WO2006040864A1 - Abrasive pad - Google Patents

Abrasive pad Download PDF

Info

Publication number
WO2006040864A1
WO2006040864A1 PCT/JP2005/012903 JP2005012903W WO2006040864A1 WO 2006040864 A1 WO2006040864 A1 WO 2006040864A1 JP 2005012903 W JP2005012903 W JP 2005012903W WO 2006040864 A1 WO2006040864 A1 WO 2006040864A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
polishing
range
polishing pad
wafer
Prior art date
Application number
PCT/JP2005/012903
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Izumi
Jun Tamura
Takuya Nagamine
Takashi Arahata
Original Assignee
Nihon Microcoating Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Microcoating Co., Ltd. filed Critical Nihon Microcoating Co., Ltd.
Priority to EP05765668A priority Critical patent/EP1800800A4/en
Publication of WO2006040864A1 publication Critical patent/WO2006040864A1/en
Priority to US11/447,425 priority patent/US20060229000A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities

Definitions

  • the present invention relates to a polishing pad used for polishing an object requiring high flatness on the surface, such as a semiconductor wafer and a magnetic hard disk substrate, and more particularly to a wafer in a semiconductor device manufacturing process.
  • the present invention relates to a polishing pad suitable for use in planarization.
  • metal wiring layers for interconnecting elements such as transistors, capacitors, resistors, etc. are multilayered.
  • This multilayer wiring is generally performed by using an optical lithography technique or a damascene method.
  • optical lithography technology a wiring pattern is exposed and metal wiring is laminated, but when an interlayer insulating film is deposited on the metal wiring layer or the like, a step is generated on the surface of the device. If the unevenness of the pattern becomes larger than the depth of focus of exposure, the accuracy of the width and shape of the pattern decreases, resulting in a problem that the yield of semiconductor devices decreases.
  • This planarization is performed using a chemical mechanical polishing (CMP) (hereinafter referred to as CMP) technique.
  • CMP chemical mechanical polishing
  • This CMP chemically dissolves the surface of the device with the machining fluid and mechanically scrapes it with the gunshot, that is, combines the chemical removal action with the machining fluid and the mechanical removal action with the gunball.
  • Polishing technology and processing This is a widely used polishing technique because it hardly causes a deteriorated layer (a part of the surface different from the inside caused by processing).
  • This planarization by CMP rotates a surface plate (or platen) on which a polishing pad is mounted, and fine polishing particles selected from particles such as silica, alumina, ceria, and zirconia on the surface of the polishing pad.
  • a slurry in which grains are dispersed in an alkaline or acidic working fluid is supplied, and a wafer surface (that is, a device surface) attached to a polishing head (or carrier) is pressed onto the slurry.
  • a foam pad eg, Rohm 'and' Hearth. Electronic. Materials'
  • foam strength such as polyurethane having a large number of pores formed by bubbles when foamed inside.
  • the product number IC1000) available from C.M.P.Holdings'Incorporated is used.
  • the foam pad is easy to compress and easily deforms (high compression ratio). Therefore, the foam pad is elastically deformed and enters the recess on the surface of the device, and the recess is scraped into the recess in the process of flattening. Thus, a residual step is generated. Also, in the foam pad, the density of pores inside the pad is uneven, so even if the wafer surface is pressed against the pad surface with a constant polishing pressure, the repulsive force of the pad against this polishing pressure becomes non-uniform, The pad surface cannot be applied uniformly over the wafer surface, and the wafer surface cannot be uniformly polished. For this reason, the amount of polishing at each point on the wafer surface varies.
  • a hard polishing pad that is, a pad obtained by curing a synthetic resin such as polyurethane without foaming (hereinafter referred to as a non-foamed pad) has been proposed (patented).
  • Reference 1 This non-foam pad is difficult to compress (low compression rate) and recovers slowly from deformation due to compression (low compression recovery rate) (ie, low elastic repulsion). Intrusion and shaving in the recesses were reduced, which reduced the occurrence of residual steps. Further, in this non-foamed pad, the polishing rate is remarkably lowered as compared with the foam pad. Therefore, a groove pattern is formed on the pad surface to improve the polishing rate.
  • Patent Document 1 Special Table 2004-507077
  • an object of the present invention is to provide a polishing pad that can uniformly flatten the surface of a wafer (that is, the surface of a device) in a short time.
  • the inventors of the present invention have optimized the hardness (in the present invention, the hardness is indicated by using the Shore D hardness) in a non-foamed pad having a high compression recovery rate and a low compression rate. As a result, it was found that the residual level difference can be reduced and the surface can be uniformly flattened at a high polishing rate.
  • the polishing pad of the present invention that achieves the above object is composed of a sheet-like pad body made of synthetic resin and having no foam.
  • Shore D hardness of the knot body ⁇ range from 66.0 to 78.5, preferably from ⁇ to 70.0 to 78.5, more preferably from ⁇ to 70.0 to 78.0. Furthermore, this is preferably in the range of 72.0 to 76.0.
  • the compression ratio of the pad body is in the range of 4% or less, preferably in the range of 2% or less.
  • the compression recovery rate of the pad body is in the range of 50% or more, preferably in the range of 70% or more.
  • the groove portion formed on the surface of the pad body may be subjected to groove processing (when the surface of the pad body is viewed in plan view).
  • the ratio of the groove area) to the entire surface of the pad body is in the range of 10% to 50%, with the entire surface of the pad body being 100%.
  • the backing sheet in order to improve the followability of the polishing pad to the surface to be polished, may be fixed to the back surface of the pad body as a backing sheet.
  • An elastic sheet having a compression ratio lower than the D hardness and higher than the compression ratio of the pad body is used.
  • the pad main body may transmit light 0.5mn! To 2.
  • the thickness of the pad body in the range of Omm the light transmittance of the pad body of light in the wavelength range of 350 nm to 900 nm is in the range of 10% or more, preferably 0 In the thickness of the pad body in the range of 5 mm to 2.
  • Omm the light transmittance of the light in the wavelength range of 450 nm to 900 nm is in the range of 30% or more.
  • the surface of the wafer ie, the surface of the device
  • the amount of polishing at each point on the wafer surface does not vary. There is an effect that the residual level difference can be reduced (flattened) uniformly.
  • the polishing pad 10 of the present invention is composed of a sheet-like pad body 11.
  • the pad main body 11 is a non-foamed synthetic resin selected from known thermoplastic or thermosetting resins such as polyester, polyurethane, polypropylene, nylon, acrylic, and epoxy. Physical strength.
  • the node body 11 is prepared by adding a resin solution prepared by adding a curing agent to a synthetic resin into a mold and curing the resin solution in the mold to form a non-foamed block. Can be sliced to the desired thickness. In addition, manufacture using known sheet forming techniques such as extrusion and injection molding. [0023]
  • the thickness of the pad main body 11 is not particularly limited, but is preferably in the range of 0.5 mm to 2. Omm.
  • the Shore D hardness (measured with a Shore D hardness meter based on JIS L-1096) of the Nod body 11 is in the range of 66.0 to 78.5 when measured at a temperature of 23 ⁇ 3 ° C. It is preferably in the range of 70.0 to 78.5, more preferably in the range of 70.0 to 78.0, and still more preferably in the range of 72.0 to 76.0. Since the polishing pressure when using the polishing pad 10 of the present invention (described later with reference to FIGS. 2A and 2B) is practically less than 15 psi, it is preferably within 15 psi, more preferably lpsi. It is in the range of ⁇ 10psi.
  • the compressibility is measured at a temperature of 23 ⁇ 3 ° C. 1.
  • the pad body thickness at a load of 4 psi is 0 (zero), and the thickness of the pad body at a load of 16 psi is The amount of change is expressed in%.
  • the compression ratio of the knot body 11 is in the range of 4% or less, preferably in the range of 2% or less. If the compression ratio exceeds 4%, the inside of the recess on the wafer surface (device surface) will be cut too much, causing residual steps.
  • the compression recovery rate is determined by measuring the displacement of the pad body under a load of 16 psi when measured at a temperature of 23 ⁇ 3 ° C. Next, after reducing the load to 1.6 psi, measure the displacement recovered in 30 seconds and divide this recovered displacement by the displacement at the 16 psi load described above (ie, compressed The ratio of the recovered displacement amount to the displacement amount (%)).
  • the compression recovery rate of the pad body 11 is in the range of 50% or more, preferably in the range of 70% or more. If the compression recovery rate is less than 50%, the elastic resilience of the pad varies at each point in the wafer surface where it is difficult to follow the unevenness of the device surface, and the nod surface is evenly distributed over the wafer surface. The surface of the wafer cannot be uniformly polished due to variations in the polishing amount at each point on the wafer surface.
  • the nod body 11 prevents the wafer from adsorbing on its surface and reduces the hydroplane phenomenon.
  • the groove area formed on the surface of the pad main body 11 (the groove area when the surface of the pad main body is viewed in plan view) is spread over the entire surface of the pad main body.
  • the occupied ratio is in the range of 10% to 50% with the entire surface of the pad body as 100%.
  • the shape of the groove is formed by a concentric circle shape, a lattice shape, etc., a curved line, a straight line, or a geometric pattern combining these.
  • a backing sheet 13 is fixed to the back surface of the pad body 11 with an adhesive 12. Also good.
  • an elastic sheet having a hardness lower than the Shore D hardness of the pad body 11 and a compression rate higher than the compression rate of the pad body 11 is used.
  • a sheet having foam strength such as polyurethane can be used.
  • a CMP (chemical mechanical polishing) apparatus 20 as shown in FIGS. 2A and 2B is used to planarize the surface of the wafer.
  • the polishing pad 10 is attached to the surface of the surface plate (or platen) 21 via an adhesive tape, and the surface plate 21 is rotated. Slurry is supplied to the surface of the polishing pad 10 through the nozzle 23, and the surface of the wafer 26 attached to the polishing head (or carrier) 22 is pressed against the surface of the polishing pad and rotated.
  • the example shown in FIG. 2B is a polishing technique for detecting the end point of polishing by irradiating light on the surface of the wafer being polished (this technique is called end point detection polishing).
  • This technique is called end point detection polishing.
  • the slurry is supplied to the surface of the polishing pad 10 through the nozzle 23, and the surface of the wafer 26 attached to the polishing head (or carrier) 22 is pressed against the surface of the polishing pad and rotated.
  • the surface of the wafer 26 is irradiated with light 25 from the light source 24 through the through hole of the surface plate 2 /, and the reflected light 25 is monitored (reference numeral 24) to detect the end point of polishing and finish polishing.
  • the polishing pad 10 of the present invention is used for this end point detection polishing, A transparent one is used.
  • the light transmittance of the pad body 11 is in the range of 10% or more for light in the wavelength range of 350 nm to 900 nm when the thickness of the pad body 11 is in the range of 0.5 mm to 2. Omm. Yes, preferably, when the thickness of the pad body is in the range of 0.5 mm to 2.0 Omm, in the light in the wavelength region of 450 nm to 900 nm, it is in the range of 30% or more.
  • a retainer ring (not shown) is attached to the polishing head 22 outside the peripheral portion of the wafer.
  • This retainer ring is pressed by the pressure applied to the ring part and easily occurs at the periphery of the wafer! / Prevents over-polishing, and the wafer is detached from the polishing head due to lateral stress generated during polishing. To prevent this.
  • the polishing head 22 is reciprocated (oscillated) in the radial direction of the surface plates 21, 2 ⁇ during polishing.
  • the CMP apparatus 20 shown in FIGS. 2A and 2B eliminates clogging of the surface of the polishing pad 10 due to polishing debris generated during polishing, or wear of the polishing pad 10 causes wear.
  • a dressing tool such as a diamond dresser can be provided to remove the deformation of the surface of the polishing pad 10. Dressing is performed by pressing a dressing tool while supplying water to the surface of the polishing pad 10 attached to the surface of the rotating surface plates 21 and 2 ⁇ .
  • a slurry is used in which a barrel is dispersed in water or a water-based aqueous solution, and a reaction solution (sodium hydroxide, ammonia, etc.) that chemically reacts with substances on the wafer surface is added. .
  • a reaction solution sodium hydroxide, ammonia, etc.
  • the pressure (polishing pressure) that presses the wafer 26 against the surface of the polishing pad 10 is in the range between lpsi and 10 psi.
  • Example 1 A TDI (tolylene diisocyanate) urethane prepolymer (100 parts) having an average molecular weight of about 750 was used as a curing agent, and 3, 3'-dichloro 4, 4 'diamino monodifa- Lumetane (26.5 parts) was added to prepare a tanning solution.
  • TDI tolylene diisocyanate
  • This resin solution is put into a mold and cured in the mold to form a non-foamed block, which is sliced to a thickness of 1.5 mm and has a Shore D hardness of 78.0 (measured)
  • a pad body with a temperature of 23.0 ° C is manufactured, and a groove is machined on the surface of this pad body using a lathe (groove shape: spiral, groove size: land width 0.6 mm Z groove
  • a polishing pad of Example 1 was obtained by applying a width of 0.3 mm and a groove occupation ratio of 33.3%.
  • Example 2 To a TDI-based urethane prepolymer (100 parts) having an average molecular weight of about 900, 3,3′-dichloro 4,4 diamino-difatal methane (26.5 parts) was used as a curing agent. The solution was prepared by simmering.
  • This resin solution is put into a mold and cured in the mold to form a foam-free block, which is sliced to a thickness of 1.5 mm, and Shore D hardness 75.0 (Manufacture a pad body with a measurement temperature of 23.0 ° C, and use a lathe on the surface of this pad body to form grooves (groove shape: spiral, groove size: land 0.6 mm, Z groove 0.3 mm, groove occupancy 33 3%), and this was used as the polishing pad of Example 2.
  • Example 3 To a TDI-based urethane prepolymer (100 parts) having an average molecular weight of about 960, 3, 3′-dichloro 4,4 diamino-difatal methane (26.3 parts) was used as a curing agent. A cocoa solution was prepared by adding calories.
  • This resin solution is put into a mold and cured in the mold to form an unfoamed block, which is sliced to a thickness of 1.5 mm, and a Shore D hardness of 72.0 (measured)
  • Example 4 A TDI urethane prepolymer (100 parts) having an average molecular weight of about 1080, and 3, 3′-dichronole 4, 4 diamine monodifatal methane (26.0 parts) as a hardener. ) was added to prepare a rosin solution.
  • This resin solution is put into a mold and cured in the mold to form a non-foamed block, which is sliced to a thickness of 1.5 mm and has a Shore D hardness of 66.0 (measurement)
  • a node body with a temperature of 23.0 ° C was manufactured, and a groove was formed on the surface of this pad body using a lathe (groove shape: spiral, groove size: land 0.6 mm, Z groove 0.3 mm, groove occupancy 33. 3%), and this was used as the polishing pad of Example 4.
  • This resin solution is put into a mold and cured in the mold to form a non-foamed block, which is sliced to a thickness of 1.5 mm and has a Shore D hardness of 60.0 (measured)
  • Comparative Example 3 As a polishing pad of Comparative Example 3, a commercially available foam pad (Product No .: IC100 0, Rohm & Haas ⁇ Electronic ⁇ Materianoles 'Cm ⁇ P ⁇ Holdings' Incorporated )It was used. The thickness of the polishing pad of Comparative Example 3 was 1.25 mm, and the Shore D hardness was 59.0.
  • ⁇ Comparative Test 1> Using the polishing pads of Example 3 and Comparative Example 3 respectively, the surface of the wafer was polished, and the steps on the surface of the wafer were compared with each polishing pad.
  • a known test wafer SKW7-2 generally used widely in the flatness evaluation test was used. This test wafer is obtained by etching the surface of a silicon substrate with a predetermined mask pattern and depositing a silicon oxide film thereon by CVD.
  • the steps of the patterns D20, D40 and D80 with respect to the polishing amount of the pattern D100 of the test wafer after polishing with each polishing pad were compared.
  • pattern D100 is a part on the test wafer without unevenness
  • pattern D20 is a linear convex part with a width of 20 m and a linear concave part with a width of 80 m and a depth of 0.8 m.
  • the pattern D40 has alternating 40 ⁇ m wide linear protrusions and 60 ⁇ m wide and 0.8 m deep linear recesses alternately.
  • Pattern D80 is an area on the test wafer that is formed, and linear protrusions with a width of 80 ⁇ m and linear depressions with a width of 20 ⁇ m and a depth of 0.8 ⁇ m are alternately formed.
  • a commercially available level difference measuring device (product number: P-1, Tencor Corporation) was used to measure the unevenness on the test wafer.)
  • Polishing head load (Polishing pressure) 3 p s i
  • in-plane uniformity (abbreviation of WIWNU: within wafer non-uniformity) is a parameter indicating the processing uniformity within the wafer surface, and the standard deviation of the polishing amount at each point in the surface.
  • the average X 100 (%) indicates that the smaller the wiwnu value, the less variation in the polishing amount at each point in the plane.
  • the film thickness measurement performed for the measurement of the polishing amount was performed using a commercially available optical interference type film thickness measuring device (product number: Nan OS pe C 9200, Nanometrics Co., Ltd.).
  • polishing apparatus a commercially available CMP apparatus (product number: MAT-ARW68 1S, EM Corporation) as shown in FIG. 2A was used.
  • the polishing conditions are as shown in Table 3 below. I got it.
  • FIG. 4A polishing rate
  • FIG. 4B in-plane uniformity
  • FIG. 5 is a composite diagram of FIGS. 4A and 4B.
  • the polishing rate of Comparative Example 3 is 2000 A / min, and the in-plane uniformity is 7.296.
  • a practically required polishing rate is 1700 AZ or more, and in-plane uniformity is 8.0% or less.
  • polishing rate and in-plane uniformity required for practical use are uniform. Properties are achieved in the range between Shore D hardness 66.0-78.5.
  • the Shore D hardness is 70.0- because the polishing rate is higher than Comparative Example 3 in the range of Shore D hardness of 70.0 or more. It can be seen that the practically required polishing rate and in-plane uniformity are achieved in the range between 78.5 and at least higher than the polishing rate of Comparative Example 3.
  • FIG. 1A and FIG. 1B are cross-sectional views of a polishing pad according to the present invention.
  • FIG. 2A and FIG. 2B show a polishing apparatus.
  • FIG. 3A is a plot of the step with respect to the polishing amount of Example 3 and Comparative Example 3
  • FIG. 3B is a plot of the step with respect to the polishing amount of Examples 2, 4 and Comparative Examples 2 and 3.
  • FIG. 4A shows the polishing rate plots for the Shore D hardness of Examples 1 to 4 and Comparative Examples 1 and 2 and the polishing rate of Comparative Example 3.
  • Examples 1 to 4 and Comparative Examples 1 and 2 This is a plot of in-plane uniformity versus Shore D hardness and in-plane uniformity of Comparative Example 3.
  • FIG. 5 is a composite diagram of FIGS. 4A and 4B.

Abstract

An abrasive pad with which the surface of a wafer can be evenly flattened in a short time. It is a rigid abrasive pad having a high recovery from compression and a low compressibility. The abrasive pad (10) is constituted of a sheet-form pad main body (11) made of a nonfoamed synthetic resin. The pad main body has a shore D hardness of 66.0-78.5, desirably 70.0-78.5, preferably 70.0-78.0, more desirably 72.0-76.0. The compressibility of the pad main body is 4% or lower, preferably 2% or lower. The recovery from compression of the pad main body is 50% or higher, preferably 70% or higher.

Description

明 細 書  Specification
研磨パッド  Polishing pad
技術分野  Technical field
[0001] 本発明は、半導体ウェハ、磁気ハードディスク基板などのように表面に高い平坦性 が要求される研磨対象物の研磨に使用される研磨パッドに関し、特に、半導体デバ イスの製造プロセスにおけるウェハの平坦化(プラナリゼーシヨン)に使用するのに適 した研磨パッドに関する。  TECHNICAL FIELD [0001] The present invention relates to a polishing pad used for polishing an object requiring high flatness on the surface, such as a semiconductor wafer and a magnetic hard disk substrate, and more particularly to a wafer in a semiconductor device manufacturing process. The present invention relates to a polishing pad suitable for use in planarization.
背景技術  Background art
[0002] 半導体デバイスの製造プロセスにお 、て、トランジスタ、コンデンサ、抵抗などの素 子を相互に接続する金属配線層が多層化されている。この多層配線ィ匕は、一般に、 光リソグラフィ技術やダマシン法を利用して行われて 、る。光リソグラフィ技術では、 配線パターンを露光し、金属配線を積層化しているが、金属配線層などの上に層間 絶縁膜を堆積する際にデバイスの表面に段差が生じ、この段差によるデバイスの表 面の凹凸が露光の焦点深度よりも大きくなると、パターンの幅や形状の精度が低下し 、その結果、半導体デバイスの歩留まりが低下するという問題が生じる。(言い換える と、上記の段差により形成されたデバイスの表面の凹凸を小さくすることにより、光リソ グラフィの露光マージンを確保でき、配線層の微細なパターユングやエッチングなど を高精度且つ容易に行うことができ、半導体デバイスの歩留まりを向上できる。)また 、ダマシン法では、絶縁膜上に配線溝を形成した後に配線金属 (Cu)を堆積し、研磨 によって溝内のみに配線金属を残し、多層配線を形成しているが、研磨により、金属 配線の中央が薄くなる(デイツシング)という問題が生じる。このため、半導体デバイス の製造プロセスにおいて、デバイスの表面の平坦化(プラナリゼーシヨン)が重要なェ 程となっている。  [0002] In a semiconductor device manufacturing process, metal wiring layers for interconnecting elements such as transistors, capacitors, resistors, etc. are multilayered. This multilayer wiring is generally performed by using an optical lithography technique or a damascene method. In optical lithography technology, a wiring pattern is exposed and metal wiring is laminated, but when an interlayer insulating film is deposited on the metal wiring layer or the like, a step is generated on the surface of the device. If the unevenness of the pattern becomes larger than the depth of focus of exposure, the accuracy of the width and shape of the pattern decreases, resulting in a problem that the yield of semiconductor devices decreases. (In other words, by reducing the unevenness on the surface of the device formed by the above steps, it is possible to secure an exposure margin for optical lithography, and to perform fine patterning and etching of the wiring layer with high accuracy and ease. In addition, in the damascene method, wiring metal (Cu) is deposited after forming the wiring trench on the insulating film, and polishing is performed to leave the wiring metal only in the trench, thereby providing multilayer wiring. However, there is a problem that the center of the metal wiring becomes thinner (dishing) due to polishing. For this reason, planarization of the device surface (planarization) is an important process in the semiconductor device manufacturing process.
[0003] このプラナリゼーシヨンは、化学的機械研磨 (CMP: Chemical Mechanical Polishing ) (以下、 CMPという)技術を利用して行われている。この CMPは、デバイスの表面を 加工液で化学的に溶かすとともに、砲粒で機械的に削る、すなわち加工液によるィ匕 学的な溶去作用と砲粒による機械的な除去作用とを併せもつ研磨技術であり、加工 変質層(加工により生じた内部と異なる表面の部分)を生じることがほとんどないため 、広く利用されている研磨技術である。 [0003] This planarization is performed using a chemical mechanical polishing (CMP) (hereinafter referred to as CMP) technique. This CMP chemically dissolves the surface of the device with the machining fluid and mechanically scrapes it with the gunshot, that is, combines the chemical removal action with the machining fluid and the mechanical removal action with the gunball. Polishing technology and processing This is a widely used polishing technique because it hardly causes a deteriorated layer (a part of the surface different from the inside caused by processing).
[0004] この CMPによるプラナリゼーシヨンは、研磨パッドを取り付けた定盤 (又はプラテン) を回転させ、研磨パッドの表面に、シリカ、アルミナ、セリア、ジルコユアなどの粒子か ら選択される微小な砥粒を、アルカリ性又は酸性の加工液中に分散させたスラリーを 供給し、この上に、研磨ヘッド (又はキヤリャ)に取り付けたウェハの表面 (すなわち、 デバイスの表面)を押し付けて行われる。  [0004] This planarization by CMP rotates a surface plate (or platen) on which a polishing pad is mounted, and fine polishing particles selected from particles such as silica, alumina, ceria, and zirconia on the surface of the polishing pad. A slurry in which grains are dispersed in an alkaline or acidic working fluid is supplied, and a wafer surface (that is, a device surface) attached to a polishing head (or carrier) is pressed onto the slurry.
[0005] 一般に、研磨パッドとして、内部に、発泡時に気泡により形成された多数の空孔を 有するポリウレタンなどの発泡体力もなる発泡体パッド(例えば、ローム 'アンド'ハー ス .エレクトロニック .マテリアルズ 'シー ·ェム ·ピー ·ホウルディングス 'インコーポレイ テッドより入手可能の製品番号 IC1000)が使用されている。  [0005] Generally, as a polishing pad, a foam pad (eg, Rohm 'and' Hearth. Electronic. Materials') that also has foam strength such as polyurethane having a large number of pores formed by bubbles when foamed inside. The product number IC1000) available from C.M.P.Holdings'Incorporated is used.
[0006] しかし、発泡体パッドは、圧縮が容易であり、変形し易い (高圧縮率)ため、弾性変 形してデバイス表面の凹部に入り込み、平坦ィ匕の過程で、凹部内を削り込んで、残 留段差を発生させる。また、発泡体パッドでは、パッド内部の空孔の密度にムラがあ るため、ウェハ表面をパッド表面に一定の研磨圧力で押し付けても、この研磨圧力に 対するパッドの反発力が不均一となり、パッド表面をウェハ表面にわたって均一に作 用させることができず、ウェハ表面を均一に研磨できない。このため、ウェハ面内各 点での研磨量にバラツキが生じる。  [0006] However, the foam pad is easy to compress and easily deforms (high compression ratio). Therefore, the foam pad is elastically deformed and enters the recess on the surface of the device, and the recess is scraped into the recess in the process of flattening. Thus, a residual step is generated. Also, in the foam pad, the density of pores inside the pad is uneven, so even if the wafer surface is pressed against the pad surface with a constant polishing pressure, the repulsive force of the pad against this polishing pressure becomes non-uniform, The pad surface cannot be applied uniformly over the wafer surface, and the wafer surface cannot be uniformly polished. For this reason, the amount of polishing at each point on the wafer surface varies.
[0007] このため、比較的圧縮変形し難!、硬質の研磨パッド、すなわち、ポリウレタンなどの 合成樹脂を無発泡で硬化させたパッド (以下、無発泡体パッドという)が提案されてい る (特許文献 1参照)。この無発泡体パッドは、圧縮し難く (低圧縮率)、圧縮による変 形からの回復が遅い (低圧縮回復率)(すなわち、弾性反発力が小さい)ため、弾性 変形によるデバイス表面の凹部への入り込みと凹部内の削り込みが減少し、これによ り、残留段差の発生を低減させることができた。また、この無発泡体パッドでは、発泡 体パッドと比較して研磨レートが著しく低下するため、パッド表面に溝パターンを形成 して研磨レートを向上して 、る。  For this reason, a hard polishing pad, that is, a pad obtained by curing a synthetic resin such as polyurethane without foaming (hereinafter referred to as a non-foamed pad) has been proposed (patented). Reference 1). This non-foam pad is difficult to compress (low compression rate) and recovers slowly from deformation due to compression (low compression recovery rate) (ie, low elastic repulsion). Intrusion and shaving in the recesses were reduced, which reduced the occurrence of residual steps. Further, in this non-foamed pad, the polishing rate is remarkably lowered as compared with the foam pad. Therefore, a groove pattern is formed on the pad surface to improve the polishing rate.
特許文献 1:特表 2004— 507077号公報  Patent Document 1: Special Table 2004-507077
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0008] しかし、上記のようにパッド表面に溝パターンを形成しただけでは、上記の発泡体 ノッドと同程度の研磨レートを達成することしかできず、より高い研磨レートを達成す ることができない。  However, merely forming a groove pattern on the pad surface as described above can only achieve a polishing rate comparable to that of the above foam node, and cannot achieve a higher polishing rate. .
[0009] また、このような無発泡体パッドでは、内部に空孔が形成されて 、な 、ので、研磨圧 力に対するパッドの反発力がウェハ表面にわたって均一となり、パッド表面をウェハ 表面にわたって均一に作用させることができると考えられていたが、圧縮回復率が低 いため、デバイス表面の凹凸に追従し難ぐウェハ面内各点でパッドの弾性反発力 にバラツキが生じ、このため、ノ¾ /ド表面をウェハ表面にわたって均一に作用させるこ とができず、ウェハ面内各点での研磨量にバラツキが生じて、ウェハの表面を均一に 研磨できない。  Further, in such a non-foamed pad, since pores are formed inside, the repulsive force of the pad against the polishing pressure is uniform over the wafer surface, and the pad surface is uniform over the wafer surface. However, since the compression recovery rate is low, the elastic repulsive force of the pad varies at each point in the wafer surface where it is difficult to follow the unevenness of the device surface. The surface of the wafer cannot be uniformly applied over the wafer surface, and the amount of polishing at each point on the wafer surface varies, and the surface of the wafer cannot be uniformly polished.
[0010] したがって、本発明の目的は、ウェハの表面 (すなわち、デバイスの表面)を短時間 で均一に平坦ィ匕できる研磨パッドを提供することである。  [0010] Therefore, an object of the present invention is to provide a polishing pad that can uniformly flatten the surface of a wafer (that is, the surface of a device) in a short time.
課題を解決するための手段  Means for solving the problem
[0011] 上記のように、無発泡体力 なる研磨パッドにおいて、その圧縮回復率を低くすると[0011] As described above, when the compression recovery rate of a polishing pad having no foam is reduced,
、被研磨物(ウェハ)の面内各点での研磨量にバラツキが生じ、一方、圧縮回復率を 高くすると、弾性反発力が大きくなり、残留段差が生じるという問題が生じると考えら れていたが、本発明の発明者は、鋭意研究の結果、高い圧縮回復率を有する低い 圧縮率の無発泡体パッドにおいて、硬度 (本発明では、ショァ D硬度を用いて硬度を 示す)を最適化することにより、残留段差を低減でき、高い研磨レートで均一に平坦 化できることを見出した。 However, it is considered that the amount of polishing at each point in the surface of the object to be polished (wafer) varies, and on the other hand, when the compression recovery rate is increased, the elastic repulsive force increases and a residual step is generated. However, as a result of diligent research, the inventors of the present invention have optimized the hardness (in the present invention, the hardness is indicated by using the Shore D hardness) in a non-foamed pad having a high compression recovery rate and a low compression rate. As a result, it was found that the residual level difference can be reduced and the surface can be uniformly flattened at a high polishing rate.
[0012] 上記目的を達成する本発明の研磨パッドは、合成樹脂の無発泡体力 なるシート 状のパッド本体から構成される。 The polishing pad of the present invention that achieves the above object is composed of a sheet-like pad body made of synthetic resin and having no foam.
[0013] ノッド本体のショァ D硬度 ίま、 66. 0〜78. 5の範囲、好ましく ίま 70. 0〜78. 5の範 囲、より好ましく ίま 70. 0〜78. 0の範囲、さら【こ好ましく ίま 72. 0〜76. 0の範囲【こあ る。 [0013] Shore D hardness of the knot body ί, range from 66.0 to 78.5, preferably from ί to 70.0 to 78.5, more preferably from ί to 70.0 to 78.0. Furthermore, this is preferably in the range of 72.0 to 76.0.
[0014] パッド本体の圧縮率は、 4%以下の範囲、好ましくは 2%以下の範囲にある。  [0014] The compression ratio of the pad body is in the range of 4% or less, preferably in the range of 2% or less.
[0015] パッド本体の圧縮回復率は、 50%以上の範囲、好ましくは 70%以上の範囲にある [0016] ノッド本体は、その表面に、ハイドロプレーン現象を低減させるため、溝加工を施し てもよぐパッド本体の表面に形成される溝の部分の領域 (パッド本体の表面を平面 視したときの溝の領域)が、パッド本体の表面の全域に対して占有する割合は、パッ ド本体の表面の全域を 100%として、 10%〜50%の範囲にある。 [0015] The compression recovery rate of the pad body is in the range of 50% or more, preferably in the range of 70% or more. [0016] In order to reduce the hydroplane phenomenon on the surface of the knot body, the groove portion formed on the surface of the pad body may be subjected to groove processing (when the surface of the pad body is viewed in plan view). The ratio of the groove area) to the entire surface of the pad body is in the range of 10% to 50%, with the entire surface of the pad body being 100%.
[0017] また、本発明では、研磨パッドの被研磨面への追従性を向上させるため、パッド本 体の裏面に裏当シートを固定してもよぐこの裏当シートとして、パッド本体のショァ D 硬度よりも低 、硬度で、パッド本体の圧縮率よりも高 、圧縮率の弾性シートが使用さ れる。  [0017] Further, in the present invention, in order to improve the followability of the polishing pad to the surface to be polished, the backing sheet may be fixed to the back surface of the pad body as a backing sheet. An elastic sheet having a compression ratio lower than the D hardness and higher than the compression ratio of the pad body is used.
[0018] さらに、パッド本体は、光を透過してもよぐ 0. 5mn!〜 2. Ommの範囲にあるパッド 本体の厚さにお 、て、 350nm〜900nmの範囲の波長領域にある光のパッド本体の 光透過率が、 10%以上の範囲にあり、好ましくは、 0. 5mm〜2. Ommの範囲にある パッド本体の厚さにおいて、 450nm〜900nmの範囲の波長領域にある光のパッド 本体の光透過率が 30%以上の範囲にある。  [0018] Further, the pad main body may transmit light 0.5mn! To 2. The thickness of the pad body in the range of Omm, the light transmittance of the pad body of light in the wavelength range of 350 nm to 900 nm is in the range of 10% or more, preferably 0 In the thickness of the pad body in the range of 5 mm to 2. Omm, the light transmittance of the light in the wavelength range of 450 nm to 900 nm is in the range of 30% or more.
発明の効果  The invention's effect
[0019] 本発明が以上のように構成されるので、ウェハの表面(すなわち、デバイスの表面) を高い研磨レート(短時間)で、ウェハ面内各点での研磨量にバラツキを生じさせず( 均一)に、残留段差を低減 (平坦化)できる、という効果を奏する。  Since the present invention is configured as described above, the surface of the wafer (ie, the surface of the device) has a high polishing rate (for a short time), and the amount of polishing at each point on the wafer surface does not vary. There is an effect that the residual level difference can be reduced (flattened) uniformly.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 図 1Aに示すように、本発明の研磨パッド 10は、シート状のパッド本体 11から構成さ れる。 As shown in FIG. 1A, the polishing pad 10 of the present invention is composed of a sheet-like pad body 11.
[0021] パッド本体 11は、ポリエステル系、ポリウレタン系、ポリプロピレン系、ナイロン系、ァ クリル系、エポキシ系などの既知の熱可塑性又は熱硬化性の榭脂から選択される合 成榭脂の無発泡体力 なる。  [0021] The pad main body 11 is a non-foamed synthetic resin selected from known thermoplastic or thermosetting resins such as polyester, polyurethane, polypropylene, nylon, acrylic, and epoxy. Physical strength.
[0022] ノ ッド本体 11は、合成樹脂に硬化剤を添加して調製した榭脂溶液を金型に投入し、 金型内でこれを硬化させ、無発泡体のブロックを成形し、これを所望の厚さにスライス して製造できる。また、押出成形、射出成形などの既知のシート成形技術を利用して 製造してちょい。 [0023] パッド本体 11の厚さは、特に限定されないが、好適に 0. 5mm〜2. Ommの範囲 にある。 [0022] The node body 11 is prepared by adding a resin solution prepared by adding a curing agent to a synthetic resin into a mold and curing the resin solution in the mold to form a non-foamed block. Can be sliced to the desired thickness. In addition, manufacture using known sheet forming techniques such as extrusion and injection molding. [0023] The thickness of the pad main body 11 is not particularly limited, but is preferably in the range of 0.5 mm to 2. Omm.
[0024] ノッド本体 11のショァ D硬度 (JIS—L— 1096に基づくショァ D硬度計による測定値 )は、 23 ± 3°Cの温度下における測定において、 66. 0-78. 5の範囲、好ましくは 7 0. 0〜78. 5の範囲、より好ましくは 70. 0〜78. 0の範囲、さらに好ましくは 72. 0〜 76. 0の範囲にある。本発明の研磨パッド 10を使用する際(図 2A及び図 2Bを参照し て後述する)の研磨圧力は、実用上、 15psiを超えることは少ないので、好適に 15psi 以下の範囲、より好適に lpsi〜10psiの範囲にある。この研磨圧力の範囲(15psi以 下)では、パッド本体 11のショァ D硬度が 66. 0未満であると、パッド本体が変形しす ぎて、被力卩ェ物(ウェハ)の面内各点での研磨量にバラツキが生じ、均一に研磨でき ず、またパッド本体のショァ D硬度が 78. 5を超えると、パッド本体が変形せず、被カロ ェ物に対するノッド本体 11の追従性が低下し、被カ卩ェ物の表面にスクラッチを発生 させる原因となる。  [0024] The Shore D hardness (measured with a Shore D hardness meter based on JIS L-1096) of the Nod body 11 is in the range of 66.0 to 78.5 when measured at a temperature of 23 ± 3 ° C. It is preferably in the range of 70.0 to 78.5, more preferably in the range of 70.0 to 78.0, and still more preferably in the range of 72.0 to 76.0. Since the polishing pressure when using the polishing pad 10 of the present invention (described later with reference to FIGS. 2A and 2B) is practically less than 15 psi, it is preferably within 15 psi, more preferably lpsi. It is in the range of ~ 10psi. In this polishing pressure range (15 psi or less), if the Shore D hardness of the pad main body 11 is less than 66.0, the pad main body will be deformed so that each point on the surface of the object (wafer) will be deformed. If the pad D has a Shore D hardness of more than 78.5, the pad body will not be deformed, and the followability of the nod body 11 to the workpiece will be reduced. This can cause scratches on the surface of the object.
[0025] 圧縮率は、 23 ± 3°Cの温度下における測定において、 1. 4psiの荷重時のパッド本 体の厚さを 0 (ゼロ)として、 16psiの荷重時のパッド本体の厚さの変化量を%で表し たものである。本発明では、ノッド本体 11の圧縮率は、 4%以下の範囲、好ましくは 2 %以下の範囲にある。圧縮率が 4%を超えると、ウェハ表面 (デバイス表面)の凹部内 を削り込みすぎて、残留段差を発生させる。  [0025] The compressibility is measured at a temperature of 23 ± 3 ° C. 1. The pad body thickness at a load of 4 psi is 0 (zero), and the thickness of the pad body at a load of 16 psi is The amount of change is expressed in%. In the present invention, the compression ratio of the knot body 11 is in the range of 4% or less, preferably in the range of 2% or less. If the compression ratio exceeds 4%, the inside of the recess on the wafer surface (device surface) will be cut too much, causing residual steps.
[0026] 圧縮回復率は、 23 ± 3°Cの温度下における測定において、 16psiの荷重時のパッ ド本体の変位量を測定する。次に、荷重を 1. 6psiに減少させた後、 30秒間で回復し た変位量を測定し、この回復した変位量を上記の 16psiの荷重時の変位量で割った もの(すなわち、圧縮した変位量に対する回復した変位量の割合 (%) )である。本発 明では、パッド本体 11の圧縮回復率は、 50%以上の範囲、好ましくは 70%以上の 範囲にある。圧縮回復率が 50%未満であると、デバイス表面の凹凸に追従し難ぐゥ ェハ面内各点でパッドの弾性反発力にバラツキが生じ、このため、ノッド表面をゥェ ハ表面にわたって均一に作用させることができず、ウェハ面内各点での研磨量にバ ラツキが生じて、ウェハの表面を均一に研磨できない。  [0026] The compression recovery rate is determined by measuring the displacement of the pad body under a load of 16 psi when measured at a temperature of 23 ± 3 ° C. Next, after reducing the load to 1.6 psi, measure the displacement recovered in 30 seconds and divide this recovered displacement by the displacement at the 16 psi load described above (ie, compressed The ratio of the recovered displacement amount to the displacement amount (%)). In the present invention, the compression recovery rate of the pad body 11 is in the range of 50% or more, preferably in the range of 70% or more. If the compression recovery rate is less than 50%, the elastic resilience of the pad varies at each point in the wafer surface where it is difficult to follow the unevenness of the device surface, and the nod surface is evenly distributed over the wafer surface. The surface of the wafer cannot be uniformly polished due to variations in the polishing amount at each point on the wafer surface.
[0027] ノッド本体 11は、その表面に、ウェハの吸着を防止し、ハイドロプレーン現象を低 減させるため、溝加工を施してもよぐパッド本体 11の表面に形成される溝の部分の 領域 (パッド本体の表面を平面視したときの溝の領域)が、パッド本体の表面の全域 に対して占有する割合は、パッド本体の表面の全域を 100%として、 10%〜50%の 範囲にある。溝の形状は、同心円状、格子状など、曲線、直線、又はこれらを組み合 わせた幾何学的なパターンで形成される。 [0027] The nod body 11 prevents the wafer from adsorbing on its surface and reduces the hydroplane phenomenon. In order to reduce the groove, the groove area formed on the surface of the pad main body 11 (the groove area when the surface of the pad main body is viewed in plan view) is spread over the entire surface of the pad main body. The occupied ratio is in the range of 10% to 50% with the entire surface of the pad body as 100%. The shape of the groove is formed by a concentric circle shape, a lattice shape, etc., a curved line, a straight line, or a geometric pattern combining these.
[0028] また、図 1Bに示すように、本発明の研磨パッド 10の被研磨面への追従性を向上させ るため、パッド本体 11の裏面に裏当シート 13を接着剤 12で固定してもよい。この裏 当シート 13として、パッド本体 11のショァ D硬度よりも低い硬度で、パッド本体 11の圧 縮率よりも高い圧縮率の弾性シートが使用される。弾性シートとして、ポリウレタンなど の発泡体力もなるシートが使用できる。  In addition, as shown in FIG. 1B, in order to improve the followability to the surface to be polished of the polishing pad 10 of the present invention, a backing sheet 13 is fixed to the back surface of the pad body 11 with an adhesive 12. Also good. As the backing sheet 13, an elastic sheet having a hardness lower than the Shore D hardness of the pad body 11 and a compression rate higher than the compression rate of the pad body 11 is used. As the elastic sheet, a sheet having foam strength such as polyurethane can be used.
[0029] <実施形態 > 半導体デバイスを製造する際、ウェハ上に形成した金属配線などの 上に層間絶縁膜を堆積させると、このウェハの表面に生じる。本発明に従って、この 段差を除去し、ウェハの表面 (デバイスの表面)を平坦化する。  <Embodiment> When a semiconductor device is manufactured, if an interlayer insulating film is deposited on a metal wiring or the like formed on the wafer, it is generated on the surface of the wafer. In accordance with the present invention, this step is removed and the wafer surface (device surface) is planarized.
[0030] 図 2A及び図 2Bに示すような CMP (chemical mechanical polishing)装置 20を使用し て、ウェハの表面を平坦ィ匕する。  [0030] A CMP (chemical mechanical polishing) apparatus 20 as shown in FIGS. 2A and 2B is used to planarize the surface of the wafer.
[0031] 図 2Aに示すように、ウェハ 26の表面の研磨は、まず、研磨パッド 10を、定盤 (又はプ ラテン) 21の表面に粘着テープを介して取り付け、定盤 21を回転させる。ノズル 23を 通じてスラリーを研磨パッド 10の表面に供給し、研磨ヘッド (又はキヤリャ) 22に取り 付けたウェハ 26の表面を研磨パッドの表面に押し付け、回転させることにより行われ る。  As shown in FIG. 2A, in polishing the surface of the wafer 26, first, the polishing pad 10 is attached to the surface of the surface plate (or platen) 21 via an adhesive tape, and the surface plate 21 is rotated. Slurry is supplied to the surface of the polishing pad 10 through the nozzle 23, and the surface of the wafer 26 attached to the polishing head (or carrier) 22 is pressed against the surface of the polishing pad and rotated.
[0032] 図 2Bに示す例は、研磨中のウェハの表面に光を照射して研磨の終点を検出する研 磨技術 (この技術を終点検出研磨という)であり、まず、研磨パッド 10を、定盤 (又は プラテン) 2Γの表面に粘着テープを介して取り付け、定盤 2Γを回転させる。ノズル 23を通じてスラリーを研磨パッド 10の表面に供給し、研磨ヘッド (又はキヤリャ) 22に 取り付けたウェハ 26の表面を研磨パッドの表面に押し付け、回転させる。研磨中、定 盤 2 /の貫通口を通じてウェハ 26の表面に光源 24から光 25を照射し、その反射光 25をモニター (符号 24)して研磨の終点を検出し、研磨を終了する。  [0032] The example shown in FIG. 2B is a polishing technique for detecting the end point of polishing by irradiating light on the surface of the wafer being polished (this technique is called end point detection polishing). Mount the surface plate (or platen) 2Γ on the surface of the surface using adhesive tape and rotate the surface plate 2Γ. The slurry is supplied to the surface of the polishing pad 10 through the nozzle 23, and the surface of the wafer 26 attached to the polishing head (or carrier) 22 is pressed against the surface of the polishing pad and rotated. During polishing, the surface of the wafer 26 is irradiated with light 25 from the light source 24 through the through hole of the surface plate 2 /, and the reflected light 25 is monitored (reference numeral 24) to detect the end point of polishing and finish polishing.
[0033] 本発明の研磨パッド 10がこの終点検出研磨に使用されるとき、パッド本体として、光 透過性のものが使用される。このパッド本体 11の光透過率は、パッド本体 11の厚さ が 0. 5mm〜2. Ommの範囲にあるとき、 350nm〜900nmの範囲の波長領域にあ る光において、 10%以上の範囲にあり、好ましくは、パッド本体の厚さが 0. 5mm〜2 . Ommの範囲にあるとき、 450nm〜900nmの範囲の波長領域にある光において、 30%以上の範囲にある。 [0033] When the polishing pad 10 of the present invention is used for this end point detection polishing, A transparent one is used. The light transmittance of the pad body 11 is in the range of 10% or more for light in the wavelength range of 350 nm to 900 nm when the thickness of the pad body 11 is in the range of 0.5 mm to 2. Omm. Yes, preferably, when the thickness of the pad body is in the range of 0.5 mm to 2.0 Omm, in the light in the wavelength region of 450 nm to 900 nm, it is in the range of 30% or more.
[0034] 図 2A及び図 2Bに示す CMP装置 20では、研磨ヘッド 22に、ウェハ周辺部外側にリ テーナリング(図示せず)が取り付けられている。このリテーナリングは、研磨パッドをリ ング部分に加える圧力により押え、ウェハ周辺部で発生しやす!/、過研磨を防止する とともに、研磨中に発生する横方向の応力によりウェハが研磨ヘッドから外れることを 防止する。また、研磨パッド 10に施された溝加工による影響を低減するため、研磨中 、研磨ヘッド 22は、定盤 21、 2 Γの径方向に往復移動(揺動)される。  In the CMP apparatus 20 shown in FIGS. 2A and 2B, a retainer ring (not shown) is attached to the polishing head 22 outside the peripheral portion of the wafer. This retainer ring is pressed by the pressure applied to the ring part and easily occurs at the periphery of the wafer! / Prevents over-polishing, and the wafer is detached from the polishing head due to lateral stress generated during polishing. To prevent this. Further, in order to reduce the influence of the groove processing applied to the polishing pad 10, the polishing head 22 is reciprocated (oscillated) in the radial direction of the surface plates 21, 2Γ during polishing.
[0035] また、図 2A及び図 2Bに示す CMP装置 20には、図示しないが、研磨中に発生した 研磨クズによる研磨パッド 10の表面の目詰りを解消したり、研磨パッド 10の摩耗によ る研磨パッド 10の表面の変形分を削りとるため、ダイヤモンドドレッサーなどのドレッ シング工具が備えられ得る。ドレッシングは、回転する定盤 21、 2Γの表面に貼り付 けた研磨パッド 10の表面に水を供給しながら、ドレッシング工具を押し付けて行われ る。  [0035] Although not shown, the CMP apparatus 20 shown in FIGS. 2A and 2B eliminates clogging of the surface of the polishing pad 10 due to polishing debris generated during polishing, or wear of the polishing pad 10 causes wear. A dressing tool such as a diamond dresser can be provided to remove the deformation of the surface of the polishing pad 10. Dressing is performed by pressing a dressing tool while supplying water to the surface of the polishing pad 10 attached to the surface of the rotating surface plates 21 and 2Γ.
[0036] スラリーとして、水又は水ベースの水溶液中に砲粒を分散させ、さらにウェハの表面 の物質と化学的に反応する反応液 (水酸化ナトリウム、アンモニアなど)を添加したも のを使用する。  [0036] A slurry is used in which a barrel is dispersed in water or a water-based aqueous solution, and a reaction solution (sodium hydroxide, ammonia, etc.) that chemically reacts with substances on the wafer surface is added. .
[0037] ウェハ 26を研磨パッド 10の表面(すなわち、パッド本体 11の表面)に押し付ける圧 力(研磨圧力)は、 lpsi〜10psiの間の範囲にある。  [0037] The pressure (polishing pressure) that presses the wafer 26 against the surface of the polishing pad 10 (ie, the surface of the pad body 11) is in the range between lpsi and 10 psi.
[0038] く実施例 1 > 平均分子量約 750の TDI (トリレンジイソシァネート)系のウレタンプレ ポリマー(100部)に、硬化剤として、 3, 3'—ジクロル 4, 4'ジァミノ一ジファ -ルメ タン(26. 5部)を添加して誦し溶液を調製した。この榭脂溶液を金型に投入し、金型 内でこれを硬化させ、無発泡体のブロックを成形し、これを 1. 5mmの厚さにスライス して、ショァ D硬度 78. 0 (測定温度 23. 0°C)のパッド本体を製造し、このパッド本体 の表面に旋盤を使用して溝加工 (溝形状:スパイラル、溝サイズ:陸幅 0. 6mmZ溝 幅 0. 3mm、溝占有率 33. 3%)を施し、これを実施例 1の研磨パッドとした。 [0038] <Example 1> A TDI (tolylene diisocyanate) urethane prepolymer (100 parts) having an average molecular weight of about 750 was used as a curing agent, and 3, 3'-dichloro 4, 4 'diamino monodifa- Lumetane (26.5 parts) was added to prepare a tanning solution. This resin solution is put into a mold and cured in the mold to form a non-foamed block, which is sliced to a thickness of 1.5 mm and has a Shore D hardness of 78.0 (measured) A pad body with a temperature of 23.0 ° C is manufactured, and a groove is machined on the surface of this pad body using a lathe (groove shape: spiral, groove size: land width 0.6 mm Z groove A polishing pad of Example 1 was obtained by applying a width of 0.3 mm and a groove occupation ratio of 33.3%.
[0039] <実施例 2> 平均分子量約 900の TDI系のウレタンプレポリマー(100部)に、硬化 剤として、 3, 3'—ジクロル 4, 4 ジァミノ一ジファ-ルメタン(26. 5部)を添カロして 誦し溶液を調製した。この榭脂溶液を金型に投入し、金型内でこれを硬化させ、無発 泡体のブロックを成形し、これを 1. 5mmの厚さにスライスして、ショァ D硬度 75. 0 ( 測定温度 23. 0°C)のパッド本体を製造し、このパッド本体の表面に旋盤を使用して 溝加工 (溝形状:スパイラル、溝サイズ:陸 0. 6mmZ溝 0. 3mm、溝占有率 33. 3% )を施し、これを実施例 2の研磨パッドとした。  <Example 2> To a TDI-based urethane prepolymer (100 parts) having an average molecular weight of about 900, 3,3′-dichloro 4,4 diamino-difatal methane (26.5 parts) was used as a curing agent. The solution was prepared by simmering. This resin solution is put into a mold and cured in the mold to form a foam-free block, which is sliced to a thickness of 1.5 mm, and Shore D hardness 75.0 ( Manufacture a pad body with a measurement temperature of 23.0 ° C, and use a lathe on the surface of this pad body to form grooves (groove shape: spiral, groove size: land 0.6 mm, Z groove 0.3 mm, groove occupancy 33 3%), and this was used as the polishing pad of Example 2.
[0040] <実施例 3 > 平均分子量約 960の TDI系のウレタンプレポリマー(100部)に、硬化 剤として、 3, 3'—ジクロル 4, 4 ジァミノ一ジファ-ルメタン(26. 3部)を添カロして 榭脂溶液を調製した。この榭脂溶液を金型に投入し、金型内でこれを硬化させ、無 発泡体のブロックを成形し、これを 1. 5mmの厚さにスライスして、ショァ D硬度 72. 0 (測定温度 23. 0°C)のパッド本体を製造し、このパッド本体の表面に旋盤を使用して 溝加工 (溝形状:スパイラル、溝サイズ:陸 0. 6mmZ溝 0. 3mm、溝占有率 33. 3% )を施し、これを実施例 3の研磨パッドとした。  <Example 3> To a TDI-based urethane prepolymer (100 parts) having an average molecular weight of about 960, 3, 3′-dichloro 4,4 diamino-difatal methane (26.3 parts) was used as a curing agent. A cocoa solution was prepared by adding calories. This resin solution is put into a mold and cured in the mold to form an unfoamed block, which is sliced to a thickness of 1.5 mm, and a Shore D hardness of 72.0 (measured) Manufacture a pad body with a temperature of 23.0 ° C and use a lathe on the surface of this pad body to form grooves (groove shape: spiral, groove size: land 0.6 mm, Z groove 0.3 mm, groove occupancy 33. 3%), and this was used as the polishing pad of Example 3.
[0041] <実施例 4> 平均分子量約 1080の TDI系のウレタンプレポリマー(100部)に、硬 ィ匕剤として、 3, 3'—ジクロノレー 4, 4 ジァミノ一ジファ-ルメタン(26. 0部)を添カロし て榭脂溶液を調製した。この榭脂溶液を金型に投入し、金型内でこれを硬化させ、 無発泡体のブロックを成形し、これを 1. 5mmの厚さにスライスして、ショァ D硬度 66 . 0 (測定温度 23. 0°C)のノ¾ド本体を製造し、このパッド本体の表面に旋盤を使用 して溝加工 (溝形状:スパイラル、溝サイズ:陸 0. 6mmZ溝 0. 3mm、溝占有率 33. 3%)を施し、これを実施例 4の研磨パッドとした。  <Example 4> A TDI urethane prepolymer (100 parts) having an average molecular weight of about 1080, and 3, 3′-dichronole 4, 4 diamine monodifatal methane (26.0 parts) as a hardener. ) Was added to prepare a rosin solution. This resin solution is put into a mold and cured in the mold to form a non-foamed block, which is sliced to a thickness of 1.5 mm and has a Shore D hardness of 66.0 (measurement) A node body with a temperature of 23.0 ° C was manufactured, and a groove was formed on the surface of this pad body using a lathe (groove shape: spiral, groove size: land 0.6 mm, Z groove 0.3 mm, groove occupancy 33. 3%), and this was used as the polishing pad of Example 4.
[0042] <比較例 1 > HDI (へキサメチレンジイソシァネート)系のウレタンプレポリマー(10 0咅 に、硬ィ匕剤として、 3, 3'—ジクロノレー 4, 4'ジァミノージファ二ノレメタン(47. 3 )を添加して誦し溶液を調製した。この榭脂溶液を金型に投入し、金型内でこれを硬 ィ匕させ、無発泡体のブロックを成形し、これを 1. 5mmの厚さにスライスして、ショァ D 硬度 80. 0 (測定温度 23. 0°C)のノッド本体を製造し、このノッド本体の表面に旋盤 を使用して溝加工 (溝形状:スパイラル、溝サイズ:陸 0. 6mmZ溝 0. 3mm、溝占有 率 33. 3%)を施し、これを比較例 1の研磨パッドとした。 <Comparative Example 1> HDI (hexamethylene diisocyanate) urethane prepolymer (100 0 咅, 3, 3'-dichloronone 4,4 'diamine nofino methane (47 3) was added to prepare a tanning solution, which was poured into a mold and hardened in the mold to form a non-foamed block. To produce a knot body with a Shore D hardness of 80.0 (measuring temperature 23.0 ° C), and using a lathe on the surface of the knot body (groove shape: spiral, groove) Size: Land 0.6mm Z groove 0.3mm, groove occupation A polishing pad of Comparative Example 1 was obtained.
[0043] <比較例 2> 平均分子量約 1260の TDI系のウレタンプレポリマー(100部)に、硬 ィ匕剤として、 3, 3'—ジクロノレー 4, 4 ジァミノ一ジファ-ルメタン(23. 0部)を添カロし て誦し溶液を調製した。この榭脂溶液を金型に投入し、金型内でこれを硬化させ、無 発泡体のブロックを成形し、これを 1. 5mmの厚さにスライスして、ショァ D硬度 60. 0 (測定温度 23. 0°C)のパッド本体を製造し、このパッド本体の表面に旋盤を使用して 溝加工 (溝形状:スパイラル、溝サイズ:陸 0. 6mmZ溝 0. 3mm、溝占有率 33. 3% )を施し、これを比較例 3の研磨パッドとした。  <Comparative Example 2> To a TDI urethane prepolymer (100 parts) having an average molecular weight of about 1260, as a hardener, 3, 3'-dichronore 4, 4 diamine monodifatal methane (23.0 parts) ) Was added to prepare a solution. This resin solution is put into a mold and cured in the mold to form a non-foamed block, which is sliced to a thickness of 1.5 mm and has a Shore D hardness of 60.0 (measured) Manufacture a pad body with a temperature of 23.0 ° C and use a lathe on the surface of this pad body to form grooves (groove shape: spiral, groove size: land 0.6 mm, Z groove 0.3 mm, groove occupancy 33. 3%), and this was used as the polishing pad of Comparative Example 3.
[0044] く比較例 3 > 比較例 3の研磨パッドとして、市販の発泡体パッド (製品番号: IC100 0、ローム ·アンド ·ハース ·エレクトロニック ·マテリアノレズ 'シー ·ェム ·ピー ·ホウルディ ングス 'インコーポレイテッド)を使用した。比較例 3の研磨パッドの厚さは 1. 25mmで あり、ショァ D硬度は 59. 0であった。  [0044] Comparative Example 3> As a polishing pad of Comparative Example 3, a commercially available foam pad (Product No .: IC100 0, Rohm & Haas · Electronic · Materianoles 'Cm · P · Holdings' Incorporated )It was used. The thickness of the polishing pad of Comparative Example 3 was 1.25 mm, and the Shore D hardness was 59.0.
[0045] 実施例 1〜4、比較例 1〜3の各研磨パッドのショァ硬度、圧縮率及び圧縮回復率 を下記の表 1に示す。  The Shore hardness, compression rate, and compression recovery rate of each of the polishing pads of Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1 below.
[表 1] 表 1  [Table 1] Table 1
Figure imgf000011_0001
Figure imgf000011_0001
<比較試験 1 > 実施例 3と比較例 3の研磨パッドをそれぞれ使用して、ウェハの表 面を研磨し、ウェハの表面の段差について、各研磨パッドで比較した。 [0047] ウェハとして、平坦性評価試験に一般的に広く使用されている既知の試験用ウェハ( SKW7— 2)を使用した。この試験用ウェハは、シリコン基板の表面を所定のマスクパ ターンでエッチングし、その上にシリコン酸ィ匕膜を CVDにより蒸着させたものである。 この比較試験 1では、各研磨パッドで研磨した後の試験用ウェハのパターン D100の 研磨量に対するパターン D20、 D40及び D80の段差を比較した。(ここで、パターン D100は凹凸のない試験用ウェハ上の部分であり、パターン D20は、幅 20 mの直 線状の凸部と、幅 80 m、深さ 0. 8 mの直線状の凹部が交互に形成された試験 用ウェハ上の部分であり、パターン D40は、幅 40 μ mの直線状の凸部と、幅 60 μ m 、深さ 0. 8 mの直線状の凹部が交互に形成された試験用ウェハ上の部分であり、 パターン D80は、幅 80 μ mの直線状の凸部と、幅 20 μ m、深さ 0. 8 μ mの直線状の 凹部が交互に形成された試験用ウェハ上の部分である。なお、試験用ウェハ上の凹 凸の測定に、市販の段差測定装置 (製品番号: P— 1、テンコール社)を使用した。 )<Comparative Test 1> Using the polishing pads of Example 3 and Comparative Example 3 respectively, the surface of the wafer was polished, and the steps on the surface of the wafer were compared with each polishing pad. [0047] As the wafer, a known test wafer (SKW7-2) generally used widely in the flatness evaluation test was used. This test wafer is obtained by etching the surface of a silicon substrate with a predetermined mask pattern and depositing a silicon oxide film thereon by CVD. In this comparative test 1, the steps of the patterns D20, D40 and D80 with respect to the polishing amount of the pattern D100 of the test wafer after polishing with each polishing pad were compared. (Here, pattern D100 is a part on the test wafer without unevenness, and pattern D20 is a linear convex part with a width of 20 m and a linear concave part with a width of 80 m and a depth of 0.8 m. The pattern D40 has alternating 40 μm wide linear protrusions and 60 μm wide and 0.8 m deep linear recesses alternately. Pattern D80 is an area on the test wafer that is formed, and linear protrusions with a width of 80 μm and linear depressions with a width of 20 μm and a depth of 0.8 μm are alternately formed. (A commercially available level difference measuring device (product number: P-1, Tencor Corporation) was used to measure the unevenness on the test wafer.)
[0048] 研磨装置として、図 2Aに示すような市販の CMP装置(製品番号: MAT— ARW68 1S、株式会社ェム'エイ ·ティ)を使用した。研磨条件は下記の表 2に示すとおりであ つた。また、スラリーとして、市販のスラリー原液 (製品番号: Semi Sperse25、キヤ ボット ·マイクロエレクトロニクス ·ジャパン株式会社)を純水で 2倍に希釈 (原液:純水 = 1 : 1)したものを使用した。 [0048] As a polishing apparatus, a commercially available CMP apparatus (product number: MAT-ARW68 1S, EM Corporation) as shown in FIG. 2A was used. The polishing conditions were as shown in Table 2 below. In addition, a slurry obtained by diluting a commercially available slurry stock (Product No .: Semi Sperse25, Cabobot • Microelectronics • Japan Co., Ltd.) twice with pure water (stock solution: pure water = 1: 1) was used.
[表 2] 表 2  [Table 2] Table 2
研磨条件  Polishing conditions
定继回転数 6 0 r p m  Constant speed 6 0 r p m
研磨へッド回転数 6 3 r p m  Polishing head speed 6 3 r p m
研磨へッド荷重 (研磨圧力) 3 p s i  Polishing head load (Polishing pressure) 3 p s i
リテーナリング荷重 5 p s i  Retainer ring load 5 p s i
揺動スピード 1 m mZ分  Oscillation speed 1 m mZ min
揺動距離 1 0 m m  Oscillation distance 10 m m
スラリ一流量 2 0 0 c c 分 [0049] 比較試験 1の結果を図 3に示す。図 3に示すように、試験用ウェハ上の各パターン( D20、 D40、 D80)において、実施例 3の研磨パッドを使用することにより、比較例 3 のものを使用したときよりも短時間で平坦な表面を得ることができたことがわかる。 Slurry flow rate 2 0 0 cc min [0049] The results of Comparative Test 1 are shown in FIG. As shown in Figure 3, each pattern (D20, D40, D80) on the test wafer is flattened in a shorter time by using the polishing pad of Example 3 than when using Comparative Example 3. It can be seen that a smooth surface was obtained.
[0050] <比較試験 2> 実施例 1、 2、 4と比較例 2、 3の研磨パッドをそれぞれ使用して、ゥ ェハの表面を研磨し、ウェハの表面の段差について、各研磨パッドで比較した。  <Comparative Test 2> Using the polishing pads of Examples 1, 2, and 4 and Comparative Examples 2 and 3, respectively, the surface of the wafer was polished, and the level difference on the surface of the wafer was measured with each polishing pad. Compared.
[0051] ウェハとして、上記比較試験 1と同様に、平坦性評価試験に一般的に広く使用されて いる既知の試験用ウェハ(SKW7— 2)を使用した。この比較試験 2では、各研磨パッ ドで研磨した後の試験用ウェハのパターン D100の研磨量に対するパターン D80の 段差を比較した。  [0051] As in the comparative test 1, a known test wafer (SKW7-2) generally used widely in the flatness evaluation test was used as the wafer. In this comparative test 2, the level difference of the pattern D80 with respect to the polishing amount of the pattern D100 of the test wafer after polishing with each polishing pad was compared.
[0052] 研磨装置として、図 2Aに示すような市販の CMP装置(製品番号: MAT— ARW68 1S、株式会社ェム'エイ ·ティ)を使用した。研磨条件は上記の表 2に示すとおりであ つた。また、スラリーとして、市販のスラリー原液 (製品番号: Semi Sperse25、キヤ ボット ·マイクロエレクトロニクス ·ジャパン株式会社)を純水で 2倍に希釈 (原液:純水 = 1 : 1)したものを使用した。  [0052] As the polishing apparatus, a commercially available CMP apparatus (product number: MAT-ARW68 1S, EM Corporation) as shown in FIG. 2A was used. The polishing conditions were as shown in Table 2 above. In addition, a slurry obtained by diluting a commercially available slurry stock (Product No .: Semi Sperse25, Cabobot • Microelectronics • Japan Co., Ltd.) twice with pure water (stock solution: pure water = 1: 1) was used.
[0053] 比較試験 2の結果を図 4に示す。図 4に示すように、試験用ウェハ上のパターン D80 において、実施例 1、 2、 4の研磨パッドを使用することにより、比較例 2、 3のものを使 用したときよりも短時間で平坦な表面を得ることができたことがわかる。  [0053] The results of Comparative Test 2 are shown in FIG. As shown in Fig. 4, the pattern D80 on the test wafer is flattened in a shorter time by using the polishing pads of Examples 1, 2, and 4 than when using Comparative Examples 2 and 3. It can be seen that a smooth surface was obtained.
[0054] く比較試験 3 > 実施例 1、 2、 4と比較例 1〜3の研磨パッドをそれぞれ使用して、表 面にパターンのないプラズマ酸ィ匕膜を成膜 (厚さ 10000A)した PTEOS膜付きゥェ ハ(直径 200mm)の表面を研磨し、研磨レートと面内均一性について、各研磨パッド で比較した。ここで、面内均一性(WIWNU :within wafer non-uniformityの略)は、ゥ ェハ面内の加工均一性を示すパラメーターであり、面内各点での研磨量の標準偏差 Z研磨量の平均 X 100 (%)で示し、この wiwnu値が小さいほど、面内各点での研 磨量にバラツキがないことを意味する。なお、研磨量の測定のために行った膜厚の 測定は、市販の光干渉式膜厚測定装置 (製品番号: NanOSpeC9200、ナノメトリタス 株式会社)を使用して行った。 [0054] Comparative Test 3> Using the polishing pads of Examples 1, 2, and 4 and Comparative Examples 1 to 3, respectively, a plasma oxide film without a pattern on the surface was formed (thickness 10000A). The surface of a wafer with a PTEOS film (diameter 200 mm) was polished, and the polishing rate and in-plane uniformity were compared for each polishing pad. Here, in-plane uniformity (abbreviation of WIWNU: within wafer non-uniformity) is a parameter indicating the processing uniformity within the wafer surface, and the standard deviation of the polishing amount at each point in the surface. The average X 100 (%) indicates that the smaller the wiwnu value, the less variation in the polishing amount at each point in the plane. In addition, the film thickness measurement performed for the measurement of the polishing amount was performed using a commercially available optical interference type film thickness measuring device (product number: Nan OS pe C 9200, Nanometrics Co., Ltd.).
[0055] 研磨装置として、図 2Aに示すような市販の CMP装置(製品番号: MAT— ARW68 1S、株式会社ェム'エイ ·ティ)を使用した。研磨条件は下記の表 3に示すとおりであ つた。また、スラリーとして、市販のスラリー原液 (製品番号: Semi Sperse25、キヤ ボット ·マイクロエレクトロニクス ·ジャパン株式会社)を純水で 2倍に希釈 (原液:純水 = 1 : 1)したものを使用した。 [0055] As the polishing apparatus, a commercially available CMP apparatus (product number: MAT-ARW68 1S, EM Corporation) as shown in FIG. 2A was used. The polishing conditions are as shown in Table 3 below. I got it. In addition, a slurry obtained by diluting a commercially available slurry stock (Product No .: Semi Sperse25, Cabobot Microelectronics Japan Ltd.) twice with pure water (stock solution: pure water = 1: 1) was used.
[表 3] 表 3  [Table 3] Table 3
研磨条件  Polishing conditions
Figure imgf000014_0001
Figure imgf000014_0001
[0056] 比較試験 3の結果を下記の表 4に示す。また、各測定値を図 4A (研磨レート)及び図 4B (面内均一性)に示す。図 5は、図 4Aと図 4Bの合成図である。 [0056] The results of Comparative Test 3 are shown in Table 4 below. Each measured value is shown in FIG. 4A (polishing rate) and FIG. 4B (in-plane uniformity). FIG. 5 is a composite diagram of FIGS. 4A and 4B.
[表 4] 表 4  [Table 4] Table 4
比較試験 3の結果  Results of comparative test 3
(各数値は、 ゥェ /、中心部からエッジェンド 5 m mまでの測定に基づく測定値である)  (Each numerical value is a measured value based on measurements from the center to the essence of 5 mm)
Figure imgf000014_0002
Figure imgf000014_0002
比較例 3の研磨レートは 2000A /分であり、 面内均一性は 7. 296である。  The polishing rate of Comparative Example 3 is 2000 A / min, and the in-plane uniformity is 7.296.
[0057] 実用的に要求される研磨レートは、 1700AZ分以上であり、面内均一性は 8. 0% 以下である。 A practically required polishing rate is 1700 AZ or more, and in-plane uniformity is 8.0% or less.
[0058] 図 4A及び図 4B (及び図 5)に示すように、実用的に要求される研磨レートと面内均一 性は、ショァ D硬度 66. 0-78. 5の間の範囲で達成される。 [0058] As shown in FIGS. 4A and 4B (and FIG. 5), the polishing rate and in-plane uniformity required for practical use are uniform. Properties are achieved in the range between Shore D hardness 66.0-78.5.
[0059] また、図 4A (及び図 5)に示すように、ショァ D硬度が 70. 0以上の範囲において、比 較例 3よりも研磨レートが高ぐよって、ショァ D硬度が 70. 0-78. 5の間の範囲にお いて、上記の実用的に要求される研磨レートと面内均一性を達成し、且つ少なくとも 比較例 3の研磨レートよりも高 、ことがわかる。  In addition, as shown in FIG. 4A (and FIG. 5), the Shore D hardness is 70.0- because the polishing rate is higher than Comparative Example 3 in the range of Shore D hardness of 70.0 or more. It can be seen that the practically required polishing rate and in-plane uniformity are achieved in the range between 78.5 and at least higher than the polishing rate of Comparative Example 3.
[0060] さらに、図 4B (及び図 5)に示すように、ショァ D硬度が約 64. 0〜78. 0の間の範囲 において、比較例 3よりも面内均一性が低ぐよって、ショァ D硬度が 70. 0-78. 0の 間の範囲において、上記の実用的に要求される研磨レートと面内均一性を達成し、 且つ比較例 3の研磨レートよりも高ぐ面内均一性が低いことがわかる。そしてさらに、 ショァ D硬度が 72. 0〜76. 0の間の範囲において、最も低い面内均一性が達成さ れる。  [0060] Further, as shown in FIG. 4B (and FIG. 5), in the range of Shore D hardness between about 64.0 and 78.0, the in-plane uniformity is lower than that of Comparative Example 3, so that the Shore In the range of D hardness between 70.0 and 78.0, the above-mentioned practically required polishing rate and in-plane uniformity are achieved, and the in-plane uniformity is higher than the polishing rate of Comparative Example 3. Is low. In addition, the lowest in-plane uniformity is achieved when the Shore D hardness is between 72.0 and 76.0.
図面の簡単な説明  Brief Description of Drawings
[0061] [図 1]図 1A及び図 1Bは、本発明に従った研磨パッドの断面図である。 [0061] FIG. 1A and FIG. 1B are cross-sectional views of a polishing pad according to the present invention.
[図 2]図 2A及び図 2Bは、研磨装置を示す。  FIG. 2A and FIG. 2B show a polishing apparatus.
[図 3]図 3Aは、実施例 3及び比較例 3の研磨量に対する段差のプロットであり、図 3B は、実施例 2、 4及び比較例 2、 3の研磨量に対する段差のプロットである。  FIG. 3A is a plot of the step with respect to the polishing amount of Example 3 and Comparative Example 3, and FIG. 3B is a plot of the step with respect to the polishing amount of Examples 2, 4 and Comparative Examples 2 and 3.
[図 4]図 4Aは、実施例 1〜4及び比較例 1、 2のショァ D硬度に対する研磨レートのプ ロットと比較例 3の研磨レートであり、実施例 1〜4及び比較例 1、 2のショァ D硬度に 対する面内均一性のプロットと比較例 3の面内均一性である。  [FIG. 4] FIG. 4A shows the polishing rate plots for the Shore D hardness of Examples 1 to 4 and Comparative Examples 1 and 2 and the polishing rate of Comparative Example 3. Examples 1 to 4 and Comparative Examples 1 and 2 This is a plot of in-plane uniformity versus Shore D hardness and in-plane uniformity of Comparative Example 3.
[図 5]図 5は、図 4Aと図 4Bの合成図である。  FIG. 5 is a composite diagram of FIGS. 4A and 4B.
符号の説明  Explanation of symbols
[0062] lO - • ·研磨パッド  [0062] lO-• Polishing pad
l l - • ·ノヽッド 体  l l-• knot body
12 · "接着剤  12 · “Adhesive
13 · · ·裏当シート  13 · · · Back sheet
20 · ••CMP装置  20CMP equipment
21、 2Γ…定盤  21, 2Γ… Surface plate
22 · • .研磨ヘッド …ノズル22 • Polishing head …nozzle
···光源、モニター···照射光、反射光 …ウェハ ... Light source, monitor ... irradiated light, reflected light ... wafer

Claims

請求の範囲 The scope of the claims
[1] 研磨パッドであって、  [1] a polishing pad,
合成樹脂の無発泡体力 なるシート状のパッド本体、  A sheet-like pad body that is made of synthetic resin and has no foam.
から成り、  Consisting of
前記パッド本体のショァ D硬度が 66. 0〜78. 5の範囲にあり、  The Shore D hardness of the pad body is in the range of 66.0-78.5,
前記パッド本体の圧縮率が 4%以下の範囲にあり、  The compression ratio of the pad body is in the range of 4% or less,
前記パッド本体の圧縮回復率が 50%以上の範囲にある、  The compression recovery rate of the pad body is in the range of 50% or more,
ところの研磨パッド。  However polishing pad.
[2] 請求項 1の研磨パッドであって、 [2] The polishing pad of claim 1,
前記圧縮率が 2%以下の範囲にある、  The compression ratio is in the range of 2% or less,
ところの研磨パッド。  However polishing pad.
[3] 請求項 1の研磨パッドであって、 [3] The polishing pad of claim 1,
前記圧縮回復率が 70%以上の範囲にある、  The compression recovery rate is in the range of 70% or more,
ところの研磨パッド。  However polishing pad.
[4] 請求項 1の研磨パッドであって、 [4] The polishing pad of claim 1,
前記ショァ D硬度が 70. 0〜78. 5の範囲にある、  The Shore D hardness is in the range of 70.0 to 78.5,
ところの研磨パッド。  However polishing pad.
[5] 請求項 1の研磨パッドであって、 [5] The polishing pad of claim 1,
前記ショァ D硬度が 70. 0〜78. 0の範囲にある、  The Shore D hardness is in the range of 70.0 to 78.0,
ところの研磨パッド。  However polishing pad.
[6] 前記ショァ D硬度が 72. 0-76. 0の範囲にある、ところの請求項 1の研磨パッド。  6. The polishing pad according to claim 1, wherein the Shore D hardness is in the range of 72.0-76.0.
[7] 請求項 1の研磨パッドであって、  [7] The polishing pad of claim 1,
0. 5mm〜2. Ommの範囲にある前記パッド本体の厚さにおいて、 350nm〜900n mの範囲の波長領域にある光の前記パッド本体の光透過率が 10%以上の範囲にあ る、  In the thickness of the pad body in the range of 0.5 mm to 2. Omm, the light transmittance of the pad body of light in the wavelength range of 350 nm to 900 nm is in the range of 10% or more.
ところの研磨パッド。  However polishing pad.
[8] 請求項 1の研磨パッドであって、 [8] The polishing pad of claim 1,
0. 5mm〜2. Ommの範囲にある前記パッド本体の厚さにおいて、 450nm〜900 nmの範囲の波長領域にある光の前記パッド本体の光透過率が 30%以上の範囲に ある、 In the thickness of the pad body in the range of 0.5 mm to 2. Omm, 450 nm to 900 nm the light transmittance of the pad body of light in the wavelength range of nm is in the range of 30% or more,
ところの研磨パッド。  However polishing pad.
[9] 請求項 1の研磨パッドであって、 [9] The polishing pad of claim 1,
前記パッド本体の表面が溝を有し、  The surface of the pad body has a groove,
前記パッド本体の表面の全域に対して前記溝の部分が占有する割合力 前記パッ ド本体の表面の全域を 100%として、 10%〜50%の範囲にある、  Proportional force occupied by the groove portion with respect to the entire surface of the pad body is in the range of 10% to 50%, where the entire surface of the pad body is 100%.
ところの研磨パッド。  However polishing pad.
[10] 請求項 1の研磨パッドであって、 [10] The polishing pad of claim 1,
前記パッド本体の裏面に固定した裏当シート、  A backing sheet fixed to the back of the pad body;
力 さらに成る研磨パッド。  A polishing pad that further comprises force.
[11] 請求項 10の研磨パッドであって、 [11] The polishing pad of claim 10,
前記裏当シートとして、前記パッド本体のショァ D硬度よりも低い硬度で、前記パッド 本体の圧縮率よりも高い圧縮率の弾性シートが使用される、  As the backing sheet, an elastic sheet having a hardness lower than the Shore D hardness of the pad main body and a compression rate higher than the compression rate of the pad main body is used.
ところの研磨パッド。  However polishing pad.
PCT/JP2005/012903 2004-10-14 2005-07-13 Abrasive pad WO2006040864A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05765668A EP1800800A4 (en) 2004-10-14 2005-07-13 Abrasive pad
US11/447,425 US20060229000A1 (en) 2004-10-14 2006-06-05 Polishing pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004299838A JP2006110665A (en) 2004-10-14 2004-10-14 Polishing pad
JP2004-299838 2004-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/447,425 Continuation US20060229000A1 (en) 2004-10-14 2006-06-05 Polishing pad

Publications (1)

Publication Number Publication Date
WO2006040864A1 true WO2006040864A1 (en) 2006-04-20

Family

ID=36148166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012903 WO2006040864A1 (en) 2004-10-14 2005-07-13 Abrasive pad

Country Status (7)

Country Link
US (1) US20060229000A1 (en)
EP (1) EP1800800A4 (en)
JP (1) JP2006110665A (en)
KR (1) KR100804344B1 (en)
CN (1) CN1905991A (en)
TW (1) TW200611783A (en)
WO (1) WO2006040864A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131133A1 (en) * 2008-04-23 2009-10-29 日立化成工業株式会社 Polishing agent and method for polishing substrate using the polishing agent

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007520A (en) * 2003-06-19 2005-01-13 Nihon Micro Coating Co Ltd Abrasive pad, manufacturing method thereof, and grinding method thereof
JP5288715B2 (en) * 2007-03-14 2013-09-11 東洋ゴム工業株式会社 Polishing pad
JP2008290197A (en) * 2007-05-25 2008-12-04 Nihon Micro Coating Co Ltd Polishing pad and method
JP5078527B2 (en) * 2007-09-28 2012-11-21 富士紡ホールディングス株式会社 Polishing cloth
JP2010118424A (en) * 2008-11-12 2010-05-27 Disco Abrasive Syst Ltd Conveying device for thin plate type workpiece
JP5404107B2 (en) * 2009-03-10 2014-01-29 キヤノン株式会社 Polishing tool
JP5276502B2 (en) * 2009-04-03 2013-08-28 東洋ゴム工業株式会社 Polishing pad and manufacturing method thereof
TWI410299B (en) 2009-08-24 2013-10-01 Bestac Advanced Material Co Ltd Polishing pad, use thereof and method for making the same
CN102029571B (en) * 2009-09-24 2015-07-29 贝达先进材料股份有限公司 Grinding pad and its application and its manufacture method
JP5528169B2 (en) 2010-03-26 2014-06-25 東洋ゴム工業株式会社 Polishing pad, method for manufacturing the same, and method for manufacturing a semiconductor device
CN103180100B (en) 2010-10-26 2016-01-13 东洋橡胶工业株式会社 Grinding pad and manufacture method thereof
WO2012056513A1 (en) 2010-10-26 2012-05-03 東洋ゴム工業株式会社 Polishing pad and method for producing same
US9079289B2 (en) 2011-09-22 2015-07-14 Toyo Tire & Rubber Co., Ltd. Polishing pad
KR101267982B1 (en) * 2011-12-13 2013-05-27 삼성코닝정밀소재 주식회사 Method for grinding the semiconductor substrate and semiconductor substrate grinding apparatus
WO2013129426A1 (en) * 2012-02-27 2013-09-06 東レ株式会社 Polishing pad
US9156125B2 (en) * 2012-04-11 2015-10-13 Cabot Microelectronics Corporation Polishing pad with light-stable light-transmitting region
US10800000B2 (en) * 2015-01-30 2020-10-13 Applied Materials, Inc. Multi-layered nano-fibrous CMP pads
KR102463863B1 (en) * 2015-07-20 2022-11-04 삼성전자주식회사 Polishing compositions and methods of manufacturing semiconductor devices using the same
KR20180026779A (en) * 2015-07-30 2018-03-13 제이에이치 로드스 컴퍼니, 인크 Systems comprising polymeric lapping materials, media, polymeric lapping materials, and methods of using and forming them
JP2018029142A (en) * 2016-08-18 2018-02-22 株式会社クラレ Polishing pad and polishing method using the same
MX2020009383A (en) * 2018-03-13 2020-10-28 3M Innovative Properties Company Floor bristle brush assembly.
JP7264775B2 (en) * 2019-09-03 2023-04-25 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Optical connector polishing pad
KR102309564B1 (en) * 2020-02-25 2021-10-07 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof
CN112338820B (en) * 2020-10-27 2021-10-29 湖北鼎汇微电子材料有限公司 Polishing pad and preparation method and application thereof
CN112809550B (en) * 2020-12-31 2022-04-22 湖北鼎汇微电子材料有限公司 Polishing pad
CN112720282B (en) * 2020-12-31 2022-04-08 湖北鼎汇微电子材料有限公司 Polishing pad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198795A (en) * 2000-01-12 2001-07-24 Mitsubishi Materials Corp Polishing device
JP2001232554A (en) * 2000-02-22 2001-08-28 Toyobo Co Ltd Polishing pad and method for manufacturing thereof
JP2002343749A (en) * 2001-05-11 2002-11-29 Ntn Corp Polishing platen and polished product manufacturing method
JP2004025407A (en) * 2002-06-27 2004-01-29 Jsr Corp Polishing pad for chemicomechanical polishing
JP2004119974A (en) * 2002-09-17 2004-04-15 Korea Polyol Co Ltd Polishing pad containing embedded liquid microelements and method of manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514245A (en) * 1992-01-27 1996-05-07 Micron Technology, Inc. Method for chemical planarization (CMP) of a semiconductor wafer to provide a planar surface free of microscratches
JP2000263423A (en) * 1999-03-16 2000-09-26 Toray Ind Inc Polishing pad and polishing device
US6641471B1 (en) * 2000-09-19 2003-11-04 Rodel Holdings, Inc Polishing pad having an advantageous micro-texture and methods relating thereto
KR100905266B1 (en) * 2000-12-01 2009-06-29 도요 고무 고교 가부시키가이샤 Polishing pad
US6848977B1 (en) * 2003-08-29 2005-02-01 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad for electrochemical mechanical polishing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198795A (en) * 2000-01-12 2001-07-24 Mitsubishi Materials Corp Polishing device
JP2001232554A (en) * 2000-02-22 2001-08-28 Toyobo Co Ltd Polishing pad and method for manufacturing thereof
JP2002343749A (en) * 2001-05-11 2002-11-29 Ntn Corp Polishing platen and polished product manufacturing method
JP2004025407A (en) * 2002-06-27 2004-01-29 Jsr Corp Polishing pad for chemicomechanical polishing
JP2004119974A (en) * 2002-09-17 2004-04-15 Korea Polyol Co Ltd Polishing pad containing embedded liquid microelements and method of manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1800800A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131133A1 (en) * 2008-04-23 2009-10-29 日立化成工業株式会社 Polishing agent and method for polishing substrate using the polishing agent
KR101186003B1 (en) 2008-04-23 2012-09-26 히다치 가세고교 가부시끼가이샤 Polishing agent and method for polishing substrate using the polishing agent
KR101250090B1 (en) 2008-04-23 2013-04-03 히타치가세이가부시끼가이샤 Polishing agent and method for polishing substrate using the polishing agent
KR101260575B1 (en) 2008-04-23 2013-05-06 히타치가세이가부시끼가이샤 Polishing agent and method for polishing substrate using the polishing agent
US8617275B2 (en) 2008-04-23 2013-12-31 Hitachi Chemical Company, Ltd. Polishing agent and method for polishing substrate using the polishing agent
JP5423669B2 (en) * 2008-04-23 2014-02-19 日立化成株式会社 Abrasive and substrate polishing method using the abrasive
US9165777B2 (en) 2008-04-23 2015-10-20 Hitachi Chemical Company, Ltd. Polishing agent and method for polishing substrate using the polishing agent
US10040971B2 (en) 2008-04-23 2018-08-07 Hitachi Chemical Company, Ltd. Polishing agent and method for polishing substrate using the polishing agent

Also Published As

Publication number Publication date
US20060229000A1 (en) 2006-10-12
JP2006110665A (en) 2006-04-27
EP1800800A4 (en) 2010-10-20
TW200611783A (en) 2006-04-16
EP1800800A1 (en) 2007-06-27
KR100804344B1 (en) 2008-02-15
KR20060080201A (en) 2006-07-07
CN1905991A (en) 2007-01-31

Similar Documents

Publication Publication Date Title
WO2006040864A1 (en) Abrasive pad
JP6290004B2 (en) Soft and conditionable chemical mechanical window polishing pad
KR100770852B1 (en) Grooved polishing pads for chemical mechanical planarization
KR102208278B1 (en) Multilayer chemical mechanical polishing pad stack with soft and conditionable polishing layer
US20140370788A1 (en) Low surface roughness polishing pad
CN108687654B (en) Chemical mechanical polishing pad
KR102191947B1 (en) Soft and conditionable chemical mechanical polishing pad stack
JP4563025B2 (en) Polishing pad for CMP and polishing method using the same
JP5732354B2 (en) Polishing pad
WO2016103862A1 (en) Circular polishing pad, and semiconductor device manufacturing method
JP2009224384A (en) Polishing pad, and manufacturing method of semiconductor device
JP2006245445A (en) Abrasive pad
JP2002192455A (en) Abrasive pad
US20070161720A1 (en) Polishing Pad with Surface Roughness
JP5620465B2 (en) Circular polishing pad
JP2006142439A (en) Polishing pad and polishing method using the same
JP2010131737A (en) Polishing pad and method for manufacturing the same
KR20050082142A (en) Base pad of polishing pad and multi-layer pad comprising the same
James CMP polishing pads
JP2017117976A (en) Abrasive pad and method of manufacturing semiconductor device
JP2016066781A (en) Abrasive pad

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001597.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067005259

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 11447425

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067005259

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005765668

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11447425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005765668

Country of ref document: EP