WO2006047212A1 - Method and apparatus for effective lung volume estimation - Google Patents

Method and apparatus for effective lung volume estimation Download PDF

Info

Publication number
WO2006047212A1
WO2006047212A1 PCT/US2005/037735 US2005037735W WO2006047212A1 WO 2006047212 A1 WO2006047212 A1 WO 2006047212A1 US 2005037735 W US2005037735 W US 2005037735W WO 2006047212 A1 WO2006047212 A1 WO 2006047212A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
change
subject
effective
considering
Prior art date
Application number
PCT/US2005/037735
Other languages
French (fr)
Inventor
Kai KÜCK
Joseph Orr
Lara Brewer
Original Assignee
Ric Investments, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/121,219 external-priority patent/US6955651B2/en
Priority claimed from US10/973,815 external-priority patent/US7699788B2/en
Application filed by Ric Investments, Llc filed Critical Ric Investments, Llc
Priority to EP05809890A priority Critical patent/EP1805681A1/en
Priority to JP2007538028A priority patent/JP2008517655A/en
Publication of WO2006047212A1 publication Critical patent/WO2006047212A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/091Measuring volume of inspired or expired gases, e.g. to determine lung capacity

Definitions

  • the present invention relates generally to techniques for determining functional residual capacity (FRC), the volume of gases that remain within a subject's lungs following exhalation, or, more broadly, the effective lung volume (ELV) of the subject, which includes gases that have diffused into the lung tissues.
  • FRC functional residual capacity
  • ELV effective lung volume
  • the present invention relates to techniques for noninvasively determining FRC or ELV.
  • Functional residual capacity is the volume of gases, including carbon dioxide (CO 2 ), that remains within the lungs of a subject at the end of exhalation, or expiration.
  • FRC usually comprises about 40% of total lung capacity, and typically amounts to about 1.8 liters to about 3.4 liters.
  • FRC buffers against large breath-to-breath changes in the amount of carbon dioxide in the alveoli of the subject's lungs,-which may be measured in terms of partial pressure of CO 2 (P AC0 2) or as a fraction of gases that comprise CO 2 (f ⁇ co2)- With normal tidal volumes, P ACO2 and f A co 2 typically fluctuate by only about 2 rnrnHg or about 0.25%, respectively.
  • V A or FRC gas volume
  • the lung tissue and pulmonary blood compartments are often represented in terms of their equivalent gas volumes (i.e., scaled by their effective storage capacity) and denoted V t i s and Vbi o od- While FRC only accounts for the volume of gases (including CO 2 ) in the alveoli, effective lung volume (ELV) includes FRC, as well as gases that remain diffused within the tissues of the lungs of the subject at the end of exhalation and, therefore, accounts for gases in all three compartments.
  • ELV is typically a slightly larger volume than FRC, these terms may be used interchangeably in the ensuing description for purposes of simplicity.
  • Each compartment equilibrates with changes in CO 2 at a different rate.
  • Gedeon, A., et al. "Pulmonary blood flow (cardiac output) and the effective lung volume determined from a short breath hold using the differential Fick method," J. CLIN. MONIT.
  • Gadeon 2002 teaches that V A equilibrates instantly with changes in end tidal CO 2 (p e tco2 when measured in terms of partial pressure and f et co 2 when measured in terms of the fraction of gases that comprise CO 2 ) and slowly (e.g., in about ten to about twenty seconds) with changes in p AC02 and content of CO 2 in arterial blood (c a co2), while it takes less time for Vti S and Vbiood to equilibrate when PACO2 and c a co2 change.
  • the relationship between a subject's chest wall and lungs and the elastic recoil of the lungs defines FRC and, thus, ELV.
  • FRC determinations may be useful in accurately diagnosing such conditions. FRC determinations are also useful in diagnosing and treating respiratory failure and hypoxemia.
  • V/Q mismatch or V T /V Q mismatch.
  • That technique includes measuring the V M CO 2 and f e tco2 of a subject
  • V M CO 2 For the first breath following the breath-hold, f et co2 increases and V M CO 2 , which is calculated over the duration of the breath hold and the subsequent breath, decreases. Assuming, due to buffering by the CO 2 stores of the
  • V B CO 2 i.e., CO 2 passing from the pulmonary capillary blood into the alveoli of the lung
  • Equations, Q of the subject to the subject's ELV. Two of these equations compare the pre-breathhold conditions to the post-breathhold conditions and the pre-breathhold conditions to the recovery conditions.
  • the ELV of an ELV and PCBF data pair that satisfies both of these equations is considered to be the subject's actual ELV.
  • Gedeon 2002 is believed to provide inaccurate data, as it is based on the assumption that "CO 2 inflow [may] not [be] significantly affected” by breath-holding, while breath-holding will cause a change in P ACO2 - This assumption
  • V B CO 2 changes linearly with P ACO2 while PCBF and the amount of CO 2 in the venous blood (c v co2 or, as Gedeon2002 refers to it, p ven ) remain constant.
  • the present invention includes methods for noninvasively measuring, or estimating, FRC or ELV, as well as apparatus and systems for obtaining FRC and ELV measurements with minimal invasiveness.
  • carbon dioxide and flow measurements may be obtained at or near the mouth of a subject. Such measurements are obtained during baseline, or "normal,” breathing, as well as during and shortly after inducement of a change in the subject's effective ventilation. For example, measurements may be obtained during or shortly following a rebreathing maneuver, in which a subject inhales gases including an above-normal amount of CO 2 . Continuing with the rebreathing example, the obtained measurements are evaluated to determine the amount of time required for exhaled CO 2 levels to return to normal — effectively an evaluation of CO 2 "washout" from the subject's lungs.
  • CO 2 and flow measurements may be evaluated to determine the amount of time it takes CO 2 to "wash in,” or reach peak levels within, the lungs of the subject following rebreathing.
  • amounts of CO 2 or another appropriate gas may be measured.
  • the ELV of the subject may be substantially noninvasively determined, or estimated.
  • a noninvasive ELV estimation apparatus that incorporates teachings of the present invention is configured ⁇ e.g., programmed) to evaluate CO 2 and flow data from a subject and process the same in such a way as to calculate ELV.
  • a system of the present invention includes such an apparatus, as well as CO 2 and flow sensors, which obtain CO 2 and flow measurements in as noninvasive a manner as possible (with the possible exception of an endotracheal tube) and communicate data representative of the measured CO 2 and flow levels to the noninvasive ELV estimation apparatus.
  • Fig. 1 is a schematic representation of an alveolus of an individual, illustrating the locations at which various respiratory and blood gas parameters may be determined;
  • Fig. 2 is a graph that illustrates the volume of gases in the carbon dioxide stores of a respiratory tract of an individual (VA) during a series of respiratory cycles, or breaths;
  • Fig. 3 is a plot of the transformed VMCO 2 data points against c A co 2 data points, in which the plotted points are substantially in-line with one another;
  • Fig. 4 is a schematic representation of an example of a monitoring system incorporating teachings of the present invention.
  • Fig. 5 is a line graph showing the correlation between two sets of ELV calculations that have been made in accordance with teachings of the present invention.
  • FRC or ELV may be determined by evaluating a respiratory gas, such as carbon dioxide, and respiratory flow. Respiratory gas and flow signals may be used to determine a variety of parameters and, along with a mathematical model of the subject's lung, used to determine FRC or ELV.
  • a respiratory gas such as carbon dioxide
  • Respiratory gas and flow signals may be used to determine a variety of parameters and, along with a mathematical model of the subject's lung, used to determine FRC or ELV.
  • the ensuing description includes a discussion of the manner in which one or more exemplary algorithms are derived, as well as reasoning to support such derivation, to facilitate substantially a noninvasive determination of the subject's FRC or ELV.
  • FRC and ELV may be determined while the respiratory and cardiovascular, or hemodynamic, performance of a subject are being determined in a substantially noninvasive manner.
  • Exemplary measures of the cardiovascular performance of a subject include, but are not limited to, pulmonary capillary blood flow and cardiac output.
  • the carbon dioxide Fick equation has long been used to determine both pulmonary capillary blood flow and cardiac output.
  • One form of the carbon dioxide Fick equation follows:
  • PCBF VCO 2 /(c vC o2 - CAC 02 ), (1) where PCBF represents pulmonary capillary blood flow, VCO 2 is carbon dioxide elimination, c v co 2 is carbon dioxide content of the venous blood of the monitored individual, and C ACO2 is the carbon dioxide content of the alveolar ⁇ i.e., pulmonary capillary) blood of the monitored individual.
  • VCO 2 The most accurate way to measure VCO 2 would be to directly measure the flow of CO 2 from the blood within the pulmonary capillaries that surround the
  • cardiac output (Q) may be substituted for PCBF in equation (2).
  • equation (3) takes the form of the standard equation for a line in a
  • Equations (2) and (3) are based on the rate at which carbon dioxide leaves, or
  • V B CO 2 carbon dioxide excretion
  • V CO 2 is not measured directly at the alveoli. It is measured in a less direct manner — at or near the subject's mouth. Carbon dioxide signals that originate at or near the mouth of a subject are typically obtained and processed, along with respiratory flow signals, to facilitate such measurements.
  • K ⁇ ck U.S. Patent Publication US 2002/0183643 Al of K ⁇ ck et al.
  • V M CO 2 V M CO 2
  • V B CO 2 when considered in terms of flow
  • K ⁇ ck explains that such miscorrelation is caused by the CO 2 stores of a subject's lungs, specifically by the buffering capacity of the CO 2 stores.
  • V M CO 2 includes both V B CO 2 and CO 2 that has flowed
  • V STOREsCO 2 CO 2 stores
  • VBCO 2 VMCO 2 - V S TORESCO 2 . (4)
  • the CO 2 stores of an individual's lungs may be evaluated by use of a model of the lung, such as the simple model of the lung depicted in Fig. 1, in which a single alveolus 100 and a corresponding pulmonary capillary 102 represent the lung.
  • the direction in which blood flows through pulmonary capillary 102 is represented by arrows 103.
  • the mouth of an individual is represented at reference 106.
  • the carbon dioxide stores of the lung are depicted, for the purpose of simplicity, as comprising the physical gas volume 104 of the alveolus (VA).
  • VA is related to tidal volume (Vx), as well as to the functional residual capacity (V FRC ) of the lung.
  • Vx tidal volume
  • V FRC functional residual capacity
  • CO 2 maybe distributed within other stores, such as the alveolar tissues and other tissues of the lung (collectively the ELV).
  • the lung model shown in Fig. 1 also omits VT/V Q mismatch and shunting of blood (i.e., the portion of cardiac output that does not flow through the pulmonary arteries and capillaries, or that is not PCBF).
  • V A * The effective volume of the CO 2 stores of an individual's lungs are denoted herein as "V A *.”
  • a model of the lung such as that depicted in Fig. 1, may be evaluated on a breath-by-breath basis.
  • a breath (n) may be delineated as the period from the end of one inspiration to the end of the next inspiration, as illustrated in Fig. 2.
  • Fig. 2 depicts an example of the effective volume of CO 2 stores in the subject's respiratory tract (e.g., lungs) during the course of respiration.
  • the amount of CO 2 that flows into and out of the CO 2 stores from one breath to the next may be expressed as a change in alveolar CO 2 fraction (f ⁇ CO 2 ) (i.e., the fraction of gases in the alveolus that comprise CO 2 ), or the difference between f ⁇ CO 2 for a particular breath (f ⁇ CO 2 (n)) and f ⁇ CO 2 for the previous breath
  • V STORES CO 2 the volume of the CO 2 stores (V STORES CO 2 ) for a particular breath (n) may be determined by multiplying the effective volume in which the CO 2 stores are located (VA*) by the change in f ⁇ C02 from the previous breath (n-1) to the current breath (n) and by the subject's respiratory rate (RR). Equation (4) then becomes:
  • V B CO 2 (n) V M C0 2 (n) + V A * (n) [ f A CO 2 (n) - f A CO 2 (n-l) ] RR. (5)
  • Equation (5) is particularly useful for estimating V B CO 2 from V M CO 2 measurements that are obtained during the transition from "normal" breathing (e.g. , nonrebreathing) to a change in the effective ventilation of the subject (e.g.,
  • V B CO 2 may be substituted for V B CO 2 in equation (5).
  • V M CO 2 and RR may be measured directly, the alveolar CO 2 fraction (f AC0 2) and VA* cannot. It is known, however, that fAC02 is proportional to PACO2, which is proportional to p et co2, which may be measured directly (e.g., by use of a capnometer). The p et co 2 measurement may then be used, as known in the art, to obtain an fA C 02 value for each breath.
  • V A may be adaptively estimated, such as by using the linear correlation
  • V A may, therefore, be determined as the value that
  • V B CO 2 (n) V M CO 2 (n) + V A * (n) [fMx»(n)-f ⁇ co2(n-l)] RR. (6)
  • equation (6) is used, as such noise may result in an inaccurate estimation of V B CO 2
  • equation (7) may be simplified to:
  • V B CO 2 (n-l) - VBC ⁇ 2(n) , i m fACO2(n) - f A co2(n-l) ⁇ — (10)
  • V B CO 2 (n) V M C0 2 (n) + ⁇ J ⁇ L L V B C0 2 (n-l) - V B CO 2 (n) J (11)
  • V B C0 2 (n) (1- ⁇ ) V M C0 2 (n) + ⁇ V B C0 2 (n-l), (13)
  • the transformation coefficient ( ⁇ ) in equations (13) and (14) may be determined iteratively, by using an initial ⁇ value, then progressively increasing and/or decreasing the ⁇ value to
  • an optimal correlation coefficient (r 2 ) between the V B CO 2 values and the p et co2 or Cco2 values Other methods for determining an optimal ⁇ value include, without limitation, rote searching, global searching, gradient searching (e.g., use of a gradient descent search algorithm), use of a least mean squares algorithm, use of other predetermined equations or sets of predetermined equations, use of a truly adaptive filtering technique, and use of other techniques to determine the optimal ⁇ value, as known in the art.
  • equation (13) Use of an optimal transformation coefficient ( ⁇ ) (equation (14)) in equation (13) provides a relatively accurate, simple mathematical model of the lung of a subject.
  • the algorithm of equation (13) may be used to calculate the amount of CO 2 that flows into and out of the carbon dioxide stores of the lungs on a "breath-to- breath" basis.
  • VA*(n) of equation (14) is equivalent to ELV and flow may be converted to volume, which results in elimination of RR, allowing ⁇ to be expressed more simply as:
  • equation (15) were multiplied through with ⁇ f ⁇ co2 (i-e., f ⁇ co2(n) - f ⁇ co2(n-l), the expression could be viewed as calculating the relative amount of CO 2 stored in ELV over the total change in the amount of CO 2 from a change in the effective ventilation of a subject (e.g., rebreathing or another change in effective ventilation). If PCBF/RR is calculated from data obtained before and during a change in the effective ventilation of the subject (e.g., rebreathing or another change in effective ventilation), equation (15) may be rewritten as follows:
  • Equation (16) may be rearranged as follows:
  • VA* — (PCBF/RR) s C0 2 pBaro (17)
  • Equation (17) may be used to substantially noninvasively determine ELV when virtually any change in the effective ventilation of the subject (e.g., rebreathing, change in respiratory rate, change in respiratory volume, etc.) has occurred, whether or not the subject continues to breathe as data is collected, with data obtained during "normal” breathing being compared with data obtained once the change in effective ventilation has occurred.
  • a change in the effective ventilation of the subject e.g., rebreathing, change in respiratory rate, change in respiratory volume, etc.
  • Equation (6) does not take into account the possibility, or even likelihood
  • V STORES CO 2 the amount of CO 2 stored within the lungs
  • V STORES CO 2 the amount of CO 2 stored within the lungs
  • V B CO 2 (n) V M CO 2 (H) + (V A * (n) + V ⁇ (n)) x (f A co 2 (n) - f A co 2 (n-l)) + (V ⁇ (n) - V ⁇ (n-1)) x f A co2(n), (18)
  • the present invention includes use of an algorithm that corrects ELV for possible changes in V CO2STORES and combines the ELV correction with the CO 2 form of the differential Fick equation:
  • V M CO 2 is the average breath-to-breath volume, not flow, of carbon dioxide eliminated from the subject's lungs, as measured at the mouth, during breaths that precede and effective change in the ventilation of the subject (e.g., rebreathing or another change in effective ventilation).
  • the ELV value of equation (19) includes tidal volume (V T ).
  • the inspiratory tidal volume should be subtracted from ELV, as estimated for use in equation (19).
  • V M CO 2 (n) V M C0 2 ex pi red (n- 1) - V M CO 2 i nSp i red (n)) .
  • Equation (19) can be solved for ELV ( VA * ):
  • PCBF can be determined through some other method, be it invasive (e.g., thermodilution), or noninvasive (e.g., electrical bioimpedance).
  • Parts of equation (21) may be used in at least two embodiments of the present invention, one of which includes use of the first part of equation (21) to
  • ELV Emitter LV . More specifically, if one could assume that V B CO 2 is constant even though the PA CO2 is changing due to a change in the effective ventilation of the subject ⁇ e.g., rebreathing or another change in effective ventilation), ELV may be determined as follows:
  • VA* [VMCO 2 PRE - V M C ⁇ 2(n)l (22) - 1)
  • Equation (22) may be used to evaluate ELV when a change in the effective ventilation of the subject (e.g., rebreathing, change in respiratory rate, change in respiratory volume, etc.) has been effected, and while the subject continues to breathe (i.e., not during maneuvers which require breath-holding or which otherwise temporarily terminate breathing).
  • a change in the effective ventilation of the subject e.g., rebreathing, change in respiratory rate, change in respiratory volume, etc.
  • data obtained during "normal" breathing may be compared with data obtained once the change in effective ventilation has occurred.
  • breath (n-1) may represent a normal breath
  • (n) may represent the first breath in which the change in effective ventilation has occurred.
  • the second of these embodiments employs both the first part of equation (21) (i.e., equation (22), as well as the second part of equation (21): DUR
  • the ELV calculation of equation (22) may be modified to compensate for changes in pA C02 during a breath, or continuously changing p AC02 - Specifically, the ratio of the change in VCO 2 to the change in PA CO2 in equation (23)
  • Equation (24) represents the slope of the line that describes the amount of CO 2 that exits the CO 2 stores through the mouth as CO 2 exiting the blood is added to the CO 2 stores, or the "sensitivity" with which changes in p et co 2 represent changes in PA C 02 as CO 2 from the blood flows into the CO 2 stores, which in turn provides an indication of buffering capacity of the CO 2 stores.
  • (pA CO 2(n)-p AC02) provides an indication of the magnitude of the PACO2 change to be scaled when p e tco2 is measured at or near the mouth.
  • the in equation (24) may be substituted with a different value that
  • RR represents the time interval between the start of a change in effective ventilation (e.g., rebreathing) and the time when the measured PA CO2 left the alveoli.
  • Diagnostic system 1 includes, among other things, an airway 52 in communication with the airway A of an individual I, as well as a flow meter 72 and a carbon dioxide sensor 74 positioned along airway 52.
  • Flow meter 72 and carbon dioxide sensor 74 communicate signals to corresponding monitors 73 and 75, which communicate electronically with a processor 82 of a respiratory monitor 80 (e.g., the processor and respiratory monitor of a NICO ® monitor available from Novametrix Medical Systems (Wallingford, CT, division of Respironics, Inc).
  • Processor 82 is programmed to determine at least VCO 2 and p et co 2 based on signals communicated thereto from flow meter 72 and carbon dioxide sensor 74.
  • processor 82 may be programmed to use signals from one or both of flow meter 72 and carbon dioxide sensor 74 or calculated parameters (e.g., VCO 2 and p e tco2) in the above-described algorithms (i.e., one or more of equations (1) — (24)) to facilitate the substantially noninvasive and accurate determination of individual Fs ELV. Alternatively, such calculations may be made manually.
  • VCO 2 and p et co 2 values are obtained during both a baseline, or first, ventilatory state, and when a change in the effective ventilation of individual I has been effected, or a second ventilatory state.
  • a first ventilatory state may be effected under substantially "normal" breathing conditions.
  • the baseline ventilatory state may be defined under a first set of other, selected breathing conditions.
  • the second ventilatory state occurs when one or more respiratory control parameters are manipulated to achieve breathing conditions differ from those present during the first ventilatory state to a degree that effect a measurable change in minute ventilation.
  • the second ventilatory state may be induced, for example, by altering the value of a limit variable, e.g., inspiratory pressure, tidal volume, flow rate or time, from a value of the limit variable during the first ventilatory state.
  • a change in effective ventilation may be induced by altering the threshold value of a cycle variable from the threshold level of the cycle variable during the first ventilatory state.
  • a change in effective ventilation may be induced by altering the threshold triggering value of a triggering variable, such as inspiratory pressure or flow rate.
  • a change in effective ventilation may be induced by delivering to the individual a series of at least three "sigh breaths," which are deeper than normal breaths. Changes in effective ventilation may also comprise periods of unsteady, or "noisy,” breathing.
  • VCO 2 and p et co 2 values that are obtained are then processed in accordance with one or more of equations (1) - (24)) to substantially noninvasively and accurately determine individual Fs ELV.
  • ELV was calculated for various breaths using equation (18). ELV values that were calculated when a sufficient fAco2(n) - f A co 2 (n-l) threshold was present and during certain breaths (e.g., the second breath into rebreathing, the first breath of recovery, etc.) were considered valid and are included as data points in the graph of Fig. 5. Notably, the plotted data points represent ELV minus inspiratory tidal volume. ELV values that were calculated from data obtained during transition from normal breathing into rebreathing are shown as diamond-shaped points. ELV values that were calculated from data obtained during the transition from rebreathing to recovery are shown as squares.

Abstract

Methods for noninvasively measuring, or estimating, functional residual capacity or effective lung volume include obtaining carbon dioxide and flow measurements at or near the mouth of a subject. Such measurements are obtained during baseline breathing and during and shortly after inducement of a change in the subject's effective ventilation. The obtained measurements are evaluated to determine the amount of time required for exhaled carbon dioxide levels to return to normal-effectively an evaluation of carbon dioxide 'washout' from the subject's lungs. Conversely, carbon dioxide and flow measurements may be evaluated to determine the amount of time it takes carbon dioxide to 'wash in,' or reach peak levels within, the lungs of the subject following the change in the subject's effective ventilation. Apparatus for effective such methods are also disclosed.

Description

METHOD AND APPARATUS FOR EFFECTIVE LUNG VOLUME ESTIMATION
PRIORITY CLAIM
This application claims priority to United States patent application Serial No. 10/973,815, filed October 25, 2004, pending, which application is a continuation-in-part of application Serial No. 10/121,219, filed on April 11, 2002, now United States Patent 6,955,651, issued October 18, 2005.
TECHNICAL FIELD The present invention relates generally to techniques for determining functional residual capacity (FRC), the volume of gases that remain within a subject's lungs following exhalation, or, more broadly, the effective lung volume (ELV) of the subject, which includes gases that have diffused into the lung tissues. In particular, the present invention relates to techniques for noninvasively determining FRC or ELV.
BACKGROUND
Functional residual capacity (FRC) is the volume of gases, including carbon dioxide (CO2), that remains within the lungs of a subject at the end of exhalation, or expiration. In healthy individuals, FRC usually comprises about 40% of total lung capacity, and typically amounts to about 1.8 liters to about 3.4 liters. FRC buffers against large breath-to-breath changes in the amount of carbon dioxide in the alveoli of the subject's lungs,-which may be measured in terms of partial pressure of CO2 (PAC02) or as a fraction of gases that comprise CO2 (fΑco2)- With normal tidal volumes, PACO2 and fAco2 typically fluctuate by only about 2 rnrnHg or about 0.25%, respectively.
A number of authors contend that CO2 is stored in the lungs in three different compartments: (1) the gas volume (VA or FRC); (2) the lung tissue; and (3) the pulmonary blood present at any given time in the lung. The lung tissue and pulmonary blood compartments are often represented in terms of their equivalent gas volumes (i.e., scaled by their effective storage capacity) and denoted Vtis and Vbiood- While FRC only accounts for the volume of gases (including CO2) in the alveoli, effective lung volume (ELV) includes FRC, as well as gases that remain diffused within the tissues of the lungs of the subject at the end of exhalation and, therefore, accounts for gases in all three compartments.
While ELV is typically a slightly larger volume than FRC, these terms may be used interchangeably in the ensuing description for purposes of simplicity. Each compartment equilibrates with changes in CO2 at a different rate. Gedeon, A., et al., "Pulmonary blood flow (cardiac output) and the effective lung volume determined from a short breath hold using the differential Fick method," J. CLIN. MONIT. 17:313-321 (2002) (hereinafter "Gedeon 2002") teaches that VA equilibrates instantly with changes in end tidal CO2 (petco2 when measured in terms of partial pressure and fetco2 when measured in terms of the fraction of gases that comprise CO2) and slowly (e.g., in about ten to about twenty seconds) with changes in pAC02 and content of CO2 in arterial blood (caco2), while it takes less time for VtiS and Vbiood to equilibrate when PACO2 and caco2 change. The relationship between a subject's chest wall and lungs and the elastic recoil of the lungs defines FRC and, thus, ELV. Lung diseases that change the elastic recoil of the lungs, including emphysema, asthma, and other restrictive diseases, affect FRC. Thus, FRC determinations may be useful in accurately diagnosing such conditions. FRC determinations are also useful in diagnosing and treating respiratory failure and hypoxemia.
In lungs with an FRC below the lung's closing capacity, the airways start to close before the end of a subject's exhalation, which results in a decrease of PAO2 and a mismatch between ventilation, or the movement of gases into and out of the lungs through the mouth, and perfusion, or the movement of gases across the gas/blood barrier between the alveoli of the lungs and the pulmonary capillaries that
surround the alveoli. This is known in the art as V/Q mismatch or VT/VQ mismatch.
The currently available techniques for measuring FRC include full body plethysmography, nitrogen washout, and helium dilution. AU of these methods require cumbersome equipment and, therefore, may not be suitable for use in an intensive care setting that is already crowded with equipment. Gedeon 2002 proposed a noninvasive technique for determining ELV.
Specifically, that technique includes measuring the VMCO2 and fetco2 of a subject,
having the subject hold his or her breath for three seconds, the re-measuring VMCO2 and fetco2- For the first breath following the breath-hold, fetco2 increases and VMCO2 , which is calculated over the duration of the breath hold and the subsequent breath, decreases. Assuming, due to buffering by the CO2 stores of the
ELV, that VBCO2 (i.e., CO2 passing from the pulmonary capillary blood into the alveoli of the lung) does not change during breath-holding, Gedeon contends that the
decrease in VMCO2 must have resulted from the CO2 going into the lung stores of CO2:
[fetC02 POST " fetCO2 PRE] X VA =
[VMCO2PRE - VMCO2POST] X [Tbreath + Tbreathhold] where [VMC02PRE and VMCO2POST refer to measurements obtained respectively before and after the breath-holding maneuver. In addition to this relationship, Gedeon developed equations that relate pulmonary capillary blood flow (PCBF or, for the sake of simplicity in the ensuing
equations, Q) of the subject to the subject's ELV. Two of these equations compare the pre-breathhold conditions to the post-breathhold conditions and the pre-breathhold conditions to the recovery conditions. The ELV of an ELV and PCBF data pair that satisfies both of these equations is considered to be the subject's actual ELV.
The technique of Gedeon 2002 is believed to provide inaccurate data, as it is based on the assumption that "CO2 inflow [may] not [be] significantly affected" by breath-holding, while breath-holding will cause a change in PACO2- This assumption
is inconsistent with the Fick equation, in which VBCO2 changes linearly with PACO2 while PCBF and the amount of CO2 in the venous blood (cvco2 or, as Gedeon2002 refers to it, pven) remain constant.
In view of the foregoing, it is apparent that there is a need for a technique for accurately, noninvasively measuring FRC or ELV in virtually any healthcare setting. DISCLOSURE OF THE INVENTION
The present invention includes methods for noninvasively measuring, or estimating, FRC or ELV, as well as apparatus and systems for obtaining FRC and ELV measurements with minimal invasiveness.
As an example of a method for noninvasively measuring, or estimating, FRC or ELV in accordance with teachings of the present invention, carbon dioxide and flow measurements may be obtained at or near the mouth of a subject. Such measurements are obtained during baseline, or "normal," breathing, as well as during and shortly after inducement of a change in the subject's effective ventilation. For example, measurements may be obtained during or shortly following a rebreathing maneuver, in which a subject inhales gases including an above-normal amount of CO2. Continuing with the rebreathing example, the obtained measurements are evaluated to determine the amount of time required for exhaled CO2 levels to return to normal — effectively an evaluation of CO2 "washout" from the subject's lungs. Conversely, CO2 and flow measurements may be evaluated to determine the amount of time it takes CO2 to "wash in," or reach peak levels within, the lungs of the subject following rebreathing. Of course, when other techniques are used to generate a perturbation, or change, in the effective ventilation {i.e., the total ventilation less the wasted ventilation due to deadspace associated with the apparatus, the individual, or a combination thereof) of a subject, amounts of CO2 or another appropriate gas may be measured. By evaluating such measurements, the ELV of the subject may be substantially noninvasively determined, or estimated. A noninvasive ELV estimation apparatus that incorporates teachings of the present invention is configured {e.g., programmed) to evaluate CO2 and flow data from a subject and process the same in such a way as to calculate ELV. A system of the present invention includes such an apparatus, as well as CO2 and flow sensors, which obtain CO2 and flow measurements in as noninvasive a manner as possible (with the possible exception of an endotracheal tube) and communicate data representative of the measured CO2 and flow levels to the noninvasive ELV estimation apparatus. Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying figures, and the appended claims.
BRIEF DESCRIPTION OF THE FIGURES
In the figures, which illustrate various exemplary aspects of the present invention:
Fig. 1 is a schematic representation of an alveolus of an individual, illustrating the locations at which various respiratory and blood gas parameters may be determined;
Fig. 2 is a graph that illustrates the volume of gases in the carbon dioxide stores of a respiratory tract of an individual (VA) during a series of respiratory cycles, or breaths;
Fig. 3 is a plot of the transformed VMCO 2 data points against cAco2 data points, in which the plotted points are substantially in-line with one another;
Fig. 4 is a schematic representation of an example of a monitoring system incorporating teachings of the present invention; and
Fig. 5 is a line graph showing the correlation between two sets of ELV calculations that have been made in accordance with teachings of the present invention.
BEST MODE(S) FOR CARRYING OUT THE INVENTION The present invention includes methods for determining the FRC or ELV of a subject substantially noninvasively. hi the inventive methods, FRC or ELV may be determined by evaluating a respiratory gas, such as carbon dioxide, and respiratory flow. Respiratory gas and flow signals may be used to determine a variety of parameters and, along with a mathematical model of the subject's lung, used to determine FRC or ELV. The ensuing description includes a discussion of the manner in which one or more exemplary algorithms are derived, as well as reasoning to support such derivation, to facilitate substantially a noninvasive determination of the subject's FRC or ELV. In accordance with teachings of the present invention, FRC and ELV may be determined while the respiratory and cardiovascular, or hemodynamic, performance of a subject are being determined in a substantially noninvasive manner. Exemplary measures of the cardiovascular performance of a subject include, but are not limited to, pulmonary capillary blood flow and cardiac output.
The carbon dioxide Fick equation has long been used to determine both pulmonary capillary blood flow and cardiac output. One form of the carbon dioxide Fick equation follows:
PCBF = VCO2/(cvCo2 - CAC02), (1) where PCBF represents pulmonary capillary blood flow, VCO2 is carbon dioxide elimination, cvco2 is carbon dioxide content of the venous blood of the monitored individual, and CACO2 is the carbon dioxide content of the alveolar {i.e., pulmonary capillary) blood of the monitored individual.
The most accurate way to measure VCO2 would be to directly measure the flow of CO2 from the blood within the pulmonary capillaries that surround the
alveoli of the lungs to the alveoli, or carbon dioxide excretion (VBCO2). IfVCO2 could be measured in this manner, equation (1) becomes:
PCBF = V° (2)
CvCO2- CACO2
If the content of CO2 in blood at the alveolus (cAco2) is substantially the same as the content of CO2 in arterial blood (caco2)5 then cardiac output (Q) may be substituted for PCBF in equation (2).
Rearranging equation (2) for a calculation of VBCO2 results in the following:
VBCO2 = -PCBF cAC02 + PCBF cvC02. (3)
Notably, equation (3) takes the form of the standard equation for a line in a
two-dimensional (x, y) coordinate system: y = mx + b. When VBCO2 signals (y- axis) are plotted in a two-dimensional coordinate system against cAco2 signals (x- axis) taken at various points during and before or after a change in the effective ventilation of an individual, it can be seen the slope (m) of a line extending through the plotted points will be -PCBF, while PCBF cvco2 is the intercept (b). Equations (2) and (3) are based on the rate at which carbon dioxide leaves, or
is eliminated from, the blood at the alveoli (VBCO2). If the flow of CO2 from the
blood into the alveoli, or carbon dioxide excretion (VBCO2), could be measured and plotted against cAco2 during rebreathing or another change in the effective ventilation of the subject, data from every breath, including transitional data points, would fall on the line defined by equation (3).
Unfortunately, V CO2 is not measured directly at the alveoli. It is measured in a less direct manner — at or near the subject's mouth. Carbon dioxide signals that originate at or near the mouth of a subject are typically obtained and processed, along with respiratory flow signals, to facilitate such measurements. Notably, U.S. Patent Publication US 2002/0183643 Al of Kϋck et al. (hereinafter "Kϋck"), teaches that measurements of CO2 that are taken at the mouth of a subject as the subject exhales do not necessarily correlate well with the amount Of CO2 that is given off by the blood as it passes by the alveoli of the subject's lungs. More specifically, CO2 that is exhaled, or eliminated, from the subject's respiratory system, as measured at
or near the subject's mouth (VMCO2) ultimately results from but does not correlate well with the amount of CO2 that is excreted from the blood to the lungs of the
subject (VBCO2, when considered in terms of flow) during the same breath. Kϋck explains that such miscorrelation is caused by the CO2 stores of a subject's lungs, specifically by the buffering capacity of the CO2 stores.
More specifically, VMCO2 includes both VBCO2 and CO2 that has flowed
into or out of the ELV of the subject's lungs, which include CO2 stores (V STOREsCO2). Thus,
VBCO2 = VMCO2 - VSTORESCO2. (4) The CO2 stores of a subject's lungs act as a buffer, absorbing some of the
increased CO2 and causing VMCO2 to change more gradually than VBCO2 changes. The CO2 stores of an individual's lungs may be evaluated by use of a model of the lung, such as the simple model of the lung depicted in Fig. 1, in which a single alveolus 100 and a corresponding pulmonary capillary 102 represent the lung. The direction in which blood flows through pulmonary capillary 102 is represented by arrows 103. The mouth of an individual is represented at reference 106. In the model of Fig. 1, the carbon dioxide stores of the lung are depicted, for the purpose of simplicity, as comprising the physical gas volume 104 of the alveolus (VA). AS is known in the art, VA is related to tidal volume (Vx), as well as to the functional residual capacity (VFRC) of the lung. In addition to the illustrated contributors to the CO2 stores of the lung (i.e., FRC), CO2 maybe distributed within other stores, such as the alveolar tissues and other tissues of the lung (collectively the ELV). The lung model shown in Fig. 1 also omits VT/VQ mismatch and shunting of blood (i.e., the portion of cardiac output that does not flow through the pulmonary arteries and capillaries, or that is not PCBF). For modeling purposes, the mixing of air within the alveolus (including inspired gases, CO2 escaping from the blood, flow of CO2 into and out of the CO2 stores, and gases within the alveolus) is assumed to occur instantaneously. The effective volume of the CO2 stores of an individual's lungs are denoted herein as "VA*."
The effects of the CO2 stores may be evaluated to obtain an accurate VBCO2
based on direct VMCO2 measurements. For example, a model of the lung, such as that depicted in Fig. 1, may be evaluated on a breath-by-breath basis. By way of example only, a breath (n) may be delineated as the period from the end of one inspiration to the end of the next inspiration, as illustrated in Fig. 2. In addition, Fig. 2 depicts an example of the effective volume of CO2 stores in the subject's respiratory tract (e.g., lungs) during the course of respiration.
If the effective volume of CO2 stores (VA ) does not change from breath to breath, the amount of CO2 that flows into and out of the CO2 stores from one breath to the next may be expressed as a change in alveolar CO2 fraction (fΑCO2) (i.e., the fraction of gases in the alveolus that comprise CO2), or the difference between fΑCO2 for a particular breath (fΑCO2(n)) and fΑCO2 for the previous breath
fΑCO2(n-l). Thus, the volume of the CO2 stores (VSTORESCO2) for a particular breath (n) may be determined by multiplying the effective volume in which the CO2 stores are located (VA*) by the change in fΑC02 from the previous breath (n-1) to the current breath (n) and by the subject's respiratory rate (RR). Equation (4) then becomes:
VBCO2 (n) = VMC02(n) + VA *(n) [ fACO2(n) - fACO2(n-l) ] RR. (5)
Equation (5) is particularly useful for estimating VBCO2 from VMCO2 measurements that are obtained during the transition from "normal" breathing (e.g. , nonrebreathing) to a change in the effective ventilation of the subject (e.g.,
rebreathing or another change in the effective ventilation). An estimate of VBCO2 is
denoted herein as VBCO2 and may be substituted for VBCO2 in equation (5).
While VMCO2 and RR may be measured directly, the alveolar CO2 fraction (fAC02) and VA* cannot. It is known, however, that fAC02 is proportional to PACO2, which is proportional to petco2, which may be measured directly (e.g., by use of a capnometer). The petco2 measurement may then be used, as known in the art, to obtain an fAC02 value for each breath.
VA may be adaptively estimated, such as by using the linear correlation
? Λ * between VBCO2 from equation (5), substituting VA , the estimated effective alveolus volume, for VA*, the actual effective alveolus volume, and using cAco2 as a guide (see equation (3)). The more accurately VA reflects VA , the closer the data
points of a plot of VBCO2 against cAco2 (which is also proportional to and may be determined from petco2 measurements in a manner known in the art) over the course of a change in the effective ventilation of an individual will be to a line representative of the actual pulmonary capillary blood flow or cardiac output of the individual. The ideal value for VA may, therefore, be determined as the value that
results in the best linear fit between the plotted data (cAco2 against VBCO2) and, thus, a maximized correlation coefficient, or r2 value. By way of example only, an adaptive, iterative, or search algorithm of a type known in the art may be used to determine VA for which the correlation coefficient, or r , is maximized. The graph of Fig. 3 shows an example of a VA value at which r2 is maximized. Once an accurate VA estimate has been made, the effective volume of the FRC (VFRC) or ELV (VELV) of the subject's lungs may also be estimated or determined. In this regard, equation (5) may be rewritten, as follows, to reflect the use of VA* as an estimate for VA*:
VBCO2(n) = VMCO2(n) + VA * (n) [fMx»(n)-fλco2(n-l)] RR. (6)
The foregoing approach (particularly, the use of equation (6)) works well when a subject is mechanically ventilated (i.e., on a respirator), in which case the respiratory rate and tidal volume (VT) of the individual's respiration are typically substantially stable, which provides for a "clean" fAC02 signal. During spontaneous or mixed (i.e., mechanical and spontaneous) ventilation, it may be desirable to eliminate any noise that may occur in the fΑco2 signal when
equation (6) is used, as such noise may result in an inaccurate estimation of VBCO2
(Le., VβCOa). An algorithm that is less sensitive to noise than equation (6) may,
therefore, also be useful for estimating VBCO2, as described hereinafter. Assuming that pulmonary capillary blood flow and cardiac output do not change from one breath to the next, the carbon dioxide Fick equation (equation (2)) may be rewritten for two successive breaths:
PCB^ VBCO2(II-I) = VBCO2(n)
Cvco2(n-1) - cAco2(n-l) cvCo2(n) - cAco2(n) l ;
Further, assuming that cvco2 does not change from one breath to the next, equation (7) may be simplified to:
_ VBC02(n-l) - VBC02(n) ^Bt CAco2(n) - cAco2(n-l) W
Measurements of the CO2 fraction of gases in a subject's alveoli (fΑco2) may be used in place of the cAco2 measurements of equation (8) when the slope of the CO2 dissociation curve (scm), a standard curve which illustrates the rate at which CO2 molecules dissociate from the hemoglobin molecules of red blood cells, and barometric pressure (pbaro) are also taken into consideration, as known in the art. Accordingly, equation (8) may be rewritten as follows: PCBF = V,cα(n-i) -v,cα(n) (9)
SCO2 pbaro IACO2(I1) - IACCa(Il- JJ
Solving this expression for the difference in CO2 fractions (fAC02(n) - f"AC02(n-l)) yields:
, . . . . Λ, VBCO2(n-l) - VBCθ2(n) ,i m fACO2(n) - fAco2(n-l) = ^ — (10)
SCO2 pbaro PCBF Substitution of equation (10) into equation (6) results in:
VBCO2 (n) = VMC02(n) + ^ J^L L VBC02(n-l) - VBCO2(n) J (11)
Sera pbaro Jr OJtJr
This expression can now be solved for VBC02(n) to provide an accurate estimate of
VBCO2:
RRVA* (n)
^Cθ2(n) ° I +RR VMC°2(n) + t VΛMn) kC°^-l) (12)
SC02 pbaro PCBF SC02 pbaro PCBF Structurally, this result represents a first order, single-pole low pass filter of the form
VBC02(n) = (1-α) VMC02(n) + α VBC02(n-l), (13)
where α, the transformation coefficient, may be represented as
Figure imgf000012_0001
SC02 pbaro PCBF .
RR VA* (n)
SC02 pbaro PCBF The RR in equation (14), which is the respiratory rate of the subject, is measured in breaths per minute. VA* (n) is estimate of the CO2 stores of the subject's lungs during breath (n) and is approximately equivalent to the volume of the FRC or ELV of the subject's lungs (VFRC* and VELV*, respectively). Sco2 is the slope of the standard carbon dioxide dissociation curve. pbaTO is barometric pressure. , PCBF, the pulmonary capillary blood flow the subject, does not need to be known to determine either α or VA (n). It is not necessary to know PCBF to calculate α because a determination of α
merely requires that the linearity, or straightness, of a line through VBCO2 values that have been plotted against petco2 or cco2 values be evaluated, not that the slope of the line, which is equal to PCBF, be evaluated. In that regard, the transformation coefficient (α) in equations (13) and (14) may be determined iteratively, by using an initial α value, then progressively increasing and/or decreasing the α value to
determine the α value that provides for a plot of VBCO2 values against petco2 or Cco2 values with the greatest linearity (as opposed to an open loop) or, stated another
way, that provides an optimal correlation coefficient (r2) between the VBCO2 values and the petco2 or Cco2 values. Other methods for determining an optimal α value include, without limitation, rote searching, global searching, gradient searching (e.g., use of a gradient descent search algorithm), use of a least mean squares algorithm, use of other predetermined equations or sets of predetermined equations, use of a truly adaptive filtering technique, and use of other techniques to determine the optimal α value, as known in the art.
Use of an optimal transformation coefficient (α) (equation (14)) in equation (13) provides a relatively accurate, simple mathematical model of the lung of a subject. The algorithm of equation (13) may be used to calculate the amount of CO2 that flows into and out of the carbon dioxide stores of the lungs on a "breath-to- breath" basis.
The VA*(n) of equation (14) is equivalent to ELV and flow may be converted to volume, which results in elimination of RR, allowing α to be expressed more simply as:
Figure imgf000013_0001
where Q is measured in terms of volume, rather than flow. If equation (15) were multiplied through with ΔfΑco2 (i-e., fΑco2(n) - fλco2(n-l), the expression could be viewed as calculating the relative amount of CO2 stored in ELV over the total change in the amount of CO2 from a change in the effective ventilation of a subject (e.g., rebreathing or another change in effective ventilation). If PCBF/RR is calculated from data obtained before and during a change in the effective ventilation of the subject (e.g., rebreathing or another change in effective ventilation), equation (15) may be rewritten as follows:
Figure imgf000014_0001
Equation (16) may be rearranged as follows:
VA* = — (PCBF/RR) sC02 pBaro (17)
1- α to solve for ELV ( VA * ).
Equation (17) may be used to substantially noninvasively determine ELV when virtually any change in the effective ventilation of the subject (e.g., rebreathing, change in respiratory rate, change in respiratory volume, etc.) has occurred, whether or not the subject continues to breathe as data is collected, with data obtained during "normal" breathing being compared with data obtained once the change in effective ventilation has occurred.
Other techniques for determining an optimal α value are also within the scope of the present invention.
Equation (6) does not take into account the possibility, or even likelihood,
that the amount of CO2 stored within the lungs (VSTORESCO2) may vary from breath to breath. A more complex version of equation (6) accounts for this possibility:
VBCO2(n) = VMCO2(H) + (VA * (n) + Vτ(n)) x (fAco2(n) - fAco2(n-l)) + (Vτ(n) - Vτ(n-1)) x fAco2(n), (18)
Accordingly, in another aspect, the present invention includes use of an algorithm that corrects ELV for possible changes in VCO2STORES and combines the ELV correction with the CO2 form of the differential Fick equation:
Figure imgf000014_0002
where VMCO2 is the average breath-to-breath volume, not flow, of carbon dioxide eliminated from the subject's lungs, as measured at the mouth, during breaths that precede and effective change in the ventilation of the subject (e.g., rebreathing or another change in effective ventilation). The ELV value of equation (19) includes tidal volume (VT). For a closer estimate of FRC, the inspiratory tidal volume should be subtracted from ELV, as estimated for use in equation (19). Notably, accurate
results may be obtained when VMCO2 (n) for each breath is calculated from
expiration to inspiration (i. e. , as VMCO2 (n) = VMC02 expired(n- 1) - VMCO2inSpired(n)) .
Tidal volumes typically do not change drastically from breath-to-breath. Therefore, the expression Vτ(n) - Vτ(n-1) from equation (18) has been omitted from equation (19) without substantially affecting the accuracy of a subsequent ELV determination. Optionally however, a variation of equation (19) may consider the change in tidal volume from one breath to the next, as doing so could improve the
accuracy of the Q calculation and, thus, of the subsequent ELV estimation.
IfViViCO2 and petco2 reach good plateaus within a cycle, it might be possible to use them to calculate PCBF in equation (19). This is possible because ELV does not affect PCBF estimations from plateau values (algebraically, the fAC02(n) - f ACO2 (n- 1 ) term vanishes at plateaus) .
Equation (19) can be solved for ELV ( VA * ):
Figure imgf000015_0001
Furthermore, if it is assumed that one CO2 dissociation curve slope Sco2 (e-g-, the average across the cycle's petco2 values) can be used, then it cancels and the equation simplifies to:
Figure imgf000015_0002
where the pre and during values represent the respective plateaus. Alternatively, PCBF can be determined through some other method, be it invasive (e.g., thermodilution), or noninvasive (e.g., electrical bioimpedance). Parts of equation (21) may be used in at least two embodiments of the present invention, one of which includes use of the first part of equation (21) to
determine ELV. More specifically, if one could assume that VBCO2 is constant even though the PACO2 is changing due to a change in the effective ventilation of the subject {e.g., rebreathing or another change in effective ventilation), ELV may be determined as follows:
VA* = [VMCO2PRE - VMCθ2(n)l (22)
Figure imgf000016_0001
- 1)
Equation (22) may be used to evaluate ELV when a change in the effective ventilation of the subject (e.g., rebreathing, change in respiratory rate, change in respiratory volume, etc.) has been effected, and while the subject continues to breathe (i.e., not during maneuvers which require breath-holding or which otherwise temporarily terminate breathing). In using equation (22) to determine ELV, data obtained during "normal" breathing may be compared with data obtained once the change in effective ventilation has occurred. For example, and not by way of limitation, breath (n-1) may represent a normal breath, while (n) may represent the first breath in which the change in effective ventilation has occurred.
The second of these embodiments employs both the first part of equation (21) (i.e., equation (22), as well as the second part of equation (21):
Figure imgf000016_0002
DUR
• (pAC02(n) — PACCΏPRE) (23)
Figure imgf000016_0003
or a broader variation thereof:
PCBF • SC02 • (pAC02(n) - PACCG PRE) (24)
RR hi this manner, the ELV calculation of equation (22) may be modified to compensate for changes in pAC02 during a breath, or continuously changing pAC02- Specifically, the ratio of the change in VCO2 to the change in PACO2 in equation (23)
and of Q in equation (24) represents the slope of the line that describes the amount of CO2 that exits the CO2 stores through the mouth as CO2 exiting the blood is added to the CO2 stores, or the "sensitivity" with which changes in petco2 represent changes in PAC02 as CO2 from the blood flows into the CO2 stores, which in turn provides an indication of buffering capacity of the CO2 stores. (pACO2(n)-p AC02) provides an indication of the magnitude of the PACO2 change to be scaled when petco2 is measured at or near the mouth.
The in equation (24) may be substituted with a different value that
RR represents the time interval between the start of a change in effective ventilation (e.g., rebreathing) and the time when the measured PACO2 left the alveoli. Generally,
such a value will be less than .
RR
The combination of equations (23) and (24) may be used to substantially noninvasively determine ELV when virtually any change in the effective ventilation of the subject has occurred, whether or not the subject continues to breathe as data is collected. More specifically, data obtained during "normal" breathing may be compared with data obtained once the change in effective ventilation has occurred. Turning now to Fig. 4, an exemplary diagnostic system 1 that incorporates teachings of the present invention is schematically illustrated. Diagnostic system 1 includes, among other things, an airway 52 in communication with the airway A of an individual I, as well as a flow meter 72 and a carbon dioxide sensor 74 positioned along airway 52. Flow meter 72 and carbon dioxide sensor 74 communicate signals to corresponding monitors 73 and 75, which communicate electronically with a processor 82 of a respiratory monitor 80 (e.g., the processor and respiratory monitor of a NICO® monitor available from Novametrix Medical Systems (Wallingford, CT, division of Respironics, Inc). Processor 82 is programmed to determine at least VCO2 and petco2 based on signals communicated thereto from flow meter 72 and carbon dioxide sensor 74. In addition, processor 82 may be programmed to use signals from one or both of flow meter 72 and carbon dioxide sensor 74 or calculated parameters (e.g., VCO2 and petco2) in the above-described algorithms (i.e., one or more of equations (1) — (24)) to facilitate the substantially noninvasive and accurate determination of individual Fs ELV. Alternatively, such calculations may be made manually.
In a method that incorporates teachings of the present invention, VCO2 and petco2 values are obtained during both a baseline, or first, ventilatory state, and when a change in the effective ventilation of individual I has been effected, or a second ventilatory state. Alternatively, such values may obtained during a transition between first and second states, then compared with values obtained during the first or second state. The first ventilatory state may be effected under substantially "normal" breathing conditions. Alternatively, the baseline ventilatory state may be defined under a first set of other, selected breathing conditions. The second ventilatory state occurs when one or more respiratory control parameters are manipulated to achieve breathing conditions differ from those present during the first ventilatory state to a degree that effect a measurable change in minute ventilation.
The second ventilatory state may be induced, for example, by altering the value of a limit variable, e.g., inspiratory pressure, tidal volume, flow rate or time, from a value of the limit variable during the first ventilatory state. In another exemplary method, a change in effective ventilation may be induced by altering the threshold value of a cycle variable from the threshold level of the cycle variable during the first ventilatory state. In a further exemplary method, a change in effective ventilation may be induced by altering the threshold triggering value of a triggering variable, such as inspiratory pressure or flow rate. In a still further method, a change in effective ventilation may be induced by delivering to the individual a series of at least three "sigh breaths," which are deeper than normal breaths. Changes in effective ventilation may also comprise periods of unsteady, or "noisy," breathing.
The VCO2 and petco2 values that are obtained are then processed in accordance with one or more of equations (1) - (24)) to substantially noninvasively and accurately determine individual Fs ELV.
EXAMPLE
Different effective FRC values were achieved by incrementally advancing an especially long endotracheal tube from an initial, normal position to a small distance within the bronchial tree of an anesthetized pig (at time = 15:26) and, twenty-one minutes later (at time =15:47) to a position further within the bronchial tree. By ventilating only parts of the lung, the effective FRC was reduced with each advancement of the endotracheal tube.
ELV was calculated for various breaths using equation (18). ELV values that were calculated when a sufficient fAco2(n) - fAco2(n-l) threshold was present and during certain breaths (e.g., the second breath into rebreathing, the first breath of recovery, etc.) were considered valid and are included as data points in the graph of Fig. 5. Notably, the plotted data points represent ELV minus inspiratory tidal volume. ELV values that were calculated from data obtained during transition from normal breathing into rebreathing are shown as diamond-shaped points. ELV values that were calculated from data obtained during the transition from rebreathing to recovery are shown as squares. The closeness of the lines that extend through the two sets of data indicates that the ELV values and, thus, the algorithm (equations (22 and 23)) from which they were calculated provides reasonable ELV values. Notably, the trends of the two sets of ELV calculations decrease, as expected, at times when the endotracheal tube was advanced further into the lungs of the pig. These trends, as well as their magnitude, are confirmed by the underlying VCO2 signals 50 and petco2 signals 51. Moreover, the ELV estimations remained relatively stable even when severe changes in ρetco2 were noted (see the ρetco2 trend after 15:50).
Although the foregoing description contains many specifics, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some of the presently preferred embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. Features from different embodiments may be employed in combination. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions and modifications to the invention as disclosed herein which fall within the meaning and scope of the claims are to be embraced thereby.

Claims

CLAMSWhat is claimed:
1. A method for substantially noninvasively estimating effective lung volume of a subject, comprising: effecting a change in effective ventilation of a subject; and determining an effective lung volume that results in a substantially linear relationship between carbon dioxide elimination measured at or near the mouth of the subject and a concentration of carbon dioxide in gas exhaled from the alveoli of the subject's lungs when applied to the carbon dioxide elimination measured at the mouth to compensate for flow of carbon dioxide into the effective lung volume.
2. The method of claim 1, wherein determining comprises: selecting a linear filter coefficient that creates a substantially linear relationship between the carbon dioxide elimination and the concentration of carbon dioxide.
3. The method of claim 1, wherein determining the effective lung volume comprises selecting the effective lung volume providing an optimal correlation between the carbon dioxide elimination and the carbon dioxide concentration.
4. The method of claim 1, wherein determining the effective lung volume comprises employing the following algorithm:
Figure imgf000020_0001
where VA * represents the effective lung volume and α represents the optimal correlation between the carbon dioxide elimination and the carbon dioxide concentration.
5. The method of claim 1 , wherein effecting includes rebreathing.
6. A method for substantially noninvasively estimating effective lung volume of a subject, comprising: effecting a change in effective ventilation of a subject while the subject continues to breathe; considering a change in the concentration of carbon dioxide in gases residing within the alveoli of the subject's lungs from baseline breathing to breathing in which the change in effective ventilation is effected; and considering a change in carbon dioxide elimination from baseline breathing to breathing in which the change in effective ventilation is effected.
7. The method of claim 6, wherein considering the change in concentration and considering the change in carbon dioxide elimination comprise employing the following algorithm:
VA* = [VMCOIPRE - VMCO2(n)] ,
Figure imgf000021_0001
- 1) where VA * represents the effective lung volume, fAC02(n) and fAco2(n-l) represent the concentration of carbon dioxide during successive breaths, only one of which occurs when a change effective ventilation has been effected, VMCO2 PRE represents the carbon dioxide elimination measured at or near the mouth of the subject during baseline breathing, and VMCO2(n) represents the carbon dioxide elimination measured for breath (n).
8. The method of claim 6, wherein effecting includes rebreathing.
9. A method for substantially noninvasively estimating effective lung volume of a subject, comprising: effecting a change in effective ventilation of a subject; considering a change in the amount of carbon dioxide in gases residing within the alveoli of the subject's lungs from baseline breathing to breathing in which the change in effective ventilation is effected; considering a change in carbon dioxide elimination from baseline breathing to breathing in which the change in effective ventilation is effected; and compensating for changes in the amount of carbon dioxide in gases residing within the alveoli that occur during a breath.
10. The method of claim 9, wherein compensating comprises: considering the change in carbon dioxide delivered to a lung from blood as a result of the change in effective ventilation that was effected.
11. The method of claim 10, wherein compensating further comprises : considering a magnitude of the change in the amount of carbon dioxide in the alveoli from baseline breathing to breathing in which the change in effective ventilation is effected.
12. The method of claim 9, wherein effecting includes rebreathing.
13. The method of claim 9, wherein effecting includes breath-holding.
14. The method of claim 9, wherein considering the change in the concentration of carbon dioxide, considering the change in carbon dioxide elimination, and compensating for changes in the amount of carbon dioxide comprise employing the following algorithm:
Figure imgf000023_0001
1)
VMC(J2PRE — VMCO2(11) J
Figure imgf000023_0002
where VA * represents the effective lung volume, fAC02(n) and fAco2(n-l) represent the concentration of carbon dioxide during successive breaths, only one of which occurs when a change effective ventilation has been effected, VMCO2 PRE represents the carbon dioxide elimination measured at or near the mouth of the subject during baseline breathing, VMCO2 (n) represents the carbon dioxide elimination measured for breath (n), VMCO2 DUR represents the carbon dioxide elimination measured at or near the mouth when the change in effective ventilation has been effected, PACO2 PRE represents the partial pressure of carbon dioxide within the alveoli of the subject's lung during baseline breathing, and PACO2(A) represents the partial pressure of carbon dioxide within the alveoli during breath (n).
15. The method of claim 9, wherein considering the change in the concentration of carbon dioxide, considering the change in carbon dioxide elimination, and compensating for changes in the amount of carbon dioxide comprise employing the following algorithm:
VA* [VMCO2PRE - VMCO2(II) -PCBF • SCO2
Figure imgf000023_0003
- 1) (pACO2(n) - pAC02 PRE)J,
RR where VA * represents the effective lung volume, fAco2(n) and fAC02(n-l) represent the concentration of carbon dioxide during successive breaths, only one of which occurs when a change effective ventilation has been effected, VMCO2 PRE represents the carbon dioxide elimination measured at or near the mouth of the subject during baseline breathing, VMCO2 (n) represents the carbon dioxide elimination measured for breath (n), PCBF represents the pulmonary capillary blood flow of the subject, Sco2 represents the slope of a standard carbon dioxide dissociation curve, RR represents the subject's respiratory rate, pAco2 PRE represents the partial pressure of carbon dioxide within the alveoli of the subject's lung during baseline breathing, and pAC02(n) represents the partial pressure of carbon dioxide within the alveoli during breath (n).
16. Apparatus for substantially noninvasively estimating effective lung volume of a subject, comprising: means for effecting a change in effective ventilation of a subject; and means for determining an effective lung volume that results in a substantially linear relationship between carbon dioxide elimination measured at or near the mouth of the subject and a concentration of carbon dioxide in gas exhaled from the alveoli of the subject's lungs when applied to the carbon dioxide elimination measured at the mouth to compensate for flow of carbon dioxide into the effective lung volume.
17. The apparatus of claim 16, wherein the means for determining comprises: means for selecting a linear filter coefficient that creates a substantially linear relationship between the carbon dioxide elimination and the concentration of carbon dioxide.
18. The apparatus of claim 16, wherein the means for determining the effective lung volume comprises means for selecting the effective lung volume providing an optimal correlation between the carbon dioxide elimination and the carbon dioxide concentration.
19. The apparatus of claim 16, wherein the means for determining the effective lung volume comprises means for employing the following algorithm:
Figure imgf000025_0001
where VA * represents the effective lung volume and α represents the optimal correlation between the carbon dioxide elimination and the carbon dioxide concentration.
20. The method of claim 16, wherein the means for effecting includes means for effecting rebreathing.
21. Apparatus for substantially noninvasively estimating effective lung volume of a subject, comprising: means for effecting a change in effective ventilation of a subject while the subject continues to breathe; means for considering a change in the concentration of carbon dioxide in gases residing within the alveoli of the subject's lungs from baseline breathing to breathing in which the change in effective ventilation is effected; and means for considering a change in carbon dioxide elimination from baseline breathing to breathing in which the change in effective ventilation is effected.
22. The apparatus of claim 21, wherein the means for considering the change in concentration and considering the change in carbon dioxide elimination comprise means for employing the following algorithm:
VA* = [VMCO2PRE - VMC02(n)l ,
Figure imgf000026_0001
1) where VA * represents the effective lung volume, fAC02(n) and fACO2(n-l) represent the concentration of carbon dioxide during successive breaths, only one of which occurs when a change effective ventilation has been effected, VMCO2 PRE represents the carbon dioxide elimination measured at or near the mouth of the subject during baseline breathing, and ViviCO2(n) represents the carbon dioxide elimination measured for breath (n) .
23. The apparatus of claim 21, wherein the means for effecting includes means for effecting rebreathing.
24. Apparatus for substantially noninvasively estimating effective lung volume of a subject, comprising: means for effecting a change in effective ventilation of a subject; means for considering a change in the amount of carbon dioxide in gases residing within the alveoli of the subject's lungs from baseline breathing to breathing in which the change in effective ventilation is effected; and means for considering a change in carbon dioxide elimination from baseline breathing to breathing in which the change in effective ventilation is effected; and means for compensating for changes in the amount of carbon dioxide in gases residing within the alveoli that occur during a breath.
25. The apparatus of claim 24, wherein the means for compensating comprises: means for considering the change in carbon dioxide delivered to a lung from blood as a result of the change in effective ventilation that was effected.
26. The apparatus of claim 25, wherein the means for compensating comprise: means for considering a magnitude of the change in the amount of carbon dioxide in the alveoli from baseline breathing to breathing in which the change in effective ventilation is effected.
27. The apparatus of claim 24, wherein means for effecting includes means for rebreathing.
28. The apparatus of claim 24, wherein means for effecting includes means for effecting breath-holding.
29. The apparatus of claim 24, wherein means for considering the change in the concentration of carbon dioxide, the means for considering the change in carbon dioxide elimination, and the means for compensating for changes in the amount of carbon dioxide comprise means for employing the following algorithm:
Figure imgf000027_0001
1)
, . ~ ~ Λ τ „ „ , , VMCO2PRE ~ VMC02DUR / \
VMCO2PRE - VMCθ2(n) • (j3ACO2(n) — pACO2PKEj
Figure imgf000027_0002
where VA * represents the effective lung volume, fAC02(n) and fAco2(n-l) represent the concentration of carbon dioxide during successive breaths, only one of which occurs when a change effective ventilation has been effected, VMCO2 PRE represents the carbon dioxide elimination measured at or near the mouth of the subject during baseline breathing, VMCO2 (n) represents the carbon dioxide elimination measured for breath (n), VMCO2 DUR represents the carbon dioxide elimination measured at or near the mouth when the change in effective ventilation has been effected, PACO2 PRE represents the partial pressure of carbon dioxide within the alveoli of the subject's lung during baseline breathing, and pAC02(n) represents the partial pressure of carbon dioxide within the alveoli during breath (n).
30. The apparatus of claim 24, wherein the means for considering the change in the concentration of carbon dioxide, the means for considering the change in carbon dioxide elimination, and the means for compensating for changes in the amount of carbon dioxide comprise means for employing the following algorithm:
VA* [VMCOIFRE - VMCO2(II) -PCBF ■ sco2
Figure imgf000028_0001
- 1) (pACO2(n) - PACO2 PRE)J,
where VA * represents the effective lung volume, fAC02(n) and fAC02(n-l) represent the concentration of carbon dioxide during successive breaths, only one of which occurs when a change effective ventilation has been effected, VMCO2 PRE represents the carbon dioxide elimination measured at or near the mouth of the subject during baseline breathing, VMCO2 (n) represents the carbon dioxide elimination measured for breath (n), PCBF represents the pulmonary capillary blood flow of the subject, Sco2 represents the slope of a standard carbon dioxide dissociation curve, RR represents the subject's respiratory rate, PACO2 PRE represents the partial pressure of carbon dioxide within the alveoli of the subject's lung during baseline breathing, and PAC02(n) represents the partial pressure of carbon dioxide within the alveoli during breath (n).
PCT/US2005/037735 2002-04-11 2005-10-20 Method and apparatus for effective lung volume estimation WO2006047212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05809890A EP1805681A1 (en) 2004-10-25 2005-10-20 Method and apparatus for effective lung volume estimation
JP2007538028A JP2008517655A (en) 2004-10-25 2005-10-20 Method and apparatus for estimating effective lung capacity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/121,219 US6955651B2 (en) 2000-02-22 2002-04-11 Algorithms, systems, and methods for estimating carbon dioxide stores, transforming respiratory gas measurements, and obtaining accurate noninvasive pulmonary capillary blood flow and cardiac output measurements
US10/973,815 US7699788B2 (en) 2000-02-22 2004-10-25 Noninvasive effective lung volume estimation
US10/973,815 2004-10-25

Publications (1)

Publication Number Publication Date
WO2006047212A1 true WO2006047212A1 (en) 2006-05-04

Family

ID=38121383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/037735 WO2006047212A1 (en) 2002-04-11 2005-10-20 Method and apparatus for effective lung volume estimation

Country Status (3)

Country Link
EP (1) EP1805681A1 (en)
JP (1) JP2008517655A (en)
WO (1) WO2006047212A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641536A1 (en) 2012-03-21 2013-09-25 Maquet Critical Care AB Method for continuous and non-invasive determination of effective lung volume and cardiac output
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081075B2 (en) * 2018-07-26 2022-06-07 泉工医科工業株式会社 Monitor system control method, monitor system and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183643A1 (en) * 2000-02-22 2002-12-05 Kai Kuck Algorithms, systems, and methods for estimating carbon dioxide stores, transforming respiratory gas measurements, and obtaining accurate noninvasive pulmonary capillary blood flow and cardiac output measurements
US20050124907A1 (en) * 2000-02-22 2005-06-09 Kai Kuck Noninvasive effective lung volume estimation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183643A1 (en) * 2000-02-22 2002-12-05 Kai Kuck Algorithms, systems, and methods for estimating carbon dioxide stores, transforming respiratory gas measurements, and obtaining accurate noninvasive pulmonary capillary blood flow and cardiac output measurements
US20050124907A1 (en) * 2000-02-22 2005-06-09 Kai Kuck Noninvasive effective lung volume estimation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GEDEON A; KRILL P; ÖSTERLUND B: "Pulmonary blood flow (cardiac output) and the effective lung volume determined from a short breath hold using the differential fick method", JOURNAL OF CLINICAL MONITORING AND COMPUTING, vol. 17, no. 5, 2002, pages 313 - 321, XP002367162 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641536A1 (en) 2012-03-21 2013-09-25 Maquet Critical Care AB Method for continuous and non-invasive determination of effective lung volume and cardiac output
CN103315730A (en) * 2012-03-21 2013-09-25 马奎特紧急护理公司 Method for continuous and non-invasive determination of effective lung volume and cardiac output
WO2013141766A1 (en) 2012-03-21 2013-09-26 Maquet Critical Care Ab Method for continuous and non-invasive determination of effective lung volume and cardiac output
EP2799008A1 (en) 2012-03-21 2014-11-05 Maquet Critical Care AB Method for continuous and non-invasive determination of effective lung volume and cardiac output
US10085673B2 (en) 2012-03-21 2018-10-02 Maquet Critical Care Ab Method for continuous and non-invasive determination of effective lung volume and cardiac output
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing

Also Published As

Publication number Publication date
JP2008517655A (en) 2008-05-29
EP1805681A1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US7699788B2 (en) Noninvasive effective lung volume estimation
US6955651B2 (en) Algorithms, systems, and methods for estimating carbon dioxide stores, transforming respiratory gas measurements, and obtaining accurate noninvasive pulmonary capillary blood flow and cardiac output measurements
EP1372480B1 (en) Rebreathing system including oscillating rebreathing and non-rebreathing periods
US6238351B1 (en) Method for compensating for non-metabolic changes in respiratory or blood gas profile parameters
US7018340B2 (en) Apparatus and method for non-invasively measuring cardiac output
US6042550A (en) Methods of non-invasively estimating intrapulmonary shunt fraction and measuring cardiac output
US7766857B2 (en) Non-invasive determination of cardiac output, gas exchange and arterial blood gas concentration
US6200271B1 (en) Bi-directional partial re-breathing method
US6210342B1 (en) Bi-directional partial re-breathing method
US6059732A (en) ISO-volumetric method of measuring carbon dioxide elimination
US20060004297A1 (en) Lung model-based cardiopulmonary performance determination
WO1998041147A1 (en) Respiratory calorimeter
AU1970201A (en) Method and apparatus for determining cardiac output
US7070569B2 (en) Non-invasive determination of conditions in the circulatory system of a subject
WO2006047212A1 (en) Method and apparatus for effective lung volume estimation
Jaffe et al. Combining flow and carbon dioxide
Brewer et al. Evaluation of a CO2 Partial Rebreathing-Based Functional Residual Capacity Measurement Method for Mechanically Ventilated Patients
Sidorenko Determination of the alveolar dead space

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005809890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007538028

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005809890

Country of ref document: EP