WO2006047587A2 - Expandable intervertebral spacer method and apparatus - Google Patents

Expandable intervertebral spacer method and apparatus Download PDF

Info

Publication number
WO2006047587A2
WO2006047587A2 PCT/US2005/038546 US2005038546W WO2006047587A2 WO 2006047587 A2 WO2006047587 A2 WO 2006047587A2 US 2005038546 W US2005038546 W US 2005038546W WO 2006047587 A2 WO2006047587 A2 WO 2006047587A2
Authority
WO
WIPO (PCT)
Prior art keywords
spacer device
interbody spacer
expansion member
plates
interbody
Prior art date
Application number
PCT/US2005/038546
Other languages
French (fr)
Other versions
WO2006047587A3 (en
Inventor
Michael D. Ensign
Original Assignee
Alphaspine, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alphaspine, Inc. filed Critical Alphaspine, Inc.
Priority to CA002585450A priority Critical patent/CA2585450A1/en
Priority to AU2005299397A priority patent/AU2005299397A1/en
Priority to EP05813210A priority patent/EP1811927A2/en
Priority to JP2007539067A priority patent/JP2008517723A/en
Publication of WO2006047587A2 publication Critical patent/WO2006047587A2/en
Publication of WO2006047587A3 publication Critical patent/WO2006047587A3/en
Priority to IL182778A priority patent/IL182778A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/4465Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or kidney shaped cross-section substantially perpendicular to the axis of the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30133Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30428Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by inserting a protrusion into a slot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/3055Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • A61F2002/30571Leaf springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30818Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves castellated or crenellated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0015Kidney-shaped, e.g. bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00161Carbon; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures

Definitions

  • the present invention is directed to an intervertebral spacer device, and more particularly, to an expandable intervertebral spacer device that may be applied to various existing surgical approaches, for example, posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), anterior lumbar interbody fusion (ALIF), minimally invasive lumbar interbody fusion (MILIF), lateral interbody fusion, and oblique interbody fusion.
  • PLIF posterior lumbar interbody fusion
  • TLIF transforaminal lumbar interbody fusion
  • ALIF anterior lumbar interbody fusion
  • MILIF minimally invasive lumbar interbody fusion
  • lateral interbody fusion oblique interbody fusion
  • the cervical and lumbar portions of the spine are frequently fused to treat instability and degenerative diseases of the spine.
  • Difficulty in restoring disc height has traditionally stemmed from the surgical procedure and the interbody implants that are used. According to one procedure, surgical instruments are inserted to determine the proper implant size. The surgical instruments are then removed to allow room for the implant; however, when the instruments are removed, the disc space collapses. After the surgical instruments are removed, the implant is impacted into the disc space. This serial insertion and removal of instruments and subsequent impaction of the implant results in increased risk of adverse effects.
  • An expandable interbody spacer (IBS) device designed to restore the disc height between vertebral bodies is provided in accordance with the present invention.
  • the expandable interbody spacer device is adapted for implanting between adjacent vertebral bodies of a human spine as a load- bearing replacement for a spinal disc.
  • the expandable interbody spacer device has an integral, moveable expansion member or spreader, provided between two plates. The plates are connected by one or more connecting members that retain the plates in a position proximate to one another while allowing the plates to move from a first unexpanded position to a second expanded position upon activation of the expansion member.
  • the interbody spacer device can be implanted in an unexpanded or collapsed configuration, and then expanded to full height by engaging the expansion member.
  • the interbody spacer device is machined such that space is left in the center of the device to receive BMP and morsalized bone to aid in fusion after implantation of the device.
  • the interbody spacer device may take various forms, for example, it may be cashew, rectangular or annular.
  • Figure 1 illustrates a top view of an expansion member of the interbody spacer device in accordance with principles of the present invention.
  • Figure 2 illustrates a side view of the expansion member of Figure 1.
  • Figure 3 illustrates a side view of a body of the interbody spacer device in accordance with principles of the present invention.
  • Figure 4 illustrates a top view of the interbody spacer device of
  • Figure 5 illustrates a cross-sectional view of the interbody spacer device taken along line 5-5 of Figure 4.
  • Figure 6A illustrates a top view of an exemplary interbody spacer device in an unexpanded state in accordance with principles of the present invention.
  • Figure 6B illustrates a side view of the interbody spacer of Figure 6A in an unexpanded state in accordance with principles of the present invention.
  • Figure 7A illustrates a top view of an exemplary interbody spacer device in an expanded state in accordance with principles of the present invention.
  • Figure 7B illustrates a side view of the interbody spacer device of
  • FIG. 6A in an expanded state in accordance with principles of the present invention.
  • Figure 8 illustrates a top, front isometric view of a cashew shaped interbody spacer device in accordance with principles of the present invention.
  • Figure 9 illustrates a bottom isometric view of the cashew shaped interbody spacer device of Figure 8.
  • Figure 10 illustrates a top plan view of the cashew shaped interbody spacer device of Figure 8.
  • Figure 11 illustrates a top view of an alternative embodiment of an interbody spacer device in an unexpanded state.
  • Figure 12 illustrates an expansion member configured as a dowel for use in the interbody spacer device of Figure 11.
  • Figure 13 illustrates a side view of an alternative embodiment of an interbody spacer device for restoring the lordodic angle in accordance with principles of the present invention.
  • Figure 14 illustrates a side view of an alternative embodiment of an interbody spacer device having a wedge shaped expansion member in ⁇ accordance with principles of the present invention.
  • Figure 15 illustrates an end view of an alternative embodiment of an interbody spacer device, wherein the expansion member is aligned in the center of the device and connection elements are aligned along outer edges in accordance with principles of the present invention.
  • Figure 16 illustrates a side view of an alternative embodiment of an interbody spacer device having separate spring members as the connection element in accordance with principles of the present invention.
  • Figure 17 illustrates a top, front isometric view of a disc shaped cervical or anterior interbody spacer device having a superior tab in accordance with principles of the present invention.
  • Figure 18 illustrates a top, front isometric view of a disc shaped cervical or anterior interbody spacer device without the superior tab in accordance with principles of the present invention.
  • Figure 19 illustrates a top view of the disc shaped interbody spacer device of Figure 17.
  • Figure 20 illustrates an end view of the disc shaped interbody spacer device of Figure 17.
  • Figure 21 illustrates a side view of the disc shaped interbody spacer device of Figure 17.
  • Figure 22 illustrates a rear isometric view of a rectangular shaped interbody spacer device in accordance with principles of the present invention.
  • Figure 23 illustrates a front isometric view of the rectangular shaped interbody spacer device of Figure 22.
  • Figure 24 illustrates a top view of the rectangular shaped interbody spacer device of Figure 22.
  • Figure 25 illustrates a side view of the rectangular shaped interbody spacer device of Figure 22.
  • Figure 26 illustrates an end view the rectangular shaped interbody spacer device of Figure 22.
  • an expandable interbody spacer (IBS) device is provided to restore disc height between vertebral bodies without the insertion of height expanding surgical devices.
  • the device is inserted into the disc space in a collapsed or unexpanded position and an expansion member or spreader is engaged to increase the height of the interbody spacer device to an expanded position. Expanding the height of the device by engaging the expansion member will correspondingly expand the height of the disc space to restore the desired interbody spacing between discs.
  • Figures 1 -5 show an interbody spacer device 10 comprising an expansion member or spreader 20 for positioning between a first planar element or plate 11 and a second planar element or plate 12.
  • FIGS. 1 and 2 show one embodiment of a u-shaped expansion member 20.
  • the expansion member 20 includes end sections 6 having a first width and a recessed section 8 provided between the two end sections 6.
  • a longitudinal passageway extending between the two plates 11 , 12 has a varying diameter, such that it has a relatively wide central portion 7 and a narrower channel 9 provided on either side of the wide central portion.
  • the interbody spacer device When the interbody spacer device is in an unexpanded state, a first end section 6 of the spreader 20 is retained in the corresponding wide section 7 of the assembly provided between the first and the second plate 11 , 12.
  • the recessed section 8 of the spreader 20 is positioned in the narrower channel 9 formed between the first and the second plate 11 , 12.
  • the expansion member 20 may be pre-assembled with the interbody spacer device prior to implantation by sliding the spreader 20 between surface plates 11 , 12.
  • Figures 3, 4 and 5 show exemplary views of the plates 11 , 12 and the connecting member 14 prior to the insertion of the expansion member 20.
  • the plates 1 1 , 12 further include an outer surface 22 for contacting endplates of the vertebral bodies (not shown).
  • the outer surface 22 of the plates 11 , 12 is a planer, discontinuous surface having a plurality of spaced apart elongated recesses, grooves, or jagged edges to provide a mating surface for retaining the interbody spacer device in position relative to vertebral bodies.
  • the outer surface could be substantially smooth.
  • alternative fixation mechanisms could be used to retain the interbody spacer device in position relative to the vertebral bodies as is known in the art.
  • the interbody spacer device is machined such that space 30 is left in the center of the interbody spacer device as a grafting port, or to receive BMP and morsalized bone and thus aid in fusion.
  • Figures 6A and 6B show the expansion member 20 and the interbody spacer device 10 assembled in an unengaged or collapsed position.
  • Figures 7A and 7B show the interbody spacer device in the engaged or expanded position. More particularly, as the expansion member 20 is moved forward by a user, end section 6 is forced into channel 9. Given that end section 6 has a width greater than a diameter of channel 9, the end section 6 of expansion member 20 forces the plates 11 , 12 apart, thereby expanding the interbody spacer device by causing the plates of the interbody spacer device 10 to move apart.
  • the device has a collapsed overall height of Hi and an overall expanded height of H 2 .
  • the increase in height of the device from Hi to H 2 is due to the insertion of the expansion member to bias the first and second plates apart.
  • the collapsed device is impacted into the selected disc space and, once in place, the expansion member is engaged to expand the device height. Allowing the device to be implanted in a collapsed form of less height allows easier implantation by the surgeon while minimizing trauma to the disc site.
  • the expansion member 20 further includes retaining tabs 16 that engage slots 32 in the interbody spacer device 10 on each side of the connection member 14.
  • the tabs 16 may guide the expansion member 20 into place.
  • the tabs 16 may also serve to lock the expansion member 20 in place when the interbody spacer device 10 is in an expanded position and the expansion member 20 is engaged as shown in Figures 7A and 7B.
  • the interbody spacer device 140 replaces a diseased or damaged spinal disc, and more particularly is used in a transforaminal lumbar interbody fusion (TLIF).
  • TLIF transforaminal lumbar interbody fusion
  • a TLIF is a posterior and lateral approach to the disc space. Typically the facet joint is removed and access is gained to the disc space via the nerve foramen. While more technically demanding of the surgeon, this approach eliminates the need for manipulation of neural elements, thus reducing the risk of post-operative neural deficit. Furthermore, much of the soft tissue is left intact, placing this technique in the category of less invasive.
  • a single implant is placed and is surrounded by bone grafting material (e.g., autograft or BMP).
  • a TLlF implant does not need to be hollow as ample space would be available between the endplates of the vertebral bodies for a fusion mass.
  • the implant is placed in the anterior aspect of the disc space, thus providing space for a substantial fusion mass and the creation of normal sagittal alignment (i.e., lordosis).
  • a TLIF implant may be cashew or banana shaped, having a tapered leading edge to facilitate its insertion into the disc space.
  • TLIF interbody spacer device In operation, the primary goals of implanting a TLIF interbody spacer device are to immobilize the affected vertebrae, restore the spinal disc space, prove sagittal alignment, and to provide an environment for bony fusion between vertebral bodies.
  • An oblique surgical approach is similar to a TLIF surgical approach except for the final placement of the implant; namely, an oblique surgical approach places the implant in the central aspect of the disc space. Graft can be placed anterior and posterior to the implant. An oblique implant may alternatively have a rectangular footprint. Because the implant would lie at an oblique angle across the disc space, in order to restore lordosis, the implant may be positioned such that a tallest edge is at the most anterior corner of the implant and a shortest edge is at the most posterior corner of the implant.
  • Figures 8-10 show exemplary cashew or banana shaped implants, for example, for use with a TLIF approach. More specifically, Figure 8 shows a top front isometric view of a cashew shaped interbody spacer device for use in a TLIF procedure. Figure 9 illustrates a bottom isometric view of the cashew shaped interbody spacer device of Figure 8. Figure 10 illustrates a top view of the cashew shaped interbody spacer device of Figure 8.
  • the cashew shaped interbody spacer device 140 includes a first surface plate 114 and a second surface plate 115 retained in a proximate position by a connection member 124. Alternatively, the first surface place 114 and the second surface plate 115 may be slideably connected to an expansion member 116.
  • the expansion member 116 is sandwiched between the plates 114, 115 and is moveable therebetween.
  • the expansion member 116 moves between a first unexpanded position and a second expanded position causing the interbody spacer device 140 to move between a collapsed position of less overall height and an expanded position of greater overall height.
  • the interbody spacer device 140 of Figures 8-10 is shown in an interbody spacer device in an unexpanded position, for example, as the device would be configured prior to implantation.
  • the expansion member 116 includes tabs 122 for retaining the expansion member in a locked relationship with the plates 114, 115 when the expansion member 116 is engaged such that the interbody spacer device 140 is in an expanded position.
  • the tabs 122 may be fixed protrusions or may be retractable dimples. As shown in the illustrated embodiment, the tabs 122 may be retained in an aperture 118 in the plates. Alternatively, the plates may contain grooves or other alignment guides to align and/or retain the tabs. According to yet another embodiment, the plates 114, 115 may contain the tabs for retaining the expansion member.
  • the expansion member 116 may be secured in a locked position relative to the plates by a latch, pin, catch, or other retaining mechanism as is known in the arts.
  • Figure 11 shows an intervertebral spacer device in a collapsed state prior to extending the expansion member.
  • Figure 12 shows an expansion member configured as a dowel for use in the interbody spacer device of Figure 11.
  • two dowels or pins 230 are contained in the interbody spacer device 234 to provide a means for spreading the plates and extending the interbody spacer device.
  • the dowels 230 include thickened ends 236 and a thinner, or recessed center portion 238. When the dowel is placed in an unengaged or unexpanded position, a first thickened end 236 resides in a recess in the interbody spacer device to allow the interbody spacer device 234 to maintain a collapsed state.
  • Figure 13 shows an alternative embodiment of an interbody spacer device having a lordodic angle L in accordance with principles of the present invention.
  • the interbody spacer device has a taller first edge, as compared to a second edge.
  • the anterior edge is taller than the posterior edge.
  • the planar faces of the interbody spacer device plates are diverging to aid in restoring lordosis.
  • lordosis can be attained via a tapered expansion member or clip and a constant plate thickness, or a combination of a tapered expansion member and one or both of a tapered plate.
  • Figure 14 shows an alternative embodiment of an interbody spacer device having wedge-shaped expansion member 442.
  • the expansion member may be tapered, such as a shim or any angled spreading means for creating a taller anterior edge as compared to the posterior edge when the expansion member is engaged and the interbody spacer is in an expanded position.
  • Figure 15 shows an alternative embodiment of an interbody spacer device having a expansion member 452 aligned in the center of the interbody spacer device and connection elements 454 aligned along outer edges of the interbody spacer device to couple a first plate 456 to a second plate 458.
  • Figure 16 shows an alternative embodiment of an interbody spacer device having separate bias elements 462 as the connection elements.
  • a first plate 464 and a second plate 466 are flexibly retained in a position proximate to one another, for example, in a substantially parallel position relative to each other, by bias elements 462.
  • the bias elements 462 may be a spring, c-shaped clamp, clamp, coil, clip or other connection element for retaining the first 464 and second 466 plate of the interbody spacer device 461 in a relative position while allowing the plates to move away from each other when a expansion member is inserted between the plates of the interbody spacer device as described further above.
  • an exemplary interbody spacer device 540 replaces a diseased or damaged spinal disc, and more particularly, is used in an anterior or cervical lumbar interbody fusion.
  • Anterior Lumbar Interbody Fusion is an anterior approach to the disc space.
  • a second, general surgeon is often employed to gain access through the abdominal cavity to the anterior aspect of the spine. The anterior vessels are mobilized and the anterior longitudinal ligament is excised. Access to the posterior neural elements is not attained.
  • a large, single implant may typically be used for an anterior approach.
  • the implant is usually hollow and is the size and shape of the adjacent vertebral bodies.
  • the implant or interbody spacer device differs in regard to the diameter of the interbody spacer device used.
  • the implant is typically packed with and surrounded by bone grafting material, for example, autograft or BMP. More specifically, Figure 17 shows an annular shaped interbody spacer device for use, for example, in an ALIF or cervical procedure.
  • the interbody spacer device may be circular, oblong or disc shaped.
  • the interbody spacer device 540 includes a first surface plate 514 and a second surface plate 515 coupled together by a connection member 524.
  • first surface plate 514 and the second surface plate 515 are coupled directly to the expansion member 516.
  • An expansion member 516 is sandwiched between the plates 514, 515 and is moveable therebetween. The expansion member moves the interbody spacer device from a first unexpanded position to a second expanded position.
  • the anterior or cervical interbody spacer device of Figures 17-21 is shown in an unexpanded position such as prior to implantation in the interbody spacer device.
  • a tab 517on a superior edge of the interbody spacer device includes an aperture 519 which may be used to attach the interbody spacer device to the vertebral bodies with screws, staples, pins or the like.
  • a flange, loop, or other fixation means contained on the interbody spacer device may be used to attach the interbody spacer device to the vertebral bodies.
  • the device may be provided without tab 517.
  • the expansion member 516 includes tabs 522 for retaining the expansion member in a locked relationship with the plates 514, 515 when the expansion member is engaged to place the interbody spacer device in an expanded position.
  • the plates may contain tabs for retaining the expansion member.
  • the expansion member could be secured in a locked position relative to the plates by a latch, pin, catch, or other retaining mechanism as is known in the arts.
  • the expansion member 516 includes end sections 526 having a first width and a recessed section 528 provided between the two end sections 526.
  • a longitudinal passageway extending between the two plates 514, 515 has a varying diameter, such that it has a relatively wide central portion 530 and a narrower channel 532 provided on either side of the wide central portion.
  • the plates 514, 515 are tapered to create lordosis.
  • lordosis can be attained via a tapered expansion member 516 or clip and a constant thickness plate, or a combination of a tapered expansion member and one or both of a tapered plate as described further herein.
  • the expansion member or clip may be tapered, such as a wedge shape or other angled spreading means for creating a taller anterior edge as compared to the posterior edge when the expansion member is in the engaged or expanded position, and the thickness of the plates can remain constant.
  • the interbody spacer device 640 replaces a diseased or damaged spinal disc, and more particularly, is used in a posterior or lateral lumbar interbody fusion.
  • a posterior lumbar interbody fusion (PLIF) is a posterior and midline approach to the disc space. Typically portions of the lamina are removed. The ligamentum flavum and posterior longitudinal ligament are excised. The spinal cord/deural sac is mobilized to provide access to the disc space. While it is more commonly practiced and is less technically demanding, a PLIF approach poses greater risk to the patient than does, for example, a TLIF technique; manipulating neural elements creates the potential for damage to them.
  • the shape is usually cylindrical.
  • the shape is usually rectangular. Rectangular implants decrease the distance that the deura is moved by having a height to width ratio greater than 1 and therefore are preferable.
  • a PLIF implant is often hollow to allow additional space for bone grafting material.
  • the use of two implants decreases the amount of disc space left for placement of bone grafting material, thus the hollow implant cavity provides additional space for bone grafting.
  • Implants typically have an anterior to posterior taper to provide for proper sagittal alignment of the spine.
  • the superior and inferior surfaces may be convex to increase the intimacy of the implant mate with the endplates of the vertebrae.
  • Surface texture is typically configured to prevent posterior implant migration.
  • a lateral approach to interbody fusion is similar to a PLIF, except the approach is orthogonal to a PLIF approach.
  • Two implants are still used.
  • the implants can be cylindrical thread-into-place implants or rectangular impacted implants. As two implants are most commonly placed, little space is left for grafting, which requires that the implants be hollow for graft placement. To restore lordosis the implants would typically taper from the anterior side to the posterior side.
  • Figures 22-26 show a rectangular shaped interbody spacer device for use in a lateral, oblique or PLIF procedure.
  • the interbody spacer device may be square or polygonal shaped.
  • the interbody spacer device 640 includes a first surface plate 614 and a second surface plate 615 coupled together by a connection member 624.
  • the first surface plate 614 and the second surface plate 615 may be slideably connected directly to an expansion member 616.
  • the expansion member 616 may be a bias element such as a clip, spring or clamp. As shown in Figure 22, an expansion member 616 is positioned between the plates 614, 615 and is moveable therebetween.
  • the expansion member 616 includes end sections 626 having a first width and a recessed section 628 provided between the two end sections 626.
  • a longitudinal passageway extending between the two plates 614, 615 has a varying diameter, such that it has a relatively wide central portion 630 and a narrower channel 632 provided on either side of the wide central portion.
  • the interbody spacer When the expansion member is partially inserted between the plates of the interbody spacer device, the interbody spacer remains in an unexpanded configuration. Moving the expansion member to a fully engaged position between the plates of the interbody spacer causes the wider end sections 628 of the expansion member 616 to push the plates 614, 615 apart, thus expanding the interbody device. Therefore, the expansion member moves between a first unexpanded position to a second expanded position.
  • the anterior or cervical interbody spacer device of Figures 22-26 is shown in an unexpanded position such as prior to implantation in the interbody spacer device.
  • the expansion member 616 includes tabs 622 for guiding the expansion member between the plates and/or for retaining the expansion member in a locked relationship with the plates 614, 615 when the expansion member is fully inserted between the plates.
  • the plates may contain tabs for retaining the expansion member.
  • the expansion member could be secured in a locked position relative to the plates by a latch, pin, catch, or other retaining mechanism as is known in the arts.
  • the plates 614, 615 are tapered to create lordosis.
  • lordosis can be attained via a tapered expansion member or clip and a constant interbody spacer device, or a combination of a tapered expansion member and a tapered interbody spacer device as described further herein.
  • the interbody spacer devices provided in accordance with the present invention may be made of a variety of materials, including but not limited to: stainless steel, carbon fiber materials, various plastics, titanium, ceramic, PEEK, or bio-absorbable materials.
  • the material may be non-porous, inert and biologically compatible.
  • the material may further be of such character as to form a rigid, non-resilient load-bearing material, one that is preferably incapable of elastic deformation.
  • the components of the interbody spacer device such as the plates and the expansion member described herein, can be machined and/or molded to provide the features disclosed.
  • the components of the interbody spacer device may be of the same material, or different materials.
  • the configuration of the interbody spacer device may have parallel faces, but could also be produced with angled faces in a variety of orientations to restore lordosis with different orientations of the device within the disc space.
  • the interbody spacer device could also be configured such that engaging the device expands only one end to reproduce a lordodic angle.
  • the interbody spacer device has a convex anterior sidewall and a concave posterior sidewall, thus allowing a concave to convex contour with respect to a plane across the spacer device.
  • the interbody spacer device is cashew shaped, to accommodate a transforaminal lumbar interbody fusion surgical approach.
  • the interbody spacer may be square, polygonal or rectangular shaped.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Prostheses (AREA)

Abstract

An expandable interbody spacer (IBS) device designed to restore the disc height between vertebral bodies. The expandable interbody spacer device has an integral, moveable expansion member or spreader, provided between two plates. The plates are connected by one or more connecting members that retain the plates in a position proximate to one another while allowing the plates to move from a first unexpanded position to a second expanded position upon activation of the expansion member. According to aspects of the invention, the interbody spacer device can be implanted in an unexpanded or collapsed configuration, and then expanded to full height by engaging the expansion member. In other embodiments, the interbody spacer device may take various forms, for example, it may be cashew, rectangular or annular.

Description

EXPANDABLE INTERVERTEBRAL SPACER METHOD AND APPARATUS
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention is directed to an intervertebral spacer device, and more particularly, to an expandable intervertebral spacer device that may be applied to various existing surgical approaches, for example, posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), anterior lumbar interbody fusion (ALIF), minimally invasive lumbar interbody fusion (MILIF), lateral interbody fusion, and oblique interbody fusion.
Description of the Related Art
The cervical and lumbar portions of the spine are frequently fused to treat instability and degenerative diseases of the spine. There are many diverse approaches and a variety of indications available for lumbar interbody fusion. Despite the diverse approaches and indications, however, each approach generally targets restoration of disc height.
Difficulty in restoring disc height has traditionally stemmed from the surgical procedure and the interbody implants that are used. According to one procedure, surgical instruments are inserted to determine the proper implant size. The surgical instruments are then removed to allow room for the implant; however, when the instruments are removed, the disc space collapses. After the surgical instruments are removed, the implant is impacted into the disc space. This serial insertion and removal of instruments and subsequent impaction of the implant results in increased risk of adverse effects.
More recently, with the evolution of surgical instruments and the demonstration of increased clinical benefits, minimally invasive surgical approaches have gained acceptance. Minimally invasive techniques prescribe a reduction in the number of instruments in the wound thus furthering the need for expandable implants to provide restored disc height. Many have attempted to create implants that obviate the need for height restoring instruments and the need for impaction of implants. Various implants have been developed that provide the ability to adjust the size of the implant after insertion, for example, Published U.S. Patent Application Nos. 2005/0021041 (Michelson); 2005/0010295 (Michelson); 2004/0162618 (Mujwid et al.); 2004/0127994 (Kast et al.); 2004/0059421 (Glenn et al.); 2003/0195631 (Ferree); 2003/0130739 (Gerbec et al.); 2003/0065396 (Michelson); 2002/0128713 (Ferree); U.S. Patent Nos. 6,852,129 (Gerbec et al.); 6,835,206 (Jackson); 6,821 ,298 (Jackson); 6,773,460 (Jackson); 6,648,917 (Gerbec et al.); 6,595,998 (Johnson et al.); 6,562,074 (Gerbec et al.); 6,558,424 (Thalgott); 6,524,341 (Lang et al.); 6,436,140 (Liu et al.); 6,419,705 (Erickson); 6,395,034 (Suddaby); 6,200,348 (Biedermann et al.); 6,190,414 (Young et al.); 6,176,882 (Biedermann et al.); 6,117,174 (Nolan); 6,102,950 (Vaccaro); 6,080,193 (Hochshuler et al.); 5,980,522 (Koros et al.); 5,800,547 (Schafer et al.); 5,702,453 (Rabbe et al.); 5,554,191 (Lahille et al.); 5,522,899 (Michelson); 5,514,180 (Heggeness et al.); 5,171 ,278 (Pisharodi); and 4,863,476 (Shepperd), herein incorporated in their entirety by reference.
The result has been the creation of a plethora of complex and expensive implants; many require special tools, involve screws that frequently result in cross threading, or include pop-up ratchet configurations that may fail when loaded.
BRIEF SUMMARY OF THE INVENTION
An expandable interbody spacer (IBS) device designed to restore the disc height between vertebral bodies is provided in accordance with the present invention. The expandable interbody spacer device is adapted for implanting between adjacent vertebral bodies of a human spine as a load- bearing replacement for a spinal disc. The expandable interbody spacer device has an integral, moveable expansion member or spreader, provided between two plates. The plates are connected by one or more connecting members that retain the plates in a position proximate to one another while allowing the plates to move from a first unexpanded position to a second expanded position upon activation of the expansion member. According to aspects of the invention, the interbody spacer device can be implanted in an unexpanded or collapsed configuration, and then expanded to full height by engaging the expansion member. In one embodiment, the interbody spacer device is machined such that space is left in the center of the device to receive BMP and morsalized bone to aid in fusion after implantation of the device. In other embodiments, the interbody spacer device may take various forms, for example, it may be cashew, rectangular or annular.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S) In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility.
Various embodiments will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments and are therefore not to be considered limiting of scope.
Figure 1 illustrates a top view of an expansion member of the interbody spacer device in accordance with principles of the present invention.
Figure 2 illustrates a side view of the expansion member of Figure 1.
Figure 3 illustrates a side view of a body of the interbody spacer device in accordance with principles of the present invention. Figure 4 illustrates a top view of the interbody spacer device of
Figure 3.
Figure 5 illustrates a cross-sectional view of the interbody spacer device taken along line 5-5 of Figure 4. Figure 6A illustrates a top view of an exemplary interbody spacer device in an unexpanded state in accordance with principles of the present invention.
Figure 6B illustrates a side view of the interbody spacer of Figure 6A in an unexpanded state in accordance with principles of the present invention.
Figure 7A illustrates a top view of an exemplary interbody spacer device in an expanded state in accordance with principles of the present invention. Figure 7B illustrates a side view of the interbody spacer device of
Figure 6A in an expanded state in accordance with principles of the present invention.
Figure 8 illustrates a top, front isometric view of a cashew shaped interbody spacer device in accordance with principles of the present invention. Figure 9 illustrates a bottom isometric view of the cashew shaped interbody spacer device of Figure 8.
Figure 10 illustrates a top plan view of the cashew shaped interbody spacer device of Figure 8.
Figure 11 illustrates a top view of an alternative embodiment of an interbody spacer device in an unexpanded state.
Figure 12 illustrates an expansion member configured as a dowel for use in the interbody spacer device of Figure 11.
Figure 13 illustrates a side view of an alternative embodiment of an interbody spacer device for restoring the lordodic angle in accordance with principles of the present invention.
Figure 14 illustrates a side view of an alternative embodiment of an interbody spacer device having a wedge shaped expansion member in accordance with principles of the present invention.
Figure 15 illustrates an end view of an alternative embodiment of an interbody spacer device, wherein the expansion member is aligned in the center of the device and connection elements are aligned along outer edges in accordance with principles of the present invention.
Figure 16 illustrates a side view of an alternative embodiment of an interbody spacer device having separate spring members as the connection element in accordance with principles of the present invention.
Figure 17 illustrates a top, front isometric view of a disc shaped cervical or anterior interbody spacer device having a superior tab in accordance with principles of the present invention.
Figure 18 illustrates a top, front isometric view of a disc shaped cervical or anterior interbody spacer device without the superior tab in accordance with principles of the present invention.
Figure 19 illustrates a top view of the disc shaped interbody spacer device of Figure 17.
Figure 20 illustrates an end view of the disc shaped interbody spacer device of Figure 17.
Figure 21 illustrates a side view of the disc shaped interbody spacer device of Figure 17.
Figure 22 illustrates a rear isometric view of a rectangular shaped interbody spacer device in accordance with principles of the present invention. Figure 23 illustrates a front isometric view of the rectangular shaped interbody spacer device of Figure 22.
Figure 24 illustrates a top view of the rectangular shaped interbody spacer device of Figure 22.
Figure 25 illustrates a side view of the rectangular shaped interbody spacer device of Figure 22.
Figure 26 illustrates an end view the rectangular shaped interbody spacer device of Figure 22.
DETAILED DESCRIPTION OF THE INVENTION
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the relevant art will recognize that the invention may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with intervertebral spacer devices and the spine have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention.
Unless the context requires otherwise, throughout the specification and claims which follow, the word "comprise" and variations thereof, such as, "comprises" and "comprising" are to be construed in an open, inclusive sense, that is as "including, but not limited to."
Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification do not necessarily all refer to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments to form additional embodiments.
The headings provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
According to aspects of this description, an expandable interbody spacer (IBS) device is provided to restore disc height between vertebral bodies without the insertion of height expanding surgical devices. According to one embodiment of the invention, the device is inserted into the disc space in a collapsed or unexpanded position and an expansion member or spreader is engaged to increase the height of the interbody spacer device to an expanded position. Expanding the height of the device by engaging the expansion member will correspondingly expand the height of the disc space to restore the desired interbody spacing between discs. Figures 1 -5 show an interbody spacer device 10 comprising an expansion member or spreader 20 for positioning between a first planar element or plate 11 and a second planar element or plate 12. The plates 11 , 12 are connected by one or more connection members 14 that retain the plates 11 , 12 in a position proximate to one another while allowing them to move laterally to expand away from one another. Figures 1 and 2 show one embodiment of a u-shaped expansion member 20. The expansion member 20 includes end sections 6 having a first width and a recessed section 8 provided between the two end sections 6. A longitudinal passageway extending between the two plates 11 , 12 has a varying diameter, such that it has a relatively wide central portion 7 and a narrower channel 9 provided on either side of the wide central portion. When the interbody spacer device is in an unexpanded state, a first end section 6 of the spreader 20 is retained in the corresponding wide section 7 of the assembly provided between the first and the second plate 11 , 12. The recessed section 8 of the spreader 20 is positioned in the narrower channel 9 formed between the first and the second plate 11 , 12. Furthermore, when the expansion member is partially inserted between the plates 11 , 12 of the interbody spacer device 10, the interbody spacer remains in an unexpanded configuration. Accordingly, the expansion member 20 may be pre-assembled with the interbody spacer device prior to implantation by sliding the spreader 20 between surface plates 11 , 12. Figures 3, 4 and 5 show exemplary views of the plates 11 , 12 and the connecting member 14 prior to the insertion of the expansion member 20. According to aspects of this embodiment, the plates 1 1 , 12 further include an outer surface 22 for contacting endplates of the vertebral bodies (not shown). As shown, the outer surface 22 of the plates 11 , 12 is a planer, discontinuous surface having a plurality of spaced apart elongated recesses, grooves, or jagged edges to provide a mating surface for retaining the interbody spacer device in position relative to vertebral bodies. Alternatively, the outer surface could be substantially smooth. In accordance with yet another embodiment, alternative fixation mechanisms could be used to retain the interbody spacer device in position relative to the vertebral bodies as is known in the art. According to further aspects of the invention, the interbody spacer device is machined such that space 30 is left in the center of the interbody spacer device as a grafting port, or to receive BMP and morsalized bone and thus aid in fusion. . Figures 6A and 6B show the expansion member 20 and the interbody spacer device 10 assembled in an unengaged or collapsed position. Figures 7A and 7B show the interbody spacer device in the engaged or expanded position. More particularly, as the expansion member 20 is moved forward by a user, end section 6 is forced into channel 9. Given that end section 6 has a width greater than a diameter of channel 9, the end section 6 of expansion member 20 forces the plates 11 , 12 apart, thereby expanding the interbody spacer device by causing the plates of the interbody spacer device 10 to move apart.
As shown in Figures 6B and 7B, the device has a collapsed overall height of Hi and an overall expanded height of H2. The increase in height of the device from Hi to H2 is due to the insertion of the expansion member to bias the first and second plates apart. In operation, the collapsed device is impacted into the selected disc space and, once in place, the expansion member is engaged to expand the device height. Allowing the device to be implanted in a collapsed form of less height allows easier implantation by the surgeon while minimizing trauma to the disc site.
According to aspects of the invention, the expansion member 20 further includes retaining tabs 16 that engage slots 32 in the interbody spacer device 10 on each side of the connection member 14. The tabs 16 may guide the expansion member 20 into place. Alternatively, the tabs 16 may also serve to lock the expansion member 20 in place when the interbody spacer device 10 is in an expanded position and the expansion member 20 is engaged as shown in Figures 7A and 7B. Transforaminal Lumbar Interbody Fusion (TLIF)
Referring now to Figures 8-10, an exemplary intervertebral spacer device 140 is shown. The interbody spacer device 140 replaces a diseased or damaged spinal disc, and more particularly is used in a transforaminal lumbar interbody fusion (TLIF). A TLIF is a posterior and lateral approach to the disc space. Typically the facet joint is removed and access is gained to the disc space via the nerve foramen. While more technically demanding of the surgeon, this approach eliminates the need for manipulation of neural elements, thus reducing the risk of post-operative neural deficit. Furthermore, much of the soft tissue is left intact, placing this technique in the category of less invasive. Usually, according to this surgical approach, a single implant is placed and is surrounded by bone grafting material (e.g., autograft or BMP). A TLlF implant does not need to be hollow as ample space would be available between the endplates of the vertebral bodies for a fusion mass. According to known surgical protocol for a TLIF procedure, the implant is placed in the anterior aspect of the disc space, thus providing space for a substantial fusion mass and the creation of normal sagittal alignment (i.e., lordosis). According to one embodiment, a TLIF implant may be cashew or banana shaped, having a tapered leading edge to facilitate its insertion into the disc space. Surface texture (grooves, dimples, surface roughness, spikes and the like) would be oriented to prevent implant migration through the nerve foramen; migration of the implant anteriorly or posteriorly would be prevented by the presence of the surrounding ligaments. In operation, the primary goals of implanting a TLIF interbody spacer device are to immobilize the affected vertebrae, restore the spinal disc space, prove sagittal alignment, and to provide an environment for bony fusion between vertebral bodies.
An oblique surgical approach is similar to a TLIF surgical approach except for the final placement of the implant; namely, an oblique surgical approach places the implant in the central aspect of the disc space. Graft can be placed anterior and posterior to the implant. An oblique implant may alternatively have a rectangular footprint. Because the implant would lie at an oblique angle across the disc space, in order to restore lordosis, the implant may be positioned such that a tallest edge is at the most anterior corner of the implant and a shortest edge is at the most posterior corner of the implant.
Figures 8-10 show exemplary cashew or banana shaped implants, for example, for use with a TLIF approach. More specifically, Figure 8 shows a top front isometric view of a cashew shaped interbody spacer device for use in a TLIF procedure. Figure 9 illustrates a bottom isometric view of the cashew shaped interbody spacer device of Figure 8. Figure 10 illustrates a top view of the cashew shaped interbody spacer device of Figure 8. The cashew shaped interbody spacer device 140 includes a first surface plate 114 and a second surface plate 115 retained in a proximate position by a connection member 124. Alternatively, the first surface place 114 and the second surface plate 115 may be slideably connected to an expansion member 116. The expansion member 116 is sandwiched between the plates 114, 115 and is moveable therebetween. The expansion member 116 moves between a first unexpanded position and a second expanded position causing the interbody spacer device 140 to move between a collapsed position of less overall height and an expanded position of greater overall height. The interbody spacer device 140 of Figures 8-10 is shown in an interbody spacer device in an unexpanded position, for example, as the device would be configured prior to implantation.
According to aspects of the embodiment, the expansion member 116 includes tabs 122 for retaining the expansion member in a locked relationship with the plates 114, 115 when the expansion member 116 is engaged such that the interbody spacer device 140 is in an expanded position. According to aspects of the embodiment, the tabs 122 may be fixed protrusions or may be retractable dimples. As shown in the illustrated embodiment, the tabs 122 may be retained in an aperture 118 in the plates. Alternatively, the plates may contain grooves or other alignment guides to align and/or retain the tabs. According to yet another embodiment, the plates 114, 115 may contain the tabs for retaining the expansion member. In accordance with further embodiments, the expansion member 116 may be secured in a locked position relative to the plates by a latch, pin, catch, or other retaining mechanism as is known in the arts.
Figure 11 shows an intervertebral spacer device in a collapsed state prior to extending the expansion member. Figure 12 shows an expansion member configured as a dowel for use in the interbody spacer device of Figure 11. As shown in Figure 11 , two dowels or pins 230 are contained in the interbody spacer device 234 to provide a means for spreading the plates and extending the interbody spacer device. As shown in Figure 12, the dowels 230 include thickened ends 236 and a thinner, or recessed center portion 238. When the dowel is placed in an unengaged or unexpanded position, a first thickened end 236 resides in a recess in the interbody spacer device to allow the interbody spacer device 234 to maintain a collapsed state.
Figure 13 shows an alternative embodiment of an interbody spacer device having a lordodic angle L in accordance with principles of the present invention. As shown in Figure 13, the interbody spacer device has a taller first edge, as compared to a second edge. For one embodiment, the anterior edge is taller than the posterior edge. Thus, the planar faces of the interbody spacer device plates are diverging to aid in restoring lordosis. Alternatively, lordosis can be attained via a tapered expansion member or clip and a constant plate thickness, or a combination of a tapered expansion member and one or both of a tapered plate.
For example, Figure 14 shows an alternative embodiment of an interbody spacer device having wedge-shaped expansion member 442. According to further aspects, the expansion member may be tapered, such as a shim or any angled spreading means for creating a taller anterior edge as compared to the posterior edge when the expansion member is engaged and the interbody spacer is in an expanded position.
Figure 15 shows an alternative embodiment of an interbody spacer device having a expansion member 452 aligned in the center of the interbody spacer device and connection elements 454 aligned along outer edges of the interbody spacer device to couple a first plate 456 to a second plate 458.
Figure 16 shows an alternative embodiment of an interbody spacer device having separate bias elements 462 as the connection elements. According to aspects of this embodiment, a first plate 464 and a second plate 466 are flexibly retained in a position proximate to one another, for example, in a substantially parallel position relative to each other, by bias elements 462. The bias elements 462 may be a spring, c-shaped clamp, clamp, coil, clip or other connection element for retaining the first 464 and second 466 plate of the interbody spacer device 461 in a relative position while allowing the plates to move away from each other when a expansion member is inserted between the plates of the interbody spacer device as described further above.
Anterior Lumbar Interbody Fusion Referring now to Figures 17-21 , an exemplary interbody spacer device 540 is shown. The interbody spacer device 540 replaces a diseased or damaged spinal disc, and more particularly, is used in an anterior or cervical lumbar interbody fusion. Anterior Lumbar Interbody Fusion (ALIF) is an anterior approach to the disc space. A second, general surgeon is often employed to gain access through the abdominal cavity to the anterior aspect of the spine. The anterior vessels are mobilized and the anterior longitudinal ligament is excised. Access to the posterior neural elements is not attained.
An ALIF is more risky in aged patients or those with sclerotic blood vessels. The cost/need for a second surgeon can be a hindrance. Still, in cases of extremely collapsed disc spaces with little neural stenosis, the approach is ideal.
A large, single implant may typically be used for an anterior approach. The implant is usually hollow and is the size and shape of the adjacent vertebral bodies. With respect to anterior and cervical lumbar interbody fusion, the implant or interbody spacer device differs in regard to the diameter of the interbody spacer device used. The implant is typically packed with and surrounded by bone grafting material, for example, autograft or BMP. More specifically, Figure 17 shows an annular shaped interbody spacer device for use, for example, in an ALIF or cervical procedure. According to alternative embodiments of the invention, the interbody spacer device may be circular, oblong or disc shaped. The interbody spacer device 540 includes a first surface plate 514 and a second surface plate 515 coupled together by a connection member 524. Alternatively, the first surface plate 514 and the second surface plate 515 are coupled directly to the expansion member 516. An expansion member 516 is sandwiched between the plates 514, 515 and is moveable therebetween. The expansion member moves the interbody spacer device from a first unexpanded position to a second expanded position. The anterior or cervical interbody spacer device of Figures 17-21 is shown in an unexpanded position such as prior to implantation in the interbody spacer device.
As shown in Figures 17, 19, 20 and 21 , a tab 517on a superior edge of the interbody spacer device includes an aperture 519 which may be used to attach the interbody spacer device to the vertebral bodies with screws, staples, pins or the like. Alternatively, a flange, loop, or other fixation means contained on the interbody spacer device may be used to attach the interbody spacer device to the vertebral bodies. Alternatively, as shown in Figure 18, the device may be provided without tab 517.
According to aspects of this invention, the expansion member 516 includes tabs 522 for retaining the expansion member in a locked relationship with the plates 514, 515 when the expansion member is engaged to place the interbody spacer device in an expanded position. Alternatively, the plates may contain tabs for retaining the expansion member. In accordance with further embodiments of the present invention, the expansion member could be secured in a locked position relative to the plates by a latch, pin, catch, or other retaining mechanism as is known in the arts. As shown in Figure 21 , the expansion member 516 includes end sections 526 having a first width and a recessed section 528 provided between the two end sections 526. A longitudinal passageway extending between the two plates 514, 515 has a varying diameter, such that it has a relatively wide central portion 530 and a narrower channel 532 provided on either side of the wide central portion. When the interbody spacer device is in an unexpanded state, a first end section 526 of the expansion element 516 is retained in the corresponding wide section 530 of the assembly provided between the first and the second plate 514, 515. The recessed section 528 of the expansion element 516 is positioned in the narrower channel 532 formed between the first and the second plate 514, 515. Furthermore, when the expansion member is partially inserted between the plates of the interbody spacer device, the interbody spacer remains in an unexpanded configuration. Moving the expansion member to a position between the plates of the interbody spacer causes the wider end sections 528 of the expansion member 516 to push the plates 514, 515 apart, thus expanding the interbody device.
As further shown in Figure 21 , the plates 514, 515 are tapered to create lordosis. Alternatively, lordosis can be attained via a tapered expansion member 516 or clip and a constant thickness plate, or a combination of a tapered expansion member and one or both of a tapered plate as described further herein. For example, the expansion member or clip may be tapered, such as a wedge shape or other angled spreading means for creating a taller anterior edge as compared to the posterior edge when the expansion member is in the engaged or expanded position, and the thickness of the plates can remain constant.
Lateral and Posterior Lumbar Interbody Fusion Device
Referring now to Figures 22-26, an exemplary interbody spacer device 640 is shown. The interbody spacer device 640 replaces a diseased or damaged spinal disc, and more particularly, is used in a posterior or lateral lumbar interbody fusion. A posterior lumbar interbody fusion (PLIF) is a posterior and midline approach to the disc space. Typically portions of the lamina are removed. The ligamentum flavum and posterior longitudinal ligament are excised. The spinal cord/deural sac is mobilized to provide access to the disc space. While it is more commonly practiced and is less technically demanding, a PLIF approach poses greater risk to the patient than does, for example, a TLIF technique; manipulating neural elements creates the potential for damage to them. Traditionally, two implants are placed, one to each side of the midline. For thread-into-place implants, the shape is usually cylindrical. For impact-into-place implants, the shape is usually rectangular. Rectangular implants decrease the distance that the deura is moved by having a height to width ratio greater than 1 and therefore are preferable.
A PLIF implant is often hollow to allow additional space for bone grafting material. The use of two implants decreases the amount of disc space left for placement of bone grafting material, thus the hollow implant cavity provides additional space for bone grafting. Implants typically have an anterior to posterior taper to provide for proper sagittal alignment of the spine. The superior and inferior surfaces may be convex to increase the intimacy of the implant mate with the endplates of the vertebrae. Surface texture is typically configured to prevent posterior implant migration.
A lateral approach to interbody fusion is similar to a PLIF, except the approach is orthogonal to a PLIF approach. Two implants are still used. The implants can be cylindrical thread-into-place implants or rectangular impacted implants. As two implants are most commonly placed, little space is left for grafting, which requires that the implants be hollow for graft placement. To restore lordosis the implants would typically taper from the anterior side to the posterior side.
More specifically, Figures 22-26 show a rectangular shaped interbody spacer device for use in a lateral, oblique or PLIF procedure. According to alternative embodiments of the invention, the interbody spacer device may be square or polygonal shaped. The interbody spacer device 640 includes a first surface plate 614 and a second surface plate 615 coupled together by a connection member 624. Alternatively, the first surface plate 614 and the second surface plate 615 may be slideably connected directly to an expansion member 616. According to yet another alternative embodiment described herein, the expansion member 616 may be a bias element such as a clip, spring or clamp. As shown in Figure 22, an expansion member 616 is positioned between the plates 614, 615 and is moveable therebetween.
As shown in Figure 25, the expansion member 616 includes end sections 626 having a first width and a recessed section 628 provided between the two end sections 626. A longitudinal passageway extending between the two plates 614, 615 has a varying diameter, such that it has a relatively wide central portion 630 and a narrower channel 632 provided on either side of the wide central portion. When the interbody spacer device is in an unexpanded state, a first end section 626 of the expansion element 616 is retained in the corresponding wide section 630 of the assembly provided between the first and the second plate 614, 615. The recessed section 628 of the expansion element 616 is positioned in the narrower channel 632 formed between the first and the second plate 614, 615. When the expansion member is partially inserted between the plates of the interbody spacer device, the interbody spacer remains in an unexpanded configuration. Moving the expansion member to a fully engaged position between the plates of the interbody spacer causes the wider end sections 628 of the expansion member 616 to push the plates 614, 615 apart, thus expanding the interbody device. Therefore, the expansion member moves between a first unexpanded position to a second expanded position. The anterior or cervical interbody spacer device of Figures 22-26 is shown in an unexpanded position such as prior to implantation in the interbody spacer device.
According to aspects of this invention, the expansion member 616 includes tabs 622 for guiding the expansion member between the plates and/or for retaining the expansion member in a locked relationship with the plates 614, 615 when the expansion member is fully inserted between the plates. Alternatively, the plates may contain tabs for retaining the expansion member. In accordance with further embodiments of the present invention, the expansion member could be secured in a locked position relative to the plates by a latch, pin, catch, or other retaining mechanism as is known in the arts.
As shown in Figure 26, the plates 614, 615 are tapered to create lordosis. Alternatively, lordosis can be attained via a tapered expansion member or clip and a constant interbody spacer device, or a combination of a tapered expansion member and a tapered interbody spacer device as described further herein.
According to aspects of the invention, the interbody spacer devices provided in accordance with the present invention may be made of a variety of materials, including but not limited to: stainless steel, carbon fiber materials, various plastics, titanium, ceramic, PEEK, or bio-absorbable materials. The material may be non-porous, inert and biologically compatible. The material may further be of such character as to form a rigid, non-resilient load-bearing material, one that is preferably incapable of elastic deformation.
The components of the interbody spacer device, such as the plates and the expansion member described herein, can be machined and/or molded to provide the features disclosed. The components of the interbody spacer device may be of the same material, or different materials.
As discussed herein, and in accordance with alternative embodiments of the invention, the configuration of the interbody spacer device may have parallel faces, but could also be produced with angled faces in a variety of orientations to restore lordosis with different orientations of the device within the disc space. In accordance with one embodiment of the invention, the interbody spacer device could also be configured such that engaging the device expands only one end to reproduce a lordodic angle. In accordance with an alternative embodiment of the invention, the interbody spacer device has a convex anterior sidewall and a concave posterior sidewall, thus allowing a concave to convex contour with respect to a plane across the spacer device. The interbody spacer device according to one aspect is cashew shaped, to accommodate a transforaminal lumbar interbody fusion surgical approach. According to alternative embodiments of the invention, the interbody spacer may be square, polygonal or rectangular shaped. Several advantages are evident with respect to the interbody spacer device disclosed herein. By allowing the interbody spacer device to be inserted in a collapsed or unexpanded state, the surgeon is able to place the spacer device without over retracting the wound site. Once in place, the spacer device can be engaged, causing the interbody spacer to attain an expanded position to allow full restoration of the spinal disc space with minimal impact to the vertebral bodies.
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the invention, as will be recognized by those skilled in the relevant art. The teachings provided herein of the invention can be applied to intervertebral spacer devices, not necessarily the exemplary cashew shaped transforaminal spacer devices generally described above.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet in their entirety. Aspects of the invention can be modified, if necessary, to employ systems, materials and concepts of the various patents, applications and publications to provide yet further embodiments of the invention.
These and other changes can be made to the invention in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all intervertebral spacer devices that operated in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims.

Claims

1. A spinal interbody spacer device comprising: an implant body having a first plate coupled to and spaced apart from a second plate; and an expansion member coupled between the plates and moveable from a first position to a second position, the expansion member exerting a force on the first and second plates when in the second position to increase a height of the interbody spacer device.
2. The spinal interbody spacer device of claim 1 wherein the expansion member is a wedge.
3. The spinal interbody spacer device of claim 1 wherein the expansion member is a pin.
4. The spinal interbody spacer device of claim 1 wherein the connection member is a c-shaped clamp.
5. The spinal interbody spacer device of claim 1 wherein the first plate, second plate and the expansion member are al! made from titanium.
6. The spinal interbody spacer device of claim 1 , further including grooves on the outer surface of the plates, wherein the grooves are configured to mate with endplates of vertebral bodies.
7. The spinal interbody spacer device of claim 1 wherein the expansion member is slideably moveable.
8. The spinal interbody spacer device of claim 1 wherein an anterior side of the plates is taller than a posterior side of the plates, thus providing a lordodic angle.
9. The expandable intervertebral spacer device of claim 1 wherein an anterior side of the spreader is taller than a posterior side of the spreader.
10. A spinal intervertebral spacer device, comprising: a first planar element; a second planar element spaced apart from the first planar element; a connection element coupling the first planar element to the second planar element, wherein the connection element retains the first planar element spaced apart from the second planar element; and a spacer device positioned between the first and second planar elements, wherein the spacer device is moveable between the planar elements.
11. The expandable intervertebral spacer device of claim 10 further comprising: a tab contained on an outer surface of the spacer device; and a reciprocal receiving groove provided opposite the tab on an adjacent surface of the first planar element, wherein the tab engages the receiving groove and retains the spacer device in a selected position.
12. The expandable intervertebral spacer device of claim 10 wherein the spacer device is a dowel.
13. The expandable intervertebral spacer device of claim 10 wherein the spacer device is a u-shaped clip.
14. The expandable intervertebral spacer device of claim 10 wherein the spacer device is laterally engaged to move the first surface element and the second surface element apart from each other.
15. The expandable intervertebral spacer device of claim 10 wherein the first and second surface element, the connection element and the spacer device are all made from a biologically compatible, inert material.
16. The expandable intervertebral spacer device of claim 10 wherein an anterior edge of the spacer device is taller than a posterior edge of the spacer device.
17. The expandable intervertebral spacer device of claim 10 wherein an anterior edge of the spacer is taller than a posterior edge of the spreader.
18. A spinal intervertebral spacer device, comprising: a first disc shaped element; a second disc shaped element proximate to the first disc shaped element, the first and the second disc shaped element having a spacing therebetween; and a spacer device juxtaposed between the first and second element, wherein the spacer device is moveable between the elements, the spacer device having a first side and a second side, the first side and the second side having a connection mechanism affixed to the first element and to the second element, wherein the connection mechanism slideably retains the first element and the second element on the spacer device, wherein the first element, the second element and the spacer device combine to provide intervertebral support when implanted in a spine.
19. A method of implanting a spinal interbody spacer device, comprising: impacting an expandable interbody spacer device into a lumbar region of the spine; and engaging an integral spreader to expand the implant, wherein engaging the spreader includes moving the spreader between a first and a second element of the implant causing the first and the second element to move apart from one another.
20. The method of claim 19 further comprising: packing at least one of an aperture of the expandable interbody spacer device with BMP.
21. The method of claim 19 wherein the spreader is laterally engaged.
PCT/US2005/038546 2004-10-25 2005-10-25 Expandable intervertebral spacer method and apparatus WO2006047587A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002585450A CA2585450A1 (en) 2004-10-25 2005-10-25 Expandable intervertebral spacer method and apparatus
AU2005299397A AU2005299397A1 (en) 2004-10-25 2005-10-25 Expandable intervertebral spacer method and apparatus
EP05813210A EP1811927A2 (en) 2004-10-25 2005-10-25 Expandable intervertebral spacer method and apparatus
JP2007539067A JP2008517723A (en) 2004-10-25 2005-10-25 Expandable intervertebral spacer method and device
IL182778A IL182778A0 (en) 2004-10-25 2007-04-25 Expandable intervertebral spacer method and apparatus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US62209704P 2004-10-25 2004-10-25
US60/622,097 2004-10-25
US68749905P 2005-06-03 2005-06-03
US68749805P 2005-06-03 2005-06-03
US68718505P 2005-06-03 2005-06-03
US68750005P 2005-06-03 2005-06-03
US60/687,499 2005-06-03
US60/687,500 2005-06-03
US60/687,498 2005-06-03
US60/687,185 2005-06-03

Publications (2)

Publication Number Publication Date
WO2006047587A2 true WO2006047587A2 (en) 2006-05-04
WO2006047587A3 WO2006047587A3 (en) 2007-02-22

Family

ID=36228417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/038546 WO2006047587A2 (en) 2004-10-25 2005-10-25 Expandable intervertebral spacer method and apparatus

Country Status (8)

Country Link
US (1) US20060129244A1 (en)
EP (1) EP1811927A2 (en)
JP (1) JP2008517723A (en)
KR (1) KR20070104337A (en)
AU (1) AU2005299397A1 (en)
CA (1) CA2585450A1 (en)
IL (1) IL182778A0 (en)
WO (1) WO2006047587A2 (en)

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124269A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
EP2124778A2 (en) * 2007-02-21 2009-12-02 Benvenue Medical, Inc. Devices for treating the spine
EP2268219A1 (en) * 2008-03-28 2011-01-05 K2M, Inc. Expandable cage
WO2011080535A1 (en) * 2009-12-31 2011-07-07 Lrd Medical Anchoring device, intervertebral implant and implantation instrument
WO2014134590A1 (en) * 2013-03-01 2014-09-04 Globus Medical, Inc. Articulating expandable intervertebral implant
WO2015021454A1 (en) * 2013-03-01 2015-02-12 Globus Medical, Inc. Articulating expandable intervertebral implant
US9044338B2 (en) 2005-08-16 2015-06-02 Benvenue Medical, Inc. Spinal tissue distraction devices
US9066814B2 (en) 2010-08-02 2015-06-30 Ulrich Medical Usa, Inc. Implant assembly having an angled head
US9119730B2 (en) 2009-10-15 2015-09-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9125757B2 (en) 2010-09-03 2015-09-08 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9155628B2 (en) 2009-10-15 2015-10-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9204974B2 (en) 2009-10-15 2015-12-08 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9216095B2 (en) 2009-10-15 2015-12-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9226836B2 (en) 2009-10-15 2016-01-05 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9233009B2 (en) 2013-03-15 2016-01-12 Globus Medical, Inc. Expandable intervertebral implant
US9295562B2 (en) 2008-01-17 2016-03-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
JP2016055184A (en) * 2006-09-20 2016-04-21 ウッドウェルディング・アクチェンゲゼルシャフト Device to be implanted in human or animal tissue and method for implanting and assembling the device
US9351848B2 (en) 2010-09-03 2016-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9358129B2 (en) 2010-09-03 2016-06-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9370434B2 (en) 2010-09-03 2016-06-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9402737B2 (en) 2007-06-26 2016-08-02 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US9456903B2 (en) 2010-06-25 2016-10-04 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9456906B2 (en) 2013-03-15 2016-10-04 Globus Medical, Inc. Expandable intervertebral implant
US9474625B2 (en) 2010-09-03 2016-10-25 Globus Medical, Inc Expandable fusion device and method of installation thereof
US9480574B2 (en) 2013-03-14 2016-11-01 Benvenue Medical, Inc. Spinal fusion implants and devices and methods for deploying such implants
US9492289B2 (en) 2013-03-15 2016-11-15 Globus Medical, Inc. Expandable intervertebral implant
US9539108B2 (en) 2011-09-30 2017-01-10 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9554918B2 (en) 2013-03-01 2017-01-31 Globus Medical, Inc. Articulating expandable intervertebral implant
US9561117B2 (en) 2012-07-26 2017-02-07 DePuy Synthes Products, Inc. Expandable implant
US9566168B2 (en) 2010-09-03 2017-02-14 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9597200B2 (en) 2010-06-25 2017-03-21 Globus Medical, Inc Expandable fusion device and method of installation thereof
US9675389B2 (en) 2009-12-07 2017-06-13 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9724207B2 (en) 2003-02-14 2017-08-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9750552B2 (en) 2009-07-06 2017-09-05 DePuy Synthes Products, Inc. Expandable fixation assemblies
US9770343B2 (en) 2013-03-01 2017-09-26 Globus Medical Inc. Articulating expandable intervertebral implant
US9782265B2 (en) 2013-02-15 2017-10-10 Globus Medical, Inc Articulating and expandable vertebral implant
US9833334B2 (en) 2010-06-24 2017-12-05 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US9855151B2 (en) 2010-09-03 2018-01-02 Globus Medical, Inc Expandable fusion device and method of installation thereof
US9907673B2 (en) 2010-09-03 2018-03-06 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US9943418B2 (en) 2013-03-15 2018-04-17 Globus Medical, Inc. Expandable intervertebral implant
US9949769B2 (en) 2004-03-06 2018-04-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9974662B2 (en) 2016-06-29 2018-05-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10052215B2 (en) 2016-06-29 2018-08-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10085849B2 (en) 2010-09-03 2018-10-02 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US10098758B2 (en) 2009-10-15 2018-10-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10117754B2 (en) 2013-02-25 2018-11-06 Globus Medical, Inc. Expandable intervertebral implant
US10137001B2 (en) 2010-09-03 2018-11-27 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10188528B2 (en) 2007-02-16 2019-01-29 Ldr Medical Interveterbral disc prosthesis insertion assemblies
US10219914B2 (en) 2015-11-10 2019-03-05 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US10226355B2 (en) 2004-12-22 2019-03-12 Ldr Medical Intervertebral disc prosthesis
US10238500B2 (en) 2002-06-27 2019-03-26 DePuy Synthes Products, Inc. Intervertebral disc
US10245156B2 (en) 2012-02-24 2019-04-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10299934B2 (en) 2012-12-11 2019-05-28 Globus Medical, Inc Expandable vertebral implant
US10327917B2 (en) 2009-10-15 2019-06-25 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10390963B2 (en) 2006-12-07 2019-08-27 DePuy Synthes Products, Inc. Intervertebral implant
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US10433974B2 (en) 2003-06-30 2019-10-08 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US10500062B2 (en) 2009-12-10 2019-12-10 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10512550B2 (en) 2010-09-03 2019-12-24 Globus Medical, Inc. Expandable interspinous process fixation device
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10548741B2 (en) 2010-06-29 2020-02-04 DePuy Synthes Products, Inc. Distractible intervertebral implant
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US10624758B2 (en) 2009-03-30 2020-04-21 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US10709573B2 (en) 2010-09-03 2020-07-14 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US10758367B2 (en) 2010-09-03 2020-09-01 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10779957B2 (en) 2010-09-03 2020-09-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10806596B2 (en) 2009-10-15 2020-10-20 Globus Medical, Inc. Expandable fusion device and method installation thereof
US10835387B2 (en) 2010-09-03 2020-11-17 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10842644B2 (en) 2010-09-03 2020-11-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10869768B2 (en) 2010-09-03 2020-12-22 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10945858B2 (en) 2010-09-03 2021-03-16 Globus Medical, Inc. Expandable interspinous process fixation device
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US11103366B2 (en) 2009-10-15 2021-08-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11173040B2 (en) 2012-10-22 2021-11-16 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11191650B2 (en) 2020-02-03 2021-12-07 Globus Medical Inc. Expandable fusions devices, instruments, and methods thereof
US11224453B2 (en) 2014-07-08 2022-01-18 Spinal Elements, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US11298240B2 (en) 2020-06-16 2022-04-12 Globus Medical, Inc. Expanding intervertebral implants
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US11357640B2 (en) 2020-07-08 2022-06-14 Globus Medical Inc. Expandable interbody fusions devices
US11369484B2 (en) 2013-02-20 2022-06-28 Flexuspine Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11446162B2 (en) 2010-09-03 2022-09-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11471145B2 (en) 2018-03-16 2022-10-18 Spinal Elements, Inc. Articulated instrumentation and methods of using the same
US11491020B2 (en) 2020-07-09 2022-11-08 Globus Medical, Inc. Articulating and expandable interbody fusions devices
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11564811B2 (en) 2015-02-06 2023-01-31 Spinal Elements, Inc. Graft material injector system and method
US11564807B2 (en) 2009-10-15 2023-01-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11583327B2 (en) 2018-01-29 2023-02-21 Spinal Elements, Inc. Minimally invasive interbody fusion
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11723780B2 (en) 2015-07-17 2023-08-15 Globus Medical, Inc. Intervertebral spacer and plate
US11744714B2 (en) 2015-05-21 2023-09-05 Globus Medical Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11759328B2 (en) 2019-09-06 2023-09-19 Globus Medical Inc. Expandable motion preservation spacer
US11766340B2 (en) 2013-03-01 2023-09-26 Globus Medical, Inc. Articulating expandable intervertebral implant
US11771483B2 (en) 2017-03-22 2023-10-03 Spinal Elements, Inc. Minimal impact access system to disc space
US11793654B2 (en) 2010-09-03 2023-10-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11813175B2 (en) 2012-12-31 2023-11-14 Globus Medical, Inc. Spinous process fixation system and methods thereof
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11883080B1 (en) 2022-07-13 2024-01-30 Globus Medical, Inc Reverse dynamization implants
US11890203B2 (en) 2009-10-15 2024-02-06 Globus Medical, Inc Expandable fusion device and method of installation thereof
US11896492B2 (en) 2013-03-15 2024-02-13 Globus Medical, Inc. Expandable intervertebral implant
US11896496B2 (en) 2015-05-21 2024-02-13 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US11896493B2 (en) 2015-12-16 2024-02-13 Globus Medical, Inc Expandable intervertebral spacer
US11896499B2 (en) 2021-12-02 2024-02-13 Globus Medical, Inc Expandable fusion device with integrated deployable retention spikes
US11903844B2 (en) 2015-05-21 2024-02-20 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US11911291B2 (en) 2015-09-02 2024-02-27 Globus Medical, Inc. Implantable systems, devices and related methods
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
US11925565B2 (en) 2014-02-07 2024-03-12 Globus Medical Inc. Variable lordosis spacer and related methods of use
US11944551B2 (en) 2012-12-11 2024-04-02 Globus Medical, Inc. Expandable vertebral implant
US11998455B2 (en) 2016-09-14 2024-06-04 Globus Medical, Inc. Systems and methods for expandable corpectomy spacer implantation
US12011364B2 (en) 2022-06-15 2024-06-18 Globus Medical, Inc Expandable footprint implant
US12011368B2 (en) 2015-05-14 2024-06-18 Globus Medical, Inc Expandable inter vertebral implants and methods of installation thereof
US12016785B2 (en) 2015-09-02 2024-06-25 Globus Medical Inc Expandable intervertebral fusion devices and methods of installation thereof
US12029658B2 (en) 2020-07-09 2024-07-09 Globus Medical, Inc. Intradiscal fixation systems
US12029659B2 (en) 2015-12-15 2024-07-09 Globus Medical, Inc. Stabilized intervertebral spacer
US12059358B2 (en) 2010-09-03 2024-08-13 Globus Medical Inc. Expandable fusion device and method of installation thereof
US12059179B2 (en) 2016-02-02 2024-08-13 Globus Medical, Inc. Expandable spinal fixation system
US12090064B2 (en) 2022-03-01 2024-09-17 Medos International Sarl Stabilization members for expandable intervertebral implants, and related systems and methods

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253854A4 (en) 1999-03-07 2010-01-06 Discure Ltd Method and apparatus for computerized surgery
FR2824261B1 (en) 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
FR2827156B1 (en) 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US8603168B2 (en) 2003-08-05 2013-12-10 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
FR2865629B1 (en) 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
FR2869528B1 (en) 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7875078B2 (en) * 2004-08-25 2011-01-25 Spine Wave, Inc. Expandable interbody fusion device
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US8597360B2 (en) 2004-11-03 2013-12-03 Neuropro Technologies, Inc. Bone fusion device
US7959675B2 (en) * 2005-04-08 2011-06-14 G&L Consulting, Llc Spine implant insertion device and method
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
EP1903949A2 (en) 2005-07-14 2008-04-02 Stout Medical Group, L.P. Expandable support device and method of use
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
FR2893838B1 (en) 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
US7887595B1 (en) 2005-12-05 2011-02-15 Nuvasive, Inc. Methods and apparatus for spinal fusion
US7988695B2 (en) * 2005-12-21 2011-08-02 Theken Spine, Llc Articulated delivery instrument
US20070162132A1 (en) 2005-12-23 2007-07-12 Dominique Messerli Flexible elongated chain implant and method of supporting body tissue with same
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
US7976549B2 (en) * 2006-03-23 2011-07-12 Theken Spine, Llc Instruments for delivering spinal implants
WO2007131002A2 (en) 2006-05-01 2007-11-15 Stout Medical Group, L.P. Expandable support device and method of use
US8034110B2 (en) 2006-07-31 2011-10-11 Depuy Spine, Inc. Spinal fusion implant
US8114162B1 (en) 2006-08-09 2012-02-14 Nuvasive, Inc. Spinal fusion implant and related methods
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
US8506636B2 (en) 2006-09-08 2013-08-13 Theken Spine, Llc Offset radius lordosis
USD708747S1 (en) 2006-09-25 2014-07-08 Nuvasive, Inc. Spinal fusion implant
US8641764B2 (en) * 2006-10-11 2014-02-04 G&L Consulting, Llc Spine implant insertion device and method
US20080140085A1 (en) * 2006-12-11 2008-06-12 G&L Consulting, Llc Steerable spine implant insertion device and method
US8597358B2 (en) 2007-01-19 2013-12-03 Flexuspine, Inc. Dynamic interbody devices
EP2586403B1 (en) 2007-02-06 2023-12-27 Pioneer Surgical Technology, Inc. Intervertebral implant devices
FR2914180B1 (en) * 2007-03-28 2010-02-12 David Attia EXPANSIVE CAGE FOR VERTEBRAL SURGERY.
FI122996B (en) * 2007-05-10 2012-09-28 Teliasonera Ab Processing of service request
US7967867B2 (en) 2007-05-31 2011-06-28 Spine Wave, Inc. Expandable interbody fusion device
US8579976B2 (en) * 2007-06-12 2013-11-12 David Attia Expandable cage for vertebral surgery involving lumbar intersomatic fusion by a transforaminal posterior approach
US8328818B1 (en) 2007-08-31 2012-12-11 Globus Medical, Inc. Devices and methods for treating bone
WO2009039430A1 (en) * 2007-09-19 2009-03-26 Stout Medical Group, L.P. Implantable support device and method of use
US8523912B2 (en) 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
US8157844B2 (en) 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8162994B2 (en) 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US8187330B2 (en) 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8182514B2 (en) 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
AU2009228030B2 (en) * 2008-03-28 2014-01-16 K2M, Inc. Expandable cage with locking device
US8110004B2 (en) 2008-08-21 2012-02-07 The Trustees Of The Stevens Institute Of Technology Expandable interbody fusion cage with rotational insert
US8147554B2 (en) * 2008-10-13 2012-04-03 Globus Medical, Inc. Intervertebral spacer
WO2010056895A1 (en) * 2008-11-12 2010-05-20 Stout Medical Group, L.P. Fixation device and method
US20100191336A1 (en) * 2008-11-12 2010-07-29 Stout Medical Group. L.P. Fixation device and method
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
CN102369332B (en) 2008-12-31 2014-07-02 奥马尔·F·希门尼斯 Flexible joint arrangement incorporating flexure members
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US8628577B1 (en) 2009-03-19 2014-01-14 Ex Technology, Llc Stable device for intervertebral distraction and fusion
US10842642B2 (en) 2009-04-16 2020-11-24 Nuvasive, Inc. Methods and apparatus of performing spine surgery
US8287597B1 (en) * 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
WO2010132841A1 (en) * 2009-05-14 2010-11-18 Stout Medical Group, L.P. Expandable support device and method of use
WO2010148112A1 (en) * 2009-06-16 2010-12-23 Stout Medical Group, L.P. Expandable support device and method of use
EP2451404B1 (en) 2009-07-09 2015-12-16 R Tree Innovations, LLC Flexible inter-body implant
CN102625682B (en) 2009-07-22 2015-04-01 斯普耐技术有限责任公司 Apparatuses for vertebral body distraction and fusion employing a coaxial screw gear sleeve mechanism
KR101805935B1 (en) 2009-09-17 2017-12-06 엘디알 홀딩 코포레이션 Intervertebral implant having extendable bone fixation members
US9078766B2 (en) * 2012-07-06 2015-07-14 Intel Corporation Device and method with power efficient location notification function by periodically deactivating signal-based location service during travel until a wake trigger condition is met
US8679183B2 (en) 2010-06-25 2014-03-25 Globus Medical Expandable fusion device and method of installation thereof
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US9168138B2 (en) 2009-12-09 2015-10-27 DePuy Synthes Products, Inc. Aspirating implants and method of bony regeneration
US8636746B2 (en) 2009-12-31 2014-01-28 Spinex Tec, Llc Methods and apparatus for insertion of vertebral body distraction and fusion devices
US8353963B2 (en) 2010-01-12 2013-01-15 Globus Medical Expandable spacer and method for use thereof
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
US9421109B2 (en) 2010-01-13 2016-08-23 Jcbd, Llc Systems and methods of fusing a sacroiliac joint
US8979928B2 (en) 2010-01-13 2015-03-17 Jcbd, Llc Sacroiliac joint fixation fusion system
US9788961B2 (en) 2010-01-13 2017-10-17 Jcbd, Llc Sacroiliac joint implant system
WO2014015309A1 (en) 2012-07-20 2014-01-23 Jcbd, Llc Orthopedic anchoring system and methods
US9333090B2 (en) * 2010-01-13 2016-05-10 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9078769B2 (en) * 2010-02-02 2015-07-14 Azadeh Farin Spine surgery device
US9913726B2 (en) 2010-02-24 2018-03-13 Globus Medical, Inc. Expandable intervertebral spacer and method of posterior insertion thereof
WO2011116136A1 (en) 2010-03-16 2011-09-22 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
US9301850B2 (en) 2010-04-12 2016-04-05 Globus Medical, Inc. Expandable vertebral implant
US8956414B2 (en) 2010-04-21 2015-02-17 Spinecraft, LLC Intervertebral body implant, instrument and method
US8535380B2 (en) * 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8506635B2 (en) * 2010-06-02 2013-08-13 Warsaw Orthopedic, Inc. System and methods for a laterally expanding implant
US9402744B2 (en) * 2010-06-11 2016-08-02 International Spinal Innovations, Llc Pre-packed corpectomy device to improve fusion
US9241810B1 (en) * 2010-07-12 2016-01-26 Spinesmith Partners, L.P. Fusion device and associated methods
US9144501B1 (en) 2010-07-16 2015-09-29 Nuvasive, Inc. Fracture reduction device and methods
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US8845734B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8852279B2 (en) 2010-09-03 2014-10-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845731B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US8876866B2 (en) 2010-12-13 2014-11-04 Globus Medical, Inc. Spinous process fusion devices and methods thereof
US9084683B2 (en) * 2011-01-07 2015-07-21 Pbn Spinal Implants, Llc Spinal implant system and method
US8518087B2 (en) 2011-03-10 2013-08-27 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US8394129B2 (en) 2011-03-10 2013-03-12 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
RU2550973C2 (en) * 2011-03-11 2015-05-20 Фбс Девайс Апс Vertebral implant, instrument for manufacturing and application method
US9700425B1 (en) 2011-03-20 2017-07-11 Nuvasive, Inc. Vertebral body replacement and insertion methods
EP2688518A4 (en) 2011-03-22 2014-08-20 Depuy Synthes Products Llc Universal trial for lateral cages
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US9358123B2 (en) 2011-08-09 2016-06-07 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US10292830B2 (en) 2011-08-09 2019-05-21 Neuropro Technologies, Inc. Bone fusion device, system and method
US10420654B2 (en) 2011-08-09 2019-09-24 Neuropro Technologies, Inc. Bone fusion device, system and method
AU2012296522B2 (en) 2011-08-16 2016-12-22 Stryker European Holdings I, Llc Expandable implant
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US20130103153A1 (en) * 2011-10-24 2013-04-25 Warsaw Orthopedic, Inc. Interbody implant system and methods of use
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
KR101352820B1 (en) * 2012-01-11 2014-01-17 주식회사 디오메디칼 A lumbar expandable cage
US9226764B2 (en) 2012-03-06 2016-01-05 DePuy Synthes Products, Inc. Conformable soft tissue removal instruments
US10159583B2 (en) 2012-04-13 2018-12-25 Neuropro Technologies, Inc. Bone fusion device
US9532883B2 (en) 2012-04-13 2017-01-03 Neuropro Technologies, Inc. Bone fusion device
US9622876B1 (en) 2012-04-25 2017-04-18 Theken Spine, Llc Expandable support device and method of use
US8771277B2 (en) 2012-05-08 2014-07-08 Globus Medical, Inc Device and a method for implanting a spinous process fixation device
WO2013179102A1 (en) 2012-05-29 2013-12-05 NLT-Spine Ltd. Laterally deflectable implant
EP2866745B1 (en) 2012-06-29 2018-04-04 DePuy Synthes Products, LLC Lateral insertion spinal implant
US20160022434A1 (en) 2012-08-08 2016-01-28 James C. Robinson Expandable intervertebral cage assemblies
KR102072964B1 (en) 2012-08-08 2020-02-04 제임스 씨 로빈슨 Expandable intervertebral cage assemblies and methods
WO2014026041A2 (en) * 2012-08-08 2014-02-13 Robinson James C Expandable dlif cage assemblies and methods
US10154914B2 (en) 2012-08-08 2018-12-18 Spectrum Spine Ip Holdings, Llc Expandable intervertebral cage assemblies
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US8715351B1 (en) 2012-11-29 2014-05-06 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US9486251B2 (en) 2012-12-31 2016-11-08 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9198697B2 (en) 2013-03-13 2015-12-01 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9585765B2 (en) 2013-02-14 2017-03-07 Globus Medical, Inc Devices and methods for correcting vertebral misalignment
US10105239B2 (en) 2013-02-14 2018-10-23 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US9402738B2 (en) 2013-02-14 2016-08-02 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US10342675B2 (en) 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
US9277928B2 (en) 2013-03-11 2016-03-08 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US8900312B2 (en) * 2013-03-12 2014-12-02 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US8828019B1 (en) 2013-03-13 2014-09-09 Spine Wave, Inc. Inserter for expanding an expandable interbody fusion device
US10292832B2 (en) 2013-03-14 2019-05-21 Ohio State Innovation Foundation Spinal fixation device
US9707096B2 (en) 2013-03-14 2017-07-18 K2M, Inc. Spinal fixation device
US9993353B2 (en) 2013-03-14 2018-06-12 DePuy Synthes Products, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US10070970B2 (en) * 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
JP6836899B2 (en) 2013-03-14 2021-03-03 ラエド エム.アリ,エム.ディー.,インク. Lateral interbody fusion devices, systems, and methods
US9826986B2 (en) 2013-07-30 2017-11-28 Jcbd, Llc Systems for and methods of preparing a sacroiliac joint for fusion
US9717539B2 (en) 2013-07-30 2017-08-01 Jcbd, Llc Implants, systems, and methods for fusing a sacroiliac joint
US10369010B2 (en) * 2013-03-15 2019-08-06 Spectrum Spine Ip Holdings, Llc Expandable inter-body fusion devices and methods
US10098757B2 (en) 2013-03-15 2018-10-16 Neuropro Technologies Inc. Bodiless bone fusion device, apparatus and method
US9149367B2 (en) 2013-03-15 2015-10-06 Globus Medical Inc Expandable intervertebral implant
WO2014146018A1 (en) 2013-03-15 2014-09-18 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US11491024B2 (en) * 2013-03-15 2022-11-08 Atlas Spine, Inc. PLIF hinged spacer
US9700356B2 (en) 2013-07-30 2017-07-11 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US10245087B2 (en) 2013-03-15 2019-04-02 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
FR3005569B1 (en) 2013-05-16 2021-09-03 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANTATION INSTRUMENTATION
WO2015021217A1 (en) * 2013-08-07 2015-02-12 Globus Medical, Inc. Expandable fusion device and method of installation thereof
ES2882166T3 (en) 2013-08-29 2021-12-01 Spineex Inc Expandable and adjustable lordosis intervertebral fusion system
US11452614B2 (en) 2013-08-29 2022-09-27 Adcura, Inc. Expandable and adjustable lordosis interbody fusion system
US9295565B2 (en) * 2013-10-18 2016-03-29 Spine Wave, Inc. Method of expanding an intradiscal space and providing an osteoconductive path during expansion
FR3016793B1 (en) 2014-01-30 2021-05-07 Ldr Medical ANCHORING DEVICE FOR SPINAL IMPLANT, SPINAL IMPLANT AND IMPLANTATION INSTRUMENTATION
US9402739B2 (en) 2014-02-07 2016-08-02 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9662224B2 (en) 2014-02-07 2017-05-30 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US11065132B2 (en) 2014-03-06 2021-07-20 Spine Wave, Inc. Method of expanding a space between opposing tissue surfaces
US9445921B2 (en) 2014-03-06 2016-09-20 Spine Wave, Inc. Device for expanding and supporting body tissue
US9439783B2 (en) 2014-03-06 2016-09-13 Spine Wave, Inc. Inserter for expanding body tissue
US9114026B1 (en) 2014-03-06 2015-08-25 Spine Wave, Inc. Inserter for an expandable spinal interbody fusion device
US9265623B2 (en) 2014-03-06 2016-02-23 Spine Wave, Inc. Method of expanding a spinal interbody fusion device
US9486328B2 (en) 2014-04-01 2016-11-08 Ex Technology, Llc Expandable intervertebral cage
US8940049B1 (en) 2014-04-01 2015-01-27 Ex Technology, Llc Expandable intervertebral cage
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
FR3020756B1 (en) 2014-05-06 2022-03-11 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANT INSTRUMENTATION
US9801546B2 (en) 2014-05-27 2017-10-31 Jcbd, Llc Systems for and methods of diagnosing and treating a sacroiliac joint disorder
US9901459B2 (en) 2014-12-16 2018-02-27 Globus Medical, Inc. Expandable fusion devices and methods of installation thereof
US9848996B2 (en) 2015-06-17 2017-12-26 Globus Medical, Inc. Variable lordotic interbody spacer
US10327908B2 (en) 2015-09-18 2019-06-25 K2M, Inc. Corpectomy device and methods of use thereof
US10952869B2 (en) * 2016-05-27 2021-03-23 Mobarn Medical Devices, Llc Interbody fusion cages
US10213321B2 (en) 2017-01-18 2019-02-26 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
US10973657B2 (en) 2017-01-18 2021-04-13 Neuropro Technologies, Inc. Bone fusion surgical system and method
US10729560B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
US10111760B2 (en) 2017-01-18 2018-10-30 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
US10603055B2 (en) 2017-09-15 2020-03-31 Jcbd, Llc Systems for and methods of preparing and fusing a sacroiliac joint
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US10881524B2 (en) * 2018-03-06 2021-01-05 Eit Emerging Implant Technologies Gmbh Angularly adjustable intervertebral cages with integrated ratchet assembly
KR102179189B1 (en) * 2018-11-21 2020-11-16 인제대학교 산학협력단 Horizontal expandable Intervertebral fusion implant cage
US11234835B2 (en) 2019-03-05 2022-02-01 Octagon Spine Llc Transversely expandable minimally invasive intervertebral cage
US11497622B2 (en) 2019-03-05 2022-11-15 Ex Technology, Llc Transversely expandable minimally invasive intervertebral cage and insertion and extraction device
US11660205B2 (en) 2019-08-15 2023-05-30 Adcura, Inc. Dual-axis adjustable spinal systems and interbody fusion devices with fixation
EP4013358A4 (en) 2019-08-15 2023-08-23 Adcura, Inc. Translating dual axis adjustable interbody fusion spinal system
US11648132B2 (en) 2019-09-24 2023-05-16 Adcura, Inc Surgical instrument for operating spinal implant system with dual axis adjustability and method of operating same
US11963881B2 (en) 2020-11-05 2024-04-23 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US11564724B2 (en) 2020-11-05 2023-01-31 Warsaw Orthopedic, Inc. Expandable inter-body device, system and method
US11395743B1 (en) 2021-05-04 2022-07-26 Warsaw Orthopedic, Inc. Externally driven expandable interbody and related methods
US11291554B1 (en) 2021-05-03 2022-04-05 Medtronic, Inc. Unibody dual expanding interbody implant
US11376134B1 (en) 2020-11-05 2022-07-05 Warsaw Orthopedic, Inc. Dual expanding spinal implant, system, and method of use
US11833059B2 (en) 2020-11-05 2023-12-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11517443B2 (en) 2020-11-05 2022-12-06 Warsaw Orthopedic, Inc. Dual wedge expandable implant, system and method of use
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US11285014B1 (en) 2020-11-05 2022-03-29 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US20220409389A1 (en) * 2021-06-24 2022-12-29 Warsaw Orthopedic Inc. Interbody implant with adjusting shims
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant
US11730608B2 (en) 2021-07-13 2023-08-22 Warsaw Orthopedic, Inc. Monoblock expandable interbody implant
US12097126B2 (en) 2021-09-29 2024-09-24 Ex Technology, Llc Expandable intervertebral cage
US11850163B2 (en) * 2022-02-01 2023-12-26 Warsaw Orthopedic, Inc. Interbody implant with adjusting shims
US12011365B2 (en) 2022-07-18 2024-06-18 Octagon Spine Llc Transversely expandable minimally invasive inter vertebral cage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863476A (en) * 1986-08-29 1989-09-05 Shepperd John A N Spinal implant
US5980522A (en) * 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1333209C (en) * 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5171278A (en) * 1991-02-22 1992-12-15 Madhavan Pisharodi Middle expandable intervertebral disk implants
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
FR2715293B1 (en) * 1994-01-26 1996-03-22 Biomat Vertebral interbody fusion cage.
DE9413471U1 (en) * 1994-08-20 1995-12-21 Schäfer micomed GmbH, 73614 Schorndorf Ventral intervertebral implant
US5622699A (en) * 1995-09-11 1997-04-22 La Jolla Cancer Research Foundation Method of identifying molecules that home to a selected organ in vivo
US6190414B1 (en) * 1996-10-31 2001-02-20 Surgical Dynamics Inc. Apparatus for fusion of adjacent bone structures
US7306628B2 (en) * 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
DE19804765C2 (en) * 1998-02-06 2000-09-28 Biedermann Motech Gmbh Placeholder with adjustable axial length
DE19807236C2 (en) * 1998-02-20 2000-06-21 Biedermann Motech Gmbh Intervertebral implant
FR2782632B1 (en) * 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
US6117174A (en) * 1998-09-16 2000-09-12 Nolan; Wesley A. Spinal implant device
ATE268579T1 (en) * 1998-10-15 2004-06-15 Synthes Ag TELESCOPED VERTEBRATE PROSTHESIS
US6102950A (en) * 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
US6491724B1 (en) * 1999-08-13 2002-12-10 Bret Ferree Spinal fusion cage with lordosis correction
US6419705B1 (en) * 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
US6395034B1 (en) * 1999-11-24 2002-05-28 Loubert Suddaby Intervertebral disc prosthesis
US6821298B1 (en) * 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
US6773460B2 (en) * 2000-12-05 2004-08-10 Roger P. Jackson Anterior variable expandable fusion cage
US6595998B2 (en) * 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
US7128760B2 (en) * 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US6368351B1 (en) * 2001-03-27 2002-04-09 Bradley J. Glenn Intervertebral space implant for use in spinal fusion procedures
US6558424B2 (en) * 2001-06-28 2003-05-06 Depuy Acromed Modular anatomic fusion device
US6648917B2 (en) * 2001-10-17 2003-11-18 Medicinelodge, Inc. Adjustable bone fusion implant and method
US20030195831A1 (en) * 2002-04-12 2003-10-16 Ibbotson Associates, Inc. Portfolio generation using resampled efficient frontiers and interval-associated groups
DE10248170A1 (en) * 2002-10-16 2004-04-29 Advanced Medical Technologies Ag Implant for insertion between vertebras of a spinal column comprises two sides whose outer surfaces at the start of a vertebra spreading process converge towards the free ends of the sides
US7094257B2 (en) * 2003-02-14 2006-08-22 Zimmer Spine, Inc. Expandable intervertebral implant cage
US7316714B2 (en) * 2003-08-05 2008-01-08 Flexuspine, Inc. Artificial functional spinal unit assemblies
US7753958B2 (en) * 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863476A (en) * 1986-08-29 1989-09-05 Shepperd John A N Spinal implant
US5980522A (en) * 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants

Cited By (314)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238500B2 (en) 2002-06-27 2019-03-26 DePuy Synthes Products, Inc. Intervertebral disc
US11432938B2 (en) 2003-02-14 2022-09-06 DePuy Synthes Products, Inc. In-situ intervertebral fusion device and method
US10555817B2 (en) 2003-02-14 2020-02-11 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9925060B2 (en) 2003-02-14 2018-03-27 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814589B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11207187B2 (en) 2003-02-14 2021-12-28 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9801729B2 (en) 2003-02-14 2017-10-31 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9788963B2 (en) 2003-02-14 2017-10-17 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10492918B2 (en) 2003-02-14 2019-12-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10786361B2 (en) 2003-02-14 2020-09-29 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10639164B2 (en) 2003-02-14 2020-05-05 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9724207B2 (en) 2003-02-14 2017-08-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10433971B2 (en) 2003-02-14 2019-10-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814590B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9808351B2 (en) 2003-02-14 2017-11-07 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10085843B2 (en) 2003-02-14 2018-10-02 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10376372B2 (en) 2003-02-14 2019-08-13 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10583013B2 (en) 2003-02-14 2020-03-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10575959B2 (en) 2003-02-14 2020-03-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11096794B2 (en) 2003-02-14 2021-08-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10420651B2 (en) 2003-02-14 2019-09-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10405986B2 (en) 2003-02-14 2019-09-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11612493B2 (en) 2003-06-30 2023-03-28 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
US10433974B2 (en) 2003-06-30 2019-10-08 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
US11957598B2 (en) 2004-02-04 2024-04-16 Ldr Medical Intervertebral disc prosthesis
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US10433881B2 (en) 2004-03-06 2019-10-08 DePuy Synthes Products, Inc. Dynamized interspinal implant
US10512489B2 (en) 2004-03-06 2019-12-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US9949769B2 (en) 2004-03-06 2018-04-24 DePuy Synthes Products, Inc. Dynamized interspinal implant
US11992423B2 (en) 2004-11-24 2024-05-28 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US11096799B2 (en) 2004-11-24 2021-08-24 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10226355B2 (en) 2004-12-22 2019-03-12 Ldr Medical Intervertebral disc prosthesis
US9044338B2 (en) 2005-08-16 2015-06-02 Benvenue Medical, Inc. Spinal tissue distraction devices
US10028840B2 (en) 2005-08-16 2018-07-24 Izi Medical Products, Llc Spinal tissue distraction devices
US9066808B2 (en) 2005-08-16 2015-06-30 Benvenue Medical, Inc. Method of interdigitating flowable material with bone tissue
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US9788974B2 (en) 2005-08-16 2017-10-17 Benvenue Medical, Inc. Spinal tissue distraction devices
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US9724206B2 (en) 2006-09-20 2017-08-08 Woodwelding Ag Device to be implanted in human or animal tissue and method for implanting and assembling the device
US9782268B2 (en) 2006-09-20 2017-10-10 Woodwelding Ag Device to be implanted in human or animal tissue and method for implanting and assembling the device
JP2016055184A (en) * 2006-09-20 2016-04-21 ウッドウェルディング・アクチェンゲゼルシャフト Device to be implanted in human or animal tissue and method for implanting and assembling the device
US11399953B2 (en) 2006-09-20 2022-08-02 Woodwelding Ag Device to be implanted in human or animal tissue and method for implanting and assembling the device
US10470893B2 (en) 2006-09-20 2019-11-12 Woodwelding Ag Device to be implanted in human or animal tissue and method for implanting and assembling the device
US10398566B2 (en) 2006-12-07 2019-09-03 DePuy Synthes Products, Inc. Intervertebral implant
US11432942B2 (en) 2006-12-07 2022-09-06 DePuy Synthes Products, Inc. Intervertebral implant
US11660206B2 (en) 2006-12-07 2023-05-30 DePuy Synthes Products, Inc. Intervertebral implant
US10583015B2 (en) 2006-12-07 2020-03-10 DePuy Synthes Products, Inc. Intervertebral implant
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11712345B2 (en) 2006-12-07 2023-08-01 DePuy Synthes Products, Inc. Intervertebral implant
US10390963B2 (en) 2006-12-07 2019-08-27 DePuy Synthes Products, Inc. Intervertebral implant
US11642229B2 (en) 2006-12-07 2023-05-09 DePuy Synthes Products, Inc. Intervertebral implant
US11497618B2 (en) 2006-12-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US10398574B2 (en) 2007-02-16 2019-09-03 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10188528B2 (en) 2007-02-16 2019-01-29 Ldr Medical Interveterbral disc prosthesis insertion assemblies
EP2124778A4 (en) * 2007-02-21 2013-03-20 Benvenue Medical Inc Devices for treating the spine
US8968408B2 (en) 2007-02-21 2015-03-03 Benvenue Medical, Inc. Devices for treating the spine
EP2124778A2 (en) * 2007-02-21 2009-12-02 Benvenue Medical, Inc. Devices for treating the spine
US9642712B2 (en) 2007-02-21 2017-05-09 Benvenue Medical, Inc. Methods for treating the spine
JP2010518987A (en) * 2007-02-21 2010-06-03 ベンベニュー メディカル, インコーポレイテッド Spinal therapy device
US10426629B2 (en) 2007-02-21 2019-10-01 Benvenue Medical, Inc. Devices for treating the spine
US10285821B2 (en) 2007-02-21 2019-05-14 Benvenue Medical, Inc. Devices for treating the spine
US10575963B2 (en) 2007-02-21 2020-03-03 Benvenue Medical, Inc. Devices for treating the spine
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US9839530B2 (en) 2007-06-26 2017-12-12 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US11622868B2 (en) 2007-06-26 2023-04-11 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US9402737B2 (en) 2007-06-26 2016-08-02 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US9433510B2 (en) 2008-01-17 2016-09-06 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US10433977B2 (en) 2008-01-17 2019-10-08 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US10449058B2 (en) 2008-01-17 2019-10-22 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US9295562B2 (en) 2008-01-17 2016-03-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
AU2009257987B2 (en) * 2008-03-28 2014-04-03 K2M, Inc. Expandable cage
EP2268219A1 (en) * 2008-03-28 2011-01-05 K2M, Inc. Expandable cage
EP2268219A4 (en) * 2008-03-28 2013-01-09 K2M Inc Expandable cage
WO2009124269A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9931223B2 (en) 2008-04-05 2018-04-03 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11707359B2 (en) 2008-04-05 2023-07-25 DePuy Synthes Products, Inc. Expandable intervertebral implant
US8936641B2 (en) 2008-04-05 2015-01-20 DePuy Synthes Products, LLC Expandable intervertebral implant
US11712342B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US12023255B2 (en) 2008-04-05 2024-07-02 DePuy Synthes Products, Inc. Expandable inter vertebral implant
US11617655B2 (en) 2008-04-05 2023-04-04 DePuy Synthes Products, Inc. Expandable intervertebral implant
US12011361B2 (en) 2008-04-05 2024-06-18 DePuy Synthes Products, Inc. Expandable intervertebral implant
US10449056B2 (en) 2008-04-05 2019-10-22 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9414934B2 (en) 2008-04-05 2016-08-16 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11701234B2 (en) 2008-04-05 2023-07-18 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9474623B2 (en) 2008-04-05 2016-10-25 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712341B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9526625B2 (en) 2008-04-05 2016-12-27 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9545314B2 (en) 2008-04-05 2017-01-17 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US10624758B2 (en) 2009-03-30 2020-04-21 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US12097124B2 (en) 2009-03-30 2024-09-24 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US9750552B2 (en) 2009-07-06 2017-09-05 DePuy Synthes Products, Inc. Expandable fixation assemblies
US9510954B2 (en) 2009-10-15 2016-12-06 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10154912B2 (en) 2009-10-15 2018-12-18 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10744002B2 (en) 2009-10-15 2020-08-18 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10806596B2 (en) 2009-10-15 2020-10-20 Globus Medical, Inc. Expandable fusion device and method installation thereof
US9655747B2 (en) 2009-10-15 2017-05-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10219913B2 (en) 2009-10-15 2019-03-05 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11666457B2 (en) 2009-10-15 2023-06-06 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9949841B2 (en) 2009-10-15 2018-04-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10098758B2 (en) 2009-10-15 2018-10-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10617533B2 (en) 2009-10-15 2020-04-14 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11690733B2 (en) 2009-10-15 2023-07-04 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9119730B2 (en) 2009-10-15 2015-09-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9155628B2 (en) 2009-10-15 2015-10-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10327917B2 (en) 2009-10-15 2019-06-25 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US12023260B2 (en) 2009-10-15 2024-07-02 Globus Medical, Inc Expandable fusion device and method of installation thereof
US9204974B2 (en) 2009-10-15 2015-12-08 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11191649B2 (en) 2009-10-15 2021-12-07 Globus Medical Inc. Expandable fusion device and method of installation thereof
US11564807B2 (en) 2009-10-15 2023-01-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11103366B2 (en) 2009-10-15 2021-08-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9211196B2 (en) 2009-10-15 2015-12-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9492287B2 (en) 2009-10-15 2016-11-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9216095B2 (en) 2009-10-15 2015-12-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9226836B2 (en) 2009-10-15 2016-01-05 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11890203B2 (en) 2009-10-15 2024-02-06 Globus Medical, Inc Expandable fusion device and method of installation thereof
US9358128B2 (en) 2009-10-15 2016-06-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11957603B2 (en) 2009-10-15 2024-04-16 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9358126B2 (en) 2009-10-15 2016-06-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9452063B2 (en) 2009-10-15 2016-09-27 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11918486B2 (en) 2009-12-07 2024-03-05 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9675389B2 (en) 2009-12-07 2017-06-13 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10945861B2 (en) 2009-12-07 2021-03-16 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10857004B2 (en) 2009-12-07 2020-12-08 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10610380B2 (en) 2009-12-07 2020-04-07 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10500062B2 (en) 2009-12-10 2019-12-10 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
WO2011080535A1 (en) * 2009-12-31 2011-07-07 Lrd Medical Anchoring device, intervertebral implant and implantation instrument
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
EP3323390A1 (en) * 2009-12-31 2018-05-23 LDR Medical Système intervertébral avec un dispositif d'ancrage
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9895236B2 (en) 2010-06-24 2018-02-20 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US10327911B2 (en) 2010-06-24 2019-06-25 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
US11872139B2 (en) 2010-06-24 2024-01-16 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US9833334B2 (en) 2010-06-24 2017-12-05 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11844703B2 (en) 2010-06-25 2023-12-19 Globus Medical Inc. Expandable fusion device and method of installation thereof
US11234836B2 (en) 2010-06-25 2022-02-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9848997B2 (en) 2010-06-25 2017-12-26 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US12070396B2 (en) 2010-06-25 2024-08-27 Globus Medical Inc. Expandable fusion device and method of installation thereof
US11399958B2 (en) 2010-06-25 2022-08-02 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9597200B2 (en) 2010-06-25 2017-03-21 Globus Medical, Inc Expandable fusion device and method of installation thereof
US11801148B2 (en) 2010-06-25 2023-10-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10350085B2 (en) 2010-06-25 2019-07-16 Globus Medical, Inc Expandable fusion device and method of installation thereof
US9456903B2 (en) 2010-06-25 2016-10-04 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10548741B2 (en) 2010-06-29 2020-02-04 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US9066814B2 (en) 2010-08-02 2015-06-30 Ulrich Medical Usa, Inc. Implant assembly having an angled head
US9925062B2 (en) 2010-09-03 2018-03-27 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10085849B2 (en) 2010-09-03 2018-10-02 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10758367B2 (en) 2010-09-03 2020-09-01 Globus Medical Inc. Expandable fusion device and method of installation thereof
US12059359B2 (en) 2010-09-03 2024-08-13 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10779957B2 (en) 2010-09-03 2020-09-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10709573B2 (en) 2010-09-03 2020-07-14 Globus Medical Inc. Expandable fusion device and method of installation thereof
US11273052B2 (en) 2010-09-03 2022-03-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9561116B2 (en) 2010-09-03 2017-02-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10835387B2 (en) 2010-09-03 2020-11-17 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10842644B2 (en) 2010-09-03 2020-11-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US12059358B2 (en) 2010-09-03 2024-08-13 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10682241B2 (en) 2010-09-03 2020-06-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10869768B2 (en) 2010-09-03 2020-12-22 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9125757B2 (en) 2010-09-03 2015-09-08 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US12011369B2 (en) 2010-09-03 2024-06-18 Globus Medical Inc. Expandable interspinous process fixation device
US10010430B2 (en) 2010-09-03 2018-07-03 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10945858B2 (en) 2010-09-03 2021-03-16 Globus Medical, Inc. Expandable interspinous process fixation device
US11793654B2 (en) 2010-09-03 2023-10-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9351848B2 (en) 2010-09-03 2016-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10973649B2 (en) 2010-09-03 2021-04-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9358129B2 (en) 2010-09-03 2016-06-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10137001B2 (en) 2010-09-03 2018-11-27 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9566168B2 (en) 2010-09-03 2017-02-14 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11642230B2 (en) 2010-09-03 2023-05-09 Globus Medical, Inc. Expandable interspinous process fixation device
US9907673B2 (en) 2010-09-03 2018-03-06 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10512550B2 (en) 2010-09-03 2019-12-24 Globus Medical, Inc. Expandable interspinous process fixation device
US9370434B2 (en) 2010-09-03 2016-06-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10390962B2 (en) 2010-09-03 2019-08-27 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11446160B2 (en) 2010-09-03 2022-09-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9474625B2 (en) 2010-09-03 2016-10-25 Globus Medical, Inc Expandable fusion device and method of installation thereof
US11857437B2 (en) 2010-09-03 2024-01-02 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11446162B2 (en) 2010-09-03 2022-09-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9855151B2 (en) 2010-09-03 2018-01-02 Globus Medical, Inc Expandable fusion device and method of installation thereof
US11826263B2 (en) 2010-09-03 2023-11-28 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11324608B2 (en) 2011-09-23 2022-05-10 Samy Abdou Spinal fixation devices and methods of use
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US11517449B2 (en) 2011-09-23 2022-12-06 Samy Abdou Spinal fixation devices and methods of use
US10980642B2 (en) 2011-09-30 2021-04-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9539108B2 (en) 2011-09-30 2017-01-10 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10034772B2 (en) 2011-09-30 2018-07-31 Globus Medical, Inc Expandable fusion device and method of installation thereof
US11717420B2 (en) 2011-09-30 2023-08-08 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11839413B2 (en) 2012-02-22 2023-12-12 Samy Abdou Spinous process fixation devices and methods of use
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US10245156B2 (en) 2012-02-24 2019-04-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10350083B2 (en) 2012-02-24 2019-07-16 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US11273056B2 (en) 2012-02-24 2022-03-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9561117B2 (en) 2012-07-26 2017-02-07 DePuy Synthes Products, Inc. Expandable implant
US10058433B2 (en) 2012-07-26 2018-08-28 DePuy Synthes Products, Inc. Expandable implant
US11559336B2 (en) 2012-08-28 2023-01-24 Samy Abdou Spinal fixation devices and methods of use
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US11173040B2 (en) 2012-10-22 2021-11-16 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11918483B2 (en) 2012-10-22 2024-03-05 Cogent Spine Llc Devices and methods for spinal stabilization and instrumentation
US11944551B2 (en) 2012-12-11 2024-04-02 Globus Medical, Inc. Expandable vertebral implant
US10299934B2 (en) 2012-12-11 2019-05-28 Globus Medical, Inc Expandable vertebral implant
US11813175B2 (en) 2012-12-31 2023-11-14 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9782265B2 (en) 2013-02-15 2017-10-10 Globus Medical, Inc Articulating and expandable vertebral implant
US11771564B2 (en) 2013-02-15 2023-10-03 Globus Medical Inc. Articulating and expandable vertebral implant
US11369484B2 (en) 2013-02-20 2022-06-28 Flexuspine Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US11766341B2 (en) 2013-02-20 2023-09-26 Tyler Fusion Technologies, Llc Expandable fusion device for positioning between adjacent vertebral bodies
US10786364B2 (en) 2013-02-25 2020-09-29 Globus Medical, Inc. Expandable intervertebral implant
US11612495B2 (en) 2013-02-25 2023-03-28 Globus Medical Inc. Expandable intervertebral implant
US10117754B2 (en) 2013-02-25 2018-11-06 Globus Medical, Inc. Expandable intervertebral implant
USRE49973E1 (en) 2013-02-28 2024-05-21 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9968462B2 (en) 2013-03-01 2018-05-15 Globus Medical, Inc. Articulating expandable intervertebral implant
US11701236B2 (en) 2013-03-01 2023-07-18 Globus Medical, Inc. Articulating expandable intervertebral implant
WO2014134590A1 (en) * 2013-03-01 2014-09-04 Globus Medical, Inc. Articulating expandable intervertebral implant
US9554918B2 (en) 2013-03-01 2017-01-31 Globus Medical, Inc. Articulating expandable intervertebral implant
US9204972B2 (en) 2013-03-01 2015-12-08 Globus Medical, Inc. Articulating expandable intervertebral implant
US9770343B2 (en) 2013-03-01 2017-09-26 Globus Medical Inc. Articulating expandable intervertebral implant
US9198772B2 (en) 2013-03-01 2015-12-01 Globus Medical, Inc. Articulating expandable intervertebral implant
US11766340B2 (en) 2013-03-01 2023-09-26 Globus Medical, Inc. Articulating expandable intervertebral implant
WO2015021454A1 (en) * 2013-03-01 2015-02-12 Globus Medical, Inc. Articulating expandable intervertebral implant
US11850164B2 (en) 2013-03-07 2023-12-26 DePuy Synthes Products, Inc. Intervertebral implant
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US10231843B2 (en) 2013-03-14 2019-03-19 Benvenue Medical, Inc. Spinal fusion implants and devices and methods for deploying such implants
US9480574B2 (en) 2013-03-14 2016-11-01 Benvenue Medical, Inc. Spinal fusion implants and devices and methods for deploying such implants
USRE49994E1 (en) 2013-03-14 2024-06-04 Spinal Elements, Inc. Spinal fusion implants and devices and methods for deploying such implants
US11554023B2 (en) 2013-03-15 2023-01-17 Globus Medical, Inc. Expandable intervertebral implant
US10080669B2 (en) 2013-03-15 2018-09-25 Globus Medical, Inc. Expandable intervertebral implant
US9943418B2 (en) 2013-03-15 2018-04-17 Globus Medical, Inc. Expandable intervertebral implant
US11628068B2 (en) 2013-03-15 2023-04-18 Globus Medical, Inc. Expandable intervertebral implant
US9456906B2 (en) 2013-03-15 2016-10-04 Globus Medical, Inc. Expandable intervertebral implant
US9233009B2 (en) 2013-03-15 2016-01-12 Globus Medical, Inc. Expandable intervertebral implant
US11896492B2 (en) 2013-03-15 2024-02-13 Globus Medical, Inc. Expandable intervertebral implant
US9492289B2 (en) 2013-03-15 2016-11-15 Globus Medical, Inc. Expandable intervertebral implant
US10624761B2 (en) 2013-03-15 2020-04-21 Globus Medical, Inc. Expandable intervertebral implant
US9480579B2 (en) 2013-03-15 2016-11-01 Globus Medical, Inc. Expandable intervertebral implant
US11925565B2 (en) 2014-02-07 2024-03-12 Globus Medical Inc. Variable lordosis spacer and related methods of use
US11224453B2 (en) 2014-07-08 2022-01-18 Spinal Elements, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US12053196B2 (en) 2014-07-08 2024-08-06 Spinal Elements, Inc. Apparatus and methods for disrupting inter vertebral disc tissue
US11564811B2 (en) 2015-02-06 2023-01-31 Spinal Elements, Inc. Graft material injector system and method
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US12011368B2 (en) 2015-05-14 2024-06-18 Globus Medical, Inc Expandable inter vertebral implants and methods of installation thereof
US11744714B2 (en) 2015-05-21 2023-09-05 Globus Medical Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US11903844B2 (en) 2015-05-21 2024-02-20 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US12004965B2 (en) 2015-05-21 2024-06-11 Globus Medical, Inc Device and method for deployment of an anchoring device for intervertebral spinal fusion
US11896496B2 (en) 2015-05-21 2024-02-13 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US11723780B2 (en) 2015-07-17 2023-08-15 Globus Medical, Inc. Intervertebral spacer and plate
US12016785B2 (en) 2015-09-02 2024-06-25 Globus Medical Inc Expandable intervertebral fusion devices and methods of installation thereof
US11911291B2 (en) 2015-09-02 2024-02-27 Globus Medical, Inc. Implantable systems, devices and related methods
US11246718B2 (en) 2015-10-14 2022-02-15 Samy Abdou Devices and methods for vertebral stabilization
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US11759331B2 (en) 2015-11-10 2023-09-19 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US10219914B2 (en) 2015-11-10 2019-03-05 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US12029659B2 (en) 2015-12-15 2024-07-09 Globus Medical, Inc. Stabilized intervertebral spacer
US11896493B2 (en) 2015-12-16 2024-02-13 Globus Medical, Inc Expandable intervertebral spacer
US12059179B2 (en) 2016-02-02 2024-08-13 Globus Medical, Inc. Expandable spinal fixation system
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US9974662B2 (en) 2016-06-29 2018-05-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10314719B2 (en) 2016-06-29 2019-06-11 Globus Medical Inc. Expandable fusion device and method of installation thereof
US10052215B2 (en) 2016-06-29 2018-08-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10758371B2 (en) 2016-06-29 2020-09-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11998455B2 (en) 2016-09-14 2024-06-04 Globus Medical, Inc. Systems and methods for expandable corpectomy spacer implantation
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US11752008B1 (en) 2016-10-25 2023-09-12 Samy Abdou Devices and methods for vertebral bone realignment
US11259935B1 (en) 2016-10-25 2022-03-01 Samy Abdou Devices and methods for vertebral bone realignment
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US11058548B1 (en) 2016-10-25 2021-07-13 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US11771483B2 (en) 2017-03-22 2023-10-03 Spinal Elements, Inc. Minimal impact access system to disc space
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11583327B2 (en) 2018-01-29 2023-02-21 Spinal Elements, Inc. Minimally invasive interbody fusion
US11471145B2 (en) 2018-03-16 2022-10-18 Spinal Elements, Inc. Articulated instrumentation and methods of using the same
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11759328B2 (en) 2019-09-06 2023-09-19 Globus Medical Inc. Expandable motion preservation spacer
US11191650B2 (en) 2020-02-03 2021-12-07 Globus Medical Inc. Expandable fusions devices, instruments, and methods thereof
US11737891B2 (en) 2020-02-03 2023-08-29 Globus Medical, Inc. Expandable fusions devices, instruments, and methods thereof
US11806245B2 (en) 2020-03-06 2023-11-07 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850161B2 (en) 2020-06-16 2023-12-26 Globus Medical, Inc. Expanding intervertebral implants
US12076250B2 (en) 2020-06-16 2024-09-03 Globus Medical, Inc. Expanding intervertebral implants
US11298240B2 (en) 2020-06-16 2022-04-12 Globus Medical, Inc. Expanding intervertebral implants
US12083022B2 (en) 2020-07-08 2024-09-10 Globus Medical Inc. Expandable interbody fusions devices
US11357640B2 (en) 2020-07-08 2022-06-14 Globus Medical Inc. Expandable interbody fusions devices
US12029658B2 (en) 2020-07-09 2024-07-09 Globus Medical, Inc. Intradiscal fixation systems
US11491020B2 (en) 2020-07-09 2022-11-08 Globus Medical, Inc. Articulating and expandable interbody fusions devices
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US12023258B2 (en) 2021-04-06 2024-07-02 Medos International Sarl Expandable intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11896499B2 (en) 2021-12-02 2024-02-13 Globus Medical, Inc Expandable fusion device with integrated deployable retention spikes
US12090064B2 (en) 2022-03-01 2024-09-17 Medos International Sarl Stabilization members for expandable intervertebral implants, and related systems and methods
US12011364B2 (en) 2022-06-15 2024-06-18 Globus Medical, Inc Expandable footprint implant
US11883080B1 (en) 2022-07-13 2024-01-30 Globus Medical, Inc Reverse dynamization implants

Also Published As

Publication number Publication date
JP2008517723A (en) 2008-05-29
AU2005299397A1 (en) 2006-05-04
WO2006047587A3 (en) 2007-02-22
IL182778A0 (en) 2007-08-19
CA2585450A1 (en) 2006-05-04
EP1811927A2 (en) 2007-08-01
US20060129244A1 (en) 2006-06-15
KR20070104337A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US20060129244A1 (en) Expandable intervertebral spacer method and apparatus
US11065129B2 (en) Expandable intervertebral fusion device
US20190282373A1 (en) Expandable Implant
US9844445B2 (en) Expandable interbody spacer device
US20190038435A1 (en) Intervertebral implant device with lordotic expansion
JP4966964B2 (en) Inflatable spinal graft
US20180280153A1 (en) Methods and apparatus for implanting an interbody device
US7771473B2 (en) Expandable spinal fusion cage
US8747474B2 (en) Orthopedic support locating or centering feature and method
EP1459711B1 (en) Expandable intervertebral spacers
US20080021559A1 (en) Expandable spinal fusion cage
US9204973B2 (en) Laterally expandable interbody fusion cage
US20230293310A1 (en) Standalone anterior cervical interbody spacer
US20230293311A1 (en) Standalone anterior lumber interbody spacer
US11826260B2 (en) Expandable interbody spacer
JP2005137418A (en) Expandable osteosynthesis cage
ZA200704265B (en) Expandable intervertebral spacer method and apparatus
JP4796623B2 (en) Inflatable intervertebral graft
US20240000580A1 (en) Spinal interbody spacer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007539067

Country of ref document: JP

Ref document number: 2585450

Country of ref document: CA

Ref document number: 182778

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 554919

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2005299397

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005813210

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007/04265

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1020077011817

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005299397

Country of ref document: AU

Date of ref document: 20051025

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005813210

Country of ref document: EP