WO2006041969A1 - Solid state deformation processing of crosslinked high molecular weight polymeric materials - Google Patents
Solid state deformation processing of crosslinked high molecular weight polymeric materials Download PDFInfo
- Publication number
- WO2006041969A1 WO2006041969A1 PCT/US2005/035907 US2005035907W WO2006041969A1 WO 2006041969 A1 WO2006041969 A1 WO 2006041969A1 US 2005035907 W US2005035907 W US 2005035907W WO 2006041969 A1 WO2006041969 A1 WO 2006041969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uhmwpe
- crosslinked
- bulk material
- temperature
- axial direction
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/91—Heating, e.g. for cross linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/30—Drawing through a die
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/085—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/475—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0658—PE, i.e. polyethylene characterised by its molecular weight
- B29K2023/0683—UHMWPE, i.e. ultra high molecular weight polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
Definitions
- the invention relates to crosslinked high molecular weight polymeric material and methods for treating the materials to provide enhanced properties.
- the invention provides methods and materials for use in preparing polymeric implants with a high degree of wear and oxidation resistance.
- UHMWPE Ultra high molecular weight polyethylene
- Hyon et al. report enhancement of the mechanical properties of crosslinked UHMWPE by deformation processing at a compression deformable temperature. After deformation processing, the material is cooled while keeping the deformed state. An oriented UHMWPE molded article is obtained that has an orientation of crystal planes in a direction parallel to the compression plane. The compression is carried out using a suitable die or can be done using a hot press machine.
- Polymeric materials such as UHMWPE can be crosslinked to provide materials with superior wear properties, for example.
- the polymeric materials may be chemically crosslinked or preferably crosslinked with irradiation such as ⁇ -irradiation.
- irradiation such as ⁇ -irradiation.
- the action of ⁇ -irradiation on the polymer results in the formation of free radicals within the bulk materials.
- the free radicals provide sites for reactions to crosslink the molecular chains of the bulk materials. It has become recognized that the presence of free radicals, including any free radicals that survive after subsequent heat treatment, are also susceptible to attack by oxygen to form oxidation products. The formation of such oxidation products generally leads to deterioration of mechanical properties.
- a method of solid state deformation processing of crosslinked polymers includes deforming a polymer bulk material by compressing it in a direction orthogonal to a main axis of the bulk material and optionally cooling the bulk material while maintaining the deformation force.
- the polymeric material is made of UHMWPE and the crosslinking is by irradiation such as ⁇ irradiation, products of the method are particularly suitable for use in bearing components and implants for total hip replacement and the like.
- the invention involves solid state extrusion of an elongate bulk material through a reducing die while the material is at a compression deformable temperature, preferably below the melting point.
- the extruded bulk material is then cooled, preferably while held in the deformed state.
- the bulk material is stress relieved by reheating to an annealing temperature to below the melting point, this time without applying pressure.
- An oriented UHMWPE molded article can be obtained according to methods of the invention by crosslinking a UHMWPE raw article with a high energy ray such as gamma-irradiation, heating the crosslinked UHMWPE to a compression deformable temperature, and compression deforming the UHMWPE, followed by cooling and solidifying.
- the material has a detectable level of free radicals and yet is resistant to oxidative degradation evidenced by a very low, preferably undetectable, increase in infrared absorption bands of the UHMWPE material that correspond to formation of carbonyl groups during accelerated aging.
- an anisotropic material is formed wherein mechanical properties in the direction of the main axis differ from mechanical properties in the orthogonal or transverse direction. After stress relieving, mechanical properties can differ by 20% or more in the axial direction as opposed to the orthogonal directions.
- Polymers treated by the methods exhibit a desirable combination of high tensile strength and resistance to oxidative degradation.
- Transverse deformation of UHMWPE leads to material having a tensile strength at break greater than 50 Mpa and preferably greater than 60Mpa, measured in the axis orthogonal to the deformation.
- the material is resistant to oxidative degradation, showing in preferred embodiments essentially no change in oxidation index on accelerated aging.
- Figure 1 illustrates the geometry of an extrusion process
- Figure 2 shows various embodiments of extrusion apparatus and dies
- Figure 3 illustrates an embodiment of an extrusion process.
- the words "preferred” and “preferably” refer to embodiments of the invention that afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention.
- the word "include,” and its variants, is intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the materials, compositions, devices, and methods of this invention.
- the invention provides a method for treating a polymeric bulk material comprising heating a crosslinked polymer to a compression deformable temperature, applying force to deform the heated polymer, and cooling the polymer to a solidification temperature while maintaining the polymer in a deformed state.
- the crosslinked polymer is in a bulk form characterized by an axial direction; force is applied to deform the heated polymer in a direction orthogonal to the axial direction.
- the polymeric bulk material as treated by the above method exhibits enhanced strength in the axial direction of the bulk material.
- the method is especially suitable for providing a medical implant containing bearing components made out of the UHMWPE.
- the invention provides a method for treating crosslinked UHMWPE for making material suitable for use in a medical implant.
- the method involves heating UHMWPE to a temperature above about 8O 0 C and below its melting point, where the UHMWPE has been crosslinked with ⁇ -irradiation.
- the UHMWPE is in the form of a bulk material characterized by an axial direction, a transverse direction orthogonal to the axial direction, and an original dimension. Compressive force is then applied on the bulk material in the transverse direction to the reduce a dimension of the bulk material in that direction. Then the bulk UHMWPE is cooled to a solidification temperature.
- force is applied during the cooling sufficient to prevent the bulk material from returning to its original dimension.
- compressive force is applied by ram extruding the bulk material through a reducing die, for instance through a circular die, with a diametral compression or draw ratio greater than 1.
- compressive force is maintained on the cooling UHMWPE by extruding the heated crosslinked bulk material into a chamber of sufficient size and shape to hold the bulk material at a dimension in the transverse direction less than original radial dimension
- the invention provides a method for preparing a preform made of UHMWPE suitable for use in medical implants.
- the method comprises heating a ⁇ -irradiation crosslinked UHMWPE rod characterized by a crystalline melting point and a diameter di to a compression deformable temperature. Thereafter, compression force is applied on the crosslinked UHMWPE to decrease the diameter to d ⁇ , wherein d 2 is less than d-i.
- the reduced diameter rod of UHMWPE is optionally cooled to a solidification temperature while maintaining compression force to keep the diameter at a value of d 3 , wherein d 3 is less than di.
- the cooled rod is stress relieved by heating to a temperature at which the rod expands to a diameter d 4 , wherein d 4 is greater than d 3 .
- the method involves extruding the rod through a reducing die into a cooling chamber to reduce the diameter from to ⁇ ⁇ .
- the compression deformable temperature is preferably less than the melting point and greater than a temperature equal to the melting point minus 5O 0 C. In a preferred embodiment, the compression deformable temperature is from about 100 0 C to about 135°C.
- the UHMWPE rod has been crosslinked with ⁇ -irradiation at a dose from 0.1 to 10 Mrad.
- the invention provides a ⁇ -crosslinked UHMWPE in the form of an elongate material, such as a cylinder, characterized by an axial direction.
- the tensile strength in the axial or longitudinal direction is greater than 50 MPa and preferably greater than 60 MPa.
- bearing components comprise UHMWPE machined or formed from such a ⁇ crosslinked UHMWPE. Medical implants contain the bearing components.
- the invention provides a ⁇ -crosslinked UHMWPE having a detectable concentration level of free radicals, but nevertheless stable to oxidation as measured by standard tests.
- concentration of free radicals in the UHMWPE is above about 0.06 x 10 15 spins/g and below about 3 x 10 15 spins/g.
- the free radical concentration is 1.5 x 10 15 spins/g or less.
- the crosslinked UHMWPE is advantageously provided in the form of a cylindrical rod having a diameter of about 2 to 4 inches and preferably about 3 inches. Bearing components are provided by machining the components from the crosslinked UHMWPE, and medical implants are provided that contain the bearing components.
- an anisotropic crosslinked UHMWPE is provided in the form of a bulk material characterized by an axial direction and a transverse direction orthogonal to the axial direction.
- the anisotropy is characterized in that the tensile strength in the axial direction is 20% or more greater than the tensile strength in the radial direction, and attains the value of at least 50 MPa, preferably at least 60 MPa.
- a method for solid state deformation processing of ⁇ -irradiated crosslinked UHMWPE comprises deforming the UHMWPE by extruding it at a temperature below its melt transition or crystalline melting point. In subsequent steps, the extruded UHMWPE is cooled to a temperature below its solidification temperature, optionally while maintaining the extruded rod in a deformed state.
- a compression deformed crosslinked UHMWPE having a tensile strength at break of more than 50 MPa is provided by treating UHMWPE according to the methods.
- the material is also resistant to oxidative degradation, characterized by an oxidation index less than 0.5 after exposure to 5 atm of oxygen at 70 0 C for 4 days, in spite of the material having a detectable free radical concentration above 0.06 x 10 15 spins/g.
- the invention provides a method for making a medical implant containing a bearing component made of UHMWPE.
- the method includes the steps of radiation crosslinking a UHMWPE in the form of a bulk material, preheating the crosslinked UHMWPE to a temperature above 8O 0 C and below its melting point, then solid state extruding the preheated UHMWPE to a diametral compression ratio of greater than 1 , cooling the extruded UHMWPE to a solidification temperature below 30 0 C while maintaining diametral compression, annealing the cooled UHMWPE at a temperature below the melting point for a time sufficient for the rod to increase in diameter in response to the annealing, and machining the bearing component from the annealed UHMWPE.
- the UHMWPE is optionally sterilized after machining the bearing component. Sterilizing is preferably performed by non-irradiative means such as exposure to gases such as ethylene oxide.
- implants are manufactured using preformed polymeric compositions having the structures described herein and made by the methods described herein.
- implants include hip joints, knee joints, ankle joints, elbow joints, shoulder joints, spine, temporo-mandibular joints, and finger joints.
- hip joints for example, the preformed polymeric composition can be used to make the acetabular cup or the insert or liner of the cup.
- the compositions can be made used to make the tibial plateau, the patellar button, and trunnion or other bearing components depending on the design of the joints.
- the compositions can be used to make the talar surface and other bearing components.
- the compositions can be used to make the radio-numeral or ulno-humeral joint and other bearing components.
- the compositions can be used to make the glenero-humeral articulation and other bearing components.
- intervertebral disc replacements and facet joint replacements may be made from the compositions.
- the bearing components are made from the polymeric compositions by known methods such as by machining and are incorporated into implants by conventional means.
- preferred polymers include those that are wear resistant, have chemical resistance, resist oxidation, and are compatible with physiological structures.
- the polymers are polyesters, polymethylmethacrylate, nylons or polyamides, polycarbonates, and polyhydrocarbons such as polyethylene and polypropylene.
- High molecular weight and ultra high molecular weight polymers are preferred in various embodiments. Non-limiting examples include high molecular weight polyethylene, ultra high molecular weight polyethylene (UHMWPE), and ultra high molecular weight polypropylene.
- the polymers have molecular ranges from approximate molecular weight range in the range from about 400,000 to about 10,000,000.
- UHMWPE is used in joint replacements because it possesses a low co-efficient of friction, high wear resistance, and compatibility with body tissue.
- UHMWPE is available commercially as bar stock or blocks that have been compression molded or ram extruded. Commercial examples include the GUR series from Hoechst. A number of grades are commercially available having molecular weights in the preferred range described above.
- a crosslinked polymeric bulk material is further processed in a series of heating, deforming, cooling, and machining steps.
- the polymeric bulk material can be crosslinked by a variety of chemical and radiation methods.
- chemical crosslinking is accomplished by combining a polymeric material with a crosslinking chemical and subjecting the mixture to temperature sufficient to cause crosslinking to occur.
- the chemical crosslinking is accomplished by molding a polymeric material containing the crosslinking chemical.
- the molding temperature is the temperature at which the polymer is molded. In various embodiments, the molding temperature is at or above the melting temperature of the polymer.
- the molding temperature is also preferably high enough to allow the flow of the polymer to occur to distribute or diffuse the crosslinking chemical and the resulting free radicals to form the homogeneous network.
- a preferred molding temperature is between about 130 0 C and 220 0 C with a molding time of about 1 to 3 hours. In a non-limiting embodiment, the molding temperature and time are 170 0 C and 2 hours, respectively.
- the crosslinking chemical may be any chemical that decomposes at the molding temperature to form highly reactive intermediates, such as free radicals, that react with the polymers to form a crosslinked network.
- free radical generating chemicals include peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinylbenzene.
- azo compounds are: azobis-isobutyronitrile, azobis-isobutyronitrile, and dimethylazodi-isobutyrate.
- peresters are t-butyl peracetate and t-butyl perbenzoate.
- the polymer is crosslinked by treating it with an organic peroxide.
- Suitable peroxides include 2,5-dimethyl-2,5-bis(tert- butylperoxy)-3-hexyne (Lupersol 130, Atochem Inc., Philadelphia, PA); 2,5- dimethyl-2,5-di-(t-butylperoxy)-hexane; t-butyl ⁇ -cumyl peroxide; di-butyl peroxide; t-butyl hydroperoxide; benzoyl peroxide; dichlorobenzoyl peroxide; dicumyl peroxide; di-tertiary butyl peroxide; 2,5-dimethyl-2,5- di(peroxy benzoate)hexyne-3; 1 ,3-bis(t-butyl peroxy isopropyl) benzene; lauroyl peroxide; di-t-amyl peroxide; 1 ,1 -di-(t-butylperoxy) cyclohexane; 2,2-di
- a preferred peroxide is 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne.
- the preferred peroxides have a half-life of between 2 minutes to 1 hour; and more preferably, the half-life is between 5 minutes to 50 minutes at the molding temperature.
- the range is between 0.5 to 3.0 wt % of peroxide; and most preferably, the range is between 0.6 to 2 wt %.
- the peroxide can be dissolved in an inert solvent before being added to the polymer powder.
- the inert solvent preferably evaporates before the polymer is molded. Examples of such inert solvents are alcohol and acetone.
- the reaction between the polymer and the crosslinking chemical can generally be carried out at molding pressures.
- the reactants are incubated at molding temperature, between 1 to 3 hours, and more preferably, for about 2 hours.
- the reaction mixture is preferably slowly heated to achieve the molding temperature.
- the crosslinked polymer is preferably slowly cooled down to room temperature.
- the polymer may be left at room temperature and allowed to cool on its own. Slow cooling allows the formation of a stable crystalline structure.
- reaction parameters for crosslinking polymers with peroxide can be determined by one skilled in the art. For example, a wide variety of peroxides are available for reaction with polyolefins, and investigations of their relative efficiencies have been reported. Differences in decomposition rates are perhaps the main factor in selecting a particular peroxide for an intended application.
- UHMWPE Peroxide crosslinking of UHMWPE has also been reported.
- UHMWPE can be crossliriked in the melt at 180 0 C by means of 2,5-dimethyl-2,5- di-(tert-butylperoxy)-hexyne-3.
- crosslinking is accomplished by exposing a polymeric bulk material to irradiation.
- irradiation for crosslinking the polymers include electron beam, x-ray, and gamma-irradiation.
- gamma irradiation is preferred because the radiation readily penetrates the bulk material.
- Electron beams can also be used to irradiate the bulk material. With e-beam radiation, the penetration depth depends on the energy of the electron beam, as is well known in the art.
- the polymeric bulk material is irradiated in a solid state at a dose of about 0.01 to 100 Mrad (0.1 to 1000 kGy), preferably from 0.01 to 10 MRad, using methods known in the art, such as exposure to gamma emissions from an isotope such as 60 Co.
- gamma irradiation is carried out at a dose of 0.01 to 6, preferably about 1.5 to 6 Mrad.
- irradiation is to a dose of approximately 5 MRad.
- Irradiation of the polymeric bulk material is usually accomplished in an inert atmosphere or vacuum.
- the polymeric bulk material may be packaged in an oxygen impermeable package during the irradiation step.
- Inert gases such as nitrogen, argon, and helium may also be used.
- the packaged material may be subjected to one or more cycles of flushing with an inert gas and applying the vacuum to eliminate oxygen from the package.
- package materials include metal foil pouches such as aluminum or Mylar® coating packaging foil, which are available commercially for heat sealed vacuum packaging. Irradiating the polymeric bulk material in an inert atmosphere reduces the effect of oxidation and the accompanying chain scission reactions that can occur during irradiation. Oxidation caused by oxygen present in the atmosphere present in the irradiation is generally limited to the surface of the polymeric material. In general, low levels of surface oxidation can be tolerated, as the oxidized surface can be removed during subsequent machining.
- Irradiation such as ⁇ -irradiation can be carried out on polymeric material at specialized installations possessing suitable irradiation equipment.
- the irradiated bulk material is conveniently left in the oxygen impermeable packaging during shipment to the site for further operations.
- the crosslinked polymer is provided in a bulk form characterized by an axial direction and a transverse direction orthogonal or perpendicular to the axial direction. In subsequent processing steps, deformation pressure is applied on the crosslinked bulk material to reduce a dimension in the transverse direction.
- the axial direction is also the direction in which high tensile strength is developed, as described further below.
- the axial direction of the bulk material is the direction perpendicular to the application of the deformation force that leads to development of high tensile strength in the axial direction.
- application of deformation pressure or force orthogonal to the axial direction creates an anisotropic material, characterized by higher tensile strength in the axial than in the transverse direction.
- the axial direction of the bulk material also defines the preferred direction in which implant bearing components such as acetabular cups are to be machined. That is, bearing components are preferably made or machined from the treated bulk polymer in an orientation where the high tensile strength axis of the polymer corresponds to the load bearing axis or direction of the bearing component of the implant in vivo.
- the bulk material is in the form of a rod or cylinder having a circular cross section.
- the axial direction is parallel to the main axis of the cylinder, while the transverse direction is at right angles to the axial direction.
- the existence of the axial direction defines an orthogonal direction referred to as "transverse” in this application.
- the transverse direction can be described as "radial”, and the transverse axis as a radial axis.
- the main axis of the bulk material can also be called the longitudinal axis.
- the longitudinal axis is parallel to the axial direction.
- a cross section of the bulk material perpendicular to the axial direction or longitudinal axis is a circle.
- Other bulk materials characterized by an axial direction may be used that have other perpendicular cross sections.
- a square cylinder can be provided that has a square cross section perpendicular to the axial direction.
- Other bulk materials characterized by an axial direction can have rectangular, polygonal, star, lobed, and other cross sections perpendicular to the axial direction.
- the axial direction of the bulk polymeric material is elongated compared to the orthogonal or radial direction.
- a commercially available bulk material is a cylinder approximately 3 inches in diameter and 14 inches in length. The length corresponds to the axial direction and the diameter corresponds to the radial direction.
- bearing components for implants are preferably machined from billets cut in the axial direction. For efficiency in manufacturing it is convenient to produce a number of bearing components from a single bulk material treated by the methods of the invention. For this reason, the bulk material is usually to be extended in an axial direction so as to be able to cut a plurality of billets from the material for use in further machining of the bearing components.
- bulk material characterized by an axial direction is further characterized as having a variety of cross sectional areas perpendicular to the axial direction.
- the dimensions of the cross sectional areas perpendicular to the axial direction are more or less constant along the axial direction from the beginning to the end or from the top to the bottom of the bulk material.
- bulk materials may be provided to have cross sectional areas that vary along the length or axial direction of the bulk material. In the case where the cross sectional area of the bulk material is constant along the axial direction of the bulk material, compressive force applied as described below will generally be applied to the bulk material in a direction perpendicular to the axial direction.
- compressive force applied to the bulk material may have a component in the axial direction due to the geometry of the bulk material. However, in all cases at least a component of the compressive force will be applied on the bulk material in a direction orthogonal to the axial direction.
- the crosslinked polymer is heated to a compression deformable temperature.
- the compression deformable temperature is temperature at which the polymeric bulk material softens and can flow under the application of a compressive source to change dimension in the direction the compressive force is applied.
- the compression deformable temperature is concretely from about the melting point minus 50 0 C to the melting point plus 8O 0 C.
- the compression deformable temperature is below the melting point of the polymeric material.
- the compression deformable temperature include from the melting point to 10 0 C below the melting point, from the melting point to 20 0 C below the melting point, from the melting point to 30 0 C below the melting point, and from the melting point to 40 0 C below the melting point.
- the compression deformable temperature is above 80 0 C, or from about 86°C to about 136°C, since the melting temperature of the UHMWPE is about 136°C to 139°C.
- the compression deformable temperature of UHMWPE lies from about 90 0 C to 135°C, preferably about 100 0 C to 130 0 C.
- a preferred temperature is 125 - 135 0 C, or 130 0 C ⁇ 5°C.
- the crosslinked material is heated to a compression deformable temperature above the melting point of the polymer.
- a compression deformable temperature is from just above the melting point to a temperature about 8O 0 C higher than the melting point.
- UHMWPE can be heated to a temperature of 160 0 C to 22O 0 C or 18O 0 C to 200°C.
- the bulk polymeric material it is preferred to heat the bulk polymeric material to a compression deformation temperature close to but not higher than the melting point.
- the compression deformable temperature is between the melting point and a temperature 2O 0 C lower than the melting point, or between the melting point and a temperature 1 O 0 C lower than the melting point.
- the crosslinked bulk material can be heated to a compression deformable temperature in a deformation chamber as illustrated in the figures, or it can be preheated in an oven to the compression deformable temperature.
- the bulk material is heated to a temperature just below the melting point, such as the melting point minus 5° or the melting point minus 10° and placed in a heated deformation chamber.
- the deformation chamber preferably maintains a compression deformable temperature. If desired, the deformation chamber can be heated or thermostatted to maintain a constant temperature. Alternatively, the deformation chamber is not itself heated but has sufficient insulating properties to maintain the bulk material at a compression deformable temperature during the course of extrusion through the reducing die described below. In various embodiments, the temperature of the deformation chamber is held at several degrees below the melting temperature to avoid melting.
- Any suitable methods may be used to apply the compression force in a direction orthogonal to the axial direction.
- Non-limiting examples include rollers, clamps, and equivalent means.
- deforming force is applied in the directional orthogonal to the axial direction of the bulk material by extruding the bulk material through a reducing die.
- Pressure exerted on the bulk material in a direction orthogonal to the axial direction during extrusion causes the dimension of the bulk material to be reduced compared to the original dimension of the bulk material.
- the diameter or other transverse dimension of the bulk material after extrusion is less than the dimension before extrusion.
- the relative reduction in the dimension of the bulk material in the transverse directions can be expressed as a ratio of the original dimension di to the reduced dimension d 2 .
- the numeric value of the ratio di/d 2 can be referred to as a draw ratio or a diametral compression.
- draw ratio it is common practice to refer to a draw ratio; unless stated otherwise from context, the term draw ratio will be used here to refer to all geometries.
- the transverse direction (the direction orthogonal to the axial direction) in which deformation pressure or force is applied itself contains two axes that can be drawn at right angles to the longitudinal axis.
- the bulk material can be deformed by a different amount along the two transverse axes, and a draw ratio can be defined for both axes.
- the orientation of the transverse axes is arbitrary; if needed for analysis, the axes can be selected to simplify the geometry of the applied forces.
- the cross section of the bulk material is isotropic, equal deformation force can be applied in all transverse directions.
- the dimension d 2 corresponds to the radius or diameter of the extruded material
- the draw ratio is the fraction defined by dividing di by d 2 .
- the draw ratio is 1.1 or higher, and less than about 3. In various embodiments, the draw ratio is 1.2 or higher, and is preferably about 1.2 to 1.8. It is about 1.5 in a non-limiting example. At high levels of reduction, a point is reached at which the strain introduced is too great and the properties of the crosslinked polymeric materials deteriorate. Accordingly, in various embodiments the draw ratio is 2.5 or less, and preferably about 2.0 or less. In a preferred embodiment, the compressive force is applied more or less isotropically around the bulk material in a direction transverse to a longitudinal axis. Accordingly, the reduction in dimension will usually apply in all transverse directions. To illustrate, a circular cross section remains round but is reduced in diameter, while a polygonal cross section such as a square or rectangle is reduced on all sides.
- FIG. 1 The geometry of extrusion through a reducing die is illustrated in schematic form in Figures 1 and 2.
- a reducing die 6 is disposed between a deformation chamber 2 and a cooling chamber 4.
- the reducing 6 die serves to reduce the diameter or dimension of the extruded rod from an original dimension di to an extruded dimension d 2 .
- the crosslinked heated bulk material passes from the deformation chamber through the reducing die 6, the material flows by the die wall 5 that leads to a constriction 10 having the diameter d 2 of the cooling chamber 4.
- FIG. 2a to 2e show the relative configuration of the deformation chamber wall 20 and the cooling chamber wall 10.
- the die wall 5 is seen to connect the cooling deformation chamber to the cooling chamber.
- the cross section of both the deformation chamber 2 and cooling chamber 4 are circular, with dimensions di and d 2 corresponding to their respective diameters.
- the deformation chamber is square or rectangular characterized by a dimension d1 that can be arbitrarily taken along a diagonal or along a side.
- the cooling chamber 4 is also rectangular but having lower dimension d 2 .
- Figures 2c through 2e illustrate other combinations of circular, square, and triangular deformations and cooling chambers connected by reducing dies 6 having a die wall 5, and are offered by way of non-limiting example.
- the bulk material in the deformation chamber 2 is held at a compression deformable temperature. At such a temperature, the material can flow in response to pressure exerted on the material. When the compression deformable temperature is below the melting point, the material undergoes a solid state flow through the reducing die 6. Pressure or force applied to the end of the bar by the ram is translated by the die into compressive force that reduces the dimension of the bulk material in the transverse direction. Conveniently, the diameter of the bulk material to be extruded matches relatively closely the diameter or dimension di of the deformation chamber illustrated in Figure 1.
- an extruded UHMWPE rod or other crosslinked polymeric material in a bulk form characterized by an axial direction is cooled before further processing.
- the extruded bulk material can be directly processed by the stress relief step described below.
- the rod or other bulk material characterized by an axial direction is cooled to a solidification temperature in a cooling chamber or other means while pressure is maintained sufficient to keep the dimension of the extruded bulk material below the original dimension of the crosslinked bulk material.
- the pressure required to maintain the dimension lower than the original dimension may be more or less pressure than required to originally change the shape of the polymer, such as through extrusion.
- the bulk material such as extruded UHMWPE is held in a cooling chamber or similar device for a sufficient time to reach a temperature at which the bulk material no longer has a tendency to increase in dimension upon removal of the pressure.
- This temperature is designated as the solidification temperature; for UHMWPE the solidification temperature is reached when a thermostat embedded in the cooling wall (about 1 mm from the inside wall surface) reads about 30 0 C.
- the solidification temperature is not a phase change temperature such as a melting or freezing. It is also to be noted that a material such as UHMWPE can be cooled to the solidification temperature independently of whether the material was heated above or below the melting point in a previous processing step.
- the compressive deforming force is maintained on the bulk material until the bulk material cools to the solidification temperature.
- a maintenance of compressive force is conveniently provided in the reducing die embodiment illustrated in Figures 1 and 2.
- the bulk material is held in the cooling chamber 4.
- the cooling chamber is of such a size and shape as to hold the extruded bulk material at a dimension or diameter d 3 , which is less than the original dimension di of the bulk material and is conveniently about the same as the extruded dimension d 2 in a non-limiting example.
- the crosslinked material has a tendency to return to its original dimension by expanding when the temperature is above the solidification temperature.
- the expansion force of the bulk material is counteracted by the walls of the cooling chamber, with the result that compressive force is maintained on the bulk material while it cools.
- the cooling chamber is provided with cooling means such as cooling jackets or coils to remove heat from the cooling chamber and the extruded polymer bulk material.
- the polymeric extruded bulk material cools in the cooling chamber, a temperature is reached at which the material no longer has a tendency to expand or revert to its original dimension Cl 1 .
- the solidification temperature the bulk material no longer exerts pressure on the walls of the cooling chamber and can be removed.
- the material is cooled to about 30 0 C, as measured by thermostats in the walls of the chamber, before removal.
- the temperatures of the deformation chamber and the cooling chamber can be measured by conventional means, such as by thermocouples embedded into the walls of the respective chambers. For example, it has been found that when a thermocouple in the wall of the cooling chamber indicates a temperature of 30 0 C 1 an extruded bulk material made of UHMWPE has reached a bulk temperature below a solidification temperature at which the material loses it tendency to expand.
- the temperature as measured with, for example, a thermocouple embedded in the wall of the cooling chamber does not necessarily represent a bulk or equilibrium temperature of the material in the cooling chamber.
- cooling to a solidification temperature of, for example, 90 0 F or 3O 0 C means leaving the extruded bulk material in the cooling chamber until the thermocouple embedded in the walls of the cooling chamber reads 9O 0 F or 30 0 C. As noted, it has been found that such a cooling period suffices for removal of the bulk material, even though the bulk equilibrium temperature of the interior of the bulk material could be higher than the measured temperature.
- the extruded bulk material is held in the cooling chamber for an additional period of time, such as 10 minutes, after the embedded thermocouple reads 90 0 F or 30 0 C.
- the additional cooling period can enable the cooled material to be more easily removed from the cooling chamber.
- a programmable logic controller (pic) starts a timer that in turns gives a signal when the desired time has passed. At that time an operator can remove the compression deformed crosslinked material from the chamber, or rams or other suitable devices can be actuated to effect removal.
- a so-called sacrificial puck is used to improve the efficiency of the extrusion process.
- a ram 30 is provided in a retracted position with respect to the deformation chamber 2.
- Figure 3b shows the ram 30 retracted and the deformation chamber 2 filled with a rod-like bulk material 50 and a sacrificial puck 40.
- the sacrificial puck 40 is made of a crosslinked polymer, which may be the same as the crosslinked polymer of the bulk material 50. It is preferably of approximately the same cross- sectional shape and area as the bulk material 50 to be extruded.
- FIG 3c the ram 30 is shown pushing on the sacrificial puck 40, which in turn pushes on the bulk material 50 to move the bulk material 50 through the reducing die 6 into the cooling chamber 4.
- Figure 3d shows the situation at the end of the stroke of the ram 30.
- the bulk material 50 is sitting completely in the cooling chamber 4, while the sacrificial puck 30 occupies the reducing die 6.
- the sacrificial puck 40 tends to return to its original dimension because it is not being cooled in the cooling chamber as the bulk material 50 is.
- the sacrificial puck tends to extricate itself from the reducing die as shown in Figure 3f.
- the sacrificial puck 40 can then be removed from the deformation chamber and the process repeated after a cycle time in which the bulk material 50 cools to a suitable solidification temperature as discussed above.
- the bulk material is then preferably stress relieved.
- stress relieving is carried out by heating to a stress relief temperature, preferably below the melting point of the polymeric bulk material. If the cooling in the previous step is carried out while maintaining deformation force, the bulk material on stress relieving tends to expand and return to a dimension close to its original dimension.
- the diameter d 3 of the rod tends to increase to a diameter approaching di of the original bulk material.
- stress relief temperatures close to but less than the melting temperature are preferred, for example from the melting point to the melting point minus 30 or 40 0 C.
- preferred stress relief temperatures include in the range of about 100 0 C to about 135 0 C, 110°C to about 135°C, 120 0 C to 135°C, and preferably 125°C to about 135°C.
- Stress relieving is carried out for a time to complete the stress relief process.
- suitable times range from a few minutes to a few hours.
- Non-limiting examples include 1 to 12 hours, 2 to 10 hours, and 2 to 6 hours in an oven or other suitable means for maintaining a stress relief temperature.
- the stress relieving can be carried out in a vacuum, in an inert atmosphere, or in a package designed to exclude an atmosphere, it is preferably carried out in an air atmosphere.
- the solidified extruded bulk form exhibits a tendency to bend or other deviate from a preferred straight or linear orientation during the heating or other treatment associated with stress relieving.
- the bulk material is held in a mechanical device that functions to keep the bulk material straight (measured on the axial direction) during the stress relieving step.
- the bulk material is placed into V-channels to keep them straight.
- V-channels are equally spaced from each other and are part of the same physical structure.
- the several V-channels may, for example, be welded to the structure at equal spacings.
- the extruded bars are positioned on a bottom set of V-channels and then another set of V-channels is set on top of the extruded bars to rest on top of the bars. These channels help to keep the bars straight during stress relieving.
- the product of the crosslinking, heating, compressing, cooling and stress relieving steps is a bulk material having dimensions approximately equal to the original bulk material before crosslinking.
- the bulk material exhibits high tensile strength in the axial direction, a low but detectable level of free radical concentration, and a high degree of resistance to oxidation.
- the process described can be followed with regard to the dimensions of the crosslinked polymer at various stages of the process.
- a bulk material having an original dimension or diameter of di is crosslinked and heated to a compression deformation temperature. The crosslinked heated material is then compressed to a dimension or diameter d 2 which is less than di.
- the material is then held while cooling at a diameter d 3 that may be the same as d 2 , but in any case is less than the original dimension or diameter di.
- stress relieving returns the bulk material to a diameter d 4 which is greater than d 3 and in some embodiments is approximately equal to the original dimension or diameter dv
- the treated preform resulting from the steps above preferably typically has a diameter of about 2.7 to 3 inches.
- the bulk material characterized by an axial direction is machined according to known methods to provide bearing components for implants.
- the cylinder is then cut into billets along the axial direction, and each billet is machined into a suitable bearing component.
- the bearing components are machined from the billets in such a way that the in vivo load bearing axis of the bearing component corresponds to the axial direction of the bulk preform from which it is machined. Machining this way takes advantage of the increased tensile strength and other physical properties in the axial direction of the preform.
- the stresses at the bearing surface are typically multiaxial, and the magnitude of the stresses further depends on the conformity of the joint.
- the polar axis of the cup is aligned with the longitudinal axis of the extruded rod, corresponding to the axial direction.
- the wall of the cup, at the equator and rim, is parallel to the long axis of the rod, and will benefit from the enhanced strength in this direction during eccentric and rim loading scenarios.
- UHMWPE, preforms, and bearing components made according to the invention have a high level of oxidative resistance, even though free radicals can be detected in the bulk material.
- an oxidation index by infrared methods such as those based on ASTM F 2102-01.
- ASTM F 2102-01 an oxidation peak area is integrated below the carbonyl peak between 1650 cm “1 and 1850 cm '1 .
- the oxidation peak area is then normalized using the integrated area below the methane stretch between 1330 cm '1 and 1396 cm “1 .
- Oxidation index is calculated by dividing the oxidation peak area by the normalization peak area.
- Oxidative stability can then be expressed by a change in oxidation index upon accelerated aging. Alternatively, stability can be expressed as the value of oxidation attained after a certain exposure, since the oxidation index at the beginning of exposure is close to zero.
- the oxidation index of crosslinked polymers of the invention changes by less than 0.5 after exposure at 7O 0 C to five atmospheres oxygen for four days. In preferred embodiments, the oxidation index shows a change of 0.2 or less, or shows essentially no change upon exposure to five atmospheres oxygen for four days.
- the oxidation index reaches a value no higher than 1.0, preferably no higher than about 0.5, after two weeks of exposure to 5 atm oxygen at 70°C. In a preferred embodiment, the oxidation index attains a value no higher than 0.2 after two or after four weeks exposure at 70° to 5 atm oxygen, and preferably no higher than 0.1. In a particularly preferred embodiment, the specimen shows essentially no oxidation in the infrared spectrum (i.e. no development of carbonyl bands) during a two week or four week exposure.
- Oxidation stability such as discussed above is achieved in various embodiments despite the presence of a detectable level of free radicals in the crosslinked polymeric material.
- the free radical concentration is above the ESR detection limit of about 0.06 x 10 15 spins/g and is less than that in a gamma sterilized UHMWPE that is not subject to any subsequent heat treatment (after sterilization) to reduce the free radical concentration.
- the free radical concentration is less that 3 x 10 15 , preferably less 1.5 x 10 15 , and more preferably less than 1.0 x 10 15 spins/g.
- the oxidation stability is comparable to that of melt processed UHMWPE, even if according to the invention the UHMWPE is processed only below the melting point.
- the free radicals in the deformation processed UHMWPE described above may be highly stabilized and inherently resistant to oxidative degradation. Alternatively or in addition, they may be trapped within crystalline regions of the bulk material and as a consequence may be unavailable to participate in the oxidation process. Because of the oxidation stability of the material, in various embodiments it is justifiable to employ gas permeable packaging and gas plasma sterilization for the extrusion processed radiation UHMWPE. This has the advantage of avoiding gamma sterilization, which would tend to increase the free radical concentration and lead to lower oxidation stability.
- the solid state deformation process provides polymers that are characterized by a crystal and molecular orientation.
- molecular orientation is meant that polymer chains are oriented perpendicular to the direction of compression.
- crystalline orientation it is meant that crystal planes in polyethylene, such as the 200 plane and the 110 plane are oriented to the direction parallel to the compression plane. In this way the crystal planes are oriented.
- the presence of the orientations can be shown by means of birefringent measurements, infrared spectra, and x-ray diffraction.
- the plane of compression for articles compressed in a radial direction is understood to be a surface surrounding and parallel to the radial surface of the bulk material that is processed according to the invention.
- a sequence of circular cross sections along the axial direction defines a radial surface and a compression plane perpendicular to that surface.
- polymer chains orient themselves perpendicular to the direction of compression. This has the effect in a cylinder of providing molecular orientation generally parallel to the radial plane. It is believed that with this molecular and crystal orientation contributes to the enhancement of mechanical properties, and to anisotropy in the mechanical properties with respect to the axial and transverse (or radial) directions.
- crosslinked UHMWPE exhibit a high level of tensile strength in at least one direction.
- bearing components and implants are provided that take advantage of the increased strength of the bearing material.
- crosslinked UHMWPE it is possible to achieve a tensile strength at break of at least 50 MPa, preferably at least 55 MPa, and more preferably at least 60 MPa.
- materials are provided with a tensile strength at break in the range of 50-100 MPa, 55-100 MPa, 60-100 MPa, 50-90 MPa, 50-80 MPa, 50-70 MPa, 55-90 MPa, 55-80 MPa, 55-70 MPa, 60-90 MPa, 60-80 MPa, and 60-70 MPa.
- the tensile strength of a UHMWPE prepared according the invention is about 64 MPa in the axial direction.
- TX is packaged in an argon environment and gamma sterilized to a dose of 25 to 40 kGy
- the cooling chamber is sized so as to maintain the extruded rod in a deformed state.
- the walls of the cooling chamber are water-cooled.
- thermocouples embedded in the wall about 1 mm from the inside wall
- the solidified rod is removed, optionally after an additional cooling period of ten minutes, in a non-limiting example.
- a second bar is ram extruded to eject the cooled bar from the cooling chamber, once the temperature reaches about 30 0 C.
- the specimens measure 12.7 mm by 12.7 mm by 25.4 mm (0.50 in. by 0.50 in. by 1.00 in.) They are machined from the rod stock parallel (the axial direction) or perpendicular (the transverse direction) to the long axis.
- dumbbell-shaped tensile specimens consistent with the Type IV and V specimen description provided in ASTM D638-02a are tested. Specimens are 3.2 ⁇ 0.1 mm thick. Specimens are oriented parallel or perpendicular to the long axis, reflecting the axial and transverse directions, respectively).
- Tensile strength at break is determined according to ASTM 638-02a.
- the concentration of free radicals in the UHMWPE materials is characterized using an ESR spectrometer (Bruker EMX), as described previously in Jahan et al., J. Biomedical Materials Research, 1991 ; Vol. 25, pp 1005-1017.
- the spectrometer operates at 9.8 GHz (X Band) microwave frequency and 100 kHz modulation/detection frequency, and is fitted with a high sensitivity resonator cavity.
- modulation amplitude is varied between 0.5 and 5.0 Gauss, and microwave power between 0.5 and 2.0 mW.
- Specimens are aged in 5 atmospheres of oxygen in accordance with ASTM F 2003-00. Some specimens are aged for two weeks according to this standard, and others are aged for four weeks. Aging is performed in a stainless steel pressure vessel. The specimens are chosen and oriented such that the tested axis is vertical. Thus, the top and bottom faces are perpendicular to the test axis. The top face is labeled for later identification. The vessels are then filled with oxygen and purged five times to ensure the purity of the aging environment. The prisms rest on a flat surface inside the pressure vessel; thus each prism's bottom face is not exposed to oxygen, but each of its other faces are exposed to oxygen throughout the aging period.
- the vessel is placed in the oven at room temperature (24 ⁇ 2°C), and the oven was heated to the aging temperature of 70.0 ⁇ 0.1 °C at a rate of 0.1°C/min.
- FTIR Fourier transform infrared spectroscopy
- Oxidation index measurement and calculations are based on ASTM F 2102-01.
- Oxidation peak area is the integrated area below the carbonyl peak between 1650 and 1850 cm "1 .
- the normalization peak area is the integrated area below the methylene stretch between 1330 and 1396 cm '1 .
- Oxidation index is calculated by dividing the oxidation peak area by the normalization peak area.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05807766A EP1831267B1 (en) | 2004-10-07 | 2005-10-06 | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
CA2586618A CA2586618C (en) | 2004-10-07 | 2005-10-06 | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
AU2005294313A AU2005294313B2 (en) | 2004-10-07 | 2005-10-06 | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
JP2007535793A JP4990779B2 (en) | 2004-10-07 | 2005-10-06 | Solid state deformation processing of cross-linked high molecular weight polymeric materials |
AT05807766T ATE551173T1 (en) | 2004-10-07 | 2005-10-06 | SOLID PHASE DEFORMATION PROCESSING OF CROSS-LINKED HIGH MOLECULAR POLYMERIC MATERIALS |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61681104P | 2004-10-07 | 2004-10-07 | |
US60/616,811 | 2004-10-07 | ||
US10/963,974 US7344672B2 (en) | 2004-10-07 | 2004-10-13 | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
US10/963,974 | 2004-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006041969A1 true WO2006041969A1 (en) | 2006-04-20 |
Family
ID=35520815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/035907 WO2006041969A1 (en) | 2004-10-07 | 2005-10-06 | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
Country Status (7)
Country | Link |
---|---|
US (5) | US7344672B2 (en) |
EP (2) | EP2284201B1 (en) |
JP (2) | JP4990779B2 (en) |
AT (1) | ATE551173T1 (en) |
AU (1) | AU2005294313B2 (en) |
CA (1) | CA2586618C (en) |
WO (1) | WO2006041969A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008009149A1 (en) * | 2006-07-21 | 2008-01-24 | Quadrant Epp Ag | Production of uhmwpe panels |
WO2008009150A1 (en) * | 2006-07-21 | 2008-01-24 | Quadrant Epp Ag | Production of uhmwpe panels |
EP1908568A1 (en) * | 2006-10-02 | 2008-04-09 | Quadrant Epp Ag | Production of UHMWPE panels |
EP1908570A1 (en) * | 2006-10-02 | 2008-04-09 | Quadrant Epp Ag | Production of UHMWPE panels |
EP2016118A2 (en) * | 2005-08-22 | 2009-01-21 | The General Hospital Corporation d/b/a Massachusetts General Hospital | Highly cross-linked and wear-resistant polyethylene prepared below the melt |
US7736579B2 (en) | 2006-07-21 | 2010-06-15 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7758796B2 (en) | 2006-07-21 | 2010-07-20 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7758797B2 (en) | 2006-07-21 | 2010-07-20 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7803450B2 (en) | 2006-07-21 | 2010-09-28 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
JP2011503252A (en) * | 2007-11-06 | 2011-01-27 | ディーエスエム アイピー アセッツ ビー.ブイ. | Production method of high molecular weight polyethylene |
EP2486948A1 (en) * | 2007-04-10 | 2012-08-15 | Zimmer, Inc. | An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US8652212B2 (en) | 2008-01-30 | 2014-02-18 | Zimmer, Inc. | Orthopedic component of low stiffness |
US8664290B2 (en) | 2007-04-10 | 2014-03-04 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US8673202B2 (en) | 2005-08-18 | 2014-03-18 | Zimmer, Gmbh | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles |
US9708467B2 (en) | 2013-10-01 | 2017-07-18 | Zimmer, Inc. | Polymer compositions comprising one or more protected antioxidants |
US10184031B2 (en) | 2014-03-12 | 2019-01-22 | Zimmer, Inc. | Melt-stabilized ultra high molecular weight polyethylene and method of making the same |
US10265891B2 (en) | 2014-12-03 | 2019-04-23 | Zimmer, Inc. | Antioxidant-infused ultra high molecular weight polyethylene |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE454110T1 (en) | 2003-06-27 | 2010-01-15 | Abs Corp | SYSTEM FOR ANKLE JOINT ARTHROPLASTY |
US7462318B2 (en) * | 2004-10-07 | 2008-12-09 | Biomet Manufacturing Corp. | Crosslinked polymeric material with enhanced strength and process for manufacturing |
US7344672B2 (en) | 2004-10-07 | 2008-03-18 | Biomet Manufacturing Corp. | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
US8262976B2 (en) | 2004-10-07 | 2012-09-11 | Biomet Manufacturing Corp. | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
US7538379B1 (en) * | 2005-06-15 | 2009-05-26 | Actel Corporation | Non-volatile two-transistor programmable logic cell and array layout |
WO2008052574A1 (en) * | 2006-10-30 | 2008-05-08 | Plus Orthopedics Ag | Processes comprising crosslinking polyethylene or using crosslinked polyethylene |
EP2097244A1 (en) * | 2006-11-10 | 2009-09-09 | Dow Global Technologies Inc. | Substantially proportional drawing die for polymer compositions |
US8641959B2 (en) | 2007-07-27 | 2014-02-04 | Biomet Manufacturing, Llc | Antioxidant doping of crosslinked polymers to form non-eluting bearing components |
CN101848947B (en) * | 2007-11-06 | 2012-07-18 | 帝斯曼知识产权资产管理有限公司 | Process for producing (ultra) high molecular weight polyethylene |
US20090243159A1 (en) * | 2008-03-26 | 2009-10-01 | Dehchuan Sun | Method for thermal crosslinking of previously irradiated polymeric material and medical implant |
US9745462B2 (en) * | 2008-11-20 | 2017-08-29 | Zimmer Gmbh | Polyethylene materials |
GB0922339D0 (en) | 2009-12-21 | 2010-02-03 | Mcminn Derek J W | Acetabular cup prothesis and introducer thereof |
US8399535B2 (en) | 2010-06-10 | 2013-03-19 | Zimmer, Inc. | Polymer [[s]] compositions including an antioxidant |
EP3263637B1 (en) | 2013-01-30 | 2020-08-12 | W. L. Gore & Associates, Inc. | Method for producing porous articles from ultra high molecular weight polyethylene |
US9586370B2 (en) | 2013-08-15 | 2017-03-07 | Biomet Manufacturing, Llc | Method for making ultra high molecular weight polyethylene |
JP6535928B2 (en) * | 2016-05-16 | 2019-07-03 | 三菱造船株式会社 | Liquefied gas quenchability determination device, liquefied gas storage tank, liquefied gas carrier, and quenchability determination method by liquefied gas |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4655769A (en) * | 1984-10-24 | 1987-04-07 | Zachariades Anagnostis E | Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states |
US5030402A (en) * | 1989-03-17 | 1991-07-09 | Zachariades Anagnostis E | Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties |
EP0729981A1 (en) * | 1994-09-21 | 1996-09-04 | Bmg Incorporated | Ultrahigh-molecular-weight polyethylene molding for artificial joint and process for producing the molding |
EP0774339A1 (en) * | 1995-11-02 | 1997-05-21 | Howmedica International Inc. | Method of improving the wear quality of ultra-high molecular weight polyethylene |
EP1197310A1 (en) * | 2000-09-29 | 2002-04-17 | Depuy Products, Inc. | Oriented, cross-linked UHMWPE molding for orthopaedic applications |
WO2003049930A1 (en) * | 2001-12-12 | 2003-06-19 | Depuy Products, Inc. | Orthopaedic device and method for making same |
Family Cites Families (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US458716A (en) * | 1891-09-01 | Synchronizing mechanism for the seconds-hands of clocks | ||
US2948666A (en) * | 1956-11-21 | 1960-08-09 | Gen Electric | Irradiation process |
US3362897A (en) * | 1962-11-21 | 1968-01-09 | Gen Electric | Stable irradiated polyethylene |
US3260774A (en) * | 1963-01-21 | 1966-07-12 | Tensolite Insulated Wire Co In | Method for the continuous extrusion of unsintered polytetrafluoroethylene powder |
US3563870A (en) * | 1969-01-23 | 1971-02-16 | Dow Chemical Co | Melt strength and melt extensibility of irradiated linear polyethylene |
NL161484C (en) | 1969-07-10 | 1980-02-15 | Hoechst Ag | METHOD FOR PREPARING STABILIZED POLYOLAINS |
US3745231A (en) * | 1971-06-15 | 1973-07-10 | Gen Cable Corp | Filled telephone cables with irradiated polyethylene insulation |
JPS526314B2 (en) * | 1971-11-01 | 1977-02-21 | ||
JPS5243874B2 (en) * | 1972-07-14 | 1977-11-02 | ||
JPS526761Y2 (en) | 1972-07-21 | 1977-02-12 | ||
US3956253A (en) * | 1972-09-16 | 1976-05-11 | Ruhrchemie Aktiengesellschaft | Polyethylene molding compounds of high-wear resistance |
JPS526761A (en) * | 1975-07-04 | 1977-01-19 | Ube Industries | Method and die for extruding solid plastic |
US4055862A (en) * | 1976-01-23 | 1977-11-01 | Zimmer Usa, Inc. | Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene |
US4265959A (en) | 1977-01-12 | 1981-05-05 | Sumitomo Chemical Company, Limited | Process for producing semipermeable membranes |
US4171338A (en) * | 1977-11-01 | 1979-10-16 | Allied Chemical Corporation | Process for ultra-high molecular weight, high abrasion resistance, cross-linked polyethylene |
AU523866B2 (en) * | 1978-04-18 | 1982-08-19 | Du Pont Canada Inc. | Manufacture of film |
US4224696A (en) * | 1978-09-08 | 1980-09-30 | Hexcel Corporation | Prosthetic knee |
US4281420A (en) * | 1979-02-15 | 1981-08-04 | Raab S | Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same |
US4266919A (en) * | 1979-08-09 | 1981-05-12 | E. I. Du Pont De Nemours And Company | Ram-extrusion apparatus for non-melt fabricable polymeric resins |
US4348350A (en) * | 1980-09-26 | 1982-09-07 | Michigan Molecular Institute | Ultra-drawing crystalline polymers under high pressure |
JPS57211347A (en) | 1981-06-24 | 1982-12-25 | Dainippon Printing Co Ltd | Artificial joint socket and method |
US4612245A (en) * | 1981-07-31 | 1986-09-16 | W. R. Grace & Co., Cryovac Div. | Blown bubble process for producing oriented thin films |
DE3131812C2 (en) * | 1981-08-12 | 1983-06-16 | Hewing GmbH & Co, 4434 Ochtrup | Process for the production of moldings from polyolefin molding compositions crosslinked by irradiation with electron beams |
JPS5829841A (en) * | 1981-08-14 | 1983-02-22 | Asahi Chem Ind Co Ltd | Improve polyethylene composition |
JPS62216723A (en) * | 1982-06-12 | 1987-09-24 | Somar Corp | High-molecular weight polyethylene molded product |
US4586995A (en) * | 1982-09-17 | 1986-05-06 | Phillips Petroleum Company | Polymer and irradiation treatment method |
JPS6059172A (en) * | 1983-09-09 | 1985-04-05 | 東洋紡績株式会社 | Crosslinked polyethylene fiber |
JPS6079932A (en) * | 1983-10-07 | 1985-05-07 | Asahi Chem Ind Co Ltd | High-orientation stretchable multi-layer film and manufacture thereof |
GB8332952D0 (en) * | 1983-12-09 | 1984-01-18 | Ward I M | Polymer irradiation |
JPS60154034A (en) * | 1984-01-23 | 1985-08-13 | Toa Nenryo Kogyo Kk | Stretched polyethylene film |
CA1257745A (en) | 1984-02-21 | 1989-07-18 | Nachum Rosenzweig | Recoverable polyethylene composition and article |
US4587163A (en) * | 1984-03-06 | 1986-05-06 | Zachariades Anagnostis E | Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance |
US5030487A (en) * | 1984-04-04 | 1991-07-09 | Raychem Corporation | Heat recoverable article comprising conductive polymer compositions |
ATE54094T1 (en) * | 1984-04-13 | 1990-07-15 | Nat Res Dev | PROCESSES FOR DEFORMING IN THE SOLID STATE. |
IN164745B (en) * | 1984-05-11 | 1989-05-20 | Stamicarbon | |
JPS61143111A (en) * | 1984-12-17 | 1986-06-30 | Agency Of Ind Science & Technol | Mold for solid phase extrusion of synthetic resin tubular body |
US4820466A (en) * | 1985-01-31 | 1989-04-11 | Zachariades Anagnostis E | Process for obtaining ultra-high modulus products |
FR2578780B1 (en) * | 1985-03-12 | 1987-08-14 | Commissariat Energie Atomique | HIGH MOLECULAR WEIGHT POLYOLEFIN PART, PARTICULARLY FOR JOINT PROSTHESIS, AND ITS MANUFACTURING METHOD BY CLOSED MATRIX FORGING |
US4820468A (en) | 1985-03-22 | 1989-04-11 | Hartig Martval J | Method for making welded hollow plastic plate heat exchangers |
EP0216863B1 (en) * | 1985-04-01 | 1992-05-20 | RAYCHEM CORPORATION (a Delaware corporation) | High strength polymeric fibers |
JPS6235417A (en) * | 1985-08-07 | 1987-02-16 | 工業技術院長 | Tubular electric insulator |
NL8502298A (en) * | 1985-08-21 | 1987-03-16 | Stamicarbon | PROCESS FOR MANUFACTURING HIGH TENSILE STRENGTH AND MODULUS POLYETHYLENE ARTICLES. |
CA1279167C (en) * | 1985-11-30 | 1991-01-22 | Mitsui Chemicals, Incorporated | Molecularly oriented, silane-crosslinked ultra-high- molecular-weight polyethylene molded article and process for preparation thereof |
DE3789325T2 (en) * | 1986-01-14 | 1994-10-27 | Raychem Corp | Conductive polymer composition. |
JPH0639499B2 (en) | 1986-04-17 | 1994-05-25 | 日本石油株式会社 | Method for producing crosslinked ultra high molecular weight polyethylene |
US4857247A (en) | 1986-08-18 | 1989-08-15 | Technicon Instruments Corporation | Method for drawing thermoplastic tubing |
NL8700305A (en) * | 1987-02-10 | 1988-09-01 | Stamicarbon | PROCESS FOR MANUFACTURING FLAT FILM FROM HIGH DENSITY POLYETHENE. |
GB2207436B (en) | 1987-07-24 | 1991-07-24 | Nat Research And Dev Corp The | Solid phase deformation process |
US4862721A (en) * | 1988-02-16 | 1989-09-05 | Hydramet American, Inc. | Multiple cylinder extrusion apparatus and method |
JPH0812771B2 (en) | 1988-03-11 | 1996-02-07 | 日本電気株式会社 | Electron beam processing equipment |
US5478906A (en) | 1988-12-02 | 1995-12-26 | E. I. Du Pont De Nemours And Company | Ultrahigh molecular weight linear polyethylene and articles thereof |
JPH0764015B2 (en) | 1988-12-27 | 1995-07-12 | 日本石油株式会社 | Method for producing highly oriented polyethylene material |
DE4029445A1 (en) * | 1989-09-18 | 1991-03-28 | Mitsubishi Paper Mills Ltd | HEAT-TRANSMITTING RECORDING MATERIAL |
US5037928A (en) * | 1989-10-24 | 1991-08-06 | E. I. Du Pont De Nemours And Company | Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles |
US5200439A (en) * | 1990-04-13 | 1993-04-06 | Mitsui Toatsu Chemicals, Inc. | Method for increasing intrinsic viscosity of syndiotactic polypropylene |
JP2603353B2 (en) * | 1990-04-20 | 1997-04-23 | 日本石油株式会社 | Continuous production method of polyolefin material |
US5130376A (en) * | 1990-04-23 | 1992-07-14 | Hercules Incorporated | UHMWPE/styrenic molding compositions with improved flow properties and impact strength |
NL9001069A (en) | 1990-05-03 | 1991-12-02 | Stamicarbon | ARTICLES OF NETWORK ORIENTED HIGH MOLECULAR POLYETHENE. |
US5204045A (en) * | 1990-06-15 | 1993-04-20 | Symplastics Limited | Process for extruding polymer shapes with smooth, unbroken surface |
US5169589A (en) | 1990-06-27 | 1992-12-08 | Symplastics Limited | Process and apparatus for deformation of solid thermoplastic polymers and related products |
NL9001745A (en) * | 1990-08-01 | 1992-03-02 | Stamicarbon | SOLUTION OF ULTRA-HIGH MOLECULAR POLYETHENE. |
US5210130A (en) * | 1990-08-07 | 1993-05-11 | E. I. Du Pont De Nemours And Company | Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof |
JP2997898B2 (en) | 1990-11-27 | 2000-01-11 | 株式会社小松製作所 | Ultra high molecular weight polyethylene molding method |
GB9027699D0 (en) * | 1990-12-20 | 1991-02-13 | Univ Toronto | Process for the continuous production of high modulus articles from polyethylene |
US5508319A (en) * | 1991-06-21 | 1996-04-16 | Montell North America Inc. | High melt strength, ethylene polymer, process for making it, and use thereof |
US5439949A (en) * | 1991-08-21 | 1995-08-08 | Rexene Corporation | Propylene compositions with improved resistance to thermoforming sag |
US5276079A (en) * | 1991-11-15 | 1994-01-04 | Minnesota Mining And Manufacturing Company | Pressure-sensitive poly(n-vinyl lactam) adhesive composition and method for producing and using same |
US5266246A (en) | 1991-11-19 | 1993-11-30 | Casco Tool & Extrusions, Inc. | Method of forming a molded plastic part |
EP0614347B1 (en) | 1991-11-27 | 1997-07-16 | E.I. Du Pont De Nemours And Company | Ultrahigh molecular weight linear polyethylene and processes of manufacture |
US5466530A (en) * | 1993-01-21 | 1995-11-14 | England; Garry L. | Biocompatible components fabricated from a substantially consolidated stock of material |
US5830396A (en) | 1993-01-21 | 1998-11-03 | Biomet, Inc. | Method for processing thermoplastics, thermosets and elastomers |
US5358529A (en) * | 1993-03-05 | 1994-10-25 | Smith & Nephew Richards Inc. | Plastic knee femoral implants |
US5414049A (en) * | 1993-06-01 | 1995-05-09 | Howmedica Inc. | Non-oxidizing polymeric medical implant |
US5405393A (en) * | 1993-06-02 | 1995-04-11 | Academisch Ziekenhuis Groningen | Temporomandibular joint prosthesis |
CA2127746A1 (en) * | 1993-07-09 | 1995-01-10 | Dedo Suwanda | Continuous process for manufacturing crosslinked, oriented polyethylene products |
WO1995006148A1 (en) * | 1993-08-20 | 1995-03-02 | Smith & Nephew Richards, Inc. | Self-reinforced ultra-high molecular weight polyethylene composites |
US5407623A (en) * | 1994-01-06 | 1995-04-18 | Polteco, Inc. | Process for obtaining ultra-high modulus line products with enhanced mechanical properties |
US5709020A (en) * | 1994-07-19 | 1998-01-20 | University Of Kentucky Research Foundation | Method for reducing the generation of wear particulates from an implant |
CA2166450C (en) * | 1995-01-20 | 2008-03-25 | Ronald Salovey | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US5577368A (en) * | 1995-04-03 | 1996-11-26 | Johnson & Johnson Professional, Inc. | Method for improving wear resistance of polymeric bioimplantable components |
JPH09141729A (en) | 1995-09-22 | 1997-06-03 | Sekisui Chem Co Ltd | Method and apparatus for producing hollow molded product |
GB9522478D0 (en) * | 1995-11-02 | 1996-01-03 | Howmedica | Prosthetic bearing element and implant incorporating such an element |
US5879400A (en) * | 1996-02-13 | 1999-03-09 | Massachusetts Institute Of Technology | Melt-irradiated ultra high molecular weight polyethylene prosthetic devices |
US8865788B2 (en) * | 1996-02-13 | 2014-10-21 | The General Hospital Corporation | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
NZ331107A (en) | 1996-02-13 | 2000-04-28 | Gen Hospital Corp | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
US20020156536A1 (en) * | 1996-02-13 | 2002-10-24 | Harris William H. | Polyethylene hip joint prosthesis with extended range of motion |
US8563623B2 (en) | 1996-02-13 | 2013-10-22 | The General Hospital Corporation | Radiation melt treated ultra high molecular weight polyethylene prosthetic devices |
US6228900B1 (en) * | 1996-07-09 | 2001-05-08 | The Orthopaedic Hospital And University Of Southern California | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
EP1795212A3 (en) | 1996-07-09 | 2007-09-05 | Orthopaedic Hospital | Crosslinking of polyethylene for low wear using radiation and thermal treatments |
US5827904A (en) | 1996-09-27 | 1998-10-27 | Hahn; David | Medical implant composition |
US6017975A (en) * | 1996-10-02 | 2000-01-25 | Saum; Kenneth Ashley | Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance |
GB9620692D0 (en) * | 1996-10-04 | 1996-11-20 | Vantage Polymers Limited | Olefin polymers |
EP1028760B1 (en) | 1996-10-15 | 2004-04-14 | Orthopaedic Hospital | Wear resistant surface-gradient cross-linked polyethylene |
JPH10166468A (en) | 1996-12-10 | 1998-06-23 | Mitsui Chem Inc | Manufacture of thermoplastic resin pipe and device therefor |
US5965074A (en) | 1997-02-17 | 1999-10-12 | E.I. Du Pont De Nemours And Company | Continuous paste extrusion method |
JP3952535B2 (en) | 1997-05-13 | 2007-08-01 | ソニー株式会社 | Time measuring apparatus and method |
JP4557317B2 (en) * | 1997-08-12 | 2010-10-06 | 三菱化学株式会社 | Polyethylene resin porous film and method for producing the same |
JPH1177778A (en) | 1997-09-10 | 1999-03-23 | Mitsubishi Chem Corp | Reduction of deformation of disk substrate |
US6051487A (en) | 1997-12-18 | 2000-04-18 | Advanced Micro Devices, Inc. | Semiconductor device fabrication using a sacrificial plug for defining a region for a gate electrode |
JP4315261B2 (en) | 1998-02-25 | 2009-08-19 | ナカシマメディカル株式会社 | Sliding member for artificial joint and manufacturing method |
US6692679B1 (en) * | 1998-06-10 | 2004-02-17 | Depuy Orthopaedics, Inc. | Cross-linked molded plastic bearings |
SE9900519D0 (en) | 1999-02-17 | 1999-02-17 | Lars Lidgren | A method for the preparation of UHMWPE doped with an antioxidant and an implant made thereof |
US6355215B1 (en) * | 1999-03-10 | 2002-03-12 | Implex Corp. | Wear-resistant olefinic medical implant and thermal treatment container therefor |
DE19914571C2 (en) | 1999-03-31 | 2002-10-24 | Joerg Mueller | Process for producing a plasma-polymerized ion-conducting barrier layer for polymer electrolyte membranes |
US6245276B1 (en) * | 1999-06-08 | 2001-06-12 | Depuy Orthopaedics, Inc. | Method for molding a cross-linked preform |
US6432349B1 (en) * | 1999-06-29 | 2002-08-13 | Zimmer, Inc. | Process of making an articulating bearing surface |
US6184265B1 (en) * | 1999-07-29 | 2001-02-06 | Depuy Orthopaedics, Inc. | Low temperature pressure stabilization of implant component |
US6143232A (en) * | 1999-07-29 | 2000-11-07 | Bristol-Meyers Squibb Company | Method of manufacturing an articulating bearing surface for an orthopaedic implant |
US6365089B1 (en) * | 1999-09-24 | 2002-04-02 | Zimmer, Inc. | Method for crosslinking UHMWPE in an orthopaedic implant |
US6395799B1 (en) * | 2000-02-21 | 2002-05-28 | Smith & Nephew, Inc. | Electromagnetic and mechanical wave energy treatments of UHMWPE |
US6414086B1 (en) * | 2000-02-29 | 2002-07-02 | Howmedica Osteonics Corp. | Compositions, processes and methods of improving the wear resistance of prosthetic medical devices |
JP2001318470A (en) * | 2000-02-29 | 2001-11-16 | Nikon Corp | Exposure system, micro-device, photomask and exposure method |
FI116667B (en) * | 2000-04-17 | 2006-01-31 | Suomen Muuraustyoe Smt Oy | Casting procedure and casting |
DE60137212D1 (en) | 2000-04-27 | 2009-02-12 | Orthopaedic Hospital | OXIDATION-RESISTANT AND ABRASION-RESISTANT POLYETHYLENE FOR HUMAN JOINT KIT AND METHOD FOR THE PRODUCTION THEREOF |
US6503439B1 (en) * | 2000-06-15 | 2003-01-07 | Albert H. Burstein | Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof |
DE60122360T2 (en) | 2000-09-29 | 2007-08-09 | DePuy Orthopaedics, Inc., Warsaw | TREATMENT OF ANY IRRADIATED PROBATION OF A PROSTHETIC POLYETHYLENE BEARING ELEMENT COMPRISING AN OVERCRITICAL FLUID |
WO2002048259A2 (en) | 2000-12-12 | 2002-06-20 | Massachusetts General Hospital | Selective, controlled manipulation of polymers |
US6547828B2 (en) * | 2001-02-23 | 2003-04-15 | Smith & Nephew, Inc. | Cross-linked ultra-high molecular weight polyethylene for medical implant use |
GB0122117D0 (en) * | 2001-09-13 | 2001-10-31 | United Ind Operations Ltd | Method of crosslinking polyolefins |
JP2003117931A (en) * | 2001-10-01 | 2003-04-23 | Depuy Products Inc | Oriented and bridged uhmwpe molded form for orthopedics |
US6686437B2 (en) * | 2001-10-23 | 2004-02-03 | M.M.A. Tech Ltd. | Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same |
EP1463457A4 (en) * | 2002-01-04 | 2006-12-20 | Massachusetts Gen Hospital | A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt |
US7819925B2 (en) | 2002-01-28 | 2010-10-26 | Depuy Products, Inc. | Composite prosthetic bearing having a crosslinked articulating surface and method for making the same |
JP2003242831A (en) | 2002-02-12 | 2003-08-29 | National Institute Of Advanced Industrial & Technology | Proton conductive film, its manufacturing method, and fuel cell using the same |
CA2429930C (en) | 2002-06-06 | 2008-10-14 | Howmedica Osteonics Corp. | Sequentially cross-linked polyethylene |
US7431874B2 (en) | 2003-01-16 | 2008-10-07 | Massachusetts General Hospital | Methods for making oxidation resistant polymeric material |
AT412969B (en) | 2003-05-19 | 2005-09-26 | Klaus Dr Lederer | NETWORKED, ULTRA-HIGH-MOLECULAR POLYETHYLENE (UHMW-PE) |
US7214764B2 (en) | 2003-06-30 | 2007-05-08 | Depuy Products, Inc. | Free radical quench process for irradiated ultrahigh molecular weight polyethylene |
US20040265165A1 (en) | 2003-06-30 | 2004-12-30 | Depuy Products, Inc. | Free radical quench process for irradiated ultrahigh molecular weight polyethylene |
US7205051B2 (en) * | 2003-09-30 | 2007-04-17 | Depuy Products, Inc. | Medical implant or medical implant part |
US6962846B2 (en) | 2003-11-13 | 2005-11-08 | Micron Technology, Inc. | Methods of forming a double-sided capacitor or a contact using a sacrificial structure |
EP3111895B1 (en) * | 2004-02-03 | 2019-09-04 | The General Hospital Corporation | Highly crystalline cross-linked oxidation-resistant polyethylene |
CA2565849C (en) | 2004-05-11 | 2013-01-29 | The General Hospital Corporation Dba Massachusetts General Hospital | Methods for making oxidation resistant polymeric material |
US8262976B2 (en) | 2004-10-07 | 2012-09-11 | Biomet Manufacturing Corp. | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
US7547405B2 (en) | 2004-10-07 | 2009-06-16 | Biomet Manufacturing Corp. | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
US7462318B2 (en) * | 2004-10-07 | 2008-12-09 | Biomet Manufacturing Corp. | Crosslinked polymeric material with enhanced strength and process for manufacturing |
US7344672B2 (en) | 2004-10-07 | 2008-03-18 | Biomet Manufacturing Corp. | Solid state deformation processing of crosslinked high molecular weight polymeric materials |
US7896921B2 (en) | 2004-12-30 | 2011-03-01 | Depuy Products, Inc. | Orthopaedic bearing and method for making the same |
US7883653B2 (en) | 2004-12-30 | 2011-02-08 | Depuy Products, Inc. | Method of making an implantable orthopaedic bearing |
US7879275B2 (en) | 2004-12-30 | 2011-02-01 | Depuy Products, Inc. | Orthopaedic bearing and method for making the same |
US7435372B2 (en) | 2005-03-31 | 2008-10-14 | Zimmer, Inc. | Liquid bath annealing of polymers for orthopaedic implants |
JP2008540809A (en) | 2005-05-18 | 2008-11-20 | ザ ジェネラル ホスピタル コーポレイション ディー ビー エイ マサチューセッツ ジェネラル ホスピタル | Hydrogel and hydrogel particles |
ES2372742T3 (en) | 2005-08-22 | 2012-01-26 | The General Hospital Corporation Dba Massachusetts General Hospital | HOMOGENEIZED POLYMER MATERIAL RESISTANT TO OXIDATION. |
EP2208739A1 (en) | 2005-08-22 | 2010-07-21 | The General Hospital Corporation d/b/a Massachusetts General Hospital | Highly crystalline polyethylene |
US7635725B2 (en) | 2006-02-21 | 2009-12-22 | The Brigham And Women's Hospital, Inc. | Crosslinked polymers |
US20070275030A1 (en) | 2006-05-25 | 2007-11-29 | The General Hospital Corporation Dba Massachusetts General Hospital | Anti-cross-linking agents and methods for inhibiting cross-linking of injectable hydrogel formulations |
US20080036111A1 (en) | 2006-08-09 | 2008-02-14 | Dehchuan Sun | Non-oxidizing thermally crosslinked polymeric material and medical implant |
US9441081B2 (en) | 2007-03-02 | 2016-09-13 | The General Hospital Corp. | Cross-linking of antioxidant-containing polymers |
US8641959B2 (en) | 2007-07-27 | 2014-02-04 | Biomet Manufacturing, Llc | Antioxidant doping of crosslinked polymers to form non-eluting bearing components |
-
2004
- 2004-10-13 US US10/963,974 patent/US7344672B2/en not_active Expired - Fee Related
-
2005
- 2005-10-06 WO PCT/US2005/035907 patent/WO2006041969A1/en active Application Filing
- 2005-10-06 EP EP10181759.1A patent/EP2284201B1/en not_active Not-in-force
- 2005-10-06 AT AT05807766T patent/ATE551173T1/en active
- 2005-10-06 EP EP05807766A patent/EP1831267B1/en not_active Not-in-force
- 2005-10-06 AU AU2005294313A patent/AU2005294313B2/en not_active Ceased
- 2005-10-06 JP JP2007535793A patent/JP4990779B2/en not_active Expired - Fee Related
- 2005-10-06 CA CA2586618A patent/CA2586618C/en active Active
-
2008
- 2008-02-21 US US12/035,018 patent/US7993401B2/en not_active Expired - Fee Related
-
2010
- 2010-03-17 JP JP2010061326A patent/JP5437123B2/en not_active Expired - Fee Related
- 2010-08-03 US US12/849,677 patent/US7927536B2/en not_active Expired - Lifetime
-
2011
- 2011-07-18 US US13/185,056 patent/US8398913B2/en not_active Expired - Fee Related
-
2013
- 2013-03-05 US US13/785,644 patent/US9017590B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4655769A (en) * | 1984-10-24 | 1987-04-07 | Zachariades Anagnostis E | Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states |
US5030402A (en) * | 1989-03-17 | 1991-07-09 | Zachariades Anagnostis E | Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties |
EP0729981A1 (en) * | 1994-09-21 | 1996-09-04 | Bmg Incorporated | Ultrahigh-molecular-weight polyethylene molding for artificial joint and process for producing the molding |
US6168626B1 (en) | 1994-09-21 | 2001-01-02 | Bmg Incorporated | Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same |
EP0774339A1 (en) * | 1995-11-02 | 1997-05-21 | Howmedica International Inc. | Method of improving the wear quality of ultra-high molecular weight polyethylene |
EP1197310A1 (en) * | 2000-09-29 | 2002-04-17 | Depuy Products, Inc. | Oriented, cross-linked UHMWPE molding for orthopaedic applications |
US20050043815A1 (en) * | 2000-09-29 | 2005-02-24 | Richard King | Oriented, cross-linked UHMWPE molding for orthopaedic applications |
WO2003049930A1 (en) * | 2001-12-12 | 2003-06-19 | Depuy Products, Inc. | Orthopaedic device and method for making same |
Non-Patent Citations (1)
Title |
---|
JAHAN ET AL., J. BIOMEDICAL MATERIALS RESEARCH, vol. 25, 1991, pages 1005 - 1017 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8673202B2 (en) | 2005-08-18 | 2014-03-18 | Zimmer, Gmbh | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles |
US11001680B2 (en) | 2005-08-18 | 2021-05-11 | Zimmer Gmbh | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles |
US11015030B2 (en) | 2005-08-18 | 2021-05-25 | Zimmer Gmbh | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles |
EP2016118A4 (en) * | 2005-08-22 | 2009-05-06 | Gen Hospital Corp | Highly cross-linked and wear-resistant polyethylene prepared below the melt |
EP2016118A2 (en) * | 2005-08-22 | 2009-01-21 | The General Hospital Corporation d/b/a Massachusetts General Hospital | Highly cross-linked and wear-resistant polyethylene prepared below the melt |
US7981349B2 (en) | 2006-07-21 | 2011-07-19 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7736579B2 (en) | 2006-07-21 | 2010-06-15 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7758796B2 (en) | 2006-07-21 | 2010-07-20 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7758797B2 (en) | 2006-07-21 | 2010-07-20 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
US7803450B2 (en) | 2006-07-21 | 2010-09-28 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
WO2008009149A1 (en) * | 2006-07-21 | 2008-01-24 | Quadrant Epp Ag | Production of uhmwpe panels |
US7980839B2 (en) | 2006-07-21 | 2011-07-19 | Quadrant Epp Ag | Production of UHMWPE sheet materials |
KR101410652B1 (en) * | 2006-07-21 | 2014-07-03 | 콰드란트 이피피 에이지 | Production of uhmwpe panels |
WO2008009150A1 (en) * | 2006-07-21 | 2008-01-24 | Quadrant Epp Ag | Production of uhmwpe panels |
EP1908568A1 (en) * | 2006-10-02 | 2008-04-09 | Quadrant Epp Ag | Production of UHMWPE panels |
EP1908570A1 (en) * | 2006-10-02 | 2008-04-09 | Quadrant Epp Ag | Production of UHMWPE panels |
EP2578248A1 (en) * | 2007-04-10 | 2013-04-10 | Zimmer, Inc. | An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
EP2564882A1 (en) * | 2007-04-10 | 2013-03-06 | Zimmer, Inc. | An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US8664290B2 (en) | 2007-04-10 | 2014-03-04 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US8669299B2 (en) | 2007-04-10 | 2014-03-11 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
EP2486948A1 (en) * | 2007-04-10 | 2012-08-15 | Zimmer, Inc. | An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US9822224B2 (en) | 2007-04-10 | 2017-11-21 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications |
US10556998B2 (en) | 2007-04-10 | 2020-02-11 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications |
US9265545B2 (en) | 2007-04-10 | 2016-02-23 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US9277949B2 (en) | 2007-04-10 | 2016-03-08 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications |
US9926432B2 (en) | 2007-04-10 | 2018-03-27 | Zimmer, Inc. | Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications |
US9290629B2 (en) | 2007-11-06 | 2016-03-22 | Dsm Ip Assets B.V. | Process for producing high molecular weight polyethylene |
US9238719B2 (en) | 2007-11-06 | 2016-01-19 | Dsm Ip Assets B.V. | Process for producing high molecular weight polyethylene |
JP2011503252A (en) * | 2007-11-06 | 2011-01-27 | ディーエスエム アイピー アセッツ ビー.ブイ. | Production method of high molecular weight polyethylene |
US9718241B2 (en) | 2008-01-30 | 2017-08-01 | Zimmer, Inc. | Method of manufacturing an acetabular component |
US8652212B2 (en) | 2008-01-30 | 2014-02-18 | Zimmer, Inc. | Orthopedic component of low stiffness |
US9708467B2 (en) | 2013-10-01 | 2017-07-18 | Zimmer, Inc. | Polymer compositions comprising one or more protected antioxidants |
US10184031B2 (en) | 2014-03-12 | 2019-01-22 | Zimmer, Inc. | Melt-stabilized ultra high molecular weight polyethylene and method of making the same |
US10265891B2 (en) | 2014-12-03 | 2019-04-23 | Zimmer, Inc. | Antioxidant-infused ultra high molecular weight polyethylene |
Also Published As
Publication number | Publication date |
---|---|
EP1831267A1 (en) | 2007-09-12 |
US20080140196A1 (en) | 2008-06-12 |
JP2010180410A (en) | 2010-08-19 |
US20110272862A1 (en) | 2011-11-10 |
US20130245772A1 (en) | 2013-09-19 |
JP2008515671A (en) | 2008-05-15 |
JP4990779B2 (en) | 2012-08-01 |
JP5437123B2 (en) | 2014-03-12 |
EP2284201A1 (en) | 2011-02-16 |
CA2586618C (en) | 2012-01-24 |
US20100314800A1 (en) | 2010-12-16 |
US8398913B2 (en) | 2013-03-19 |
AU2005294313B2 (en) | 2012-03-08 |
EP1831267B1 (en) | 2012-03-28 |
AU2005294313A1 (en) | 2006-04-20 |
EP2284201B1 (en) | 2016-03-30 |
ATE551173T1 (en) | 2012-04-15 |
US20060079595A1 (en) | 2006-04-13 |
US7927536B2 (en) | 2011-04-19 |
US9017590B2 (en) | 2015-04-28 |
US7344672B2 (en) | 2008-03-18 |
US7993401B2 (en) | 2011-08-09 |
CA2586618A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7993401B2 (en) | Solid state deformation processing of crosslinked high molecular weight polymeric materials | |
US8137608B2 (en) | Crosslinked polymeric material with enhanced strength and process for manufacturing | |
US7547405B2 (en) | Solid state deformation processing of crosslinked high molecular weight polymeric materials | |
US8262976B2 (en) | Solid state deformation processing of crosslinked high molecular weight polymeric materials | |
AU2012200920B2 (en) | Solid State Deformation Processing Of Crosslinked High Molecular Weight Polymeric Materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007535793 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005294313 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005807766 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2586618 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2005294313 Country of ref document: AU Date of ref document: 20051006 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005807766 Country of ref document: EP |