WO2006047064A2 - Procede et appareil permettant une communication sur un spectre de frequences non attribue - Google Patents

Procede et appareil permettant une communication sur un spectre de frequences non attribue Download PDF

Info

Publication number
WO2006047064A2
WO2006047064A2 PCT/US2005/036155 US2005036155W WO2006047064A2 WO 2006047064 A2 WO2006047064 A2 WO 2006047064A2 US 2005036155 W US2005036155 W US 2005036155W WO 2006047064 A2 WO2006047064 A2 WO 2006047064A2
Authority
WO
WIPO (PCT)
Prior art keywords
channel
vdd
television
command
video
Prior art date
Application number
PCT/US2005/036155
Other languages
English (en)
Other versions
WO2006047064A3 (fr
Inventor
Daniel B. Grossman
Minh N. Hoang
Original Assignee
Motorola, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola, Inc. filed Critical Motorola, Inc.
Publication of WO2006047064A2 publication Critical patent/WO2006047064A2/fr
Publication of WO2006047064A3 publication Critical patent/WO2006047064A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast

Definitions

  • the present invention relates generally to wireless communications, and in particular, to a method and apparatus for allowing communication over non-licensed television spectrum.
  • the Federal Communications Commission (FCC) of the United States of America has proposed allowing limited non-licensed operation in the broadcast television spectrum using channels that are licensed for other users (i.e., television broadcasters and certain public safety agencies). This is detailed in "Unlicensed Operation in the TV Broadcast Bands and Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band", Notice of Proposed Rulemaking, FCC 04-133, released May 25, 2004.
  • Non-licensed operation under Part 15 of the FCC rules allows devices to be used in certain regions of the electromagnetic spectrum without an FCC license.
  • the FCC has proposed the use of a control signal to allow devices to identify channels that are available for non-licensed operation.
  • the control signal to be specified in the final FCC rules may take the form of a database, or may use channel monitoring or both. Access to the database may be via wired, wireless, or other robust method.
  • One device that could readily utilize non-licensed operation in the broadcast spectrum is digital television sets, i.e., according to the ATSC standard.
  • a challenge becomes providing a video signal to an existing television set, where the signal utilizes non-licensed operation in the television band subject to a control signal. Therefore a need exists for a method and apparatus for allowing communication over non-licensed spectrum.
  • FIG. 1 is a block diagram of a video distribution system.
  • FIG. 2 is a block diagram of a video distribution device.
  • FIG. 3 is a flow chart showing the operation of the video distribution device of
  • FIG. 4 is a block diagram of a remote control.
  • FIG. 5 is a flow chart showing operation of the remote control of FIG. 4.
  • a method and apparatus for supplying a television set with a transmission that utilizes non-licensed transmissions in the television band.
  • a video distribution system is provided that performs the necessary steps to determine an available channel for video transmission.
  • a video- distribution device checks (e.g., using a centralized database, a beacon signal and/or spectrum sensing) the availability of a channel in the television band for non-licensed operation.
  • the present invention is agnostic as to the means for finding an available non-licensed channel, which will be subject of an FCC rulemaking. After the VDD has identified an appropriate channel, a television is tuned to that channel so that the VDD can transmit video to the television utilizing the non-licensed channel.
  • the present invention encompasses a Video Distribution Device (VDD) comprising an input receiving video, and control circuitry determining a non-licensed channel for transmission of the received video, wherein the non-licensed channel is a vacant channel in licensed spectrum.
  • VDD also comprises a first transmitter, transmitting the received video via the non-licensed channel to an external receiver.
  • the present invention additionally encompasses an apparatus comprising a video input receiving video, control circuitry determining a channel for transmission of the received video, a first transmitter transmitting channel information to a remote control device, causing the remote control device to tune a television to the channel, and a second transmitter transmitting the received video via the channel to the television.
  • the present invention encompasses an apparatus comprising an input device for receiving user commands, a controller for determining a type of user command received, a first transmitter transmitting the command to a first device using a first communication system protocol when the command is from a first set of commands, and a second transmitter transmitting the command to a second device using a second communication system protocol when the command is from a second set of commands.
  • the present invention additionally encompasses a method comprising the steps of receiving video, determining a non-licensed channel for transmission of the received video, wherein the non-licensed channel is a vacant channel in licensed spectrum, and transmitting the received video via the non-licensed channel to an external receiver.
  • the present invention additionally encompasses a method comprising the steps of receiving a user command, determining if the command is from a first or a second set of commands, transmitting the command via a first transmitter to a first device using a first communication system protocol when the command is from the first set of commands and transmitting the command via a second transmitter to a second device using a second communication system protocol when the command is from a second set of commands.
  • FIG. 1 is a of video distribution system 100.
  • system 100 comprises video distribution device (VDD) 101, remote control 105, and television 107.
  • Television 107 is a digital television which conforms to the Advanced Television Standards Committee (ATSC) standards and to the FCC rules concerning digital televisions.
  • VDD 101 is a central device in a home providing video content to receivers such as television 107.
  • VDD 101 includes devices such as, but not limited to a "Whole-house Set-Top Box", a "Residential Gateway", . . . , etc.
  • VDD 101 has a plurality of input devices 102 (only one shown in FIG. 1).
  • Such input devices include, but are not limited to video recorders, DVD players, digital terrestrial broadcast television tuners (i.e., utilizing antenna 108), a multi-program video distributor (MPVD) tuner, . . . , etc.
  • MPVD is a term of art in the FCC rules which broadly encompasses video service providers offering service over any of several different technologies, including cable, direct broadcast satellite, digital subscriber line and optical access networks.
  • VDD 101 communicates with remote control device 105 via over-the-air link 103 using a wireless local area network (LAN) system protocol (e.g., as defined in IEEE 802.11a, b, or g).
  • LAN wireless local area network
  • VDD 101 transmits video signals via link 104 using an over- the-air ATSC-conforming transmission as a composite multiplex on a broadcast television channel.
  • Remote control 105 has a user interface (input) such as a multi-button keypad, with which a user interacts with system 100.
  • Remote control 105 communicates with VDD 101 using a wireless LAN protocol.
  • Remote control 105 additionally sends commands to television 107 using standard infrared commands, as is known in the art. As such, a first set of user inputs will be transmitted via link 103 to VDD 101, while a second set of commands will be transmitted yia IR link 106 to television 107.
  • remote control 105 serves as a proxy for VDD 101, forwarding commands from VDD 101 to television 107.
  • the FCC has proposed allowing non-licensed operation in the broadcast television spectrum on channels which are not used by licensed users.
  • a non-licensed channel includes any vacant channel in licensed spectrum, wherein a user is not licensed to use the vacant channel.
  • the FCC has proposed the use of a control signal to identify channels which are available for non-licensed operation in a given geographic area. This control signal may take one or more of several forms in the final FCC rules, 47 CFR ⁇ 15.244.
  • a terrestrial broadcast television station may periodically broadcast a database containing the limits of the so-called Grade B contour for each licensed user in a given area.
  • spectrum sensing methods may be applied.
  • a database may be queried through a communication network such as the internet to return a channel which is not within the Grade B contour of any licensed user.
  • a communication network such as the internet to return a channel which is not within the Grade B contour of any licensed user.
  • the definition of the control signal will be subject of an FCC rulemaking, and its exact form is not relevant to this discussion.
  • VDD 101 performs the necessary steps to determine an available channel for non-licensed operation.
  • VDD 101 serves as means for performing whatever determination is required by the FCC rules. This may comprise having logic circuitry determine the channel by analyzing a received beacon, or accessing an external database, or determining that no transmissions exist on the non- licensed channel.
  • television 107 needs to be tuned to that channel in order for VDD 101 to transmit audio/video programming to television 107.
  • a sub-channel (as defined in the ATSC standards) must be selected by VDD 101 to multiplex the channel among a plurality televisions 107. This is accomplished by VDD 101 notifying remote control 105 of the appropriate channel and selected sub-channel, and having remote control 105 automatically tune television 107 to the appropriate channel and sub-channel).
  • FIG. 2 is a block diagram of VDD 101.
  • VDD control circuitry 206 is provided to control the functionality of VDD 101.
  • VDD control circuitry 206 preferably comprises a microprocessor controller, such as, but not limited to a Freescale PowerPC microprocessor.
  • VDD 101 serves as means for receiving digital video and providing the video to television 107 via non-licensed operation in the television spectrum. While the source of the video received by VDD 101 is irrelevant to this discussion, such sources may include, but are not limited to, an MPVD interface such as a cable television or DBS receiver, an IEEE 1394 (sometimes sold under the trade name "Firewire” or “iLink”) interface from an external video recorder or camera, "streaming video” from the Internet, over-the-air television broadcasts received via ATSC transmitter transceiver 211 and an external (e.g., roof mounted) antenna, and internal video storage 209 providing internally-stored content.
  • MPVD interface such as a cable television or DBS receiver
  • IEEE 1394 sometimes sold under the trade name "Firewire” or “iLink” interface from an external video recorder or camera
  • streaming video from the Internet
  • ATSC transmitter transceiver 211 and an external (e.g., roof mounted) antenna
  • internal video storage 209 providing internally-stored content.
  • MPVDs require a security device (not shown), which is variously known in the art as a "POD” or a “CableCARD".
  • the security device is intended to permit the MPVD to retain ownership of equipment which provides the conditional access function and maintain control over its use and security, while permitting the rest of the customer premises equipment to be owned by consumers. It is designed to be physically inserted into a slot which the selected video flow passes through, so as to decrypt the video flow, as long as the consumer is so entitled.
  • MPVDs and terrestrial broadcast stations deliver audiovisual programs as MPEG2 transport streams (MPEG2 TS).
  • storage 209 typically uses MPEG2 program streams (MPEG2 PS).
  • MPEG2 TS are typically used to multiplex one or more programs, each consisting of several program elementary streams (PES), each of which comprises a video, audio or private data signal.
  • PES program elementary streams
  • MPEG Processor 208 serves as a video input, taking MPEG2 TS and MPEG2 PS and grooming out the selected programs. Processor 208 may further remove unneeded PES (e.g., eliminating PES containing foreign language audio and/or closed captioning if they are not needed).
  • the ATSC standard provides a mapping between MPEG2 TS program numbers (which relate to PES) and subchannels.
  • FIG. 3 is a flow chart showing the steps necessary for VDD 101 to transmit video.
  • the logic flow in FIG. 3 assumes that both VDD 101 and television 107 are powered on, and that television 107 is awaiting video transmissions from VDD 101.
  • the logic flow begins at step 301 where VDD control circuitry 206 determines a channel available for non-licensed operation in accordance with the proposed FCC rules specified in 47 CFR ⁇ 15.244. As discussed, control circuitry determines a vacant channel existing within television spectrum by determining that no transmissions exist on the channel, accessing an external database to determine the availability of the non- licensed channel, or analyzing a received beacon to determine channel availability.
  • VDD- 101 selects' a previously unused sub-channel (step 305) and tunes television 107 to the available channel and selected sub-channel, otherwise the logic flow ends at step 309.
  • the tuning of television 107 to the available channel and sub-channel is accomplished by relaying a channel tuning command via a first transmitter/receiver (transceiver 210) to remote control 105, which passes the command to television 107.
  • the video is broadcast by a second transmitter (ATSC transmitter 211) to an external television receiver (television 107) utilizing the channel and subchannel.
  • the video may be received from any internal or external video source.
  • the video is received at the input of an MPEG processor.
  • the digital audio/video streams and associated data received from MPEG processor 208 are marked with an MPEG2 program_id corresponding to the sub-channel as defined in the ATSC standard, and transmitted utilizing the channel via ATSC transmitter 211.
  • Programming navigation pages are additionally sent to television 107 over the sub-channel and channel by ATSC transceiver 211.
  • ATSC transmitter 211 includes a vestigial sideband (VSB) modulator, frequency conversion apparatus, a power amplifier and other components as known in the art.
  • VSB vestigial sideband
  • FIG. 4 is a block diagram of remote control 105.
  • remote control 105 comprises user interface, or user input 401 comprising a standard keypad. Instructions received via user input 401 are decoded by decoder 405 and input to controller 404.
  • user input 401 is a keypad having a plurality of keys specialized for controlling consumer electronic devices, while decoder 405 comprises a circuit arranged for de-bouncing key presses and mapping them to a digital output.
  • controller 404 comprises a standard microprocessor controller such as a 68HC11 processor.
  • Infrared transmitter 402 comprises a standard IR television transmitter, as is known in the art, while wireless LAN transceiver 403 comprises a standard transceiver such as one conforming to the IEEE 802.11 a, b, or g communication system protocol.
  • controller 404 receives primitive commands from a human user using user input 401 via input decoder 305. Controller 404 decides whether the particular command is related to obtaining a channel and subchannel, the control of a television, or the control of a VDD. Commands related to obtaining a channel cause controller 404 to initiate a two-way exchange with VDD 101 to obtain a channel in the television band and subchannel, followed by a command to television 107 to tune to that channel and subchannel. Commands related to programming the television cause controller 404 to send a command to television 107 to adjust audio or display parameters (e.g., audio volume or display brightness), in the same fashion as a conventional television remote control. Commands related to controlling the VDD cause controller 404 to initiate a one-way exchange with VDD 101 to cause it to take some action (e.g., to pause while playing a movie). Thus, a first plurality of received commands are transmitted to a first device
  • VDD 101 via a first communication system protocol (wireless LAN), using wireless LAN transceiver 403.
  • a second plurality of received commands are transmitted to a second device (television 107) via a second communication system protocol (infrared commands) using infrared transmitter 402. This process is illustrated in FIG. 5.
  • controller 404 receives a decoded input command from decoder 405.
  • the input command originated from a user through user interface/user input 401.
  • controller 404 determines if the command is from a first set of commands (e.g., digits 0 through 9, "Next Channel”, “Fast Forward", “Power ON”.). If, at step 503, it is determined that the command is from a first set of commands, then the logic flow continues to step 505, where the command is sent to a first device (VDD 101) via a first communication system protocol (e.g., wireless LAN).
  • a first communication system protocol e.g., wireless LAN
  • the sending of the command to the first device may cause VDD 101 to return a second command to controller 404 that is received by transceiver 403 (step 507).
  • This second command is interpreted by controller 404 and forwarded on to a second device (e.g., television 107) via infrared transmitter 402 via a second communication system protocol at step 509 (e.g., infrared remote control commands, which are typically specific to particular television manufacturers and known to those skilled in the art.)
  • a second communication system protocol e.g., infrared remote control commands, which are typically specific to particular television manufacturers and known to those skilled in the art.
  • remote control 105 will then forward the appropriate command (via IR transmitter 402) to television 107, tuning it to the channel and sub-channel.
  • step 507-509 not all commands sent to VDD 101 will cause VDD 101 to return the second command and execute steps 507-509.
  • the command is to tune, or control video (e.g., digits 0 through 9, "Next Channel", "Fast Forward")
  • the command sent via the via communication system protocol cause VDD 101 to take the indicated action (e.g., compose a program number to select, change to a next channel in a lineup, fast forward a stored video program) without returning any command that is to be forwarded.
  • step 503 if it is determined that the command is from a second set of commands, the logic flow continues to step 511 where the command is sent to the second device (television 107) via the second communication system protocol.
  • the command sent via the second communication system protocol are the same as would be sent by a conventional remote control to cause television 107 to take the indicated action (e.g., increase the audio volume or reduce display brightness).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

L'invention concerne un système de distribution vidéo prévu pour exécuter les d'étapes nécessaires permettant de déterminer un canal non attribué disponible afin d'effectuer une transmission vidéo. En particulier, un dispositif de distribution vidéo (VDD) (101) vérifie une base de données centralisée ou un signal de balise afin de déterminer la disponibilité d'un canal non attribué. Une fois que le VDD (101) a identifié un canal non attribué approprié, une télévision (107) est syntonisée à ce canal de sorte que ledit VDD (101) peut transmettre une vidéo à la télévision (107) à l'aide du canal non attribué, ce qui est effectué par le VDD (101) qui signale le canal approprié à un contrôleur (105), lequel contrôleur (105) syntonise automatiquement la télévision (107) audit canal approprié.
PCT/US2005/036155 2004-10-26 2005-10-05 Procede et appareil permettant une communication sur un spectre de frequences non attribue WO2006047064A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62231304P 2004-10-26 2004-10-26
US60/622,313 2004-10-26
US184304A 2004-12-02 2004-12-02
US11/001,843 2004-12-02

Publications (2)

Publication Number Publication Date
WO2006047064A2 true WO2006047064A2 (fr) 2006-05-04
WO2006047064A3 WO2006047064A3 (fr) 2007-05-10

Family

ID=36228209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/036155 WO2006047064A2 (fr) 2004-10-26 2005-10-05 Procede et appareil permettant une communication sur un spectre de frequences non attribue

Country Status (1)

Country Link
WO (1) WO2006047064A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934909B2 (en) 2010-05-19 2015-01-13 Nokia Corporation Method and apparatus for providing communication offloading to unlicensed bands
US9166633B2 (en) 2010-01-21 2015-10-20 Qualcomm Incorporated Systems and methods for interfacing a white space device with a host device
US10048921B2 (en) 2010-03-02 2018-08-14 Qualcomm Incorporated Controlling a multimedia device in remote display mode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841368A (en) * 1988-01-21 1989-06-20 North American Philips Corporation Television customer control functions restorer
US5517553A (en) * 1988-02-29 1996-05-14 Canon Kabushiki Kaisha Wireless communication system
US6271837B1 (en) * 1997-10-24 2001-08-07 General Instrument Corporation Personal computer-based set-top converter for television services
US6346891B1 (en) * 1998-08-31 2002-02-12 Microsoft Corporation Remote control system with handling sensor in remote control device
US20030038849A1 (en) * 2001-07-10 2003-02-27 Nortel Networks Limited System and method for remotely interfacing with a plurality of electronic devices
US20040133921A1 (en) * 2002-12-25 2004-07-08 Orion Electric Company Ltd. RF output channel setting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841368A (en) * 1988-01-21 1989-06-20 North American Philips Corporation Television customer control functions restorer
US5517553A (en) * 1988-02-29 1996-05-14 Canon Kabushiki Kaisha Wireless communication system
US6271837B1 (en) * 1997-10-24 2001-08-07 General Instrument Corporation Personal computer-based set-top converter for television services
US6346891B1 (en) * 1998-08-31 2002-02-12 Microsoft Corporation Remote control system with handling sensor in remote control device
US20030038849A1 (en) * 2001-07-10 2003-02-27 Nortel Networks Limited System and method for remotely interfacing with a plurality of electronic devices
US20040133921A1 (en) * 2002-12-25 2004-07-08 Orion Electric Company Ltd. RF output channel setting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166633B2 (en) 2010-01-21 2015-10-20 Qualcomm Incorporated Systems and methods for interfacing a white space device with a host device
US10048921B2 (en) 2010-03-02 2018-08-14 Qualcomm Incorporated Controlling a multimedia device in remote display mode
US8934909B2 (en) 2010-05-19 2015-01-13 Nokia Corporation Method and apparatus for providing communication offloading to unlicensed bands

Also Published As

Publication number Publication date
WO2006047064A3 (fr) 2007-05-10

Similar Documents

Publication Publication Date Title
US8060910B2 (en) Set top box apparatus having a radio frequency antenna and an associated method
US10412459B2 (en) Method and apparatus for displaying electronic program guide information
US10051332B2 (en) Transmission of video signals
US7626641B1 (en) Method and apparatus for a simplified power scan for remote control
US8584173B2 (en) Automatic selection of video programming channel based on scheduling information
US20060053436A1 (en) Wireless back channel for satellite television system
US9628846B2 (en) Method and apparatus for recording a video program for user instruction
US20130042281A1 (en) Distribution of Over-the-Air Television Content to Remote Display Devices
US20050124289A1 (en) Method and apparatus for adjusting signal component strength
KR100798918B1 (ko) 통합된 셋탑 기능을 갖는 홈서버 및 그 제어방법
WO1996028905A1 (fr) Transmission simultanee de programmes numeriques a des systemes de reception a antenne partagee
US8607297B2 (en) Remote setting of recording timers
US20050157215A1 (en) Method and apparatus for detecting an inactive channel selecting resource in a television converter
US20090075585A1 (en) Digital receiver system
US7697070B1 (en) Method of providing standard definition local television content
US20110119705A1 (en) Apparatus and Methods For Storing Packetized Video Content
WO2006047064A2 (fr) Procede et appareil permettant une communication sur un spectre de frequences non attribue
US7913285B2 (en) Apparatus and method for interfacing between set-top box and point of deployment for pay-per-view service
US11025983B2 (en) Electronic program guide displaying relevant field based on time of day
KR100987432B1 (ko) 디지털 위성 방송 수신기
US20090113499A1 (en) Method and apparatus for controlling an on-premises digital media distribution system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05802524

Country of ref document: EP

Kind code of ref document: A2