WO2006046352A1 - Novel auxotrophic fission yeast - Google Patents

Novel auxotrophic fission yeast Download PDF

Info

Publication number
WO2006046352A1
WO2006046352A1 PCT/JP2005/016039 JP2005016039W WO2006046352A1 WO 2006046352 A1 WO2006046352 A1 WO 2006046352A1 JP 2005016039 W JP2005016039 W JP 2005016039W WO 2006046352 A1 WO2006046352 A1 WO 2006046352A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
fission yeast
vector
yeast
fission
Prior art date
Application number
PCT/JP2005/016039
Other languages
French (fr)
Japanese (ja)
Inventor
Takayoshi Kuno
Reiko Sugiura
Mariko Saito
Atsushi Koike
Original Assignee
The New Industry Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The New Industry Research Organization filed Critical The New Industry Research Organization
Priority to JP2006542266A priority Critical patent/JPWO2006046352A1/en
Publication of WO2006046352A1 publication Critical patent/WO2006046352A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03014Homocitrate synthase (2.3.3.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01011Acetylornithine transaminase (2.6.1.11)

Definitions

  • the present invention relates to an auxotrophic fission yeast that does not grow on a minimal medium for fission yeast and can grow by adding arginine, asparagine, or lysine.
  • Fission yeast (Schizosaccharomvces pombe) is a unicellular eukaryote in the shape of a cylinder, easy to cultivate in large quantities as a characteristic of microorganisms, and has a short intergenerational time. It is also known as a unicellular organism that is extremely easy to apply in the fields of genetics, molecular biology, and cell biology (Non-patent Document 1). Fission yeast is the single-cell model organism that is closest to humans and contains more than 100 human pathogenic genes, with the smallest number of genes possessed by the genome size of any organism that has been genome-decoded. Because of these advantages, fission yeast has long been very suitable for comprehensive gene analysis experiments, and many medically useful data have been obtained.
  • Non-patent Document 2 In genetic recombination technology, it can be used as a selection criterion for cloning a dieneticin resistance marker (Non-patent Document 2). However, selection with such a marker is not economical because an antibiotic must be added to the medium.
  • an auxotrophic yeast that does not grow on a minimal medium for growing cells such as yeast using a nutrient marker as an index
  • fission yeast has limitations in research and industrial production with fewer nutritional markers compared to commonly used budding fermented rice (Saccharomvces cerevisiae).
  • the leul + and ura4 + genes are known as one of the nutritional markers for fission yeast used for gene transfer (Non-patent Document 3, Non-patent Document 4).
  • / ⁇ is known as a nutritional marker to add histidine
  • ade6 + is used for adenine to distinguish between haploid and diploid
  • histidine is used for sex differentiation in yeast
  • many of the fission yeast auxotrophic strains caused by genes other than leul + have a slow growth rate compared to wild strains even in nutrient-rich media, which hinders practical use. It was.
  • Non-patent literature 1 Nasim A. et ai. Eds., Molecular biology of the nssion yeast, Academic Press, 1989
  • Non-Patent Document 2 J Bahler, et al., Yeast, Jul 1998; 14 (10): 943-51.
  • Non-Patent Document 3 Curr Genet. 1988 Oct; 14 (4): 375-9.
  • Non-Patent Document 4 Curr Genet. 1987; 12 (7): 527-34.
  • An object of the present invention is to provide a fission yeast having a novel nutritional marker in fission yeast (Schizosaccharomyces pombe) (hereinafter sometimes simply referred to as “S. pombej”).
  • the problem is to provide a vector for use with the mutant fission yeast.
  • the present inventors isolated three types of fission yeast mutants that grew on a nutrient-rich medium to the same extent as wild strains but could not grow on a minimal medium, and determined the causative gene. As a result, fission yeast having three types of novel nutrient markers, arginine requirement, asparagine requirement, and lysine requirement, was discovered. In addition, vectors that can be introduced into these auxotrophic fission yeasts could be constructed, and the present invention was completed.
  • the present invention is as follows.
  • An auxotrophic fission yeast in which a novel nutritional marker gene of fission yeast is mutated.
  • Genbank accession number Asparagine-requiring fission yeast mutated in the asparagine synthesis gene (asnl + gene, SPBC119.10) encoded by the nucleotide sequence described in AL022117
  • a lysine-requiring fission yeast mutated in the lysine synthesis gene (lys4 + gene, SPBC1105.02c) encoded by the nucleotide sequence described in Genbank accession number: AL096851.
  • a vector that can be introduced into fission yeast containing a novel nutritional marker gene for fission yeast 8.
  • a vector comprising the fission yeast argl + gene (SPCC777.09c) and capable of being introduced into fission yeast according to any one of items 1 to 3 above.
  • a vector comprising a budding yeast ARG8 gene (YOL140W) and capable of being introduced into fission yeast according to any one of 1 to 3 above.
  • a vector comprising a fission yeast asnl + gene (SPBC119.10) and capable of being introduced into the asparagine-requiring fission yeast according to any one of items 1, 4 and 5.
  • a vector comprising a budding yeast ASN1 gene (YPR145W) or an ASN2 gene (YGR124W) and capable of being introduced into fission yeast according to any one of items 1, 4 and 5.
  • a vector comprising a lys4 + gene (SPBC1105.02c) and capable of being introduced into a lysine-requiring fission yeast according to any one of 1, 6, or 7 above.
  • a transformant comprising the fission yeast according to any one of items 1, 4 and 5 incorporated with the vector of item 11 or 12 above.
  • a transformant comprising the fission yeast according to any one of items 1, 6 and 7 incorporated with the vector of item 13 above.
  • a method for producing a protein comprising culturing the transformant according to any one of 14 to 16 above and collecting the expressed heterologous protein.
  • auxotrophic yeast does not grow on a minimal medium, but can grow like wild-type fission yeast by adding arginine, asparagine or lysine.
  • argl +, asnl + and lys4 + ii which are found as marker genes according to the present invention, are comparatively small, less than 2 kilobases !, Bam HI, Pst I and the like, which are genes and restriction enzymes frequently used in subcloning. This is a very suitable marker gene for the site. That is, the auxotrophic fission yeast and marker gene of the present invention are excellent in that they can be easily used in protein production, gene analysis, and the like by gene recombination techniques.
  • FIG. 1 A diagram showing the phenotype of a mutant strain of fission yeast that grows in the same manner as wild-type strains on 13 nutrient-rich media but cannot grow on minimal media. (Example 1)
  • FIG. 2 is a diagram showing the phenotype of KP2101. (Example 2)
  • FIG. 3 shows the phenotype of mutant strains excluding KP2101. (Example 2)
  • FIG. 4 is a diagram showing the phenotype of KP2124. (Example 3)
  • FIG. 5 is a diagram of construction of an integration vector. (Example 4)
  • FIG. 6 shows that a vector containing Sadl-DsRED has been introduced into KP2101. (Example 4)
  • FIG. 7 shows the phenotype of KP2132. (Example 9)
  • the “auxotrophic fission yeast in which a novel nutritional marker gene is mutated” of the present invention refers to a fission yeast that does not grow on a minimal medium due to a variation in a nutritional marker gene that is different from a conventionally known nutritional marker gene.
  • An example of a conventionally known auxotrophic fission fermentation mother is a leucine-requiring fission yeast in which the leul gene is mutated.
  • the fission yeast does not grow on a minimal medium, but grows by adding leucine to the minimal medium. can do.
  • known EMM medium Eddinburgh minimal medium medium: Gutz, H., heslot, ⁇ , Leupold, U., ana Loprieno, N. (1974) in Handbook of Genetics (King, R. C, ed) , Vol. 1, pp. 395-446, Plenum, New York).
  • the "new nutritional marker gene" of the fission yeast of the present invention is a conventionally known nutritional marker gene in fission yeast, such as leul +, ura4 + , his2 + , his3 + , his7 + , adel +, ade6 + genes ⁇ ⁇ Nutrition marker gene of fission yeast except ⁇ ⁇ .
  • the argl + gene (SPCC777.09C) related to the arginine nutrition marker, the asnl + gene (SPBC119.10) related to the assargine nutrition marker or the lys4 + gene (SPBC1105.02C) related to the lysine nutrition marker Each gene is said.
  • the base sequence of the argl + gene (SPCC777.09c), which is the new nutritional force of the present invention, is Genbank accession number: AL031 532
  • the base sequence of the asnl + gene (SPBC119.10) is Genbank accession number: AL022117
  • the base sequence of the lys4 + gene (SPBCl 105.02c) is already known as Genbank accession number: AL096851.
  • a mutant strain of argl + gene, asnl + gene or lys4 + gene can be obtained by a method of obtaining a mutant strain or by artificially recombining an existing gene. Preferably, it can be obtained by a method of obtaining a mutant strain. For example, a mutant strain that grows in the same manner as a wild strain on a nutrient-rich medium but cannot grow on a minimal medium is screened. Can be obtained. Mutant strains are known methods such as Moreno S., Klar and Nurse P., (1991) Methods Enzymol. 194, p795-823 or The Journal of Biological Chemistry, vol. 275, No. 45, p35600_35606 (2000). Can be obtained by the method described in 1. above.
  • the argl + gene mutation that can be used in the present invention may be a mutation that loses the acetylylditin aminotransferase enzyme activity encoded by the argl + gene.
  • Point mutation ability Complete deletion mutations are preferred for introducing plasmid vectors.
  • the mutation of the asnl + gene that can be used in the present invention may be a mutation that loses the asparagine synthase activity encoded by the asnl + gene.
  • a point mutation may be used in order to introduce an integration vector.
  • a complete deletion mutation is preferred for introducing the vector.
  • the mutation of the lys4 + gene that can be used in the present invention may be a mutation that loses the lysine synthase activity encoded by the lys4 + gene.
  • a point mutation is required in order to introduce an integration vector.
  • a complete deletion mutation is preferred in order to introduce a plasmid vector.
  • a fission yeast vector that can be introduced into an auxotrophic fission yeast in which the above-mentioned novel nutritional marker gene is mutated.
  • a vector containing a normal argl + gene is introduced into an arginine-requiring fission yeast in which the argl + gene is mutated
  • a transformant capable of growing on a minimal medium without arginine can be obtained.
  • the vector that can be introduced into the auxotrophic fission yeast refers to a vector containing the novel nutritional marker gene of the present invention.
  • vectors that can be introduced into the auxotrophic fission yeast of the present invention can further include vectors containing a budding yeast-derived nutrient marker gene.
  • Nutritional marker genes that can be introduced into the auxotrophic fission yeast vector of the present invention include fission yeast argl + gene (SPCC777.09c), fission yeast asnl + gene (SPBC119.10), fission yeast lys4 + gene (SPBC1105. 02c).
  • the ARG8 gene (YOL140W, Genbank accession number: Z74882) derived from the budding yeast gene as a nutritional marker gene that can be introduced into a vector for arginine-requiring fission yeast, is a vector for asparagine-requiring fission yeast.
  • There is an ASN1 gene (YPR145W, Genbank accession number: Z48675) derived from the budding fermentation mother gene as a nutritional marker gene that can be introduced into ASN2 gene (YGR124W, Genbank accession number: Z72909).
  • the LYS21 gene (YDL131W, Genbank accession number: Z74179) derived from the budding fermentation mother gene can be mentioned.
  • Vectors that can be introduced into auxotrophic fission yeast are essential for vectors such as MCS of known vectors with MCS (multi cloning site) such as BlueScript (Stratagene), replication origin, or antibiotic marker. It can be constructed by introducing each of the above-mentioned genes in a place other than the above sequence. The introduction of each gene can be carried out by normal operations after amplifying each gene by a known technique such as PCR.
  • an autonomous replicative sequence may be introduced so that it can replicate autonomously in fission yeast.
  • the integration vector is integrated into the fission yeast chromosome and grows with the fission yeast, so there is no need to introduce ARS.
  • the above vector can also be used as a shuttle vector by allowing the self-replicating sequence (ori) of Escherichia coli and the self-replicating sequence (ARS) of yeast to exist.
  • ori self-replicating sequence
  • ARS self-replicating sequence
  • a desired protein can be synthesized in a minimal medium. it can.
  • a fission yeast wild strain (haploid leucine-requiring yeast HM123 (h- leul)) is added to nutrient-rich YPD medium (1% yeast extract, 2% Peptone, 2% glucose) for 30 minutes, and the treated fission yeast was diluted with YPD medium so that the number of cells was 500-1000 per plate, and cultured in YPD medium.
  • the obtained fission yeast colonies were prepared by adding 1 mg of leucine to 20 mL of YPD medium and EMM medium (Edinburgh minimal medium medium) as a minimal medium (hereinafter simply referred to as “EMM + leu medium”). Replicated to two media and cultured at 30 ° C for 2 days.
  • the plasmid was also isolated by transforming yeast strains that were transformed into KP2101 and were able to grow on a minimal medium.
  • the plasmid was digested with the restriction enzyme Hind III and shortened, and further introduced into KP2101 for transformation.
  • a plasmid was isolated from a transformant yeast that had become capable of growing in a minimal medium, sequenced PCR was performed using the plasmid DNA as a saddle, and the nucleotide sequence was determined by sequencing. It turned out to be a fragment.
  • the introduced genes only the argl + gene (S PCC777.09c), which is a gene related to acetylol-tin aminotransferase, is related to auxotrophy.
  • only argl + was amplified by PCR and introduced into KP2101, allowing growth in a minimal medium (Fig. 2).
  • KP2101 has a mutation in the argl + gene (SPCC777.09c), which is a gene related to acetylol-tin aminotransferase.
  • SPCC777.09c a gene related to acetylol-tin aminotransferase.
  • KP2101 was deposited with the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (T305-8566 Ibaraki Pref. 1-1-1 Chuo No. 6) (International Receipt No. FERM ABP-10359).
  • argl antisense (Oligo 770) AAACTGCAGGATCCATTCAATGACCAAGTC (SEQ ID NO: 2)
  • KP2101 was confirmed to have a mutated argl + gene, growth was observed when cultured in EMM + leu + arg medium supplemented with 1 mg of arginine in 20 mL of EMM + leu medium. KP2101 did not grow on EMM + leu medium, whereas it grew on EMM + leu + arg medium, confirming that it was an arginine-requiring fission yeast. This confirmed that the argl + gene (SPCC777.09C) is a novel nutritional marker for fission yeast.
  • the KP2104 strain, KP2107 strain, KP2108 strain, KP2119 strain, KP2121 strain, KP2119 strain, KP2123 strain, KP2149 strain were arginine auxotrophic. It was confirmed that it was a fission yeast (Fig. 3). However, since these did not work with mutations in the argl + gene, it seemed that other arginine synthases had mutations.
  • KP2124 strain fission yeast (hereinafter simply referred to as “ It is called KP2124J. ) For the position of the mutation.
  • KP2124 was transformed with a genomic library, and a transformant yeast power plasmid that became capable of growing in a minimal medium was isolated.
  • the plasmid was shortened by digestion with the restriction enzyme Hind III, further introduced into KP2124, and transformed.
  • a transformant yeast power plasmid that was able to grow on the minimum medium was isolated, and the PCR was performed using the plasmid DNA as a cocoon, and the nucleotide sequence was determined by sequencing. As a result, a fragment containing multiple genes was obtained. That happened.
  • the asnl + gene (SPBC119.10), which is a gene related to asparagine biosynthetic enzyme, is related to auxotrophy. Again, only the asnl + gene was amplified by PCR and introduced into KP2124, allowing growth on a minimal medium.
  • KP2124 has a mutation in the asnl + gene (SPB C119.10), a gene related to asparagine biosynthetic enzyme.
  • KP2124 was deposited at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 6-1-1, Tsukuba, Ibaraki Prefecture, 1-16-1) (International Receipt No. FERM ABP-10358).
  • KP2124 obtained in Examples 1 and 2 it was confirmed that the asnl + gene of asparagine biosynthetic enzyme was mutated, so EMM + 1 mg of asparagine was added to 20 mL of EMM + leu medium. Growth was observed when cultured in + leu + asn medium (Fig. 4). KP2124 did not grow on EMM + leu medium, but grew on EMM + leu + asn medium, confirming that it was a fission yeast requiring asparagine. This confirmed that the asparagine biosynthetic enzyme-related gene identified this time was a novel nutritional marker for fission yeast.
  • Example 4 Construction of a vector containing argl + gene (SPCC777.09c) and confirmation thereof 1)
  • the BamH I restriction enzyme site of the argl + gene with both ends is amplified by PCR and introduced into the Bgl II restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene).
  • a Chillon vector was constructed.
  • Sadl-DsRED a marker emitting red fluorescence
  • the vector containing Sadl-Ds RED was introduced into KP2101, and it was confirmed whether the integration vector could function with KP2101.
  • Sadl-DsRED is a well-known Sadl-DsRED constructed by fusing a gene localized at a point on the nuclear membrane called Sadl with a marker emitting red fluorescence called DsRED.
  • the chromosome of KP2101 into which an integration vector containing Sadl-DsRED was introduced was confirmed by Southern blotting. As a result, the chromosome into which the integration vector was introduced was observed at a position having a higher molecular weight than the chromosome of the wild-type fission yeast because Sadl-DsRED was introduced.
  • KP2101 in which the introduction of the integration vector was confirmed was observed with a microscope.
  • a protein in which DsRED was fused to the introduced Sadl gene product was produced, and the dots on the nuclear membrane were stained red.
  • SacQ-DsRED was present on the nuclear membrane, the nucleus was further stained blue with Hoechst staining. The result is shown in FIG.
  • the budding yeast ARG8 gene was amplified by PCR using the budding yeast chromosomal DNA as a saddle, and introduced into the Nae I restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene). An integration vector was constructed.
  • the following primers were used to amplify the ARG8 gene by PCR.
  • ARG8 sense (Oligo 783) GCTCCAGCACCCCTTATTTC (SEQ ID NO: 5)
  • ARG8 antisense (Oligo 811) GGAATTCTTAAGCGTAAACCGCTTC (SEQ ID NO: 6) (Example 6) Construction of a fission yeast vector containing the asnl + gene (SPBC119.10) In the same manner as in Example 4, the BamHI restriction enzyme sites of the aS nl + gene were attached to both ends. The digested product was amplified by PCR and introduced into the Bgl II restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene) to construct an integration vector.
  • Example 7 Construction of a vector for fission yeast containing the budding yeast ASN1 gene (YPR145W)
  • the budding yeast ASN1 gene was amplified by PCR using budding yeast chromosomal DNA as a saddle type. Then, it was introduced into the Bgl ⁇ restriction enzyme site at the fl origin of BlueScript plasmid (Stratagene) to construct an integration vector.
  • ASN1 sense gCgCATTTATAgATACgCATATATAACCC SEQ ID NO: 7
  • ASN1 antisense CTATAAAAATATCTATAAgATTAATCC SEQ ID NO: 8 [0035]
  • Saccharomyces cerevisiae ASN2 gene was amplified by PCR using budding yeast chromosomal DNA as a saddle, and introduced into the Nae I restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene) to construct an integration vector.
  • ASN2 sense gggTgCCgCACggCgCgggTTTTTgC SEQ ID NO: 9
  • ASN2 antisense CCgTTTgTATCACCgCATTTCTTggTTC (SEQ ID NO: 10)
  • KP2 132 KP2132 strain fission yeast
  • a plasmid was also isolated from the transformed yeast strain that was transformed into KP2132 and became capable of growing in a minimal medium.
  • the plasmid was digested with the restriction enzyme Hind III and shortened, and further introduced into KP2132 for transformation.
  • a plasmid was isolated from a transformant yeast that had become capable of growing in a minimal medium, sequenced PCR was performed using the plasmid DNA as a saddle, and the nucleotide sequence was determined by sequencing. I found out that Among the introduced genes, it is related to auxotrophy The lys4 + gene (SPBC1105.02c), which is a gene related to lysine synthase.
  • KP2132 has a mutation in the lys4 + gene (SPBC1105.02c).
  • KP2132 was deposited at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 6-1-1, Tsukuba 1-1-1, Tsukuba, Ibaraki Prefecture) (International receipt number receipt number FERM ABP-10373).
  • KP2132 was confirmed to have a lys4 + gene mutation, growth was observed when cultured in EMM + leu + lys medium supplemented with 1 mg of lysine in 20 mL of EMM + leu medium (Fig. 7). ). KP2132 did not grow on EMM + leu medium, but grew on EMM + leu + lys medium, confirming that it was an arginine-requiring fission yeast. This confirmed that the lys4 + gene (SPBC1105.02c) is a novel nutritional marker for fission yeast.
  • the BlyH restriction enzyme site of the lys4 + gene was amplified by PCR, and the Bgl II restriction at the fl origin of the BlueScript plasmid (Stratagene) was amplified.
  • An integration vector was constructed by introducing into the enzyme site.
  • auxotrophic strain by mutation of the novel nutritional marker gene of the present invention proteins and the like can be synthesized by genetic recombination using an inexpensive minimal medium.
  • the gene to be analyzed with the nutrient marker gene for the gene disruption technique, the function of the disrupted gene can be confirmed.
  • auxotrophic fission yeasts can be used for industrial production because they are easy to store and grow. Copy on paper (Caution Electronic data is the original)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

It is intended to provide an auxotrophic fission yeast wherein a novel auxotrophic marker gene has been mutated in a fission yeast (Schizosaccharomyces pombe). It is also intended to provide a vector to be used together with this auxotrophic fission yeast. An arginine or asparagine-requiring fission yeast is acquired and subjected to gene analysis. This auxotrophic fission yeast is formed by a mutation in fission yeast arg1+ gene (SPCC777.09c), fission yeast asn1+ gene (SPBC119.10) or fission yeast lys4+ gene (SPBC1105.02c). Thus, a vector usable with it can be constructed.

Description

明 細 書  Specification
新規栄養要求性分裂酵母  New auxotrophic fission yeast
技術分野  Technical field
[0001] 本発明は、分裂酵母用最少培地で生育せず、アルギニン、ァスパラギン又はリジン を添加することで生育可能な栄養要求性分裂酵母に関する。  [0001] The present invention relates to an auxotrophic fission yeast that does not grow on a minimal medium for fission yeast and can grow by adding arginine, asparagine, or lysine.
[0002] 本出願は、参照によりここに援用されるところの、日本特許出願特願 2004— 3100 61号及び特願 2005— 005641号優先権を請求する。  This application claims the priority of Japanese Patent Application Nos. 2004-310061 and 2005-005641, which are incorporated herein by reference.
背景技術  Background art
[0003] 分裂酵母 (Schizosaccharomvces pombe)は、円筒形の形をした単細胞真核生物で、 微生物の特徴としての大量培養が容易であり、世代間時間も短い。また、遺伝学、分 子生物学、細胞生物学分野での応用がきわめて容易な単細胞生物として知られて いる(非特許文献 1)。分裂酵母は、これまでゲノム解読されたどの生物よりもゲノムサ ィズが小さぐ保有する遺伝子数も最小であり、ヒト病因遺伝子を 100以上含むヒトに 最も近い単細胞モデル生物である。このような利点から、分裂酵母は古くから網羅的 な遺伝子解析実験に非常に適しており、医学的にも有用なデータが数多く得られて いる。  [0003] Fission yeast (Schizosaccharomvces pombe) is a unicellular eukaryote in the shape of a cylinder, easy to cultivate in large quantities as a characteristic of microorganisms, and has a short intergenerational time. It is also known as a unicellular organism that is extremely easy to apply in the fields of genetics, molecular biology, and cell biology (Non-patent Document 1). Fission yeast is the single-cell model organism that is closest to humans and contains more than 100 human pathogenic genes, with the smallest number of genes possessed by the genome size of any organism that has been genome-decoded. Because of these advantages, fission yeast has long been very suitable for comprehensive gene analysis experiments, and many medically useful data have been obtained.
[0004] 遺伝子組換技術において、ジエネティシン耐性マーカーをクローユングするための 選別基準として用いることができる(非特許文献 2)。し力しながら、このようなマーカー による選別は、培地に抗生物質を添加する必要があり、経済的でない。  [0004] In genetic recombination technology, it can be used as a selection criterion for cloning a dieneticin resistance marker (Non-patent Document 2). However, selection with such a marker is not economical because an antibiotic must be added to the medium.
[0005] 一方、栄養マーカーを指標とし、酵母等の細胞が生育するための最少培地では生 育しない栄養要求性酵母を用いると、最少培地により選別することができるので安価 である。この、栄養要求性酵母を用いて選別するためには、酵母の栄養マーカーが 確認されていることが必要である。し力しながら、分裂酵母は通常用いられる出芽酵 傲 (Saccharomvces cerevisiae)に比べ、栄養マーカーが少なぐ研究や工業的生産等 の実用化において限界があった。遺伝子導入に用いられる分裂酵母の栄養マーカ 一として leul+及び ura4+の遺伝子が公知である(非特許文献 3、非特許文献 4)。その 他にも培地にアデニンある!/ヽはヒスチジンを加える栄養マーカーは知られて 、るが、 アデニンは一倍体と二倍体の区別に ade6+が用いられるため、またヒスチジンは his2+ が酵母の性の区別に用いられるため、遺伝子導入に使用するには限界があった。ま た、 leul+以外の遺伝子に起因する分裂酵母栄養要求性株の多くは、栄養豊富培地 にお 、ても野生株に比べ生育速度が遅 、ことが実用化にぉ 、て支障となって 、た。 [0005] On the other hand, when an auxotrophic yeast that does not grow on a minimal medium for growing cells such as yeast using a nutrient marker as an index, it can be selected with the minimal medium and is therefore inexpensive. In order to select using this auxotrophic yeast, it is necessary to confirm the yeast nutrition marker. However, fission yeast has limitations in research and industrial production with fewer nutritional markers compared to commonly used budding fermented rice (Saccharomvces cerevisiae). The leul + and ura4 + genes are known as one of the nutritional markers for fission yeast used for gene transfer (Non-patent Document 3, Non-patent Document 4). In addition, there is adenine in the culture medium! / ヽ is known as a nutritional marker to add histidine, Since ade6 + is used for adenine to distinguish between haploid and diploid, and histidine is used for sex differentiation in yeast, there are limits to its use for gene transfer. In addition, many of the fission yeast auxotrophic strains caused by genes other than leul + have a slow growth rate compared to wild strains even in nutrient-rich media, which hinders practical use. It was.
[0006] 非特千文献 1 : Nasim A. et ai. eds., Molecular biology of the nssion yeast, Academic Press, 1989 [0006] Non-patent literature 1: Nasim A. et ai. Eds., Molecular biology of the nssion yeast, Academic Press, 1989
非特許文献 2 : J Bahler, et al., Yeast, Jul 1998; 14(10): 943-51.  Non-Patent Document 2: J Bahler, et al., Yeast, Jul 1998; 14 (10): 943-51.
非特許文献 3 : Curr Genet. 1988 Oct;14(4):375- 9.  Non-Patent Document 3: Curr Genet. 1988 Oct; 14 (4): 375-9.
非特許文献 4 : Curr Genet. 1987;12(7):527-34.  Non-Patent Document 4: Curr Genet. 1987; 12 (7): 527-34.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の課題は、分裂酵母 (Schizosaccharomyces pombe) (以下、単に「S. pombej という場合がある。 )において、新規栄養マーカーを持つ分裂酵母を提供することを 課題とする。さら〖こは、該変異分裂酵母と共に使用するベクターを提供することを課 題とする。 [0007] An object of the present invention is to provide a fission yeast having a novel nutritional marker in fission yeast (Schizosaccharomyces pombe) (hereinafter sometimes simply referred to as “S. pombej”). The problem is to provide a vector for use with the mutant fission yeast.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、栄養豊富培地では野生株と同程度に増殖するが、最少培地で増 殖できない分裂酵母変異体を 3種類単離し、原因遺伝子を決定した。これにより各々 アルギニン要求性、ァスパラギン要求性又はリジン要求性の 3種類の新規栄養マー カーを持つ分裂酵母が発見された。又これらの栄養要求性分裂酵母に導入可能な ベクターを構築することができ、本発明を完成した。  [0008] The present inventors isolated three types of fission yeast mutants that grew on a nutrient-rich medium to the same extent as wild strains but could not grow on a minimal medium, and determined the causative gene. As a result, fission yeast having three types of novel nutrient markers, arginine requirement, asparagine requirement, and lysine requirement, was discovered. In addition, vectors that can be introduced into these auxotrophic fission yeasts could be constructed, and the present invention was completed.
[0009] すなわち、本発明は以下のとおりである。  That is, the present invention is as follows.
1.分裂酵母の新規栄養マーカー遺伝子が変異した栄養要求性分裂酵母。  1. An auxotrophic fission yeast in which a novel nutritional marker gene of fission yeast is mutated.
2.オル-チン及び Z又はアルギニン生合成関連遺伝子が変異した栄養要求性分 裂酵母。  2. An auxotrophic fission yeast mutated in genes related to ortin and Z or arginine biosynthesis.
3. Genbank受入番号: AL031532に記載する塩基配列によりコードされるァセチルォ ル-チンアミノトランスフェラーゼ遺伝子(argl+遺伝子, SPCC777.09C)が変異したァ ルギニン要求性分裂酵母。 4.ァスパラギン生合成関連遺伝子が変異した栄養要求性分裂酵母。 3. Genbank accession number: AL031532 Asechiruo encoded by the nucleotide sequence set forth in Le - routine aminotransferase gene (arg l + gene, SPCC777.09C) is § arginine auxotrophic fission yeast mutant. 4. An auxotrophic fission yeast mutated in genes related to asparagine biosynthesis.
5. Genbank受入番号: AL022117に記載する塩基配列によりコードされるァスパラギ ン合成遺伝子 (asnl+遺伝子, SPBC119.10)が変異したァスパラギン要求性分裂酵母  5. Genbank accession number: Asparagine-requiring fission yeast mutated in the asparagine synthesis gene (asnl + gene, SPBC119.10) encoded by the nucleotide sequence described in AL022117
6. リジン生合成関連遺伝子が変異した栄養要求性分裂酵母。 6. An auxotrophic fission yeast mutated in a gene related to lysine biosynthesis.
7. Genbank受入番号: AL096851に記載する塩基配列によりコードされるリジン合成 遺伝子 (lys4+遺伝子, SPBC1105.02c)が変異したリジン要求性分裂酵母。  7. A lysine-requiring fission yeast mutated in the lysine synthesis gene (lys4 + gene, SPBC1105.02c) encoded by the nucleotide sequence described in Genbank accession number: AL096851.
8.分裂酵母の新規栄養マーカー遺伝子を含む分裂酵母に導入可能なベクター。 8. A vector that can be introduced into fission yeast containing a novel nutritional marker gene for fission yeast.
9.分裂酵母 argl+遺伝子(SPCC777.09c)を含み、前項 1〜3のいずれか一に記載の 分裂酵母に導入可能なベクター。 9. A vector comprising the fission yeast argl + gene (SPCC777.09c) and capable of being introduced into fission yeast according to any one of items 1 to 3 above.
10.出芽酵母 ARG8遺伝子 (YOL140W)を含み、前項 1〜3のいずれか一に記載の 分裂酵母に導入可能なベクター。  10. A vector comprising a budding yeast ARG8 gene (YOL140W) and capable of being introduced into fission yeast according to any one of 1 to 3 above.
11.分裂酵母 asnl+遺伝子(SPBC119.10)を含み、前項 1、 4又は 5のいずれか一に 記載のァスパラギン要求性分裂酵母に導入可能なベクター。  11. A vector comprising a fission yeast asnl + gene (SPBC119.10) and capable of being introduced into the asparagine-requiring fission yeast according to any one of items 1, 4 and 5.
12.出芽酵母 ASN1遺伝子(YPR145W)又は ASN2遺伝子(YGR124W)を含み、前項 1、 4又は 5のいずれか一に記載の分裂酵母に導入可能なベクター。  12. A vector comprising a budding yeast ASN1 gene (YPR145W) or an ASN2 gene (YGR124W) and capable of being introduced into fission yeast according to any one of items 1, 4 and 5.
13.分裂酵母 lys4+遺伝子(SPBC1105.02c)を含み、前項 1、 6又は 7のいずれか一に 記載のリジン要求性分裂酵母に導入可能なベクター。  13. A vector comprising a lys4 + gene (SPBC1105.02c) and capable of being introduced into a lysine-requiring fission yeast according to any one of 1, 6, or 7 above.
14.前項 1〜3のいずれか一に記載の分裂酵母に前項 9又は 10に記載するベクター を組み込んでなる形質転換体。  14. A transformant obtained by incorporating the vector according to item 9 or 10 into the fission yeast according to any one of items 1 to 3.
15.前項 1、 4又は 5のいずれか一に記載の分裂酵母に前項 11又は 12のベクターを 組み込んでなる形質転換体。  15. A transformant comprising the fission yeast according to any one of items 1, 4 and 5 incorporated with the vector of item 11 or 12 above.
16.前項 1、 6又は 7のいずれか一に記載の分裂酵母に前項 13のベクターを組み込 んでなる形質転換体。  16. A transformant comprising the fission yeast according to any one of items 1, 6 and 7 incorporated with the vector of item 13 above.
17.前項 14〜16のいずれか一に記載の形質転換体を培養し、発現された異種タン パク質を採取することを特徴とするタンパク質の産生方法。  17. A method for producing a protein, comprising culturing the transformant according to any one of 14 to 16 above and collecting the expressed heterologous protein.
発明の効果 The invention's effect
本発明のアルギニン要求性分裂酵母、ァスパラギン要求性分裂酵母及びリジン要 求性分裂酵母は、最少培地では生育しないが、アルギニン、ァスパラギン又はリジン の添カ卩により、野生型分裂酵母同様に生育可能である。また、本発明によりマーカー 遺伝子として見つかった argl+、 asnl+及び lys4+iiいずれ 2キロベースに満たない比較 的小さ!、遺伝子であり、通常サブクローニングで頻繁に使われる制限酵素である Bam H I、 Pst Iなどのサイトがなぐマーカー遺伝子として非常に適したものである。つまり 、本発明の栄養要求性分裂酵母及びマーカー遺伝子は、遺伝子組換技術によるタ ンパク質産生、遺伝子解析等において、容易に使用できる点でも優れている。 Arginine-requiring fission yeast, asparagine-requiring fission yeast and lysine required for the present invention An auxotrophic yeast does not grow on a minimal medium, but can grow like wild-type fission yeast by adding arginine, asparagine or lysine. In addition, argl +, asnl + and lys4 + ii, which are found as marker genes according to the present invention, are comparatively small, less than 2 kilobases !, Bam HI, Pst I and the like, which are genes and restriction enzymes frequently used in subcloning. This is a very suitable marker gene for the site. That is, the auxotrophic fission yeast and marker gene of the present invention are excellent in that they can be easily used in protein production, gene analysis, and the like by gene recombination techniques.
図面の簡単な説明 Brief Description of Drawings
[図 1]13種類の栄養豊富培地では野生株と同程度に増殖するが、最少培地で増殖 できない分裂酵母変異株の表現型を示す図である。(実施例 1) [Fig. 1] A diagram showing the phenotype of a mutant strain of fission yeast that grows in the same manner as wild-type strains on 13 nutrient-rich media but cannot grow on minimal media. (Example 1)
[図 2]KP2101の表現型を示す図である。(実施例 2) FIG. 2 is a diagram showing the phenotype of KP2101. (Example 2)
[図 3]KP2101を除く変異株の表現型を示す図である。(実施例 2) FIG. 3 shows the phenotype of mutant strains excluding KP2101. (Example 2)
[図 4]KP2124の表現型を示す図である。(実施例 3) FIG. 4 is a diagram showing the phenotype of KP2124. (Example 3)
[図 5]インテグレーションベクターの構築の図である。(実施例 4) FIG. 5 is a diagram of construction of an integration vector. (Example 4)
[図 6]KP2101に Sadl-DsREDを含むベクターを導入したことを確認した図である。(実 施例 4) FIG. 6 shows that a vector containing Sadl-DsRED has been introduced into KP2101. (Example 4)
[図 7]KP2132の表現型を示す図である。(実施例 9)  FIG. 7 shows the phenotype of KP2132. (Example 9)
符号の説明 Explanation of symbols
C 分裂酵母 野生型 HM123株  C fission yeast wild type HM123 strain
1 分裂酵母 KP2101株  1 Fission yeast strain KP2101
2 分裂酵母 KP2102株  2 Fission yeast strain KP2102
3 分裂酵母 KP2104株  3 Fission yeast strain KP2104
4 分裂酵母 KP2107株  4 Fission yeast strain KP2107
5 分裂酵母 KP2108株  5 Fission yeast strain KP2108
6 分裂酵母 KP2111株  6 Fission yeast strain KP2111
7 分裂酵母 KP2114株  7 Fission yeast strain KP2114
8 分裂酵母 KP2119株  8 Fission yeast strain KP2119
9 分裂酵母 KP2121株 10 分裂酵母 KP2123株 9 Fission yeast strain KP2121 10 Fission yeast strain KP2123
11 分裂酵母 KP2124株  11 Fission yeast strain KP2124
12 分裂酵母 KP2132株  12 Fission yeast strain KP2132
13 分裂酵母 KP2149株  13 Fission yeast strain KP2149
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] (栄養要求性分裂酵母)  [0013] (Netrotrophic fission yeast)
本発明の「新規栄養マーカー遺伝子が変異した栄養要求性分裂酵母」とは、分裂 酵母において従来公知の栄養マーカー遺伝子とは異なる栄養マーカー遺伝子の変 異により、最少培地では生育しない分裂酵母をいう。従来公知の栄養要求性分裂酵 母の例として、 leul遺伝子が変異したロイシン要求性の分裂酵母があり、該分裂酵母 は最少培地では生育しな 、が、最少培地にロイシンを添加することで生育することが できる。最少培地として、公知の EMM培地(Edinburgh minimal medium培地: Gutz, H., heslot, Η·, Leupold, U., ana Loprieno, N. (1974) in Handbook of Genetics (King , R. C, ed), Vol. 1 , pp. 395-446, Plenum, New York)を例示することができる。  The “auxotrophic fission yeast in which a novel nutritional marker gene is mutated” of the present invention refers to a fission yeast that does not grow on a minimal medium due to a variation in a nutritional marker gene that is different from a conventionally known nutritional marker gene. An example of a conventionally known auxotrophic fission fermentation mother is a leucine-requiring fission yeast in which the leul gene is mutated. The fission yeast does not grow on a minimal medium, but grows by adding leucine to the minimal medium. can do. As the minimal medium, known EMM medium (Edinburgh minimal medium medium: Gutz, H., heslot, Η, Leupold, U., ana Loprieno, N. (1974) in Handbook of Genetics (King, R. C, ed) , Vol. 1, pp. 395-446, Plenum, New York).
[0014] 本発明の分裂酵母の「新規栄養マーカー遺伝子」とは、分裂酵母において従来公 知の栄養マーカー遺伝子、例えば leul+, ura4+, his2+, his3+, his7+, adel+, ade6+の各 遺伝子を除く分裂酵母の栄養マーカー遺伝子を ヽぅ。 [0014] The "new nutritional marker gene" of the fission yeast of the present invention is a conventionally known nutritional marker gene in fission yeast, such as leul +, ura4 + , his2 + , his3 + , his7 + , adel +, ade6 + genes栄 養 Nutrition marker gene of fission yeast except ヽ ぅ.
具体的にはアルギニン栄養マーカーに関連する argl+遺伝子(SPCC777.09C)、ァス ノ ラギン栄養マーカーに関連する asnl+遺伝子 (SPBC119.10)又はリジン栄養マーカ 一に関連する lys4+遺伝子 (SPBC1105.02C)の各遺伝子をいう。本発明の新規栄養マ 一力一である argl+遺伝子(SPCC777.09c)の塩基配列は、 Genbank受入番号: AL031 532として、 asnl+遺伝子(SPBC119.10)の塩基配列は、 Genbank受入番号: AL022117 として、 lys4+遺伝子(SPBCl 105.02c)の塩基配列は Genbank受入番号: AL096851とし て既に公知である。  Specifically, the argl + gene (SPCC777.09C) related to the arginine nutrition marker, the asnl + gene (SPBC119.10) related to the assargine nutrition marker or the lys4 + gene (SPBC1105.02C) related to the lysine nutrition marker Each gene is said. The base sequence of the argl + gene (SPCC777.09c), which is the new nutritional force of the present invention, is Genbank accession number: AL031 532, the base sequence of the asnl + gene (SPBC119.10) is Genbank accession number: AL022117, The base sequence of the lys4 + gene (SPBCl 105.02c) is already known as Genbank accession number: AL096851.
[0015] argl+遺伝子、 asnl+遺伝子又は lys4+遺伝子の変異株は、突然変異株を取得する方 法により、又は既存の遺伝子を人工的に組替えることにより取得することができる。好 ましくは、突然変異株を取得する方法により得ることができ、例えば栄養豊富培地で 野生株と同様に生育し、最少培地では生育できない変異株をスクリーニングすること により得ることができる。変異株は、公知の方法、例えば Moreno S., Klar and Nurse P ., (1991) Methods Enzymol. 194, p795- 823又は The Journal of Biological Chemistry, vol. 275, No. 45, p35600_35606 (2000)等に記載する方法により得ることができる。 [0015] A mutant strain of argl + gene, asnl + gene or lys4 + gene can be obtained by a method of obtaining a mutant strain or by artificially recombining an existing gene. Preferably, it can be obtained by a method of obtaining a mutant strain. For example, a mutant strain that grows in the same manner as a wild strain on a nutrient-rich medium but cannot grow on a minimal medium is screened. Can be obtained. Mutant strains are known methods such as Moreno S., Klar and Nurse P., (1991) Methods Enzymol. 194, p795-823 or The Journal of Biological Chemistry, vol. 275, No. 45, p35600_35606 (2000). Can be obtained by the method described in 1. above.
[0016] 本発明に利用できる argl+遺伝子の変異は、 argl+遺伝子がコードするァセチルオル 二チンアミノトランスフェラーゼ酵素活性が失われるような変異であれば良 、が、イン テグレーシヨンベクターを導入するためには点突然変異力 プラスミドベクターを導入 するためには完全欠失変異が好ま U、。 [0016] The argl + gene mutation that can be used in the present invention may be a mutation that loses the acetylylditin aminotransferase enzyme activity encoded by the argl + gene. However, in order to introduce an integration vector, Point mutation ability Complete deletion mutations are preferred for introducing plasmid vectors.
[0017] 本発明に利用できる asnl+遺伝子の変異は、 asnl+遺伝子がコードするァスパラギン 合成酵素活性が失われるような変異であれば良 、が、インテグレーションベクターを 導入するためには点突然変異が、プラスミドベクターを導入するためには完全欠失 変異が好ましい。 [0017] The mutation of the asnl + gene that can be used in the present invention may be a mutation that loses the asparagine synthase activity encoded by the asnl + gene. However, in order to introduce an integration vector, a point mutation may be used. A complete deletion mutation is preferred for introducing the vector.
[0018] 本発明に利用できる lys4+遺伝子の変異は、 lys4+遺伝子がコードするリジン合成酵 素活性が失われるような変異であれば良 、が、インテグレーションベクターを導入す るためには点突然変異が、プラスミドベクターを導入するためには完全欠失変異が好 ましい。  [0018] The mutation of the lys4 + gene that can be used in the present invention may be a mutation that loses the lysine synthase activity encoded by the lys4 + gene. However, in order to introduce an integration vector, a point mutation is required. In order to introduce a plasmid vector, a complete deletion mutation is preferred.
[0019] (栄養要求性分裂酵母に導入可能なベクター)  [0019] (Vector that can be introduced into auxotrophic fission yeast)
本発明にお 、て、上記の新規栄養マーカー遺伝子が変異した栄養要求性分裂酵 母に導入可能な分裂酵母ベクターを提供することができる。例えば、正常な argl+遺 伝子を含むベクターを、 argl+遺伝子が変異したアルギニン要求性分裂酵母に導入 すると、アルギニンを含まな 、最少培地でも生育可能な形質転換体を得ることができ る。本発明の新規栄養マーカー遺伝子を含むベクターを構築し、本発明の栄養要求 性分裂酵母に導入することにより、最少培地で生育が可能な形質転換体を得ること ができる。本発明において、栄養要求性分裂酵母に導入可能なベクターとは、本発 明の新規栄養マーカー遺伝子を含むベクターをいう。  In the present invention, it is possible to provide a fission yeast vector that can be introduced into an auxotrophic fission yeast in which the above-mentioned novel nutritional marker gene is mutated. For example, when a vector containing a normal argl + gene is introduced into an arginine-requiring fission yeast in which the argl + gene is mutated, a transformant capable of growing on a minimal medium without arginine can be obtained. By constructing a vector containing the novel vegetative marker gene of the present invention and introducing it into the auxotrophic fission yeast of the present invention, a transformant capable of growing in a minimal medium can be obtained. In the present invention, the vector that can be introduced into the auxotrophic fission yeast refers to a vector containing the novel nutritional marker gene of the present invention.
また、例えば出芽酵母の栄養マーカー遺伝子を含むベクターを栄養要求性分裂酵 母に導入すると、最少培地でも生育が可能な形質転換体を得ることができる。そこで 、本発明の栄養要求性分裂酵母に導入可能なベクターとして、さらに出芽酵母由来 の栄養マーカー遺伝子を含むベクターも含めることができる。 [0020] 本発明の栄養要求性分裂酵母用ベクターに導入可能な栄養マーカー遺伝子とし て、分裂酵母 argl+遺伝子(SPCC777.09c)、分裂酵母 asnl+遺伝子(SPBC119.10)、 分裂酵母 lys4+遺伝子(SPBC1105.02c)を挙げることができる。その他、アルギニン要 求性分裂酵母用のベクターに導入可能な栄養マーカー遺伝子として、出芽酵母遺 伝子に由来する ARG8遺伝子(YOL140W、 Genbank受入番号: Z74882)を、ァスパラ ギン要求性分裂酵母用のベクターに導入可能な栄養マーカー遺伝子として、出芽酵 母遺伝子に由来する ASN1遺伝子(YPR145W、 Genbank受入番号: Z48675)ある!/ヽは ASN2遺伝子(YGR124W、 Genbank受入番号: Z72909)を挙げることができる。また、リ ジン要求性分裂酵母用のベクターに導入可能な栄養マーカー遺伝子として、出芽酵 母遺伝子に由来する LYS21遺伝子(YDL131W、 Genbank受入番号: Z74179)を挙げ ることがでさる。 For example, when a vector containing a budding yeast nutrient marker gene is introduced into an auxotrophic fission mother, a transformant capable of growing on a minimal medium can be obtained. Therefore, vectors that can be introduced into the auxotrophic fission yeast of the present invention can further include vectors containing a budding yeast-derived nutrient marker gene. [0020] Nutritional marker genes that can be introduced into the auxotrophic fission yeast vector of the present invention include fission yeast argl + gene (SPCC777.09c), fission yeast asnl + gene (SPBC119.10), fission yeast lys4 + gene (SPBC1105. 02c). In addition, the ARG8 gene (YOL140W, Genbank accession number: Z74882) derived from the budding yeast gene as a nutritional marker gene that can be introduced into a vector for arginine-requiring fission yeast, is a vector for asparagine-requiring fission yeast. There is an ASN1 gene (YPR145W, Genbank accession number: Z48675) derived from the budding fermentation mother gene as a nutritional marker gene that can be introduced into ASN2 gene (YGR124W, Genbank accession number: Z72909). Furthermore, as a nutritional marker gene that can be introduced into a vector for lysine-requiring fission yeast, the LYS21 gene (YDL131W, Genbank accession number: Z74179) derived from the budding fermentation mother gene can be mentioned.
[0021] (ベクターの調製方法)  [0021] (Vector preparation method)
栄養要求性分裂酵母に導入可能なベクターは、例えば BlueScript (Stratagene社製 )などの MCS (multi cloning site)を持つ公知のベクターの MCS、複製開始点、あるい は抗生物質マーカーなど、ベクターにとって必須の配列以外の場所に、上述の各遺 伝子を導入することにより構築することができる。各遺伝子の導入は PCRなどの公知 手法により各遺伝子を増幅させ、通常の操作により行うことができる。  Vectors that can be introduced into auxotrophic fission yeast are essential for vectors such as MCS of known vectors with MCS (multi cloning site) such as BlueScript (Stratagene), replication origin, or antibiotic marker. It can be constructed by introducing each of the above-mentioned genes in a place other than the above sequence. The introduction of each gene can be carried out by normal operations after amplifying each gene by a known technique such as PCR.
例えば、プラスミドベクターを構築するためには、分裂酵母内で自律的に複製可能 なように自己複製配列(autonomic replicative sequence:ARS)を導入すればよい。ィ ンテグレーシヨンべクタ一は分裂酵母の染色体に組み込まれ、分裂酵母の増殖と共 に増殖するので、 ARSを導入する必要がない。  For example, in order to construct a plasmid vector, an autonomous replicative sequence (ARS) may be introduced so that it can replicate autonomously in fission yeast. The integration vector is integrated into the fission yeast chromosome and grows with the fission yeast, so there is no need to introduce ARS.
また、上記ベクターは、大腸菌の自己複製配列 (ori)と、酵母における自己複製配列 (ARS)を存在させることにより、シャトルベクターとしての使用も可能である。  The above vector can also be used as a shuttle vector by allowing the self-replicating sequence (ori) of Escherichia coli and the self-replicating sequence (ARS) of yeast to exist.
[0022] 上記栄養マーカー遺伝子を含むベクターに、例えば合成したいタンパク質の情報 を組み込み、本発明の栄養要求性分裂酵母内で増殖させることにより、最少培地に ぉ 、て所望のタンパク質を合成することができる。  [0022] For example, by incorporating information on a protein to be synthesized into a vector containing the above-described nutritional marker gene and allowing it to grow in the auxotrophic fission yeast of the present invention, a desired protein can be synthesized in a minimal medium. it can.
実施例  Example
[0023] 以下に、本発明の理解をより確実にするために、実施例を示して説明するが、本発 明はこれら実施例に何ら限定されるものではな 、ことは 、うまでもな!/、。 [0023] In the following, in order to make the understanding of the present invention more reliable, examples will be shown and described. Ming is not limited to these examples at all.
[0024] (実施例 1)栄養要求性分裂酵母の構築  [Example 1] Construction of auxotrophic fission yeast
分裂酵母の野生株(一倍体ロイシン要求性酵母 HM123 (h— leul) )を 300 μ Μの-ト ロソグァ-ジンを含む栄養豊富な YPD培地(1%酵母抽出液 (yeast extract), 2%ぺプト ン, 2%グルコース)で 30分間処理し、処理した分裂酵母を細胞数が 1プレートあたり 5 00-1000個となるように YPD培地で希釈し、 YPD培地で培養した。得られた分裂酵母 のコロニーを YPD培地及び最少培地である EMM培地 (Edinburgh minimal medium培 地) 20 mLにロイシンを 1 mg添カ卩した培地(以下、単に「EMM+leu培地」という。)の 2 種の培地にレプリカし、 30°Cで 2日間培養した。 YPD培地では生育する力 EMM + le u培地では生育しない変異体を 23株取得した。これら力 アデニン、ゥラシル、ヒスチ ジン要求性株を除外するために、これらを培地に加えてその生育を検討したところ、 そのうちの 6株はヒスチジンを培地上に加えると生育することからヒスチジン要求性株 であることがわかった。次に、相互に掛け合わせる random spore analysisにより、遺伝 子座位の異同を決定した。便宜上、変異株は通し番号 KP (Kobe pombeの略)で管理 しているが、解析の結果、 KP2104と KP2113と KP2117は同じ遺伝子座位に変異があ ることが判明した。即ち、残り 17株のうち、接合しな力つた 2株を除く計 15株は、以下 の 13種類の異なる遺伝子座位グループに分類された(KP2101, KP2102, KP2104, K P2107, KP2108, KP2111, KP2114, KP2119, KP2121, KP2123, KP2124, KP2132及 び KP2149)。  A fission yeast wild strain (haploid leucine-requiring yeast HM123 (h- leul)) is added to nutrient-rich YPD medium (1% yeast extract, 2% Peptone, 2% glucose) for 30 minutes, and the treated fission yeast was diluted with YPD medium so that the number of cells was 500-1000 per plate, and cultured in YPD medium. The obtained fission yeast colonies were prepared by adding 1 mg of leucine to 20 mL of YPD medium and EMM medium (Edinburgh minimal medium medium) as a minimal medium (hereinafter simply referred to as “EMM + leu medium”). Replicated to two media and cultured at 30 ° C for 2 days. Ability to grow on YPD medium We obtained 23 strains that did not grow on EMM + leu medium. In order to exclude these adenine, uracil, and histidine-requiring strains, these were added to the medium and examined for their growth. Six of these strains grew when histidine was added to the medium. I found out that Next, genetic loci were determined by random spore analysis. For convenience, mutant strains are managed by serial number KP (abbreviation of Kobe pombe), but analysis revealed that KP2104, KP2113, and KP2117 have mutations at the same gene locus. In other words, out of the remaining 17 strains, a total of 15 strains, excluding 2 strains that joined together, were classified into the following 13 different loci groups (KP2101, KP2102, KP2104, KP2107, KP2108, KP2111, KP2114). , KP2119, KP2121, KP2123, KP2124, KP2132 and KP2149).
[0025] (実施例 2)アルギニン要求性分裂酵母 [Example 2] Arginine-requiring fission yeast
1)変異の位置の確認  1) Confirmation of mutation position
実施例 1で得られた 13種類の変異株のうち、 KP2101株分裂酵母 (以下、単に「ΚΡ2 101」という。 )について変異の位置を確認した。  Among the 13 mutant strains obtained in Example 1, the position of the mutation was confirmed for KP2101 strain fission yeast (hereinafter simply referred to as “ΚΡ2101”).
KP2101にゲノムライブラリーを形質転換して最少培地で生育可能になった形質転 換体酵母力もプラスミドを単離した。該プラスミドを制限酵素 Hind IIIで切断して短縮 し、さらに KP2101に導入し、形質転換させた。その後また最少培地で生育可能にな つた形質転換体酵母からプラスミドを単離し、そのプラスミド DNAを铸型としてシーケ ンス PCRを行 、シーケンスにより塩基配列を決定したところ、複数の遺伝子が含まれ た断片であることがわかった。該導入された複数の遺伝子中、栄養要求性に関連す るのはァセチルオル-チンアミノトランスフェラーゼ関連遺伝子である argl+遺伝子(S PCC777.09c)のみであった。再度、 PCRにより argl+のみを増幅し、 KP2101に導入し たところ最少培地で生育可能となった(図 2)。 The plasmid was also isolated by transforming yeast strains that were transformed into KP2101 and were able to grow on a minimal medium. The plasmid was digested with the restriction enzyme Hind III and shortened, and further introduced into KP2101 for transformation. Subsequently, a plasmid was isolated from a transformant yeast that had become capable of growing in a minimal medium, sequenced PCR was performed using the plasmid DNA as a saddle, and the nucleotide sequence was determined by sequencing. It turned out to be a fragment. Among the introduced genes, only the argl + gene (S PCC777.09c), which is a gene related to acetylol-tin aminotransferase, is related to auxotrophy. Again, only argl + was amplified by PCR and introduced into KP2101, allowing growth in a minimal medium (Fig. 2).
その結果、 KP2101はァセチルオル-チンアミノトランスフェラーゼ関連遺伝子であ る argl+遺伝子(SPCC777.09c)に変異のあることが確認された。 KP2101は、独立行政 法人産業技術総合研究所特許生物寄託センター ( T 305-8566茨城県つくば巿東 1 -1-1中央第 6)に寄託した(国際受領番号 FERM ABP-10359)。  As a result, it was confirmed that KP2101 has a mutation in the argl + gene (SPCC777.09c), which is a gene related to acetylol-tin aminotransferase. KP2101 was deposited with the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (T305-8566 Ibaraki Pref. 1-1-1 Chuo No. 6) (International Receipt No. FERM ABP-10359).
[0026] 上記 argl+遺伝子を PCRにより増幅するために以下のプライマーを用いた。 配列番号 1) [0026] The following primers were used to amplify the argl + gene by PCR. (SEQ ID NO: 1)
argl antisense (オリゴ 770) AAACTGCAGGATCCATTCAATGACCAAGTC (配列 番号 2)  argl antisense (Oligo 770) AAACTGCAGGATCCATTCAATGACCAAGTC (SEQ ID NO: 2)
[0027] 2)アルギニン要求性の確認  [0027] 2) Confirmation of arginine requirement
KP2101は argl+遺伝子が変異していることが確認されたので、 EMM+leu培地 20 m Lにアルギニン 1 mgを添カ卩した EMM + leu + arg培地で培養したところ生育が認められ た。 KP2101は EMM + leu培地では生育しなかったのに対し、 EMM + leu + arg培地で は生育したことにより、アルギニン要求性分裂酵母であることが確認された。これによ り、 argl+遺伝子 (SPCC777.09C)は分裂酵母の新規栄養マーカーであることが確認さ れた。  Since KP2101 was confirmed to have a mutated argl + gene, growth was observed when cultured in EMM + leu + arg medium supplemented with 1 mg of arginine in 20 mL of EMM + leu medium. KP2101 did not grow on EMM + leu medium, whereas it grew on EMM + leu + arg medium, confirming that it was an arginine-requiring fission yeast. This confirmed that the argl + gene (SPCC777.09C) is a novel nutritional marker for fission yeast.
同様に、実施例 1で得られた栄養要求性分裂酵母をストリークにより確認した結果、 KP2104株、 KP2107株、 KP2108株、 KP2119株、 KP2121株、 KP2119株、 KP2123株、 K P2149株がアルギニン要求性分裂酵母であることを確認した(図 3)。しかし、これらは argl+遺伝子の変異ではな力つたので、他のアルギニン合成酵素に変異があると思わ れた。  Similarly, as a result of confirming the auxotrophic fission yeast obtained in Example 1 by streak, the KP2104 strain, KP2107 strain, KP2108 strain, KP2119 strain, KP2121 strain, KP2119 strain, KP2123 strain, KP2149 strain were arginine auxotrophic. It was confirmed that it was a fission yeast (Fig. 3). However, since these did not work with mutations in the argl + gene, it seemed that other arginine synthases had mutations.
[0028] (実施例 3)ァスパラギン要求性分裂酵母  [0028] (Example 3) Asparagine-requiring fission yeast
1)変異の位置の確認  1) Confirmation of mutation position
実施例 1で得られた栄養要求性分裂酵母のうち、 KP2124株分裂酵母 (以下、単に「 KP2124Jという。 )について変異の位置を確認した。 Of the auxotrophic fission yeast obtained in Example 1, KP2124 strain fission yeast (hereinafter simply referred to as “ It is called KP2124J. ) For the position of the mutation.
実施例 2の変異の位置の確認と同様に、 KP2124にゲノムライブラリーを形質転換し て最少培地で生育可能になった形質転換体酵母力 プラスミドを単離した。該プラス ミドを制限酵素 Hind IIIで切断して短縮し、さらに KP2124に導入し、形質転換させた。 その後また最少培地で生育可能になった形質転換体酵母力 プラスミドを単離し、そ のプラスミド DNAを铸型としてシーケンス PCRを行いシーケンスにより塩基配列を決定 したところ、複数の遺伝子が含まれた断片であることがゎカゝつた。該導入された複数 の遺伝子中、栄養要求性に関連するのはァスパラギン生合成酵素関連遺伝子であ る asnl+遺伝子(SPBC119.10)のみであった。再度、 PCRにより asnl+遺伝子のみを増 幅し、 KP2124に導入したところ最少培地で生育可能となった。  Similar to the confirmation of the position of the mutation in Example 2, KP2124 was transformed with a genomic library, and a transformant yeast power plasmid that became capable of growing in a minimal medium was isolated. The plasmid was shortened by digestion with the restriction enzyme Hind III, further introduced into KP2124, and transformed. After that, a transformant yeast power plasmid that was able to grow on the minimum medium was isolated, and the PCR was performed using the plasmid DNA as a cocoon, and the nucleotide sequence was determined by sequencing. As a result, a fragment containing multiple genes was obtained. That happened. Among the introduced genes, only the asnl + gene (SPBC119.10), which is a gene related to asparagine biosynthetic enzyme, is related to auxotrophy. Again, only the asnl + gene was amplified by PCR and introduced into KP2124, allowing growth on a minimal medium.
その結果、 KP2124はァスパラギン生合成酵素関連遺伝子である asnl+遺伝子 (SPB C119.10)に変異のあることが確認された。 KP2124は、独立行政法人産業技術総合 研究所特許生物寄託センター(干 305-8566茨城県つくば巿東 1-1-1中央第 6)に寄 託した(国際受領番号 FERM ABP-10358)。  As a result, it was confirmed that KP2124 has a mutation in the asnl + gene (SPB C119.10), a gene related to asparagine biosynthetic enzyme. KP2124 was deposited at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 6-1-1, Tsukuba, Ibaraki Prefecture, 1-16-1) (International Receipt No. FERM ABP-10358).
[0029] 上記 asnl+遺伝子を PCRにより増幅するために以下のプライマーを用いた。 [0029] In order to amplify the asnl + gene by PCR, the following primers were used.
asnl sense (オリゴ 815) CGGGATCCTGAACTGATTGTTGGCTCAG (配列番 号 3) 号 4)  asnl sense (Oligo 815) CGGGATCCTGAACTGATTGTTGGCTCAG (SEQ ID NO: 3) No. 4)
[0030] 2)ァスパラギン要求性の確認  [0030] 2) Confirmation of asparagine requirement
同様に、実施例 1及び 2で得られた KP2124はァスパラギン生合成酵素の asnl+遺伝 子が変異していることが確認されたので、 EMM+leu培地 20 mLにァスパラギン 1 mg を添カ卩した EMM + leu + asn培地で培養したところ生育が認められた(図 4)。 KP2124 は EMM + leu培地では生育しなかつたのに対し、 EMM + leu + asn培地では生育した ことにより、ァスパラギン要求性分裂酵母であることが確認された。これにより、今回確 認されたァスパラギン生合成酵素関連遺伝子は分裂酵母の新規栄養マーカーであ ることを確認した。  Similarly, as for KP2124 obtained in Examples 1 and 2, it was confirmed that the asnl + gene of asparagine biosynthetic enzyme was mutated, so EMM + 1 mg of asparagine was added to 20 mL of EMM + leu medium. Growth was observed when cultured in + leu + asn medium (Fig. 4). KP2124 did not grow on EMM + leu medium, but grew on EMM + leu + asn medium, confirming that it was a fission yeast requiring asparagine. This confirmed that the asparagine biosynthetic enzyme-related gene identified this time was a novel nutritional marker for fission yeast.
[0031] (実施例 4) argl+遺伝子(SPCC777.09c)を含むベクターの構築及びその確認 1) argl+遺伝子の BamH I制限酵素部位を両末端に付カ卩したものを PCRで増幅し、 Blu eScriptプラスミド(Stratagene社製)の fl originにある Bgl II制限酵素部位に導入し、ィ ンテグレーシヨンベクターを構築した。 (Example 4) Construction of a vector containing argl + gene (SPCC777.09c) and confirmation thereof 1) The BamH I restriction enzyme site of the argl + gene with both ends is amplified by PCR and introduced into the Bgl II restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene). A Chillon vector was constructed.
2)確認  2) Confirmation
上記 1)で構築したインテグレーションプラスミド中の BlueScriptのマルチクローニン グ部位に、赤色蛍光を発光するマーカーである Sadl-DsREDを導入した。該 Sadl-Ds REDを含むベクターを KP2101に導入し、インテグレーションベクターが KP2101で機 能しうるかについて確認した。なお、 Sadl-DsREDは、 Sadlという核膜上の点に局在 する遺伝子を DsREDと呼ばれる赤色蛍光を発するマーカーと融合させて構築したも のであり、公知である。  Sadl-DsRED, a marker emitting red fluorescence, was introduced into the BlueScript multicloning site in the integration plasmid constructed in 1) above. The vector containing Sadl-Ds RED was introduced into KP2101, and it was confirmed whether the integration vector could function with KP2101. Sadl-DsRED is a well-known Sadl-DsRED constructed by fusing a gene localized at a point on the nuclear membrane called Sadl with a marker emitting red fluorescence called DsRED.
Sadl-DsREDを含むインテグレーションベクターを導入した KP2101の染色体をサザ ンブロッテイングにより確認した。その結果、インテグレーションベクターが導入された 染色体は、 Sadl-DsREDが導入されているため、野生株の分裂酵母の染色体に比べ て分子量が大きい位置に観察された。  The chromosome of KP2101 into which an integration vector containing Sadl-DsRED was introduced was confirmed by Southern blotting. As a result, the chromosome into which the integration vector was introduced was observed at a position having a higher molecular weight than the chromosome of the wild-type fission yeast because Sadl-DsRED was introduced.
次に、インテグレーションベクターの導入が確認された KP2101を顕微鏡で観察した 。その結果、導入 Sadl遺伝子産物に DsREDが融合したタンパク質が産生され、核膜 上の点が赤く染色された。 SacQ-DsREDが核膜上に存在することが確認しやす 、よう に、さらにへキスト染色で核を青く染色した。その結果を図 6に示した。  Next, KP2101 in which the introduction of the integration vector was confirmed was observed with a microscope. As a result, a protein in which DsRED was fused to the introduced Sadl gene product was produced, and the dots on the nuclear membrane were stained red. As it was easy to confirm that SacQ-DsRED was present on the nuclear membrane, the nucleus was further stained blue with Hoechst staining. The result is shown in FIG.
このことより、 KP2101の染色体上の argl変異遺伝子に、インテグレーションベクター 上の野生型の argl+遺伝子が相同組み換えを起こし、 Sadl-DsREDとともに KP2101の 染色体に組み込まれたと考えられた。  This suggests that the wild-type argl + gene on the integration vector had undergone homologous recombination with the argl mutant gene on the KP2101 chromosome, and was incorporated into the KP2101 chromosome together with Sadl-DsRED.
(実施例 5)出芽酵母 ARG8遺伝子 (YOL140W)を含むベクターの構築 (Example 5) Construction of a vector containing the budding yeast ARG8 gene (YOL140W)
実施例 4に記載の方法と同様に、出芽酵母 ARG8遺伝子を出芽酵母染色体 DNAを 铸型として PCRで増幅し、 BlueScriptプラスミド(Stratagene社製)の fl originにある Na e I制限酵素部位に導入し、インテグレーションベクターを構築した。  Similar to the method described in Example 4, the budding yeast ARG8 gene was amplified by PCR using the budding yeast chromosomal DNA as a saddle, and introduced into the Nae I restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene). An integration vector was constructed.
上記 ARG8遺伝子を PCRにより増幅するために以下のプライマーを用いた。  The following primers were used to amplify the ARG8 gene by PCR.
ARG8 sense (オリゴ 783) GCTCCAGCACCCCTTATTTC (配列番号 5)  ARG8 sense (Oligo 783) GCTCCAGCACCCCTTATTTC (SEQ ID NO: 5)
ARG8 antisense (オリゴ 811) GGAATTCTTAAGCGTAAACCGCTTC (配列番号 6) [0033] (実施例 6) asnl+遺伝子 (SPBC119.10)を含む分裂酵母用ベクターの構築 実施例 4に記載の方法と同様に、 aSnl+遺伝子の BamH I制限酵素部位を両末端に 付カ卩したものを PCRで増幅し、 BlueScriptプラスミド(Stratagene社製)の fl originにあ る Bgl II制限酵素部位に導入し、インテグレーションベクターを構築した。 ARG8 antisense (Oligo 811) GGAATTCTTAAGCGTAAACCGCTTC (SEQ ID NO: 6) (Example 6) Construction of a fission yeast vector containing the asnl + gene (SPBC119.10) In the same manner as in Example 4, the BamHI restriction enzyme sites of the aS nl + gene were attached to both ends. The digested product was amplified by PCR and introduced into the Bgl II restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene) to construct an integration vector.
[0034] (実施例 7)出芽酵母 ASN1遺伝子 (YPR145W)を含む分裂酵母用ベクターの構築 実施例 4に記載の方法と同様に、出芽酵母 ASN1遺伝子を出芽酵母染色体 DNAを 铸型として PCRで増幅し、 BlueScriptプラスミド(Stratagene社製)の fl originにある Bgl Π制限酵素部位に導入し、インテグレーションベクターを構築した。 (Example 7) Construction of a vector for fission yeast containing the budding yeast ASN1 gene (YPR145W) In the same manner as in Example 4, the budding yeast ASN1 gene was amplified by PCR using budding yeast chromosomal DNA as a saddle type. Then, it was introduced into the Bgl Π restriction enzyme site at the fl origin of BlueScript plasmid (Stratagene) to construct an integration vector.
上記 ASN1遺伝子を PCRにより増幅するために以下のプライマーを用いた。 ASN1 sense gCgCATTTATAgATACgCATATATAACCC (配列番号 7) ASN1 antisense CTATAAAAATATCTATAAgATTAATCC (配列番号 8) [0035] (実験例 8)出芽酵母 ASN2遺伝子 (YGR124W)を含む分裂酵母用ベクターの構築 実施例 4に記載の方法と同様に、出芽酵母 ASN2遺伝子を出芽酵母染色体 DNAを 铸型として PCRで増幅し、 BlueScriptプラスミド(Stratagene社製)の fl originにある Na e I制限酵素部位に導入し、インテグレーションベクターを構築した。  The following primers were used to amplify the above ASN1 gene by PCR. ASN1 sense gCgCATTTATAgATACgCATATATAACCC (SEQ ID NO: 7) ASN1 antisense CTATAAAAATATCTATAAgATTAATCC (SEQ ID NO: 8) [0035] (Experimental example 8) Construction of a vector for fission yeast ASN2 gene (YGR124W) As in the method described in Example 4, Saccharomyces cerevisiae ASN2 gene was amplified by PCR using budding yeast chromosomal DNA as a saddle, and introduced into the Nae I restriction enzyme site at the fl origin of the BlueScript plasmid (Stratagene) to construct an integration vector.
上記 ASN2遺伝子を PCRにより増幅するために以下のプライマーを用いた。 ASN2 sense gggTgCCgCACggCgCgggTTTTTgC (配列番号 9)  The following primers were used to amplify the ASN2 gene by PCR. ASN2 sense gggTgCCgCACggCgCgggTTTTTgC (SEQ ID NO: 9)
ASN2 antisense CCgTTTgTATCACCgCATTTCTTggTTC (配列番号 10)  ASN2 antisense CCgTTTgTATCACCgCATTTCTTggTTC (SEQ ID NO: 10)
[0036] (実施例 9)リジン要求性分裂酵母 [Example 9] Lysine-requiring fission yeast
1)変異の位置の確認  1) Confirmation of mutation position
実施例 1で得られた 13種類の変異株のうち、 KP2132株分裂酵母 (以下、単に「KP2 132」という。 )について変異の位置を確認した。  Among the 13 mutant strains obtained in Example 1, the position of the mutation was confirmed for KP2132 strain fission yeast (hereinafter simply referred to as “KP2 132”).
KP2132にゲノムライブラリーを形質転換して最少培地で生育可能になった形質転 換体酵母力もプラスミドを単離した。該プラスミドを制限酵素 Hind IIIで切断して短縮 し、さらに KP2132に導入し、形質転換させた。その後また最少培地で生育可能にな つた形質転換体酵母からプラスミドを単離し、そのプラスミド DNAを铸型としてシーケ ンス PCRを行 、シーケンスにより塩基配列を決定したところ、複数の遺伝子が含まれ た断片であることがわかった。該導入された複数の遺伝子中、栄養要求性に関連す るのはリジン合成酵素関連遺伝子である lys4+遺伝子 (SPBC1105.02c)であった。 その結果、 KP2132は lys4+遺伝子(SPBC1105.02c)に変異のあることが確認された。 KP2132は、独立行政法人産業技術総合研究所特許生物寄託センター(干 305-8566 茨城県つくば巿東 1-1-1中央第 6)に寄託した(国際受領番号受領番号 FERM ABP -10373 )。 A plasmid was also isolated from the transformed yeast strain that was transformed into KP2132 and became capable of growing in a minimal medium. The plasmid was digested with the restriction enzyme Hind III and shortened, and further introduced into KP2132 for transformation. Subsequently, a plasmid was isolated from a transformant yeast that had become capable of growing in a minimal medium, sequenced PCR was performed using the plasmid DNA as a saddle, and the nucleotide sequence was determined by sequencing. I found out that Among the introduced genes, it is related to auxotrophy The lys4 + gene (SPBC1105.02c), which is a gene related to lysine synthase. As a result, it was confirmed that KP2132 has a mutation in the lys4 + gene (SPBC1105.02c). KP2132 was deposited at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 6-1-1, Tsukuba 1-1-1, Tsukuba, Ibaraki Prefecture) (International receipt number receipt number FERM ABP-10373).
[0037] 上記 lys4+遺伝子を PCRにより増幅するために以下のプライマーを用いた。  [0037] The following primers were used to amplify the lys4 + gene by PCR.
lys4 sense (オリゴ) CGGGATCCACTTCCAATTTAAGCAGACGCTTC (配 列番号 11)  lys4 sense (oligo) CGGGATCCACTTCCAATTTAAGCAGACGCTTC (sequence number 11)
lys4 antisense (オリゴ) CGGGATCCATACATACGTGCATCCTTGCTC (配 列番号 12)  lys4 antisense (oligo) CGGGATCCATACATACGTGCATCCTTGCTC (sequence number 12)
[0038] 2)リジン要求性の確認 [0038] 2) Confirmation of lysine requirement
KP2132は lys4+遺伝子が変異していることが確認されたので、 EMM+leu培地 20 m Lにリジン 1 mgを添カ卩した EMM + leu + lys培地で培養したところ生育が認められた( 図 7)。 KP2132は EMM + leu培地では生育しなかったのに対し、 EMM + leu + lys培地 では生育したことにより、アルギニン要求性分裂酵母であることが確認された。これに より、 lys4+遺伝子 (SPBC1105.02c)は分裂酵母の新規栄養マーカーであることが確認 された。  Since KP2132 was confirmed to have a lys4 + gene mutation, growth was observed when cultured in EMM + leu + lys medium supplemented with 1 mg of lysine in 20 mL of EMM + leu medium (Fig. 7). ). KP2132 did not grow on EMM + leu medium, but grew on EMM + leu + lys medium, confirming that it was an arginine-requiring fission yeast. This confirmed that the lys4 + gene (SPBC1105.02c) is a novel nutritional marker for fission yeast.
[0039] (実施例 10) lys4+遺伝子(SPBC1105.02c)を含むベクターの構築及びその確認  (Example 10) Construction of a vector containing lys4 + gene (SPBC1105.02c) and confirmation thereof
実施例 4に記載の方法と同様に、 lys4+遺伝子の BamH淛限酵素部位を両末端に 付カ卩したものを PCRで増幅し、 BlueScriptプラスミド(Stratagene社製)の fl originにあ る Bgl II制限酵素部位に導入し、インテグレーションベクターを構築した。  Similar to the method described in Example 4, the BlyH restriction enzyme site of the lys4 + gene was amplified by PCR, and the Bgl II restriction at the fl origin of the BlueScript plasmid (Stratagene) was amplified. An integration vector was constructed by introducing into the enzyme site.
産業上の利用可能性  Industrial applicability
[0040] 上記説明したように、本発明の新規栄養マーカー遺伝子の変異による栄養要求性 株を用いると、安価な最少培地を用いて、遺伝子組換によりタンパク質等を合成する ことができる。また、遺伝子破壊の手法のために、解析したい遺伝子と栄養マーカー 遺伝子を置換させることで、破壊された遺伝子の機能を確認することができる。これら の栄養要求性分裂酵母は、保存及び増殖が容易であるため、工業的生産にも活用 しうる。 紙面による写し(注意 電子データが原本となります) [0040] As described above, when an auxotrophic strain by mutation of the novel nutritional marker gene of the present invention is used, proteins and the like can be synthesized by genetic recombination using an inexpensive minimal medium. In addition, by replacing the gene to be analyzed with the nutrient marker gene for the gene disruption technique, the function of the disrupted gene can be confirmed. These auxotrophic fission yeasts can be used for industrial production because they are easy to store and grow. Copy on paper (Caution Electronic data is the original)
にの用紙は、国際出穎の一部を構成せず、国際出願の用紙の枚数に算入しない]
Figure imgf000015_0001
The papers in the list do not form part of the international output and are not counted in the number of papers for international applications]
Figure imgf000015_0001
差替え用弒 (規則 26) 6039 Replacement bowl (Rule 26) 6039
15 紙面による写し(as 電子データが原本となります)  15 Paper copy (as electronic data is the original)
[この用紙は、国際出顔の一部を構成 ¾ 、国際出願の用紙の枚数に算入しない] 受理官庁記入欄 [This form constitutes part of the international appearance ¾ and is not included in the number of papers for international applications]
-4 この用紙は国際出願とともに受理した -4 This form was accepted along with the international application
(はい/いいえ〉 (Yes, No>
-4-1 権限のある職員 国際事務局記入欄-4-1 Authorized staff
-5 この用紙が国際事務局に受理された日-5 Date when this form was received by the International Bureau
-5-1 権限のある職員 -5-1 Authorized staff
差替え用紙 (規則 26) Replacement paper (Rule 26)

Claims

請求の範囲  The scope of the claims
[I] 分裂酵母の新規栄養マーカー遺伝子が変異した栄養要求性分裂酵母。  [I] An auxotrophic fission yeast in which a novel nutritional marker gene of fission yeast is mutated.
[2] オル二チン及び/又はアルギニン生合成関連遺伝子が変異した栄養要求性分裂酵 ' 母。  [2] An auxotrophic fission fermentation mutated in genes related to ornithine and / or arginine biosynthesis.
[3] Genbank受入番号: AL031532に記載する塩基配列によりコードされるァ ~i チノレオノレ 二チンアミノトランスフェラーゼ遺伝子(argl+遺伝子, SPCC777.09C)が変異したアル ギニン要求性分裂酵母。 [3] Genbank accession number: Arginine-requiring fission yeast mutated in a ~ i thioleonore nitrin aminotransferase gene (argl + gene, SPCC777.09C) encoded by the nucleotide sequence described in AL031532.
[4] ァスパラギン生合成関連遺伝子が変異した栄養要求性分裂酵母。  [4] An auxotrophic fission yeast in which a gene related to asparagine biosynthesis is mutated.
[5] Genbank受入番号: AL022117に記載する塩基配列によりコードされるァスパラギン合 成遺伝牛 (asnl+遺伝子, SPBC119.10)が変異したァスパラギン要求性分裂酵母。 [5] Genbank accession number: Asparagine-requiring fission yeast in which the asparagine synthetic herb (asnl + gene, SPBC119.10) encoded by the nucleotide sequence described in AL022117 is mutated.
[6] リジン生合成関違遺伝子が変異した栄養要求性分裂酵母。  [6] An auxotrophic fission yeast with a mutated gene related to lysine biosynthesis.
[7] Genbank受入番号: AL096851に記載する塩基配列によりコードされるリジン合成遺伝 子 (lys4+遺伝子, SPBC1105.02c)が変異したリジン要求性分裂酵母。 [7] A lysine-requiring fission yeast in which the lysine synthetic gene (lys4 + gene, SPBC1105.02c) encoded by the nucleotide sequence described in Genbank accession number: AL096851 is mutated.
[8] 分裂酵母の新規栄養マーカー遺伝子を含む分裂酵母に導入可能なベクター。  [8] A vector that can be introduced into fission yeast containing a novel nutritional marker gene for fission yeast.
[9] 分裂酵母 argl+遺伝子 (SPCC777.09c)を含み、請求の範囲第 1項〜第 3項のレ、ずれ 力—に記載の分裂酵母に導入可能なベクター。 [9] A vector comprising the fission yeast argl + gene (SPCC777.09c) and capable of being introduced into fission yeast according to claims 1 to 3 in claim 1 (3).
[10] 出芽酵母 ARG8遺伝子 (YOL140W)も含み、請求の範囲第 1項〜第 3項の V、ずれか 一に記載の分裂酵母に導入可能なベクター。  [10] The vector which also contains the budding yeast ARG8 gene (YOL140W) and can be introduced into fission yeast according to any one of claims 1 to 3.
[II] 分裂酵母 asnl+遺伝子 (SPBC119.10)を含み、請求の範囲第 1項、第 4項又は第 5項 のいずれか一に記載のァスパラギン要求性分裂酵母に導入可能な クター。  [II] A vector comprising a fission yeast asnl + gene (SPBC119.10) and capable of being introduced into the asparagine-requiring fission yeast according to any one of claims 1, 4 or 5.
[12] 出芽酵母 ASN1遺伝子 (YPR145W)又 ¾ASN2遺伝子 (YGR124W)を含み、請求の範 囲第 1項、第 4項又は第 5項の!/、ずれか一に記載の分裂酵母に導入可能なベクター  [12] Saccharomyces cerevisiae ASN1 gene (YPR145W) or ¾ASN2 gene (YGR124W) is included, and claims 1 or 4 or 5! /, Vector that can be introduced into fission yeast according to any one of
[13] 分裂酵母 lys4+遺伝子 (SPBC1105.02c)を含み、請求の範囲第 1項、第 6項又は第 7 項の V、ずれか一に記載のリジン要求性分裂酵母に導入可能なベクタ一。 [13] A vector comprising a fission yeast lys4 + gene (SPBC1105.02c) and capable of being introduced into a lysine-requiring fission yeast according to claim 1, 6 or 7, V, or any one of the above.
[14] 請求の範囲第 1項〜第 3項のいずれか一に記載の分裂酵母に請求の範囲第 9項又 は第 10項に記載するべクタ一を組み込んでなる形質転換体。  [14] A transformant obtained by incorporating the vector according to claim 9 or 10 into the fission yeast according to any one of claims 1 to 3.
[15] 請求の範囲第 1項、第 4項又は第 5項のいずれか一に記載の分裂酵 *に請求の範  [15] Claims to the fission fermentation * as described in any one of claims 1, 4 or 5
差替え用紙(規則 2S) 囲第 11又は 12項のベクターを組み込んでなる形質転換体。 Replacement paper (Rule 2S) A transformant incorporating the vector according to item 11 or 12.
[16] 請求の範囲第 1項、第 6項又は第 7項のいずれか一に記載の分裂酵母に請求の範 囲第 13項のベクターを組み込んでなる形質転換体。 [16] A transformant obtained by incorporating the vector according to claim 13 into the fission yeast according to any one of claims 1, 6, or 7.
[17] 請求の範囲第 14項〜第 16項のいずれか一に記載の形質転換体を培養し、発現さ れた異種タンパク質を採取することを特徴とするタンパク質の産生方法。 [17] A method for producing a protein, comprising culturing the transformant according to any one of claims 14 to 16 and collecting the expressed heterologous protein.
差替え用紙 (規則 26) Replacement paper (Rule 26)
PCT/JP2005/016039 2004-10-25 2005-09-01 Novel auxotrophic fission yeast WO2006046352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006542266A JPWO2006046352A1 (en) 2004-10-25 2005-09-01 New auxotrophic fission yeast

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-310061 2004-10-25
JP2004310061 2004-10-25
JP2005-005641 2005-01-12
JP2005005641 2005-01-12

Publications (1)

Publication Number Publication Date
WO2006046352A1 true WO2006046352A1 (en) 2006-05-04

Family

ID=36227604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016039 WO2006046352A1 (en) 2004-10-25 2005-09-01 Novel auxotrophic fission yeast

Country Status (2)

Country Link
JP (1) JPWO2006046352A1 (en)
WO (1) WO2006046352A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199887A (en) * 2001-01-05 2002-07-16 Communication Research Laboratory METHOD FOR EFFICIENTLY TRANSDUCING FOREIGN DNA TO lys1 POSITION ON GENOME OF FISSION YEAST AND VECTOR THEREFOR

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199887A (en) * 2001-01-05 2002-07-16 Communication Research Laboratory METHOD FOR EFFICIENTLY TRANSDUCING FOREIGN DNA TO lys1 POSITION ON GENOME OF FISSION YEAST AND VECTOR THEREFOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WADDELL S. ET AL: "arg3+, a new selection marker system for Schizosaccharomyces pombe: application of ura4+ as a removable integration marker", NUCLEIC ACIDS RESEARCH, vol. 23, no. 10, 1995, pages 1836 - 1837, XP002994827 *

Also Published As

Publication number Publication date
JPWO2006046352A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5772594B2 (en) Transformant, method for producing the same, and method for producing lactic acid
Cereghino et al. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris
JPS62104585A (en) Site selective genom modification of pitia yeast
CA2631322A1 (en) Method of modifying chromosome
JP7181542B2 (en) A novel strain of Pseudozyma antactica
CN1938426A (en) Generation of recombinant genes in saccharomyces cerevisiae
US20240200103A1 (en) Synthetic yeast cells and methods of making and using the same
Wang et al. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain
CN102046786A (en) Method of directing the evolution of an organism
EP3205721B1 (en) Transformant and method for producing same, and method for producing lactic acid
US20120034654A1 (en) Method for transforming schizosaccharomyces pombe, transformant of schizosaccharomyces pombe and method for producing heterologous protein
Degreif et al. Preloading budding yeast with all-in-one CRISPR/Cas9 vectors for easy and high-efficient genome editing
US6645767B1 (en) Cells engineered to contain genes of interest without expressed bacterial sequences and materials and methods therefor
EP2886642B1 (en) Transformant of schizosaccharomyces pombe mutant, and cloning vector
CN103917648B (en) For being converted and select box and the method for Yeast transformants by homologous recombination
Pribylova et al. Tools for the genetic manipulation of Zygosaccharomyces rouxii
WO2006046352A1 (en) Novel auxotrophic fission yeast
KR101264294B1 (en) Yeast Variants Having Resistance to Low Temperatures
KR101249778B1 (en) Yeast Variants Having Resistance to Low Temperatures
CN102120966A (en) Construction and application of URA3 defective P. pastoris X-33 strain
JP6488666B2 (en) Cloning vector, expression vector and method for producing transformant
JP6499587B2 (en) Transformant, method for producing the same, and method for producing lactic acid
JPS61502939A (en) Method for producing strains, especially yeast, transformed by expression vectors, which can be cultured in complete medium without selective pressure, and the strains thus obtained
JP2009178104A (en) Method for homogenizing specific region of diploid cell chromosome using lose of heterozygosity
Hirota et al. Novel breeding method, matα2-PBT, to construct isogenic series of polyploid strains of Saccharomyces cerevisiae

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KM KR KZ LC LK LR LS LT LU LV MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542266

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05781357

Country of ref document: EP

Kind code of ref document: A1