫装置 4及び煙突 5から構成されている。ボイラ 1は、例えば火力発 電所にて発電用水蒸気を発生させるためのものであり、石油、天然ガスあるいは石炭 等を燃料として水蒸気を発生させる。このような燃料をボイラ 1で燃焼させたことによつ て発生した排ガスは、ボイラ 1から脱硝装置 2に供給される。  FIG. 1 is a system diagram of an exhaust gas treatment apparatus to which the mercury removal apparatus according to this embodiment is applied. As shown in this figure, this exhaust gas treatment device is composed of a boiler 1, a denitration device 2, an electric dust collector 3, a two-column desulfurization device 4 and a chimney 5. The boiler 1 is for generating steam for power generation at, for example, a thermal power plant, and generates steam using oil, natural gas, coal, or the like as fuel. Exhaust gas generated by burning such fuel in the boiler 1 is supplied from the boiler 1 to the denitration device 2.
[0019] 脱硝装置 2は、上記排ガス中に含まれる窒素酸ィ匕物 NOxを除去するものである。こ の脱硝装置 2は、例えば触媒の存在下で排ガスにアンモニアを作用させることにより 窒素酸化物 NOxを窒素 Nと水 H Oに分解する。電気集じん器 3は、対向電極間の [0019] The denitration apparatus 2 removes nitrogen oxides NOx contained in the exhaust gas. This The denitrification apparatus 2 decomposes nitrogen oxides NOx into nitrogen N and water HO, for example, by causing ammonia to act on exhaust gas in the presence of a catalyst. The electric dust collector 3 is
2 2  twenty two
電場によって排ガス中に含まれる粉塵を吸着して除去するものである。二塔式脱硫 装置 4は、排ガス中に含まれるィォゥ酸化物 SOxを湿式除去する二塔式の湿式脱硫 装置であり、図示するように前段に配置された冷却塔 4Aと後段に配置された吸収塔 4Bと力 構成されている。  The dust contained in the exhaust gas is adsorbed and removed by the electric field. The double tower type desulfurization apparatus 4 is a double tower type wet desulfurization apparatus that wet-removes sulfur oxide SOx contained in the exhaust gas, and as shown in the drawing, the cooling tower 4A arranged in the preceding stage and the absorption arranged in the latter stage. It is composed of power with Tower 4B.
[0020] 冷却塔 4Aは、循環水を用いて排ガスを冷却する機能と本実施形態に係わる水銀 除去装置としての機能とを併せ持つものである。ここで、一般的な二塔式脱硫装置に おける冷却塔は排ガスの冷却と除塵を目的としているので循環水は一般水であるが 、本実施形態における循環水 Wは、排ガスを冷却及び除塵する機能に加えて、排ガ ス中に含まれるゼロ価水銀 (Hg°)ガスを水溶性の 2価水銀 (Hg2+)ガスに酸ィ匕する機 能をも併せ持たせる必要から、 3価の鉄 Fe3+を成分とする水銀酸化剤を含む水溶液 になっている。 [0020] The cooling tower 4A has both a function of cooling the exhaust gas using circulating water and a function as a mercury removing apparatus according to the present embodiment. Here, since the cooling tower in a general two-column desulfurization apparatus aims at cooling and dust removal of exhaust gas, the circulating water is general water, but the circulating water W in this embodiment cools and removes the exhaust gas. In addition to the function, it is necessary to have the function of oxidizing the zero-valent mercury (Hg °) gas contained in the exhaust gas into the water-soluble divalent mercury (Hg 2+ ) gas. This is an aqueous solution containing a mercury oxidizer containing iron Fe 3+ as a component.
[0021] このような水溶液を循環水 Wとして用いる点は、本実施形態の特徴の 1つである。な お、上記水銀酸化剤は、好ましくは塩ィ匕鉄 FeClであるが、 3価の鉄 Fe3+を成分とす [0021] The use of such an aqueous solution as the circulating water W is one of the features of this embodiment. The mercury oxidizer is preferably salted pig iron FeCl, but contains trivalent iron Fe 3+ as a component.
3  Three
るものであればこれに限定されるものではない。なお、上記循環水 wに代えて、冷却 塔 4Aの洗浄水を水銀酸化剤を含む水溶液としても良 ヽ。  However, the present invention is not limited to this. Instead of the circulating water w, the washing water for the cooling tower 4A may be an aqueous solution containing a mercury oxidizing agent.
[0022] 図 2は、冷却塔 4Aつまり本実施形態に係わる水銀除去装置の詳細構成を示すブ ロック図である。本水銀除去装置は、この図 2に示すように、塔本体 6 (回収容器)、ス プレーノズル 7、循環ポンプ 8、 pH計測器 9、 pH調整剤添加装置 10、水銀酸化剤添 加装置 11等力 構成されている。塔本体 6は、例えば中空円筒状の容器であり、内 部上方には循環水を下方に向けて噴射するスプレーノズル 7が、また内部下方は上 記循環水を受けて回収するように密閉構造になっている。本水銀除去装置は、冷却 塔としての本来の構成要件つまり塔本体 6、スプレーノズル 7及び循環ポンプ 8に、水 銀除去装置としての機能を付加するための構成要件つまり pH計測器 9、 pH調整剤 添加装置 10及び水銀酸化剤添加装置 11を付加したものである。  FIG. 2 is a block diagram showing a detailed configuration of the cooling tower 4A, that is, the mercury removing apparatus according to the present embodiment. As shown in Fig. 2, this mercury removal device is composed of a tower body 6 (collection container), a spray nozzle 7, a circulation pump 8, a pH meter 9, a pH adjuster addition device 10, a mercury oxidant addition device 11 Isometric composition. The tower body 6 is, for example, a hollow cylindrical container. A spray nozzle 7 that injects the circulating water downwards in the upper part of the tower, and a sealed structure that receives and collects the circulating water in the lower part of the inside. It has become. This mercury removal device has the essential components for a cooling tower, that is, the main body 6, the spray nozzle 7 and the circulation pump 8. Agent addition device 10 and mercury oxidant addition device 11 are added.
[0023] また、塔本体 6の側部には、排ガスの入口 6aが、また上部には処理済ガスの出口 6 bが各々設けられている。入口 6aから塔本体 6内に取り込まれた排ガスは、スプレーノ ズル 7から噴射される循環水を気液接触しつつ上方に移動し、処理済ガスとして塔本 体 6の外部に排出される。スプレーノズル 7は、循環水が排ガスと塔本体 6内の広い 領域で均等に気液接触するように、塔本体 6内の上部に広がりを持って配置されて いる。 [0023] Further, an exhaust gas inlet 6a is provided at the side of the tower body 6, and a treated gas outlet 6b is provided at the upper part. The exhaust gas taken into the tower body 6 from the inlet 6a The circulating water injected from the swell 7 moves upward while making gas-liquid contact, and is discharged to the outside of the tower main body 6 as a treated gas. The spray nozzle 7 is arranged with a spread at the upper part in the tower body 6 so that the circulating water is in uniform gas-liquid contact with the exhaust gas in a wide area in the tower body 6.
[0024] 循環ポンプ 8は、塔本体 6の内部下方に溜まった循環水を汲み出してスプレーノズ ル 7に供給する。火力発電所が連続運転されることにより塔本体 6内に連続供給され る排ガスに対して、循環ポンプ 8が連続運転されることにより、排ガスにはスプレーノ ズル 7から順次連続して循環水が噴射されて、排ガスと循環水との気液接触が連続 的に行われる。  The circulation pump 8 pumps out the circulating water accumulated in the lower part of the tower body 6 and supplies it to the spray nozzle 7. When the circulating pump 8 is continuously operated with respect to the exhaust gas that is continuously supplied into the tower body 6 due to the continuous operation of the thermal power plant, the circulating water is sequentially supplied from the spray nozzle 7 to the exhaust gas. Injected, gas-liquid contact between exhaust gas and circulating water is continuously performed.
[0025] pH計測器 9は、上記循環ポンプ 8とスプレーノズル 7との間に設けられている。この pH計測器 9は、循環ポンプ 8からスプレーノズル 7に供給される循環水、つまり排ガス に噴射される循環水の pH値を計測し pH情報として pH調整剤添加装置 10に出力す る。 pH調整剤添加装置 10は、 pH計測器 9で計測される循環水の pH値が約 1以下 を維持するように pH調整剤を循環水に供給するものである。この pH調整剤は、好ま しくは塩酸 HC1である。例えば硫酸 H SOは、ゼロ価水銀ガスの除去性能を低下さ  The pH measuring device 9 is provided between the circulation pump 8 and the spray nozzle 7. The pH measuring device 9 measures the pH value of the circulating water supplied from the circulation pump 8 to the spray nozzle 7, that is, the circulating water injected into the exhaust gas, and outputs the pH value to the pH adjuster adding device 10 as pH information. The pH adjuster addition device 10 supplies the pH adjuster to the circulating water so that the pH value of the circulating water measured by the pH meter 9 is maintained at about 1 or less. This pH adjuster is preferably HC1 hydrochloride. For example, sulfuric acid HSO lowers the removal performance of zero-valent mercury gas.
2 4  twenty four
せるので好ましくない。水銀酸化剤添加装置 11は、例えば塩ィ匕鉄 FeClを水銀酸ィ匕  This is not preferable. Mercury oxidizer addition device 11 can be used for example,
3 剤として循環水に供給するものである。  It is supplied to the circulating water as 3 agents.
[0026] 一方、吸収塔 4Bは、上記冷却塔 4A (つまり水銀除去装置)から排出された処理済 ガスからィォゥ酸ィ匕物 SOxを除去するためのものである。この吸収塔 4Bは、排ガスに 例えば石灰スラリーを含む吸収液と反応させることによりィォゥ酸ィ匕物 SOxを石膏 Ca SOとして吸収液中に分離する。なお、煙突 5は、吸収塔 4Bつまり二塔式脱硫装置 4On the other hand, the absorption tower 4B is for removing the oxalic acid SOx from the treated gas discharged from the cooling tower 4A (that is, the mercury removing device). The absorption tower 4B separates the oxalic acid SOx as gypsum Ca SO into the absorption liquid by reacting the exhaust gas with an absorption liquid containing, for example, lime slurry. The chimney 5 has an absorption tower 4B, that is, a two-column desulfurization device 4
4 Four
力も排出された排ガスを高所の外気に放出するものである。  The exhaust gas exhausted from the power is released to the high air outside.
[0027] 次に、このように構成された水銀除去装置の作用 ·効果について、図 3〜図 5に示 す実験データを参照して説明する。 [0027] Next, the action and effect of the mercury removing apparatus configured as described above will be described with reference to experimental data shown in Figs.
[0028] 図 3は、水銀酸化剤として 3価の鉄 Fe3+を成分とするものを用いることの有効性を示 す実験結果である。より具体的には、本実施形態で用いている 3価の鉄 Fe3+を成分 とする塩ィ匕鉄 FeCl、 2価の鉄 Fe2+を成分とする塩化鉄 FeCl、 4価のチタン Ti4+[0028] Fig. 3 shows experimental results showing the effectiveness of using a trivalent iron Fe 3+ component as a mercury oxidant. More specifically, salty iron-iron FeCl containing trivalent iron Fe 3+ as a component, iron chloride FeCl containing divalent iron Fe 2+ as a component, tetravalent titanium Ti used in this embodiment. 4+
3 2  3 2
成分とする塩ィ匕チタン TiCl、 3価のチタン Ti3+を成分とする塩ィ匕チタン TiCl、 3価の アルミ Al3+を成分とする塩ィ匕アルミ A1C1、また 5価のリン P5+を成分とするリン酸 H P Salt-titanium TiCl as a component, Trivalent titanium Ti3 + Salt-titanium TiCl as a component, Trivalent titanium Aluminum 3 Aluminum A1C1 with Al 3+ as component, and phosphoric acid HP with pentavalent phosphorus P 5+ as component
3 2 3 2
Oを含む水溶液を各々調製し、ゼロ価水銀 (Hg )ガスと窒素 (N )ガスの混合ガスをPrepare an aqueous solution containing O, and add a mixture of zero-valent mercury (Hg) gas and nitrogen (N) gas.
4 2 4 2
気液接触させた場合のゼロ価水銀 HgGの捕捉率を示している。なお、この実験では、 対象成分 (Fe3+, Fe2+, Ti4+, Ti3+, Al3+, P5+)の濃度を 100ppm、また塩酸 HC1 をカロえることによって各水溶液の pHを約 1に調整した。 This shows the capture rate of zero-valent mercury Hg G when gas-liquid contact is made. In this experiment, the concentration of the target components (Fe 3+ , Fe 2+ , Ti 4+ , Ti 3+ , Al 3+ , P 5+ ) was adjusted to 100 ppm, and the pH of each aqueous solution was obtained by caloring hydrochloric acid HC1. Was adjusted to about 1.
[0029] この実験結果から明らかなように、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClの水溶 [0029] As is clear from this experimental result, the aqueous solution of salty iron FeCl containing trivalent iron Fe 3+ as a component.
3 液は高い HgG捕捉率を示すものの、 2価の鉄 Fe2+を成分とする塩ィ匕鉄 FeClをはじ Although the 3rd liquid shows a high Hg G trapping rate, it repels salted iron iron FeCl containing divalent iron Fe2 +.
2 めとする他の水溶液は極めて低い HgG捕捉率を示している。 3価の鉄 Fe3+は、ゼロ 価水銀 Hg。に対する酸ィ匕力、つまりゼロ価水銀 Hg。力 電子を受容して 2価水銀 Hg2 +とする能力が他の対象成分よりも極めて高!ヽことが分かる。 The other 2 aqueous solutions show very low Hg G trapping rate. Trivalent iron Fe 3+ is zero-valent mercury Hg. Against acidity, that is, zero-valent mercury Hg. The force electron acceptor to the ability to divalent mercury Hg 2 + very high than the other components of interest! I understand that it is a trap.
[0030] 続、て、図 4は、上述したようにゼロ価水銀 Hg°に対する酸化性能の優れた塩化鉄 FeClを用いる場合における Hg捕捉率に与える pHの影響を示す実験結果である。 FIG. 4 is an experimental result showing the influence of pH on the Hg trapping rate when iron chloride FeCl having excellent oxidation performance against zero-valent mercury Hg ° as described above is used.
3  Three
なお、この実験では、塩化鉄 FeClの水溶液中の 3価の鉄 Fe3+の濃度 lOOppmで In this experiment, the concentration of trivalent iron Fe 3+ in the aqueous solution of iron chloride FeCl was lOOppm.
3  Three
一定とし、また塩酸 HC1を添加することにより pHを調整した。  The pH was adjusted by keeping it constant and adding HC1 hydrochloric acid.
[0031] この実験結果は、塩ィ匕鉄 FeClの水溶液の pHが 1近傍まで低下すると、 HgG捕捉 [0031] This experimental result shows that when the pH of an aqueous solution of salted pig iron FeCl drops to around 1, Hg G trapping
3  Three
率が急激に増加すると共に、 pHl以下の領域では塩素 C1—濃度、つまり塩酸 HC1の 添加量を増やしても Hg捕捉率は殆ど上昇しないことを示している。したがって、水 銀酸化剤としての塩ィ匕鉄 FeClの使用量を極力抑え、かつ、高い Hg捕捉率を得る  As the rate increases rapidly, the Hg capture rate hardly increases even when the chlorine C1 concentration, that is, the amount of HC1 added, is increased in the region below pHl. Therefore, the amount of salty pig iron FeCl used as the mercury oxidizer is minimized, and a high Hg capture rate is obtained.
3  Three
ためには、 pHを約 1以下、好ましくは 1以下の近傍に設定することが好ましいことが分 かる。  For this purpose, it can be seen that it is preferable to set the pH to about 1 or less, preferably about 1 or less.
[0032] 続いて、図 5は、 HgG捕捉率の 3価の鉄 Fe3+の濃度に対する依存性を示す実験結 果である。この実験では、塩酸を添加して pHを 1以下に設定した場合と塩酸を添カロ することなく pHを約 2. 5に設定した場合とについて、 3価の鉄 Fe3+の濃度 (Fe3+濃 度)の異なる水溶液に約 5 μ g/m3Nのゼロ価水銀 (HgG)ガスと窒素(N )ガスとの混 [0032] Next, FIG. 5 is an experimental result showing the dependence of the Hg G trapping rate on the concentration of trivalent iron Fe 3+ . In this experiment, the and when set to approximately 2.5 to pH without added Caro and hydrochloric acid when the pH is set to 1 or less by adding hydrochloric acid, trivalent iron concentration Fe 3+ (Fe 3 + 5 μg / m 3 N of zero-valent mercury (Hg G ) gas and nitrogen (N) gas
2  2
合ガスを流通させて Hg捕捉率を測定した。  The Hg capture rate was measured by circulating a mixed gas.
[0033] この実験結果力も分力るように、 pHl以下の場合、 3価の鉄 Fe3+濃度が比較的低 Vヽ領域 (約 50ppm近傍領域)にお 、て 3価の鉄 Fe3+濃度の上昇に従って HgG捕捉 率が急激に上昇し、 3価の鉄 Fe3+濃度が約 lOOppm以上の領域では Hg捕捉率が 比較的緩やかに上昇する。これに対して、 pHが約 2. 5の場合には、 Hg捕捉率が 3 価の鉄 Fe3+濃度の上昇に対して略一定の傾斜で上昇しているものの、 pHが 1以下 の場合に比べて Hg捕捉率の値は低い。したがって、 3価の鉄 Fe3+濃度が比較的低 い領域、つまり水銀酸化剤としての塩化鉄 FeClの使用量を極力抑えた状態で、高 [0033] The experimental results force to Bunryokuru so, if: PHL, trivalent iron Fe 3+ concentration our relatively low Vヽregion (approximately 50ppm neighboring region), on 3-valent iron Fe 3+ As the concentration increases, the Hg G trapping rate increases rapidly, and in the region where the trivalent iron Fe 3+ concentration is about lOOppm or more, the Hg trapping rate is It rises relatively slowly. On the other hand, when the pH is about 2.5, the Hg trapping rate increases with a substantially constant slope with respect to the increase of the trivalent iron Fe 3+ concentration, but the pH is 1 or less. Compared with, Hg capture rate is low. Therefore, in a region where the concentration of trivalent iron Fe 3+ is relatively low, that is, in a state where the amount of iron chloride FeCl used as a mercury oxidizer is minimized,
3  Three
い Hg捕捉率を得るためには、やはり PHを約 1以下に設定することが好ましいことが 分かる。 It can be seen that it is preferable to set PH to about 1 or less in order to obtain a high Hg capture rate.
[0034] 上記図 3〜図 5に示す実験結果は、実際の火力発電所のボイラ 1から排出される排 ガスとは異なる成分組成、つまりゼロ価水銀 (Hg )ガスと窒素 (N )ガスの混合ガスに  [0034] The experimental results shown in Fig. 3 to Fig. 5 show that the composition of the components differs from the exhaust gas discharged from the boiler 1 of the actual thermal power plant, that is, zero-valent mercury (Hg) gas and nitrogen (N) gas. Mixed gas
2  2
ついてのものである。これに対して、図 6及び図 7に示す実験結果は、窒素酸化物 N Oxや硫黄酸ィ匕物 SOx等を含んだボイラ 1の排ガスと略同一の成分組成を有する模 擬燃焼排ガスに関する Hg。除去率を示して 、る。  It is about. On the other hand, the experimental results shown in FIGS. 6 and 7 show that Hg related to simulated combustion exhaust gas having substantially the same composition as the exhaust gas of boiler 1 containing nitrogen oxides N Ox and sulfur oxides SOx. . Show the removal rate.
[0035] 図 6では、上述した冷却塔 4Aと同様構成の向流スプレー型の湿式スクラバを用い、 循環水である塩化鉄 FeClの水溶液の循環量を 2lZmin、 4lZminあるいは 5lZmi [0035] In Fig. 6, a counter-current spray type wet scrubber having the same configuration as the cooling tower 4A described above is used, and the circulation rate of the aqueous solution of iron chloride FeCl as the circulating water is 2 lZmin, 4 lZmin or 5 lZmi.
3  Three
nに切り替えた場合における模擬燃焼排ガスの Hg除去率を示して 、る。この実験結 果によれば、ボイラ 1の排ガスと略同一の成分組成を有する模擬燃焼排ガスにっ ヽ て、何れの循環量にぉ 、ても 80%近 、Hg除去率が得られることが確認された。  The Hg removal rate of the simulated combustion exhaust gas when switching to n is shown. According to the results of this experiment, it was confirmed that the simulated combustion exhaust gas having substantially the same composition as the exhaust gas of boiler 1 can achieve a Hg removal rate of nearly 80% regardless of the circulation amount. It was done.
[0036] 図 7は、上記模擬燃焼排ガスに関する気液接触の影響に関する実験例 1, 2を示し ている。この実験では、各々に 100mlの吸収液 (塩ィ匕鉄 FeClの水溶液)が充填され FIG. 7 shows Experimental Examples 1 and 2 regarding the influence of gas-liquid contact on the simulated combustion exhaust gas. In this experiment, each was filled with 100 ml of absorption liquid (aqueous solution of salted iron iron FeCl).
3  Three
ると共に模擬燃焼排ガスをパブリングする容器 (インピンジャ)を複数用意し、 1本のィ ンピンジャで模擬燃焼排ガスをパブリングした場合の吸収液量を 100ml、直列接続 された 3本のインピンジャで模擬燃焼排ガスをパブリングした場合の吸収液量を 300 ml、直列接続された 5本のインピンジャで模擬燃焼排ガスをパブリングした場合の吸 収液量を 500mlとした場合における Hg除去率を計測した。なお、実験例 1は、 3価 の鉄 Fe3+の濃度が lOOppmの場合、実験例 2は 3価の鉄 Fe3+の濃度が 400ppmの 場合を示している。 In addition, prepare multiple containers (impinger) for publishing simulated combustion exhaust gas, and the amount of absorbed liquid when publishing simulated combustion exhaust gas with one impinger is 100 ml, and simulated combustion exhaust gas is connected with three impingers connected in series. The Hg removal rate was measured when the amount of liquid absorbed was 300 ml, and the amount of liquid absorbed was 500 ml when publishing simulated combustion exhaust gas with five impingers connected in series. Experimental example 1 shows the case where the concentration of trivalent iron Fe 3+ is lOOppm, and Experimental example 2 shows the case where the concentration of trivalent iron Fe 3+ is 400 ppm.
[0037] すなわち、この実験において、吸収液量 100mlはパブリング回数が 1回を、吸収液 量 300mlはパブリング回数が 3回を、また吸収液量 500mlはパブリング回数が 5回を それぞれ示している。この実験結果によれば、パブリング回数つまり模擬燃焼排ガス と吸収液 (塩化鉄 FeClの水溶液)との気液接触の回数を増やす程、 Hg除去率が [0037] That is, in this experiment, the absorption liquid volume of 100 ml indicates the number of publishing times, the absorption liquid volume of 300 ml indicates the publishing frequency of 3, and the absorption liquid volume of 500 ml indicates the publishing frequency of 5 times. According to the results of this experiment, the number of publishing times, that is, simulated combustion exhaust gas Hg removal rate increases as the number of gas-liquid contact between the liquid and the absorbent (iron chloride FeCl aqueous solution) increases.
3  Three
上昇することが確かめられた。この実験では、 5回のパブリングで 80%を超える HgG 除去率が得られて ヽることが確認された。 It was confirmed to rise. In this experiment, it was confirmed that an Hg G removal rate of over 80% was obtained with 5 publishings.
[0038] なお、上記図 7の実験結果は、模擬燃焼排ガスと気液接触の回数が Hg°除去率に 大きな影響を与えることを示しているが、この気液接触の状態をより良好にするため には、接触面積や接触時間をより大きくすることも極めて重要である。したがって、ス プレーノズル 7や塔本体 6の形状、あるいは塔本体 6における排ガスの通過方法等を 工夫することによって接触面積や接触時間をより大きくして、ゼロ価水銀 (Hg )ガス の除去率を向上させることが重要である。  [0038] The experimental results in Fig. 7 show that the number of contact with the simulated combustion exhaust gas and the gas-liquid greatly affects the Hg ° removal rate, but this gas-liquid contact state is improved. Therefore, it is extremely important to increase the contact area and the contact time. Therefore, by devising the shape of the spray nozzle 7 and the tower main body 6 or the exhaust gas passage method in the tower main body 6, the contact area and the contact time are increased, and the zero-valent mercury (Hg) gas removal rate is increased. It is important to improve.
[0039] このような本実施形態によれば、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClを水銀酸 [0039] According to the present embodiment, salted pig iron FeCl containing trivalent iron Fe 3+ as a component is converted to mercury acid.
3 ィ匕剤として含み、かつ、塩酸 HC1等の pH調整剤を添加することにより pHが約 1以下 に設定された水溶液を、ボイラ 1の排ガス (燃焼排ガス)等の処理対象ガスと気液接 触させることにより、水銀酸化剤の添加量 (使用量)を極力抑えた状態で処理対象ガ ス力 ゼロ価水銀 (Hg )ガスを高 、除去率で除去することができる。  3) An aqueous solution that is contained as a soot agent and that has a pH set to about 1 or less by adding a pH adjuster such as hydrochloric acid HC1 is gas-liquid contacted with the gas to be treated such as the exhaust gas (combustion exhaust gas) of boiler 1. By touching, it is possible to remove the zero-valent mercury (Hg) gas at a high removal rate while keeping the addition amount (use amount) of the mercury oxidizing agent as small as possible.
[0040] また、本水銀除去装置は、冷却塔としての本来の構成要件つまり塔本体 6、スプレ 一ノズル 7及び循環ポンプ 8に、水銀除去装置としての機能を付加するための構成要 件つまり pH計測器 9、 pH調整剤添加装置 10及び水銀酸化剤添加装置 11を付加し たものである。したがって、既存の火力発電所に pH計測器 9、 pH調整剤添加装置 1 0及び水銀酸化剤添加装置 11を付加することによってゼロ価水銀ガスの除去機能を 実現できるので、既存の火力発電所に容易に導入することができると 、うメリットがあ る。 [0040] In addition, this mercury removal apparatus is an essential component for the cooling tower, that is, a component for adding a function as a mercury removal apparatus to the tower body 6, the spray nozzle 7 and the circulation pump 8, ie, pH. A measuring instrument 9, a pH adjuster addition device 10 and a mercury oxidant addition device 11 are added. Therefore, by adding a pH meter 9, pH adjuster addition device 10 and mercury oxidizer addition device 11 to an existing thermal power plant, a zero-valent mercury gas removal function can be realized. There are advantages to being able to introduce it easily.
[0041] なお、本発明は、上記実施形態に限定されるものではなぐ例えば以下のような変 形例が考えられる。  [0041] It should be noted that the present invention is not limited to the above-described embodiment, and for example, the following modifications can be considered.
(1)水銀酸化剤は塩化鉄 FeClに限定されず、 3価の鉄 Fe3+を成分とする化合物で (1) Mercury oxidizer is not limited to iron chloride FeCl. It is a compound containing trivalent iron Fe 3+ as a component.
3  Three
あれば他のものでも良い。  Others are acceptable as long as they are present.
(2) pH調整剤は塩酸 HC1に限定されず、他のものでも良 、。  (2) The pH adjuster is not limited to HC1 hydrochloric acid, but other ones may be used.
(3)処理対象ガスは、ボイラ 1の燃焼炉の燃焼排ガスに限定されない。  (3) The gas to be treated is not limited to the combustion exhaust gas of the combustion furnace of the boiler 1.
(4)また、水銀除去装置の構成については、上記実施形態に限定されるものではな ヽ。処理対象ガスと水銀酸化剤の水溶液との良好な気液接触を実現できる構成であ れば、他の構成であっても良い。 (4) The configuration of the mercury removal device is not limited to the above embodiment. ヽ. Any other configuration may be used as long as it can achieve good gas-liquid contact between the gas to be treated and the aqueous solution of the mercury oxidizing agent.

Claims

請求の範囲 The scope of the claims
[1] ゼロ価水銀ガスを水溶性の 2価水銀ガスに変換して処理対象ガスから分離'除去す る装置であって、  [1] A device that converts zero-valent mercury gas into water-soluble divalent mercury gas and separates it from the gas to be treated.
3価の鉄 Fe3+を成分とする水銀酸化剤を含み、 pHが約 1以下である水溶液を、前 記処理対象ガスとを接触させる反応分離手段を具備することを特徴とする水銀除去 装置。 A mercury removing apparatus comprising a reaction separation means for bringing an aqueous solution containing a mercury oxidizing agent containing trivalent iron (Fe 3+) and having a pH of about 1 or less into contact with the gas to be treated. .
[2] 反応分離手段は、  [2] The reaction separation means is
水溶液を処理対象ガスにスプレーするノズルと、  A nozzle for spraying an aqueous solution onto the gas to be treated;
該ノズルによって処理対象ガスと接触した後の水溶液を回収する回収容器と、 該回収容器に回収された水溶液を前記ノズルに供給する循環ポンプと、 水溶液に水銀酸化剤を添加する水銀酸化剤添加装置と、  A recovery container for recovering the aqueous solution after contact with the gas to be treated by the nozzle; a circulation pump for supplying the aqueous solution recovered in the recovery container to the nozzle; and a mercury oxidant addition device for adding a mercury oxidant to the aqueous solution When,
前記回収容器に回収された水溶液の pHを計測する pH計測器と、  A pH meter for measuring the pH of the aqueous solution recovered in the recovery container;
該 pH計測器の計測結果に基づ 、てノズル力 スプレーされる水溶液の pHが 1以 下を維持するように pH調整剤を水溶液に添加する pH調整剤添加部と  Based on the measurement result of the pH measuring device, a pH adjusting agent adding section for adding a pH adjusting agent to the aqueous solution so that the pH of the aqueous solution sprayed by the nozzle force is maintained at 1 or less.
からなることを特徴とする請求項 1記載の水銀除去装置。  The mercury removing apparatus according to claim 1, comprising:
[3] ノズルと回収容器と循環ポンプとは二塔式の湿式脱硫装置にぉ 、て前段に配置さ れる冷却塔を構成しており、反応分離手段は、当該冷却塔に pH計測器、 pH調整剤 添加部及び水銀酸化剤添加装置が付加されて構成されることを特徴とする請求項2 記載の水銀除去装置。 [3] The nozzle, the recovery container, and the circulation pump constitute a cooling tower placed in the previous stage in a two-column wet desulfurization system, and the reaction separation means is connected to the cooling tower with a pH meter, pH 3. The mercury removing apparatus according to claim 2, further comprising a regulator adding unit and a mercury oxidizing agent adding device.
[4] 水銀酸化剤は、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClであることを特徴とする請 [4] The mercury oxidizer is a salty iron-iron FeCl containing trivalent iron Fe 3+ as a component.
3  Three
求項 1記載の水銀除去装置。  The mercury removing apparatus according to claim 1.
[5] 水銀酸化剤は、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClであることを特徴とする請 [5] The mercury oxidizer is salted iron iron FeCl containing trivalent iron Fe 3+ as a component.
3  Three
求項 2記載の水銀除去装置。  The mercury removing apparatus according to claim 2.
[6] 水銀酸化剤は、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClであることを特徴とする請 [6] The mercury oxidizing agent is a salty iron-iron FeCl containing trivalent iron Fe 3+ as a component.
3  Three
求項 3記載の水銀除去装置。  The mercury removing device according to claim 3.
[7] pH調整剤は、塩酸 HC1であることを特徴とする請求項 2記載の水銀除去装置。 [7] The mercury removing apparatus according to [2], wherein the pH adjuster is HC1 hydrochloric acid.
[8] pH調整剤は、塩酸 HC1であることを特徴とする請求項 3記載の水銀除去装置。  [8] The mercury removing apparatus according to [3], wherein the pH adjuster is HC1 hydrochloric acid.
[9] pH調整剤は、塩酸 HC1であることを特徴とする請求項 4記載の水銀除去装置。 [9] The mercury removing apparatus according to claim 4, wherein the pH adjusting agent is HC1 hydrochloric acid.
[10] pH調整剤は、塩酸 HC1であることを特徴とする請求項 5記載の水銀除去装置。 [10] The mercury removing apparatus according to claim 5, wherein the pH adjusting agent is HC1 hydrochloric acid.
[11] pH調整剤は、塩酸 HC1であることを特徴とする請求項 6記載の水銀除去装置。 [11] The mercury removing apparatus according to [6], wherein the pH adjusting agent is HC1 hydrochloric acid.
[12] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 1記載の水銀 [12] The mercury according to claim 1, wherein the gas to be treated is combustion exhaust gas from a combustion furnace
[13] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 2記載の水銀 去装置。 13. The mercury removal apparatus according to claim 2, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[14] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 3記載の水銀 去装置。  14. The mercury removal apparatus according to claim 3, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[15] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 4記載の水銀 去装置。  15. The mercury removal apparatus according to claim 4, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[16] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 5記載の水銀 去装置。  16. The mercury removal apparatus according to claim 5, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[17] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 6記載の水銀 去装置。  17. The mercury removal apparatus according to claim 6, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[18] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 7記載の水銀 去装置。  18. The mercury removal apparatus according to claim 7, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[19] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 8記載の水銀 去装置。  19. The mercury removal apparatus according to claim 8, wherein the gas to be treated is a combustion exhaust gas from a combustion furnace.
[20] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 9記載の水銀 去装置。  20. The mercury removal apparatus according to claim 9, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[21] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 10記載の水 良除去装置。  21. The water removal apparatus according to claim 10, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
[22] 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 11記載の水  [22] The water according to claim 11, wherein the gas to be treated is combustion exhaust gas from a combustion furnace
[23] ゼロ価水銀ガスを水溶性の 2価水銀ガスに変換して処理対象ガスから分離'除去す る方法であって、 [23] A method of converting zero-valent mercury gas into water-soluble divalent mercury gas and separating it from the gas to be treated.
3価の鉄 Fe3+を成分とする水銀酸化剤を含み、 pHが約 1以下である水溶液を前記 処理対象ガスと接触させることにより、前記ゼロ価水銀ガスを 2価水銀ガスに変換する と共に水溶液中に溶解させて処理対象ガスから分離 '除去する The zero-valent mercury gas is converted into divalent mercury gas by bringing an aqueous solution containing a mercury oxidant composed of trivalent iron Fe 3+ and having a pH of about 1 or less into contact with the gas to be treated. And dissolved in an aqueous solution and separated from the gas to be treated
ことを特徴とする水銀除去方法。  A method for removing mercury.
pHを約 1以下とするための pH調整剤及び水銀酸化剤を二塔式の湿式脱硫装置 において前段に配置される冷却塔の洗浄水あるいは循環水に添加することによりゼ 口価水銀ガスを処理対象ガスから分離'除去することを特徴とする請求項 23記載の 水銀除去方法。  The zero-value mercury gas is treated by adding a pH adjuster and mercury oxidizer to reduce the pH to about 1 or less to the washing water or circulating water of the cooling tower placed in the previous stage in a two-column wet desulfurization system. The method for removing mercury according to claim 23, wherein the mercury is separated and removed from the target gas.
水銀酸化剤は、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClであることを特徴とする請 The mercury oxidizer is a salty iron-iron FeCl containing trivalent iron Fe 3+ as a component.
3  Three
求項 23記載の水銀除去方法。 The method for removing mercury according to Claim 23.
水銀酸化剤は、 3価の鉄 Fe3+を成分とする塩ィ匕鉄 FeClであることを特徴とする請 The mercury oxidizer is a salty iron-iron FeCl containing trivalent iron Fe 3+ as a component.
3  Three
求項 24記載の水銀除去方法。 The method for removing mercury according to Claim 24.
pH調整剤は、塩酸 HC1であることを特徴とする請求項 24記載の水銀除去方法。 pH調整剤は、塩酸 HC1であることを特徴とする請求項 25記載の水銀除去方法。 pH調整剤は、塩酸 HC1であることを特徴とする請求項 26記載の水銀除去方法。 処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 23記載の水 銀除去方法。  25. The mercury removing method according to claim 24, wherein the pH adjuster is hydrochloric acid HC1. 26. The method for removing mercury according to claim 25, wherein the pH adjuster is hydrochloric acid HC1. 27. The mercury removing method according to claim 26, wherein the pH adjuster is HC1 hydrochloric acid. 24. The mercury removal method according to claim 23, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 24記載の水 銀除去方法。  25. The mercury removal method according to claim 24, wherein the treatment target gas is combustion exhaust gas from a combustion furnace.
処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 25記載の水 銀除去方法。  26. The mercury removal method according to claim 25, wherein the gas to be treated is a combustion exhaust gas from a combustion furnace.
処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 26記載の水 銀除去方法。  27. The mercury removal method according to claim 26, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 27記載の水 銀除去方法。  28. The mercury removal method according to claim 27, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 28記載の水 銀除去方法。  29. The mercury removal method according to claim 28, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
処理対象ガスは、燃焼炉の燃焼排ガスであることを特徴とする請求項 29記載の水 銀除去方法。  30. The mercury removal method according to claim 29, wherein the gas to be treated is combustion exhaust gas from a combustion furnace.
PCT/JP2005/017156 2004-11-15 2005-09-16 Apparatus and method for removing mercury WO2006051650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-330577 2004-11-15
JP2004330577A JP2006136856A (en) 2004-11-15 2004-11-15 Mercury removing device and method

Publications (1)

Publication Number Publication Date
WO2006051650A1 true WO2006051650A1 (en) 2006-05-18

Family

ID=36336333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017156 WO2006051650A1 (en) 2004-11-15 2005-09-16 Apparatus and method for removing mercury

Country Status (2)

Country Link
JP (1) JP2006136856A (en)
WO (1) WO2006051650A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435726A (en) * 2018-03-30 2018-08-24 北京生态岛科技有限责任公司 A kind of cleaning method and system of mercurous oil sump
CN113578030A (en) * 2020-04-30 2021-11-02 黄华丽 Absorbent slurry for removing mercury in flue gas, preparation method and removal method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20062524A1 (en) * 2006-12-28 2008-06-29 Itea Spa PROCESS FOR PURIFICATION OF COMBUSTION FUMES
US20110020935A1 (en) 2008-03-25 2011-01-27 Mitsubishi Gas Chemical Company, Inc. Method of gene transfer into cells using electrospray and apparatus therefor
JP2013039511A (en) 2011-08-12 2013-02-28 Babcock Hitachi Kk Wet type flue-gas desulfurization apparatus and thermal power plant having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845474A (en) * 1971-10-13 1973-06-29
JPH08117555A (en) * 1994-10-27 1996-05-14 Kanken Techno Kk Method and apparatus for treating mercury vapor
JPH10216476A (en) * 1997-01-31 1998-08-18 Kawasaki Heavy Ind Ltd Waste gas treatment and apparatus therefor
JP2003240226A (en) * 2002-02-18 2003-08-27 Mitsubishi Heavy Ind Ltd Exhaust gas processing device and processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845474A (en) * 1971-10-13 1973-06-29
JPH08117555A (en) * 1994-10-27 1996-05-14 Kanken Techno Kk Method and apparatus for treating mercury vapor
JPH10216476A (en) * 1997-01-31 1998-08-18 Kawasaki Heavy Ind Ltd Waste gas treatment and apparatus therefor
JP2003240226A (en) * 2002-02-18 2003-08-27 Mitsubishi Heavy Ind Ltd Exhaust gas processing device and processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435726A (en) * 2018-03-30 2018-08-24 北京生态岛科技有限责任公司 A kind of cleaning method and system of mercurous oil sump
CN113578030A (en) * 2020-04-30 2021-11-02 黄华丽 Absorbent slurry for removing mercury in flue gas, preparation method and removal method thereof
CN113578030B (en) * 2020-04-30 2024-01-26 黄华丽 Absorbent slurry for removing mercury in flue gas and preparation and removal methods thereof

Also Published As

Publication number Publication date
JP2006136856A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
WO2009093574A1 (en) System and method for treating discharge gas from coal-fired boiler
KR101094672B1 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
AU748651B2 (en) Removal of NOx and SOx emissions from pickling lines for metal treatment
JP3546160B2 (en) Mercury removal method
WO2009093576A1 (en) System for treating discharge gas from coal-fired boiler and method of operating the same
WO2009093575A1 (en) System and method for treating discharge gas from coal-fired boiler
JP3872677B2 (en) Mercury removal method and system
JP4893617B2 (en) Mercury removal apparatus and mercury removal method
WO1997001388A1 (en) Flue-gas treatment system
WO2006051650A1 (en) Apparatus and method for removing mercury
CN102205203A (en) Desulfuration and mercury-removing combined smoke purifying process and system based on magnesium oxide method desulfuration process
WO2012176635A1 (en) Exhaust gas treatment apparatus and orp control method therefor
JP2013039511A (en) Wet type flue-gas desulfurization apparatus and thermal power plant having the same
CN101927124A (en) Flue gas denitrification method
KR101240741B1 (en) Simultaneous Treatment Method of NOx and SOx in the Exhaust Gas of Ship
JP5144967B2 (en) Exhaust gas treatment system
JP4936002B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
WO2014041951A1 (en) System for treating mercury in exhaust gas
JP4777133B2 (en) Mercury removal apparatus and method
JP5290346B2 (en) Mercury removal apparatus and method
KR100614882B1 (en) Method of treating exhaust gas by using dielectric barrier discharge and reducing agents, and device for treating the method
CN111359398B (en) Method for denitration and whitening of flue gas
JP2004261718A (en) Dry type simultaneous desulfurization and denitrification apparatus
KR101254969B1 (en) Method for removing sulfur dioxide and elemental mercury from the flue gas
KR100587490B1 (en) Treatment apparatus of incineration flue gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05783518

Country of ref document: EP

Kind code of ref document: A1